ArticlePDF Available

Self-Assembly Behavior of Amphiphilic Nanoparticle in Selective Solvents: Dissipative Particle Dynamics Simulations

Authors:
  • Chongqing Three Gorges University

Abstract and Figures

The dissipative particle dynamics (DPD) simulations were performed to study the self-assembly behavior of amphiphilic nanoparticles in selective solvents. The effects of various parameters, including solvent selectivity, the length of grafting polymers and the grafting ratio of hydrophilic polymer to hydrophobic polymer, were studied. Then, the phase diagram of self-assembled morphology was constructed. A rich variety of morphologies, ranging from spherical aggregates, rod-like aggregates, two-dimensional membrane, nanopore membrane were obtained as increasing the concentration of amphiphilic nanoparticles. Furthermore, the amphiphilic nanoparticles tend to self-assemble into the layered nano-aggregates when the solvent quality is poor (i.e.,aS-HL=40 kBT/Rc, aS-HB=50 kBT/Rc), and the porous networked aggregates were observed at high concentration of amphiphilic nanoparticles. The simulation results also revealed that the self-assembled aggregates are largely controlled by the concentration of amphiphilic nanoparticles and the ratios of grafting hydrophilic polymers to grafting hydrophobic polymers. The aggregates can be extendedly used as gas separation and detection, drug delivery and catalyst supports because of their plentiful aggregate structure.
Content may be subject to copyright.
CIESC Journal, 2018, 69(11): 4887-4895 ·4887·
化工学报 2018 69 11 | www.hgxb.com.cn
DOI10.11949/j.issn.0438-1157.20180677
双亲纳米颗粒在选择性溶剂中的自组装行为:耗散粒子动力学模拟
郭浩 1,2,宋先雨 2,赵国林 2,赵双良 2,韩霞 1,刘洪来 1, 2
1华东理工大学化学与分子工程学院,上海 2002372化学工程联合国家重点实验室,华东理工大学,上海 200237
摘要:接枝聚合物纳米颗粒在构筑多级功能性纳米材料方面具有很大潜力,但其在选择性溶剂中自组装相图却鲜
见报道。利用耗散粒子动力学模拟研究了溶剂选择性、接枝聚合物链长度以及亲水、疏水聚合物链比例等因素对
双亲纳米颗粒自组装行为的影响,并绘制了自组装形态相图。结果显示,随着浓度的增大,双亲纳米颗粒逐渐自
组装成球状、棒状、二维膜、纳米膜孔等丰富纳米结构。不仅如此,溶剂与亲水、疏水聚合物相容性差异较小时
(aS-HL=40kBT/Rc,aS-HB=50kBT/Rc)双亲纳米颗粒自组装形成层状纳米结构,在较高浓度时,形成规则的多孔网络结
构。研究发现,双亲纳米颗粒浓度和接枝聚合物的链长以及亲水、疏水聚合物链比例是调控双亲纳米颗粒自组装
形态的关键因素。鉴于双亲纳米颗粒丰富的自组装行为,它在气体分离、检测、载药、催化剂载体等领域有着很
大的潜在应用价值。
关键词:纳米粒子;耗散粒子动力学;模拟;自组装;溶剂
中图分类号O 641 文献标志码A 文章编号04381157201811488709
Self-assembly behavior of amphiphilic nanoparticle in selective solvents:
dissipative particle dynamics simulations
GUO Hao1,2, SONG Xianyu2, ZHAO Guolin2, ZHAO Shuangliang2, HAN Xia1, LIU Honglai1, 2
(1School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;
2State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China)
Abstract: The dissipative particle dynamics (DPD) simulations were performed to study the self-assembly behavior
of amphiphilic nanoparticles in selective solvents. The effects of various parameters, including solvent selectivity,
the length of grafting polymers and the grafting ratio of hydrophilic polymer to hydrophobic polymer, were studied.
Then, the phase diagram of self-assembled morphology was constructed. A rich variety of morphologies, ranging
from spherical aggregates, rod-like aggregates, two-dimensional membrane, and nanopore membrane were obtained
as increasing the concentration of amphiphilic nanoparticles. Furthermore, the amphiphilic nanoparticles tend to
self-assemble into the layered nano-aggregates when the solvent quality is poor (i.e.,aS-HL=40kBT/Rc, aS-HB=50×
kBT/Rc), and the porous networked aggregates were observed at high concentration of amphiphilic nanoparticles.
The simulation results also revealed that the self-assembled aggregates are largely controlled by the concentration
of amphiphilic nanoparticles and the ratios of grafting hydrophilic polymers to grafting hydrophobic polymers. In
view of the rich self-assembly behavior of the parental nanoparticles, it has great potential application value in gas
separation, detection, drug loading, catalyst carrier and other fields.
2018-06-21 收到初稿,2018-09-10 收到修改稿。
联系人:韩霞。第一作者:郭浩(1992—,男,硕士研究生。
基金项目国家自然科学基金项目(91534103)中国石油科技创新基
金项目(2017D-5007-0204)
Received date: 2018-06-21.
Corresponding author: Prof. HAN Xia, xhan@ecust.edu.cn
Foundation item: supported by the National Natural Science Foundation
of China (91534103) and PetroChina Innovation Foundation (2017D-5007-
0204).
