ArticlePDF Available

The Late Eocene flora of Kučlín near Bílina in North Bohemia revisited

Authors:

Figures

Content may be subject to copyright.
83
SBORNÍK NÁRODNÍHO MUZEA V PRAZE ACTA MUSEI NATIONALIS PRAGAE
Řada B – Přírodní vědy • sv.67 • 2011 • čís. 3–4 • s. 83–144 Series B – Historia Naturalis • vol. 67 • 2011 • no. 3–4 • pp. 83–144
THE LATE EOCENE FLORA OF KUČLÍN NEAR BÍLINA IN NORTH BOHEMIA REVISITED
ZLATKO KVAČEK
Institute of Geology and Palaeontology, Faculty of Science,Charles University in Prague,Albertov 6, 128 43 Prague 2,
Czech Republic; e-mail:kvacek@natur.cuni.cz
VASILIS TEODORIDIS
Department of Biology and Environmental Education Studies, Faculty of Education, Charles University in Prague, M.D. Ret-
tigové 4, 116 39 Prague 1, Czech Republic;e-mail: vasilis.teodoridis@pedf.cuni.cz
Kvaček, Z., Teodoridis, V. (2011): The Late Eocene flora of Kučlín near Bílina in North Bohemia revisited – Acta. Mus. Nat. Pragae, Ser.
B, Hist. Nat., 67(3–4): 83–144, Praha. ISSN 0036-5343.
Abstract. A detailed survey of the Late Eocene flora of the diatomite of Kučlín, the Trupelník Hill in North Bohemia, České středohoří
Mountains, is given based on the morphological study of most of the so far published macrofossil records since Ettingshausen’s pioneer
study and many newly acquired taxa. Both extinct and some modern genera represented mostly by leaf morphotypes and less commonly
by fruits and seeds have been encountered. They belong to the ferns (Osmundaceae, Thelypteridaceae, Blechnaceae etc.), conifers
(Cupressaceae, Doliostrobaceae) and prevailingly to Angiosperms. Representatives of e.g., Nymphaeaceae, Magnoliaceae, Lauraceae,
Platanaceae, Ulmaceae, Fagaceae, Juglandaceae, Fabaceae and some more exotic families such as Icacinaceae, Simaroubaceae and
Rutaceae are most numerous, while many belong to extinct groups not assignable to any modern family (e.g., Raskya). A considerable
part of fossil taxa is not assignable to the natural system at all. In sum the flora contains according to this survey 95 taxa based on foliage
and 34 taxa based on fruits and seeds. The plant assemblage of Kučlín includes both Eocene markers (Hooleya, Byttneriopsis) and
a number of elements that survived till the Oligocene (Eotrigonobalanus) and Miocene (Platanus neptuni). Palaeoenvironmental and
climatical proxies based on angiosperm leaf record are presented here and compared with other nearby sites of Eocene and Oligocene age.
Such comparisons add information on the climatic development of central Europe in this time interval.
nLate Eocene, plant macrofossils, north Bohemia, CLAMP, IPR-vegetation analysis
Received October 5, 2011
Issued November 2011
Introduction
The diatomite of Kučlín (Kutschlin) belongs to classical
palaeontological sites of Europe (Text-fig.1). The first August
Emanuel Reuss (1840), the son of Franz Ambrozius Reuss,
spa physician of the owner of the Bílina spa, count Lobkowitz,
published detailed information on this diatomite, which
crops out on slopes and the summit of the Trupelník Hill
(Trippelberg in German) near the village Kučlín (Kutschlin)
south of the town of Bílina. This site belongs to the most
known and stratigraphically important localities of the
North Bohemian Tertiary (Radoň 2001, Mach and Dvořák
2011, this volume). By the palaeontological content it devi-
ates from the other Cenozoic “Lagerstätte” in North
Bohemia in its ancient character. Also radiometric dating
places it to the earliest volcanogenic deposits of the České
středohohoří Mountains (Bellon et al. 1998, Kvaček and
Walther 2003, Kvaček and Teodoridis 2007).
The diatomite of Kučlín belongs, besides fossil plants,
to the first places where studies of fossil diatoms have been
initiated (Ehrenberg 1836, 1844, 1854). Later Jokély (1858)
published a short account on the Kučlín fossils. Since his
first collections, Reuss soon expanded collection activities
carried out at Kučlín and built up a considerable collection
of fossils in the Lobkowitz castle in Bílina (now housed in
the Hungarian Natural History Museum, Budapest).
Reuss reported particularly on fossil fish fauna (Reuss
1844, 1852) and carried out extensive field collections in
the Kučlín diatomite. The fauna also includes insects (Deich-
Text-fig. 1. Geographical position of the locality Kučlín.
84
müller 1881), cancer (Mayer 1852, Frič 1872, Houša 1956),
more rarely turtle (Laube 1882), a single frog (Dvořák et al.
in prep.) and exceptionally some other vertebrates.
The main part of Reuss’s collection of macrofossils rep-
resents fossil plants. The paleobotanical studies at Kučlín
have been continued later by students of the Tertiary floras
of Europe, namely Ettingshausen (1866, 1868, 1869), Sieber
(1881), and Menzel (1901). The diatomite was at that time
worked for filter matter in sugar industry. The palaeontolo-
gical collection activities were reduced after the site was
abandoned and less and less accessible. Only in 1963 the
deposit was temporarily open again and fossiliferous layers
in new outcrops became available (Bůžek and Holý 1964,
Holý 1964). Since then the diatomite has been visited again
and again, also by amateur collectors.
The present account is focused on the first detailed
analysis of the Kučlín plant macrofossil assemblage after
the pioneer studies by earlier palaeobotanists. So far no
comprehensive revision of the fossil biota from Kučlín has
been produced, although many partial studies are available
after the first description by Ettingshausen (1866, 1868, 1869).
The identifyable elements are evaluated here as to their sys-
tematic assessment and stratigraphical / palaeoenvironmen-
tal significance, the rest of the flora is documented mainly
by illustrations to show the variety of morphotaxa although
their affinities remain dubious.
Material and methods
Most plant macrofossils are preserved as leaf impres-
sions with fine details of the venation mostly visible under
very oblique light, but without epidermal structures. Be-
sides foliage, also fruits and seeds are available, again as
flat compressed impressions without any coaly substance.
This was a reason that most taxonomic studies were focused
on distinguishing morphotypes and more attention was
focused on palaeoenvironmental analyses, in which the fol-
lowing methodologies were employed.
We applied four different paleoenvironmental methods
on the studied fossil flora of Kučlín. The techniques allow
a reconstruction of the zonal vegetation character provided
by the Integrated Plant Record vegetation analysis (IPR-
vegetation analysis) and Leaf Size Analysis (LSA), and an
estimation of paleoclimatic proxies derived from Climate
Leaf Analysis Multivariate Program (CLAMP) and Leaf
Margin Analysis (LMA).
