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The adsorption–desorption phenomenon in a sample having the shape of a slab is
investigated by using a particular form for the kinetic equation at the limiting surfaces. A
closed solution for the time evolution of the ion density in a nematic liquid crystal sample
submitted to an external field is obtained in the limit in which the effective field coincides with
the external field. In this framework it is shown that the intrinsic time connected with the
presence of the electric field is proportional to the drift time. The constant of proportionality
is of the order of the ratio between the thermal agitation energy and the electrostatic energy.
In a similar manner, the time evolution of the bulk and surface densities, in the case of neutral
particles, is also determined in a closed form by means of a simple expression. A microscopic
model giving rise to a kinetic equation, similar to the one used in the analysis, is presented.
We propose a statistical interpretation of the adsorption–desorption phenomenon in the
framework of Maxwell–Boltzmann statistics, in which the relationship between the
phenomenological parameters, entering into the kinetic equation at the boundary surfaces,
with the microscopic model is derived. The analysis is suitable for the description of the
adsorption phenomena of neutral particles (dyes) as well as charged particles (ions) in nematic
liquid crystals.

1. Introduction

In recent years several investigations on nematic liquid

crystals doped with dyes have been published [1–5]. The

main interest of this kind of research is connected with

the possibility to modify the nematic orientation with

light [6–15]. According to the experimental studies, the

dye initially dissolved in the nematic liquid crystal is

selectively adsorbed by the limiting surfaces, and

oriented by the nematic field. When incident light

strives the surface covered by the dye, for the adsorp-

tion phenomenon, a structural transformation is

induced, which is responsible for the change of the easy

axis characterizing the substrate–nematic interface.

Preliminary studies on the adsorption phenomenon of

neutral particles have been reported [16, 17]. The

importance of the adsorption phenomenon on the

surface properties of nematic liquid crystals was first

recognized by Pieranski and Jerome [18, 19] and by

Teixeira and Sluckin [20, 21].

The influence of ions on the optical properties of a

nematic liquid crystal sample has been the subject of

intensive research. In the pioneering papers the analy-

sis was mainly focused on the re-normalization of the

anchoring energy and flexoelectric coefficients due to

the presence of the ions, and limited to considering the

static situation [22–33]. Investigations of the influence

of ions on the dynamical properties of nematic samples

have been presented by several groups, mainly for

practical applications [34–47]. In the relevant theoretical
analysis, the characteristic times are the diffusion time

and the drift time [48]. An open fundamental problem

is the analysis of the drift–diffusion problem of the

impurities in a sample of liquid. In this framework, it

is important to have information on the relaxation of

the density of impurities when an external field is

present, by taking into account the diffusion pheno-

menon [49].
The purpose of the present paper is twofold. First, we

consider the ionic distribution in a sample in the shape

of a slab, submitted to an external field. The sample is

assumed to be filled with an isotropic liquid containing

impurities that can be dissociated by means of a

chemical reaction. We limit our investigation to the

case in which the bulk density of ions is so small that the

back electric field of ionic origin is negligible with*Corresponding author. Email: ire@dfi.uem.br
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respect to the applied field. In this framework, we show

that the intrinsic time connected with the presence of

the electric field is proportional to the drift time, but

strongly depends on the temperature. Our results can be

directly applied to nematic liquid crystal samples

uniformly oriented, in a planar or homeotropic manner,

when the electric field is smaller than the critical field to

induce the Fréedericksz transition. In fact, in this case

the nematic sample behaves as an isotropic medium

in terms of the dielectric constant and the diffusion

coefficient. However, as will be shown, our analysis

gives the correct order of magnitude of the relaxation

time, even in the case in which the nematic sample is

distorted, i.e. the nematic orientation is not uniform

across the sample. For this reason, this problem is also

important for liquid crystals displays.

Secondly, we analyse the adsorption phenomenon,

obtaining a closed solution for the time evolution of the

adsorbed neutral particles (e.g. dyes) in terms of a series.

We consider a simple type of kinetics at the limiting

surface to describe the adsorption–desorption phenom-

enon. Different regimes, according to the adsorption

energies of the dyes, are found. Furthermore, by means

of a simple microscopic model, based on the van der

Waals interaction of the dye molecule with the

substrate, we show that it is possible to justify the

kinetic equation describing the adsorption phenom-

enon. Finally, we investigate how to connect the

phenomenological parameters entering into the kinetic

equation with the parameters of the model. We show

that this equation is in agreement with Maxwell–

Boltzmann statistical mechanics. A simple model to

deduce separately the phenomenological coefficients

entering into the kinetic equation is presented.

Our review paper gives a recently proposed unified

point of view on the dynamical aspects of the

adsorption–desorption phenomenon [50–53], and is

organized as follows. In § 2 the drift–diffusion problem

is analysed. We discuss the rôle of the intrinsic

characteristic times and establish a closed solution for

the time evolution of the density of ions in the presence

of an external field. We also show the results obtained

numerically relevant to the time evolution of the

distribution of ions across the sample. The applicability

of the results of our model to nematic liquid crystal

samples is discussed. In § 3 the adsorption phenomenon

from the surfaces is explicitly considered. The time

evolution of the bulk and surface densities is numeri-

cally investigated, showing that the behaviour is

governed by the largest among the two characteristic

times entering in the problem, when the diffusion time is

maintained constant. In § 4 we propose a statistical

interpretation for the kinetic equation in relation to the

adsorption phenomenon. Finally, § 5 is dedicated to

some concluding remarks.

2. Drift-diffusion problem

We consider a sample in the shape of a slab of thickness

d. The Cartesian reference frame used in the analysis

has the z-axis perpendicular to the bounding surfaces,

located at z5¡d/2 (see figure 1).

The problem is considered as one-dimensional, i.e. all

physical quantities depend only on the z-coordinates.