·4888· 69
·4888·
Key words: nanoparticles; dissipative particle dynamics; simulation; self-assembly; solvent
随着科学技术近几十年的飞速发展,人们对具
有特殊结构的纳米材料的需求不断增加,从药物释
放到电子器件,纳米材料都有着广泛的应用前景。
作为一种简单高效方法,自组装技术常常用于制备
纳米到微米级高度有序的纳米材料。双亲分子是同
时含有亲水基团和疏水基团的一类分子,由于亲、
疏水基元的相互竞争和协调,能自组装形成复杂的
纳米聚集体[1-2]因此一直是分子自组装研究最常见
的组元之一。具有双亲结构的脂质体、嵌段共聚物
等通过自组装能形成具有独特功能的复杂纳米结
构,并广泛应用于生物、催化和医学等领域[3-8]
相较于单一的聚合物或者纳米颗粒自组装,接
枝聚合物的纳米颗粒自组装能同时拥有两者的特
性,自组装结构由纳米颗粒的构型和聚合物性质共
同决定[9]。接枝聚合物的纳米颗粒在溶液中的自组
装不仅能够控制自组装体的结构和性质,还能够选
择性定位纳米颗粒在嵌段聚合物聚集体中的位置从
而形成特殊的纳米结构[10-12]。计算机模拟具有成本
低、省时等优点,不仅弥补了实验观测自组装形态
不足之处,还能考察单一因素对自组装结构形貌的
影响和调控规律[13]Ma [9,14]以耗散粒子动力学
(dissipative particle dynamics, DPD)研究了双亲嵌段
共聚物接枝的纳米颗粒在溶剂中的自组装行为,发
现自组装形成了纳米线、纳米环、纳米团簇结构。
Jayraman [15-19]利用 Monte Carlo 方法研究了纳米
颗粒直径、接枝聚合物长度和接枝密度等对接枝聚
合物的纳米颗粒自组装的影响。
本文构建了双亲纳米颗粒粗粒化模型,采用耗
散粒子动力学模拟方法研究了双亲纳米颗粒接枝聚
合物长度,以及亲水、疏水聚合物链比例等因素对
双亲纳米颗粒自组装行为的影响。研究结果对双亲
纳米颗粒分子的设计,以及在胶体与界面领域的应
用具有一定的理论指导意义。
1 模拟方法与计算细节
1.1 DPD 模拟方法
作为一种介尺度模拟方法,DPD 已被成功应用
于复杂流体的研究,例如,//表面活性剂[20]、聚
合物[21-24]、胶体 [25]等方面的研究。构筑粗粒化模型
DPD 模拟重要的一环。一个 DPD 珠子通常代表
一类原子簇或一定体积的流体,相同链段上相邻的
两个珠子之间用弹簧作用势连接起来,DPD 珠子的
运动满足牛顿运动方程[26]
dd
dd
ii
ii i
m
tt
==
rv
vf (1)
其中,rivimifi分别表示第 i个珠子的位置
矢量、速度、质量以及所受到的总作用力。为了简
化计算,体系中珠子的质量全部都设为一个 DPD
[27]
DPD 中,珠子随时间演化的函数遵守牛顿
运动方程,DPD 珠子受到三种相互作用力:保守力
conservative forceFC
ij耗散力dissipative force
FD
ij;随力(random forceFR
ij。因此作用在第 i
个珠子上的合力 fi可表示为[26]
CDR S
()
iijijij
ij
++ +=
fFFFF
(2)
其中,第 i个珠子和第 j个珠子之间的保守力为
Ccc
c
ˆ
1if
0if
ij
ij ij ij
ij
ij
arRr rR
rR
−<
>
=(/
F (3)
式中,aij 是珠子 ij之间的排斥参数,rij 是两
个粒子之间的距离,Rc为最大相互作用半径。
耗散力和随机力的计算公式如下
D
Dˆˆ
()( ) if 1
0if1
ij ij ij ij ij
ij
ij
rrvr r
r
γω
<
=
F (4)
D
Rˆ
() if 1
0if1
ij ij ij ij
ij
ij
rr
r
r
σω θ
<
=
F (5)
式中,vij 是两个粒子 ij之间的速率差,
ω
代表权重函数,θ是一个 01之间的随机数,σ
噪声振幅。
其中,保守力与珠子的间距呈线性关系,它随
着珠子间距的增大而减小,保守力的计算在 DPD
拟中非常关键;链状分子中的每个珠子还受到相邻
珠子施加的弹簧力。耗散力与珠子之间的相对速度
呈正比,代表着珠子之间的相互摩擦作用,它会消
耗体系的总能量;随机力是为系统供给能量的力,
它刚好能够补偿体系由于粗粒化所引起的自由度的
减少。与此同时,随机力和耗散力要满足耗散涨落
定理,使得体系可以满足正则系综的统计学规律,
随机力和耗散力的共同作用,使系统得以在足够长
的时间内保持恒温,保证动力,同时准确地解析流
体力学方程[26]。本文采取与 Groot [26]一致的综合
11 www.hgxb.com.cn ·4889·
·4889·
运算法则,为了方便计算和处理数据,若无特别说
明,本文所有的 DPD 物理量均采用无量纲量。
在一个双亲纳米颗粒中,所有的 DPD 珠子由
松散的弹簧连接,因此引入了弹簧珠子模型,珠子
间的键长由一个简谐运动的弹簧控制,这样,不仅
可以控制聚合物的刚性,而且可以构成复杂的分子
拓扑结构,其计算公式如下[28]
S2
bb 0
1()
2Cr r=−F (6)
其中,FS为弹簧力,Cb为弹簧系数,r0为平衡
条件下的键长。Ruiz [29]粗粒化稠环芳烃结构时,
珠子间用等边三角形弹簧相互连接,模拟发现在键
长为 r0=3 Å、弹簧系数 Cb=300 kcal/(mol·Å2)时,
保持环的平面刚性结构1 Å0.1 nm1 cal=4.1868
J。本文设定 r0=2 ÅCb=300 kcal/(mol·Å2)以保持
纳米颗粒的刚性。
1.2 DPD 模拟细节
1为双亲纳米颗粒的粗粒化模型示意图,纳
米颗粒由 80 个纳米颗粒珠子N组成,同时纳米
颗粒表面分别接枝不同链长的亲水、疏水聚合物
P并将该双亲纳米颗粒命名为 N-xPy,其 中 x
聚合物链长度(x=4, 6, 8, 10, 12y为聚合物亲水
链和疏水链接枝比例(y=1, 2, 3。纳米颗粒表面共
接枝了 20 条聚合物链,不同链长、不同亲水、疏水
