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There is a growing body of evidence pointing toward large-scale networks underlying the
core phenomena in epilepsy, from seizure generation to cognitive dysfunction or response
to treatment.The investigation of networks in epilepsy has become a key concept to unlock
a deeper understanding of the disease. Functional imaging can provide valuable informa-
tion to characterize network dysfunction; in particular resting state fMRI (RS-fMRI), which is
increasingly being applied to study brain networks in a number of diseases. In patients with
epilepsy, network connectivity derived from RS-fMRI has found connectivity abnormalities
in a number of networks; these include the epileptogenic, cognitive and sensory process-
ing networks. However, in majority of these studies, the effect of epileptic transients in the
connectivity of networks has been neglected. EEG–fMRI has frequently shown networks
related to epileptic transients that in many cases are concordant with the abnormalities
shown in RS studies. This points toward a relevant role of epileptic transients in the net-
work abnormalities detected in RS-fMRI studies. In this review, we summarize the network
abnormalities reported by these two techniques side by side, provide evidence of their over-
lapping findings, and discuss their significance in the context of the methodology of each
technique. A number of clinically relevant factors that have been associated with connec-
tivity changes are in turn associated with changes in the frequency of epileptic transients.
These factors include different aspects of epilepsy ranging from treatment effects, cognitive
processes, or transition between different alertness states (i.e., awake–sleep transition).
For RS-fMRI to become a more effective tool to investigate clinically relevant aspects of
epilepsy it is necessary to understand connectivity changes associated with epileptic tran-
sients, those associated with other clinically relevant factors and the interaction between
them, which represents a gap in the current literature. We propose a framework for the
investigation of network connectivity in patients with epilepsy that can integrate epileptic
processes that occur across different time scales such as epileptic transients and disease
duration and the implications of this approach are discussed.
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INTRODUCTION
The notion of networks in epilepsy has gained momentum in the
last decade, becoming a key concept used to explain the phenom-
ena observed in this condition. Seizure generation, spread and
termination as well as therapeutic response and cognitive impair-
ment may be explained by the interactions between, and dysfunc-
tion of, large-scale networks. Early evidence for the involvement
of macroscopic networks in epilepsy syndromes arises from EEG
studies (1) and, for the last decade, several authors have devel-
oped a framework based on brain networks to explain various
features of epilepsy (2–5). There is a growing body of evidence
pointing toward large-scale networks, often bihemispheric and
involving several lobes, underlying seizures in different epileptic
syndromes (5).

Imaging studies have been one of the main contributors to
the development of this network framework and have provided
relevant information for the characterization of macroscopic net-
work abnormalities in the epileptic brain. Functional MRI is a

powerful tool to investigate connectivity and organization of brain
networks via differences in evoked responses to different stimuli.
Resting state fMRI (RS-fMRI) has become an increasingly pop-
ular way to employ fMRI that investigates synchronous activity
between regions in the absence of an explicit task based on signal
correlation. These studies have shown that there is a consistent
pattern of spatially distinct, brain networks that show coherent
signal fluctuations. RS-fMRI studies have been used to identify
network abnormalities in many different pathologies including
epilepsy (6).

Different approaches have been applied to the investigation of
network connectivity in RS-fMRI studies. The first most com-
monly used methodology is seed-based correlation maps (7),
where the correlation between a priori defined regions of interest
(ROI) is calculated within a temporal frequency range and used as
an index of connectivity. Regions can contain common variance
from various noise sources and this need to be removed, for exam-
ple via regression or partial correlation (8, 9). This approach can
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be extended by using an anatomical parcelation of the brain from
the lobar to the voxel scale and correlating every region with all
other regions before comparing the resulting correlation matrix.
These matrices represent a measure of the whole brain connec-
tivity (connectome) and can be thresholded and binarized to
obtain summaries of network properties using graph theory such
as clustering, path length, and betweenness centrality. Each of these
metrics has well characterized implications for networks in terms
of properties such as their efficiency for information transfer and
robustness to damage.

Several metrics have been used to look at measures of corre-
lation with some spatial support; these include methods such as
regional homogeneity (ReHo) (10), functional integration (11),
and global brain asymmetry.

The second main method is spatial independent component
analysis of fMRI data that separates the signal into spatial maps of
covarying voxels (12). Components that are related to brain activ-
ity then need to be identified as resting state networks by selecting
them from components related to sources of noise. This is typi-
cally done by looking at the spatial and temporal properties of the
components.

Brain network connectivity is not static and so the investi-
gation of network dynamics is an important further step. Not
only correlations, but causality between nodes can be evaluated.
This has been achieved for example through biophysical com-
putational models such as dynamic causal models (DCM) (13),
structural equation modeling (14), and granger causality (15).
Although some methods have shown their robustness on model-
ing causal statistical influences between simultaneously recorded
neural time series data (16), the use of these methods in fMRI
data is still controversial. This is due to the inherent limitations
of fMRI: slow dynamics, regional variability of the hemodynamic
response to underlying neuronal activity and the complexities of
image acquisition (differences in slice timing). These methods
must be used with care and with an appropriate understanding
of their limitations (17–19).

Not only analysis methodology but also the definition of rest
is different across RS-fMRI studies. Subjects may be instructed to
rest with the eyes closed or open with or without visual fixation
and these may be a confounding factor; in epilepsy drowsiness
may be associated with a different rate of interictal activity and
this may be influenced by the instructions given to the subject.

More detail information on the history, development of meth-
ods and limitations of RS-fMRI studies can be found in these
reviews (6, 20). The development of simultaneous EEG–fMRI
acquisition has enabled a major step to be taken toward the iden-
tification of network abnormalities related to epileptic activity.
Detailed information about the methodology and its evolution
can be found in recent reviews (21–23).

EEG–fMRI can be thought of as an extension of RS-fMRI,
where the lack of a model of fMRI changes defined by an exper-
imental paradigm is replaced by a post hoc electrophysiologically
defined model of brain state. In studies of epilepsy, this is typically
achieved by defining epochs of pathologic (e.g., interictal epilep-
tiform discharges or ictal activity) versus normal background
activity, although a similar approach can be applied to derive a

model from physiological rhythms (e.g., alpha and beta) (24, 25).
A voxel-wise analysis can then proceed to identify the brain regions
with fMRI changes associated with these electrophysiological
features.

Early application of EEG–fMRI was aimed at better characteri-
zation and more accurate localization of the brain areas involved in
interictal spike generation (26), but it soon evolved into a research
tool capable of investigating brain function in diseased and healthy
populations.

