ArticlePDF Available

From Nano-dipole Photovoltaic Device to Dipole Field Semiconductor Device

Authors:

Abstract

It focuses on discussion of the developing history and current status of nano-dipole photovoltaic (PV) devices, as well as presenting non-classical behavior of this kind of device, which is the tunable open circuit voltage under external bias field. Nano-dipole PV device is also compared to ferroelectric photovoltaic device, piezo-phototronic device, light induced dipole field and so on. The concept of dipole-semiconductor device is proposed which intends to cover the junctional devices and non-junctional devices by a more generalized scope and to provide new thoughts to stimulate innovation in the photovoltaic field.
10
伏器体器件
向鑫
(中国科学院电工研究所 国科学院太能热利用及光系统重点实验北京 100190
要:,阐为,
开路电压可受外电控制而改变的现象,并将之与铁电光伏器件、压电光电子器件、含有光诱导偶极子场的有
光伏器件和量子点伏器件等进行比较,提出了偶极子场半导器件的概念。期望从更广义的范围盖结场型
件和非场型偶子器件,为促进光发电领更多的创提供路。
词:伏器件米偶极子太阳能池;电光伏电光电子学;极子半体器件
中图分类号:
O475
TM615 文献标识码:
A
文章编号:
2095-3631(2014)03-0010-06
From Nano-dipole Photovoltaic Device to Dipole Field Semiconductor Device
LIU Xiang-xin
(Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering,
Chinese Academy of Sciences, Beijing 100190, China)
Abstract: It focuses on discussion of the developing history and current status of nano-dipole photovoltaic(PV)devices, as well as
presenting non-classical behavior of this kind of device, which is the tunable open circuit voltage under external bias field. Nano-dipole PV
device is also compared to ferroelectric photovoltaic device, piezo-phototronic device, light induced dipole field and so on. The concept of
dipole-semiconductor device is proposed which intends to cover the junctional devices and non-junctional devices by a more generalized scope
and to provide new thoughts to stimulate innovation in the photovoltaic field.
Keywords: PV device; nanodipole solar cell; ferroelectric PV; piezo-phototronics; dipole field semiconductor device
收稿期:2014-04-20
者简介:刘向鑫( 1977-博士研究员主要研究方向为
太阳能光伏器件。
基金项目:目( 61274060;中院电
研究科研基目( Y110471CSB
HIGH POWER CONVERTER TECHNOLOGY
2014 年第 3
0引言
伏发电技术由于可以将能量来源巨大的太阳辐
射光能接转换清洁的受到了界各国的高
度重视目前降光伏发成本的路主是围绕着