链比例的双亲纳米颗粒粗粒化模型如图所示。模拟
盒子大小为 120×120×120R3
c
DPD 单位长度),粒
子数密度为 3,体 系 中 DPD 粒子总数约为 1.92×104
个。在模拟盒子的三个方向均采用周期性边界条件。
系统中 3个水分子粗粒化成一个 DPD 珠子,一个
水分子的体积约为 Vw=30 Å3,珠子的体积为
Vbead=3×3Vwater=270 Å3Rc=6.46 Å[21]不同珠子之间
DPD 相互作用参数 aij 参考 Song [30]的实验,
如表 1所示。相对浓度表示为:
β
=NAN/(NS+NAN)
其中 NAN = NN + NHL + NHB,式中,NSNNNHL
NHB 分别为溶剂、纳米颗粒、亲水聚合物和疏水聚
合物珠子的个数。采用 Materials Studio[31]
Mesocite 模块模拟双亲纳米颗粒在溶剂中的自组装
行为,所有的模拟在 NVT 系综下进行,模拟温度
T=1.0,即 298 K。时间步长设为Δt=0.05 τ[21],根据
粗粒化过程,模拟的长度尺度为 6.46 Å,质量尺度
54 amu
A
1
1amu =
g
NNA为阿伏伽德罗常数)
能量尺度为 0.059191 kcal/mol,时间尺度为 3.0158
ps。模拟步数为 10×105步,即 15.08 ns[21]
1 粗粒化模型示意图
Fig.1 Schematic diagram of coarse-grained model
1 DPD 模拟相互作用参数
Table 1 DPD simulation interaction parameters
Bead S HL HB NP
S 25
HL 26/30/40 25
HB 50/60/80 60 25
N 26 26 50 25
2 结果与讨论
2.1 浓度和接枝链长对自组装形貌的影响
为了探究浓度和接枝长度对自组装形貌的影
响,双亲纳米颗粒接枝长度 x=4681012,双
亲纳米颗粒相对浓度
β
0.10.5,以 0.05 的梯度
增加。以双亲纳米颗粒相对浓度
β
为横坐标,接枝链
x为纵坐标绘制了自组装形态相图,如图 2所示,
随着浓度的增加,双亲纳米颗粒逐渐自组装形成核
壳的球状、棒状胶束,以及二维膜、纳米孔膜等纳
米聚集体,其中该结构以疏水聚合物为核,以亲水
聚合物为壳。从热力学角度分析,双亲纳米颗粒自
组装行为是系统的内能和熵之间竞争的结果[30,32]
疏水高分子链形成高度有序的内核结构(熵减过
程),而该纳米颗粒的亲水部分则自由伸向溶剂中,
纳米颗粒和溶剂则呈现更混乱的状态(熵增过程)
不仅如此,在低浓度
β
<0.325接枝聚合物越长,
易形成球形的核壳胶束。
·4890· 69
·4890·
2 亲水、疏水聚合物接枝比例 y=1 双亲纳米颗粒在
aS-HL=30 aS-HB=60 溶剂条件下自组装形貌对接枝聚合物
长度和浓度的相图
Fig.2 Phase diagram of morphologies for amphiphilic
nanoparticles at different concentration and lengths of grafting
polymers under solvent conditions aS-HL=30, aS-HB=60 when
ratios of grafting hydrophilic polymers to grafting hydrophobic
polymers y=1
针对上述相图(图 2中形成的球形核壳胶束,
对其进行结构分析,密度分布和粒径变化。如图 3(a)
所示,纳米颗粒在 XYZ方向(模拟盒子 30
70Rc处)均出现分布峰,且峰的形状相似,因此,
该自组装聚集体为规则的球形[如图 3(a)插图所示]
该球形胶束的粒径计算公式如下
1
3
s
e
3
4
V
R⎛⎞
=⎜⎟
π
⎝⎠
(7)
其中 Vs为球形胶束的体积。3(b)表明,在相
同浓度条件下,球形胶束的半径随接枝聚合物链长
的增加呈现线性增加。这是因为随着聚合物链长的
增加,疏水聚合物链聚集形成的胶束核体积会增大,
同样,亲水聚合物链形成的壳的厚度也会增大,这
就导致了球形胶束的半径随着聚合物链长的增加而
增大。同时,随纳米颗粒浓度的增加,球形胶束粒
径也会相应增加。Hu [33]研究双亲金纳米颗粒在
溶剂中的自组装,发现随着颗粒浓度的增加双亲金
纳米颗粒自组装形成了球形、棒状以及中空囊泡胶
束,并且随着接枝 PEO PS 链长的增加,所形成
的球形胶束的直径增加。这些与本文的模拟结果相
符合。
纳米孔膜结构的分析结果如图 4所示。图 4(a)
显示,纳米孔膜密度曲线在 XY方向均出现一个
3 aS-HL=30 aS-HB=60 溶剂条件下,双亲纳米颗粒
自组装形成的球形胶束的密度分布(a)及 β=0.15
β=0.10 时球形胶束半径(b
Fig.3 Density profiles of spherical aggregates formed by
amphiphilic nanoparticles at different directions of simulation
box(a), and radius of spherical aggregates as a function of
length of grafting polymer(b) under solvent conditions
aS-HL=30, aS-HB=60
波谷(模拟盒子 30105Rc处)这也印证了纳米孔
的结构[如图 4(a)插图所示]纳米孔的大小常常决定
了其用途,利用等效面积的概念可以计算其纳米孔
的大小[32]
1
2
u
e
A
R⎛⎞
=⎜⎟
π
⎝⎠
(8)
其中,Au表示纳米膜中的空白区域。图 4(b)
明,纳米孔的大小随着接枝聚合物链长的增加而增
大。这可能是因为接枝聚合物链越短,双亲纳米颗
粒更倾向于二维材料,越能构筑二维的膜结构,因
此纳米孔也就越小。其结果也可以在图 2得到印证,
当双亲纳米颗粒浓度 β>0.274,接枝聚合物链越短,