However, it became clear that EEG–fMRI studies often revealed
networks commonly reported in RS-fMRI studies (27). Despite
this commonality and potential convergence of results there is
very little cross reference between studies looking into brain net-
works at rest in epilepsy and EEG–fMRI studies, making it timely
to comparatively summarize the findings from each strand of liter-
ature. One of the key questions that arise is regarding the role that
epileptic transients might play in the findings of RS-fMRI studies,
where this factor has been largely neglected.

The interaction between these two (network connectivity and
epileptic transients) may be of a bidirectional nature. While the
often transient stochastic nature of interictal and ictal discharges
might imply a transition between (bi-stable) states it seems likely
that these events occur in patients because of an alteration in net-
work properties that facilitates abnormal synchronization within
and between brain regions (or makes these transitions more likely
by altering the systems dynamics). The properties of the epilep-
tic network seem to evolve over multiple timescales, indexed by
the typical clinical observations that epileptic events frequency is
modulated by cognitive load, sleep, stress, and disease duration.
Therefore, we need to better understand and evaluate network
structure in epilepsy and the dynamic changes occurring within it
at multiple timescales (from milliseconds to years).

Since some RS-fMRI studies have found an association between
network abnormalities and clinical variables that in turn often cor-
relate with frequency of epileptic transients (i.e., age of epilepsy
onset, duration of epilepsy, response to treatment, and cogni-
tive function), it makes sense to consider that the integration of
this information in the investigation of network abnormalities in
epilepsy will lead to novel ways of interpreting network changes
observed.

The integration of EEG information into network connectivity
analysis requires the dynamic of connectivity to be considered.
Classically, connectivity studies have assumed network connec-
tivity can be characterized as the mean over a period of time
(an fMRI session). This is represented in Figure 1A. Inferences
about network connectivity differences between patients and con-
trols have been estimated by comparing average connectivity.
The addition of the temporal dimension (Figure 1B) opens the
door to explore the interaction between connectivity and epileptic
activity.

In this review, network abnormalities reported by RS-fMRI and
EEG–fMRI studies are compared side to side and the role of epilep-
tic transients in the RS-fMRI findings to date is discussed. Finally,
we propose and discuss a framework to investigate the interac-
tion of epileptic transients in connectivity (Figures 1A,B) and the
potential applications of this framework (Figure 1C).
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FIGURE 1 | (A) Representing state dependant connectivity. If we consider a
simple brain network with three linearly connected nodes (top), then
connectivity between pairs of regions (A,B) or (A,C) can be graphically
represented as a function of time (upper row graphics-red line). During: (1)
cognitive tasks; (2) resting state in healthy population; and (3) resting state
in patients with epilepsy. The fluctuations of this network’s connectivity in
time could be measured at points illustrated by the black crosses. The
brain’s connectivity state during rest and activity can then be summarized
by the mean and range represented by the “+” and circles areas,
respectively, in the lowest row of “Time average” plots. Epileptic transients
are associated with changes in network connectivity (peaks in top right
graphic) that account for a proportion of the connectivity (red area) expected
to lie outside of the range associated with resting state activity in controls.
The contribution of epileptic transients (red area) to the RS connectivity
differences found patients with epilepsy (cross in the yellow area) and how
this relates to normal connectivity (blue area in adjacent plot) still remains to
be well characterized. (B) Connectivity differences between controls and
epilepsy. Resting connectivity in patients with epilepsy (yellow area) falls
out of the range (blue area) seen in controls for certain networks as
reported by RS studies. Several hypotheses can be derived from this
observation, e.g., (1) Connectivity changes are permanent abnormalities.

(2) Connectivity changes are driven by transient epileptic activity. (3) They
are a combination of both permanent and transient abnormalities. There are
a number of factors that are know to modify connectivity and frequency of
epileptic transients at different time scales: from cognitive process,
sleep/awake transitions, or treatment effects in the short–medium term
through to brain maturation and aging occurring at a long term scale. An
example change in connectivity due to such factors is shown as trajectory in
time (red line) through a space defined by the connectivity that can be
measured using RS-fMRI. However, to understand connectivity changes
associated with these factors, it is crucial to obtain measurements at
different time points along the trajectory and associated them with clinically
relevant factors. If RS connectivity dynamics and the role of epileptic
transients in altering measured RS-fMRI connectivity are understood, RS
connectivity measurements may be a potential biomarker of a number of
clinically relevant aspects in epilepsy such as prediction of response to
treatment, cognitive dysfunction associated to epilepsy or change to seizure
patterns due to hormones, sleep, brain maturation, etc. (C) Example of a
model of connectivity changes applied to investigate drug treatment in
epilepsy. Any factor that modifies the rate of epileptic transients will result
in changes to the RS connectivity.

(Continued)
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FIGURE 1 | Continued
In the case of medical treatment, different degrees of response (partial or
complete) would be associated with different connectivity states in a patient;
more epileptic transients, means the network would spend more time with
connectivity values in the “epileptic transient connectivity region” (red area)
as illustrated in the first row graphic. How these changes to connectivity
affect the mean connectivity of a patient with epilepsy is dependant on the
proportion of abnormal connectivity explained by the epileptic transients. In
this case, two scenarios are possible. Hypothesis 1: connectivity
abnormalities in patients with epilepsy are mainly due to the abnormalities

associated to epileptic transients, in which case, the gradual reduction of
transients in time will result in the mean connectivity of a patient with
epilepsy (represented by a red +) progressively moving towards connectivity
found within the healthy population (represented by the blue circle with the
mean on the black cross position). Alternatively, hypothesis 2 illustrates how
if only a proportion of connectivity abnormalities are due to epileptic
transients, connectivity may change in time due to treatment with a
reduction in epileptic transients, however, the connectivity remains
significantly different to the healthy population with potential therapeutic and
cognitive consequences.

EPILEPTOGENIC NETWORK ABNORMALITIES
The epileptogenic network refers to the areas involved in gen-
eration and spread of epileptic activity. These networks may
vary across the different syndromes. Epilepsy syndromes have
traditionally been classified based on the electro-clinical pat-
terns, into focal and primary generalized syndromes (28). Focal
epilepsies are defined by EEG correlates circumscribed to an area
of the cortex as opposed to generalized syndromes in which
the totality of the cortex is thought to be involved in seizure
generation.

