Xiao-Jiang Li

Xiao-Jiang Li
Jinan University (Guangzhou, China) · Neuroscience

About

246
Publications
40,500
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,567
Citations
Introduction

Publications

Publications (246)
Article
Full-text available
Growing evidence indicates that non‐neuronal oligodendrocyte plays an important role in Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. In patient's brain, the impaired myelin structure is a pathological feature with the observation of TDP‐43 in cytoplasm of oligodendrocyte. However, the mechanism underlying the gain of fu...
Article
Full-text available
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Hunting...
Article
Full-text available
Huntington’s disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HT...
Article
Full-text available
Huntington’s disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates...
Article
Full-text available
Neurodegenerative diseases (NDs) are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Currently, there are no therapies available that can delay, stop, or reverse the pathologica...
Article
Full-text available
The nuclear loss and cytoplasmic accumulation of TDP-43 (TAR DNA/RNA binding protein 43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previously, we reported that the primate-specific cleavage of TDP-43 accounts for its cytoplasmic mislocalization in patients’ brains. This prompted...
Article
Full-text available
Schizophrenia is a highly heritable neuropsychiatric disorder characterized by cognitive and social dysfunction. Genetic, epigenetic, and environmental factors are together implicated in the pathogenesis and development of schizophrenia. DNA methylation, 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) have been recognized as key epigenetic elem...
Article
Full-text available
SHANK3 is a protein primarily found in the postsynaptic density (PSD) of excitatory synapses in the brain. Heterozygous mutations in the shank3 gene have been linked to autism spectrum disorder (ASD) and intellectual disability. There are various animal models carrying mutant SHANK3 that have provided valuable insights into the pathogenesis of ASD....
Article
Full-text available
Tauopathy, characterized by the hyperphosphorylation and accumulation of the microtubule-associated protein tau, and the accumulation of Aβ oligomers, constitute the major pathological hallmarks of Alzheimer’s disease. However, the relationship and causal roles of these two pathological changes in neurodegeneration remain to be defined, even though...
Article
Full-text available
In order to dissect amyotrophic lateral sclerosis (ALS), a multigenic, multifactorial, and progressive neurodegenerative disease with heterogeneous clinical presentations, researchers have generated numerous animal models to mimic the genetic defects. Concurrent and comparative analysis of these various models allows identification of the causes an...
Article
Full-text available
Epigenetic methylation has been shown to play an important role in transcriptional regulation and disease pathogenesis. Recent advancements in detection techniques have identified DNA N6-methyldeoxyadenosine (6mA) and RNA N6-methyladenosine (m6A) as methylation modifications at the sixth position of adenine in DNA and RNA, respectively. While the d...
Article
Full-text available
Accumulation of misfolded proteins leads to many neurodegenerative diseases that can be treated by lowering or removing mutant proteins. Huntington's disease (HD) is characterized by the intracellular accumulation of mutant huntingtin (mHTT) that can be soluble and aggregated in the central nervous system and causes neuronal damage and death. Here,...
Article
Full-text available
Huntington’s disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been di...
Article
Full-text available
Introduction Huntington’s disease (HD) is caused by CAG trinucleotide repeats in the HTT gene. Selective neurodegeneration in the striatum is prominent in HD, despite widespread expression of mutant HTT (mHTT). Ras homolog enriched in the striatum (Rhes) is a GTP-binding protein enriched in the striatum, involved in dopamine-related behaviors and a...
Article
Full-text available
Introduction Huntington’s disease (HD) is caused by expanded CAG repeats in the huntingtin gene (HTT) and is characterized by late-onset neurodegeneration that primarily affects the striatum. Several studies have shown that mutant HTT can also affect neuronal development, contributing to the late-onset neurodegeneration. However, it is currently un...
Preprint
Full-text available
Huntington's disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been di...
Article
TAR binding protein 43 (TDP-43) is normally present in the nucleus but mislocalized in the cytoplasm in a number of neurodegenerative diseases including Huntington's disease (HD). The nuclear loss of TDP-43 impairs gene transcription and regulation. However, it remains to be investigated whether loss of TDP-43 influences trinucleotide CAG repeat ex...
