Xianming Liu

Xianming Liu
Harbin Institute of Technology | HIT · School of Computer Science and Technology

About

177
Publications
19,893
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,288
Citations

Publications

Publications (177)
Article
Multi-focus image fusion can fuse the clear parts of two or more source images captured at the same scene with different focal lengths into an all-in-focus image. On the one hand, previous supervised learning-based multi-focus image fusion methods relying on synthetic datasets have a clear distribution shift with real scenarios. On the other hand,...
Conference Paper
Full-text available
Depression Recognition (DR) poses a considerable challenge , especially in the context of the growing concerns surrounding privacy. Traditional automatic diagnosis of DR technology necessitates the use of facial images, undoubtedly expose the patient identity features and poses privacy risks. In order to mitigate the potential risks associated with...
Preprint
Neural Radiance Fields (NeRF) with hybrid representations have shown impressive capabilities in reconstructing scenes for view synthesis, delivering high efficiency. Nonetheless, their performance significantly drops with sparse view inputs, due to the issue of overfitting. While various regularization strategies have been devised to address these...
Article
Denoising diffusion probabilistic models (DDPM) have shown impressive performance in various domains as a class of deep generative models. In this paper, we introduce the Mixture noise-based DDPM (Mix-DDPM), which considers the Markov diffusion posterior as a Gaussian mixture model. Specifically, Mix-DDPM randomly selects a Gaussian component and t...
Preprint
Full-text available
In the realm of autonomous driving, robust perception under out-of-distribution conditions is paramount for the safe deployment of vehicles. Challenges such as adverse weather, sensor malfunctions, and environmental unpredictability can severely impact the performance of autonomous systems. The 2024 RoboDrive Challenge was crafted to propel the dev...
Preprint
Full-text available
This technical report summarizes the champion solution for the RoboDepth Challenge, which is held in the ICRA 2024 RoboDrive Workshop. DINO-SD is a multi-view supervised depth estimation model. Our model primarily focuses on addressing robustness issues in corrupted environments of autonomous driving. We use pretrained DINOv2 as the backbone, M-DPT...
Preprint
Full-text available
Surround-view depth estimation is a crucial task aims to acquire the depth maps of the surrounding views. It has many applications in real world scenarios such as autonomous driving, AR/VR and 3D reconstruction, etc. However, given that most of the data in the autonomous driving dataset is collected in daytime scenarios, this leads to poor depth mo...
Article
Images captured under low-light conditions suffer from several combined degradation factors, including low brightness, low contrast, noise, and color bias. Many learning-based techniques attempt to learn the low-to-clear mapping between low-light and normal-light images. However, they often fall short when applied to low-light images taken in wide-...
Article
Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published method offers both lossless and near-lossless modes....
Article
Human face captured at night or in dimly lit environments has become a common practice, accompanied by complex low-light and low-resolution degradations. However, the existing face super-resolution (FSR) technologies and derived cascaded schemes are inadequate to recover credible textures. In this paper, we propose a novel approach that decomposes...
Article
The wavelet transform has emerged as a powerful tool in deciphering structural information within images. And now, the latest research suggests that combining the prowess of wavelet transform with neural networks can lead to unparalleled image deraining results. By harnessing the strengths of both the spatial domain and frequency space, this innova...
Article
Contrastive learning has emerged as a prevailing paradigm for high-level vision tasks, which, by introducing properly negative samples, has also been exploited for low-level vision tasks to achieve a compact optimization space to account for their ill-posed nature. However, existing methods rely on manually predefined and task-oriented negatives, w...
Article
Image deblurring continues to achieve impressive performance with the development of generative models. Nonetheless, there still remains a displeasing problem if one wants to improve perceptual quality and quantitative scores of recovered image at the same time. In this study, drawing inspiration from the research of transformer properties, we intr...
Article
Federated learning (FL) is a promising decentralized machine learning approach that enables multiple distributed clients to train a model jointly while keeping their data private. However, in real-world scenarios, the supervised training data stored in local clients inevitably suffer from imperfect annotations, resulting in subjective, inconsistent...