Although this classical view marks a clear difference based
on the extent of cortex involved in seizure generation, there is
a growing body of evidence pointing toward the involvement of
large-scale networks underlying both the focal (5, 29) and the
generalized syndromes (30–33) as well as evidence of epileptic
activity being focally initiated in idiopathic generalized epilepsy
(IGE) (29, 32). From this perspective, the boundaries between
“focal” and “generalized” epilepsies have become more blurred.
Under this framework, the concept of zones (e.g., the epilepto-
genic zone), adopted from the stand point of epilepsy surgery (34)
can become more general in meaning. The epileptogenic zone and
seizure onset zone could be exchanged for the network nodes that
(by removal) can alter the network properties such that seizures
cannot be generated. The network framework makes the poten-
tial range of processes and mechanisms of seizure generation and
spread more varied; seizures arising from a hyper excitable region
may entrain a larger neural network (5). Furthermore, recent the-
oretical studies of networks suggests that the network structure
itself can generate seizures with or without the hyper excitable
region (29).

Resting state fMRI studies in patients with epilepsy have pro-
vided extensive information about abnormalities in the epilepto-
genic networks in the different epileptic syndromes (Table 1).

The majority of RS-fMRI studies in focal epilepsies have
focused on temporal lobe epilepsy (TLE). TLE has the advan-
tage of being one of the most prevalent and homogeneous group
within the focal epilepsy syndromes, and although it provides a
good model for investigating abnormalities in the epileptogenic
network, the impact of these findings for surgical management
of patients is limited given the efficacy of standard pre-surgical
evaluation and surgical approaches in this group (35).

The epileptogenic network in TLE is relatively well charac-
terized (5), comprising of a number of structures in the mesial
temporal lobe (amygdala and hippocampus), adjacent cortex
including entorhinal cortex and lateral temporal cortex and extra
temporal structures including thalamus and orbito-frontal cortex.

The contralateral homologous regions serve the rapid spread of
seizure activity. Connectivity maps seeding in these areas of the
epileptogenic network have shown a number of abnormalities,
comprising decreased connectivity within a set of sub regions
in the epileptic temporal lobe (36–39), decreased connectivity
between hippocampi (39–42), and decreased connectivity between
the hippocampus and the orbito-frontal region (40). Decreased
connectivity is the most common finding among those studies
targeting the epileptogenic network; hence it is interesting to com-
pare these findings with other measures of neuronal connectivity
such as EEG. Although not recorded simultaneously, intracranial
EEG (icEEG) showed an increase in connectivity between the same
subset of regions found to be less connected by fMRI (38). Con-
nectivity of the epileptogenic regions measured by EEG has shown
diverse results. Classically, hyper-synchrony within the epilepto-
genic regions has been shown using intracranial electrodes (43,
44), however, evidence of decreased synchronization of electrical
activity have also been reported during ictal (45) and interic-
tal (46) states. Variability of connectivity between studies in the
epileptogenic regions may be in part explained by the difference in
methodology between studies (type of intracranial electrodes, the
analysis method applied to the data and the regions included in
the network). However, the investigation of temporal dynamics of
EEG-based connectivity shows that the desynchronization in the
epileptogenic regions fluctuate at different time points (46).

The relationship between network connectivity as measured by
EEG and fMRI has barely been explored. Recently, we introduced
a framework to investigate this in EEG–fMRI data acquired simul-
taneously (Deligianni et al., submitted). In this work, we showed
that EEG-based connectivity had more intra-hemispheric com-
ponents compared with MRI-based connectivity that showed a
predominance of inter-hemispheric connections. The prediction
of connectivity patterns from one modality to the other worked
better when fMRI is predicted from EEG than vice versa, indicat-
ing that EEG connectivity may have a greater level of complexity
compared to that derived from fMRI.

Further research is needed to be done in order to further
understand the relationship between the connectivity measured
by these two modalities and in turn to interpret the similarities
and discrepancies seen in the pathological brain.

Although the majority of RS-fMRI studies report decreases
of connectivity within the epileptogenic network, there are also
reports of increased connectivity. These increases may be located
in areas overlapping the epileptogenic region, but are typically
reported in areas outside the epileptogenic region suggesting a
compensatory mechanism: Bettus et al. reported in several studies
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Table 1 | Resting state studies in epilepsy reporting abnormalities of the epileptogenic network.

Syndr. Seed ROI Connectivity findings Method Analysis N Effect

spikes

Correlations Reference

Decrease Increase Other

TLE Hippocampus

Thalamus

From hippocampus:

Superior medial gyrus

Midcingulate gyrus

Contralateral posterior

cingulate (DMN)

From thalamus: IFG

From

hippocampus

Parietal lobe

Middle

temporal gyrus

Seed ROI P vs. CTR

Correlation

with structural

abnormalities

15 P

15 CTR

No Holmes et al.

(115)

TLE Hippocampus Seed ROI Correlation

with memory

scores

15 P

15 CTR

No Memory scores

positive correlation with

connectivity to

contralateral

hippocampus and

negative correlation

with ipsilateral hip

Holmes et al.

(55)

mTLE Amygdala

Hippocampus

DMN

Contralateral mTL

Limbic prefrontal

regions

Seed ROI P vs. CTR 23 P

23 CTR

Yes

Simultaneous

EEG–fMRI

Excluded

sessions with

IED

Pittau et al.

(42)

mTLE

+ HS

Hippocampus DMN angular gyri,

thalami medial frontal

Seed ROI

correlation

P vs. CTR

Correlation

with memory

scores

21 P

12 CTR

No RTLE: increased

connectivity to frontal

regions, better

performance

LTLE: increased

connectivity to posterior

regions – worse

performance

Doucet et al.

(116)

mTLE Hippocampus Left

hippocampus

influences right

Granger

causality

P vs. CTR

Correlation

with

duration/age

onset

19 P No Epilepsy duration above

10 years correlates:

increases of

inter-hippocampal

connectivity

Swap of directionality of

influence

Morgan et al.

(41)

(Continued)
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Table 1 | Continued

Syndr. Seed ROI Connectivity findings Method Analysis N Effect

spikes

Correlations Reference

Decrease Increase Other

TLE Hippocampus

Amygdala

Entorhinal c.

Brodmann 38

TL network epileptic

side

TL network

contralateral

side

IC EEG

connectivity

pattern is

opposed to

fMRI

connectivity

pattern

Seed ROI Comparison

between ipsi-

contralateral

network

IC EEG

connectivity

vs. fMRI

connectivity

5 P No Bettus et al.

(38)

mTLE Hippocampus

Amygdala

Entorhinal c.

Brodmann 38

TL network epileptic

side

TL network

contralateral

side

Seed ROI P vs. CTR

Correlation

with clinical

factors

Correlation

with cognitive

scores

22 P

36 CTR

No No correlation with

clinical data (N

seizures/disease

duration/onset) but

increases correlated

with cognitive scores

Bettus et al.

(36)

mTLE Hippocampus

Amygdala

Entorhinal c.