双亲纳米颗粒越容易形成二维膜结构。
5分析了双亲纳米颗粒自组装形成棒胶束的
结构特征。如图 5(a)所示,双亲纳米颗粒密度曲线
Z轴均匀分布,而在 XY轴方向上 3090Rc
11 www.hgxb.com.cn ·4891·
·4891·
处呈现一个波峰分布,这也印证了纳米颗粒自组装
形成的棒状结构。本文定义 XY轴方向上的圆形
切面的半径为棒状胶束的半径,利用式8)计 算 出
了棒状胶束的横截面半径,如图 5(b)所示。棒状胶
束的横截面半径随着接枝聚合物链长的增加而增
大,当接枝聚合物链长度相同时,棒状胶束的横截
面半径随着浓度的增加而增大。
2.2 亲疏水链接枝比例对双亲纳米颗粒自组装的
影响
双亲纳米颗粒亲水、疏水聚合物接枝比例对其
自组装行为也有影响,以双亲纳米颗粒亲水、疏水
聚合物接枝比例以及聚合物接枝长度为变量,绘制
了纳米颗粒自组装形态相图,如图 6所示。结合图
3可以发现当双亲纳米颗粒亲水、疏水聚合物接枝
比例为 2时,双亲纳米颗粒易通过自组装形成纳米
孔膜结构。为了进一步探究双亲颗粒接枝聚合物链
长和浓度对纳米孔大小的影响,以式6计算出了
纳米孔的大小,结果如图 6(c)所示。具有相同接枝
聚合物链长的双亲纳米颗粒,其浓度越高,纳米孔
半径越小;而双亲纳米颗粒浓度相同时,当接枝聚
合物的链长越长,孔半径则越大。因此可通过改变
双亲纳米颗粒浓度以及接枝聚合物链长度对纳米孔
4 aS-HL=30 aS-HB=60 溶剂条件下双亲纳米颗粒自组装形成纳米孔膜密度分布(a)以及纳米孔大小随
接枝聚合物链长度的变化(b
Fig.4 Density profiles of nanopore membrane formed by amphiphilic nanoparticles at different directions of simulation box (a), and
size of nanopore as a function of length of grafting polymer (b) under solvent conditions aS-HL=30, aS-HB=60
5 aS-HL=30 aS-HB=60 溶剂条件下双亲纳米颗粒自组装形成棒状结构的密度分布(a)和棒状结构截面半径随
接枝聚合物链长度和双亲纳米颗粒浓度变化的三维柱状(b)
Fig.5 Density profiles of rod-like aggregate formed by amphiphilic nanoparticles at different directions of simulation box (a), and
radius of cross-section for rod-like aggregates at different lengths of grafting polymer and concentration of amphiphilic
nanoparticles (b) under solvent conditions aS-HL=30, aS-HB=60
·4892· 69
·4892·
膜的结构实现有效调控。如图 6(d)所示,纳米颗粒
表面疏水链比例很小时(亲水、疏水聚合物接枝比
例为 3,双亲颗粒之间可以团聚成核的能力变弱,
因而只能形成球形胶束。图 6(d)N-3P12 双亲颗粒
在浓度 β=0.3 时的模拟结果,由于疏水链接枝比例
较小,双亲纳米颗粒只能形成两个较大体积的球状
胶束。6(e)N-3P6双亲纳米颗粒在浓度 β=0.4
的自组装结果,从图中可以看出尽管双亲颗粒浓度
很大,但是由于双亲纳米颗粒自组装过程是由疏水
嵌段核与溶剂间形成的界面能与亲水嵌段构象畸变
能竞争调控的结果,仍然只能形成分散的球状胶束。
2.3 溶剂的选择性对自组装的影响
一般地,若溶剂与聚合物的作用参数 aS-P<50
溶剂与聚合物相容性强,而 aS-P>50 表示溶剂与聚
合物相容性差[34-35]通过改变溶剂分子S与亲水、
疏水聚合物珠子HLHB之间的相互作用参数[28]
来模拟溶剂对双亲纳米颗粒自组装行为的影响,分
别为:(1) aS-HL=26aS-HB=80; (2) aS-HL=30aS-HB=60;
(3) aS-HL=40aS-HB=50 三种溶剂条件下,模拟亲水、
疏水链比例为 1的双亲纳米颗粒自组装过程,结果
如图 7所示。对比在不同溶剂中的情况,双亲纳米
颗粒自组装结构随浓度的增加,逐渐由球状向棒状,
最后到层状结构转变。当溶剂与亲水、疏水聚合物
相容性差异较大时,即分别在 aS-HL=26aS-HB=80
aS-HL=30aS-HB=60 模拟条件下,亲纳米颗粒的自
组装结果差别很小,且形成的结构均为核壳型的纳
米结构,内层疏水链聚集形成疏水内核,外层亲水
链包裹形成亲水性外壳。而只在溶剂 aS-HL=26
6 双亲纳米颗粒在 aS-HL=30aS-HB=60 溶剂条件下自组装相图((ay=2,(by=3),纳米孔大小随接枝聚合物链长
以及浓度变化(c),以及不同双亲纳米颗粒浓度时系统平衡时的快照((d
β
0.3,(e
β
0.4
Fig.6 Phase diagram of morphologies for amphiphilic nanoparticles at different lengths of grafting polymer and different ratios y of
grafting hydrophilic polymers to grafting hydrophobic polymers ((a)y=2,(b)y=3), nanopore size at different lengths of grafting
polymer (c), and different concentrations of amphiphilic nanoparticles, snapshots at different concentrations of amphiphilic
nanoparticles ((d)β=0.3, (e)β=0.4)