Let r(z, t) be the density of impurities in the dielectric

liquid. In practical cases, r(z, t) can represent the

density of a dye dissolved in the liquid crystal sample

[6–15], or the density of ions resulting from molecular

dissociation (intrinsic) or from the dissociation of

impurities present in the liquid. Consider that on r acts

an external force F52,U(z), where U(z) is the

potential of F. In this case F is responsible for a net

current which, in the limit of small |F|, is given by

jF5mrF, where m is the mobility and jF is the drift-

current due to F. The total current is then

j~jDzjF~{D+rzmr F ð1Þ

where jD is the diffusion current and D is the diffusion

coefficient. The continuity equation for this problem is

Lr

Lt
~+: D+rzmr+Uð Þ ð2Þ

which, in the one-dimensional case, is reduced to

Lr

Lt
~

L
Lz

D
Lr

Lz
zmr

dU

dz

� �
ð3Þ

Figure 1. Nematic sample considered in the analysis. The
surface anchoring energy is assumed strong. l represents a
typical length scale in which the interaction energy is supposed
to be localized, see § 4.2.
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where m/D51/kBT, in which kB is the Boltzmann

constant and T the absolute temperature, is the

Einstein–Smoluchowski relation [48].

An ideal case relevant to a solution of particles in an

external field is now considered. If the particles are

neutral, for example, dye molecules in a liquid crystal,

the homogeneous external field can be identified with

that due to gravity. If the particles are electrically

charged, the external field is due to an external power

supply. However, since in the analysis the external field

is assumed constant, the density of ions is considered to

be so small that the actual electric field across the

sample coincides with the external field. We consider the

simple case in which dU/dz5h is a constant. It is

assumed that there is no adsorption from the limiting

surfaces. In this case, equation (3) has to be solved by

imposing the conditions

ðd=2

{d=2

r z, tð Þdz~r0d ð4Þ

where r05r(z, t50) is the initial homogeneous density

across the sample, and

j +d=2, tð Þ~0, Vt: ð5Þ

Equation (4) is the conservation of the number of

particles per unit area in the cell. By putting r(z, t)5

req(z)+dr(z, t), where r(z, 0)5r0, req(z)5limtR‘ r(z, t),

and hence limtR‘ dr(z, t)50, one obtains

req zð Þ~req 0ð Þexp {2Vzð Þ ð6Þ

where V5mh/(2D). The integration constant req is

obtained by substituting equation (4). One obtains

req 0ð Þ~r0

Vd

sinh Vdð Þ : ð7Þ

From equation (7) it follows that for V50, i.e. h50,

req(0)5r0, and, hence, req(z)5r0. In this case, dr(z,

t)50, for all 2d/2(z(d/2 and 0(t,‘. In other words,

in the absence of adsorption phenomena at the limiting

surfaces, without the external field, the diffusion

phenomenon is clearly absent.

2.1. Intrinsic characteristic times

The function dr(z, t) is the solution of the linear partial

differential equation

L drð Þ
Lt

~D
L2 drð Þ

Lz2
zmh

L drð Þ
Lz

: ð8Þ

A solution to equation (8) has the form

dr z, tð Þ~exp {b2t
� �

wb zð Þ ð9Þ

where b?0. By substituting equation (9) into (8) one

concludes that wb(z) is the solution of the ordinary

differential equation with constant coefficients:

d2wb zð Þ
dz2

z2V
dwb zð Þ

dz
z

b2

D
wb zð Þ~0: ð10Þ

The characteristic exponents relevant to wb(z) are then

mb52V¡ivb, where

vb~
b2

D
{V2

 !1
2

: ð11Þ

It follows that

wb zð Þ~exp {Vzð Þ ab cos vbz
� �

zbb sin vbz
� �� �

: ð12Þ

Consequently, if use is made of equation (9), one has for

dr(z, t) the expression

dr z, tð Þ~exp {b2t{Vz
� �

ab cos vbz
� �

zbb sin vbz
� �� �

ð13Þ

whose functional dependence on t and z is typical of
a drift in the presence of diffusion. The total current
density, equation (1), is in the present case given by

j~{D
Lr

Lz
{mhr: ð14Þ

By taking into account that r(z, t)5req(z)+dr(z, t),

where req(z) is given by equation (6), one obtains

j~{D
L drð Þ

Lz
{mh drð Þ ð15Þ

which for equation (13), can be rewritten as

j~exp {b2t{Vz
� �

|

vb {ab sin vbz
� �

zbb cos vbz
� �� ��

zV ab cos vbz
� �

zbb sin vbz
� �� ��

:

ð16Þ

The boundary conditions j(¡d/2, t)50 give the homo-

geneous system

ab V cos Xb

�
{vb sin Xb

�
zbb V sin Xbzvb cos Xb

� �
~0

ab V cos Xb

�
zvb sin Xb

�
{bb V sin Xb{vb cos Xb

� �
~0

ð17Þ

where Xb5vbd/2. A non-trivial solution for ab and

bb is possible when the determinant of the coefficients

of the system (17) vanishes. This condition gives

V2zv2
b

h i
sin 2Xb

� �
~0, from which it follows that

Xn5vnd/25np/2, where n51, 2, …. Hence vn5np/d

and b2
n~D V2zn2p2

	
d2

� �
. The characteristic times
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tn~1
	