Article
The recent emergence of deep learning neural networks has propelled advancements in the field of face super-resolution. While these deep learning-based methods have shown significant performance improvements, they depend overwhelmingly on fixed, spatially shared kernels within standard convolutional layers. This leads to a neglect of the diverse fa...
Article
Deep learning has emerged as a prominent technique in the field of holographic imaging, owing to its rapidity and high performance. Prevailing deep neural networks employed for holographic image reconstruction predominantly rely on convolutional neural networks (CNNs). While CNNs have yielded impressive results, their intrinsic limitations, charact...
Article
Transformer-based entropy models have gained prominence in recent years due to their superior ability to capture long-range dependencies in probability distribution estimation compared to convolution-based methods. However, previous transformer-based entropy models suffer from sluggish coding process due to pixel-wise autoregression or duplicated c...
Article
Face super-resolution is a technology that transforms a low-resolution face image into the corresponding high-resolution one. In this paper, we build a novel parsing map guided face super-resolution network which extracts the face prior (i.e., parsing map) directly from low-resolution face image for the following utilization. To exploit the extract...
Preprint
The wavelet transform has emerged as a powerful tool in deciphering structural information within images. And now, the latest research suggests that combining the prowess of wavelet transform with neural networks can lead to unparalleled image deraining results. By harnessing the strengths of both the spatial domain and frequency space, this innova...
Article
Full-text available
This paper aims to address the problem of supervised monocular depth estimation. We start with a meticulous pilot study to demonstrate that the long-range correlation is essential for accurate depth estimation. Moreover, the Transformer and convolution are good at long-range and close-range depth estimation, respectively. Therefore, we propose to a...
Preprint
Deep models have achieved significant process on single image super-resolution (SISR) tasks, in particular large models with large kernel ($3\times3$ or more). However, the heavy computational footprint of such models prevents their deployment in real-time, resource-constrained environments. Conversely, $1\times1$ convolutions bring substantial com...
Article
Exemplar-based colorization is a challenging task, which attempts to add colors to the target grayscale image with the aid of a reference color image, so as to keep the target semantic content while with the reference color style. In order to achieve visually plausible chromatic results, it is important to sufficiently exploit the global color styl...
Article
Contrastive learning has achieved remarkable success on various high-level tasks, but there are fewer contrastive learning-based methods proposed for low-level tasks. It is challenging to adopt vanilla contrastive learning technologies proposed for high-level visual tasks to low-level image restoration problems straightly. Because the acquired high...
Article
Point clouds upsampling (PCU), which aims to generate dense and uniform point clouds from the captured sparse input of 3D sensor such as LiDAR, is a practical yet challenging task. It has potential applications in many real-world scenarios, such as autonomous driving, robotics, AR/VR, etc. Deep neural network based methods achieve remarkable succes...
Preprint
Full-text available
Large amounts of incremental learning algorithms have been proposed to alleviate the catastrophic forgetting issue arises while dealing with sequential data on a time series. However, the adversarial robustness of incremental learners has not been widely verified, leaving potential security risks. Specifically, for poisoning-based backdoor attacks,...
Article
Full-text available
Recently, CNN-based methods for hyperspectral image super-resolution (HSISR) have achieved outstanding performance. Due to the multi-band property of hyperspectral images, 3D convolutions are natural candidates for extracting spatial–spectral correlations. However, pure 3D CNN models are rare to see, since they are generally considered to be too co...
Preprint
Face super-resolution is a technology that transforms a low-resolution face image into the corresponding high-resolution one. In this paper, we build a novel parsing map guided face super-resolution network which extracts the face prior (i.e., parsing map) directly from low-resolution face image for the following utilization. To exploit the extract...
Article
Guided filter is a fundamental tool in computer vision and computer graphics, which aims to transfer structure information from the guide image to the target image. Most existing methods construct filter kernels from the guidance itself without considering the mutual dependency between the guidance and the target. However, since there typically exi...
Preprint
Full-text available
Image deblurring continues to achieve impressive performance with the development of generative models. Nonetheless, there still remains a displeasing problem if one wants to improve perceptual quality and quantitative scores of recovered image at the same time. In this study, drawing inspiration from the research of transformer properties, we intr...