11 www.hgxb.com.cn ·4893·
·4893·
aS-HB=80 条件下,双亲纳米颗粒在浓度
β
=0.5,接
链长 x=46的区域自组装形成了多孔网络结构的
纳米聚集体[7(a)]。将多孔网络结构扩展 4周期,
如图 7(h)所示该多孔网络结构在气体的吸附与分
7 双亲纳米颗粒在 aS-HL=26, aS-HB=80 aS-HL=40, aS-HB=50 溶剂条件下自组装相图((a),(b))、多孔网络结构
c)、层状球形结构(d)、层状棒状结构(e)、单层棒状胶束(f)、纳米孔膜结构(g)以及
4周期多孔网络结构((h),(i))
Fig.7 Phase diagram of morphologies for amphiphilic nanoparticles at different lengths of grafting polymer and different solvents
((a) aS-HL=26, aS-HB=80; (b) aS-HL=26, aS-HB=80), porous network aggregates (c), layered spherical aggregates (d), multilayered rod-
like aggregates (e), single-layered rod aggregates (f), nanopore membranes (g), four-periodic porous network aggregates ((h),(i))
·4894· 69
·4894·
离方面有着巨大的应用价值[36]。当溶剂与疏水聚
合物,亲水聚合物相容性差异较小时(aS-HL=40
aS-HB=50,双亲纳米颗粒自组装形成层状结构,如
7(b)所示。在浓度较低时
β
<0.4亲水、疏水聚合
物与溶剂相容性差异较小,疏水链不用完全聚集成
核并被亲水链包裹形成核壳结构,因此形成了层状
结构,如图 7(d)(e)所示。随着浓度增加,双亲纳
米颗粒聚集形成了特殊的单层棒状结构,如图 7(f)
所示。双亲颗粒浓度进一步增加,形成层状纳米孔
膜结构,如图 7(g)所示,将层状纳米孔膜拓展 4
期如图 7(i)所示,可以看到,图中黄色箭头所示的
是疏水层,蓝色箭头所示的是亲水层,层层累积,
也形成了多孔网络结构。
3
通过构建了双亲纳米颗粒粗粒化模型,采用耗
散粒子动力学模拟方法研究了溶剂选择性,接枝聚
合物长度,以及亲水、疏水聚合物链比例等因素对
双亲纳米颗粒自组装行为及结构的影响。研究表明,
双亲纳米颗粒能自组装形成了核壳型和层状两大类
纳米聚集体。当溶剂与疏水聚合物、亲水聚合物相
容性差异较大aS-HL=26aS-HB=80双亲纳米颗粒
自组装形成核壳型胶束,当溶剂与疏水聚合物、亲
水聚合物相容性差异较小时(aS-HL=40aS-HB=50)
亲纳米颗粒自组装形成层状胶束。颗粒浓度对双亲
纳米颗粒自组装有着显著的影响,随着双亲颗粒浓
度的增加,自组装形貌逐渐由核壳的球形胶束向核
壳的棒状胶束转变,随着浓度的进一步增加,最后
形成了纳米孔膜的纳米结构。接枝聚合物的链长以
及亲水、疏水聚合物链比例也能调控双亲纳米颗粒
的聚集形态。当亲水、疏水聚合物链比例为 2时,
双亲纳米颗粒更易自组装为纳米孔膜结构;当亲水、
疏水聚合物链比例为 3时,双亲纳米颗粒更易自组
装形成球状胶束结构。采用粗粒化模拟研究双亲纳
米颗粒在选择性溶剂中自组装行为,有助于了解双
亲纳米颗粒自组装规律,对其分子的设计及应用具
有一定的理论指导意义。
Au ——纳米孔面积,Å2
aij ——珠子 i
j之间的 DPD 排斥参数
C ——同一分子链中两个成键珠子之间的力常数,
kJ·mol1·nm2
FC
ij ——珠子 i
j之间的保守力,N
FD
ij ——珠子 i
j之间的耗散力,N
FR
ij ——珠子 i
j之间的随机力,N
FS——珠子之间的弹簧力,N
fi——珠子 i受到的合力,N
kB——Boltzmann 常数,J·K1
mi——珠子 i的质量,amu
A
1
1amu =
g
N
NA
阿伏伽德罗常数)
m——无量纲质量, 0
/mmm=
N——珠子的数目
Rc——珠子的最大相互作用半径,Å
Re——球形和孔半径,Å
r——无量纲长度, /crrr=
ri——珠子 i的位置矢量,Å
rij ——珠子 i
j之间的距离,Å
r0——平衡时的键长,Å
T——热力学温度,K
Vs——胶束的体积,Å3
vi——珠子 i的速度,m·s1
v——无量纲速率, B//kT mvv=
x——纳米颗粒接枝聚合物链长度
y——亲水链和疏水链的比例
β——纳米颗粒的相对浓度
下角标
i,j ——珠子
References
[1] KABANOV A V, KABANOV V A, YU K, et al. Soluble
stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium)
cations and poly(ethylene oxide)-block-polymethacrylate anions[J].
Macromolecules, 1996, 29(21): 6797-6802.
[2] ZHANG L, EISENBERG A. Multiple morphologies of “Crew-Cut”
aggregates of polystyrene-b-poly(acrylic acid) block copolymers[J].
Science, 1995, 268(5218): 1728-1731.
[3] DAG A, ZHAO J, STENZEL M H. Origami with ABC triblock
terpolymers based on glycopolymers: creation of virus-like
morphologies[J]. ACS Macro Letters, 2015, 4(5): 579-583.