b2
n are then given by

tn~
1

b2
n

~
1

1=thzn2=tD
ð18Þ

where th51/(V2 D) is an intrinsic time connected with

the presence of the external field, and tD5d2/(p2 D) is

the diffusion time in the present case. The longest

characteristic time, for n51, is then

t1~
1

1=thz1=tD
~

tDth

thztD
: ð19Þ

For tD%th, i.e. p/d&V, from equation (19), it follows

that

t1*tD: ð20Þ

In the opposite case where p/d%V one finds

t1*th: ð21Þ

If the diffusing particles are ions contained in an

isotropic liquid, and the drift is due to an external

electric field, equation (21), by taking into account that

h5qE, where q is the electric charge of the ion, and m/

D51/kBT, reads

t1*tE~4
d2

m q V0

� �
kBT

qV0
ð22Þ

where V0 is the applied voltage. Equation (22) holds in

the hypothesis that the concentration of ions is so low

that the effective electric field in the sample practically

coincides with the external field. This characteristic time

is usually determined in elementary textbooks as td5d/

vd5d/(mqE)5d2/(mqV0). From the expression of td we

derive that it depends on the temperature by means of

the ion mobility m. Consequently, the relative variation

of td occurring for a variation of the temperature T of

dT is

dtd

td
~

1

m

dm

dT
dT : ð23Þ

The relationship for t1 shows that t15atd, where

a54kBT/(qV0) represents the importance of the ther-

mal agitation energy with respect to the potential

energy responsible for the drift. It follows that when T

changes by dT, the relative variation of the relaxation

time is

dt1

t1
~

1

m

dm

dT
z

1

T

� �
dT : ð24Þ

To evaluate dm/dT we assume, for the temperature

dependence of the diffusion coefficient of the ions in the

nematic material, that predicted by the Stokes–Einstein

law [54], D5kBT/(6pgR0), where g(T) is the viscosity of

the ion in the nematic liquid, and R0 an average

dimension of the ion. By taking into account the

Einstein–Smoluchowski relationship we get for the ion

mobility the expression m(T)51/[6pg(T)R0], from which

we obtain

1

m

dm

dT
~{

1

g

dg

dT
: ð25Þ

If we identify g(T) with the viscosity of the

nematic liquid crystal, (1/g) (dg/dT),1022 [55]. In

this case dt1/t1 differs from dtd/td for the term dT/

T, which is not negligible with respect to (1/g)

(dg/dT).

Note that t1, given by equation (22), represents the

time necessary for the system to reach equilibrium,

where the drift current is balanced by the diffusion

current. By contrast, td represents the time required by

an ion to travel across the entire sample. Usually t1,td

because not all the ions have to be moved to reach

equilibrium.

2.2. Time evolution of the ion density

Since equation (8) is linear, the general solution for the

problem can be written in the form

dr z, tð Þ~
X

n

exp {b2
nt

� �
wn zð Þ ð26Þ

where

wn zð Þ~exp {Vzð Þ an cos vnzð Þzbn sin vnzð Þ½ �: ð27Þ

Note that the parameters

pn~
an

bn

~
vn cos XnzV sin Xn

vn sin Xn{V cos Xn

ð28Þ

are known quantities when the eigenvalues have been

determined. Consequently, it is possible to rewrite

equation (26) in the form

dr z, tð Þ~exp {Vzð Þ
X

n

bn exp {b2t
� �

yn zð Þ ð29Þ

where

yn zð Þ~sin vnzð Þzpn cos vnzð Þ: ð30Þ

From equation (30) it follows that

ðd=2

{d=2

yn zð Þym zð Þdz~0 ð31Þ

for n?m, and

ðd=2

{d=2

exp {Vzð Þyn zð Þdz~0: ð32Þ
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Note that

ðd=2

{d=2

dr z, tð Þdz~
X

n

bn exp {b2t
� �

ðd=2

{d=2

exp {zð Þyn zð Þdz~0

ð33Þ

for equation (32). Consequently, equation (4) is verified

for all t, as required.

It is now possible to determine the coefficients bn

appearing in equation (29). From the expression r(z,

t)5req(z)+dr(z, t) one has, in the limit t50,

dr z, 0ð Þ~r0{req zð Þ: ð34Þ

By taking into account equation (29), one can rewrite

(34) in the form X
n

bnyn zð Þ~f zð Þ ð35Þ

where, for equation (7),

f zð Þ~exp zð Þdr z, 0ð Þ

~r0 exp zð Þ{ d

sinh dð Þ exp {zð Þ

 � ð36Þ

From equation (35), for (31), one obtains

bm~
1

Nm

ðd=2

{d=2

f zð Þym zð Þdz ð37Þ

where Nm5<ym|ym> is the square of the modulus of the

eigenfunction ym.

In figure 2 we show the time evolution of r(z,

t)5req+dr(z, t) for three typical values of the external

field h, such that t1,tD, t1,tDth/(tD+th), and t1,th.

As is evident from figure 2 (c) in the limit of large

external field, which in practical units means

V0&p(kBT/q)<0.075 V, the equilibrium distribution is

reached after a time teq<0.4tD.

Figure 2. Time evolution of r(z, t) for three typical values of the external voltage V05ap(kBT/q) for (a) a51/5, (b) a51 and (c) a55.
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2.3. Drift-diffusion phenomenon in nematic liquid
crystals

The analysis reported is, strictly speaking, valid only for

isotropic liquids. The application of our results to

nematic liquid crystals requires some additional hypoth-
esis. As is known, nematic liquid crystals are anisotropic

liquids, whose optical axis coincides with the average

molecular orientation, called the nematic director and

denoted by n. The physical parameters of nematic

materials are described by symmetric second order

tensors [56]. In particular, the dielectric constant,

diffusion coefficient, and the ion mobility of the nematic

medium have different values along and perpendicular
to the director. Their representing tensors are of the

kind

eij~e\dijzeaninj

Dij~D\dijzDaninj

mij~m\dijzmaninj

ð38Þ

where ea5eI2e), and I and ) refer to n. Similar

considerations hold for the tensors of diffusion and ion

mobility. This circumstance implies that the effective

dielectric constant, diffusion coefficient and ion mobi-

lity depend on the nematic orientation, described by n.

Since we are considering a nematic sample submitted

to an external field, other limitations on the values of

the field have to be imposed. Nematic materials present

an electric polarization connected with the nematic

distortion that has not been considered in our analysis

[57]. Furthermore, if the electric field is strong enough it

can induce a distortion. It follows that our results are
valid also for nematic liquid crystals only if they are

uniformly oriented. This implies that the external field

has to be smaller than the critical field for the

Fréedericksz transition. In this case our results can be

directly applied to analyse the typical relaxation time

in a drift-diffusion phenomenon. However, since the

values of the parameters along and normal to the

director are of the same order of magnitude [37],
the analysis presented above gives the correct order of

magnitude of the relaxation time for the ions in a

nematic liquid crystal even in the case in which it is

distorted.

It follows that we can apply our result to typical
experimental situations concerning nematic liquid crys-

tals. By assuming d,8 mm, D,10211 m2 s21 [44], we

have tD5d2/(p2D),0.65 s, and hence teq<0.26 s. This

means that the ions follow the external field variations,

if the external field is changing with a characteristic time

larger than 0.3 s. However, in the case in which the ions

are macroparticles arising from the deterioration of the

aligning layers [44], the scale times can be completely

different. In this case for D,10212 m2 s21, which

corresponds to a radius of the ion of the order of

20 nm [44], we have tD,6.5 s and hence teq,2.6 s. In

this situation, if the external field is changing with a

period of the order of 1 s, the macroparticles arising

from the surfaces do not participate in the phenome-

non. Of course, ions dissolved in the liquid crystal, for

which D,10211 m2 s21, by contrast, do participate. This

conclusion can be of some importance in the experi-

mental determination of physical parameters of nematic

liquid crystals when external electric fields are applied

[34–36].