何提PN光伏器的能量转换效率通过选
适合的工术路线收层半导体材、扩 产业
规模等降低生产成本,却少有对光伏效应
行审。本 文通过重点纳米偶极子光伏件,
与铁电光伏器件、压 电光电器件含有诱导偶极子
有机光伏器件点光伏器件等近年来类在
光伏研究中观察到的新现进行较和联,期 望开
拓人类对光伏效应原理认识跳出PN 器件模型
束缚过引入偶极子半导体器件的概念一步开
光伏领域创新范围。
1光生伏特效应
特效应简称光伏依赖两个基本
来实首先是光自由载流产生其次内建
子和穴分离成向方向
流动。实 光伏效应器件为光伏器件,
于光器件,同时
11
有较高要器件。伏器件不仅求具
良好的可吸收率), 求具足够
内建)。
子和空穴产生与分离常依靠光伏器件
料和来实如传光伏件中的吸收材料
P-N或肖)界 面附空间荷区内内建
。第 二代器件的工原理是基于
半导体技术利用将光载流分离输运
即使代聚中,
然是或缺[1]太阳能电
结场结器件不仅需显著不同的成产生
够强的电同时求它们之间良好的电接
器件的界控制提出的要制其性
能的因素。以 CdS/CdTe薄膜例示PN
光伏件的1为了避免述缺陷获得更
的能量转换效率、光伏技术的突破
场结光伏器件进行断地探索如对
比较敏化的研究[2]
2纳米偶极子光伏器件
2.1 提出
基于的目的,
2008Toledo大学的Victor
Karpov Diana Shvydka首先提出技术
究中被忽光伏器件内建产生机[3-5]
Victor 使CdTe
CIGS敏化咔唑
薄膜为光伏介质使CdS CdSe等纳米颗粒
效应极子末喷印刷的方
衬底制备具内建场产生机的器件。
CdS周知材料
锌矿晶这种构具非镜
对称2), 正负此天
偶极
P-N或肖结场器件不同这种器件由纳米
极子阵宏观极成的场提内建
3利用极子颗粒周光伏半导吸收
产生载流此最初命名纳米
极子阳能电池”Nano-dipole solar cell)。 4
CdS偶极子颗粒CdTe介质组极子光伏系的
这种中,极子用是载流
分离必参吸收和载流输运光伏
介质进行), 偶极子和光伏效应介质间不
良好的电接5假想CdS米偶极子
器件构示可以CdSCdTe电接
两种材料的界面不是光载流必须
降低控制要,维持结场器件
品质的前有望显著降低工成本。
Victor 过理论算指合理度的CdS纳米
~10%积浓可以产生匀且够强
3×104V/cm [3]与理P-N场类
可以够强内建场和为了避免
极子颗粒团保持器件的定性
CdS偶极子颗粒最
1传统 CdS/CdTe PN 结光伏件结示意图
Fig.1 Schematic diagram of traditional CdS/CdTe PV device
with PN junction
2CdS
Fig.2 CdS crystal
b压电效应示意图
3偶极子极产生的电场示意图
Fig.3 Schematic diagram of electric field by dipole polarization
4纳米偶子光伏体一维带图
Fig.4 One-dimensional band diagram of nano-dipole PV system
5CdS 米偶极子光器件结构示意图
Fig.5 Schematic diagram of CdS nano-dipole PV device
a纤锌矿CdS 体结构三维图
向鑫纳米极子伏器件到子半导体器件
2014 年第 3
12
尺寸10nmVictor 等人提出这种
原理的光伏器件理论提出
印刷尝试
2.2 实现
为了验这种新型光伏器件的可
2009
笔者Kristopher Wieland实的
术路线获得8.3% 转换效率[6-7]
Victor 印刷不同术路线
使CdSxTe1-x薄膜制备出结
与传CdS/CdTe 薄膜PN6),
的电[7]6CdS纳米偶
极子件的构示使用的Glass/TCO/
CdTe-CdS薄膜/后续退火再
可以使在特分离
7
[8]薄膜富硫CdS1-yTey
颗粒TCOCdSxTe1-x之间
自然沿表线方向内建
利用的CdTe-CdS CdTe薄膜光伏
研究7CdTe-CdS
显示400允许CdSxTe1-x
x<5%x>97.5%[8]环境中,
CdTe-CdS
自然分离富硫x>97.5%)的 锌矿wurtzite
富碲x<5%)的 锌矿zinc blend
这种技术路线与传CdTe薄膜光伏器件相似使
以直接产线术路线
连续以验概念的可
这种技术路线制备效率
到了8.3%效率6%路电Voc大于
0.6 V高; 使 艺过程制备CdTe
薄膜件( 玻璃/TCO/CdTe/ 路电
0.46 V路电0.6 VEDX测试表
CdSTe薄膜S原子比含2.2%
池性、一 影响显著
的是了电Voc器件内建品质
到了改善
2.3 验证现象
2013年,笔者科院电工究所薄膜
阳电续沿这种术路线不仅CdS 纳米偶极
率提高到了8.81%( =3 mm)[9-10]而且通过
手段到了可以米偶极子光伏器件机理
观和证据新现象
首先退火后CdSTe薄膜进行压
扫描,发 膜存畴壁
薄膜滞回线
现象8退火处CdSTe薄膜