[4] DAN M, HUO F, XIAO X, et al. Temperature-sensitive nanoparticle-
to-vesicle transition of ABC triblock copolymer corona-shell-core
nanoparticles synthesized by seeded dispersion RAFT
polymerization[J]. Macromolecules, 2014, 47(4): 1360-1370.
[5] WANG L, HUANG H, HE T. ABC triblock terpolymer self-assembled
core-shell-corona nanotubes with high aspect ratios[J].
Macromolecular Rapid Communications, 2014, 35(16): 1387-1396.
[6] XU J, WANG K, LI J, et al. ABC triblock copolymer particles with
tunable shape and internal structure through 3D confined assembly[J].
Macromolecules, 2015, 48(8): 2628-2636.
[7] 郭泓雨, 崔洁铭, 孙德林, . 温敏性两亲嵌段共聚物相行为的耗
散粒子动力学模拟[J]. 化工学报, 2012, 63(11): 3707-3715.
GUO H Y, CUI J M, SUN D L, et al. Dissipative particle dynamics
simulation on phase behavior of thermo-responsive amphiphilic
copolymer PCL-PNIPAM-PCL[J]. CIESC Journal, 2012, 63(11):
11 www.hgxb.com.cn ·4895·
·4895·
3707-3715.
[8] 苏运祥, 全学波, 闵文凤, . PA MAM 树状大分子负载和释放
阿霉素的耗散粒子动力学模拟[J]. 化工学报, 2017, 68(5): 1757-
1766.
SU Y X, QUAN X B, MIN W F, et al. Dissipative particle dynamics
simulations on loading and release of doxorubicin by PAMAM
dendrimers[J]. CIESC Journal, 2014, 68(5): 1757-1766.
[9] MA S, HU Y, WANG R. Amphiphilic block copolymer aided design of
hybrid assemblies of nanoparticles: nanowire, nanoring, and
nanocluster[J]. Macromolecules, 2016, 49(9): 3535-3541.
[10] MAI Y, EISENBERG A. Selective localization of preformed
nanoparticles in morphologically controllable block copolymer
aggregates in solution[J]. Accounts of Chemical Research, 2012,
45(10): 1657-1666.
[11] MAYE M M, NYKYPANCHUK D, CUISINIER M, et al. Stepwise
surface encoding for high-throughput assembly of nanoclusters[J].
Nature Materials, 2009, 8(5): 388-391.
[12] WANG J, LI W, ZHU J. Encapsulation of inorganic nanoparticles into
block copolymer micellar aggregates: strategies and precise
localization of nanoparticles[J]. Polymer, 2014, 55(5): 1079-1096.
[13] DORENBOS G. Pore network design: DPD-Monte Carlo study of
solvent diffusion dependence on side chain location[J]. Journal of
Power Sources, 2014, 270(4): 536-546.
[14] MA S, QI D, XIAO M, et al. Controlling the localization of
nanoparticles in assemblies of amphiphilic diblock copolymers[J]. Soft
Matter, 2014, 10(45): 9090-9097.
[15] ESTRIDGE C E, JAYRAMAN A. Assembly of diblock copolymer
functionalized spherical nanoparticles as a function of copolymer
composition[J]. Journal of Chemical Physics, 2014, 140(14): 144905-
144918.
[16] JAYRAMAN A, SCHWEIZER K S. Effective interactions, structure,
and phase behavior of lightly tethered nanoparticles in polymer
melts[J]. Macromolecules, 2008, 41(23): 9430-9438.
[17] MARTIN T B, JAYRAMAN A. Identifying the ideal characteristics of
the grafted polymer chain length distribution for maximizing
dispersion of polymer grafted nanoparticles in a polymer matrix[J].
Macromolecules, 2013, 46(22): 9144-9150.
[18] MARTIN T B, SEIFPOUR A, JAYRAMAN A. Assembly of
copolymer functionalized nanoparticles: a Monte Carlo simulation
study[J]. Soft Matter, 2011, 7(13): 5952-5964.
[19] NAIR N, JAYRAMAN A. Self-consistent PRISM theory-Monte Carlo
simulation studies of copolymer grafted nanoparticles in a
homopolymer matrix[J]. Macromolecules, 2010, 43(19): 8251-8263.
[20] SHI K H, CHENG L, BAI Z, et al. Dissipative particle dynamics study
of the water/benzene/caprolactam system in the absence or presence of
non-ionic surfactants[J]. Chemical Engineering Science, 2015, 122:
185-196.
[21] SONG X, ZHAO S, FANG S, et al. Mesoscopic simulations of
adsorption and association of PEO-PPO-PEO triblock copolymers on
a hydrophobic surface: from mushroom hemisphere to rectangle
brush[J]. Langmuir, 2016, 32(44): 11375-11385.
[22] DONG J, LI J, ZHOU J. Interfacial and phase transfer behaviors of
polymer brush grafted amphiphilic nanoparticles: a computer
simulation study[J]. Langmuir, 2014, 30(19): 5599-5608.
[23] HAO L, LIN L, ZHOU J. pH-responsive zwitterionic copolymer DHA-
PBLG-PCB for targeted drug delivery: a computer simulation study[J].
Langmuir, 2018, DOI: 10.1021/acs.langmuir.8b00626.
[24] LIAO M, LIU H, GUO H, et al. Mesoscopic structures of
poly(carboxybetaine) block copolymer and poly-(ethylene glycol)
block copolymer in solutions[J]. Langmuir, 2017, 33(30): 7575-7582.
[25] PAN W, CASWELL B, KARNIADAKIS G E. Rheology,
microstructure and migration in brownian colloidal suspensions[J].
Langmuir, 2010, 26(1): 133-142.
