ArticlePDF Available
I/Q失衡影响下无人机多向全双工中继NOMA传输系统性能分析
张铭宇 李兴旺 孙江峰*② 李美玲
(河南理工大学物理与电子信息学院 焦作 454003)
(河南理工大学计算机科学与技术学院 焦作 454003)
(太原科技大学电子信息工程学院 太原 030024)
要:无人机(UAV)具备高灵活性、强适应性和高机动性等优势,能够为6G网络提供便捷有效的辅助通信方
案。为提高UAV通信系统的频谱效率,让所有用户彼此间在更少的时隙内完成信息交互,该文提出一种全双工(FD)
多向中继非正交多址接入(NOMA)(FD NOMA MWRN)传输方案,考虑收发端都存在同向/正交(I/Q)失衡的情
况,对系统的传输率和能量效率进行分析。仿真结果表明:相比半双工(HD),全双工技术可以实现频谱利用率的
翻倍;所提方案比正交多址接入(OMA)方案更具性能优势,且不受用户数量的影响,传输消耗的时隙数始终为
1I/Q失衡会限制系统传输率,UAV的工作高度也对其起到一定的约束作用。
关键词:无人机通信;非正交多址接入;多向中继;全双工;I/Q失衡
中图分类号:TN925 文献标识码:A文章编号:1009-5896(2022)03-0001-09
DOI: 10.11999/JEIT211020
Performances Analysis in UAV-Aided Multi-Way NOMA
Full-Duplex Relay System with I/Q Imbalance
CHEN Hui ZHANG Mingyu LI Xingwang SUN Jiangfeng LI Meiling
(School of Physics and Electronic Information, Henan Polytechnic University, Jiaozuo 454003, China)
(School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, China)
(School of Electronic Information Engineering, Taiyuan University of Science and Technology,
Taiyuan 030024, China)
Abstract: The Unmanned Aerial Vehicle (UAV) can provide convenient and effective supplementary
communication solutions for 6G networks since it gets the advantages of flexibility, adaptability and high
mobility. To further improve the spectrum efficiency and reduce the transmission time required for full data
exchange, a Full-Duplex (FD) Multi-Way Relay Network Non-Orthogonal Multiple Access (NOMA)
transmission scheme (FD NOMA MWRN) is proposed. In addition, a more practical case is assumed that in-
phase/quadrature imbalance of transceiver is taken into account. Based on this, the transmission rate and
energy efficiency are analyzed. The simulation results indicate the following conclusions. Firstly, the full-duplex
transmission can improve the spectral utilization compared to the Half-Duplex (HD) mode. Secondly, the
proposed scheme, which consumes the number of time slots is always one regardless of the number of users, has
better performance than the Orthogonal Multiple Access (OMA) scheme. Thirdly, the In-phase/Quadrature
(I/Q) imbalance and the working height of the UAV both limit the transmission rate of the system.
Key words: Unmanned Aerial Vehicle (UAV) communication; Non-Orthogonal Multiple Access (NOMA);
multi-way relay; Full Duplex (FD); In-phase/Quadrature (I/Q) imbalance
收稿日期:2021-09-24;改回日期:2022-02-15;网络出版:2022-03-01
*通信作者: 孙江峰 sunjiangfeng@hpu.edu.cn
基金项目:国家自然科学基金青年基金(62001320),河南省科技攻关项目(212102210557),河南理工大学博士基金(B2018-39)
Foundation Items: The Youth Fund of National Natural Science Foundation of China (62001320), The Science and Technology Project of
Henan Province (212102210557), The Doctoral Fund of Henan Polytechnic University (B2018-39)
44卷第3 Vol. 44No. 3
20223Journal of Electronics & Information Technology Mar. 2022
1 引言
近年来,无人机(Unmanned Air Vehicle,
UAV)通信技术作为通信领域的新兴技术,受到学
术界和工业界的广泛关注[1,2]。在未来6G网络中,
无人机辅助通信被认为是实现空天地一体化无缝覆
盖的一种有前途的方案。面对未来巨连接、大容
量、差异化的移动通信网络应用需求,无人机可以
作为空中通信平台,为有需求的地理位置提供可靠