Brodmann 38

TL network epileptic

side

TL network

contralateral

side

Seed ROI P vs. CTR

Correlation

with cognitive

scores

8 TLE

26 CTR

No Increases on

connectivity correlates

with memory

performance

Bettus et al.

(37)

mTLE

+ HS

Hippocampus Ipsi-contralateral

Hippocampus

Seed ROI P vs. CTR 18 P

9 CTR

No Pereira et al.

(39)

Focal EEG–fMRI

activation

within

resection area

Seed ROI Correlation

with surgical

outcome

18 P

14 CTR

No Strongly lateralized

connectivity map

correlates with good

surgery outcome

Negishi et al.

(117)

Focal

(nodular

hetero-

topia)

Heterotopic

nodule/s

Network

composed by

other nodules

and overlying

cortex

Seed ROI Correlation

with epilepsy

duration

Correlation

with

tractography

11 P No Longer duration of

epilepsy correlates with

greater connectivity

abnormalities

Functional connectivity

maps correlate with

tractography

Christodoulou

et al. (118)

(Continued)
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Table 1 | Continued

Syndr. Seed ROI Connectivity findings Method Analysis N Effect

spikes

Correlations Reference

Decrease Increase Other

Focal/IGE Global brain

connectivity

45

Homologous

ROI

Interhemispheric

coherence

Global

asymmetry in

temporal and

limbic

networks

Global c.-

asymmetry

Functional

integration

P vs. CTR

Focal vs. Gen

ep

100 P

80 CTR

No Zhang et al.

(11)

Focal Global brain

connectivity

Voxel-by-voxel

Increase

connectivity

epileptogenic

zone

Good

concordance

with other

localizing

methods

Global c.-

Voxel-wise

connectivity

P vs. CTR 6 P

300

CTR

No Stufflebeam

et al. (48)

TLE Global brain

connectivity

Voxel-by-voxel

All group

Cerebellum

EEG-spikes (6)

EEG-non-spikes

Right medial frontal

gyrus

Cerebellum

All group

Right mTL

DMN

EEG-spikes (6)

Right fusiform

gyrus

DMN

EEG-non-

spikes

Right inferior

temporal gyrus

DMN

Global c.-

ReHo

P vs. CTR

Interictal vs.

not interictal

activity

21 P

21 CTR

Yes (deferred

EEG)

P with vs. P

without

interictal EEG

activity

Mankinen

et al. (47)

mTLE Global brain

connectivity

90 ROI

Frontal lobe

Parietal lobe

DMN

Medial

temporal lobe

Altered small

world network

properties

Global c.-

Graph t.

P vs. CTR 18 P

27 CTR

No Liao et al. (95)

IGE

(CAE)

16 ROI in

epileptic

network

Lateral

orbito-frontal

cortex inter-

hemisphere

Global c.-

Seed ROI

P vs. CTR 16 P

16CTR

Bai et al. (52)

(Continued)
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Table 1 | Continued

Syndr. Seed ROI Connectivity findings Method Analysis N Effect

spikes

Correlations Reference

Decrease Increase Other

IGE Thalamus

Dorsal nucleus

Lateral

nucleus

Pulvinar

nucleus

Orbito-frontal

Caudate

Putamen

Seed ROI P vs. CTR

VBM

correlation

52P

67 CTR

No Correlation with

atrophic areas/VBM

Wang et al.

(51)

IGE Basal ganglia

network

SMA

Cerebellum

Basal ganglia ICA P vs. CTR

IED vs.

non-IED

sessions

29 P

25 CTR

Yes

IED sessions

vs. non-IED

sessions

Luo et al. (49)

IGE 90 ROI Nodal topological

characteristics

DMN

Nodal

topological

characteristics

mesial frontal

cortex,

putamen,

thalamus

amygdala

Global c.-

Graph t.

P vs. CTR

Structural

connectivity

vs. functional

connectivity

26 P

26 CTR

No Decoupling between

structural and functional

connectivity correlates

with epilepsy duration

Zhang et al.

(106)

IGE

(CAE)

Voxel-by-voxel

Seed ROI

Precuneus

Thalamus

Basal ganglia

Precuneus to thalamus

Precuneus Global c.-

Voxel-wise

connectivity

Seed ROI

P vs. CTR 11 P

CTR

Yes Additional correlation

with sleep

Masterton

et al. (50)

For each study, information is provided regarding the epileptic syndrome included in the study, the areas where connectivity was seeded from (ROI), in case of those studies using this approach; the main findings

subdivided in increases and decreases of connectivity, and whether the effect of the spikes was addressed in the study (effect of spikes), as well as the correlations if any of the findings with clinical data.

Synd., epileptic syndrome; Seed ROI, region of interest used as the connectivity seed; P, patients; CTR, controls; Focal, focal epilepsies; TLE, temporal lobe epilepsy; mTLE, medial TLE; HS, hippocampal sclerosis;

IGE, idiopathic generalized epilepsies; CAE, childhood absence epilepsy; IDE, interictal epileptiform discharges; ICA, independent component analysis; Global c., global brain connectivity; Graph t., graph theory;

ReHo, regional homogeneity; ALFF, amplitude of low-frequency fluctuations.
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that connectivity was increased in the homologous network con-
tralateral to the disrupted epileptogenic network in TLE, which
are known to be propagation areas (36, 37).

Whole brain connectivity analysis have found abnormalities in
areas belonging to the epileptogenic network: using ReHo analysis
of fMRI as a measure of abnormal local synchronicity, Mankinen
et al. (47) have reported abnormalities in the right temporal lobe
and default mode network (DMN) areas in a sample of patients
with left and right non-lesional TLE. In another voxel-by-voxel
analysis of local and long distance connectivity, Stufflebeam et al.
(48) have shown abnormalities co-localized with the epileptogenic
zone defined by icEEG in patients with focal epilepsy of different
locations.

Similarly, in patients with IGE, several studies have investigated
abnormalities in the epileptogenic networks by creating connectiv-
ity maps from areas found to be involved in the seizure generation
in these syndromes. The thalamus and the basal ganglia are most
commonly chosen as seed regions, and they typically show reduced
connectivity with other components in the network, mainly sub-
cortical structures and orbito-frontal cortex (49–51). There are
also reports of increased connectivity between hemispheres as
shown by Bai et al. (52) in the lateral aspect of the orbito-frontal
cortex in patients with childhood absence epilepsy (CAE) using
two independent connectivity analysis methods (ROI seed maps
and a voxel-by-voxel approach).