CdTe薄膜振幅9退火处
CdSTe薄膜位置 C偶极AC
之间位差PhaseDC 转电V之间
[10] 其次通过XRD
SEM
EDS
STEM对比
观察到了薄膜退火后出现分离
实了富硫纤锌矿CdS0.956Te0.044颗粒富碲
锌矿CdS0.04Te0.96晶粒时存
而且STEM直接退火处CdSTe
薄膜观察到了均匀尺寸510nm
纳米颗粒研究论文将发)。
6第一批 CdS 纳米偶极子电器件的结构示意图
Fig.6 Structure of the first batch of CdS nano-dipole PV device
7CdTe-CdS 赝二元相位图
Fig.7 Pseudo binary phase diagram of CdTe-CdS aCdSTe 薄膜
2014 年第 3 技术
13
,发 这种器件有类滞回线
成电路电受直
10CdS纳米偶极子器件与传CdS/CdTe PN
光伏器件的路电Voc Eexternal之间
[11]ITO/CdS nanodipole-CdTe/ITO
对称结
的器件,Voc -150mV施加+7 ×
104V/cm -7×104V/cm 之间的直
,发 V oc可以大到-100mV-270 mV
FTO/CdS/CdTe/ PN 器件施加
的直10 mV这种象在
CdS-CdTe材料体系中是首次但证
通过温相分离CdS-CdTe薄膜
米偶极子颗粒以实而且这种纳米
极子到了关键贡献
可以,为 进一步提这种效率
无法P-N光伏器件中获得的工途径
基于类过察结[11-14]
材料CdS
CdSe
ZnO)的 纳米颗粒都具
偶极用于构建偶极子光伏器件。
3铁电光伏器件
纳米偶极子光伏器件和铁电光伏器件利用
材料光伏效应却有
2070SbSi0.35Br0.65 固溶[15]
BaTiO3[16]材料在照条出现
的光伏效应光电大于材料光学
V>>Eg由于材料膜内可以
其内内建这种材料的光伏效应并
于界面附不需器件中构建复杂层结
20 70 80 材料光伏效应
许多研究[17-21]始终无法获得
合理转换效率
21来,光伏用的
材料光伏效应成为研究热点。
Sn2P2S6 [22]
(Pb0.97La0.03)(Zr0.52Ti0.48)O3
[23-24]
BiFeO3
[25]成为研
究的重点对象材料高的
伏,材料的光吸收
载流输运性,以 的量子效
率极低( 10-4
[26]低于P-N光伏器件的( 10-1)。
主要是1料通吸收紫外波
的光线[27-28]于可和近红外吸收很弱
2)本 材料的电导率低,阻碍了光载流
子在中的漂移高电导率直接材料
部漏电,使维持够强的电[29]如何
保持材料同时获得合理
9域偶极AC 动信号相位差DC
偏转电压之关系
Fig.9 Relationship of DC bias voltage with phase difference
between localized dipole moment and AC drive signal
b)纯 CdTe 薄膜
8退火理后薄膜压电微镜幅图
Fig.8 Amplitude of annealed film with piezoresponse force
microscopy scanning
10 器件 Voc Eexternal 关系
Fig.10 Relationship between Voc and Eexternal of PV device
aCdS 纳米偶极子光伏器件
b)传统 CdS/CdTe PN 结光伏器件
向鑫纳米极子伏器件到子半导体器件
2014 年第 3
14
的可吸收率、光电成为获得光伏
器件研究的关键科学问题
4压电光电子器件
来,纤锌矿材料
研究包括ZnO
GaN
InN
CdS[30-35]材料由于有压导体
纳米和导线用于构建纳米发电[36-38]、压
场效应[39]、压 [40]、压 [41]
新型器件,成了电电。以 林教
领域进行大量研究,
许多的成这个领域利用产生
能来控制输运用于制备子机
件,子机系统纳米机人机
ZnO种常见II-VI ,是
要的光电器件半导体
CdS,是 相纤锌矿晶
ZnO用于光伏光电
器件[42-43]常见利用ZnO纳米线纳米
n型层pZnO获得), 依靠内
子场结场,以 压和
能。这种光电件基本上仍然是
偶极子场补充及器件
和机理的本
5其他光伏器件中的偶极子场
们同时现类偶极子场对有机太阳能电
[44-46]敏化太阳能电[47]贡献
CdS/ZnSe核壳敏化[39]照条
由于无法导出ZnSe空穴空穴
TiO2间形成光诱导偶极子这个偶极子场TiO2的能
高了100 meVVoc 高。有机阳能
中,过导入铁获得105 V/cm
内建并提Voc极子
出一材料高电获得
靠其它吸收介质光电转换获得
能。然,在有机太阳能电,目
仅使有机铁材料纳米极子目前
用了机材料
6广义的偶极子器件
纳米极子器件实-光伏介质
器件,不仅用了料极现象为电
路电同时也保持了光伏料对光的高
收率为电纳米偶极子伏器
和铁光伏器件的该承这两种
池都基于偶极子构建的,可以统
偶极子光伏器件呢?