[26] GROOT R D, WARREN P B. Dissipative particle dynamics: bridging
the gap between atomistic and mesoscopic simulation[J]. Journal of
Chemical Physics, 1997, 107(11): 4423-4435.
[27] GROOT R D, MADDEN T J. Dynamic simulation of diblock
copolymer microphase separation[J]. Journal of Chemical Physics,
1998, 108(20): 8713-8724.
[28] XIANG W, ZHAO S, SONG X, et al. Amphiphilic nanosheet self-
assembly at the water/oil interface: computer simulations[J]. Physical
Chemistry Chemical Physics, 2017, 19(11): 7576-7586.
[29] RUIZ M Y, MULLINS O C. Coarse-grained molecular simulations to
investigate asphaltenes at the oil-water interface[J]. Energy & Fuels,
2015, 29(3): 1597-1609.
[30] SONG X Y, GUO H, TAO J B, et al. Design of tunable-size 2D
nanopore membranes from self-assembled amphiphilic nanosheets
using dissipative particle dynamics simulations[J]. Chemical
Engineering Science, 2018, 189: 75-83.
[31] Materials Studio[CP]. BIOVIA, San Diego California, USA. 2014.
[32] LOMBARDO D, KISELEV M A, MAGAZU S, et al. Amphiphiles
self-assembly: basic concepts and future perspectives of
supramolecular approaches[J]. Advances in Condensed Matter
Physics, 2015, 2015(11): 1-22.
[33] HU J M, TAO W, GUOYING Z, et al. Efficient synthesis of single gold
nanoparticle hybrid amphiphilic triblock copolymers and their
controlled self-assembly[J]. Journal of American Chemical Society,
2012, 134(18): 7624-7637.
[34] TAN H N, YU C Y, LU Z Y, et al. A dissipative particle dynamics
simulation study on phase diagram for the self-assembly of amphiph ilic
hyperbranched multiarm copolymers in various solvents[J]. Soft
Matter, 2017, 13(36): 6178-6188.
[35] CHEN H Y, RUCKENSTEIN E. Self-assembly of pi-shaped
copolymers[J]. Soft Matter, 2012, 8(5): 1327-1333.
[36] BISWAL B P, CHAUDHARI H D, BANERJEE R, et al. Chemically
stable covalent organic framework (COF)-polybenzimidazole hybrid
membranes: enhanced gas separation through pore modulation[J].
Chemistry-A European Journal, 2016, 22(14): 4695-4699.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In this paper, dissipative particle dynamics simulations are performed to study the interfacial and emulsion stabilizing properties of various systems of amphiphilic nanosheets (ANs) self-assembled at the oil/water (O/W) interface. The ANs have a dimensional symmetry structure that encompasses a triangular-plate at the center and two soft comb-like shells constructed with hydrophilic and hydrophobic polymers. As the simulation results show, the AN molecules are highly oriented in interfacial films with their triangular nanosheets parallel to the O/W interface, while their hydrophobic and hydrophilic segments attempt to immerse into the oil phase and aqueous phase, respectively. These results reveal that the rotation of ANs at oil/water interfaces is greatly restricted, meanwhile, their nanosheet (or planar) configuration facilitates their favorable orientation thereby, thus making the emulsion more stable. At higher concentrations, a wrapped-like or micelle morphology is observed. The O/W emulsions stabilized by ANs were also simulated, and it is interesting to find AN 'patches' at the O/W interface which resembles the leather patches on a football. By introducing the "amphiphilic nanosheet balance" concept, the hydrophilic-lipophilic balance (HLB) values of ANs were calculated. Due to their properties of two-dimensional symmetry, the HLB values of ANs tend to approximately 1 which reveals a stronger stability for emulsions.
Article
Two-dimensional (2D) nanopore membranes play a pivotal role in the application of molecular separation, DNA sequencing, drug release and biosensing. Owing to their special properties including 2D symmetry and inter-facial activity, amphiphilic nanosheets (ANs) have great potentials for generating functional nanomaterials. In this work, the dissipative particle dynamics simulations (DPD) are employed to design 2D nanopore membranes with tunable size using AN molecules. We find that these two-dimensional membranes are much stable due to the double-layer assembled framework of the membrane with the thickness from 2.5 to 7.8 nm. Different sized nanopores ranging from 2.45 to 6.15 nm are also identified in the membrane architecture, which can be controlled by the concentration ratio, the length of grafting polymer and the affinity of ANs. Moreover, when at low concentration ratio (<10%), the ANs tend to form different core-shell structured micelles, including spherical, ellipsoidal and long rod-like self-assembled morphologies. From our study findings, the ANs could be extendedly used to drug delivery and release, multi-layer 2D nanomaterials with taking the advantage of their chemical tun-ability, including the affinity and stimulus-responsive properties of grafting polymer as well as the geometry of scaffold structure in the ANs.
Article
In this work, the self-assembled behaviors of zwitterionic copolymer docosahexaenoic acid-b-poly(γ-benzyl-L-glutamate)-b-poly(carboxybetaine methacrylate) (DHA- PBLG-PCB) and the loading and release mechanism of the anti-cancer drug doxorubicin (DOX) was investigated via computer simulations. The effects of polymer concentration, drug content and pH on polymeric micelles were explored by dissipative particle dynamics (DPD) simulations. Simulation results show that DHA-PBLG15-PCB10 can self-assemble into core-shell micelles; in addition, the drug-loaded micelles have a pH-responsive feature. DOX can be encapsulated into the core-shell micelle at the normal physiological pH condition; whereas it can be released at the acidic pH condition. The self-assembled behaviors of copolymer DHA-PBLG-PEG were also studied to have a comparison with those of DHA-PBLG-PCB. The DHA-PBLG15-PCB10 system has a stable structure and it has a great potential to serve as drug delivery vehicles for targeted drug delivery.