Methods that do not use a priori spatial hypothesis such as
ICA (49, 53), voxel-by-voxel connectivity analysis (50), or ReHo
analysis (54) have also pointed to the existence connectivity abnor-
malities in the so called cortico-subcortical network. In the study
by Moeller et al. (53), the component corresponding to the cortico-
subcortical network was found to be highly correlated with the
interictal activity recorded simultaneously providing strong evi-
dence that the epileptiform transients play a key role in the
connectivity abnormalities uncovered by RS-fMRI in IGE.

Just a few studies have investigated how connectivity changes
relate to clinical factors. Morgan et al. (41) showed that the ini-
tial disruption of inter-hippocampal connectivity evolves into an
increased connectivity after 10 years of disease duration in TLE.
Directionality of the hippocampal influence also changes with the
duration of epilepsy; in general there is a left over right hippocam-
pal influence, regardless the side of epilepsy, however, this relation-
ship is switched in patients with epilepsy duration >10 years where
the contralateral hippocampus has the dominating influence over
the affected one.

Connectivity changes have been also related with memory func-
tion in TLE: memory scores are preserved in those patients with
stronger connectivity to the contralateral temporal lobe (55) and in
those with stronger intra-hippocampal connectivity and between
hippocampus and frontal areas; and conversely, decreased connec-
tivity to the orbito-frontal cortex was related to poorer memory
performance (40).

EEG–fMRI was conceived as a technique to map the epilep-
togenic networks. In focal epilepsies, several studies have shown
found a good concordance between the regions of BOLD signal
change during interictal activity and the epileptogenic regions
mapped by standard techniques (56–63). It has been estimated
that EEG–fMRI can contribute to more accurately localize the

epileptic focus in around 2/3 of pre-surgical cases as compared to
the standard pre-surgical tests (60).

Similarly, in IGE, a large number of EEG–fMRI studies have
characterized the networks involved in the generation of epileptic
activity (64–68). Common findings across studies show activa-
tion of a cortico-subcortical network composed by mid-frontal
regions, thalami, caudate, and cerebellum during the occurrence
of generalized spike-waves.

From early EEG–fMRI studies, it was noted that responses are
often multiple and distributed in areas within the epileptic focus
but also remotely located from epileptogenic regions in the case
of focal epilepsies. Changes in BOLD signal have been reported
on the contralateral homologous cortex, as well as extra temporal
regions in patients with TLE (56, 58) and (predominantly nega-
tive) responses in DMN areas (27, 66). This supports the presence
of large-scale, often bilateral networks underlying focal epilepsies
and the involvement of other networks such as the DMN during
epileptic activity.

There is on-going work aimed at objectively deriving the epilep-
togenic zone from EEG–fMRI maps in order to provide infor-
mation that can be used for surgical evaluation (69). Different
authors have chosen different statistical methods for its defini-
tion: from the global maxima of response (59), to the number
of voxels within the cluster (70). Several methods have aim to
separate regions of propagation from those involved in initiation
such as electrical source imaging (ESI) (71, 72) of interictal spikes.
These methods have been tested against surgical outcome, which
is the gold standard for the localization of the epileptogenic net-
work and more importantly assessing clinical utility. Good surgical
outcome has been associated with the inclusion of the global max-
ima of response being within the resection margins (59). On the
contrary, responses discordant with the area of surgery, and wide-
spread responses are a marker of poor prognosis (59) this was also
observed in a group of patients with focal cortical dysplasia (con-
firmed post-resection) whose post-surgical prognosis is typically
good (73) likely indicating multifocal disease (74, 75).

The dynamics of epileptic networks in focal epilepsy (76, 77)
and in IGE (30, 78) have been investigated using DCM and slid-
ing window analysis, aiming to identify the temporal and causal
relationship between network nodes.

In IGE, crucial subcomponents of the network such as the thal-
amus (79) have been targeted to further define their role, which
could potentially inform targets for future therapies such as deep
brain stimulation. However, there is still no consensus between
the different studies as to the lead node or the exact role of the
thalamus. There are several factors that might explain these dis-
crepant results. Firstly, there is some methodological uncertainty
in the temporal relationship between generalized spike and wave
discharges (GSW) and fMRI changes with several studies indi-
cating fMRI changes can precede GSW events (31). Further, the
methods used in different studies to infer causality are not consis-
tent and neither are the network nodes. This suggest that further
work is needed both from a computational perspective to better
predict how GSW arise (29) and a modeling perspective to better
test these predictions with experimental data (80).

Even though EEG–fMRI and RS-fMRI studies have been able
to identify networks involved in the generation and spread of
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epileptiform activity, the interpretation of the findings greatly dif-
fers between these two approaches. Whereas EEG–fMRI studies
allow inference that the changes observed are related to interictal
activity, RS-fMRI cannot differentiate, which changes observed in
the network may be due to transient or permanent network abnor-
malities. This is important, for example when trying to understand
the mechanism for treatment response or effects of disease dura-
tion; is the network connectivity fundamentally altered or is it
that the number of transient events and transient changes in
connectivity has been reduced?

COGNITIVE NETWORK ABNORMALITIES
Resting state fMRI studies have extensively investigated networks
involved in cognitive processes and sensory-motor processing in
the different epileptic syndromes (Table 2).

Abnormalities include decreased connectivity in language net-
work (81), memory network (40), auditory and sensorimotor
networks (82) as well as increases in connectivity of visual and
dorsal attention networks (83) in patients with focal epilepsies. In
IGE in whom cognition is expected not to be grossly abnormal,
increased connectivity was found within the nodes of the atten-
tion network and between attention network and adjacent the
supplementary motor area (84). Also self-referential, somatosen-
sory, visual, and auditory networks connectivity is increased in
IGE patients compared to controls (85).

In the case of cognitive networks, there is a higher variability
between the changes observed as both reports of increases and
decreases in connectivity are found in the literature in similar
numbers.

The increases in connectivity observed in some studies have
been associated to efficient compensatory changes that maintain
cognitive function (40, 83), but there are also notable reports of
poorer function associated with the abnormal increase in con-
nectivity between networks. For example, in juvenile myoclonic
epilepsy (JME) increased SMA and working memory network
functional connectivity was linked with increased demands in
working memory function (86). This finding offered an expla-
nation for the myoclonic jerks associated with cognitive-motor
tasks that are found in this syndrome. Similarly, in patients with
TLE, increased connectivity of working memory networks to the
diseased hippocampus was associated with poorer performance in
working memory tests (87).