Preprint
Full-text available
In recent years, the use of large convolutional kernels has become popular in designing convolutional neural networks due to their ability to capture long-range dependencies and provide large receptive fields. However, the increase in kernel size also leads to a quadratic growth in the number of parameters, resulting in heavy computation and memory...
Preprint
Guided depth map super-resolution (GDSR), which aims to reconstruct a high-resolution (HR) depth map from a low-resolution (LR) observation with the help of a paired HR color image, is a longstanding and fundamental problem, it has attracted considerable attention from computer vision and image processing communities. A myriad of novel and effectiv...
Chapter
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to...
Article
Guided depth map super-resolution (GDSR), which aims to reconstruct a high-resolution (HR) depth map from a low-resolution (LR) observation with the help of a paired HR color image, is a longstanding and fundamental problem, it has attracted considerable attention from computer vision and image processing communities. A myriad of novel and effectiv...
Chapter
Monocular depth estimation is an essential task in the computer vision community. While tremendous successful methods have obtained excellent results, most of them are computationally expensive and not applicable for real-time on-device inference. In this paper, we aim to address more practical applications of monocular depth estimation, where the...
Article
Supervised deep learning has achieved tremendous success in many computer vision tasks, which however is prone to overfit noisy labels. To mitigate the undesirable influence of noisy labels, robust loss functions offer a feasible approach to achieve noise-tolerant learning. In this work, we systematically study the problem of noise-tolerant learnin...
Article
Data augmentation (DA) is a widely used technique for enhancing the training of deep neural networks. Recent DA techniques which achieve state-of-the-art performance always meet the need for diversity in augmented training samples. However, an augmentation strategy that has a high diversity usually introduces out-of-distribution (OOD) augmented sam...
Preprint
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to...
Chapter
Monocular 3D object detection (Mono3D) has achieved unprecedented success with the advent of deep learning techniques and emerging large-scale autonomous driving datasets. However, drastic performance degradation remains an unwell-studied challenge for practical cross-domain deployment as the lack of labels on the target domain. In this paper, we f...
Chapter
Image fusion is famous as an alternative solution to generate one high-quality image from multiple images in addition to image restoration from a single degraded image. The essence of image fusion is to integrate complementary information or best parts from source images. The current fusion methods usually need a large number of paired samples or s...
Article
Existing face hallucination methods always achieve improved performance through regularizing the model with facial prior. Most of them always estimate facial prior information first and then leverage it to help the prediction of the target high-resolution face image. However, the accuracy of prior estimation is difficult to guarantee, especially fo...
Article
Multi-focus image fusion (MFF) is an effective way to eliminate the out-of-focus blur generated in the imaging process. The difficulties in distinguishing different blur levels and the lack of real supervised data make multi-focus image fusion remain a challenging task after decades of research. According to deep image prior (DIP) (Ulyanov et al.,...
Preprint
Depth map estimation from images is an important task in robotic systems. Existing methods can be categorized into two groups including multi-view stereo and monocular depth estimation. The former requires cameras to have large overlapping areas and sufficient baseline between cameras, while the latter that processes each image independently can ha...
Preprint
Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published method offers both lossless and near-lossless modes....
Preprint
Full-text available
Monocular depth estimation is an essential task in the computer vision community. While tremendous successful methods have obtained excellent results, most of them are computationally expensive and not applicable for real-time on-device inference. In this paper, we aim to address more practical applications of monocular depth estimation, where the...
Article
Dear Editor, This letter is concerned with self-supervised monocular depth estimation. To estimate uncertainty simultaneously, we propose a simple yet effective strategy to learn the uncertainty for self-supervised monocular depth estimation with the discrete strategy that explicitly associates the prediction and the uncertainty to train the networ...
Article
We propose an end-to-end image compression and analysis model with Transformers, targeting to the cloud-based image classification application. Instead of placing an existing Transformer-based image classification model directly after an image codec, we aim to redesign the Vision Transformer (ViT) model to perform image classification from the comp...