Article
Full-text available
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that affects social interaction and behavior. Mutations in the gene encoding chromodomain helicase DNA-binding protein 8 (CHD8) lead to autism symptoms and macrocephaly by a haploinsufficiency mechanism. However, studies of small animal models showed inconsistent findings abou...
Article
Full-text available
The monogenic nature of Huntington’s disease (HD) and other neurodegenerative diseases caused by the expansion of glutamine-encoding CAG repeats makes them particularly amenable to gene therapy. Here we show the feasibility of replacing expanded CAG repeats in the mutant HTT allele with a normal CAG repeat in genetically engineered pigs mimicking t...
Article
Full-text available
Animal models are important for understanding the pathogenesis of human diseases and for developing and testing new drugs. Pigs have been widely used in the research on the cardiovascular, skin barrier, gastrointestinal, and central nervous systems as well as organ transplantation. Recently, pigs also become an attractive large animal model for the...
Article
Full-text available
Simple Summary DNA methylation is involved in biological processes including neurogenesis, aging, and the pathogenesis of brain disorders by the regulation of gene expression. A comprehensive understanding of dynamic DNA methylation changes during development and aging and potential regulatory mechanisms in brain disorders could promote future ther...
Article
Full-text available
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative diseases, characterized by gradual and selective loss of neurons in the central nervous system. They affect more than 50 million people worldwide, and their incidence increases with age. Although most cases of AD and PD are sporadic, some are caused by genet...
Article
Full-text available
Huntington’s disease (HD) is a progressive neurodegenerative disease characterized by preferential loss of neurons in the striatum in patients, which leads to motor and cognitive impairments and death that often occurs 10-15 years after the onset of symptoms. The expansion of a glutamine repeat (>36 glutamines) in the N-terminal region of huntingti...
Article
Full-text available
Huntington disease (HD) is caused by the expansion of CAG triplet repeats in exon 1 of the huntingtin (HTT) gene, which also encodes the first 17 amino acids (N-17) that can modulate the toxicity of the expanded polyQ repeat. N-17 are conserved in a wide range of species and are found to influence the subcellular distribution of mutant Htt. Moreove...
Article
Full-text available
Huntington’s disease (HD) is an autosomal-dominant inherited progressive neurodegenerative disorder. It is caused by a CAG repeat expansion in the Huntingtin gene that is translated to an expanded polyglutamine (PolyQ) repeat in huntingtin protein. HD is characterized by mood swings, involuntary movement, and cognitive decline in the late disease s...
Article
Full-text available
Mitophagy is a key intracellular process that selectively removes damaged mitochondria to prevent their accumulation that can cause neuronal degeneration. During mitophagy, PINK1 (PTEN induced kinase 1), a serine/threonine kinase, works with PRKN/parkin, an E3 ubiquitin ligase, to target damaged mitochondria to the lysosome for degradation. Mutatio...
Article
Full-text available
Huntingtin-associated protein 1 (HAP1) is the first identified protein whose function is affected by its abnormal interaction with mutant huntingtin (mHTT), which causes Huntington disease. However, the expression patterns of Hap1 and Htt in the rodent brain are not correlated. Here we found that the primate HAP1, unlike the rodent Hap1, is correla...
Article
Full-text available
PINK1 has been characterized as a mitochondrial kinase that can target to damaged mitochondria to initiate mitophagy, a process to remove unhealthy mitochondria for protecting neuronal cells. Mutations of the human PINK1 gene are also found to cause early onset Parkinson’s disease, a neurodegenerative disorder with the pathological feature of mitoc...
Article
Full-text available
Because of the difficulty in collecting fresh brains of humans at different ages, it remains unknown how epigenetic regulation occurs in the primate brains during aging. In the present study, we examined the genomic distribution of 5hmC, an indicator of DNA methylation, in the brain regions of non-human primates (rhesus monkey) at the ages of 2 (ju...
Article
Full-text available
The foundation for investigating the mechanisms of human diseases is the establishment of animal models, which are also widely used in agricultural industry, pharmaceutical applications, and clinical research. However, small animals such as rodents, which have been extensively used to create disease models, do not often fully mimic the key patholog...
Article
Huntington’s disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegen...
Article
Full-text available
Animal models are essential for investigating the pathogenesis and developing the treatment of human diseases. Identification of genetic mutations responsible for neurodegenerative diseases has enabled the creation of a large number of small animal models that mimic genetic defects found in the affected individuals. Of the current animal models, ro...
Article
Full-text available
Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are pathologically characterized by progressive loss of selective populations of neurons in the affected brain regions and clinically manifested by cognitive, motor, and psychological dysf...
Article
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further inv...
Article
Full-text available
In vitro cultures of primary cortical neurons are widely used to investigate neuronal function. However, it has yet to be fully investigated whether there are significant differences in development and function between cultured rodent and primate cortical neurons, and whether these differences influence the utilization of cultured cortical neurons...
Article
Full-text available
Neurodegenerative diseases represent a large group of neurological disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, and Huntington’s disease. Although this group of diseases show heterogeneous clinical and pathological phenotypes, they share important pathological features characterized by the age-depende...
Article
Full-text available
In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson’s disease (PD). However, difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1. Here we r...
Article
Full-text available
Selective neuronal accumulation of misfolded proteins is a key step toward neurodegeneration in a wide range of neurodegenerative diseases, including Huntington’s (HD) diseases. Our recent studies suggest that Hsp70-binding protein 1 (HspBP1), an Hsp70/CHIP inhibitor that reduces protein folding, is highly expressed in neuronal cells and accounts f...
Article
The cytoplasmic inclusions of nuclear TAR DNA-binding protein 43 (TDP-43) are a pathologic hallmark in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTD), and other neurological disorders. We reported that expressing mutant TDP-43(M337V) in rhesus monkeys can mimic the cytoplasmic mislocalization of mutant TDP-43 seen in p...
Article
Our previous work has established a huntingtin knock-in (KI) pig model that displays striatal neuronal loss, allowing us to examine if somatic CAG expansion in striatum accounts for the preferential neurodegeneration in Huntington disease (HD). We found that HD KI pigs do not display somatic CAG expansion in striatum as HD KI mice and that the majo...
Article
Full-text available
Stress activates the nuclear translocation of glucocorticoid receptors (GR) to trigger gene expression. Abnormal GR levels can alter the stress responses in animals and therapeutic effects of antidepressants. Here, we reported that stress-mediated nuclear translocation of GR reduced Ahi1 in the stressed cells and mouse brains. Ahi1 interacts with G...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-19873-9
Article
Significance A variety of neurodegenerative diseases show selective neuronal loss in distinct brain regions. It remains unclear how the ubiquitously expressed disease proteins can cause selective neurodegeneration. In Huntington’s disease, neuronal loss preferentially occurs in the striatum. Using Huntington’s disease mice, we found that loss of Ha...
Article
Full-text available
Huntingtin-associated protein 1 (Hap1) was initially identified as a brain-enriched protein that binds to the Huntington’s disease protein, huntingtin. Unlike huntingtin that is ubiquitously expressed in the brain, Hap1 is enriched in the brain with the highest expression level in the hypothalamus. The selective enrichment of Hap1 in the hypothalam...
Article
Full-text available
Polyglutamine expansion in proteins can cause selective neurodegeneration, although the mechanisms are not fully understood. In Huntington’s disease (HD), proteolytic processing generates toxic N-terminal huntingtin (HTT) fragments that preferentially kill striatal neurons. Here, using CRISPR/Cas9 to truncate full-length mutant HTT in HD140Q knock-...
Article
Full-text available
Demyelination is a common pathological feature of a large number of neurodegenerative diseases including multiple sclerosis and Huntington's disease (HD). Laquinimod (LAQ) has been found to have therapeutic effects on multiple sclerosis and HD. However, the mechanism underlying LAQ's therapeutic effects remains unknown. Using HD mice that selective...