The IPR-vegetation analysis was developed by Kovar-
Eder and Kvaček (2003) as a tool for mapping the integrat-
ed fossil plant records (leaf, fruit, and pollen assemblages)
in terms of the zonal vegetation (Kovar-Eder and Kvaček
2007; Teodoridis et al. 2011a, b). Methodologically, the
IPR-vegetation analysis follows plant taxonomy, physiog-
nomy and autecological properties to classify vegetation
into several zonal and azonal taxonomic-physiognomic
components, i.e., CONIFER (zonal and extrazonal co-
nifers), BLD (broad-leaved deciduous woody angio-
sperms), BLE (broad-leaved evergreen woody angio-
sperms), SCL (sclerophyllous woody angiosperms), LEG
(legume-like woody angiosperms), ZONPALM (zonal
palms), ARBFERN (zonal arborescent ferns), DRY HERB
(open woodland and grassland elements), MESO HERB
(mesophytic forest undergrowth), AZONAL WOODY
(azonal woody tree and shrubs), AQUATIC (aquatic ele-
ments), AZNW (azonal non-woody elements) and PROB-
LEMATIC taxa. Percentages of the different groups/com-
ponents of a fossil assemblage, i.e., percentage of the BLD
and BLE components of zonal woody angiosperms, per-
centage of SCL + LEG, DRY HERB and MESO HERB
of zonal angiosperms, have been defined to distinguish
8 zonal vegetation types including their ecotones (Teodor-
idis et al., 2011a, table 8): 1) temperate to warm-temperate
broad-leaved deciduous forests (BLDF); 2) warm-temper-
ate to subtropical mixed mesophytic forests (MMF); 3) sub-
tropical broad-leaved evergreen forests; 4) subtropical, sub-
humid sclerophyllous or microphyllous forests (ShSF);
5) ecotone vegetation of BLDF/MMF; 6) ecotone vegeta-
tion of BLEF/MMF; 7) xeric open woodlands; and 8) xeric
grasslands or steppe (= Xeric grassland). The first four
mentioned vegetation units were tested on several living
vegetation types from China and Japan (Teodoridis et al.
2011a) to verify thresholds between them originally defined
only on the fossil record and their “palaeoenvironmental”
habitats. Recently, the new IPR-vegetation database was
built to organize and summarize the existing fossil and mod-
ern results (Teodoridis et al. 2011a, b, c the present volume).
Climate Leaf Analysis Multivariate Program (CLAMP)
is based on the multivariate statistical technique for quanti-
tative determining a range of palaeoclimate parameters
based on leaf physiognomy of woody dicotyledonous flow-
ering plants. CLAMP has first been introduced by Wolfe
(1993) and subsequently this technique has been refined
mainly by Wolfe and Spicer (1999), Spicer et al. (2004) and
Spicer (2000, 2007), Spicer et al. (2009), Teodoridis et al.
(2011b,c), Yang et al. (2011). The CLAMP employs 31 dif-
ferent leaf physiognomic characteristics (see Table 1) to
estimate 11 climatic parameters, i.e., MAT (Mean Annual
Temperature), WMMT (Warmest Month Mean Tempera-
ture), CMMT (Coldest Month Mean Temperature),
GROWSEAS (Length of the Growing Season), GSP
(Growing Season Precipitation), MMGSP (Mean Monthly
Growing Season Precipitation), 3-WET (Precipitation dur-
ing 3 Consecutive Wettest Months), 3-DRY (Precipitation
during 3 Consecutive Driest Months), RH (Relative Humid-
ity), SH (Specific Humidity) and ENTHAL (Enthalpy).
Mathematically, this method is based on Canonical Corre-
spondence Analysis (CCA) – see Ter Braak (1986). To select
relevant CLAMP physiognomic datasets from 144, 173 and
189 modern sites and relevant modern gridded meteorolog-
ical calibration datasets (i.e., Physg 3br, Physg 3ar and
PhysgAsia1; GRIDMet3b, GRIDMet3a and
GRIDMetAsia1), we used a updated version of the special
tool developed by Teodoridis et al. (submitted). All the men-
tioned reference files and datasets are freely downloadable
from the CLAMP website (Spicer 2011).
Leaf Margin Analysis (LMA) is a univariate leaf phys-
iognomic technique based on the empirical positive correla-
tion between the proportions of taxa with toothed vs. taxa
with entire leaf margins (woody dicots) of non-pioneer veg-
etation and Mean Annual Temperature (MAT). Wolfe
(1979) devised this method and compiled 34 humid to
mesic floras from East Asia, including reference datasets of
Wang (1961), to build a linear regression equation (MAT1=
85
= 30.6 P+ 1.41) to predict temperature. Recently, Su et al.
(2010) introduced a new equation from humid to mesic
forests from China. This equation (MAT2= 27.6 P+ 1.038)
includes the term of sampling error sensu Miller et al.
(2006), i.e., SE (MAT) = SQRT [1 +
ϕ
(n – 1) P(1 – P) x P
(1 – P)/n], where
ϕ
= 0.052 (dispersion factor); P is the per-
centage of woody dicots with untoothed leaves; and n is the
total number of woody dicots).
Leaf Size Analysis (LSA) determines ratio of percent-
age of the leaf size categories/elements. We follow leaf size
categories sensu Webb (1959) widely, i.e., microphyll
(2.25–20.25 cm2), notophyll (20.25–45.0 cm2), mesophyll
(20.25–182.25 cm2) and macrophyll (182.25–1640.25 mm2).
These notophyll and mesophyll categories correspond to
mesophyll leaf category sensu Raunkier (1934). The cate-
gories are comparable to those used by CLAMP (table 1),
where microphyll 3 and mesophyll 1 category equal to noto-
phyll leaf size and mesophyll 2 and 3 to mesophyll leaves.
Besides leaf impressions and carpological\ material,
also a permineralized trunk was excavated when the diato-
mite was open in 1963. It was studied by Březinová, Holý,
Kužvartová and Z. Kvaček (1994) and the palaeoxylotomy
was later corrected by Sakala (2003, 2011 the present volume).
The documentation material to this study is available in the
National Museum Prague. Revisions and new taxonomical
treatments of the previously collected leaf and fruit/seed
material (Ettingshausen 1866 – 68, see also Hably et al.
2001) as well as new specimens obtained by extensive field
activities (Pl. 19, e.g., by Menzel, Kafka, Bůžek, Holý and
Z. Kvaček) and amateur collectors (mainly Pavel and Zde-
něk Dvořák, Valíček and others) are presented herein.
The following collections of the fossil plant material have
been re-studied:
Lobkowitz collection, the Hungarian Natural History
Museum, Budapest – BP
Geologische Bundesanstalt, Wien
– Naturhistorisches Museum, Wien
Senckenberg Naturhistorische Sammlungen, Museum
für Mineralogie und Geologie, Dresden – MMG, KIN
Czech Geological Survey, Praha – ČB, CGS
Department of Palaeontology, National Museum,
Praha – NM,
Regional Museum, Teplice
Bílina Mine, Zdeněk Dvořák’s collection – DB, KUC
Comparative studies carried out on the Eocene sites
Messel, Eckfeld and in the Weisselster Basin in co-opera-
tion with Volker Wilde, Frankfurt am Main, H. Franken-
häuser, Mainz and Harald Walther, Dresden and Josef Bog-
ner, Munich as earlier studies of plant collections from the
Eocene of England (British Natural History Museum, Lon-
don) and Oligocene plants from Hungary (in collaboration
with Lilla Hably, Budapest) contributed to a better under-
standing of the studied flora.
The photographic documentation was done by the first
author during his visits in Budapest, London, Vienna, Dres-
den and collections in Prague and Bílina
Geology
First information on the position and structure of the
fossiliferous diatomite at Kučlín was published by Reuss
(1840). Several other contributions followed and expanded
knowledge on to this “prae-Grand coupure” Palaeogene site
of the České středohoří Moutains (abbrev. ČSM in further
text) by Reuss (1844), Reuss and Meyer (1852), Kafka
(1908, 1911), Hibsch (1905, 1908, 1924, 1926, 1927, 1930,
1935), Hibsch and Seemann (1913) to name most important
works before the Second World War. Much more data were
obtained thanks to detailed geological mapping (Kopecký et
al. 1990a,b), geological prospecting (Horáčková et al. 1967)
and other field activities (Váně 1999, 2001, Radoň 2001).