Article
3D meshes are widely employed to represent geometry structure of 3D shapes. Due to limitation of scanning sensor precision and other issues, meshes are inevitably affected by noise, which hampers the subsequent applications. Convolultional neural networks (CNNs) achieve great success in image processing tasks, including 2D image denoising, and have...
Article
Pre-training has become a standard paradigm in many computer vision tasks. However, most of the methods are generally designed on the RGB image domain. Due to the discrepancy between the two-dimensional image plane and the three-dimensional space, such pre-trained models fail to perceive spatial information and serve as sub-optimal solutions for 3D...
Preprint
One of the main challenges for feature representation in deep learning-based classification is the design of appropriate loss functions that exhibit strong discriminative power. The classical softmax loss does not explicitly encourage discriminative learning of features. A popular direction of research is to incorporate margins in well-established...
Preprint
The success of deep neural networks greatly relies on the availability of large amounts of high-quality annotated data, which however are difficult or expensive to obtain. The resulting labels may be class imbalanced, noisy or human biased. It is challenging to learn unbiased classification models from imperfectly annotated datasets, on which we us...
Conference Paper
Full-text available
This paper presents results from the third Thermal Image Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop. The challenge uses the same thermal image dataset as the first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was kept asid...
Article
Person re-identification (ReID) aims at searching the same identity person among images captured by various cameras. Existing fully supervised person ReID methods usually suffer from poor generalization capability caused by domain gaps. Unsupervised person ReID has attracted a lot of attention recently, because it works without intensive manual ann...
Preprint
Data augmentation (DA) is a widely used technique for enhancing the training of deep neural networks. Recent DA techniques which achieve state-of-the-art performance always meet the need for diversity in augmented training samples. However, an augmentation strategy that has a high diversity usually introduces out-of-distribution (OOD) augmented sam...
Article
Reducing the defocus blur that arises from the finite aperture size and short exposure time is an essential problem in computational photography. It is very challenging because the blur kernel is spatially varying and difficult to estimate by traditional methods. Due to its great breakthrough in low-level tasks, convolutional neural networks (CNNs)...
Article
High spatial resolution and high spectral resolution images (HR-HSIs) are widely applied in geosciences, medical diagnosis, and beyond. However, how to get images with both high spatial resolution and high spectral resolution is still a problem to be solved. In this paper, we present a deep spatial-spectral feature interaction network (SSFIN) for r...
Preprint
Full-text available
Robustness of deep neural networks (DNNs) to malicious perturbations is a hot topic in trustworthy AI. Existing techniques obtain robust models given fixed datasets, either by modifying model structures, or by optimizing the process of inference or training. While significant improvements have been made, the possibility of constructing a high-quali...
Preprint
Full-text available
Estimating the risk level of adversarial examples is essential for safely deploying machine learning models in the real world. One popular approach for physical-world attacks is to adopt the "sticker-pasting" strategy, which however suffers from some limitations, including difficulties in access to the target or printing by valid colors. A new type...
Article
Plant diseases serve as one of main threats to food security and crop production. It is thus valuable to exploit recent advances of artificial intelligence to assist plant disease diagnosis. One popular approach is to transform this problem as a leaf image classification task, which can be then addressed by the powerful convolutional neural network...
Article
In this paper, we explore the spatiospectral image super-resolution (SSSR) task, i.e., joint spatial and spectral super-resolution, which aims to generate a high spatial resolution hyperspectral image (HR-HSI) from a low spatial resolution multispectral image (LR-MSI). To tackle such a severely ill-posed problem, one straightforward but inefficient...
Preprint
We propose an end-to-end image compression and analysis model with Transformers, targeting to the cloud-based image classification application. Instead of placing an existing Transformer-based image classification model directly after an image codec, we aim to redesign the Vision Transformer (ViT) model to perform image classification from the comp...
Preprint
Full-text available
Guided filter is a fundamental tool in computer vision and computer graphics which aims to transfer structure information from guidance image to target image. Most existing methods construct filter kernels from the guidance itself without considering the mutual dependency between the guidance and the target. However, since there typically exist sig...