Article
Full-text available
Spinocerebellar ataxias 17 (SCA17) is caused by polyglutamine (polyQ) expansion in the TATA box-binding protein (TBP). The selective neurodegeneration in the cerebellum in SCA17 raises the question of why ubiquitously expressed polyQ proteins can cause neurodegeneration in distinct brain regions in different polyQ diseases. By expressing mutant TBP...
Article
Full-text available
Identification of repeat-associated non-AUG (RAN) translation in trinucleotide (CAG) repeat diseases has led to the emerging concept that CAG repeat diseases are caused by nonpolyglutamine products. Nonetheless, the in vivo contribution of RAN translation to the pathogenesis of CAG repeat diseases remains elusive. Via CRISPR/Cas9-mediated genome ed...
Article
Full-text available
Genetically modified rodent models have been valuable for investigating the pathogenesis of neurodegenerative diseases such as Parkinson’s disease (PD). Based on the fact that mutations in the PINK1 gene cause autosomal recessive juvenile parkinsonism, a number of mouse models with deletion of the PINK1 gene were generated. However, these PINK1 kno...
Article
Full-text available
A hallmark of Alzheimer’s disease (AD) pathogenesis is the accumulation of extracellular plaques mainly composed of amyloid-β (Aβ) derived from amyloid precursor protein (APP) cleavage. Recent reports suggest that transport of APP in vesicles with huntingtin-associated protein-1 (HAP1) negatively regulates Aβ production. In neurons, HAP1 forms a st...
Article
A heterozygous frameshift PRRT2 mutation (c.649_650InsC) has been identified as the major causative mutation in several paroxysmal disorders, including paroxysmal kinesigenic dyskinesia (PKD). Since PKD is an autosomal dominant disorder and since the frameshift mutations of PRRT2 may create a truncated protein, it remains unclear whether this mutat...
Article
Full-text available
Despite the substantial progress made in identifying genetic defects in autism spectrum disorder (ASD), the etiology for majority of ASD individuals remains elusive. Maternal exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug during pregnancy in human, has long been considered a risk factor to contribute to ASD susceptibility...
Article
Full-text available
Spinocerebellar ataxia type 17 (SCA17) is caused by polyglutamine (polyQ) expansion in the TATA box-binding protein (TBP), which functions as a general transcription factor. Like other polyQ expansion-mediated diseases, SCA17 is characterized by late-onset and selective neurodegeneration, despite the disease protein being ubiquitously expressed in...
Article
Full-text available
Background Huntingtin-associated protein 1 (HAP1) is a neuronal protein that is predominantly expressed in neurons in the brain. HAP1 is critical for maintenance of neuronal survival as well as regulation of food intake and body weight in animals. In addition to the critical role of HAP1 in the central nervous system, HAP1 is also found in endocrin...
Article
Full-text available
The cytoplasmic accumulation of the nuclear TAR DNA-binding protein 43 (TDP-43) is a pathologic hallmark in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and other neurological disorders. However, most transgenic TDP-43 rodent models show predominant nuclear distribution of TDP-43 in the brain. By expressing mutant TDP-43 (M337V...
Article
Full-text available
Joubert syndrome (JBTS) is an inherited autosomal recessive disorder associated with cerebellum and brainstem malformation and can be caused by mutations in the Abelson helper integration site-1 (AHI1) gene. Although AHI1 mutations in humans cause abnormal cerebellar development and impaired axonal decussation in JBTS, these phenotypes are not robu...
Article
Full-text available
Animal models that can mimic human diseases are the important tools for investigating the pathogenesis of the diseases and finding a way for treatment. There is no doubt that small animal models have provided a wealth of information regarding disease pathogenesis and also offered widely used tools to develop therapeutic strategies. Rodent models ha...
Article
Polyglutamine (polyQ) diseases are a group of hereditary neurodegenerative disorders caused by expansion of unstable polyQ repeats in their associated disease proteins. To date, the pathogenesis of each disease remains poorly understood, and there are no effective treatments. Growing evidence has indicated that, in addition to neurodegeneration, po...
Article
Full-text available
Background: Spinocerebellar ataxia 17 (SCA17) belongs to the family of neurodegenerative diseases caused by polyglutamine (polyQ) expansion. In SCA17, polyQ expansion occurs in the TATA box binding protein (TBP) and leads to the misfolding of TBP and the preferential degeneration in the cerebellar Purkinje neurons. Currently there is no effective...
Article
Full-text available
Virus-mediated expression of CRISPR/Cas9 is commonly used for genome editing in animal brains to model or treat neurological diseases, but the potential neurotoxicity of overexpressing bacterial Cas9 in the mammalian brain remains unknown. Through RNA sequencing (RNA-seq) analysis, we find that virus-mediated expression of Cas9 influences the expre...
Article
Full-text available
All human behaviors, including the control of energy homeostasis, are ultimately mediated by neuronal activities in the brain. Neurotrophic factors represent a protein family that plays important roles in regulating neuronal development, function, and survival. It has been well established that canonical neurotrophic factors, such as brain-derived...
Article
Monogenic mutations in the SHANK3 gene, which encodes a postsynaptic scaffold protein, play a causative role in autism spectrum disorder (ASD). Although a number of mouse models with Shank3 mutations have been valuable for investigating the pathogenesis of ASD, species-dependent differences in behaviors and brain structures post considerable challe...
Article
Full-text available
When BDNF binds to its receptors, TrkB and p75(NTR), the BDNF-receptor complex is endocytosed and trafficked to the cell body for downstream signal transduction, which plays a critical role in neuronal functions. Huntingtin-associated protein 1 (HAP1) is involved in trafficking of vesicles intracellularly and also interacts with several membrane pr...
Article
Huntington's disease (HD) is characterized by preferential loss of the medium spiny neurons in the striatum. Using CRISPR/Cas9 and somatic nuclear transfer technology, we established a knockin (KI) pig model of HD that endogenously expresses full-length mutant huntingtin (HTT). By breeding this HD pig model, we have successfully obtained F1 and F2...
Article
Full-text available
The hypothalamus has a vital role in controlling food intake and energy homeostasis; its activity is modulated by neuropeptides and endocrine factors. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor that is also localized in the endoplasmic reticulum (ER) in neurons. Here we show that MANF is highly enriched in d...
Article
Full-text available
In the brain, astrocytes secrete diverse substances that regulate neuronal function and viability. Exosomes, which are vesicles produced through the formation of multivesicular bodies and their subsequent fusion with the plasma membrane, are also released from astrocytes via exocytotic secretion. Astrocytic exosomes carry heat shock proteins that c...
Article
Full-text available
Off-target effects and mosaicism are major concerns for applying CRISPR-Cas9 to correct genetic mutations. A recent article in Nature by Ma et al. (2017) uses an elegant CRISPR-Cas9 approach that repairs a genetic mutation in human embryos with negligible mosaicism and no off-target effects, bringing this editing tool closer to clinical application...
Article
Full-text available
Significance It remains unclear why astrocytes are affected to a lesser extent than neurons in a variety of neurodegenerative diseases. We report the higher activity of C terminus of Hsp70-interacting protein (CHIP), cochaperone of Hsp70, in astrocytes than in neurons, which not only promotes the degradation of misfolded proteins, but also upregula...
Article
Full-text available
Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells c...
Article
Full-text available
Cell death and differentiation is a monthly research journal focused on the exciting field of programmed cell death and apoptosis. It provides a single accessible source of information for both scientists and clinicians, keeping them up-to-date with advances in the field. It encompasses programmed cell death, cell death induced by toxic agents, dif...
Article
Huntington's disease is a neurodegenerative disorder caused by a polyglutamine repeat in the Huntingtin gene (HTT). Although suppressing the expression of mutant HTT (mHTT) has been explored as a therapeutic strategy to treat Huntington's disease, considerable efforts have gone into developing allele-specific suppression of mHTT expression, given t...
Article
Aging-related brain diseases consist of a number of important neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, all of which have become more prevalent as the life expectancy of humans is prolonged. Age-dependent brain disorders are associated with both environmental insults and genetic mutations. For those...
Article
Full-text available
CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations...
Article
Full-text available
Significance Postnatal growth retardation is a Down syndrome (DS) phenotype, but its mechanism is unknown. Our previous studies have shown that Huntingtin-associated protein 1 (Hap1) is important for the postnatal growth of mice. Here we report that Hap1 binds DDB1- and CUL4-associated factor 7 (Dcaf7) competitively in the cytoplasm with dual-speci...
Article
Full-text available
Spinocerebellar ataxia type 17 (SCA17) is a type of autosomal dominant cerebellar ataxia (ADCA) characterized by variable manifestations, including cerebellar ataxia, dementia, and psychiatric symptoms. Since the identification of a CAG repeat expansion in the TATA-box binding protein (TBP) gene in a patient with ataxia in 1999 and then verificatio...
Article
Full-text available
Unlabelled: Brain-derived neurotrophic factor (BDNF) is essential for neuronal differentiation and survival. We know that BDNF levels decline in the brains of patients with Huntington's disease (HD), a neurodegenerative disease caused by the expression of mutant huntingtin protein (mHtt), and furthermore that administration of BDNF in HD mice is p...
Article
Full-text available
Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset neurodegenerative diseases, which are caused by polyglutamine (polyQ) expansion in different proteins. In SCA17, the polyQ expansion occurs in the TATA box binding protein (TBP), which functions as a general transcription factor. Patients with SCA17 suffe...
Article
Full-text available
Unlabelled: In neurodegenerative diseases caused by misfolded proteins, including Huntington's disease (HD), the neuronal processes and terminals are particularly prone to the accumulation of misfolded proteins, leading to axonal and synaptic dysfunction. This compartment-dependent accumulation can result from either the altered transport of misfo...
Article
Full-text available
The Huntington’s disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is esse...
Article
Full-text available
CRISPR/Cas9 is now used widely to genetically modify the genomes of various species. The ability of CRISPR/Cas9 to delete DNA sequences and correct DNA mutations opens up a new avenue to treat genetic diseases that are caused by DNA mutations. In this review, we describe the advantages of using CRISPR/Cas9 to engineer genomic DNAs in animal embryos...
Article
Full-text available
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disease caused by an expanded polyglutamine (polyQ) tract in the N-terminal region of mutant huntingtin (mHtt). As a result, mHtt forms aggregates that are abundant in the nuclei and processes of neuronal cells. Although the roles of mHtt aggregates are still debated,...
Article
Full-text available
Significance Because of the toxicity gain of expanded polyglutamine (polyQ) repeats, many studies have used RNAi and other approaches to inactivate the mutant HTT gene in Huntington’s disease. However, Htt is essential for early embryonic development, and normal function of Htt in adult animals remains unknown. Using conditional Htt knockout mice,...
Article
Full-text available
In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than those of adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knockin mouse models of spinal cerebellar ataxia-17...
Article
Full-text available
TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains u...
Article
Full-text available
Animal models are extremely valuable to help us understand the pathogenesis of neurodegenerative disorders and to find treatments for them. Since large animals are more like humans than rodents, they make good models to identify the important pathological events that may be seen in humans but not in small animals; large animals are also very import...
Article
Full-text available
Huntington disease (HD) represents a family of neurodegenerative diseases that are caused by misfolded proteins. The misfolded proteins accumulate in the affected brain regions in an age-dependent manner to cause late-onset neurodegeneration. Transgenic mouse models expressing the HD protein, huntingtin, have been widely used to identify therapeuti...
Article
Full-text available
CRISPR/Cas9 has been used to genetically modify genomes in a variety of species, including non-human primates. Unfortunately, this new technology does cause mosaic mutations, and we do not yet know whether such mutations can functionally disrupt the targeted gene or cause the pathology seen in human disease. Addressing these issues is necessary if...
Article
Full-text available
Mosaic mutations and off-target effects caused by CRISPR/Cas9 have led to concerns about the efficiency and specificity of this new technique in non-human primates and other large animals. Here we discuss recent findings from primate embryos, with a focus on the technical issues CRISPR/Cas9 faces before producing non-human primate models of human d...
Article
Full-text available
Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used...

Network

Cited By