3. Adsorption from surfaces

If the adsorption phenomenon from the surfaces is

taken into account, and no external fields are present,

the bulk density of particles r(z, t) is the solution of the

diffusion equation:

Lr

Lt
{D

L2r

Lz2
~0 ð39Þ

where D is the diffusion coefficient. The current density

is, in this case, j52DLr/Lz. If we consider identical

surfaces, we have furthermore r(z, t)5r(2z, t). The

surface density of adsorbed particles will be denoted by

s5s(t). The requirements to be fulfilled are expressed

by

2s tð Þz
ðd=2

{d=2

r z, tð Þdz~r0d ð40Þ

and [58]

j +d=2, tð Þ~{D
Lr

Lz
~

ds

dt
ð41Þ

where r05r(z, t50) is the initial homogeneous density

across the sample. To investigate the physical con-

sequences of the phenomenon of adsorption, a kinetic

equation at the limiting surfaces has to be imposed. A

widely used balance equation at the boundary is [40]

ds

dt
~k r {d=2, tð Þ{ 1

t
s tð Þ ð42Þ

where k and t are parameters describing the adsorption

phenomenon. Equation (42) simply states that the time

variation of the surface density of adsorbed particles

depends on the bulk density of particles just in front

of the adsorbing surface, and on the surface density of

particles already adsorbed. The statistical meaning

of equation (42) will be discussed in detail in § 4.

In equation (42), t has the dimension of time, and k
that of length/time. Consequently, if the adsorption

6 L. R. Evangelista and G. Barbero



phenomenon is present, there are two new intrinsic

times, t and tk5d/2k.

3.1. Time evolution of dr(z, t)

To solve the problem one assumes that r(z, t)5

req(z)+dr(z, t), where req(z)5limtR‘ dr(z, t) is the

distribution of the particles in the steady state. Hence,

limtR‘ dr(z, t)50. We assume also that s(t)5seq+ds(t),

where limtR‘ ds(t)50. Simple considerations show that

req is z-independent.

In the limit tR‘, from equation (42) one obtains

seq5ktreq. Equation (40), in the limit tR‘, becomes

2seq+reqd5r0d. Consequently, req and seq are found to

be

req~
r0

1z2 k t=d
and seq~

kt=d

1z2kt=d
r0d: ð43Þ

The time evolution of dr(z, t) and ds(z, t) can now be

determined. By substituting r(z, t)5req+dr(z, t) into

equation (39) one obtains

L drð Þ
Lt

~D
L2 drð Þ

Lz2
ð44Þ

whose solution can be written in the form

dr z, tð Þ~
X

b

Cb cos vb z
� �

exp {b2t
� �

ð45Þ

where vb~b
	 ffiffiffiffi

D
p

, with b?0. Moreover, by substituting

the expressions for r(z, t) and s(t) into equation (42),

one has

d dsð Þ
dt

~kdr{
1

t
ds: ð46Þ

From equations (33) and (46), one obtains

ds~M exp {t=tð Þz
X

b

dsb exp {b2t
� �

ð47Þ

where

dsb~k
Cb

t{1{b2
cos vbd

	
2

� �
ð48Þ

and M has to be determined by means of the condition

concerning the conservation of the number of particles.

By substituting r(z, t) and s(t) into equation (40) one

gets

2ds tð Þz
ðd=2

{d=2

dr z, tð Þdz~0 ð49Þ

which, from equations (45) and (47), can be written as

M exp {t=tð Þ

z
X

b

dsbz
Cb

vb
sin vbd

	
2

� �
 �
exp {b2t
� �

~0
ð50Þ

from which, by taking into account equation (48), one

obtains M50 and tan (vbd/2)5[k/(b22t21)]vb, which

determines the eigenvalues of the problem and can be

rewritten as

tan X~
tD

4tk

� �
X

X 2{tD=4t
ð51Þ

where X5vbd/2. In summary, three time scales govern

the entire phenomenon, namely, tD5d2/D, tk5d/2k, and

t. The eigenvalues of the problem depend on the two

ratios tD/tk and tD/t. In figure 3 the graphical solutions

of equation (51) are illustrated.

In a practical problem it is important to know the

first eigenvalue b?0 responsible for the lowest relaxa-

tion time in the phenomenon under consideration. The

function on the right hand side of equation (51) has a

vertical asymptote at Xb~ tD=4tð Þ
1
2. If tD%t, equa-

tion (51) can be approximated by Xb tan Xb5tD/(4tk),

showing that Xb depends on tD/tk. For tD%tk,

Xb* tD=4tk

� �1
2. In this case (tD%t, tD%tk, and

tk%t), one gets b251/t. This means that when the

diffusion process is a rapid phenomenon, the time

dependence of the particle distribution is t. In the

opposite limit of tD&t, equation (51) gives tan Xb52(t/

tk)Xb, whose solution is p/2,Xb,p, and the relevant

relaxation time tR is in the range tD/(4p2)(tR(tD/p2.

Finally, from equation (51) it follows that, for large Xb,

i.e. Xb& tD=4tð Þ
1
2 the eigenvalues are Xn<np.

Figure 3. Illustration of the solution of equation (51) for
tD/4t51 and (tD/4tk)510. f(X) denotes the right and the left
hand side of equation (51) depicted on the same axes.
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3.2. Time evolution of the bulk and surface densities

If the eigenvalues are known, one can calculate the

coefficients Cb appearing in equation (45), by means of

which one determines the time evolution of dr(z, t) and

ds(t). From r(z, t)5req+dr(z, t), written in the limit of

tR0, one has dr(z, 0)52(t/tk)/(1+t/tk) r052seq/d,

which, by using equation (45), becomes

X
b

Cb cos vbz
� �

~
2seq

d
: ð52Þ

The main problem is that the eigenvectors ub5cos (vbz)

are not orthogonal. In this case one can orthogonalize

the set of eigenvectors by a procedure similar to the

Schmidt approach [59]. By indicating the eigenvalues

with b1(?0), b2, b3, …, bn, … one writes ui~cos vbi
z

� �
,

where ui are linearly independent. It is possible to set,

using Einstein’s convention on the repeated indices,

vi5lijuj, where lij50 for i,j, and lii51. Thus, the

matrix L, of elements lij is such that det L51. The

coefficients lij for i.j are determined by putting

Svi vj



 T~

ðd=2

{d=2

vi zð Þvj zð Þdz~0 ð53Þ

for i?j. The relation among vi and ui can be written in

the matrix form as v5Lu, from which ui5(L21)ijvj.

Consequently, if equation (52) is written as Cbub(z)5

2seq/d one gets Cb(L21)bj vj52seq/d, from where

Cb L{1
� �

bj
Svj vkj T~

2seq

d
SvkT ð54Þ

with

SvkT~

ðd=2

{d=2

vk zð Þdz: ð55Þ

Since vi(z) form a set of orthogonal functions,

<vj|vk>5Nkdjk, where Nk5<vk|vk>. Consequently, from

equation (54), one deduces that (L21)bkCb5(2seq/

d)<vk>/Nk. In the matrix form one has for the preceding

equation:

C~
2seq

d
LTR ð56Þ

where R is the vector of elements Rk5<vk>/Nk and

LT
ij ~Lji. The coefficients one is looking for are then

given by

Cb~
2seq

d
LabRa ð57Þ

which represents the solution of the problem. There is

another way to obtain explicit equations connecting vq

with uq, which gives directly the elements of the matrix

L, and, consequently, the coefficients Cb. It can be

written in the form [60]:

vq~
Xq

n~1

Mnq

Mqq

un ð58Þ

where Mnq is the minor of the element

dnq~

ðd=2

{d=2

un zð Þuq zð Þdz

in the determinant Dq defined as

D1~d11

D2~
d11 d12

d21 d22














D3~

d11 d12 d13

d21 d22 d23

d31 d32 d33




















; etc:

This alternative way is more suitable for numerically

implementation.

To study the time evolution of the densities, it is

useful to rewrite the final equations governing them.

The coefficient of the cosine in equation (48) can be put

in the form

k
Cb

t{1{b2
~

d

2

tD

4tk

� �
Cb

tD

4t
{X 2

b

� �

which, by using (51), can be cast in the final form:

k
Cb

t{1{b2
~{

d

2

tan Xb

Xb
Cb:

This permits the rewriting of (48) as

dsb~{
d

2

sin Xb

Xb
Cb

giving for s(t) the re-scaled form:

2s t�ð Þ
d

~r0

r1=r2

1zr1=r2
{
X

b

sin Xb

Xb
Cb exp {X 2

b t�
� �

ð59Þ

where r15tD/4tk, r25tD/4t, and t*54t/tD. In the same

manner, by considering that req5r022seq/d, and using

equation (45), one obtains:

r Z, t�ð Þ~r0

1

1zr1=r2
z

X
b

Cb cos XbZ
� �

exp {X 2
b t�

� � ð60Þ

where 21(Z52z/d(1.

8 L. R. Evangelista and G. Barbero



In Figure 4 the behaviour of r(Z, t*)/r0 versus Z, as

predicted by equation (60), is shown for a significant

set of parameters giving the ratios of the characteristic

times entering in the problem. The curves show that as

r2 increases in comparison with r1, i.e. as the importance

of k decreases when compared with t, there is an
increasing accumulation of particles near the surfaces,

placed at Z5¡1. This indicates that the time charac-

terizing the adsorption phenomenon, represented by tk,

becomes increasingly large, leading to an accumulation

of particles (not adsorbed) near the limiting surfaces.

In figure 5 the behaviour of 2s(t)/r0d, as predicted by

equation (59), is shown as a function of the rescaled

time t*54t/tD for three representative set of ratios r1

and r2. The solid curve shows the case for r1510 and

r251, i.e. for tD54t540tk. The curve indicates that

the characteristic time governing the behaviour of s(t)

is such that t*54t/tD<1. For this case, numerical

calculations give the first non-zero eigenvalue as

X151.5, tD<4, and t<1 and tk<0.10. Therefore, the

time behavior of s(t) is governed by t which is the

greater of t and tk. The dotted curve depicts r15r251.0,

i.e., for tD54t54tk. The first non-zero eigenvalue is

X151.21, tD<4, and tk,t<1. In this case, both

characteristic times are important for the behaviour of

s(t). The dashed curve refers to r151 and r255, i.e. for

tD520t54tk. Numerical calculations give X152.01,

tD<3.05, and tk<0.9, t<0.2. In this case, the time

behaviour of s(t) is governed by tk.

The entire analysis, carried out with the help of

numerical calculations, shows that, as expected on

analytical grounds, the time behaviour of the surface

density of particles is governed by the larger among the

two characteristic times tk and t when tD is kept

unchanged.

4. Statistical interpretation of the kinetic equation and

the adsorption phenomenon

The adsorption phenomenon requires that a molecule

loses sufficient energy during its collision with the

surface that it can be trapped in the physisorption well.

When the atom or molecule strikes the surface, it excites

vibrational modes in the surface and, if the energy

exchange is greater than the initial collision energy, it

will be trapped in the well. We can calculate the

adsorption rate for a bulk molecule just in front of the

surface by means of the kinetic theory. The number of

molecules incident on the surface, per unit area, per unit

time, is the normal component of the current density

defined as the product of the particle bulk density, just

in front the surfaces, multiplied by the velocity of the

particles. The adsorption rate is given by the product of

the incoming flux with the suitably defined sticking

coefficient. This kind of analysis holds when the

molecules from the liquid are adsorbed on the surface

when they hit an empty site, and during the adsorption

phenomenon the molecule does not change its structure.

Within this framework the adsorption phenomenon can

be treated as a first order chemical reaction and from

the preceding discussion, the rate of adsorption is

proportional to the density just in front of the surface.