统的结场型P-N结和伏器件的
是由类型半导材料在面附
成的荷构建成的,这种面附
荷区耗尽)实 种面分
极子11
a), 广义概念场型光伏器件
极子件。偶极子偶极
产生“面”偶极子扩偶极子矩阵
用了极子矩阵光伏应层两个
面形成的产生内建11
b))。 样看
纳米极子伏器件、铁 伏器件和结场型器件
以统在一极子件的论体
上这新现象新概念、新 器件和新原理的发
与应醒我极子在压电光电
器件敏化伏器件中PN补充
比结适合用于光伏
效应论体系。场型器件广义上也可以被看
偶极子器件,个更度来
偶极子场构建导体件,并对其运行现象机理
进行这种子场半导体器件将由观极
偶极子矩阵内建可能包括偶极子效应
偶极子场器件偶极子发光偶极
a 传统 PN 结器件 b纳米偶极子光伏器件
11 内建电场Ebuilt-in偶极矩(P示意图
Fig.11 Schematic diagram of inner-building cell
Ebuilt-in
and
dipole (P)
2014 年第 3 技术
15
子场逻辑器件偶极子场光电理论偶极
场概念不仅解释结场器件的工
为,解释其它偶极子场
半导体件可能出现非经为,如在 CdS
偶极子中发压在
现象9), 即输可受
这种子场半导体器件材料
的器件,可能延伸半导体基于偶极子场
半导体件的非经为,可能现出许多
用。
7结语
文概述分偶极子器件、铁 光伏
器件、压 电光电器件以及在有机太阳能电
敏化能电观察到的光诱导偶子场现象
极子半导体器件中不仅对结
补充可以为器件内建的主
这种极子为主偶极场半导体
器件广义包括结场结器件的模型同时
结场结其它偶极场半导体器件可能
出现非经为。件可能出现非经
为,可能刺激产生许多创新思路、创
新应用,要为子场半导体器件
起完理论模型
考文献:
[1] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells:
enhanced efficiencies via a network of internal donor-acceptor
heterojunctions[J]. Science-AAAS-Weekly Paper Edition, 1995,
270(5243)1789-1790.
[2] O
regan B, Grfitzeli M. A low-cost, high-efficiency solar cell
based on dye-sensitized[J]. Nature, 1991, 353737-740.
[3] Shvydka D, Karpov V G. Nanodipole photovoltaics[J]. Applied
Physics Letters, 2008, 92(5)053507.
[4] Shvydka D, Karpov V G. Principles of nano-dipole photovoltaics
[C]//Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd
IEEE
20081-4.
[5] Shvydka D, Karpov V G. Nanodipole photovoltaic devices,
methods of making and methods of use thereof PCT: WO
2009094366 A1 [P].2009-07-30.
[6] 刘向鑫.纳米偶极子能电制备:中国,
201110358135.1[P].2011.
[7] Jha R, Liu X, Wieland K, et al. Capacitance-Voltage Characterization
of Solar Cells With CdS in CdTe Matrix[C]//MRS Proceedings.
Cambridge University Press, 2010, 1260(1).
[8] McCandless B E, Hanket G M, Jensen D G, et al. Phase behavior
in the CdTeCdS pseudobinary system[J]. Journal of Vacuum
Science & Technology A: Vacuum, Surfaces, and Films, 2002,
20(4)1462-1467.
[9] Huang F, Liu X. A ferroelectric semiconductor-coupled solar
cell with tunable photovoltage[J]. Applied Physics Letters,
2013, 102(10): 103501.
[10]Huang F, Liu X, Wang W. A CdS nano-dipole solar cell [J/OL].
Progress in Photovoltaics: Research and Applications, 2014
[2013-11-25].http://onlinelibrary.wiley.com/doi/10.1002/pip.
2432/pdf.
[11]Schmidt M E, Blanton S A, Hines M A, et al. Polar CdSe
nanocrystals: Implications for electronic structure[J]. The
Journal of chemical physics, 1997, 106(12)5254-5259.
[12]Blanton S A, Leheny R L, Hines M A, et al. Dielectric dispersion
measurements of CdSe nanocrystal colloids: observation of a
permanent dipole moment[J]. Physical review letters, 1997,
79(5)865.
[13]Shim M, Guyot-Sionnest P. Permanent dipole moment and
charges in colloidal semiconductor quantum dots[J]. The Journal
of chemical physics, 1999, 111(15)6955-6964.
[14]Zhang X, Zhang Z, Glotzer S C. Simulation study of dipole-
induced self-assembly of nanocubes[J]. The Journal of Physical
Chemistry C, 2007, 111(11)4132-4137.
[15]Grekov A A, Malitskaya M A, Spitsyna V D, et al. Photoferroe
lectric effects in ferroelectric semiconductors of AV-type BVI
-type CVII-type with low-temperature phase changes[J]. Sov.
Phys. Crystallogr, 1970,15:423-429.
[16]Volk T R, Grekov A A, Kosonogov N A, et al. Influence of
illumination on the domain structure and Curie temperature of
BaTiO3[J]. Sov. Phys.-Solid State, 1973(14) 2740-2743.
[17]Stefanovich S Y, Malhasyan S S, Venevtsev Y N. Photovoltaic
properties and photoconductivity of A2B2O7 ferroelectrics[J].
Ferroelectrics, 1980, 29(1)59-62.
[18]Fridkin V M, Popov B N, Verkhovskaya K A. The photovoltaic
and photorefractive effects in KDP-type ferroelectrics[J].
Applied physics, 1978, 16(3)313-315.
[19]Fridkin V M, Popov B N. Anomalous photovoltaic effect in
ferroelectrics[J]. Soviet Physics Uspekhi, 1978, 21(12)981.
[20]Kraut W, von Baltz R. Anomalous bulk photovoltaic effect in
ferroelectrics: A quadratic response theory[J]. Physical Review B,
1979, 19(3)1548.
[21]Presting H, Von Baltz R. Bulk photovoltaic effect in a ferroelectric
crystal a model calculation[J]. Physica Status Solidi (b), 1982,
112(2)559-564.
[22]Cho Y W, Choi S K, Vysochanskii Y M. Photovoltaic effect of
Sn2P2S6 ferroelectric crystal and ceramics[J]. Journal of
Materials Research, 2001, 16(11)3317-3322.
[23]Qin M, Yao K, Liang Y C. Photovoltaic mechanisms in
ferroelectric thin films with the effects of the electrodes and
interfaces[J]. Applied Physics Letters, 2009, 95(2).
[24]Qin M, Yao K, Liang Y C. High efficient photovoltaics in
nanoscaled ferroelectric thin films[J]. Applied Physics Letters,
2008, 93(12).
[25]Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and
photovoltaic effect in BiFeO3[J]. Science, 2009, 324(5923)
63-66.
[26]Seidel J, Fu D, Yang S Y, et al. Efficient photovoltaic current
generation at ferroelectric domain walls[J]. Physical review
letters, 2011, 107(12)126805.
[27]Studenyak I P, Mitrovcij V V, Kovacs G S, et al. Temperature
variation of optical absorption edge in Sn2P2S6 and SnP2S6
crystals[J]. Ferroelectrics, 2001, 254(1)295-310.
(下转第48页)
向鑫纳米极子伏器件到子半导体器件
2014 年第 3
48 2014 年第 3大功率流技术
由图16~18 从电网输出器断
至电到额输出流的1% ,所
2s满足阳认
GTI500kW光伏逆变器上述仿真
通过金太阳认
5结论
文通过论推导得到精的无功频率
系式根据无功流—率的引入
馈频率扰动准确推导馈系数取值范围,保
证了岛检测有效并网时,该扰动对逆变
输出能质量影响可以忽略岛发生时,
无功流—频率反馈控制环节系统频率
频率的保护从而准确检测岛。
种基无功流—频率馈的岛检
方法通过仿真并从上验了其,而
通过太阳认其在工程
中的有效光伏逆器防孤检测
条件能一性通过该项认
方法是有效的、准确
考文献:
1王映斐.并网系统中孤岛检测法的
研究J
.电力系统保护控制,
2012
39(6) 147-154.
2杨秋霞赵清林.光伏网逆变器电流扰动检测
模及分析[J]. 电力系统动化
2012
36(4) 45-49.
3马静.谐波反馈的岛检测方法J
.
电力系统动化
2012
36(1) 47-50.
4曾议.网发电系统检测研究D
.长沙:湖南
2009.
5美玲.于正馈的研究D
.秦皇岛:
燕山
2007.
6Pigazo A
Liserre M
Mastromauro R A
et al.Wavelet-based
islanding detection in grid-connected PV systems[J]. IEEE
Transactions on Industrial Electronics
2009
56(11) 4445-
4453.
7杨滔王鹿军.无功流—频率反馈的岛检测方法
J
.电力系统动化
2012
36(14) 193-199.
8刘钢.无功流—频率无功扰动法
孤岛检测中的[J]. 电力系统保护控制,
2012
40
(17) 88-93.
18 500kW 功率点下,有功无功为零
Fig.18 Active power and reactive power without any deviation
when P=500kW
[28]Gu B, Wang Y, Wang J, et al. Femtosecond third-order optical
nonlinearity of BiFeO3[J]. Optics express, 2009, 17(13)
10970-10975.
[29]Huang H. Solar energy: Ferroelectric photovoltaics[J]. Nature
Photonics, 2010, 4(3)134-135.
[30]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting
oxides[J]. Science, 2001, 291(5510)1947-1949.
[31]Lu W, Lieber C M. Semiconductor nanowires[J]. Journal of
Physics D: Applied Physics, 2006, 39(21)R387.
[32]Wang Z L. Towards Self Powered Nanosystems: From Nanogenerators
to Nanopiezotronics[J]. Advanced Functional Materials, 2008,
18(22)3553-3567.
[33]Wang Z L. Nanopiezotronics[J]. Advanced Materials, 2007, 19
(6)889-892.
[34]Wang Z L. ZnO nanowire and nanobelt platform for nanotechn
ology[J]. Materials Science and Engineering: Reports, 2009, 64
(3)33-71.
[35]Wang Z L. Piezotronic and piezophototronic effects[J]. The Journal
of Physical Chemistry Letters, 2010, 1(9)1388-1393.
[36]Wang Z L, Song J. Piezoelectric nanogenerators based on zinc
oxide nanowire arrays[J]. Science, 2006, 312(5771)242-246.
[37]Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven
by ultrasonic waves[J]. Science, 2007, 316(5821): 102-105.
[38]Qin Y, Wang X, Wang Z L. Microfibrenanowire hybrid structure
for energy scavenging[J]. Nature, 2008, 451(7180)809-813.
[39]Wang X, Wang X, Zhou J, et al. Piezoelectric field effect
transistor and nanoforce sensor based on a single ZnO nanowire[J].
Nano letters, 2006, 6(12)2768-2772.
[40]He J H, Hsin C L, Liu J, et al. Piezoelectric gated diode of a single
ZnO nanowire[J]. Advanced Materials, 2007, 19(6)781-784.
[41]Lao C S, Kuang Q, Wang Z L, et al. Polymer functionalized
piezoelectric-FET as humidity/chemical nanosensors[J]. Applied
physics letters, 2007, 90(26)2107.
[42]Yan Zhang, Ya Yang, Zhong Lin Wang. Piezo-phototronics
effect on nano/microwire solar cells [J].Energy & Environmental
Science, 2012,5(5)68-50.
[43]Yan Zhang, Ying Liu, Zhong Lin Wang. Fundamental theory
of piezotronics[J]. Advanced Materials, 2011,23(27) 3004-
3013.
[44]Nalwa K S, Carr J A, Mahadevapuram R C, et al. Enhanced charge
separation in organic photovoltaic films doped with ferroelectric
dipoles[J]. Energy Environ. Sci., 2012(5) 7042-7049.
[45]Zi Li, Xu Zhang, Gang Lu. Dipole-Assisted Charge Separation in
OrganicInorganic Hybrid Photovoltaic Heterojunctions: Insight
from First-Principles Simulations[J]. J. Phys. Chem. C, 2012,
116 (18)9845-9851.
[46]Garbugli M, Porro M, Roiati V, et al. Light energy harvesting
with nano-dipoles[J]. Nanoscale, 2012, 4(5)1728-1733.
[47]Buhbut S, Itzhakov S, Hod I, et al. Photo-Induced Dipoles: A
New Method to Convert Photons into Photovoltage in Quantum
Dot Sensitized Solar Cells[J]. Nano Lett., 2013, 13(9)
4456-4461.
(上接第15页)
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
To confirm the feasibility of nanodipole photovoltaic devices, we designed a practicable method of phase segregation to extract CdS piezoelectric nanoparticles from CdSTe mixed film. The constituent components of such device are mixture of ferroelectric CdS nanodipoles and CdTe semiconductor absorber. We observed an analogous electric hysteresis of photovoltage in such devices. Piezoresponse grain boundaries are observed, which contribute significantly to the hysteresis behavior of photovoltage. Abnormal photovoltage polarity of CdS nanodipole devices is also observed. But such phenomena cannot be explained by classical junctional device theory. We believe these provide convincing evidence for the mechanism of nanodipoles.
Article
Full-text available
A key requirement for realizing efficient organic photovoltaic (OPV) cells is the dissociation of photogenerated electron-hole pairs (singlet-excitons) in the donor polymer, and charge-transfer-excitons at the donor–acceptor interface. However, in modern OPVs, these excitons are typically not sufficiently harnessed due to their high binding energy. Here, we show that doping the OPV active-layers with a ferroelectric polymer leads to localized enhancements of electric field, which in turn leads to more efficient dissociation of singlet-excitons and charge-transfer-excitons. Bulk-heterojunction OPVs based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester are fabricated. Upon incorporating a ferroelectric polymer as additive in the active-layer, power conversion efficiencies increase by nearly 50%, and internal quantum efficiencies approach 100% – indicating complete exciton dissociation at certain photon energies. Similar enhancements in bilayer-heterojunctions, and direct influence of ferroelectric poling on device behavior show that improved dissociation is due to ferroelectric dipoles rather than any morphological change. Enhanced singlet-exciton dissociation is also revealed by photoluminescence lifetime measurements, and predicted by simulations using a numerical device model.
Article
Full-text available
Ferroelectrics may have a bright future for solar-energy generation, following the report that the domain walls of such materials can be engineered to exhibit a photovoltaic effect with an impressively high voltage output.
Article
It has been observed that the external quantum efficiency (EQE) of a hybrid organic/inorganic (P3HT/ZnO) solar cell can be tripled by inserting a monolayer of fullerene (PCBA) at the donor (P3HT) and acceptor (ZnO) interface. First-principles simulations are performed to understand the origin of the increased EQE, offering a complementary perspective to the experiment. The interfacial atomic and electronic structure as well as energy alignment are examined for both the bare and PCBA-modified interface. The presence of PCBA induces an interfacial dipole and shifts up the lowest-unoccupied-molecular-orbital (LUMO) level of P3HT relative to the conduction band edge of ZnO. Interfacial electron dynamics including forward and backward charge transfer time scales are estimated. We find that the two interfaces have similar forward electron transfer rates but their transfer mechanisms differ. The PCBA-modified interface exhibits a weaker adiabatic but a stronger nonadiabatic charge transfer. In contrast, the charge recombination time scale of the modified interface is 20 times slower than that of the bare interface, thanks to reduced donor/acceptor wave function coupling as well as increased donor/acceptor energy offset. By slowing down the charge recombination, the PCBA-modified heterojunction offers the superior performance observed in the experiment.
Article
Owing to the polarization of ions in a crystal that has noncentral symmetry, a piezoelectric potential (piezopotential) is created in the material by applying a stress. The creation of piezopotential together with the presence of Schottky contacts are the fundamental physics responsible for a few important nanotechnologies. The nanogenerator is based on the piezopotential-driven transient flow of electrons in the external load. On the basis of nanomaterials in the wurtzite semiconductors, such as ZnO and GaN, electronics fabricated by using a piezopotential as a gate voltage are called piezotronics, with applications in strain/force/pressure-triggered/controlled electronic devices, sensors, and logic gates. The piezophototronic effect is a result of three-way coupling among piezoelectricity, photonic excitation, and semiconductor transport, which allows tuning and controlling of electro-optical processes by a strain-induced piezopotential.
Article
A high photovoltage is an essential ingredient for the construction of a high-efficiency quantum dot sensitized solar cell (QDSSC). In this paper we present a novel configuration of QDSSC which incorporates the photoinduced dipole (PID) phenomenon for improved open circuit voltage (Voc). This configuration, unlike previously studied ones with molecular dipoles, is based on a dipole moment which is created only under illumination and is a result of exciton dissociation. The generation of photodipoles was achieved by the creation of long-lived trapped holes inside a core of type-II ZnSe/CdS colloidal core/shell QDs, which are placed on top of the standard CdS QD sensitizer layer. Upon photoexcitation, the created photodipole negatively shifts the TiO2 energy bands, resulting in a photovoltage that is higher by ∼100 mV compared to the standard cell, without type-II QDs. The extra photovoltage gained diminishes the excessive overpotential losses caused by the energetic difference between the CdS sensitizer layer and the TiO2, without harming the charge injection processes. Moreover, we show that the extent of the additional photovoltage is controlled by the illumination intensity. This work provides new understanding regarding the operation mechanisms of photoelectrochemical cells, while presenting a new strategy for constructing a high-voltage QDSSCs. In addition, the PID effect has the potential to be implemented in other promising photovoltaic technologies.
Article
Wurtzite structures, such as ZnO, GaN, InN and CdS, are piezoelectric semiconductor materials. A piezopotential is formed in the crystal by the piezoelectric charges created by applying a stress. The inner-crystal piezopotential can effectively tune/control the carrier separations and transport processes at the vicinity of a p–n junction or metal–semiconductor contact, which is called the piezo-phototronic effect. The presence of piezoelectric charges at the interface/junction can significantly affect the performances of photovoltaic devices, especially flexible and printed organic/inorganic solar cells fabricated using piezoelectric semiconductor nano/microwires. In this paper, the current–voltage characteristics of a solar cell have been studied theoretically and experimentally in the presence of the piezoelectric effect. The analytical results are obtained for a ZnO piezoelectric p–n junction solar cell under simplified conditions, which provide a basic physical picture for understanding the mechanism of the piezoelectric solar cell. Furthermore, the maximum output of the solar cell has been calculated numerically. Finally, the experimental results of organic solar cells support our theoretical model. Using the piezoelectric effect created by external stress, our study not only provides the first basic theoretical understanding about the piezo-phototronic effect on the characteristics of a solar cell but also assists the design for higher performance solar cells.
Article
Polycrystalline thin films deposited by coevaporation of CdTe and CdS form metastable single-phase CdTe-CdS alloys. Subsequent heating in a kinetic-enhancing ambient segregates CdTe1-xSx and CdS1-yTey phases from the original alloy phase. The equilibrium miscibility gap between the resulting CdTe1-xSx and CdS1-yTey alloy phases is determined for CdTe1-xSx films with initial x approx 0.4 treated from 360 to 700 degC. At 625 degC, the equilibrium compositions correspond to published results for mixed crystals. Below 625 degC the miscibility gap widens asymmetrically due to different mixing free energies for S in CdTe and Te in CdS. The solubility thermodynamics are modeled with an excess mixing free energy to account for nonideal mixing behavior. copyright 2002 American Vacuum Society.
Article
By coating one side of the surface of a ZnO nanobelt (NB) with multilayer polymers using an electrostatic self-assembling process, a humidity/chemical nanosensor based on piezoelectric field effect transistor (PE-FET) is demonstrated. The working principle of the PE-FET relies on the self-contraction/expansion of the polymer, which builds up a strain in the piezoelectric NB and induces a potential drop across the NB that serves as the gate voltage for controlling the current flowing through the NB. The response of PE-FET to the phase transition of the coating polymer was also demonstrated. The device is a component for nanopiezotronics.
Article
Semiconducting zinc oxide nanowires (NWs) and nanobelts (NBs) are a unique group of quasi-one-dimensional nanomaterial. This review mainly focuses on the rational synthesis, structure analysis, novel properties and unique applications of zinc oxide NWs and NBs in nanotechnology. First, we will discuss rational design of synthetic strategies and the synthesis of NWs via vapor phase and chemical growth approaches. Secondly, the vapor–solid process for synthesis of oxide based nanostructures will be described in details. We will illustrate the polar surface dominated growth phenomena, such as the formation of nanosprings, nanorings and nanohelices of single-crystal zinc oxide. Third, we will describe the unique and novel electrical, optoelectronic, field emission, and mechanical properties of individual NWs and NBs. Finally, we will illustrate some novel devices and applications made using NWs as ultra-sensitive chemical and biological nanosensors, solar cell, light emitting diodes, nanogenerators, and nano-piezotronic devices. ZnO is ideal for nanogenerators for converting nano-scale mechanical energy into electricity owing to its coupled piezoelectric and semiconductive properties. The devices designed based on this coupled characteristic are the family of piezotronics, which is a new and unique group of electronic components that are controlled by external forces/pressure.