Also parallel petrological, geochemical and stratigraphical
research (e.g., Shrbený in Klomínský 1994, Bellon et al.
1998, Cajz 2000, Ulrych et al. 1998, 2001) were carried out.
The Tertiary of the České středohoří Mts. has been tra-
ditionally divided into two lithostratigraphic units – the
Staré Sedlo Formation (including the quartzite sandstone at
Skalice, Žitenice and Volfartice) of and the České středo-
hoří Complex (alkalic volcanites and pyroclastics) ranging
from a Late Eocene to earliest Miocene age (Shrbený in
Klomínský 1994). In a recent study, Kvaček (2002a) attemp-
ted to review the position of various sites of the České stře-
dohoří Mts. of Late Eocene age and provided evidence for
their correlation and facial differentiation. The section of
the Trupelník Hill at Kučlín (see Mach and Dvořák 2011,
this volume) forms an erosion remnant of volcanogenic
material and sediments near Bílina (Hibsch 1924, Kopecký
et al. 1990a,b) and it is the best-known site of Late Eocene
age in the České středohoří Mts. Its structure and lithology
was reported in many accounts, starting with Reuss (1840).
Several cores (Mrázek and Procházka 1953, Horáčková et
al. 1967) are available to date to follow the section in detail.
The core V 2 situated 50 m NE off the summit (356.5 m alt.)
did not reach the Upper Cretaceous, and was petrologically
characterised in detail (Kafka and Holá in Horáčková et al.
1967). The cores V 2 (depth of 33.5 m) and V 3 (depth of
19.8 m and 28.6 m) yielded darker organogenic sediments,
from which palynological data were obtained (Mazancová
in Horáčková et al. 1967).
The Palaeogene of the Kučlín and other parts of this late
Eocene unit rests directly on the Upper Cretaceous and is
irregular in the thickness due to tectonics and geomorphol-
ogy (Mach and Dvořák 2011). According to Mrázek and
Procházka (1953) the lowermost layers of the Tertiary start
with pyroclastics. The quartzite layer is absent. The lower
part of the section is built of an about 15 m thick marlstone.
This mighty layer is composed of re-deposited material
from the Upper Cretaceous at the base, and organogenic
lacustrine marlstone to limestone of various characters:
breccia, sandy-silty marlstone recalling diatomite, often
thinly bedded and laminated rarely massive limestone
(Kafka in Horáčková et al. 1967). Rarer and thin are volcan-
oclastic admixtures and darker coaly clay layers. The rest of
the sedimentary body comprises various kinds of the dia-
tomite with thin volcanoclastic intercalations. The fossilif-
erous diatomite is whitish pale, well oxidised and consists
of a variety of technological sorts (Holá in Horáčková et al.
1967). It is partly cemented by silica, partly soft, mostly
well bedded, with transitions to the diatomite marl in the
lower positions. A thicker layer of the bazanite tuff overlies
the diatomite, and partly laterally replaces the upper portion
of the diatomite, which is outcropping on the Trupelník hill.
86
Two kinds of magmatic bodies are connected with the sed-
imentary fill. A thin basaltoid sheet, partly disintegrated,
partly transformed by weathering (autometamorphic?) proces-
ses covers the top of the sedimentary body. A tephrite flow
has been sampled from large loose rock slabs on the top of
the hill and is age source of the radiometric data by Bellon
et al. (1998) – 38.3±0.9 MA. A tephrite dyke (?) on the
slope yielded a slightly younger age (Ulrych et al. 2001
– 33.5±1.5 MA). A most popular palaeontological collect-
ing site from the 19th century was at an old mill below the
hill (Ettingshausen 1869). Due to extensive landslide proces-
ses common in the volcanic region, several blocks of the
diatomite were dislocated downslope, much lower than the
rest of the diatomite and were fully exploited, The main sec-
tion is much higher, at about 335 m alt., as documented by
the core Kč 1 (Kopecký et al. 1990a,b). We suspect that
Kafka (1908, 1911), when he carried out four test pits over
the Trupeník hill, was unaware of this landslide. Therefore,
his description of the sedimentary content of the Kučlín site
is obviously misleading (his sections I–III repeat in the
upper section IV). Within the main diatomite, a fault caused
the northern part to be thrown down by12–15 m.
These sediments are interpreted as the fill of the fresh-
water lake, which formed in a calmer period of volcanic
activity in consequence of first large-scale movements of
the Ohře rift and was (partly) supplied by mineral springs
(Obrhelová and Obrhel 1987). The radiometric data (Bellon
et al. 1998) and palynology (Konzalová 1981) indicate Late
Eocene age.
History of the research
The macroflora of Kučlín was first described by Etting-
shausen (1866, 1868, and 1869) with small additions by
Sieber (1879, 1881) and Menzel (1901). New studies (e.g.,
Bůžek et al. 1967, 1968a, 1990, Březinová et al. 1994,
Kvaček and Bůžek 1995, Manchester and Hably 1997, Mai
1999, Kvaček et al. 2001, Kvaček and Wilde 2010) have
elucidated the systematic position of many components.
Some more are added for the first time (in co-operation with
S.R. Manchester) in the present account. The type and orig-
inal specimens published by Ettingshausen (1866, 1868,
1869) and housed at BP has been included in a catalogue
with some taxonomic revisions (Hably et al. 2001). Kvaček
(2002a) documented more interesting taxa in connection
with a stratigraphical correlation of the Upper Eocene in
North Bohemia. Previous taxonomic reviews (Brabenec
1909) and lists of the Kučlín flora (e.g., Kafka 1908, 1911)
include many misidentifications due to an exotic character
of the flora. Even now, many of the recovered plant fossils
cannot be unambiguously assigned into the natural system
and must remain for the future research.
Systematic descriptions
The system follows newly suggested corrections in par-
ticular of angiosperms according to results of molecular
phylogeny (Judd et al. 2002). We have tried to recognize at
least affinities of fossil taxa to the families, although many
of them must be attached behind the natural system as
incertae sedis. Due to poor preservation of the material in
the diatomite without any traces of leaf epidermal features,
some treatments of foliage rely on the better preserved
material from other sites, mainly from Messel and else-
where in Europe.
Pteridophytes
Equisetaceae
Equisetum L.
Equisetum ettingshausenii KVAČEK et TEODORIDIS sp. n.
Pl. 1, figs 1-3
1866 Equisetites bilinicus auct. (non UNGER 1850a nec Equise-
tum bilinicum UNGER 1847); Ettingshausen, p. 12, pro parte
pl. 2, fig. 15 (non pl. 2, fig. 14, Břešťany).
2001 Equisetites bilinicus (UNGER) ETTINGSHAUSEN; Hably et al.,
p. 52, pl. 62, fig. 4.
Sterile articulated flat compressed stems parallel striat-
ed by vascular strands that interchange at nodes, only as
broad fragments showing variously long internodes. More
frequent rounded isolated nodal diaphragms 25 to 30 mm in
diameter crenulate on the outline, showing the central pith
cavity and crenulate cross section of the stem wall.
Holotype designated here: BP 55.2366
(Ettingshausen 1866, pl. 2, fig. 15 as Equisetites bilinicus)
illustrated in pl. 1, fig. 1.
Paratype designated here: NM G 8652a
(nodal diaphragm) illustrated in pl. 1 fig.2.