This is the so called Langmuir approximation [61]. The

desorption phenomenon is the reverse of the adsorp-

tion phenomenon and requires that an adsorbed

molecule gains sufficient energy from the surface to

break its bonding with the surface. If in the desorption

Figure 4. Behaviour of r(Z, t*)/r0 versus Z, as predicted by
equation (60) for t*54t/tD50.01. The curves are depicted for a
representative set of the parameters r1 and r2. Solid line
corresponds to r1510.0 and r251.0, dotted line to r151.0 and
r251.0, dashed line to r151.0 and r255.0, and dashed-dotted
line to r151.0 and r2510.0.

Figure 5. Behaviour of 2s(t*)/r0d versus t*54t/tD. Solid line
depicts r1510.0 and r251.0, dotted line r151.0 and r251.0,
and dashed line r151.0 and r255.0.
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phenomenon the adsorbate remains intact on the sur-

face, and desorbs reversibly, then the desorption rate is

just proportional to the surface coverage, i.e. to the

surface density of already adsorbed particles. In this

case the desorption is first order. Of course, more

complicated situations, in which the structure of the

molecule changes during adsorption, can also occur.

For instance, if two incident molecules X are adsorbed

as a molecule XX, the adsorption rate is proportional to

the square of the density. In the same manner, the

desorption rate strongly depends on the order of the

chemical reaction describing the phenomenon [61, 62].

In the present investigation our analysis is limited to the

case in which the adsorption–desorption phenomenon

can be described by first order chemical kinetics,

because we are mainly interested in the description of

the adsorption–desorption of dyes from the surfaces.

Furthermore, we have assumed that the system is far

from reaching saturation in the covering ratio. Obvious-

ly, the analysis can be extended to consider more

complicated cases. With our simplifying hypotheses, the

kinetic equation at the surfaces, equation (42), is written

in the form of a balance of the adsorption effect

proportional to the density of the particles just in front

of the surface, and the desorption effect proportional to

the already adsorbed density of particles. We now show

that this equation is in agreement with Maxwell–

Boltzmann statistical mechanics; we also propose a

simple model to deduce separately the phenomenologi-

cal coefficients entering into the kinetic equation.

4.1. 1D lattice gas model

We still suppose that the system has the shape of a

slab of thickness d, limited by two surfaces that are

perpendicular to the z-axis. Discretization can be

achieved by assuming that the slab is formed by N

identical planes intersecting the z-axis at equally spaced

points, labelled by m51, 2, …, N. The ‘bulk planes’ are

N22 of them, and the ‘surface planes’ are the remaining

two. In each one of these planes there are NS sites that

can be occupied by a particle. Actually, this assumption

is necessary only for the ‘surface planes’ at which, in

fact, the particles may attach themselves when the

adsorption phenomenon is present, but for simplicity

we assume the same for all the planes. Consequently,

since the planes are identical, the system can be treated

as a 1D lattice gas formed by N equally spaced planes

that can be occupied by NS of the n particles forming

the entire system. Let us assume now that a particle in

the ‘surface plane’ interacts with the surface and the

adsorption energy, in kBT units, is 2A. In this situation,

the partition function of the thermodynamical system

under consideration is obtained by taking into account

that the energy of a particle in a given plane is such that

E15EN52A, and Em5EB50, for m52, …, N21.

Consequently, the single particle canonical partition

function assumes the same form as the one representing

a system of N degenerate states whose degeneracy is

gm5NS, namely [63]

Z~
XN

m~1

gm exp {Emð Þ~NS 2 exp Að ÞzN{2½ �: ð61Þ

It follows that the thermodynamical probability for a

particle to be on a bulk plane (m52, 3, …, N21) and on

a surface plane are, respectively,

pB~
N{2

2 exp Að ÞzN{2
and

pS~
2 exp Að Þ

2 exp Að ÞzN{2
:

ð62Þ

Thus, the average numbers of bulk and surface particles

are, respectively,

nB~n pB and nS~n pS: ð63Þ

As expected, nB+nS5n. In terms of bulk and surface

densities we can consider that r0dS5n, p�eqd S~nB, and

2s�eqS~nS, where S is the area of each plane. This

relation implies that r�eqdz2s�eq~r0d. Consequently,

by using equation (63) one finds

r�eq~
1

1z 2D=dð Þexp Að Þ r0

s�eq~
D=dð Þ exp Að Þ

1z 2D=dð Þexp Að Þ r0d,

ð64Þ

where we have introduced the quantity D5d/(N22),

whose meaning will be discussed later.

According to equation (64), in the limit AR0 we

obtain

r�eq 0ð Þ~ 1

1z2 D=dð Þ r0

s�eq 0ð Þ~ D=d

1z2 D=dð Þ r0d

ð65Þ

indicating that even if A50 at the surfaces the particle

surface density is not zero. However, in the adsorption–

desorption phenomenon one is interested in the varia-

tion of the surface density on the limiting surfaces due

to the presence of the surfaces. For this reason in our

analysis we will consider the effective bulk and surface

densities of particles, in the adsorption problem under

investigation, defined by req~r�eqz 2=dð Þs�eq 0ð Þ and by

seq~s�eq{s�eq 0ð Þ. By definition req and seq are such that

10 L. R. Evangelista and G. Barbero



req(0)5r0 and seq(0)50. By taking into account

equation (64) and (65) we obtain for req and seq the

expressions

req~
1

1z2 D=dð Þexp Að Þz2
D=d

1z2 D=dð Þ


 �
r0

seq~
=dð Þexp Að Þ

1z2 =dð Þexp Að Þ{
D=d

1z2 D=dð Þ


 �
r0d:

ð66Þ

The quantity seq given by equation (66) can be rewritten

as

seq~
D

d

exp Að Þ{1

1z2 D=dð Þ½ � 1z2 D=dð Þexp Að Þ½ � r0d: ð67Þ

In the limit of large A, (A&1), from equation (67) we get

seq A&1ð Þ~ 1

2
r0d ð68Þ

whereas for small A, (A%1), the surface density is found

to be

seq A%1ð Þ~Ar0D ð69Þ

since D%d, as will be shown later. The relative

increasing of the surface density of particles due to the

adsorption phenomenon, according to the definition of

seq is given by the ratio

r~
seq

s�eq 0ð Þ~
exp Að Þ{1

1z2 D=dð Þexp Að Þ : ð70Þ

The surface density in the limit of large adsorption

energy given by equation (68) is an expected result,

because in this limit all the particles (assumed dimen-

sionless) present in the bulk are adsorbed. In this

case from equation (70) we obtain r,d/(2D)&1. In the

opposite limit of small A, r,A. This result indicates that

in the case of small adsorption energy, A represents the

relative increase of the surface density of particles. By

assuming r0,1020 particles per m3, D,1029 m [40], and

taking A,0.1, one gets seq,1010 particles per m2, which

represents 10% of the surface density of particles in the

absence of adsorption. This quantity can be easily

detected.

If we now compare equation (43), obtained by using

the kinetic equation, with (66) we deduce that

kt

D
~

exp Að Þ{1

1z4 D=dð Þz4 D=dð Þ2exp Að Þ
ð71Þ

which, by taking into account that D%d, can be

rewritten in the approximated form

kt

D
~exp Að Þ{1: ð72Þ

As expected, for AR0, kt/DR0.

4.2. Microscopic model

An alternative manner for the deduction of equa-

tion (72) is based on a particular model of a physical

system. To this end, let us consider a sample in the

shape of a slab containing particles. We can assume that

the interaction of the particles with the limiting surfaces

is short range and limited to two surface layers of

thickness l, where the interaction energy is localized. In

this framework, the evolution of the bulk density is

obtained by solving the diffusion equation in the three

regions: R1 : {d=2ƒzƒ{z�, RB : {z�ƒzƒz�, and

R2 : z�ƒzƒd=2, where z*5d/22l and l is in the meso-

scopic scale. For the sake of simplicity we assume that

the surface potential, in kBT units, is

U zð Þ~

U1~U R1ð Þ~ U0

l
zzz�ð Þ

UB~U RBð Þ~0

U2~U R2ð Þ~{
U0

l
z{z�ð Þ:

8>>>>><
>>>>>:

ð73Þ

The form proposed above for the potential illustrates, in

a simple manner, the main feature to be explored in our

analysis; that is, the fact that the interaction responsible

for the adsorption phenomenon has a defined penetra-

tion range, here represented by l. Since we approximate

U(z) by means of a linear function, our analysis is,

actually, valid only for small U0. In particular, the

relation that we will obtain for kt will be meaningful

only in the limit of U0R0. This point of the analysis can

be improved by considering more realistic forms for

the surface potential, such as those having the power-

law decaying or other non-linear spatial dependence.

Typical examples are (i) the van der Waals potential,

U(z)5AH/z3, where AH is the Hammaker constant, for

the first case, and (ii) U(z)5U0 cosh (z/l)/cosh [d/(2l)],

for the second case, i.e presenting a strong subsurface

variation, and written for a system in which the surfaces

are placed at z5¡d/2. There are other choices for the

potential [64] but they do not change the main

conclusions of our analysis, as we have demonstrated

in another context [65]. However, at the end of this

section we will indicate a generalization of the analysis

developed for the case in which U(z) is given by

equation (73).

Let us indicate the density by ri~r Rið Þ and the

current density in the region Ri by

ji~j Rið Þ~{D
Lri

Lz
{eim h ri ð74Þ

where e151, eB50 and e2521. In equation (74) m is the
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mobility and h5U0/l. The continuity equations

Lri

Lt
~{

Lji

Lz
ð75Þ

for i51, B, 2, have to be solved by imposing the

matching conditions

r1 {z�, tð Þ~rB {z�, tð Þ and rB z�, tð Þ~r2 z�, tð Þ ð76Þ

for the densities, and

j1 {d=2, tð Þ~0, j1 {z�, tð Þ~jB {z�, tð Þ

jB z�, tð Þ~j2 z�, tð Þ, j2 d=2, tð Þ~0
ð77Þ

for the current densities. The conditions j1(2d/2,

t)50 and j2(d/2, t)50 simply state that the particles

cannot leave the sample. By putting, as usual, ri(z,

t)5reqi(z)+dri(z, t) where reqi(z) are the densities in the

steady state, a simple calculation gives

req i~p exp {Uið Þ: ð78Þ

In deriving equation (78) we have used the Einstein–

Smoluchowski relation. The constant p has to be

determined by imposing that

ðd=2

{d=2

r z, tð Þdz~r0d: ð79Þ

We get

req~req B~p~
1

1z2R


 �
r0 ð80Þ

where

R~
l

d

exp U0ð Þ{1

U0
{1


 �
: ð81Þ

The equivalent surface density, in the steady state, is

defined by

seq~

ðd=2

z�
req2 zð Þ{reqB

� �
dz~ Sreq2Tl{reqB

� �
l ð82Þ

where

Sf zð ÞTl~
1

l

ðd=2

d=2{l

f zð Þdz: ð83Þ

It follows that for equations (73), (78) and (80), seq

defined by (82) is

seq~
R

1z2Rð Þ r0d: ð84Þ

By comparing equations (80) and (84) with (43), we get

kt

l
~

exp U0ð Þ{1

U0
{1&

U0

2
ð85Þ

since U0%1 in our analysis. The result (85) coincides

with (72) if D is of the order of l, which is reasonable,

and A is identified with the average value of the

potential energy in the surface layer of thickness l. In

fact, in the present calculation l represents the

penetration of the surface forces, whereas when we

analysed the statistical problem we considered the

surface layers localized at the surface. Hence, the

particles in the bulk were those at a distance D from

the surface. This fact can be easily understood. Since

N&2 we can write D<d/N, which represents the spacing

between the planes in this 1D lattice gas model. It is

not arbitrary but, on the contrary, it is connected with

the penetration length of the forces giving rise to the

adsorption. More precisely, D is a parameter connected

with the separation between bulk and surface particles.

It can be estimated by considering the first two planes

N1 and N2, which represent, respectively, the surface

itself (m51) and the first plane of the bulk (m52). The

spacing between these planes has to be of the order of l.

Therefore, D<l and N5d/D is a quantity fixed by the

thickness of the sample and by the penetration of the

surface forces.