Article
Dissipative particle dynamics (DPD) simulations were employed to study the loading and release behaviors of anticancer drug doxorubicin (DOX) by drug delivery carrier polyamidoamine (PAMAM) dendrimers. A coarse-grained (CG) model for PAMAM dendrimers was first constructed, which reproduced the conformational properties of PAMAM dendrimers accurately. The effects of PAMAM dendrimer generation (G) on DOX loading and the environment pH on DOX release were investigated. Simulation results showed that PAMAM dendrimers mainly encapsulated DOX into their interior cavities through hydrophobic interaction. The encapsulation capacity of G6 and G7 PAMAM dendrimers were much better than PAMAM of lower generations, because there were more hydrophobic cavities inside G6 or G7 dendrimers for their high porosity. At low pH, PAMAM dendrimers underwent conformational changes, thus DOX molecule escaped from dendrimers quickly. Such phenomena are mainly caused by the protonation of primary amines and tertiary amines in PAMAM dendrimers and primary amines in DOX. The electrostatic repulsion between these charged groups will lead PAMAM dendrimers swelling immensely and the inner cavities being exposed, which promotes the release of DOX molecules. This work could provide useful guidance for the design and optimization of dendrimer-based drug delivery systems.
Article
Self-assembly of amphiphilic hyperbranched multiarm copolymers (HMCs) has shown great potential to prepare all kinds of delicate supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the influencing factors to the self-assembly of HMCs have been greatly lagging behind. The phase diagram of HMCs in selective solvents is highly demanding but has not been disclosed up to now. Here, the self-assembly of HMCs with different hydrophilic fractions in various solvents was studied systematically by using dissipative particle dynamics (DPD) simulations. Three morphological phase diagrams are constructed and a rich variety of morphologies, ranging from spherical micelles, worm-like micelles, membranes, vesicles, ¬vesosomes, small micelle aggregates (SMAs), aggregates of spherical and worm-like micelles to helical micelles, are obtained. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these self-assemblies have been systematically investigated. The simulation results are consistent with available experimental observations. Besides, several novel structures, like aggregates of spherical and worm-like micelles, vesosomes and helical micelles, are firstly discorvered for HMC self-assembly. We believe the current work will extend the knowledge on the self-assembly of HMCs, expecially on the control of the supramolecular structures and on fabricating novel self-assemblies.
Article
The anti-fouling property of exogenous materials is vital for the in vivo application. In this work, dissipative particle dynamics simulations are performed to study the self-assembled morphologies of two copolymer systems containing poly(ethylene glycol) (PEG) and polycarboxybetaine (PCB) in aqueous solutions. Effects of polymer composition and polymer concentration on the self-assembled structures of the two copolymers (PLA-PEG and PLA-PCB) are investigated, respectively (PLA represents poly(lactic acid)). Results show that whatever the copolymer composition is, PLA-PEG systems will self-assemble into core-shell structures; while onion-like and vesicle structures are also found for the PLA-PCB systems. Different morphologies are obtained at different polymer concentrations in both copolymer systems. Simulation results demonstrate that PCB is more stable than PEG to maintain self-assembled spherical structures of copolymer systems since PLA-PEG forms dumbbell-like structures while PLA-PCB is spherical under the same polymer concentration. Though both two copolymer systems can self-assemble into core-shell nanoparticles when the block ratio of PLA:PEG or PLA:PCB is 80:20, the core-shell structures of the nanoparticles are quite different. The shell layers formed by PEG in PLA-PEG nanoparticles are inhomogeneous in size due to the amphiphilicity of PEG; while shell layers in PLA-PCB nanoparticles are homogenous because of the strong hydrophilicity of the zwitterionic PCB polymer block.
Article
The dissipative particle dynamics (DPD) method is used to investigate the adsorption behavior of PEO-PPO-PEO triblock copolymers at the liquid/solid interface. The effect of molecular architecture on the self-assembled monolayer adsorption of PEO-PPO-PEO triblock copolymers on hydrophobic surfaces is elucidated by adsorption process, film properties, adsorption morphologies, respectively. The adsorption thicknesses on hydrophobic surfaces and diffusion coefficient as well as aggregation number of Pluronic copolymers in aqueous solution observed in our simulations agree well with previous experimental and numerical observations. The radial distribution function revealed that the ability of self-assembly on hydrophobic surfaces: P123>P84>L64>P105>F127 which increased with the EO ratio of the Pluronic copolymers. Moreover, the shape parameter and the degree of anisotropy increase with increasing the molecular weight and mole ratio of PO of the Pluronic copolymers. Depending on the conformation of different Pluronic copolymers, the morphology transition of three regimes on hydrophobic surfaces is present: “mushroom” or hemisphere, “progressively semi ellipsoid”, and “rectangle” brush regimes induced by decreasing molecular weight and mole ratio of EO of Pluronic copolymers.
Article
We investigate the self-assembly and aggregation behaviors of nanoparticles in hybrid assemblies made from amphiphilic block copolymer tethered nanoparticles using the dissipative particle dynamics (DPD) approach. By varying the arm number of the tethered amphiphilic block copolymers, hydrophobic block chain length, and interaction parameter between nanoparticle and hydrophobic block, different morphological hybrid aggregates are obtained, including branching rod-like micelles, ring-like micelles, disk-like micelles, and vesicles. Most importantly, the nanoparticles aggregate in the various micelles and form nanowires, nanorings, and nanoclusters. Only using amphiphilic block copolymer tethered nanoparticles, hybrid vesicles including patchy vesicles and heterogeneous vesicles are obtained. Moreover, nanoclusters with distinct number of nanoparticles in hybrid disk-like micelles and vesicles are fabricated through controlling the interaction parameter between nanoparticle and hydrophobic block.
Article
Highly flexible, TpPa-1 at PBI-BuI and TpBD at PBI-BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50%) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced.