ArticlePDF Available

Methodology for Establishing Risk Criteria for Dams in Developing Countries, Case Study of China

Authors:
  • Liaocheng Univercity, Liaocheng, China

Abstract and Figures

Despite the rapid development of risk analysis, there is a relative absence of risk criteria for dams in developing countries recently, which restrained the practical application of the research results. This paper proposes guidelines for establishing risk criteria of dams in developing countries in considering the coordination of social, economic and engineering factors, then establishes a method of targeted analysis and demonstrates relevant parameters selected according to the ALARP principle and F-N curves, using China as an example. Different individual life risk criteria are established based on different safety levels for existing dams and newly built dams. Social life risk criteria and economic risk criteria are established on the basis of the different safety levels of all size reservoirs, the seriousness of the consequences of accidents, and the acceptability of social risks. The process of establishing risk criteria of dams and the analysis of the parameters demonstrated in this paper are meaningful to provide a reference and promote the required level of management for developing countries.
This content is subject to copyright. Terms and conditions apply.
Methodology for Establishing Risk Criteria for Dams
in Developing Countries, Case Study of China
Wei G e
1
&Zongkun Li
1
&Robert Y. Liang
2
&Wei Li
1
&
Yingchun Cai
1
Received: 2 October 2015 /Accepted: 23 May 2017 /
Published online: 21 June 2017
#Springer Science+Business Media Dordrecht 2017
Abstract Despite the rapid development of risk analysis, there is a relative absence of risk
criteria for dams in developing countries recently, which restrained the practical application of
the research results. This paper proposes guidelines for establishing risk criteria of dams in
developing countries in considering the coordination of social, economic and engineering
factors, then establishes a method of targeted analysis and demonstrates relevant parameters
selected according to the ALARP principle and F-N curves, using China as an example.
Different individual life risk criteria are established based on different safety levels for existing
dams and newly built dams. Social life risk criteria and economic risk criteria are established
on the basis of the different safety levels of all size reservoirs, the seriousness of the
consequences of accidents, and the acceptability of social risks. The process of establishing
risk criteria of dams and the analysis of the parameters demonstrated in this paper are
meaningful to provide a reference and promote the required level of management for devel-
oping countries.
Keywords Dams .Risk criteria .Developing countries .ALARP principle .F-Ncurves
1 Introduction
Risk assessment is primarily used for analyzing the probability of accidents under all kinds of
conditions, and the consequences of these potential accidents, such as loss of life and economic
Water Resour Manage (2017) 31:40634074
DOI 10.1007/s11269-017-1728-0
*Zongkun Li
lizongkun@zzu.edu.cn
Wei G e
gewei@zzu.edu.cn
1
School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, Peoples
Republic of China
2
Department of Civil Engineering, The University of Akron, Akron, OH 44325-3905, USA
loss, and negative impact on society and the environment. In addition to the risk criteria,
determining whether the public can accept or tolerate the risk is also part of the assessment. As
a result, a reasonable system for developing risk criteria is the key to obtaining an accurate and
reliable risk assessment. Researchers from developed countries (notably Canada, Australia and
the Netherlands) have carried out many investigations regarding the determination of risk
criteria (Lind 2002), and the management decision making based on the risk criteria (Alipour
2015; Goda and Hong 2006). Their research results have been widely used in numerous areas,
including dam management (Australian National Committee on Large Dams 2003;Canadian
Dam Association 2009; Bottelberghs 2000).
In recent decades, decision makers in many developing countries began to change their
outdated management concepts, which focused too much on the safety of the dams structure,
and began to apply what they learned from the developed countries. Some of researchers in
developing countries also carried out their own explorations of risk assessment, but they
mostly neglected the research on risk criteria and instead focused on analysis of the various
theories of risk assessment (Gu 2011; Toosi and Samani 2012; Huang et al. 2013; Chitsaz and
Banihabib 2015; Zhang et al. 2016). Moreover, in light of the different social, environmental
and political conditions between the developed and developing worlds, the direct adoption of
the developed countriesrisk criteria into the risk assessment for developing countries is not a
wise option. Therefore, in order to advance developing countriesdam management
concepts and accelerate the practical application of the research results, it is impera-
tive to conduct research on dam risk criteria that are suitable to the unique conditions
of the developing countries.
Many world renowned dams are currently being constructed or have already been built in
China. Due to the rapid growth of the industry of dam building, China still falls short in terms
of dam risk management when compared with developed countries. Consequently, Chinas
data will be used to establish dam risk criteria in this paper. Similar approach outlined in this
paper can be adopted by other developing countries.
2 Concepts and Definitions of Risk Criteria for Dams
2.1 ALARP Principle
The determination of risk criteria necessitates a careful calculation of a countrys political,
financial, cultural and public psychological factors, as different factors will be considered to be
more or less important in different countries, and consequently countries will adopt different
sets of risk criteria. The concept of ALARP (i.e., the risks should be Bas low as reasonably
practicable^), which grew out of the so-called safety case concept first developed formally in
the United Kingdom, is unique amongst the worlds legislations and has served its intended
purpose well (Kletz 2005; Marszal 2001; Health and Safety Executive 1992). In fact, the first
formal definition of ALARP was provided by the English courts in the 1949 Court of Appeal
case Edwards v. National Coal Board. The ALARP region partition method, which has been
the most widely applied in the field of dam risk assessment (Jones-Lee and Aven 2011;Ale
2005), is adopted here. The principle is demonstrated in Fig. 1.
The diagram above divides risk into three regions: the intolerable region, the ALARP
region (or tolerability region) and the acceptable region. If the risk is above the Btolerable risk
level^then the risk should be reduced or the activity giving rise to it should be discontinued,
4064 Ge W. et al.
regardless of the cost. The ALARP principle is relevant only if the risk concerned is between
the Btolerable risk level^and the Bacceptable risk level.^It refers to the willingness to live with
a risk to secure certain benefits, in the confidence that risk is being properly controlled. To
tolerate a risk means that we do not regard it as negligible or something that can be ignored,
but rather as something we need to keep under close watch and reduce it further if and when
we can. If the risk is below the Bacceptable risk level,^no action is needed.
It then becomes obvious that the values used for the Btolerable risk level^and the
Bacceptable risk level^are the key to risk assessment and management. Consequently, the
establishment of the values corresponding to these risk levels is the focus of this study.
2.2 Definitions and Determination of Risk Criteria
Dam risk mainly involves loss of life and economic losses from damage caused by a dam
failure, and these have adverse impacts on society and environment. During the early phases of
risk management in developing countries, in order to avoid over-complications, social and
environmental impacts (particularly those affecting the quality of life and natural scenery), can
be simplified into financial analysis from an economic perspective. Therefore, the overall risk
criteria for dams include both life risk criteria and economic risk criteria.
2.2.1 Life Risk Criteria
Two measures are incorporated into the life risk criteria: the individual life risk and the social
life risk.
The first measure is the individual life risk (IR), as used by the Dutch Ministry of Housing,
Spatial Planning and Environment (Jonkman et al. 2003). It is defined as the probability that an
average unprotected person, continuously present at a certain location, is killed due to an
accident resulting from a hazardous activity (Bottelberghs 2000;Laheijetal.2000).
IR ¼PfPd=fð1Þ
Where P
f
is the probability of failure and P
d/f
is the probability of dying of an individual in
the case of failure, assuming the continuous presence of an unprotected individual.
Individual life risk criteria vary by country. In the United Kingdom, the Health and Safety
Executive determines the respective individual tolerable risk criteria (Health and Safety
Executive 1992)forthepublic,IR =10
4
/a(where Ba^is year); for workers, IR =10
3
/a;
and IR =10
6
/ais where the risk becomes widely acceptable. In the Netherlands, the Technical
Fig. 1 Risk levels and ALARP
principle
Methodology for Establishing Risk Criteria for Dams 4065
Advisory Committee on Water Defenses sets the individual acceptable criteria at β=10
4
/a
(β= 0.01 ~ 10), based on feedback from the public opinion (Jones-Lee and Aven 2011). In
Australia, the Australian National Committee on Large Dams (ANCOLD) sets the individual
tolerable risk criterion for existing dams at 10
4
/aand the tolerable risk criterion for new dams
or expansion of existing dams at 10
5
/a, according to its domestic mortality rate (Australian
National Committee on Large Dams 2003).
The second measure is social life risk, which is defined by the relationship between the
numbers of specific groups who suffered fatality from accidents and their corresponding
probability. It is expressed in Eq. (2) (Jones-Lee and Aven 2011;Laheijetal.2000).
PfxðÞ¼PN>xðÞ¼
xfNxðÞdx ð2Þ
Where P
f
(x) is the probability of more than xfatalities per year and f
N
(x)istheprobability
density function of the number of fatalities per year.
In 1967, Farmer (1967) used probability theory to establish a curved graph representing the
limits of a variety of risks and accidents, a graph that was later referred to as the F-Ncurve.
Presently, F-Ncurve is widely applied in practice, and its limit lines are used for establishing
risk criteria caused by dam failure (Australian National Committee on Large Dams 2003;Gu
2011). The criteria can be described in the following general formula:
1FNxðÞ<C
xnð3Þ
Where F
N
(x) is the probability distribution function of the number of fatalities per year,
signifying the probability of less than xfatalities per year; nis the steepness of the limit line;
and Cis the constant that determines the position of the limit line.
The values of the coefficients for some international criteria and the F-Nlimit lines
(Bottelberghs 2000;Marszal2001;Laheijetal.2000) are shown in Fig. 2.
2.2.2 Economic Risk Criteria
Because economic risk is greatly influenced by local economic development, the
developed countries tend to allow individual business owners set their own criteria,
based on their own expertise and abilities to bear risk (Jonkman et al. 2003). ALARP
Fig. 2 Some international criteria
in F-Nformat
4066 Ge W. et al.
and F-Ncurves can also be used to establish economic risk criteria. ANCOLD
finalized the economic risk criteria based on risk assessments conducted for a massive
number of dams (Australian National Committee on Large Dams 2003), as shown in
Fig. 3.
3 The Guidelines for Establishing Risk Criteria
The determination of risk criteria is a delicate matter with far-reaching implications, as it not
only involves technical difficulties but also social aspects (Rogers 1998). Many developed
countries are relatively experienced in determining and applying the risk criteria, and the
factors considered in the process as well as their problem-solving approach may have a
particular significance or different implications for developing countries. Taking the many
complicated scenarios of developing countries into account, the following general guidelines
are proposed.
3.1 Social Perspective
Social and economic development within a country is the foundation of any risk management
decisions. The risk criteria for dams in developing countries should not be set too high; the
criteria should reflect the level of economic and social development, the policies regarding
various energy sources, the value of human life, as well as the degree of importance attached to
each of these aspects (Chen and Ren 2007).
Increased levels of education, awareness of environmental and development issues, and
greater political maturity on the part of society generally leads to a much keener interest in
establishing effective practices and policies for industrial risk management (Melchers 2001;
Zhang and Tan 2014). The purpose of risk management is to reduce the risk to an acceptable
level as perceived by the general public. Consequently, willingness of the public to accept risks
is a key factor in establishing risk criteria.
Fig. 3 Economic risk criteria used
in Australia
Methodology for Establishing Risk Criteria for Dams 4067
3.2 Technical Perspective
In general, the safety of dams in developing countries is not guaranteed to the extent it is in
developed countries, and the funding for the management for dams is relatively lacking. One
important aspect of ALARP is its reasonability, which means that the risk criteria must
conform to actual safety conditions of the existing dams. Failing that, the risk criteria would
be considered as unreasonable and unrealistic.
Change in management policy is a slow and gradual process. In the early stages of risk
management for dams, decisions based on risk analysis can be considered as supplementary to
current safety standards. Should the established risk criteria and the safety standards of existing
dams fail to match, then it is very unlikely that the established risk criteria will be recognized
officially. This type of situation would definitely not contribute to the risk criteria being
accepted and applied in risk management.
4 Establishing Risk Criteria for China
4.1 Life Risk Criteria
4.1.1 Individual Life Risk Criteria
One of the tasks of a society is to protect individual members and groups from natural and
man-made hazards, to an extent acceptable to its population and government agencies. In the
past, the extent of the protection was mostly decided after the occurrence of the hazard had
shown the consequences of accidents in manufacturing and other areas (Vrijling et al. 1998).
Nevertheless, the potential damage caused by nuclear power plant failures, accidents in the
manufacturing of hazardous products, and dam failures share certain traits in common. As a
result, the risk criteria already established for the accidents for the industry mentioned above
can serve as a reference in determining the individual life risk criteria for dams.
A total of 1,403,964 casualties resulted from accidents from 2000 to 2012 in China, and the
annual average mortality rate is expressed as 0.82 × 10
4
/a.
In 2014, the Chinese government published BIndividual and Social Acceptable Risk
Criteria for Production and Storage Device with Dangerous Chemicals (Beta)^(State
Administration of Work Safety of China 2014), in which individual acceptable risk criteria
are set as shown in Table 1.
According to the individual life risk criteria established by ANCOLD, the tolerable risk
criterion has increased by one order of magnitude more than the acceptable risk criterion.
Considering the Chinese publics views in regard to the accident mortality rate, as well as the
difference in safety levels between newly built dams and existing dams, the individual life risk
criteria for dams in China can be determined. The recommended values are shown in Table 2.
Tab le 1 Individual acceptable risk criteria for production and storage of devices with dangerous chemicals in
China
Risk criteria Low population density region High population density region
Newly built devices 1 × 10
5
/a3×10
6
/a
Devices in service 3 × 10
5
/a1×10
5
/a
4068 Ge W. et al.
4.1.2 Social Life Risk Criteria
Relative to individual life risk, the quantification of social risk is much more ambiguous, as the
process involves a hypothetical approach, and any estimates are based on guesswork. Due to
the fact that serious accidents occur so infrequently, it is generally very difficult to prove the
hypotheses or estimates statistically. Consequently, some variables for different scenarios must
be analyzed before deciding on the final value in the F-Ncurves.
4.1.3 The Value of C
Cis a constant that determines the position of the limit lines. The expected value of the number
of fatalities is much smaller than its standard deviation, which in general is true for accidents
with low probabilities and high consequences (Henselwood and Phillips 2009). The factor C
can now be written as a function of the national infrastructure level (N
A
), the risk aversion
factor (k), and the policy factor (β), as shown in Eq. (4) (Vrijling et al. 1995).
C¼β100
kffiffiffiffiffiffi
NA
p

2
ð4Þ
Considering the management level, safety conditions and financial investment of
Chinese dams, the tolerable risk criterion is suggested as N
A
= 1000,k=3,and
β= 0.1, resulting in C=10
2
.
Other industries have also given their input regarding the value of C, and these values were
determined using the existing standards in their industries. The F-Ncurves presented in the
Chinese BIndividual and Social Acceptable Risk Criteria for Production and Storage Device
with Dangerous Chemicals (Beta)^dictate that the tolerable risk criterion for dangerous
chemical enterprises on land should be C=10
3
. Most of the accidents involving dangerous
chemicals are results from human error; on the other hand, uncontrollable natural factors
during dam construction and functioning are major parts of the uncertainties for accidents in
dams. This suggests that a higher value, 10
2
, should be used for Cfor dams.
Accordingly, the recommended tolerable risk criterion should be C=10
2
; and the
acceptable risk criterion can be one order of magnitude lower, which stands at C=10
3
.
4.1.4 The Value of n
In risk assessment, nrepresents the preference of the degree of risk. A criterion with a
steepness of n= 1 is referred to as Brisk neutral.^If the steepness is n= 2, the criterion is
referred to as Brisk averse.^It means when the loss resulting from many small accidents
becomes equal to the loss of one large accident, the center of attention tends to be focused on
the large accident (Vrijling and Van Gelder 1997).
Tab le 2 Individual life risk criteria for dams in China (recommended values)
Risk criteria Tolerable criterion Acceptable criterion
Newly built dams 1 × 10
4
/a 1 × 10
5
/a
Existing dams 3 × 10
4
/a 3 × 10
5
/a
Methodology for Establishing Risk Criteria for Dams 4069
China has categorized its dams into five classes based on their reservoir capacity R (in m
3
):
Large (I) Type (R1 billion), Large (II) Type (1 billion>R100 million), Medium Type (100
million>R10 million), Small (I) Type (10 million>R1 million), and Small (II) Type (1
million>R0.1 million). Generally, the consequences of dam breaks of large and medium-
sized dams are much more serious than those of the small-sized dams, in terms of the number
of fatalities and the degree of economic loss. Thus, under similar circumstances, dam breaks in
large and medium-sized dams receive relatively more attention. China is currently in the
process of reinforcing its existing dams. In light of budget limits for dam management and
maintenance, large and medium-sized dams generally receive more funding than small-sized
ones, despite the fact that the probability of failure for large and medium-sized dams is lower
than that for small-sized dams. Based on the above consideration, for large and medium-sized
dams, n=2;forsmall-sizeddams,n=1.
4.1.5 The Extreme Lines
Most countries have extreme lines integrated into the F-Ncurves for their risk criteria. In some
countries, such as Australia, the extreme lines indicate that if the probability of an accident is
lower than a certain value, then no consequences need to be considered and all potential risks
in this scenario are acceptable. In other places, such as Hong Kong, if the extreme lines
indicate that the loss from an accident is higher than a certain value, then it does not need to
consider the probability of an accident, as any risk is considered to be intolerable. The safety of
dams and their management level, as well as the social and economic development level in
developing countries, may be quite behind those for developed countries, which makes setting
accident loss using extreme lines unviable. So that developing countries should consider using
accident probability extremes lines in their risk criteria.
From 1982 to 2000, the average dam break rate in China was 2.54 × 10
4
,in
which the rate for large and medium-sized dams is 0.88 × 10
4
and the rate for small-
sized dams is 2.62 × 10
4
. As recommended by ANCOLD, 10% and 1% of the
annual dam break rate can be taken as the extreme lines of the tolerable risk level and
acceptable risk level, respectively. Thus, for large and medium-sized dams, the
extreme lines of the tolerable and acceptable risk probability should be 0.88 × 10
5
and 0.88 × 10
6
, respectively; for small-sized dams, they should be 2.62 × 10
5
and
2.62 × 10
6
, respectively.
Some existing reliability standards in China specify the degree of safety for dams. For dams
of different sizes, a reliability index value of βis established to ensure that the main hydraulic
structures under maximum design load after a long period of time would without sudden or
difficult-to-repair damages occurring: Large (I) Type is 4.2, large (II) and Medium Type is 3.7,
and Small Type is 3.2. The aforementioned reliability index values can become the foundation
upon which the risk criteria are established (Aven 2009;Lietal.2015). According to the
reliability theory, assuming the function of reliability theory is a random variable of normal
distribution, thenP
f
=1Φ(β). The current Chinese reliability standards are somewhat con-
gruent to the dam safety conditions, which is why 10% and 1% of the function of P
f
can be
taken as the extreme lines of tolerable and acceptable risk level, respectively. Since the
consequences for failure of both large-sized dams and medium-sized dams are extremely
serious, in order to avoid overcomplicating the risk criteria, medium-sized dams can poten-
tially have the same criteria as large-sized dams. Thus, for both large and medium-sized dams,
the extreme lines of tolerable and acceptable risk level should be 1.34 × 10
6
and 1.34 × 10
7
,
4070 Ge W. et al.
respectively; and the extreme lines of tolerable and acceptable risk level for small-sized dams
are 7 × 10
5
and7×10
6
, respectively.
In order to satisfy the extreme lines determined by both the safety conditions of
dams and reliability standards simultaneously, their respective smaller values must be
chosen as the risk criteria. Then for large and medium-sized dams, the extreme lines
of tolerable and acceptable risk level should be 1.34 × 10
6
and1.34×10
7
,
respectively, as shown in Fig. 4.
For small-sized dams, the extreme lines of tolerable and acceptable risk level should be
2.62 × 10
5
and 2.62 × 10
6
, respectively, as shown in Fig. 5.
4.2 Economic Risk Criteria
In comparison to life risk, economic risk is much harder to determine accurately because
of the indirect and implicit economic loss involved. The indirect economic loss can be
expressed by multiplying the direct economic loss by a coefficient, and many different
proportional coefficients have been proposed. American safety expert H. W. Heinrich
(Heinrich et al. 1980) believes that the ratio between direct and indirect economic loss
should be 1:4. This ratio differs from the ratio used in the American annual accident
report, which stands at 1:1. Chinese experts believe the ratio to be 1:7. However, such a
coefficient is strongly influenced by the accident type and the nature of the industry.
Thus, it is very challenge to determine such a coefficient.
Understandably, assessing the value of a human life in financial terms is often
considered to be heartless, as every life is considered to be priceless, and putting an
economic value on human life can lead to strong criticism and opposition. However,
the value of a human life can be reasonably used as a statistical term to enable the
numerical relation of life loss and economic loss to be established for determining the
economic risk criteria.
The Chinese government, based on the economic data collected in prior accidents, believes
that each individual death caused by an accident is roughly equivalent to 3.3 million to 5
million Yuan of direct economic loss. Thus, a ratio of 1 person to 4 million Yuan is
recommended for the determination of economic risk criteria for dams in China, as shown
in Figs. 6and 7.
Fig. 4 Social life risk criterion for
large and medium-sized dams in
China (re commended value)
Methodology for Establishing Risk Criteria for Dams 4071
5 Discussion and Conclusions
In risk management methods employed by many developed countries, the comprehensive
consideration of the relationship between the project and people, as well as the project and
society, is much more reasonable and scientifically sound than the methods employed by some
developing countries, which tend to focus on the project safety alone. A reasonable system of
risk criteria is the foundation and key to the risk assessment and risk management of dams.
Some developed countries such as Canada and Australia have long since applied risk
management to dam management and have formulated the corresponding risk criteria.
Developing countries have a late start in this area, and they also lack research results
coordinating with their domestic conditions as well. The experience of risk management in
developed countries will have a significant influence on building a system of risk criteria and
management in developing countries. It is critical for developing countries to apply these
criteria and practices, so that the system will conform to their economic and social develop-
ment as well as to the current conditions of their dams.
This paper presents guidelines and a suggested methodology for establishing a process for
determining risk criteria for dams in developing countries. In China, for example, a method of
Fig. 5 Social life risk criterion for
small-sized dams in China (rec-
ommended value)
Fig. 6 Economic risk criterion for
large and medium-sized dams in
China (re commended value)
4072 Ge W. et al.
targeted analysis and demonstrates relevant parameters selected is established according to the
ALARP principle and F-Ncurves. The methodology, which is compatible with current safety
standards in China, considers the current status of dam safety and other industry risk criteria, as
well as economic and social growth, along with consideration of the degree to which the
Chinese public will accept these risks. The aforementioned process of establishing risk criteria
and the analysis of the parameters can provide a reference for other developing countries.
The determination of dam risk criteria is still in its infancy in developing countries,
especially since these criteria have not yet been used in any application. Further verification
to the risk criteria established in this research is still needed. However, it is important to define
risk criteria to aid in determining risks to existing and newly built dams.
Acknowledgements The support of the National Natural Science Foundation of China (Grant No. 51379192,
51679222) is gratefully acknowledged.
Compliance with Ethical Standards
Conflict of Interest The authors declare that they have no conflict of interest.
References
Ale BJ (2005) Tolerable or acceptable: a comparison of risk regulation in the United Kingdom and in the
Netherlands. Risk Anal 25(2):231241
Alipour MH (2015) Risk-informed decision making framework for operating a multi-purpose hydropower
reservoir during flooding and high inflow events, case study: Cheakamus River system. Water Resour
Manag 29(3):801815
Australian National Committee on Large Dams (2003) Guidelines on risk assessment. Available at http://www.
ancold.org.au/
Aven T (2009) Safety is the antonym of risk for some perspectives of risk. Saf Sci 47(7):925930
Bottelberghs PH (2000) Risk analysis and safety policy developments in the Netherlands. J Hazard Mater 71(1):
5984
Canadian Dam Association (2009) Dam safety guidelines. Available at http://www.aucklandcity.govt.
nz/council/documents/technicalpublications/
Fig. 7 Economic risk criterion for
small-sized dams in China (rec-
ommended value)
Methodology for Establishing Risk Criteria for Dams 4073
Chen ZT, Ren QW (2007) Research on standard of acceptable risk for high arch dam in developing countries.
Key Eng Mater 348:601604
Chitsaz N, Banihabib ME (2015) Comparison of different multi criteria decision-making models in prioritizing
flood management alternatives. Water Resour Manag 29(8):25032525
Farmer FR (1967) Siting criteriaa new approach. Proceedings of the IAEA symposium on nuclear siting.
International Atomic Energy Agency, pp 303329
Goda K, Hong HP (2006) Optimal seismic design considering risk attitude, societal tolerable risk level, and life
quality criterion. J Struct Eng 132(12):20272035
Gu SP (2011) F-N curved surface method for establishing the integrated risk criteria of dam failure. Sci China
Technol Sci 54(3):597602
Health and Safety Executive (1992) The tolerability of risk from nuclear power stations. Available at http://www.
hse.gov.uk/
Heinrich HW, Petersen D, Roos N (1980) Industrial accident prevention. McGraw-Hill, New York
Henselwood F, Phillips KG (2009) The development of risk criteria for high severity low frequency events.
Process Saf Prog 28(1):1114
Huang L, Ban J, Sun K, Han Y, Yuan Z, Bi J (2013) The influence of public perception on risk acceptance of the
chemical industry and the assistance for risk communication. Saf Sci 51:232240
Jones-Lee M, Aven T (2011) ALARPwhat does it really mean? Reliab Eng Syst Saf 96(8):877882
Jonkman SN, Van Gelder P, Vrijling JK (2003) An overview of quantitative risk measures for loss of life and
economic damage. J Hazard Mater 99(1):130
Kletz TA (2005) Looking beyond ALARP: overcoming its limitations. Process Saf Environ 83(2):8184
Laheij GMH, Post JG, Ale BJM (2000) Standard methods for land-use planning to determine the effects on
societal risk. J Hazard Mater 71(1):269282
Li SY, Zhou XB, Wang YJ, Zhou JP, Du XH, Chen ZY (2015) Study of risk acceptance criteria for dams. Sci
China Technol Sci 58(7):12631271
Lind N (2002) Social and economic criteria of acceptable risk. Reliab Eng Syst Saf 78(1):2125
Marszal EM (2001) Tolerable risk guidelines. ISA Trans 40(4):391399
Melchers RE (2001) On the ALARP approach to risk management. Reliab Eng Syst Saf 71(2):201208
Rogers GO (1998) Siting potentially hazardous facilities: what factors impact perceived and acceptable risk?
Landsc Urban Plan 39(4):265281
State Administration of Work Safety of China (2014) Individual and social acceptable risk criteria for production
and storage device with dangerous chemicals (beta). Available at http://www.chinasafety.gov.cn/
Toosi SLR, Samani JMV (2012) Evaluating water transfer projects using analytic network process (ANP). Water
Resour Manag 26(7):19992014
Vrijling JK, Van Gelder P (1997) Societal risk and the concept of risk aversion. Advances in Safety and
Reliability 1:4552
Vrijling JK, Van Hengel W, Houben RJ (1995) A framework for risk evaluation. J Hazard Mater 43(3):245261
Vrijling JK, Van Hengel W, Houben RJ (1998) Acceptable risk as a basis for design. Reliab Eng Syst Saf 59(1):
141150
Zhang SR, Tan YS (2014) Risk assessment of earth dam overtopping and its application research. Nat Hazards
74(2):717736
Zhang M, Yang F, Sun K, Wu JX, Fan ZW, Wang YY (2016) Application of minimum reward risk model in
reservoir generation scheduling. Water Resour Manag 30(4):13451355
4074 Ge W. et al.
... If these cracks are not detected and repaired in time, they could lead to severe consequences [2,3]. First, cracks in the supply canal lead to significant water seepage and loss during transportation [4]. Over time, as water erosion within the canal progresses, these cracks may expand, potentially triggering major safety incidents and affecting normal operations. ...
... ms), the microcontroller's power consumption (18.9 mW), and the clock frequency (64 MHz), the energy required for a single inference of the proposed model is calculated to be 5610.18 µJ, as shown in Equation (4). This value represents the total energy required by the MCU to complete one inference cycle, demonstrating its energy efficiency at handling the inference task. ...
Article
Full-text available
The South-to-North Water Diversion Project in China is an extensive inter-basin water transfer project, for which ensuring the safe operation and maintenance of infrastructure poses a fundamental challenge. In this context, structural health monitoring is crucial for the safe and efficient operation of hydraulic infrastructure. Currently, most health monitoring systems for hydraulic infrastructure rely on commercial software or algorithms that only run on desktop computers. This study developed for the first time a lightweight convolutional neural network (CNN) model specifically for early detection of structural damage in water supply canals and deployed it as a tiny machine learning (TinyML) application on a low-power microcontroller unit (MCU). The model uses damage images of the supply canals that we collected as input and the damage types as output. With data augmentation techniques to enhance the training dataset, the deployed model is only 7.57 KB in size and demonstrates an accuracy of 94.17 ± 1.67% and a precision of 94.47 ± 1.46%, outperforming other commonly used CNN models in terms of performance and energy efficiency. Moreover, each inference consumes only 5610.18 μJ of energy, allowing a standard 225 mAh button cell to run continuously for nearly 11 years and perform approximately 4,945,055 inferences. This research not only confirms the feasibility of deploying real-time supply canal surface condition monitoring on low-power, resource-constrained devices but also provides practical technical solutions for improving infrastructure security.
... Baybutt [13] analyzed the application principles of ALARP in process safety, describing the consideration of risk estimation uncertainty and the use of prevention principles in the context of ALARP. Ge et al. [14] presented guidelines for the development of risk criteria for dams in developing countries, using China as an example, and proposed a targeted analytical method for selecting relevant parameters based on the ALARP principle and F-N curves showing the relationship between cumulative frequency and the number of potential fatalities. The ALARP principle reflects the risk aversion of decision-makers, that is, decision-makers have different attitudes towards risk control as the size of the risk varies. ...
... Sci. 2024,14, 5387 ...
Article
Full-text available
Formal safety assessment (FSA) is regarded as an effective approach to support decision-making in shipbuilding to balance safety, technology, and cost. However, the selection of risk control options (RCOs) in the FSA process still needs to be studied before the FSA becomes a generic approach. This study proposed a multi-attribute-based assessing model to support the decision-making process regarding RCOs. The attributes of RCOs were divided into the performance and cost-effectiveness attribute sets. Moreover, a dynamic selection procedure of attributes was designed based on the ‘as low as reasonable and practicable’ (ALARP) principle. The application of the dynamic multi-attribute model can make it possible to rank RCOs by considering the changes in the decision-makers’ risk aversion to risk levels. In this model, a comprehensive weighting method based on game theory was used to balance the subjective and objective weights of the attributes. An improved grey rational analysis (GRA) was used to perform the multi-attribute assessment of RCOs. Therefore, this dynamic multi-attribute model is combined with the ALARP principle and evaluated using GRA. Finally, a case regarding crude tankers was studied using the proposed model to verify the feasibility and reliability of the dynamic multi-attribute model.
... Owing to substantial differences in politics, economics, culture, and other aspects among different countries (Li et al., 2018;Ge et al., 2020b), foreign risk standards cannot be directly applied to China (Ge et al., 2017;Ge et al., 2020c). Based on relevant domestic and foreign achievements and China's national conditions, the following principles were used to construct risk standards for dams: ...
... Assuming that the reliability function is a random variable following a normal distribution (Wilde and Johansson, 2013;Li S. et al., 2015;Ge et al., 2017). The current reliability standards in China are relatively consistent with the dam safety situation, so 10% of P f can also be used as the tolerable risk extreme line and 1% as the acceptable risk extreme line. ...
Article
Full-text available
Dam failure risk standards are the foundation of risk decision-making for dam managers. However, as an important component of dam failure risk standards, there are currently no unified environmental risk standards. Drawing on research ideas of ecological economics on ecosystem service values and equivalent factor methods, this study quantified environmental values and effectively connected environmental standards with existing standards using the ALARP principle and the F-N curve. Considering the differences in environmental and economic conditions in different regions, a risk preference matrix was constructed to determine the risk preference of each region and formulate the dam failure environmental risk standards for China. This study presents a preliminary exploration of the formulation of dam failure environmental risk standards, providing new methods and ideas for subsequent research.
... Amidst the escalating impact of global climate change, rapid economic and social development, and accelerated urbanization processes (Mukherjee et al. 2018), dam-break flood disaster systems exhibit characteristics such as high dimensionality, complexity, non-linearity, and uncertainty. In addition, geographic, remote sensing, and statistical data express that the disaster-causing, disasterconceiving, and disaster-bearing factors themselves have multiplicity, complexity, and uncertainty (Fluixá-Sanmartín et al. 2020;Ge et al. 2017). This leads to the assessment of dam-break consequence, which is quite complicated. ...
Article
Full-text available
A comprehensive assessment of the consequences of dam-break is a critical strategic necessity for guaranteeing socio-economic development and lives for individuals. The consequences of dam-break are affected comprehensively by a multitude of uncertainties, resulting in multi-source and inconsistent relationships between indicators. It is extremely tough to integrate information from different sources adequately under multiple uncertainties, which often limit the assessment reliability. In this work, a comprehensive uncertainty evaluation methodology for the consequences of dam-break was developed through multi-source information fusion. Firstly, cloud model was employed to deal with randomness and fuzziness in the quantification of the grading of indicators and constructed the basic probability assignment function of the evidence corresponding to each data source. Then, in order to address the issue that conflicting evidence cannot be effectively fused utilizing traditional evidence theory. The basic probability assignment function was fused by the improved evidence theory. Furthermore, due to the differences in the importance of each data source in the assessment process. The corresponding weights were determined employing trapezoidal fuzzy analytic hierarchy process and entropy weight method. Finally, the effectiveness of the method was verified by taking five reservoirs in the Haihe River Basin. It shows that multiple uncertainties from different sources of information are combined and handled and the severity grades of consequences of dam-break can be quantitatively analyzed with our assessment method. Meanwhile, multi-source information with conflicts and uncertainties can be approached to produce more reliable risk assessment results in the situation of highly conflicting evidence.
... However, in the unfortunate event of their failure, dams pose a potentially severe risk to the safety of the population, infrastructures, economic activities, as well as historical and environmental assets located downstream (Saxena and Sharma 2004). Indeed, the resulting dam-break flooding may involve vast areas, potentially leading to direct and indirect catastrophic consequences, including loss of life (Lumbroso et al. 2011;Ge et al. 2017), as well as substantial economic and societal impacts (Ge et al. 2020). Despite the established, widespread recognition of the importance of dam safety in preventing or, at least, reducing risks associated with dam-related hazards (Rodrigues et al. 2002), many dam failures have occurred worldwide (Zhang et al. 2016;Aureli et al. 2021), some with calamitous consequences, including significant loss of life (Costa 1985;Chanson 2004;Lumbroso et al. 2011;Zhang et al. 2016). ...
Article
Full-text available
Assessment of flood damage caused by dam failures is typically performed deterministically on the basis of a single preselected scenario, neglecting uncertainties in dam-break parameters, exposure information, and vulnerability model. This paper proposes a probabilistic flood damage model for the estimation of life loss due to dam-break flooding with the aim of overcoming this limitation and performing a more comprehensive and informative evaluation of flood risk. The significant novelty lies in the fact that the model combines uncertainties associated with all three components of risk: hazard, exposure, and vulnerability. Uncertainty in flood hazard is introduced by considering a set of dam-break scenarios, each characterized by different breach widths and reservoir levels. Each scenario is linked to a probability, which is assumed conditional on the dam-break event. Uncertainty in exposure is accounted for using dasymetric maps of the population at risk for two socio-economic states (representing business and non-business hours of a typical week), along with associated likelihood. Vulnerability to flooding is described through a well-established empirical hazard-loss function relating the fatality rate of the population at risk to the flood hazard, the flood severity understanding, and the warning time; a confidence band provides quantitative information about the associated uncertainty. The probabilistic damage model was applied to the case study of the hypothetical collapse of Mignano concrete gravity dam (northern Italy). The main outcome is represented by probabilistic flood damage maps, which show the spatial distribution of selected percentiles of a loss-of-life risk index coupled with the corresponding uncertainty bounds.
Chapter
Perak State, located in the Northern Corridor of Peninsular Malaysia, offers attractive spots and ecotourism sites for tourists to explore. The state is also campaigning for Visit Perak 2024 to promote tourism as a strategic economic sector that will significantly contribute to Gross Domestic Product (GDP), job creation and foreign exchange earnings. However, Perak has been experiencing devastating flood incidences, including flash floods in the last three years (2020–2022). This article aims to assess the potential impacts of dam-break flood disasters towards the tourism industry in the Hulu Perak district of Perak, with a focus on the socio-economic values. As a methodology, primary and secondary data have been collected from in situ interviews with local authorities, Department of Statistics Malaysia (DOSM) Perak and relevant published annual statistical reports. This study has found that, in the event of a dam break or flood caused by excessive rainfall, the tourism industry and other supporting hospitality industries in Hulu Perak district will be adversely affected by loss of revenues and negative socio-economic implications. In view of these potential hazards, this study has recommended an integrated flood impact analysis to be undertaken at the state level to create a tourist contingency strategy for flood recovery.
Chapter
Flexible pavements on weak soil are prone to longitudinal cracking and rut formation on the surface. Geocell-reinforced granular layers offer enhanced load distribution and restrict settlement on the pavement under regular vehicular traffic. An intensive parametric study was done to assess the degree of impact of various factors on the time-dependent behavior of flexible pavement with a geocell-reinforced granular base. Parameters analyzed include stiffness and aspect ratio of geocell, frictional characteristics of the granular layer, and subgrade shear strength. The independent effect of each influential parameter on the mechanism of load transfer was analyzed using three-dimensional modeling incorporating the actual honeycomb shape of the geocell. The load transfer mechanism in a geocell is most affected by the tensile stiffness of geosynthetic material and the aspect ratio of the cellular pocket. While the effect of the wide slab mechanism is affected by the strength characteristics of all pavement layers, including fill friction, subgrade cohesion, and geosynthetic stiffness, the membrane effect is dependent purely on the strength and aspect ratio of the geocell. The aspect ratio close to unity is desirable for efficient and uniform stress transfer through Geocell walls.KeywordsGeocellHoneycomb shapeRepetitive loadingParametric studyLoad transfer mechanism
Chapter
In Malaysia, embankment dams are frequently constructed because they benefit the local population, particularly in agricultural activities and flood control. However, flood disasters caused by dam breaks have catastrophic consequences on human lives and immensely damage the environment, infrastructure, and socio-economic stability, especially in downstream areas. Despite the rapid advancement of risk analysis in dam engineering, there is limited research on the socio-economic impact of dam failure. This paper is deemed to provide a critical review of the socio-economic risks affected by dam breaks in Hulu Perak district, Malaysia. The findings have highlighted the communities, key facilities, and heritage sites are at high risk if there are dam breaks in the Hulu Perak district. İt is recommended that appropriate risk management measures be undertaken to reduce human catastrophy and negative socio-economic impacts. Hence, there is a need to conduct an empirical study to assess dam break threats to humans and the socio-economy and formulate a framework to mitigate the risks of flood disasters due to dam failures.KeywordsDam breakSocio-economic impactFloodPerakMalaysia
Book
Lecture Notes in Civil Engineering (LNCE) publishes the latest developments in Civil Engineering—quickly, informally and in top quality. Though original research reported in proceedings and post-proceedings represents the core of LNCE, edited volumes of exceptionally high quality and interest may also be considered for publication. Volumes published in LNCE embrace all aspects and subfields of, as well as new challenges in, Civil Engineering. Topics in the series include: . Construction and Structural Mechanics . Building Materials . Concrete, Steel and Timber Structures . Geotechnical Engineering . Earthquake Engineering . Coastal Engineering . Ocean and Offshore Engineering; Ships and Floating Structures . Hydraulics, Hydrology and Water Resources Engineering . Environmental Engineering and Sustainability . Structural Health and Monitoring . Surveying and Geographical Information Systems . Indoor Environments . Transportation and Traffic . Risk Analysis . Safety and Security
Article
Full-text available
Discrete time Markov decision process is studied and the minimum reward risk model is established for the reservoir long-term generation optimization. Different form the commonly used optimization criterion of best expected reward in reservoir scheduling, the probability that the expected generation of the whole period not exceeding the predete reward target to be smallest is chosen as the optimizing target for this random process. For the hydropower tends to operate as peak-clipping mode in Market-based model to gain more profits, the function of electricity price and output can be founded by analyzing on the typical day load course of the electricity system. Compared with the generally used criteria of the largest expectation power generation model, this model is fitted for the decision-making in which the risk is needed to be limited to reflect the risk preference of the policy makers. Stochastic dynamic programming method is adopted to solve the model and the model is tested on the Three Gorges Hydropower Station.
Article
Full-text available
This paper discusses the methods of establishing risk criteria for dams and reviews the application of dam risk criteria for individuals and societies in different countries or districts. Given the conditions in China and considering the public safety and acceptance of dam risk, historical dam break data and current design standards, individual and societal risk criteria for dams are proposed. The tolerable dam risk criteria for individuals should be set to 10-5-10-7 per annum based on project scale, for example, approximately 1.0×10-7 per annum, which corresponds to a reliability index of 4.2 based on a 100-year lifespan for a first-class or large project. The societal limit for risk tolerance for dams should be set to approximately 10-3-10-5 per annum, corresponding to the fatality range from1 to 100 and be horizontally extended to 1000, and F-N curves are proposed. It was also found that the reliability indices of Chinese Standard (GB 50199-2013) and Eurocode1 (2002) are different, but they have the same level of safety measured by the annual probability of failure. The research results have significance for establishing dam risk criteria.