Remarks: Similar but narrower sterile stems of
horsetails occur commonly in the European Teriary and are
particularly typical of the Arctic Palaeogene (e.g., Boulter
and Kvaček 1989, McIver and Basinger 1993, Budantsev
and Golovneva 2009). Permineralized remains of similar
morphology but with anatomical details preserved were
described from the Eocene of USA (Brown 1975). Because
of a different preservation mode the material from Kučlín is
proposed here to represent an independent fossil species. In
the lack of reproductive structures, the systematic position
within the genus Equisetum s. l. and a closer relationship to
the living species must be left open.
According to Jakub Prokop (personal communication
2001) Equisetum bilinicum UNGER (1847, p. 124, pl. 37,
figs 8-9, syn. Equisetites bilinicus (UNGER) UNGER 1850a,
p. 60) from the Early Miocene plastic clay of Břešťany
(Priesen) is based on remains of insects (larval cases of Tri-
choptera), which commonly occur in the corresponding
strata of the Bílina Mine.
Material: stems BP 55.2366, NM G 8651,
G 8652a, b, G 8653.
Osmundaceae
Osmunda L.
Osmunda lignitum (GIEBEL) STUR
Pl. 1, figs 4-5.
1857 Pecopteris lignitum GIEBEL, p. 303, pl. 2, fig. 2.
1870 Osmunda lignitum (GIEBEL) STUR, p. 5.
87
2002a Osmunda lignitum (GIEBEL) STUR; Kvaček, p. 221, pl. 1,
fig. 10.
Incomplete pinna 10 mm wide and exceeding 35 mm in
length, coarsely toothed on margin according to the pin-
nules, midrib straight, pinnules short elliptic, acuminate,
max. 7 mm long and 4 mm wide, entire-margined, at an angle
of 40°, midribs straight to slightly S-shaped, secondaries
free, stretching towards the pinnule apex, simple or forked,
5–6 on each side of the midrib.
Remarks: This typical Paleogene European fern
(Barthel 1976) was recovered only rarely in the České stře-
dohoří Mountains (e.g., Kvaček and Walther 1998). The
single fragment from Kučlín is more delicate than most
other records from Europe. Osmunda banksiaefolia (K. PRESL)
KUHN. from East Asia was considered by Holttum the near-
est living species.
Material: NM G 7896a.
Thelypteridaceae
Pronephrium C. PRESL
Pronephrium stiriacum (UNGER) E. KNOBLOCH et KVAČEK
Pl. 1, figs 6, 10
1847 Polypodites styriacus UNGER; p. 121, pl. 36, figs 1-5.
1866 Aspidium fischeri auct. (non HEER); Ettingshausen, p. 17,
pl. 3, figs 9-11.
1852 Goniopteris stiriaca (UNGER) A. BRAUN, p. 553.
1855 Lastraea stiriaca (UNGER) HEER, p. 31, pls 7-8.
1960 Cyclosorus stiriacus (UNGER) CHING et TAKHTAJAN in
Fataliev, p. 1217.
1962 Cyclosorus stiriacus (UNGER) GRAMBAST, nom. illegit,
p. 24, text-fig. 4.
1963 Abacopteris stiriaca (UNGER) CHING, p. 298.
1976 Pronephrium stiriacum (UNGER) E. KNOBLOCH et KVAČEK,
p. 12, pl. 1, fig. 1.
2002a Pronephrium stiriacum (UNGER) E. KNOBLOCH et KVAČEK;
Kvaček, p. 221, pl. 4, fig. 7.
Incomplete sterile pinnae more than 50 mm long and
14 mm wide with a stout midrib, crenate on sides according
to almost fused pinnules, incisions between pinnules 2–3 mm,
pinnules max. 7 mm long, at angles of 55–60°, at the apex
rounded and slightly turned upwards , midrib of pinnules
almost the same thickness as secondaries, straight to slight-
ly bent on very end, secondaries in 6 pairs on each side, the
basal united between adjacent pinnules (goniopterid), high-
er slightly bent, merging the margin.
Discussion: Leaf fragments of this common Ter-
tiary swamp fern, showing a goniopterid venation (pl. 4, fig.
7), were wrongly assigned to Aspidium due to compression
of the specimens and poor preservation at Kučlín by Etting-
shausen (1866) and assigned to a different morphotype. In
one of the specimens (BP. 55.2319.1, not illustrated by
Ettingshausen) and a new material, the goniopterid venation
is clearly seen. The specimens from Kučlín are very rare
and indeed more delicate than the type material from the
Miocene of Styria (Schöneck, Unger 1847, pl. 36, figs 1-4)
and other places in the European Tertiary (e.g., Barthel
1976), probably due to different non-swampy environments.
Pronephrium penangianum (HOOK.) HOLTTUM (syn. Aba-
copteris penangiana (HOOK.) CHING) from the Himalayas is
considered according to several authors (e.g., Ching 1963)
as the nearest living relative.
Material studied: BP55.2319.1, BP 55.2353.1
(two specimens on the same slab), DB KUC 234.
? Lomariopsidaceae
? Lomariopsis FÉE
Lomariopsis (?) bilinica ETTINGSHAUSEN
Pl. 1, figs 7-8
1866 Lomariopsis bilinica ETTINGSHAUSEN, p. 13, pl. 3, fig. 13.
2001 Blechnum dentatum (GÖPP.) HEER; Hably in Hably et al.,
p. 27, pl. 20, fig. 1.
Fragmentary sterile pinna (or complete frond ?) ribbon-
shaped, parallel-sided, exceeding 100 mm in length, max.
20 mm in width, margin sub-entire, with rare widely spaced
widely triangular sharp teeth corresponding to single cras-
pedodromous secondaries, midrib straight, medium thickened,
secondaries straight, simple, or occasionally simple forked at
base or exceptionally higher, max. in half the distance to the
margin, at an angle of 70–80°, in 1–1.5 mm spacing, either
gently joining the margin or straight entering the teeth.
Because of its larger width, Ettingshausen (1866) com-
pared this single fern fragment from Kučlín with acrosti-
choid ferns of the genus Lomariopsis FÉE (Lomariopsi-
daceae). Hably (in Hably et al. 2001, p. 27) transferred this
record into the synonymy of Blechnum dentatum (Blech-
naceae).Indeed, larger pinnae of Blechnum dentatum (see,
e.g., Kvaček and Hably 1991, pl. 2, fig. 3) are superficially
similar to the Kučlín specimen. However, its pinnae are reg-
ularly crenulate and the secondaries mostly twice forked.
The pantropical genus Lomariopsis recalls more the fossil
fragment but has a typical heterophylly. Fertile pinnae show
acrostichoid sori and sterile foliage is more variable in its
morphology, mostly entire-margined or densely finely
toothed (Holttum 1978, Moran 2000). By the irregularly
toothed margins Cyclopeltis jani Barthel (1976) from the
Upper Eocene of the Geiseltal matches superficially the
Kučlín sterile pinna. Its systematic affinity is corroborated
by the position of sori and character of spores in situ
(Barthel 1976, p. 464, pl. 85, 86, figs 9a-d, text-figs 8 a-b).
Although it shows a very similar venation and marginal
morphology, its pinnae are much narrower (8 mm). A simi-
lar sterile pinna from the Middle Eocene of Eckfeld
(Frankenhäuser and Wilde 1993) differs still more in denser
and more dichotomizing secondaries. After consulting
pteridological monographs and herbarium specimens it
becomes clear that such fragments of sterile fern foliage
with free secondary veins are hardly determinable to
a genus (Barthel 1976, Frankenhäuser and Wilde 1993).
Material: BP55.2489.1
Blechnaceae
Acrostichum L.
Acrostichum sp.
Pl. 1, fig. 9
2002a Acrostichum lanzeanum (VISIANI) CHANDLER; Kvaček,
p. 221, pl. 4, fig. 9.