How epileptic transients may affect these RS-fMRI findings is
uncertain due to the lack of studies investigating this potential
influence. In a report by Chaudhary et al. (88), EEG activity was
monitored during a working memory–fMRI session; task related
activation was found to be significantly decrease during the epilep-
tic transient period. Interestingly, a modulatory effect of the task
was also found on the frequency of epileptic activity that in turn
was associated with task performance. In reflex epilepsies, the
interaction between epileptic activity and cognitive network con-
nectivity becomes even more pertinent,Vaudano et al. (76) showed
in a patient with reading epilepsy, that areas within the cognitive
network involved in reading (left prefrontal cortex) played a causal
role in initiating reading-evoked seizures, potentially by facilitat-
ing activity in the epileptogenic cortex, in this case, located in
the premotor cortex. These reports again show the need for the

application of EEG information to better understand connectivity
changes within and between cognitive networks in patients with
epilepsy.

Abnormalities in the DMN deserve special attention due to
the extended literature in this regard both from RS-fMRI and
EEG–fMRI studies. In relation to interictal activity in focal epilep-
sies, EEG–fMRI studies have found BOLD signal changes in DMN
(27, 89) with differences in the strength and pattern between TLE
and extra-TLE (27, 89). DMN BOLD changes are also common
to patients with IGE (64–68). These studies, across focal and IGE,
point predominantly to a decrease of BOLD signal in DMN during
epileptic transients.

A recent study (90) has provided relevant insights about the
electrophysiological correlates of this phenomena: a decrease of
gamma power and increase of lower frequencies, occurs synchro-
nously with interictal activity in the main nodes of DMN when
recorded with icEEG. This may explain the negative change in
BOLD signal found in these areas coupled with epileptic activ-
ity, and confirms that the coupling between the BOLD and EEG
signals remains intact (91).

Although there have been many studies finding DMN alter-
ations in epilepsy there remains large gaps in our understanding of
the interaction between the epileptogenic network and the DMN.
Interestingly, a study using effective connectivity (30) showed that
this response in the precuneus was predictive of changes within
the thalamo-cortical regions. This is consistent with the idea that
conscious attention (indexed by the precuneus) modulates the
connectivity of the thalamo-cortical loop and can therefore alter
the probability of GSW generation.

Resting state fMRI studies have extensively investigated DMN
and have consistently reported abnormal connectivity within the
DMN and between the DMN and epileptogenic regions in focal
epilepsies (92–98) and IGE (49, 50, 85, 92, 99–102). The most
common finding is a decrease in the connectivity within DMN
and between the epileptogenic regions with DMN. However, there
are also some reports of increased connectivity in certain nodes
like the precuneus (50, 85).

The correlation between the DMN and functioning of other
cognitive networks in fMRI (103) and its proven strong corre-
lation with the epileptic activity points toward the need to test
cognitive networks abnormalities in epileptic patients in light of
the EEG information.

ALTERED GLOBAL BRAIN CONNECTIVITY
Mathematical tools to derive global network organization such as
graph theory have been applied to fMRI (and more rarely EEG)
data to identify abnormalities in patients with epilepsy. In this
section, we will discuss the changes in global network organization
found in patients with epilepsy (Table 3).

Graph theory based analysis has shown that brain networks in
patients with epilepsy follow a small world type topology, similar
to healthy subjects. However, significant differences in the parame-
ters that define the small world connectivity have been detected
in comparison to controls: patients with focal epilepsy have an
increased modularity and interhemispheric connections (104) as
well as abnormal degree, strength closeness, clustering coefficient,
and betweenness centrality (105). Liao et al. (95) showed these
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Table 2 | Resting state studies in epilepsy reporting abnormalities of cognitive networks.

Syndr. ROI Connectivity findings Method Analysis N Effect spikes Correlations Reference

Decrease Increase Other

IGE Self-referential,

somatosensory, visual

auditory

DMN

(frontopolar/parietal)

DMN

(precuneus)

ICA P vs. CTR

Correlation

disease

duration

16 P

16 CTR

No Disease duration

correlates with medial

prefrontal cortex

changes in connectivity

Wang et al.

(85)

TLE left Language

network

Language networks ICA P vs. CTR 17 P

30 CTR

No Waites et al.

(81)

TLE + HS Auditory

Sensorimotor

Visual

networks

Auditory/sensorimotor

Between visual ntw

and mTL

Visual cortex ICA P vs. CTR

Correlation

with clinical

factors

33 P

33 CTR

No Epilepsy duration

correlate negatively

with connectivity

Zhang et al.

(82)

TLE + HS Dorsal

attentional

network

Dorsal attentional

network

ICA P vs. CTR

Correlation

with cognitive

scores

24 P

24 CTR

No Working memory

scores correlate with

connectivity in attention

network

Zhang et al.

(83)

IGE 18 ROI in

attention

network

Within

attention

network and

adjacent areas

Seed ROI P vs. CTR 14 P

14 CTR

No Disease duration

correlates with

abnormal connectivity

in frontal areas

Maneshi et al.

(84)

TLE Precuneus

Frontopolar

DMN

Hippocampus

Left TLE to

different

regions

Abnormalities

are epilepsy

side specific

Seed ROI P vs. CTR 23 P

13 CTR

No Haneef et al.

(96)

mTLE Precuneus

Frontopolar

Hippocampus Seed ROI P vs. CTR

Correlation

with DTI

20 P

20 CTR

No Correlates fc of

precuneus to mTL with

DTI

Liao et al. (119)

Focal DMN, in particular

Precuneus/parietal

ICA P vs. CTR

Correlation

with clinical

factors

11 P

11 CTR

No No correlation with

clinical factors

Widjaja et al.

(98)

mTLE + HS DMN ICA P vs. CTR

Correlation

with clinical

factors

52 P

29 CTR

No Decrease connectivity

in mTL structures

correlate with duration

Zhang et al.

(94)

(Continued)
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Table 2 | Continued

Syndr. ROI Connectivity findings Method Analysis N Effect spikes Correlations Reference

Decrease Increase Other

TLE RSN ICA P vs. CTR

Interictal vs.

non-interictal

activity

21 P

21 CTR

Yes (deferred

EEG)

P with IED vs.

no IED

Correlation with

interictal activity

Mankinen

et al. (97)

Focal/IGE Precuneus

Less connected in

generalized epilepsies

ICA P vs. CTR

Generalized

vs. focal

epilepsy

28 P

34 CTR

No Lui et al. (92)

mTLE DMN

Basal ganglia

Limbic

structures

Global c.-

ALFF

P vs. CTR

Subgroup

analysis 6 P

with interictal

activity.

Correlation of

interictal

spikes with

ALFF

50 P

25 CTR

Yes Zhang et al.

(93)

IGE Anterior

cingulate

Precuneus

Prefrontal

Precuneus

Seed ROI P vs. CTR 15 P

15 CTR

No Correlation with

epilepsy duration

(increased connectivity

PFC with parahipp and

decreased connectivity

PFC/PCC)

McGill et al.

