Yeri Alice Rim

Yeri Alice Rim
Catholic University of Korea | CUK · Research Institute of Immunobiology

Doctor of Philosophy

About

83
Publications
20,883
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,459
Citations

Publications

Publications (83)
Article
Full-text available
Background Spinal cord injury (SCI) is a disease that causes permanent impairment of motor, sensory, and autonomic nervous system functions. Stem cell transplantation for neuron regeneration is a promising strategic treatment for SCI. However, selecting stem cell sources and cell transplantation based on experimental evidence is required. Therefore...
Article
Full-text available
Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical...
Article
Full-text available
Background Spinal cord injury (SCI) is an intractable neurological disease in which functions cannot be permanently restored due to nerve damage. Stem cell therapy is a promising strategy for neuroregeneration after SCI. However, experimental evidence of its therapeutic effect in SCI is lacking. This study aimed to investigate the efficacy of trans...
Article
Full-text available
Various groups including animal protection organizations, medical organizations, research centers, and even federal agencies such as the U.S. Food and Drug Administration, are working to minimize animal use in scientific experiments. This movement primarily stems from animal welfare and ethical concerns. However, recent advances in technology and n...
Article
Acetaldehyde dehydrogenase 2 (ALDH2) is the second enzyme involved in the breakdown of acetaldehyde into acetic acid during the process of alcohol metabolism. Roughly 40% of East Asians carry one or two ALDH2*2 alleles, and the presence of ALDH2 genetic mutations in individuals may affect the bone remodeling cycle owing to accumulation of acetaldeh...
Article
Full-text available
Osteoporosis is a metabolic bone disease that impairs bone mineral density, microarchitecture, and strength. It requires continuous management, and further research into new treatment options is necessary. Osteoprotegerin (OPG) inhibits bone resorption and osteoclast activity. The objective of this study was to investigate the effects of stepwise a...
Article
Full-text available
Background Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly, resulting in gradual destruction of cognitive abilities. Research on the development of various AD treatments is underway; however, no definitive treatment has been developed yet. Herein, we present induced pluripotent stem cell (iPSC)-derived cortical...
Preprint
Full-text available
Background Nerve growth factor (NGF) is a neurotrophic factor involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Additionally, it has been suggested to play a role in osteoarthritis (OA). Previous studies have reported a relationship between NGF and OA; however, the underlying mechanisms remain unknow...
Article
Cartilage is mainly composed of chondrocytes and the extracellular matrix (ECM), which exchange important biochemical and biomechanical signals necessary for differentiation and homeostasis. Human articular cartilage has a low ability for regeneration because it lacks blood vessels, nerves, and lymphatic vessels. Currently, cell therapeutics, inclu...
Article
Blood transfusions are now an essential part of modern medicine. Transfusable red blood cells (RBCs) are employed in various therapeutic strategies; however, the processes of blood donation, collection, and administration still involve many limitations. Notably, a lack of donors, the risk of transfusion-transmitted disease, and recent pandemics suc...
Article
Full-text available
Background The rarity of systemic sclerosis (SSc) has hampered the development of therapies for this intractable autoimmune disease. Induced pluripotent stem cell (iPSC) can be differentiated into the key disease-affected cells in vitro. The generation of patient-derived iPSCs has opened up possibilities for rare disease modeling. Since these cells...
Article
Full-text available
Post-inflammatory hyperpigmentation is a skin discoloration process that occurs following an inflammatory response or wound. As the skin begins to heal, macrophages first exhibit a proinflammatory phenotype (M1) during the early stages of tissue repair and then transition to a pro-healing, anti-inflammatory phenotype (M2) in later stages. During th...
Article
Transforming growth factor-beta (TGF-β) is an important regulator of joint homeostasis, of which dysregulation is closely associated with the development of osteoarthritis (OA). In normal conditions, its biological functions in a joint environment are joint protective, but it can be dramatically altered in different contexts, making its therapeutic...
Article
Full-text available
Alzheimer’s disease (AD) is the most common condition in patients with dementia and affects a large population worldwide. The incidence of AD is expected to increase in future owing to the rapid expansion of the aged population globally. Researchers have shown that women are twice more likely to be affected by AD than men. This phenomenon has been...
Article
Full-text available
Background and objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease mainly affecting young women of childbearing age. SLE affects the skin, joints, muscles, kidneys, lungs, and heart. Cardiovascular complications are common causes of death in patients with SLE. However, the complexity of the cardiovascular system and the...
Article
Full-text available
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have shown promising potential, specifically because of their accessibility and plasticity. Hence, the clinical applicability of iPSCs was investigated in various fields of research. However, only a few iPSC studies pertaining to osteoarthritis (OA) have been performed so far, de...
Article
Full-text available
In 2006, the induced pluripotent stem cell (iPSC) was presented to the world, paving the way for the development of a magnitude of novel therapeutic alternatives, addressing a diverse range of diseases. However, despite the immense cell therapy potential, relatively few clinical trials evaluating iPSC-technology have actually translated into interv...
Article
Full-text available
The pellet formation has been regarded as a golden standard for in vitro chondrogenic differentiation. However, a spatially inhomogeneous chondrogenic microenvironment around a pellet resulted from the use of a traditional impermeable narrow tube, such as the conical tube, undermines the differentiation performance and therapeutic potential of diff...
Article
Full-text available
Osteoporosis is commonly treated via the long-term usage of anti-osteoporotic agents; however, poor drug compliance and undesirable side effects limit their treatment efficacy. The parathyroid hormone-related protein (PTHrP) is essential for normal bone formation and remodeling; thus, may be used as an anti-osteoporotic agent. Here, we developed a...
Article
Full-text available
3D cell printing technology is in the spotlight for producing 3D tissue or organ constructs useful for various medical applications. In printing of neuromuscular tissue, a bioink satisfying all the requirements is a challenging issue. Gel integrity and motor neuron activity are two major characters because a harmonious combination of extracellular...
Article
Full-text available
Osteogenesis imperfecta (OI) is a genetic disease characterized by bone fragility and repeated fractures. The bone fragility associated with OI is caused by a defect in collagen formation due to mutation of COL1A1 or COL1A2. Current strategies for treating OI are not curative. In this study, we generated induced pluripotent stem cells (iPSCs) from...
Article
Full-text available
We examined whether it is possible to directly detect citrullinated antigens in the serum of rheumatoid arthritis (RA) patients using a monoclonal antibody (mAb) designed to be specific for citrullinated peptides. In order to confirm the potential of the mAb as a direct arthritis-inducing substance through experimental model of RA, a monoclonal ant...
Article
Full-text available
Gene delivery systems have become an essential component of research and the development of therapeutics for various diseases. Minicircles are non-viral vectors with promising characteristics for application in a variety of fields. With their minimal size, minicircles exhibit relatively high safety and efficient delivery of genes of interest into c...
Article
Full-text available
Mesenchymal stem cell (MSC) therapies have been used as cell-based treatments for decades, owing to their anti-inflammatory, immunomodulatory, and regenerative properties. With high expectations, many ongoing clinical trials are investigating the safety and efficacy of MSC therapies to treat arthritic diseases. Studies on osteoarthritis (OA) have s...
Article
The accurate homogeneous differentiation of human induced pluripotent stem cells into chondrocytes is crucial for cartilage regenerative therapies. Discovery of the signalling pathways responsible for the differentiation of unwanted cell types during in vitro chondrogenesis could herald a breakthrough for in vitro cartilage generation.
Article
Full-text available
Early osteoarthritis (OA)-like symptoms are difficult to study owing to the lack of disease samples and animal models. In this study, we generated induced pluripotent stem cell (iPSC) lines from a patient with a radiographic early-onset finger osteoarthritis (efOA)-like condition in the distal interphalangeal joint and her healthy sibling. We diffe...
Article
Full-text available
Osteoarthritis (OA) is a chronic degenerative joint disease where the main characteristics include cartilage degeneration and synovial membrane inflammation. These changes in the knee joint eventually dampen the function of the joint and restrict joint movement, which eventually leads to a stage where total joint replacement is the only treatment o...
Article
Full-text available
Osteoarthritis (OA) is the most common joint disease that causes pain and disability in the adult population. OA is primarily caused by trauma induced by an external force or by age-related cartilage damage. Chondrocyte hypertrophy or chondrocyte senescence is thought to play a role in the initiation and progression of OA. Although chondrocyte hype...
Article
Full-text available
: Human degenerative cartilage has low regenerative potential. Chondrocyte transplantation offers a promising strategy for cartilage treatment and regeneration. Currently, chondrogenesis using human pluripotent stem cells (hiPSCs) is accomplished using human recombinant growth factors. Here, we differentiate hiPSCs into chondrogenic pellets using m...
Article
Full-text available
Regeneration of articular cartilage is of great interest in cartilage tissue engineering since articular cartilage has a low regenerative capacity. Due to the difficulty in obtaining healthy cartilage for transplantation, there is a need to develop an alternative and effective regeneration therapy to treat degenerative or damaged joint diseases. St...
Article
Full-text available
Purpose Sodium chloride (NaCl) has been proposed as a driving factor in autoimmune diseases through the induction of pathogenic CD4⁺ T helper cells that produce interleukin-17 (Th17 cells). This study investigated the effects of NaCl on inflammatory arthritis in mice and humans. Materials and Methods Collagen-induced arthritis (CIA) mice were fed...
Article
Full-text available
Background Methotrexate (MTX) is widely used for the treatment of rheumatoid arthritis (RA). The drug is cost-effective, but sometimes causes hepatotoxicity, requiring a physician’s attention. In this study, we simulated hepatotoxicity by treating hepatocytes derived from RA patient–derived induced pluripotent stem cells (RA-iPSCs) with MTX. Metho...
Article
Full-text available
Background: Skin is an organ that plays an important role as a physical barrier and has many other complex functions. Skin mimetics may be useful for studying the pathophysiology of diseases in vitro and for repairing lesions in vivo. Cord blood mononuclear cells (CBMCs) have emerged as a potential cell source for regenerative medicine. Human indu...
Article
Full-text available
After online publication of this article, the authors noticed an error in the Figure section. The correct statement of this article should have read as below.
Article
Full-text available
It is unclear how systemic administration of mesenchymal stem cells (MSCs) controls local inflammation. The aim of this study was to evaluate the therapeutic effects of human MSCs on inflammatory arthritis and to identify the underlying mechanisms. Mice with collagen antibody-induced arthritis (CAIA) received two intraperitoneal injections of human...
Data
Image of the chemokine array panel. Expression of Axl, CD30T, CXCL16, SDF-1α, and RANTES increased in the screening panel treated with peritoneal mononuclear cells from CAIA mice treated with MSCs. (JPG)
Data
Expression of mouse FOXP3 and IL-17 in mouse spleen. There was no significant difference between expression levels in wild-type, control CAIA, and MSC-treated CAIA mice. (JPG)
Preprint
Full-text available
The human degenerative cartilage has low regenerative potential. Chondrocyte transplantation offers a promising strategy for cartilage treatment and regeneration. Currently chondrogenesis using human pluripotent stem cells are accomplished using human recombinant growth factors. Here, we differentiated human induced pluripotent stem cells (hiPSCs)...
Article
Full-text available
The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually performed when pain becomes uncontrollable or joint function completely fails...
Article
Full-text available
Rheumatoid arthritis (RA) is a chronic autoimmune disease that typically results in strong inflammation and bone destruction in the joints. It is generally known that the pathogenesis of RA is linked to cardiovascular and periodontal diseases. Though rheumatoid arthritis and periodontitis share many pathologic features such as a perpetual inflammat...
Article
Full-text available
Human bone marrow-derived mesenchymal stem cells (MSCs) have been observed to inhibit arthritis in experimental animal models such as collagen-induced arthritis. However, the exact anti-inflammatory mechanisms remain poorly understood. Interleukin-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine produced by immune and stromal cells....
Article
Full-text available
Scientists have tried to reprogram various origins of primary cells into human induced pluripotent stem cells (hiPSCs). Every somatic cell can theoretically become a hiPSC and give rise to targeted cells of the human body. However, there have been debates on the controversy about the differentiation propensity according to the origin of primary cel...
Data
Figure S1: Confirmation of vector-free hiPSCs. The elimination of viral vectors was confirmed in generated hiPSCs. The expression was confirmed in clone #1 of each hiPS cell line.
Data
Figure S2: Size of chondrogenic pellets generated from hiPSCs. Chondrogenic pellets generated from CBMC-derived hiPSCs had the largest size.
Data
Figure S3: The expression of pluripotent markers (OCT4, SOX2, NANOG, and KLF4) in day 21 chondrogenic pellets. The expression was compared to that of hiPSCs.
Article
Full-text available
Epidemiological studies show an association between rheumatoid arthritis (RA) and periodontal disease. Porphyromonas gingivalis (P.gingivalis) is a well-known pathogen in periodontitis. This study investigated the pathogenic effects of P.gingivalis on autoimmune arthritis in vivo. Collagen-induced arthritis (CIA) mice were intraperitoneally injecte...
Data
Oral infection of P.gingivalis confirm in CIA. (A, B) Arthritis severity score of NC mice (n = 5), CIA mice (n = 5), and CIA mice infected with P.gingivalis (n = 5). Pre and Post P.gingivalis were oral infected twice per week throughout the experimental period. The score for each paw ranged from 0 (no swelling) to 4 (erythema and severe swelling en...
Data
Inoculation with PAD-mutant bacteria. The arthritic index was compared between normal, CIA control mice and mice infected with W83 or Fusobacterium nucleatum (F.n). (TIF)
Data
ARRIVE guidelines checklist. Experiments were performed according to the ARRIVE guidelines. (PDF)
Article
Full-text available
Induced pluripotent stem cells (iPSCs) can be generated by introducing several factors into mature somatic cells. Banking of iPSCs can lead to wider application for treatment and research. In an economical view, it is important to store cells that can cover a high percentage of the population. Therefore, the use of homozygous human leukocyte antige...
Article
Full-text available
Human articular cartilage lacks the ability to repair itself. Cartilage degeneration is thus treated not by curative but by conservative treatments. Currently, efforts are being made to regenerate damaged cartilage with ex vivo expanded chondrocytes or bone marrow-derived mesenchymal stem cells (BMSCs). However, the restricted viability and instabi...
Article
Full-text available
Human induced pluripotent stem cells (hiPSCs) are thought to be an alternative cell source for future regenerative medicine. hiPSCs may allow unlimited production of cell types that have low turnover rates and are difficult to obtain such as autologous chondrocytes. In this study, we generated hiPSC‐derived chondrogenic pellets and chondrocytes wer...
Article
Full-text available
Background The native articular cartilage lacks the ability to heal. Currently, ex vivo expanded chondrocytes or bone marrow-derived mesenchymal stem cells are used to regenerate the damaged cartilage. With unlimited self-renewal ability and multipotency, human induced pluripotent stem cells (hiPSCs) have been highlighted as a new replacement cell...
Article
Full-text available
Mesenchymal stem cells (MSCs) have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and clinical treatments. These beneficial effects, however, are sometimes inconsistent and unpredictable. For wider and proper application, scientists sought to improve MSC functions by engineering. We aimed to i...
Article
Full-text available
The recent development of human induced pluripotent stem cells (hiPSCs) proved that mature somatic cells can return to an undifferentiated, pluripotent state. Now, reprogramming is done with various types of adult somatic cells: keratinocytes, urine cells, fibroblasts, etc. Early experiments were usually done with dermal fibroblasts. However, this...
Article
Full-text available
Background Cartilage does not have the capability to regenerate itself. Therefore, stem cell transplantation is a promising therapeutic approach for impaired cartilage. For stem cell transplantation, in vitro enrichment is required; however, stem cells not only become senescent but also lose their differentiation potency during this process. In add...
Article
Full-text available
Mature somatic cells can be reversed into a pluripotent stem cell-like state using a defined set of reprogramming factors. Numerous studies have generated induced-Pluripotent Stem Cells (iPSCs) from various somatic cell types by transducing four Yamanaka transcription factors: Oct4, Sox2, Klf4 and c-Myc. The study of iPSCs remains at the cutting ed...
Article
Full-text available
Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even...
Article
Full-text available
A considerable proportion of patients with rheumatoid arthritis (RA) do not respond to monospecific agents. The purpose of our study was to generate a hybrid form of biologics, targeting tumor-necrosis factor alpha (TNFα) and interleukin-6 receptor (IL-6R), and determine its anti-arthritic properties in vitro and in vivo. A novel dual target-direct...
Article
Full-text available
This study was undertaken to develop a novel anti-citrullinated peptide antibody (ACPA) and to investigate its arthritogenicity in a collagen-induced arthritis (CIA) model. The novel ACPA, 12G1, was developed by injecting cyclic citrullinated antigen in mice and subsequently hybridizing the B cells producing citrullinated peptide-specific antibodie...
Article
Full-text available
Background: Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) derived from adipose tissue. MSCs have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and human diseases. However, the mechanisms underlying this wide range of effects need to be explored. Methods: Collagen anti...
Article
Full-text available
Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score wa...
Article
Full-text available
Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin fusion protein (CTLA4Ig, abatacept) is a B7/CD28 costimulation inhibitor that can ward off the immune response by preventing the activation of naïve T cells. This therapeutic agent is administered to patients with autoimmune diseases such as rheumatoid arthritis. Its antiarthritic efficacy...
Article
Full-text available
Biologics are the most successful drugs used in anticytokine therapy. However, they remain partially unsuccessful because of the elevated cost of their synthesis and purification. Development of novel biologics has also been hampered by the high cost. Biologics are made of protein components; thus, theoretically, they can be produced in vivo. Here...
Article
Etanercept is a widespread biological drug for the treatment of rheumatoid arthritis, which inhibits tumor necrosis factor-α (TNF-α). Recently, the presence of antibodies targeting TNF-α inhibitors such as infliximab and adalimumab, was reported. However, few reports have studied etanercept in a mouse model of arthritis. We investigated the inducti...
Article
Full-text available
Since the concept of reprogramming mature somatic cells to generate induced pluripotent stem cells (iPSCs) was demonstrated in 2006, iPSCs have become a potential substitute for embryonic stem cells (ESCs) given their pluripotency and "stemness" characteristics, which resemble those of ESCs. We investigated to reprogram fibroblast-like synoviocytes...

Questions

Question (1)
Question
Hello fellow researchers:)
I'm currently trying to differentiate iPSCs into chondrocytes.
I have searched several papers and tried the protocols
and also tried micromass culture and pellet culture both, 
but my cells won't aggregate in both ways.
Is there a "secret ingredient" that I am missing? :/
I am currently thinking of adding ROCK inhibitor in the media when proceeding micromass and pellet culture.
Any advice?

Network

Cited By