88
Fragmentary slightly ovate (?) pinnae with entire mar-
gin, showing straight midvein and dense simple secondaries
at almost right angle, occasionally dichotomizing near the
midrib.
Discussion: Bůžek et al. (1990, fig. 3) mentioned
the occurrence of Acrostichum and illustrated a detail with
anastomosing venation. The specimens (Kvaček 2002a,
pl. 4, fig. 9) do not show anastomoses very distinctly and
correspond in this respect with some records from the Eocene
of England (Gardner and Ettingshausen, 1879–1882, pl. 1).
These poorly and incompletely preserved fragments may
represent Acrostichum lanzeanum, of which both sterile and
fertile pinnae were recorded in other Eocene floras of the
Northern Hemisphere (in Europe e.g., Eckfeld, Geiseltal,
Célas, Bembridge) but also in the Oligocene (e.g., at Eger-
Kiseged, Hungary – Andreánszky 1954). Its nearest living rel-
ative, Acrostichum aureum, is a common mangrow fern with
the cosmopolite distribution in tropical and subtropical areas.
Material: CGS sine num., NM G 7896a,b.
Dryopteridaceae
Rumohra RADDI
Rumohra recentior (UNGER) BARTHEL
Pl. 1, figs 11-13.
1847 Sphenopteris recentior UNGER, p. 124, pl. 37, fig. 5.
1870 Phegopteris recentior (UNGER) STUR, p. 9, pl. 1, fig. 7.
1976 Rumohra recentior (UNGER) BARTHEL, p. 457, pls. 80, 81,
text-figs 6a-d.
One larger fern frond with its countepart and several
fragments show irregularly dentate margin and venation
typical of this fern.
Discussion: We follow Barthel (1976) and assign
even sterile fern fronds of this kind to Rumohra. This fern
was well represented in the European Palaeogene (also at
Bechlejovice in ČSM – Kvaček and Walther 2004). For
more detailed analysis of morphology and affinities see
Barthel (1976).
Material: NM G 416, KUC 37A, B?
Conifers
Cupressaceae
Tetraclinis MASTERS
Tetraclinis salicornioides (UNGER) KVAČEK
Pl. 1, figs 17-18
1847 Thuites salicornioides UNGER, p. 11, pl. 2, figs 1-4, pl. 20,
fig. 8.
1866 Libocedrus salicornioides ENDL. sp.; Ettingshausen, p. 33,
pl. 10, fig. 5 (non fig. 14).
1989 Tetraclinis salicornioides (UNGER) KVAČEK, p. 48, pl. 1,
fig. 11, pl. 2, figs 2-14, pl. 3, figs 1-4, text-fig. 1.
1990 Tetraclinis salicornioides (UNGER) KVAČEK; Bůžek, Fejfar,
Konzalová, Kvaček, p. 172, fig. 3.3.
Branches fragmentary, (bi-)pinnately and oppositely
branched in flat sprays without overlapping of branches.
Branchlets flattened, with four-ranked dimorphic scale
leaves borne in pseudo-whorls. Ultimate twigs diverging
from each node of penultimate twigs in opposite pinnate
arrangement; ultimate twigs often with two ranks of dimor-
phic scale leaves, dimorphic; facial and lateral leaves with
rounded to bluntly mucronate apices, in each pseudo-whorl
fused most of their length to form a dorsoventrally flattened
phylloclade-like segments, simple pseudo-whorls oval, tri-
veined in surface view or wider, compressed pseudo-whorls
at nodes of branching, expanded apically, showing five (to
seven) prominent longitudinal lines on the either surface.
Apices of the leaves of one node slightly overlapping the
leaf bases of the supradjacent node. Facial leaves appressed,
ob-triangular, with obvious central midvein; lateral leaves
lanceolate to falcate, each folded along its midvein in the
plane of compression, shorter than the facial, closely imbri-
cate, more commonly fused to the margins of the facial
leaves, base cuneate, apex acute. Seed double winged, seed
body ovate, 4 mm long, 2.3 mm wide, wings basally orient-
ed, attached laterally, at the seed base rounded, 2.5 mm
wide. Seed cones not recorded in the Kučlín material.
Discussion: The cladode-like twigs and seeds of
T. salicornioides occur extremely rarely in the Kučlín dia-
tomite. This conifer became more spread only in younger
strata of the České středohoří Mountains and was widely
distributed in the European Oligocene and Neogene
(Kvaček 1989). This conifer is, contrary to its extant and
fossil subxerophytic relatives T. verticillata and T. brachyo-
don, a humid subtropical element avoiding azonal vegeta-
tion. Its earliest record was documented in Europe in the
Middle Eocene (Eckfeld maar – Wilde and Frankenhäuser
1998, as Libocedrites) and in North America in the
Oligocene (Kvaček et al. 2000). Its last remnants are known
from the Pliocene of Germany, Italy and the Caucasus area
(Mai 1995 – as Tetraclinis brachyodon).
Impressions of sterile foliage of Tetraclinis salicornioi-
des are almost indistinguishable from a related extinct
conifer Ditaxocladus S. X. GUO et Z. H. SUN occurring in
the Late Cretaceous and the Paleocene in the Northern He-
misphere (Guo et al. in press). The sprays of both conifers
are composed of cladode-like regularly oppositely branched
dorsiventrally flattened twigs. The only difference is in the
general form of the sprays, which is slender elongate in
Ditaxocladus and widely spread in Tetraclinis salicornio-
ides. More pronounced differences are in the seed cones
(subglobose in racemose fertile branches in Ditaxocladus
vs quadrivalvate solitary or paired in Tetraclinis) and leaf
anatomy (non-papillate straight-walled stomatal zones with
thin Florin rings in Ditaxocladus vs thick and papillate cuti-
cles with undulate anticlines in Tetraclinis).
Material: KUC 402B, NM G 8598, G 8599.
Doliostrobaceae Kvaček (2002b)
The family is comprised of the type-bringing genus
Doliostrobus MARION (1888) and two fossil genera Arau-
cariacites KRUTZSCH (type A. europaeus KRUTZSCH 1971)
for dispersed pollen and Doliostroboxylon DOLEZYCH in
Junge et al. (2005) for wood. The latter taxon requires vali-
dation (no type designated – ICBN Art. 7.9, 7.11).
89
Doliostrobus MARION, nom. cons.
Type: Doliostrobus sternbergii MARION, type cons.
(= Doliostrobus taxiformis (STERNBERG) KVAČEK var. sternbergii
MAI et WALTHER ex KVAČEK) selected by Kvaček (2002c).
The recent characterization and discussion on this genus
by Kunzmann (1999: 87-89) requires additional rectifica-
tions. The so far known specimens of fertile cone scales
show unequivocally only one single seed per scale, with
one basal-lateral wing, only exceptionally with a double
wing (Kvaček 2002c, pl. 3, fig. 1). The wood structure of
twigs corresponds to the Doliostroboxylon-type (Rüffle and
Süss 2001, Dolezych in Junge et al. 2005).
The comprehensive study of all records (Kunzmann 1999)
shows only one variable species of Doliostrobus in the
Palaeogene of Europe, Doliostrobus taxiformis (STERNBERG)
KVAČEK (1971). According to the leaf morphology, the pop-
ulation from Kučlín belongs to the variety with shorter
dimorphic needle leaves as defined by Mai and Walther (1985).
Doliostrobus taxiformis (STERNBERG) KVAČEK
var. sternbergii MAI et WALTHER ex KVAČEK
Pl.1, figs 14-16, 19
1868 Sequoia sternbergii HEER; Ettingshausen, p. 40, pl. 13,
figs 3- 8.
1868 Embothrites cuneatus ETTINGSHAUSEN, p. 15, pl. 35, fig. 13.
1881 Carpolithes carpini cuiusdam ?. Sieber, p. 92, pl. 3, fig. 18.
1926 Araucarites gurnardii FLORIN in E.M. REID et CHANDLER,
p. 48, pl. 2, figs 6-16.
1968b Doliostrobus gurnardii (FLORIN in E.M. REID et CHAN-
DLER)BŮŽEK, HOLÝ et KVAČEK, p. 154.
1968b Doliostrobus certus BŮŽEK, HOLÝ et KVAČEK, pp. 160-168,
pl. 32, figs 1-11, pl. 33, figs 1-17, pl. 34, figs 1-7, pl. 35,
figs 1, 2, 5-7, text-tables 1-7.
1985 Doliostrobus taxiformis (STERNBERG) KVAČEK var. stern-
bergii MAI et WALTHER, p. 25, pl. 3, figs 14-16, pl. 6,
figs 1-11 (non pl. 5, figs 18-20).
1990 Doliostrobus certus BŮŽEK, HOLÝ et KVAČEK; Bůžek, Fej-
far, Konzalová, Kvaček. 172, figs 3.1-2.
2001 Sequoia sternbergii HEER; Hably et al., p. 61, pl.79, fig. 3,
pl. 80, figs1-2, 5.
2002c Doliostrobus taxiformis (STERNBERG) KVAČEK var stern-
bergii (MARION) MAI et WALTHER; Kvaček, p. 221, pl. 1,
fig. 6b, pl. 2, fig. 7 (Mrtvý vrch).
2007 Doliostrobus taxiformis (STERNBERG) KVAČEK; Kvaček
and Teodoridis, p. 384, fig. 2.N.
2008 Doliostrobus taxiformis (STERNBERG) KVAČEK; Kvaček,
p. 4, pl. 2, fig. 10.
Large foliage branches of helically disposed partly
appressed needle leaves well decurrent on the axis. Free
parts of the needles never exceed half of the needle length
(contrary to var. taxiformis from Häring). Epidermal anato-
my not preserved. Detached cone scales characteristically
longitudinally striated, with a long apical mucro. Detached
seed laterally one-winged, seed body rounded ovoid, wing
obovate slightly oblique, longer than the seed body. For
more detiale morphology of the material from Kučlín see
previsous monographic treatment by Bůžek et al. 1998,
Kunzmann 1999 and Kvaček 2002c).
Discussion: This extinct conifer, which shares
some features with araucarians (pollen morphology, a sin-
gle seed per scale) and cupressoids (abietoid pitting), is a
common element of the Eocene of Kučlín and occurs also
in the Eocene of Germany (Mai and Walther 1985, Europe
(see Kunzmann 1999, Kvaček 2002c). According to its
characteristic leaf morphology (shorter dimorphic foliage
helically arranged) it was long known as Sequoia stern-
bergii but sometimes mistaken for true taxodioid Cupres-
saceae (Heer 1868). Cone scales and twigs of Doliostrobus
occur besides Kučlín also at other late Eocene localities in
North Bohemia, e.g., Mrtvý vrch, the cores at Hlinná and
Lbín,. Kostomlaty / Roudný, and in the Skalice quartzite
(Kvaček 2002c). Doliostrobus is rarely represented in the
Staré Sedlo Fm. in the Cheb Basin. This conifer is typical
of the Zeitz flora (Mai and Walther 1985).
A recent xylotomical study in the German Late Eocene
locality Groitzscher Dreick in the Weisselster Basin (Do-
lezych in Lange et al. 2005) recovered whole trunks more
than 8 m long with unusual surface and characteristic pit-
ting confirming the assumption that D. taxiformis is a large
tree. Konzalová reports tentatively on the araucarioid pollen
which may belong to Doliostrobus from the Kučlín cores
V 2 and V 3 (Mazancová in Horáčková et al. 1967), and at
Lbín and Hlinná (Konzalová 1981).
A silicified trunk, which was described from Kučlín as
Podocarpoxylon helmstaedtianum by Březinová et al. (1994),
does not belong to Doliostroboxylon, although it was at first
believed to represent a trunk of Doliostrobus. It was re-
interpreted to belong to Tetraclinoxylon (Sakala 2003, Do-
lezych and Sakala 2007), another conifer present in the
Kučlín flora (see below).
Material studied: BP 55.2348.1, 55.2443.1,
55.2455.1, 55.497.1., NM G 2342a,b, G 2433-36, G 2439a,b,
G 4832, G 5572-74.
Angiosperms
Nymphaeaceae s. l.
Various fossils belonging to Water Lilies are well repre-
sented in the Kučlín flora (Ettingshausen 1869, Bůžek et
al.1990, Kvaček 2002a), as impressions of leaves, attachment
traces of petioles and seeds. Ettingshausen (1869) recognized
in this category of Nymphaeeaceae fossils several taxa on
mere superficial traits. Most are not really identifiable because
necessary diagnostic characters are not visible on the impres-
sion material. Nevertheless, the presented documentation
shows a quite large diversity of this group of aquatic plants
and may help to characterize environment of the Kučlín lake,
because these remains belong to autochthonous plants.
Sabrenia vel Dusembaya sp.
Pl. 2, fig. 9
1881 Sapindus falcifolius A. BRAUN; Sieber, p. 86 pro parte,
pl. 2, fig. 11.
?1881 Carpolithes amygdaliformis SIEBER, p. 92, pl. 4, fig. 25.
1990 Brasenia vel Dusembaya sp.; Bůžek et al, p. 172, fig. 3.14.
Seeds well compressed, in fossil state disc-shaped and
variously damaged, 3–20 mm in diameter.
Discussion: In the present treatment the seeds of
Nymphaeaceae s. l. are not differentiated awaiting future
more thorough study. A more precise identification requires
details of testa and other anatomical traits (Collinson 1980).
90
Anoectomeria brongniartii SAPORTA
Pl. 1, fig. 20; Pl. 2, figs 1-3
1865 Anoectomeria brongniartii SAPORTA; p. 125, pl. 7, fig. 1.
1869 Anoectomeria brongniartii SAPORTA; Ettingshausen, p. 10,
pl. 41, figs 11, 12, 13, 14.
2001 Anoectomeria brongniartii SAPORTA; Hably et al. p. 42-43,
pl. 43, fig. 4, pl. 44, figs 1, 2, 3.
Rounded bodies consisting of groups of small rhizome
traces (or seeds?) ca.2 mm in diameter.
Discussion: The true affinities of such fossils
have not been verified, although Ettingshausen (1869)
agreed with the treatment by Saporta (1865) who believed
that they should represent rhizome fragments. In our case
these bodies may represent compressed groups of seeds
(Pl. 1, fig. 20; Pl. 2, figs 1-3, 9), in contrast with the rhizome
fragments treated here as N. polyrrhiza (Pl. 2, figs 6-8).
M a t e r i a l : BP 55.2334.1, 55.2336.1, 55.2428.1,
55.2454.1, KUC457A.
Nymphaea polyrhiza SAPORTA
Pl. 2, figs 6-8
1862 Nymphaea polyrhiza SAPORTA; p. 177, 236, pl. 10, fig. 1.
1869 Nymphaea polyrhiza SAPORTA; Ettingshausen, p. 11,
pl. 41, figs 16, 17.
1869 Nymphaea gypsorum SAPORTA; Ettingshausen, p. 11, pl. 41,
fig. 15.
2001 Nymphaea polyrhiza SAPORTA; Hably et al., p.56, pl. 69,
figs 6-7.