(99)

IGE (CAE) Bilateral dorsal

prefrontal

cortex

Precuneus

Anterior

cingulate

DMN

Cognitive control

network

Affective network

Seed ROI Sessions GSW

vs. sessions

non-GSW

10 P Yes Correlation with

interictal activity

Yang et al.

(100)

IGE Precuneus DMN Seed ROI P vs. CTR 12 P

14 CTR

Yes Fronto-parietal

connectivity correlates

negatively with epilepsy

duration. No correlation

with other clinical

variables

Luo et al. (101)

(Continued)
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abnormalities were more marked in the epileptogenic networks
and DMN of patients with TLE. In IGE, increased integration and
nodularity in the cortico-subcortical network and decrease degree
and nodularity of DMN nodes have been reported (102, 105).

Using global connectivity asymmetry and interhemispheric
coherence as measures, patients with focal and generalized
epilepsy, showed higher global asymmetry and lower interhemi-
spheric coherence compared to controls. These abnormalities were
more prominent in the temporal and limbic networks across both
focal and IGE patients (11).

The clinical meaning of these findings is uncertain and only a
few studies have included correlations with some clinical aspects
of epilepsy such as disease duration (54, 106).

The majority of the studies applying graph theoretical analy-
sis or voxel-wise analysis primarily set out to find differential
characteristics that correctly classify patients with epilepsy from
healthy control groups. Although this approach may be useful in
other neurological conditions such as Alzheimer’s (107), where
presymptomatic diagnosis is important, the clinical applicability
is unclear in epilepsy where diagnosis is based on the occurrence
of spontaneous seizures and the prediction of populations at risk
remains speculative.

One of the aspects that need to be explored is the effect that the
transient epileptic activity may have on these network properties,
which has not yet been address by any of the studies and will pro-
vide useful information on the relation of these measures and the
physiopathology of the disease. Further work is required to deter-
mine if these RS-fMRI measures can become a useful biomarker of
disease progression (beyond potentially simply indexing interictal
event rate) and therefore help to measure therapeutic efficacy or
predict treatment response.

ROLE OF INTERICTAL ACTIVITY IN RS-fMRI
The effect of epileptiform activity on the networks abnormali-
ties described in RS-fMRI studies has been largely neglected. Only
a few RS-fMRI studies have included EEG information in their
analysis. The most common approach has been to use the EEG
to exclude the presence of interictal activity during RS-fMRI. In
the absence of interictal activity on scalp EEG, Pittau et al. (42)
found decreased connectivity within the DMN and in the epilep-
togenic network of TLE patients and similar findings have been
seen in patients with IGE (49, 50). Mankinen et al. (97) reported
similar findings on those patients whose EEG acquired previously
to scan was showing no interictal activity, however an important
limitation of this study is that presence of epileptiform activity
during the scanning session cannot be ruled out due to its inter-
mittent nature and change in prevalence in certain states (i.e.,
when drowsy).

Conversely, where a direct comparison between RS-fMRI ses-
sions with and without the occurrence of spikes has been made
have shown that the network abnormalities reported are more
marked during the occurrence of interictal activity. In IGE,
increased connectivity of epileptogenic network involving basal
ganglia and decreased connectivity in DMN (101), cognitive con-
trol network (CCN) and affective network (AN) (100) were greater
during those sessions with occurrence of GSW compared to those
without.
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Table 3 | Resting state studies in epilepsy reporting abnormalities of global brain connectivity.

Syndr. ROI Connectivity findings Method Analysis N Effect spikes Correlations Reference

Decrease Increase Other

FLE Global brain

connectivity

Long range connections Interhemispheric

connections

Increased

modularity in

patients

Global c.-

Graph t.

P vs. CTR

Correlation

37 P

41 CTR

No Increased modularity

correlates with worse

cognition

Vaessen et al.

(104)

mTLE Global brain

connectivity

No specific networks Classification

of network

characteristics

lead to

diagnostic

accuracy of

77%

Global c.-

Graph t.

P vs. CTR 16 P

52 CTR

No Zhang et al.

(105)

Focal/IGE Global brain

connectivity

Interhemispheric

coherence

Global

asymmetry

(temporal and

limbic networks)

Global c.-

Asymmetry

Integration

P vs. CTR 100P

80 CTR

No Zhang et al.

(11)

IGE Global brain

connectivity

Cortical and subcortical

structures

Global c.-

ReHo

P vs. CTR 25 P

25 CTR

No ReHo in

thalamus/insula and

DMN correlated with

duration of epilepsy

Zhong et al.

(54)

IGE Global brain

connectivity

Nodal topological

characteristics

DMN

Nodal

topological

characteristics

mesial frontal

cortex,

putamen,

thalamus

amygdala

Global c.-

Graph t.

P vs. CTR

Structural

connectivity

vs. functional

connectivity

26 P

26 CTR

No Decoupling between

structural and functional

connectivity correlates

with epilepsy duration

Zhang et al.

(106)

For each study, information is provided regarding the epileptic syndrome included in the study, the areas where connectivity was seeded from (ROI), in those studies using this approach; the main findings subdivided

in increases and decreases of connectivity, and whether the effect of the spikes was addressed in the study (effect of spikes), as well as the correlations if any of the findings with clinical data.

Synd., epileptic syndrome; Seed ROI, region of interest used as the connectivity seed; P, patients; CTR, controls; Focal, focal epilepsies; TLE, temporal lobe epilepsy; mTLE, medial TLE; HS, hippocampal sclerosis;

IGE, idiopathic generalized epilepsies; CAE, childhood absence epilepsy; IDE, interictal epileptiform discharges; Global c., global brain connectivity; Graph t., graph theory; ReHo, regional homogeneity; ALFF,

amplitude of low-frequency fluctuations
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Mankinen et al. (47) showed that ReHo abnormalities have a
different distribution depending on the presence/absence of inter-
ictal activity on EEG acquired prior to the fMRI. Moeller et al.
(53) and Rodionov (108) found that ICA can identify a compo-
nent that spatially correlates with the cortico-subcortical network
that is temporally correlated with epileptic transients.

There is only one RS-fMRI study where the correlation between
interictal EEG activity and brain connectivity abnormalities was
quantified (93). Using amplitude of low frequency oscillations
(ALFF) as measure of resting connectivity in a subgroup of six
patients with mTLE; increased connectivity was measured within
mesial temporal lobe networks of patients, which correlated with
the number of interictal events. This suggests that interictal activity
was likely to be largely responsible for the network abnormalities
observed.