Article
Depth map records distance between the viewpoint and objects in the scene, which plays a critical role in many real-world applications. However, depth map captured by consumer-grade RGB-D cameras suffers from low spatial resolution. Guided depth map super-resolution (DSR) is a popular approach to address this problem, which attempts to restore a hi...
Article
Face super-resolution (FSR), also known as face hallucination, which is aimed at enhancing the resolution of low-resolution (LR) face images to generate high-resolution face images, is a domain-specific image super-resolution problem. Recently, FSR has received considerable attention and witnessed dazzling advances with the development of deep lear...
Preprint
Full-text available
Face super-resolution (FSR), also known as face hallucination, which is aimed at enhancing the resolution of low-resolution (LR) face images to generate high-resolution (HR) face images, is a domain-specific image super-resolution problem. Recently, FSR has received considerable attention and witnessed dazzling advances with the development of deep...
Preprint
Full-text available
Learning with noisy labels is an important and challenging task for training accurate deep neural networks. Some commonly-used loss functions, such as Cross Entropy (CE), suffer from severe overfitting to noisy labels. Robust loss functions that satisfy the symmetric condition were tailored to remedy this problem, which however encounter the underf...
Article
Mesh denoising is a critical technology in geometry processing that aims to recover high-fidelity 3D mesh models of objects from noise-corrupted versions. In this work, we propose a learning-based mesh normal denoising scheme, called NormalNet , which employs deep networks to find the correlation between the volumetric representation and denoised...
Preprint
Full-text available
Robust loss functions are essential for training deep neural networks with better generalization power in the presence of noisy labels. Symmetric loss functions are confirmed to be robust to label noise. However, the symmetric condition is overly restrictive. In this work, we propose a new class of loss functions, namely \textit{asymmetric loss fun...
Preprint
The defocus deblurring raised from the finite aperture size and exposure time is an essential problem in the computational photography. It is very challenging because the blur kernel is spatially varying and difficult to estimate by traditional methods. Due to its great breakthrough in low-level tasks, convolutional neural networks (CNNs) have been...
Preprint
Full-text available
Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and thus are not applicable for on-device inference. To address this problem, we introduce the first Mobile AI challenge, where the target...
Preprint
Full-text available
Depth map records distance between the viewpoint and objects in the scene, which plays a critical role in many real-world applications. However, depth map captured by consumer-grade RGB-D cameras suffers from low spatial resolution. Guided depth map super-resolution (DSR) is a popular approach to address this problem, which attempts to restore a hi...
Preprint
We propose a novel joint lossy image and residual compression framework for learning $\ell_\infty$-constrained near-lossless image compression. Specifically, we obtain a lossy reconstruction of the raw image through lossy image compression and uniformly quantize the corresponding residual to satisfy a given tight $\ell_\infty$ error bound. Suppose...
Article
In hyperspectral image (HSI) analysis, label information is a scarce resource and it is unavoidably affected by human and nonhuman factors, resulting in a large amount of label noise. Although most of the recent supervised HSI classification methods have achieved good classification results, their performance drastically decreases when the training...
Preprint
Person re-identification (ReID) aims at searching the same identity person among images captured by various cameras. Unsupervised person ReID attracts a lot of attention recently, due to it works without intensive manual annotation and thus shows great potential of adapting to new conditions. Representation learning plays a critical role in unsuper...
Preprint
Image enhancement from degradation of rainy artifacts plays a critical role in outdoor visual computing systems. In this paper, we tackle the notion of scale that deals with visual changes in appearance of rain steaks with respect to the camera. Specifically, we revisit multi-scale representation by scale-space theory, and propose to represent the...
Article
Recently, single gray/RGB image super-resolution reconstruction task has been extensively studied and made significant progress by leveraging the advanced machine learning techniques based on deep convolutional neural networks (DCNNs). However, there has been limited technical development focusing on single hyperspectral image super-resolution due...
Preprint
Full-text available
Recently, single gray/RGB image super-resolution reconstruction task has been extensively studied and made significant progress by leveraging the advanced machine learning techniques based on deep convolutional neural networks (DCNNs). However, there has been limited technical development focusing on single hyperspectral image super-resolution due...

Network

Cited By