的无线通信[3,4],如用作通信基站对地面网络进行
补充、用作通信中继为远距离用户增强网络传输以
及辅助物联网信息数据的收集和分发等。然而有限
的频谱资源仍会对系统的传输性能造成不利影
[4],因此采用高效的频谱传输方案对无人机通信
系统而言颇为关键。
值得一提的是,非正交多址接入技术(Non-Or-
thogonal Multiple Access, NOMA)具有大规模连
接、低延迟、高频谱效率、强鲁棒性等技术优势,
被视为下一代无线通信网络革命性的多址接入框
[5]。与传统的正交多址接入技术(Orthogonal
Multiple Access, OMA)相比,NOMA突破了通信
资源正交划分对接入用户数量的限制,允许多个用
户通过功率域复用共享相同的时频资源,不需要过
于复杂的接收器就能实现多用户连接[6]。功率域
NOMA基于发射端的叠加编码(Superposition
Coding, SC)方案和接收端的连续干扰消除(Successive
Interference Cancellation, SIC)技术,能够有效提
高频谱利用率。文献[7]正是基于功率域NOMA
出一种无线携能D2D网络鲁棒能效优化算法,以缓
解频谱短缺等问题。
为满足未来无人机通信对资源利用率、数据传
输率等方面的需求,利用NOMA进行无人机辅助
通信至关重要。无人机与地面之间的非正交多址通
信被认为是一种应用前景广阔的空-地通信技术[8,9]
文献[8]提出了一种基于用户调度的资源分配算法来
优化UAV-NOMA网络的能量效率。文献[9]以最大
化用户数据文件分发效率为目标,研究了D2D辅助
UAV-NOMA网络中文件调度的任务延迟问题。
[(N1)/2] + 1
此外,为了进一步提高系统频谱效率,研究者
提出一种新型网络
多向中继网络(Multi-Way
Relay Network, MWRN)。在MWRN 中,允许地
理位置分离的多个用户通过一个或多个中继节点完
成彼此间的数据交换[10]。文献[11]采用随机和半正
交两种方法对多向中继进行选择,并给出了该中继
协议下中断概率和遍历速率的解析表达式。文献[12]
提出了一种新的MWRN协议,在该协议下N个用
户通信需要 个时隙。文献[13]在多输
入多输出MWRN中结合了NOMA,以更高的频谱
效率实现了用户数据的完全交换。文献[14]基于文
[13],进一步研究了无人机辅助NOMA MWRN
的性能。
通过对上述文献调研可以发现将无人机通信、
功率域NOMA以及MWRN结合起来的相关研究还
比较少,并且现有研究基本上都采用了半双工
(Half-Duplex, HD)的通信方式,这在一定程度上
限制了系统的频谱效率。与HD相比,全双工(Full-
Duplex, FD)允许在同一时间/频率发送和接收数
据,可以实现NOMA上下行链路的同步传输[15]
理论上能使系统吞吐量加倍增长。基于此,本文将
FD引用到NOMA MWRN中,提出了一种无人机
辅助的全双工多向中继非正交多址接入(FD NOMA
MWRN)传输方案,将用户间数据交换的时隙降低
1。本文还考虑了射频(Radio Frequency, RF)
前端存在同相/正交(In-phase/Quadrature, I/Q)
衡这一实际因素[16,17],这是硬件损伤的类型之一,
由于实际中射频收发机使用的模拟元件不尽完美,
因此RF前端始终存在I/Q失衡[18]。基于所提模型,
通过推导得到了总可达传输率(Achievable Sum
Rate, ASR)和能量效率(Energy Efficiency, EE)
解析表达式,并给出了ASR在高信噪比区域下的渐
近分析,接着进一步分析了无人机工作高度和I/Q
失衡参数对系统性能的影响。
2 系统模型
S1, S2,..., SN
1所示,本文考虑一个基于NOMA的全双
工多向无人机中继通信系统。该系统由一个采用译
码转发(Decode-and-Forward, DF)协议的无人机中
UN个单天线NOMA用户 构成。假
U工作在FD模式,配备有1根发射天线和1根接
收天线,分别用于下行链路数据发送和上行链路数
1 3维无人机多向中继通信系统模型图
2 44
(xu, yu, H)
i
Si
i∈ {1,2,..., N }
(xi, yi,0)
yu
xi
yi
Si
N1
据接收。此外,假定无人机为固定翼型,恒速在高
度为H的上空连续飞行,其地面覆盖范围是半径为
r的圆,所有用户都分布在这个圆形区域内。以圆
心为原点建立坐标系,假设U的坐标表示为
,第 个用户 的坐标为
,其中 和 分别为无人机垂直投影在水
平面的横、纵坐标, 和 分别为 在水平面上的
横、纵坐标。另外,假定由于受障碍物阻挡,用户
间的直连链路不存在,N个地面用户都将通过中继
互换信息,每个用户须将其数据传输给剩余的
个用户,同时也要接收来自这些用户的数据
信息。考虑到多天线传输在降低自干扰功率的同时
也会加剧系统的复杂性,在本文中假定了终端的发
射和接收均为单天线,这可以作为文献[19]中所研
究无人机辅助蜂窝网络通信的一种典型情况。
i
hi
无人机和用户之间的信道考虑一种复合信道模
型,该模型是大尺度衰落和小尺度衰落的结合,假
定大尺度衰落主要由路径损耗造成,小尺度衰落满
Nakagami-m衰落模型,则无人机与第 个用户之
间的信道系数 可以表示为
hi=gi
dq
i
(1)
di=(xuxi)2+ (yuyi)2+H2
Si
q
gi
|gi|2Gamma(αi, βi)
αi1
βi>0
|gi|2
其中, ,代表
U 之间的距离, 为路径损耗指数, 是相互独
立且遵循Nakagami-m衰落的随机变量,其信道增
益 ,形状参数和尺度参数分别
满足 , 的概率密度函数和累积分
布函数分别表示为
f|gi|2(x) = xαi1
Γ(αi)βαi
i
ex
βi(2)
F|gi|2(x) = 1
αi1
j=0
ex
βi
j!x
βij
(3)
hRI
|hRI|2Gamma(αRI , βRI)
FD模式下,U会受到同时同频的自干扰,
假定残余自干扰(Residual Self-Interference,
RSI)信道为Nakagami-m衰落信道,信道系数用
表示,信道增益 。
整个通信传输过程包括两个阶段:多址阶段
(Multiple-Access, MA)和广播阶段(Broadcast
ςt/r
X
ϕt/r
X
X
X∈ {i, U}, i = 1,2,..., N
µt
X= (1 + ςt
Xejϕt
X)/2
vt
X= (1 ςt
Xejϕt
X)/2
µr
X= (1 + ςr
Xejϕr
X)/2
vr
X= (1 ςr
Xejϕr
X)/2
xIQI =µt/r
Xx+vt/r
X(x)
(·)
Channel, BC)。基于本文所考虑的MWRN协议,
两阶段将在一个时隙完成。为了更具实际意义,本
文考虑了发射端 (Transmitter, TX) 和接收端(Re-
ceiver, RX)都存在I/Q失衡的情况。假定 和
表示在 处TX/RX振幅和相位不匹配水平,其
中 表示不同节点,相应
的, ,
, ,均为
I/Q失衡参数,则受I/Q 失衡影响的时域基带信号
可以表示为 , 表示共轭操作。
Si, i ∈ {1,2,..., N}
ti[f] = aiPSxi[f]
xi
i
E{ |xi|2}=1
E{ ·}
ai
Si
xi
a1+a2+... +aN= 1
a1> a2>... > aN
µt
1=µt
2=... =µt
Nµt
S
vt
1=vt
2=... =vt
Nvt
S
MA阶段,共享同一频带的所有N个用户在
一个时隙向中继发送信号。即在第f时隙,用户
将自己的信号
发送给中继U,其中, 为第 个用户的发送信号,
假定 , 表示随机变量的期望算
子; 是每个用户允许的最大发射功率; 为
功率分配系数,表示发射功率分配给 的比例,满
, 。为便
于分析,考虑所有用户TX I/Q失衡参数相等,即
, 。
U处接收信号为
yU[f]
=µr
Uµt
S
N
i=1
hiti[f] + vt
S
N
i=1
hi(ti[f])+IU+n0[f]
+vr
Uµt
S
N
i=1
hiti[f]+vt
S
N
i=1
hi(ti[f])+IU+n0[f]
(4)
N0
其中, 表示均值为0、方差为 的加性复高斯白
噪声,U处的残余干扰 表示为
IU=µt
UhRIPUxRI [f] + vt
UhRIPU(xRI [f])
(5)
xRI
E{ |xRI|2}=1
PU
其中, 是RSI信号,假定 , 表示
U处的信号处理延迟, 是U处的发射功率。
m1, m ∈ {1,2,..., N}
xm
根据NOMA协议,在U处利用SIC对前
用户的信号依次进行解码,
然后从接收信号中消除其分量,则信号 在U处的
接收信干噪比 (Signal to Interference and Noise
Ratio, SINR)
γU,m =AU,SγSamρm
DU,SγS
m1
i=1
aiρi+AU,SγS
N
i=m+1
aiρi+BU,SγS
N
i=1
aiρi+CU+UρRI
(6)
AU,S =µr
Uµt
S+vr
U(vt
S)
2
BU,S =µr
Uvt
S+
vr
U(µt
S)
2
CU=|µr
U|2+|vr
U|2
DU,S =(µr
Uµt
S1)+
vr
U(vt
S)
2
E=µr
Uµt
U+vr
U(vt
U)
2+µr
Uvt
U+vr
U(µt
U)
2
其中, ,
, ,
, ;
γSPS/N0
γUPU/N0
ρi|hi|2
ρRI |hRI|2
Si
AU,S =
此外, 和 分别表示用户和中
继处的发射信噪比, 和 分别代
表 →U链路以及UU链路的信道增益。
3 慧等:I/Q失衡影响下无人机多向全双工中继NOMA传输系统性能分析 3
µr
Uµt
S+vr
U(vt
S)
2
=µr
Uµt
S
2+vr
U(vt
S)
2+ 2ℜ{µr
Uµt
S
vr
U(vt
S)}
2ℜ{µr
Uµt
Svr
U(vt
S)}
µr
Uµt
S
2+vr
U(vt
S)
2
AU,S
µr
Uµt
S
2+vr
U(vt
S)
2
BU,S µr
Uvt
S
2
+
vr
U(µt
S)
2
DU,S µr
Uµt
S1
2+vr
U(vt
S)
2
E
|µr
Uµt
U|2+vr
U(vt
U)
2+|µr
Uvt
U|2+vr
U(µt
U)
2
,运用文献[20]中的不等式关系,可以得到
,那么
,同理,可近似得到
以及
δU[f] = N
i=1 biPUxi[f]
bi
b1+b2+... +bN= 1
b1> b2>... > bN
(k∈ {1,2,..., N })
BC阶段,与MA阶段同一时隙,中继对接收
到的叠加信号进行译码处理后再广播转发给所有用
户。U处的发射信号 ,其
中功率分配系数 满足 以及
。则第k个用户
的接收信号为
yk[f]=µr
kµt
UhkδU[f] + vt
Uhk(δU[f])+n0[f]
+vr
kµt
UhkδU[f]+vt
Uhk(δU[f])+n0[f](7)
Sk
xi
, i ∈ {1,2,..., N}
i̸=k
N1
yk
Sk
接收到信号后,利用SIC对其他所有用户发
送的信号(即所有 )进行解
码,每个用户需要进行 次解码,在每次解码
时被解码的信号将从 中减去。假定每个用户完全
知道自己的发射信号,所以 能在解码其期望信号
m∈ {1,2,..., N }
m̸=k
Sk
xm
前消除其自干扰信号 。对于
, 在解码 时,接收到的信号可以分解为
期望信号和有效噪声。该接收信号表示为
yk,m =µr
kµt
U+vr
kvt
UhkbmPUxm
+µr
kµt
U+vr
kvt
Uhk
N
i=m+1 biPUxi
ϖhkbkPUxk+µr
kµt
U1+vr
kvt
U
·hk
m1
i=1 biPUxi+µr
kvt
U+vr
kµt
U
·hk
N
i=1 biPU(xi)+ (µr
k+vr
k)n0(8)
ϖ= 0
ϖ= 1
m > k
m < k
m > k
k(1, m 1)
Sk
m1
m < k
k(m+ 1, N )
其中, 和 分别代表 两种
情况。 时, , 进行自干扰消除
后,再对前 个用户信号解码消除,又考虑到
I/Q 失衡影响的信号无法完全消除,那么可以将
两者合并到一项中, 时, ,此
时自干扰消除项无法归纳到其他项中,应独立表达。
Sk
xm
所以在 处解码 的接收SINR
γk,m =Ak,UγUρkbm
Dk,UγUρk
m1
i=1
bi+Ak,UγUρk
N
i=m+1
biϖγUρkbk+Bk,UγUρk+Ck
(9)
Ak,U=µr
kµt
U+vr
k(vt
U)
2≈ |µr
kµt
U|2+vr
k(vt
U)
2
Bk,U =µr
kvt
U+vr
k(µt
U)
2≈ |µr
kvt
U|2+vr
k(µt
U)
2
Ck=|µr
k|2+|vr
k|2
Dk,U =(µr
kµt
U1) + vr
k(vt
U)
2
vr
k(vt
U)
2+|µr
kµt
U1|2
ρk=|hk|2
其中, ,
, 。
3 系统性能分析
3.1 ASR分析
Sm
上述系统中,每个用户的数据传输速率受到其
自身和其他所有用户之间可实现的总传输率的限
制,则 的可达传输率(Achievable Rate, AR)
Rm=min
k(1,N),k ̸=m(Rk,m)(10)
Rk,m
其中, 表示系统中相应用户对之间的AR,在
接下来的命题1中将给出它的表达式。
在此基础上,可以得到系统ASR
R= (N1) ·
N
m=1
Rm(11)
N1
其中, 表示每个用户向所有其他用户传输数
据的次数。
Sm
Sk
Rk,m
命题1 对于 和任意 ,在HDFD中继系
统中, 的表达式分别为
RHD
k,m =1
2Elog21 + min γ
U,m, γk,m 
=1
2log2(1 + min [φ1, φ2]) (12)
RFD
k,m =E{log2(1 + min [γU,m, γk ,m])}
=log2(1 + min [φ3, φ2]) (13)
γ
U,m
xm
γ
U,m
其中,1/2表示HD模式下用户之间数据传输需要两个
时隙, 表示信号 在HD中继处的接收SINR。在
该模式下,不存在UU链路的环路自干扰, 可表示为
γ
U,m =AU,SγSamρm
DU,SγS
m1
i=1
aiρi+AU,SγS
N
i=m+1
aiρi+BU,SγS
N
i=1
aiρi+CU
(14)
φ2
φ3
φ1=AU,SγSamψm/(DU,S γSm1
i=1aiψi+AU,SγSN
i=m+1aiψi+
BU,SγSN
i=1aiψi
+CU), φ2=Ak,UγUbmψk/(Dk,UγUψkm1
i=1bi+Ak,UγUψkN
i=m+1biϖγUψkbk+Bk,UγUψk
+Ck), φ3=AU,SγSamψm/(DU,S γSm1
i=1aiψi+AU,SγSN
i=m+1aiψi+BU,SγSN
i=1aiψi+RI γU+CU)
进一步可得到 , , 的表达式:
4 44
ψi= (αi)!βidα
i/Γ(αi)
i∈ {1,2,..., N }
ϕRI = (αRI)!βRI /Γ(αRI)
其中, , ,
Si
Si
证明 在中继DF协议下,AR受到链路的限
制,因此可以表示为传输链路 →UU→ 之间
的最小传输速率。根据式(6)和式(9),结合香农公
式,可以得到命题1中结论。 证毕
γS
γU=εγS
ε
为了对系统ASR更深入地理解,下面的推论提
供了渐近分析。高信噪比区域为 →
其中 为固定常数。
推论1 高信噪比下,有
RHD,
k,m =1
2log2(1 + min [φ
1, φ
2]) (15)
RFD,
k,m =log2(1 + min [φ
3, φ
2]) (16)
φ
2
φ
3
φ
1=AU,Samψm/
DU,S m1
i=1 aiψi+AU,SN
i=m+1 aiψi+BU,S N
i=1
aiψi
φ
2=Ak,Ubm/Dk,Um1
i=1bi+Ak,UN
i=m+1
其中, 、 、 的表达式分别为
biϖbk+Bk,U
φ
3=AU,Samψm/DU,S m1
i=1
aiψi+AU,SN
i=m+1 aiψi+BU,S N
i=1 aiψi+RI
ςt/r
X= 1
ϕt/r
X= 0
Rk,m
上述命题和推论都考虑了系统受I/Q失衡影响。
而在理想情况下,TX/RXI分量和Q分量可以实
现完美匹配,即 , 。下面两个推论
依次给出了理想条件下 的表达式和渐近分析。
推论2 理想条件下,HD/FD中继系统中每个
用户对之间的AR可以分别表示为
RHD,id
k,m =1
2log2(1 + min [ϑ1, ϑ2]) (17)
RFD,id
k,m =log2(1 + min [ϑ3, ϑ2]) (18)
ϑ3=γSamψm/(γSN
i=m+1aiψi+RI γU+1)
ϑ2=γUψkbm/(γUψkN
i=m+1biϖγUψkbk+1)
ϑ1=γSamψm/(γSN
i=1aiψi+1)
其中, ,
推论3 理想条件下,在高信噪比区域,有
RHD,id,
k,m =1
2
log2
1 + min
amψm
N
i=1
aiψi
,bm
N
i=m+1
biϖbk
m∈ {1,2,..., N 1}
log2(min [γSamψm, γUbmψm]) m=N
(19)
RFD,id,
k,m =log2
1 + min
amψm
N
i=1
aiψi+RI
,bm
N
i=m+1
biϖbk
(20)
m=N
值得注意的是,HD系统中,当 时,将
上述理想情况参数值代入式(12),可以发现
RHD,id
k,N =1
2log2(1 + min [γSaNψN, γUbNψk]) (21)
则由式(21)可以进一步得到式(19)中这一特殊
情况下的渐近分析表达式。
根据式(10)和式(11),在下面的推论中给出I/Q
失衡影响下系统ASR的表达式及渐近分析。将式(17)
(18),式(19),式(20)分别代入式(10)和式(11)
可以得到理想情况下系统ASR的相关表达式,在此
不再赘述。
推论4 HD多向无人机中继系统ASR
RHD = (N1) ·
N
m=1 min
k(1,N),k ̸=mRHD
k,m(22)
FD多向无人机中继系统ASR
RFD = (N1) ·
N
m=1 min
k(1,N),k ̸=mRFD
k,m(23)
推论5 高信噪比区域下HD/FD中继系统ASR
分别为
RHD,= (N1) ·
N
m=1 min
k(1,N),k ̸=mRHD,
k,m (24)
RFD,= (N1) ·
N
m=1 min
k(1,N),k ̸=mRFD,
k,m (25)
3.2 EE分析
ηEE =R/PTot
PTot
根据文献[21],单位焦耳的EE可以表示为
,其中, 代表系统总功耗,R
系统总可达传输率。结合式(22)和式(23),可以得
到本文所阐述系统的EE。由以下命题给出:
命题2 HD多向无人机中继系统EE
ηEE =RHD
PTot
(26)
FD多向无人机中继系统EE
ηEE =RFD
PTot
(27)
3 慧等:I/Q失衡影响下无人机多向全双工中继NOMA传输系统性能分析 5
PTot =N·PS+PU
其中,系统的能量消耗 。
4 仿真分析
αi= 4
βi= 5
q= 2
αRI =βRI = 1
N= 3
H= 0.8×102
a1=b1= 0.75
a2=b2= 0.15
a3=b3= 0.1
µt
X=µr
X= 1.5
vt
X=vr
X= 5
µt
X=µr
X= 1
vt
X=vr
X= 0
本节对所提多向无人机中继系统性能进行数据
仿真,分析关键参数对系统性能的影响,并通过蒙
特卡罗仿真验证第3节理论分析的正确性,其中仿
真次数均为106。如无特殊说明,仿真中系统预设
参数如下:无人机与用户之间信道的衰落参数
,路径损耗指数 ;RSI信道衰落
参数 。取地面用户数 ,并假定
U的工作高度 m,功率分配系数
, 。此
外,I/Q失衡参数 , ,
对于理想RF前端有 ,
N={3,4,5}
N= 4
a1=b1= 0.6
a2=b2= 0.2
a3=b3= 0.12
a4=b4= 0.08
N= 5
a1=b1= 0.5
a2=b2= 0.2
a3=b3= 0.15
a4=b4= 0.1
a5=b5= 0.05
首先,对NOMAOMA方案[12]进行比较,2
给出不同用户数 时系统ASR随信噪比
的变化曲线。其中, 时功率分配系数设置为
, ,
; 时功率分配系数设置为
, ,
, 。图中的仿真曲线逼
近理论曲线,这可以验证本文所得系统ASR闭式表
[(N1)/2] + 1
N/2
N= 5
达式的正确性。结合2(a)2(b),可以看出不
论系统是否受到I/Q失衡的影响,两种方案下系统
ASR都随着用户数量的增加而增大。这说明ASR
是由系统中的所有用户贡献的[14]。从2(a)还可以
看出NOMA方案下系统的传输率明显优于OMA
案,这是因为该系统将OMA方案下通信传输所需
的 个时隙缩减到1个,进而可以达到
近似 的ASR增益,并且增益随着用户数量N
增加而增大。当系统处于理想条件时,可以看到在
高信噪比区域出现了OMA传输的ASR优于
NOMA传输的情况,如2(b)所示。这是因为本文
所设计系统为FD NOMA传输系统,会受到RSI
来的负面影响。这一点将在下面的分析中具体讨
论。同时,值得注意的是: 时,NOMA方案
优于OMA方案,这说明OMA方案的ASR深受N
影响。
µt
X= 1.5
vt
X= 5
µr
X= 1
vr
X= 0
接着,对HDFD两种工作模式下的传输性能
进行比较。3(a)给出了在理想和非理想情况下系
ASR与信噪比的关系曲线,为了更好地描述
I/Q失衡对系统的影响,考虑以下3种类型的IQI
(I/Q Imbalance) 参数设置:(1)TXI/Q失衡
影响( , , , )(2)
2 NOMA/OMA方案下的系统ASR对比
3 HD/FD工作模式下的传输性能对比
6 44
µt
X= 1
vt
X= 0
µr
X= 1.5
vr
X= 5
µt
X= 1.5
vt
X= 5
µr
X= 1.5
vr
X= 5
RXI/Q失衡影响( , , ,
(3)TXRX均存在I/Q失衡( ,
, , )。从3中可以观察
到:(1)I/Q失衡会恶化系统传输率,在条件(3)
这种不利影响程度最大,条件(2)和条件(1)次之。
(2)非理想条件下FD中继系统的传输率总是优于
HD中继系统。同时,值得注意的是,随着信噪比
的增加,系统ASR最终趋于一个固定值,这说明仅
仅依靠提高信噪比并不能有效改善系统性能[15]
i= 1,2,3
RFD
i> RHD
i
RFD
3< RHD
3
为了更好地理解3(a)中不同信噪比下理想系
统的ASR曲线,在3(b)中,进一步给出了该条件
下每个用户的AR与信噪比的关系,同时作为对
比,3(c)给出了一组非理想条件下(以参数设置类
(3)为例)每个用户的AR曲线,特别地,3(b)
蓝色实线是通过将式(21)代入式(10)得到的。可以
看出,非理想条件下,对于 ,总有
;而理想条件下, ,即对于
,会出现HD中继通信方案优于FD中继通信方案
的情况。这是因为不考虑I/Q失衡等硬件损伤对系
统的影响时,理想条件下HD中继系统中的近端用
户可以实现对干扰的完美消除,相比之下,RSI
对用户AR产生一定的负面影响[13]。因此在FD中继
通信系统中,抑制节点的RSI极为重要。
Si
di
d1> d2> d3
mk
|hk|2≤ |hm|2
4给出了不同信噪比下系统ASR与无人机工
作高度的关系图。此处假设无人机工作高度H是影
响其与 之间距离 的唯一变量,且总有
从图中可以看到ASR随着H的增加呈现递减趋势,
并且信噪比越高,二者的关系越趋于平缓。此外,
4还对本文与文献[14]的解码方法进行了对比,结
果表明应用本文解码方法的UAV-NOMA MWRN
具有更好的传输性能,在一定程度上可以保证无人
机工作高度的灵活性。之所以会出现这种差异,主
要是因为系统ASR受到每个用户对之间的数据传输
速率的影响,进一步来说每个用户的AR取决于用
户之间数据信息的交互程度。文献[14]的解码方法
基于信道增益排序,当 时, ,根
Sk
Sm
Sk
xm
k(1, N )
Sk
xm
m(1, N )
m̸=k
Sk
n(1, N 1)
xm
n < k
m=n
nk
m=n+ 1
SIC解码顺序, 在解码时会将 的信号视为噪
声,即 无法解码出 ,这样一来,系统中用户
之间进行的是部分数据交换;在本文所提多向无人
机中继系统中,对于 , 接收到U发送
的混合信号后,不会盲目将信号 (
)作为干扰,而是先将其视为有用信息[13],以从
中解码出期望信号,进而可以实现用户之间数据的
完全交换。假设 第n( )解码时所
需解码的用户信号为 ,则在每个用户终端处的
解码顺序为[13]: 时 , 时
5对比了NOMAOMA方案下的系统EE
2对系统ASR的分析一致,相比传统的OMA
案,NOMA方案不但能够改善系统的传输率,而
且具有更高的EE。在两种方案下,系统EE都会随
发射功率的增加呈现出先增后减的趋势,且存在一
个适当的发射功率使EE达到最高。
ςt
X=ςr
X
ϕt
X=ϕr
X
最后,6给出了系统ASR与振幅不匹配程度
( )和相位不匹配程度( )3维关系
图。其中,假定信噪比为30 dB。从图中可以看
出:(1)虽然理想情况下HD中继系统的传输率优于
FD中继系统,但总体上FD方案优势明显,这验证
3的分析结果。(2)系统ASR对幅度失配比相位
失配更敏感[17]
4 系统ASRUAV高度关系图
5 NOMA/OMA方案下的EE对比
6 ASR与振幅及相位不匹配程度关系图
3 慧等:I/Q失衡影响下无人机多向全双工中继NOMA传输系统性能分析 7
5 结束语
本文研究了受I/Q失衡影响的无人机辅助多向
全双工NOMA中继通信系统的传输性能,推导了
ASR的解析表达式,并在高信噪比区域进行了渐近
分析,在此基础上,又进一步分析了系统EE。仿
真结果表明,与传统多向OMA中继系统相比,该
系统更具性能优势。当用户数量增加时,系统ASR
增益更加显著。基于提高的ASR以及减少的时隙
数,NOMA方案也带来了显著的EE增益。本文还
比较了HDFD两种中继通信方案,结果表明在中
低信噪比下,FD中继系统的传输率总是优于HD
继系统;在高信噪比下,受RSI的影响,FD中继系
统性能会有所下降。通过以上方案的两两比较,进
一步说明了NOMAFD中继的结合能够有效提高
系统对频谱/能量资源的利用率,所提方案可为增
强现有无人机协作通信网络系统的性能提供理论参
考。最后,本文指出:I/Q失衡会恶化系统性能,
可以通过发射端的校准方案和接收端的补偿算法来
降低这种射频硬件损伤;同时系统ASR受到无人机
工作高度的限制,可以根据实际场景灵活部署无人
机来优化系统性能,具体工作将在未来的研究中进
一步展开。
参 考 文 献
DEEBAK B D and Al-TURJMAN F. A smart lightweight
privacy preservation scheme for IoT-based UAV
communication systems[J]. Computer Communications,
2020, 162: 102–117. doi: 10.1016/j.comcom.2020.08.016.
[1]
达新宇, 张宏伟, 胡航, . 认知无人机网络中次级链路吞吐量
优化研究[J]. 电子与信息学报, 2020, 42(8): 1934–1941. doi:
10.11999/JEIT200056.
DA Xinyu, ZHANG Hongwei, HU Hang, et al. Throughput
optimization of secondary link in cognitive UAV network[J].
Journal of Electronics & Information Technology, 2020,
42(8): 1934–1941. doi: 10.11999/JEIT200056.
[2]
ALNAGAR S I, SALHAB A M, and ZUMMO S A.
Unmanned aerial vehicle relay system: Performance
evaluation and 3D Location optimization[J]. IEEE Access,
2020, 8: 67635–67645. doi: 10.1109/ACCESS.2020.2986182.
[3]
SONG Qingheng, ZENG Yong, XU Jie, et al. A survey of
prototype and experiment for UAV communications[J].
Science China Information Sciences, 2021, 64(4): 140301.
doi: 10.1007/s11432-020-3030-2.
[4]
LI Xingwang, LI Jingjing, LIU Weiyuan, et al. Residual
transceiver hardware impairments on cooperative NOMA
networks[J]. IEEE Transactions on Wireless
Communications, 2020, 19(1): 680–695. doi: 10.1109/TWC.
2019.2947670.
[5]
LI Meiling, EL BOUANANI F, TIAN Lili, et al. Error rate
analysis of Non-Orthogonal Multiple Access with residual
hardware impairments[J]. IEEE Communications Letters,
2021, 25(8): 2522–2526. doi: 10.1109/LCOMM.2021.
3075064.
[6]
徐勇军, 刘子腱, 李国权, . 基于NOMA的无线携能D2D
信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5):
1289–1297. doi: 10.11999/JEIT200175.
XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy
efficiency optimization algorithm for NOMA-based D2D
communication with simultaneous wireless information and
power transfer[J]. Journal of Electronics & Information
Technology, 2021, 43(5): 1289–1297. doi: 10.11999/
JEIT200175.
[7]
ZHANG Haijun, ZHANG Jianmin, LONG Keping, et al.
Resource allocation for energy efficient NOMA UAV
network under imperfect CSI[C]. ICC 2020–2020 IEEE
International Conference on Communications, Dublin,
Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148694.
[8]
WANG Baoji, ZHANG Rongqing, CHEN Chen, et al.
Graph-Based file dispatching protocol with D2D-aided
UAV-NOMA communications in large-scale networks[C].
2020 IEEE Wireless Communications and Networking
Conference, Seoul, Korea (South), 2020: 1–6. doi: 10.1109/
WCNC45663.2020.9120617.
[9]
WANG Gengkun, XIANG Wei, and YUAN Jinhong.
Outage performance for compute-and-forward in generalized
multi-way relay channels[J]. IEEE Communications Letters,
2012, 16(12): 2099–2102. doi: 10.1109/LCOMM.2012.
112012.122273.
[10]
XUE Jiang, SELLATHURAI M, RATNARAJAH T, et al.
Performance analysis for multi-way relaying in Rician
fading channels[J]. IEEE Transactions on Communications,
2015, 63(11): 4050–4062. doi: 10.1109/TCOMM.2015.
2477085.
[11]
HO C D, NGO H Q, MATTHAIOU M, et al. Power
allocation for multi-way massive MIMO relaying[J]. IEEE
Transactions on Communications, 2018, 66(10): 4457–4472.
doi: 10.1109/TCOMM.2018.2839608.
[12]
SILVA S, BADUGE G A A, ARDAKANI M, et al. NOMA-
aided multi-way massive MIMO relaying[J]. IEEE
Transactions on Communications, 2020, 68(7): 4050–4062.
doi: 10.1109/TCOMM.2020.2984498.
[13]
LI Xingwang, WANG Qunshu, LIU Yuanwei, et al. UAV-
aided multi-way NOMA networks with residual hardware
impairments[J]. IEEE Wireless Communications Letters,
2020, 9(9): 1538–1542. doi: 10.1109/LWC.2020.2996782.
[14]
LI Xingwang, LIU Meng, DENG Chao, et al. Full-duplex
cooperative NOMA relaying systems with I/Q imbalance
and imperfect SIC[J]. IEEE Wireless Communications
[15]
8 44
Letters, 2020, 9(1): 17–20. doi: 10.1109/LWC.2019.2939309.
ALSMADI M M, ALI N A, HAYAJNEH M, et al. Down-
link NOMA networks in the presence of IQI and imperfect
SIC: Receiver design and performance analysis[J]. IEEE
Transactions on Vehicular Technology, 2020, 69(6):
6793–6797. doi: 10.1109/TVT.2020.2982171.
[16]
LI Xingwang, ZHAO Mengle, LIU Yuanwei, et al. Secrecy
analysis of ambient backscatter NOMA systems under I/Q
imbalance[J]. IEEE Transactions on Vehicular Technology,
2020, 69(10): 12286–12290. doi: 10.1109/TVT.2020.3006478.
[17]
XU Yongjun, XIE Hao, and HU R Q. Max-min
beamforming design for heterogeneous networks with
hardware impairments[J]. IEEE Communications Letters,
2021, 25(4): 1328–1332. doi: 10.1109/LCOMM.2020.
3044936.
[18]
HOU Tianwei, LIU Yuanwei, SONG Zhengyu, et al.
Multiple Antenna aided NOMA in UAV networks: A
stochastic geometry approach[J]. IEEE Transactions on
Communications, 2019, 67(2): 1031–1044. doi: 10.1109/
TCOMM.2018.2875081.
[19]
QI Jian, AÏSSA S, and ALOUINI M. Impact of I/Q
imbalance on the performance of two-way CSI-assisted AF
relaying[C]. 2013 IEEE Wireless Communications and
Networking Conference, Shanghai, China, 2013: 2507–2512.
doi: 10.1109/WCNC.2013.6554955.
[20]
ZHANG Yi, WANG Huiming, ZHENG Tongxing, et al.
Energy-efficient transmission design in Non-orthogonal
Multiple Access[J]. IEEE Transactions on Vehicular
Technology, 2017, 66(3): 2852–2857. doi: 10.1109/TVT.
2016.2578949.
[21]
陈 慧:女,1988年生,讲师,研究方向为新一代无线通信技术.
张铭宇:女,1998年生,硕士生,研究方向为新一代无线通信
技术.
李兴旺:男,1981年生,副教授,研究方向为新一代宽带移动通信
系统的新理论及技术.
孙江峰:男,1980年生,讲师,研究方向为物理层安全.
李美玲:女,1982年生,教授,研究方向为5G移动通信关键技术.
责任编辑: 马秀强
3 慧等:I/Q失衡影响下无人机多向全双工中继NOMA传输系统性能分析 9
... To this end, an energy-efficient FD UAV relay network based on the load-carry-and-delivery scheme was explored in [16], and the analytical expression and optimization scheme for energy efficiency (EE) were obtained. In [17], the authors analyzed the EE of the UAV-aided multi-way FD relay systems by considering the in-phase/quadrature imbalance (IQI) of the transceiver. To maximize EE, the authors in [18] proposed a novel algorithm for an UAV-assisted FD-NOMA system via adaptive-geometric distribution. ...
Preprint
Full-text available
To meet the demands for spectral efficiency (SE) and massive connectivity for the future wireless networks, we propose an unmanned aerial vehicle (UAV)-enabled massive multiple-input multiple-out (MIMO) non-orthogonal multiple access (NOMA) two-way relay (TWR) system, where multiple pairs of ground users (GUs) aim to exchange their information via an amplify-and-forward (AF) UAV relay. The UAV relay is equipped with multiple antennas and operates in full-duplex (FD) mode. Minimum mean-square error (MMSE) channel estimation is employed by the UAV to obtain the air-ground channel state information (CSI), while maximum ratio combining/maximum ratio transmission (MRC/MRT) is used to process the signals of GUs. In this paper, analytical general closed-form expressions are derived for the sum SE and total energy efficiency (EE) of the proposed system in the case of imperfect CSI, as). 2 well as their respective asymptotic expressions. Based on the obtained expressions, the power scaling laws are presented. The numerical results suggest that increasing the number of antennas at the UAV is an effective way to mitigate the effects of residual self-interference (RSI) and inter-pair interference on system performance. Also, to achieve a trade-off between SE and EE, it is desirable to increase the transmit power of the GUs when increasing the number of antennas at the UAV. Moreover, we confirm the proposed scheme can better enhance the effectiveness of multiple GU pairs communication system by comparing NOMA with orthogonal multiple access (OMA), FD and half duplex (HD) schemes. Index Terms Unmanned aerial vehicle (UAV), non-orthogonal multiple access (NOMA), massive multiple-input multiple-out (MIMO), full duplex (FD), two-way relay (TWR).
Article
Full-text available
Due to the impact of amplifier nonlinearities and phase noise, practical transceivers in heterogeneous networks (HetNets) suffer different degrees of hardware impairments (HWIs), which can non-trivially distort the received signals even with signal compensations. Traditional beamforming methods in HetNets that neglect the residual impairments have been proved to cause performance degradation. To that end, we investigate a realistic beamforming design based on max-min fairness in a multi-cell multiple-input single-output HetNet with HWIs. The beamforming design problem is formulated as a non-convex optimization problem for maximizing the minimum transmission rate of the femtocell users while guaranteeing the quality of service of the users in both the macrocell and femtocells. Simulation results show that compared with the beamforming algorithm with perfect hardware, our proposed beamforming algorithm brings less interference power to the macrocell user and has good fairness.
Article
Full-text available
In this correspondence, we investigate the reliability and the security of the ambient backscatter (AmBC) nonorthogonal multiple access (NOMA) systems, where the source aims to communicate with two NOMA users in the presence of an eavesdropper. To be practical, we assume that all nodes and backscatter device (BD) suffer from in-phase and quadraturephase imbalance (IQI). More specifically, some analytical expressions for the outage probability (OP) and the intercept probability (IP) are derived. In order to obtain more insights, the asymptotic behaviors for the OP in the high signal-to-noise ratio (SNR) regime are explored, and corresponding diversity orders are derived. Numerical results show that: 1) Although IQI reduces the reliability, it can enhance the security; 2) Compared with the orthogonal multiple access (OMA) systems, the considered AmBC NOMA systems can obtain better reliability when the SNR is lower; 3) There are error floors for the OP in the high SNR regime due to the reflection coefficient β; 4) There exists a trade-off between reliability and security.
Article
Full-text available
In this paper, we study an unmanned aerial vehicle (UAV)-aided non-orthogonal multiple access (NOMA) multi-way relaying networks (MWRNs). Multiple terrestrial users aim to exchange their mutual information via an amplify-and-forward (AF) UAV relay. Specifically, the realistic assumption of the residual hardware impairments (RHIs) at the transceivers is taken into account. To evaluate the performance of the considered networks, we derive the analytical expressions for the achievable sum-rate (ASR). In addition, we carry out the asymptotic analysis by invoking the affine expansion of the ASR in terms of high signal-to-noise ratio (SNR) slope and high SNR power offset. Numerical results show that: 1) Compared with orthogonal multiple access (OMA), the proposed networks can significantly improve the ASR since it can reduce the time slots from (M-1)/2+1 to 2; and 2) RHIs of both transmitter and receiver have the same effects on the ASR of the considered networks.
Article
Full-text available
The deployment of unmanned aerial vehicle (UAV) in wireless communication as a flying base station (BS) or relay is expected to be dominant in the following years to enhance wireless network performance in terms of coverage and capacity owing to their ability to change altitude, easy 3D movement, low cost, and easy deployment in wireless networks. In this paper, we study the performance of a wireless network in which a UAV is employed as a decode-and-forward (DF) relay linking a ground base station (BS) with multiple users in area where direct terrestrial path between the ground BS and the users is assumed to be blocked. The channel between the BS and the UAV is assumed to follow Rician channel model, while the links between the UAV and the end users are assumed to follow Rayleigh fading model with opportunistic scheduling scheme for user selection. Closed-form expressions for the outage probability and average symbol error rate (ASER) are derived. Due to complexity of the derived closed-form expressions and in order to get more insights at the system behavior in terms of system coding gain and diversity order, an asymptotic expression is derived for the outage probability at high signal-to-noise ratio (SNR) values. Furthermore, an optimization of the UAV 3D location that minimizes the asymptotic outage probability is achieved. Our numerical results show that increasing the UAV transmit power much more than the ground BS transmit power does not improve the system performance. The increase in the UAV transmit power is positive only if the ground BS transmit power is higher than the UAV transmit power. We also show that the increase of the Rician K-factor leads to improving the system performance when the ground BS transmit power is less than or close to the UAV transmit power. Furthermore, the proposed optimization scheme shows superior performance gain in minimizing the outage probability compared to the conventional scenarios, where the UAV is located at a fixed altitude over the center of the coverage region.