We can now generalize the analysis presented above

to the case of generic surface potential U(z), which

is, however, assumed localized in a surface layer of

mesoscopic thickness. In this case equation (78)

becomes

req zð Þ~P exp {U zð Þ½ �: ð86Þ

The quantity P is again determined by means of

equation (79). A simple calculation gives

P~
r0

Sexp {U zð Þ½ �Td

ð87Þ

where

Sf zð ÞTd~
1

d

ðd=2

{d=2

f zð Þdz: ð88Þ

Consequently

req zð Þ~r0

exp {U zð Þ½ �
Sexp {U zð Þ½ �Td

: ð89Þ

In particular, since U(0)50, we have from (89)

req 0ð Þ~P: ð90Þ
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The surface density of particles, that in this context is

given by

seq~
1

2

ðd=2

{d=2

req zð Þ{req 0ð Þ
� �

dz ð91Þ

is

seq~
1

2
r0d

Sexp {U zð Þ½ �Td{1

Sexp {U zð Þ½ �Td

: ð92Þ

By comparing equation (92) with (43) we get

kt

d
~

Sexp {U zð Þ½ �Td{1

2
: ð93Þ

Now we can take into account the hypothesis that U(z)

is localized in a surface layer of mesoscopic thickness l.

In this case we have

Sexp {U zð Þ½ �Td~2
l

d
Sexp {U zð Þ½ �Tl{1ð Þz1: ð94Þ

By substituting equation (94) into (93) we obtain,

finally,

kt

l
~Sexp {U zð Þ½ �Tl{1 ð95Þ

which generalizes (85) to the case of arbitrary U(z).

4.3. Comparison between the phenomenological and the
microscopic model

In the two analyses presented above, only information

on the product kt has been obtained because only the

steady state was considered. To proceed further, and

connect k and t with the parameters of the model, i.e.

the adsorption energy and the range of the surface

forces, it is possible to follow two different approa-

ches. One is to consider the statistical mechanics of

systems out of the equilibrium, and to solve the rele-

vant equation for the detailed balance. The other is

to solve the diffusion equation by taking into account

the time evolution of the system. We will adopt the

latter.

From equation (75) for i52 one can write, for a

surface layer of thickness l, that

ðd=2

z�

Lr2

Lt
dz~{

ðd=2

z�

Lj2

Lz
dz ð96Þ

which is equivalent to

d

dt

ðd=2

z�
r2 z, tð Þdz~{ j2 d=2, tð Þ{j2 z�, tð Þ½ �: ð97Þ

The surface density in the surface layer is introduced

as

s tð Þ~
ðd=2

z�
r2 z, tð Þ{rB z, tð Þ½ �dz&

ðd=2

z�
r2 z, tð Þdz ð98Þ

because l is of mesoscopic length. We observe that, if

the surface density is considered as a useful quantity, in

the surface layer r2(z, t) is expected to be very large with

respect to rB in order that equation (98) gives a finite

quantity. In this framework rB%r2. From the fourth of

equations (77) one knows that j(d/2, t)50. Therefore,

equation (97), by using (98), is reduced to [58]

ds tð Þ
dt

~j2 z�, tð Þ: ð99Þ

At first sight equations (99) and (41) seem incompa-

tible. The consistence between the two equations can

be understood taking into account that in the present

context the surface density is defined by means of the

bulk density of particles in the surface layer. Con-

sequently its increase is due to particles coming form the

bulk, whose current density is jB(z*, t).

On the other hand, substitution of one of the

equations (74), relevant to i52, into (99) yields

ds tð Þ
dt

~m h r2 z�, tð Þ{D
Lr2 z, tð Þ

Lz


 �
z~z�

: ð100Þ

To proceed further, one can assume that r2(z, t), in the

surface layer, can be approximated by

r2 z, tð Þ~r2 z�, tð Þz Lr2

Lz

� �
z~z�

z{z�ð Þ: ð101Þ

By taking into account that r2(z, t)&r2(z*, t)5rB(z*, t),

by substituting equation (101) into (98) one easily

obtains

s tð Þ~ 1

2

Lr2

Lz

� �
z~z�

l2 ð102Þ

from which

Lr2

Lz

� �
z~z�

~
2

l2
s tð Þ: ð103Þ

Substitution of equation (103) into (100) yields

ds tð Þ
dt

~m h r2 z�, tð Þ{ 2D

l2
s tð Þ: ð104Þ

Moreover, if use is now made of the continuity

condition (76), namely rB(z*, t)5r2(z*, t), it is possible
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to rewrite (104) in the final form

ds tð Þ
dt

~m h rB z�, tð Þ{ 2D

l2
s tð Þ ð105Þ

which coincides with the kinetic equation written

phenomenologically at the adsorbing surface. It follows

that

k~m h and
1

t
~2

D

l2
: ð106Þ

In this manner

kt

l
~

U0

2
ð107Þ

which has to be compared with (85). With this type of

analysis it is possible to relate, separately, k and t with

the microscopic parameters of the model U0 and l. In

particular, t is of the order of the diffusion time of the

particles in the surface layer [66].

5. Concluding Remarks

We have analysed the diffusion phenomenon in a

sample in the shape of a slab, in the presence of the

adsorption phenomenon. The kinetic equation on the

limiting surfaces describing the adsorption process is

assumed to have two terms. One proportional to the

bulk density of particles just in front to the adsorbing

surfaces, the other proportional to the surface density

of particles already adsorbed. The first term gives a

positive contribution, whereas the second gives a

negative contribution to the time variation of the

surface density of adsorbed particles. We evaluate the

time variation of the bulk and surface density of

particles, and the characteristic times entering the

problem. We have determined, in the limit of small

ionic density, the intrinsic time related to the presence of

the external field on the ion redistribution. It has been

found proportional to the drift-time, and dependent on

the temperature by means of the ratio kBT/qV0,

representing the importance of the thermal agitation

energy with respect to the electrostatic potential energy.

We have also solved, in this framework, the full

continuity equation, obtained the eigenvalues of the

problem, and found the time evolution of the particle

density across the sample. The possible application of

our analysis to the drift-diffusion of ions in a nematic

sample in the shape of a slab is discussed. In this case,

we have shown that, although the mathematical

description of the phenomenon under consideration is

more complicated, our model gives the correct order of

magnitude of the relaxation time. Finally, we have also

presented a statistical description of the adsorption

phenomenon in the framework of Maxwell–Boltzmann

statistics. By means of a simple model system the

adsorption parameters governing the kinetic adsorption

at the surfaces have been related to the adsorption
energy, and to the thickness of the effective surface layer

in which it can be considered delocalized.
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