There are two main challenges when approaching the integra-
tion of EEG information (i.e., epileptic activity) in fMRI con-
nectivity analysis. The first limitation is scalp EEG’s sensitivity to
capture epileptiform abnormalities; icEEG recordings show that
only a portion of the epileptiform activity is captured by scalp
EEG. This limitation needs to be taken into account in those
studies that describe connectivity changes in the absence of epilep-
tic activity monitored by scalp EEG. Acquisition of simultaneous
icEEG–fMRI offers one possible solution to this sensitivity limita-
tion (109, 110) while the extraction of scalp EEG information not
visually identifiable remains another (111). The second limitation
is to define the concept of abnormality in the EEG of patients with
epilepsy. The classical definition of epileptiform abnormalities,
useful from the clinical point of view,constrains EEG modeling to a
number of abnormal features whereas EEG (and MEG) research is
providing new insights into different ways of exploring and defin-
ing EEG background activity (112) and its relation to RS-fMRI
derived networks (113).

Abnormalities in brain networks are likely to be present in
epilepsy without visible epileptiform activity in scalp EEG as
evidenced by structural connectivity changes (106, 114) but to dif-
ferentiate the more permanent and transient connectivity changes
might have implications; for example in understanding how treat-
ment of the transient epileptic events might reverse their cognitive
impact.

In general, to understand the sequelae of altered brain connec-
tivity in terms of cognition and seizure likelihood, both clinically
important questions, we need to disambiguate and understand
the effect of brain network alterations occurring over different
timescales; millisecond changes related to IEDs, tens of seconds
as measured by RS-fMRI and permanent changes (e.g., measured
using diffusion tensor imaging). EEG–fMRI therefore has a role
to play in the functional connectivity changes occurring in the
milliseconds – tens of seconds domain.

DISCUSSION AND CONCLUSION
WHAT HAVE WE LEARNT FROM RS-fMRI AND EEG–fMRI STUDIES?
Resting state fMRI studies in epilepsy have derived information
with regards to network dysfunction within and across epilepsy
syndromes. In both, focal and generalized epileptic syndromes
abnormalities are seen in large-scale networks usually involving
more than one lobe, and with bilateral distribution. Some of the

network abnormalities have common features like the disruption
of DMN and the thalamo-cortical patterns seen across syndromes
with spike and wave discharges (see Tables 1–3). These findings
are consistent with EEG–fMRI studies, primarily modeling fMRI
changes to interictal events which have also shown large-scale net-
works associated with epileptic activity, including changes in net-
works such as the DMN. However, open questions remain regard-
ing how the RS network changes found correlate to key aspects of
epilepsy such as seizure and IED generation, response to treatment
(pharmacological and surgical) and cognitive dysfunction.

The strength of combined EEG–fMRI lies in the ability to define
brain state and add a different range of temporal scales for assess-
ment of dynamic changes in network activity. This allows for
the identification and separation of pathologic features and their
characterization.

EEG–fMRI has had some level of validation as a pre-surgical
assessment tool; however it is likely to be useful in a subset of
patients and requires specialist equipment and knowledge, limit-
ing its availability to major epilepsy centers. RS-fMRI has relatively
little evidence of clinical utility in pre-surgical assessment, where
it needs to be predictive or diagnostic in terms of localization in
individuals to have clinical impact.

FUTURE DIRECTIONS
We propose the integration of both methods as the forward
step to link the abnormalities of network connectivity to the
pathophysiological phenomena of the disease.

Figure 1 summarizes the questions and hypothesis derived
from this review. Given the episodic nature of epileptic activ-
ity, it seems appropriate to represent functional connectivity as
a dynamic trajectory through a connectivity space with time
(Figure 1A). Connectivity, as indexed by fMRI correlations
between regions will depend on brain state: during cognitive tasks,
we expect a higher connectivity if the nodes are involved in that
task (A-1 pale green area), lower connectivity if they are not (A-1,
green area), and a small variability in connectivity given that cogni-
tive processes, typically require functional segregation. In contrast,
at rest, mean connectivity of that same network will be expected
to be significantly different and have greater variability due to the
relatively unconstrained nature of the resting state (A-2). In the
case of patients with epilepsy, there is an additional component
that has been found to induce changes in connectivity: epileptic
transients (A-3). Meanwhile, resting state studies have determined
that the mean connectivity of patients with epilepsy is abnormal,
the contribution of transients to these findings is yet to be properly
characterized.

In our view, the understanding of the effect of connectivity
changes associated with epileptic transients on the overall RS con-
nectivity is crucial for interpreting the findings of RS-fMRI studies
to date and to understand the interaction between RS-fMRI net-
works in epileptic processes or cognitive co-morbidities. Current
RS-fMRI studies capture connectivity changes as an average over
time showing differences from controls (Figure 1B: where patient’s
connectivity is represented by yellow area and controls in blue).

Epileptic transient’s rate and seizure activity may be modulated
by a number of factors that occur over different timescales: from
treatment to cognitive activity or external/internal factors such as
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hormones, sleep, or sensory stimulation. This might be because
they cause changes in brain connectivity that takes them toward
or away from network connectivity configuration that are associ-
ated with epileptic states (represented by the red area). One clear
example is reflex epilepsies, where changes in the network involved
in reading precede the seizure onset as measured by EEG–fMRI in
a case with reading epilepsy (76).

To understand the effect on resting state networks of any factor
of interest that interacts with epileptic transients we need to first
understand their role in the global RS connectivity in epilepsy.

Taking as an example drug treatment response, we can hypoth-
esize a change in RS connectivity based on the modification of
epileptic transients due to treatment (Figure 1C): progressive
decrease in epileptic activity may result in network connectivity
taking values that fall outside the “epileptic transient connectivity
zone” and in turn that are more similar to controls connectivity.
The characterization of these changes may allow RS-fMRI results
to be used as a marker of relevant aspects of the disease at differ-
ent time scales: such as response to treatment, cognitive effects of
epilepsy, transition between interictal and ictal states, or chronic
effects of disease progression.

Resting state fMRI and connectivity analysis is a fast developing
field of research and is therefore set to benefit from substan-
tial methodological advances with faster data acquisition, reduced
artifacts and improved and better validated analysis procedures.

Future work needs to ground results in clinically observed fea-
tures such as the change in epileptiform activity, or seizure rates
over different timescales, e.g., with different levels of attention, in
different sleep states, or over months or years of disease progres-
sion. Therefore, allowing us to better understand how changes in
brain networks occurring over different timescales contribute to
the clinical manifestations of epilepsy and their control. While RS-
fMRI provides an important non-invasive tool to evaluate network
structure in epilepsy the addition of EEG recording should allow
for better inference regarding the dynamic changes occurring at
multiple timescales in epilepsy.
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