Article
Full-text available
This work discusses the practical aspects that may affect the system performance of down-link non-orthogonal multiple access (NOMA) systems. The system performance of two down-link NOMA users, where both users suffer from the effects of in-phase/quadrature-phase imbalance (IQI) while the first user also experiences an imperfect successive interference cancellation (SIC) is examined. In order to mitigate the effects of IQI, an optimal maximum likelihood (ML) receiver is designed and analyzed, and the performance of the proposed receiver is compared with the traditional ML one. Moreover, closed-form mathematical expressions of the conditional pairwise error probability (PEP) for each user are derived. The simulation results validate the analysis and demonstrate that the proposed receiver outperforms the traditional one and can reduce the effects of IQI for both users.
Article
Full-text available
The performance of full-duplex (FD) cooperative non-orthogonal multiple access (C-NOMA) relaying systems in the presence of in-phase and quadrature-phase imbalance (IQI) and imperfect successive interference cancellation (ipSIC) is analyzed and evaluated. In particular, by considering two classes of users located far from and near to the information source, closed-form exact and analytical approximate expressions for the outage probability (OP) and ergodic sum rate (ESR), respectively, are derived. The accuracy of the analytical approach is verified by computer simulations which have shown that for both C-NOMA and equivalent OMA systems IQI has a deleterious effect on their OP and ESR performance in moderate and high signal-to-noise ratio (SNR) regions and the OP of C-NOMA is always slightly lower than that of the traditional OMA. Additionally, comparisons with equivalent half-duplex (HD) C-NOMA schemes have revealed that for the far user the FD C-NOMA scheme is less sensitive to ipSIC.
Article
In this letter, the impact of residual hardware impairment (RHI) on the performance of non-orthogonal multiple access (NOMA) is investigated by taking into account the effect of imperfect successive interference cancellation (ipSIC). The new exact and asymptotic pairwise error probability (PEP) expressions with RHI under ipSIC are derived over Rayleigh fading channels. The asymptotic PEP expression is subsequently utilized to quantify the diversity orders achieved by NOMA users in the presence of RHI. In particular, we show that the effective diversity order of each NOMA user equals to user’s order for both ideal and non-ideal (RHI) scenarios. Leveraging the derived PEP, the union bound on the bit error rate of NOMA users are further evaluated. We demonstrate that the impact of RHI with ipSIC on each user’s error rate performance is negligible. In contrast, when perfect SIC is considered, such effects are significant. Numerical and Monte Carlo simulation results are presented to corroborate the analysis.
Article
Unmanned aerial vehicle (UAV) communications have attracted significant attention from both academia and industry. To facilitate the large-scale usage of UAVs for various applications in practice, we provide a comprehensive survey on the prototype and experiment for UAV communications. To this end, we first provide an overview on the general architecture of the prototype and experiment for UAV communications, and then present experimental verification for air-to-ground channel models and UAV energy consumption models. Next, we discuss measurement experiments on two promising paradigms of UAV communications, namely cellular-connected UAVs and UAV-enabled aerial communication platforms. For the former, we focus on the feasibility study and address the interference mitigation issue. For UAV-enabled aerial communication platforms, we present three scenarios, namely UAV-enabled aerial base stations, UAV-enabled aerial relays and UAV-enabled aerial data collection/dissemination. Finally, we point out some promising future directions for prototype and experimental measurements of UAV communications.
Article
For a multi-way relay network (MWRN) with K users, K time slots are needed for full data exchange. Thus, the overall spectral efficiency, due to the 1/K pre-log factor, declines as number of users grows. It has recently been improved to roughly K/2 time slots, but even this improvement does not arrest the decline. Herein, we reduce this task to just two time slots regardless of K. To do this, we exploit the performance gains of non-orthogonal multiple-access (NOMA) and a massive multiple-input multiple-output (MIMO) relay. First, the users transmit their signals to the relay, which uses maximal ratio combining reception. Next, the relay transmits a superposition-coded signal for all users by using maximal ratio transmission. Each user then performs successive interference cancellation (SIC) decoding of data symbols of the other K-1 user nodes. We use the so-called worst-case Gaussian approximation to derive the overall sum rate and demonstrate significant spectral-efficiency gains and energy-efficiency gains over the existing MWRN counterparts. We also design the relay power allocation matrix to maximize the minimum among the user rates, thus maximizing the user fairness. Furthermore, the effects of imperfect SIC and imperfect channel state information (CSI) on the sum rate are analyzed.
Article
We consider a multi-way decode-and-forward (DF) relaying network with very large antenna arrays at the relay station. In this system, each user and the relay operate in half-duplex and time-division duplexing (TDD) modes. To exchange information among all users, we propose a new transmission protocol which combines massive multiple-input multiple-output (MIMO) technology with linear processing, self-interference cancelation, and successive cancelation decoding. Our proposed transmission protocol reduces the number of time-slots for data exchange among users by approximately 2 times, compared to the conventional data transmission protocol. For this new topology, we derive a very tight approximation of the spectral efficiency in closed-form assuming perfect channel state information (CSI). Then, a CSI acquisition method at the relay and the users is provided and analyzed. We show via numerical simulations, that the performance gap between imperfect and perfect CSI cases is small. The closed-form expression of the spectral efficiency enables us to design two power allocation schemes. In the first power allocation scheme, we choose the transmit powers at the users and the relay to maximize the sum spectral efficiency, subject to a given quality-of-service requirement for each user. In the second power allocation scheme, the objective is the energy efficiency taking into account the hardware power consumption. Both power allocation schemes can be efficiently executed by iteratively solving a sequence of convex problems. Numerical results verify the effectiveness of the proposed transmission protocol and the power allocation schemes compared to the state-of-the-art.