Rounded to polygonal irregularly shaped traces of
attachments of petioles to rhizomes leaving characteristic
grouping of rounded variously sized traces on the surface.
Discussion: The affinity to the Nymphaeaceae is
most probable but the remains can hardly characterize indi-
vidual natural species. Similar petiole outlines with vascu-
lar bundle marks have been attributed to Nuphar from the
Oligocene of Montana and Oregon (Becker 1969; Meyer
and Manchester 1997).
Material: BP 55.2345.1, 56.1236.1, NM G 8635,
NM G 8657a, G 4836.
Nymphaeaceae gen.
Pl. 2, figs 4-5
2002a Nymphaeaceae gen.; Kvaček, p. 222, pl. 1, fig. 2, pl. 4, fig. 2
Imperfectly preserved rounded leaves up to 5 cm in
diameter with actinodromous venation.
Discussion: Such fossils have been usually refer-
red to Nelumbo on account of seemingly peltate attachment
of the lamina to the petiole. They apparently belong to the
same plants at Kučlín that left various seeds and rhizome
remains as described above, in which case they should be
removed from Nelumbaceae to the Nymphaeaceae. The bi-
lateral symmetry of the veins within the lamina (Pl. 2, fig. 4)
is consistent with Nymphaeaceae, and readily distinguished
from Nuphar which has more strictly radial venation. The
preservation of the venation and overall morphology is very
poor due to long time of decay in the sediment. We do not
attempt any detailed comparisons to better preserved fossils
of this kind previously described from the Tertiary of
Europe.
Material: NM G 8638, G 8639.
Magnoliaceae
Magnolia L.
Magnolia longipetiolata ETTINGSHAUSEN
Pl. 3, fig. 2, pl. 4, fig. 1, ? pl. 9, figs 1-2.
? 1866Ficus hercules ETTINGSHAUSEN, p. 74, pl. 21, fig. 1.
? 1868Rhododendron haueri ETTINGSHAUSEN, p. 50, pl.39, fig. 19.
1869 Magnolia longipetiolata ETTINGSHAUSEN, p. 9, pl. 41,
fig. 8-9.
1990 Magnolia longipetiolata ETTINGSHAUSEN; Bůžek et al.,
p. 172, fig. 3.21.
? 2001Rhododendron haueri ETTINGSHAUSEN; Hably et al., p.33,
pl. 28, fig. 1.
? 2001Ficus hercules ETTINGSHAUSEN; Hably et al., p. 23, pl. 15,
fig. 3.
Leaves simple, petiole stout, long, exceeding the length
of 25 mm, lamina lanceolate, more than 25 cm. Venation
eucamptodromous. Midrib stout, straight, secondaries quite
dense, much thinner and steep, venation of higher order
reticulate, not well discernible.
Discussion: These slender and long petiolate
leaves ascribed by Ettingshausen to this morphotype are
typical elements of the Kučlín flora and may indeed belong
to the magnolias. Unfortunately, there is no evidence by
epidermal anatomy to verify this identification..
Material: BP59.1113.1, BP 55.2367.1, KUC 442,
NM G 8640a,b, G 8672a.
Liriodendron L.
Liriodendron sp.
Pl. 4, figs 6-7
An incomplete bilobate leaf, lobes entire, venation
camptodromous.
Discussion: Morpohology of Liriodendron
leaves is typically developed in one of the impressions from
Kučlín. This genus is well documented from the České stře-
dohoří Mounains both by fruitlets and foliage mainly from
Oligocene sites, e.g., Hrazený, Markvartice (Knobloh 1961,
Bůžek et al. 1976), exceptionally also from the Late Eocene
flora of Roudníky (Z. Kvaček, own observation).
Material: NM G 8655.
Magnoliaceae gen.
Pl. 4, figs 2-5
1869 Magnolia crassifolia GÖPPERT; Ettingshausen, p. 8.
1869 Magolia primigenia UNGER; Ettingshausen, p.8, pl. 41, fig. 7.
Leaves elliptical, entire-margined, without petiole pre-
served, venation eucamptodromous, midrib straight, medi-
um thick, secondaries very delicate, hardly visible.
Discussion: The Budapest collection contains
also nonillustrated specimens identified by Ettingshausen
as Magnolia crassifolia GÖPP. All specimens are quite deli-
91
cate, suggesting deciduous nature, contrary to the opinion
of Ettingshausen. The lack of epidermal structure prevents
us to express our opinion as to the affinities. The texture
indeed may suggest deciduous magnolias, laurels etc.
Material: BP55.2382.1, 55.2343, 59.1156.1.
Lauraceae
Laurophyllum GÖPPERT
Laurophyllum sp. 1
Pl. 4, figs 13-14
1868 Nectandra arcinervia ETTINGSHAUSEN, pp. 8-9, pl. 33,
figs 1-3.
Narrow-leaved lauroid leaf with a prominent venation.
Discussion: See under Laurophyllum sp. 2
Material: BP55.2413.1.
Laurophyllum sp. 2
Pl. 4, figs 15, pl. 5, figs 1-4
1868 Cinnamomum laurifolium ETTINGSHAUSEN, p. 11, pl. 34, fig. 13.
1868 Laurus primigenia UNGER; Ettingshausen, p. 4 (s.ic.).
1868 Laurus ocoteaefolia ETTINGSHAUSEN, p. 4, pl. 31, figs 11, 12.
1868 Laurus reussii ETTINGSHAUSEN, p. 5, pl. 30, figs 5, 11.
1868 Laurus princeps HEER; Ettingshausen, p. 4 (s.ic.).
1868 Laurus tetrantheroides ETTINGSHAUSEN; Ettingshausen,
p. 5 (s.ic.).
1868 Laurus lalages UNG.; Ettingshausen, p. 4 (s.ic.).
1868 Laurus nectandroides ETTINGSHAUSEN, p. 6, pl. 31, figs 10,
10b.
1868 Laurus brocchiana MASSAL.; Ettingshausen, p. 7 (s.ic.).
1868 Laurus protodaphne WEBER; Ettingshausen, p. 7 (s.ic.).
1868 Cinchonidium bilinicum ETTINGSHAUSEN, p. 19-20, pl. 35,
figs 28, 29.
1868 Cinchonidium randiaefolium ETTINGSHAUSEN, p. 20, pl. 36,
fig. 1.
1868 Heliotropites acuminatus ETTINGSHAUSEN, p. 34, pl. 37,
fig. 30.
1869 Dodonea apocynophyllum ETTINGSHAUSEN, p. 28, pl. 46,
figs 19-20.
1869 Dodonea antiqua ETTINGSHAUSEN, p. 28, pl. 46, fig. 18.
?1869 Celastrus elaeanus UNG.; Ettingshausen, p. 34, pl. 48,
fig. 29.
1869 Rhamnus heerii ETTINGSHAUSEN, p. 43, pl. 50, fig. 20.
1869 Rhamnus paucinervia ETTINGSHAUSEN, p. 43, pl. 50, fig. 19.
1869 Pomaderis acuminata ETTINGSHAUSEN, p. 43, pl. 50, fig. 21.
1869 Adenopeltis protogaea ETTINGSHAUSEN, p. 44, pl. 50,
figs 23-24.
1881 Laurus haidingeri ETTINGSHAUSEN; Sieber, p. 79, pl. 4, fig. 33.
1990 cf. Lauraceae; Bůžek, Fejfar, Konzalová, Kvaček, p. 172,
fig. 3.10.
2001 Cinnamomum laurifolium ETTINGSHAUSEN; Hably et al.,
p. 19, pl. 9, fig. 5.