Article
Full-text available
Recent increases in life loss, destruction and property damages caused by flood at global scale, have inevitably highlighted the pivotal considerations of sustainable development through flood risk management. Throughout the paper, a practical framework to prioritize the flood risk management alternatives for Gorganrood River in Iran was applied. Comparison between multi criteria decision making (MCDM) models with different computational mechanisms provided an opportunity to obtain the most conclusive model. Non-parametric stochastic tests, aggregation models and sensitivity analysis were employed to investigate the most suitable ranking model for the case study. The outcomes of these mentioned tools illustrated that ELimination and Et Choice Translating Reality (ELECTRE III), a non-compensatory model, stood superior to the others. Moreover, Eigen-vector’s performance for assigning weights to the criteria was proved by the application of Kendall Tau Correlation Coefficient Test. From the technical point of view, the highest priority among the criteria belonged to a social criteria named Expected Average Number of Casualties per year. Furthermore, an alternative with pre and post disaster effectiveness was determined as the top-rank measure. This alternative constituted flood insurance plus flood warning system. The present research illustrated that ELECTRE III could deal with the complexity of flood management criteria. Hence, this MCDM model would be an effective tool for dealing with complex prioritization issues.
Article
Full-text available
It seems generally accepted that the FN-curve is a fairly accurate description of the societal risk. However in the communication with the public and representative decisionmakers a schematisation of the FN-curve to one or two numbers may bring certain advantages. Various measures like Potential loss of Life, the area under the FN-curve, the Risk Integral etc. are proposed in the literature. Although the formulae look distinctly different at first sight a more thorough inspection reveals, that all schematisations contain as building blocks the two familiar statistical moments of the FN-curve, the expected value of the number of deaths E(N) and the standard deviation s(N). In the paper the linear combination E(N) + k.s(N) is proposed as a simple risk averse measure of the societal risk.
Article
Acceptable risk criteria is one of importance research in engineering risk analysis and risk control method, which is aimed at the basis of life economic, social and environmental aspects of the risk assessment values and as a judgment of whether risk undertaker accept the risk. The paper describes the basic principles and methods of determining acceptable risk criteria, combines with the actual situation of our country and bases on the dam break data and proposes that acceptable risk can be 10-5 by the annual probability of failure. Social tolerable risk can be 10-4 and the number of affected people of 1000 is intolerable up limit. It is based on the ALARP principle and proposed the F-N curve of dam acceptable risk criteria. There is certain guiding significance for making acceptable risk criteria for dam engineering management. ©, 2014, 10031243 Tsinghua University Press. All right reserved.
Article
Operating a multi-purpose hydropower reservoir during flooding and high inflow events is a challenging and complicated task. Three main elements contribute to this complexity: addition of minimizing flood damage to the set of objectives of the problem, exponential boost in inflow forecast uncertainty-driven risks as a result of the high sensitivity of the outcomes to inflow forecasts, and the unavoidable necessity of making a decision within a very short time although the decision making process requires comprehensive analysis. A Risk-Informed Decision Making (RIDM) framework as a pre-developed guideline for operational planners might be the only solution to the problem.We explain the structure of such a framework in the literature, and implement an RIDM framework for the Cheakamus River System. In developing the RIDM framework in our study, we make several modifications to the previous RIDM framework for Cheakamus River System by minimizing subjectivity in the decision making process, incorporating comprehensive risk consideration in the process, and taking account of the entire range of operational alternatives. We also explain how the framework could be developed for other case studies.
Article
The problem of dam safety is one of the most important research topics of water conservancy projects, and many researchers pay much attention to study the risk of earth dam overtopping. This paper synthesizes in the definition of risk the probabilities of dam failure and the corresponding losses, including the probability estimation, losses evaluation and criteria exploring risk approaches. Then, a comprehensive risk assessment system of dam flood overtopping is established, which is widely applicable. Gate failure, randomness of flood, initial water level and time-varying effects are incorporated in the failure probability model. Many complex factors are simplified in losses estimation. In addition, thresholds of various types of losses are proposed and are adapted to the national conditions. The methodology is applied to the Lianghekou hydropower station in China to illustrate the assessment process of flood overtopping risk and to evaluate its safe loophole with a view to the failure of spillway gates. Monte Carlo simulation and JC method programs are adopted to solve the model based on MATLAB tools and DELPHI. The results show that the losses pose significant impact on the risk assessment and should be considered in the assessment of risk. Probability calculation and loss estimation could be well combined with standards, providing a basis for risk management and decision-making.
Article
Quantitative risk assessments (QRAs) are used within the field of process safety to decide the allocation of resources and risk reduction investments. Typically risk assessments involve the evaluation of probabilistic measures that estimate the average expected value for the situation being considered across a range of potential outcomes. The resulting expected value is then used to determine if a situation represents an acceptable or unacceptable risk based on a threshold value allotted to the risk. This approach often gives guidance that is at odds with the thoughts and behaviors of some stakeholders as illustrated by the “but what if it does happen?” type of question. This inconsistency results from the inherent limitation associated with expected value approaches in that the methodology is based on whether or not a mean assessed risk represents an acceptable risk while overlooking the possibility that a single scenario could represent an intolerable event. This article looks at an adjustment to traditional QRAs so as to assess both the acceptability of risk and the tolerability of the associated consequences relative to risk criteria. These adjustments have been found to better represent stakeholder perceptions of risk, more closely relate risk tolerance to corporate values and resources, and to better justify the use of various risk transfer strategies. © 2008 American Institute of Chemical Engineers Process Saf Prog, 2009
Article
This article introduces the analytic network process (ANP) as an effective tool for ranking water transfer projects. Water resources are the main basis of stable development around the world. Uneven water distribution and the shortage of water in some areas have caused water managers to consider interbasin water transfer as a solution to these water problems. Due to the many different conflict criteria in ranking water projects, ranking execution projects is one of the most critical and difficult tasks in water management. Multiple Attribute Decision Making (MADM) is a collection of methodologies to compare, select, or rank multiple alternatives that typically involve incommensurate attributes. Many decision problems cannot be structured hierarchically because they involve the interaction and dependence of higher-level elements in a hierarchy on lower-level ones. This study deals with ranking water transfer projects as a MADM problem. Due to the fact that many of the criteria are related to each other, the Analytic Network Process (ANP) is proposed for ranking projects. Ten water transfer projects in Karun River are investigated. Thirty influential factors are identified. They are classified under benefit, cost and risk criteria. The objective of this investigation is ranking alternatives with respect to different criteria in network form. Finally, sensitivity analysis is introduced.