2001 Nectandra arcinervia ETTINGSHAUSEN; Hably et al., p. 30,
pl. 23, figs 4, 5.
2001 Laurus nectandroides ETTINGSHAUSEN; Hably et al., p. 27,
pl. 19, fig. 1.
2001 Rhamnus paucinervia ETTINGSHAUSEN; Hably et al., p. 33,
pl. 27, fig. 2.
2001 Cinchonidium bilinicum ETTINGSHAUSEN; Hably et al, p. 18,
pl. 9, figs 1, 2.
2001 Cinchonidium randiaefolium ETTINGSHAUSEN; Hably et al.,
p.19, pl. 9, fig. 6.
Elongate entire-margined leaves of various outlines
with typically brochidodromous lauroid venation with
mostly irregularly disposed secodaries.
Discussion: In spite of the different morphotypes
of lauroid foliage recognized by Ettingshausen (1868), it is
difficult to judge the number of natural representatives of
the Lauraceae in the Kučlín flora. For such an analysis it
would be necessary to employ leaf epidermal characteris-
tics, which are lacking in the material studied. Therefore we
do not attempt any precise synonymy of the lauroids
described by Ettingshausen (1868, 1869) and the above list-
ed synonyms include only some more typical examples of
the lauroid foliage.
Material: BP 55.2312, 55.2364.1, 55.2397,
55.2479.1, NM G 8479ab, others at NM, DB.
Daphnogene UNGER
Daphnogene cinnamomifolia (BRONGNIART) UNGER
Pl. 4, figs 8-9
1868 Cinnamomum polymorphum (A. BRAUN) HEER; Etting-
shausen, p. 198, pl. 33, figs 14, 15, 17-22.
1868 Daphnogene kutschlinica ETTINGSHAUSEN, p. 199, pl. 34,
fig. 12, fig.14.
1868 Cinnamomum lanceolatum (UNGER) HEER; Ettingshausen,
p. 10, pl. 33, figs 7, 8, 9, 13, 16.
1868 Cinnamomum polymorphum (A. BR.) HEER; Ettingshausen,
p. 10, pl. 33, figs 17, 18, 20, 21.
1868 Cinnamomum rossmässleri HEER; Ettingshausen, p. 9,
pl. 32, figs 11, 12, 13.
1868 Cinnamomum scheuchzeri HEER; Ettingshausen, p. 10,
pl. 32, figs 2, 7.
1868 Cinnamomum spectabile HEER; Ettingshausen, p. 11,
pl. 34, fig. 15.
1990 Daphnogene cinnamomifolia (BRONGNIART) UNGER; Bůžek,
Fejfar, Konzalová, Kvaček, p. 172, fig. 3.16.
2001 Cinnamomum buchii HEER; Hably et al., p. 47, pl. 52, fig. 2;
2001 Cinnamomum spectabile HEER; Hably et al., p. 49, pl. 56, fig. 2.
2001 Cinnamomum rossmässleri HEER; Hably et al., p. 48-49,
pl. 53, fig. 5; pl. 54, figs 4, 5.
2001 Cinnamomum lanceolatum (UNGER) HEER; Hably et al., p.
48, pl. 53, figs 2, 3.
2001 Cinnamomum polymorphum (A. BR.) HEER; Hably et al.,
p. 48, pl. 53, fig. 3; pl. 54, figs 1, 2, pl. 55, fig. 1.
2001 Cinnamomum scheuchzeri HEER; Hably et al. p. 49, pl. 55,
figs 2, 3, pl. 33, figs 5, 6.
2001 Daphnogene kutschlinica ETTINGSHAUSEN; Hably et al.,
p. 219, pl. 11, fig. 2.
Leaves simple, short petiolate, lamina lanceolate to
broadly oval, entire-margined, of variable form, triveined,
with acrodromous venation.
Disscusion: Slender cinnamomoid leaves are
among the commonest woody elements of the Kučlín flora.
Daphnogene cinnamomifolia is common also in mesophyt-
ic sites of the Oligocene elsewhere in the České středohoří
Mountains. Not all triveined leaves are here assigned to this
unit because broader forms described below may show dif-
ferences in the epidermal structure judging according stud-
ies in the floras of Eocene age, in particular in Messel (see
Wilde 1989)
M a t e r i a l : BP 55.2318.1, 55.2323.1, 55.2328.1,
55.2335.1, 55.2346.1, 55.2403.1, 55.2425.1, 55.2436.1,
92
55.2464.1, 55.2482.1,, 59.871.1, 59.1100.1, NM G 425, G 426, G 435,
G 8427, G 8479, G 8646, G 8671 others at NM, DB.
Daphnogene sp.
Pl. 4, figs 10-12
1868 Sassafras aesculapi HEER; Ettingshausen, p. 8, pl. 31, fig. 12.
2001 Sassafras aesculapi HEER; Hably et al., p. 60, pl. 79, fig. 4.
? 2002a Matudaea sp. sensu Kvaček, p. 222, pl. 1, fig. 3.
Oval entire-margined leaves with triveined acrodromous
venation
Discussion: Wide ovate, triveined leaves do not
always belong to the Lauraceae. Hably and Kvaček (1998)
interpreted such leaf forms from the Lower Oligocene of
Eger-Kiseged as representatives of Hamamelidaceae (Ma-
tudaea). Similar leaves occur also at Kučlín (pl. 1, fig. 3)
and Staré Sedlo Fm. (Daphnogene pseudopolymorpha E.
KNOBLOCH et KVAČEK in Knobloch et al. 1996). Epidermal
anatomy is necessary to prove their affinities.
Material: BP55.1171.1.
Araceae
Nitophyllites ILJINSKAYA
Nitophyllites bohemicus WILDE, KVAČEK et BOGNER
Pl. 3, figs 4, 11
2005 Nitophyllites bohemicus WILDE, KVAČEK et BOGNER,
p. 170, fig. 10.
Fragments of large cordate leaves and rounded apices
with characteristic parallel venation (for more details
together with comparison with similar fossils from Messel
and extant representatives see Wilde et al. (2005).
Discussion: Leaves of the Araceae left delicate
remains in many cases disintegrated into small pieces as the
thin lamina folded and vent into pieces. The same preserva-
tion mode is seen in the generitype (Iljinskaya 1960, 1963)
which was originally interpreted as remains of algae. Addi-
tionl material found at Kučlín confirms that such remains
are large pieces of the Araceae foliage recognizable accord-
ing to characteristic pattern of higher-order venation.
Because of overlapping morphology among different extant
genera, the affinity of this morphotype to particular living
genera has not been recognized even in cases of much bet-
ter preservation of Messel material (Wilde et al. 2005).
The occurrence of Nitophyllites at Kučlín documents
helophytic araceous plants typical of warm climate today.
Other fossil occurrences of this group are extremely rare, in
the Eocene of North America, and in the Palaeocene–
–Eocene of Kazakhstan and Far East. The Araceae are also
well represented by foliage at the Middle Eocene site Messel
in Germany, but by different representatives of this family.
Material: KUC 431, NM G 7778.
cf. Orontium sp.
Pl. 3, figs 5-6
Leaf simple, oblong, ca 10 mm wide, length incomplete,
margin entire, venation subparallel, ca 3 parallel veins run
on either side of the thin midrib and fuse with it. Venation
of higher order not preserved.
Discussion: Orontium belongs to very ancient sim-
ple-leaved Araceae (Bogner et al. 2007) and has not been
recognized so far in the Tertiary of Europe. Although the
available leaf fragment is very incomplete, it matches in the
main venation pattern with the representatives of this genus
from the Late Cretaceous and Early Paleogene of North
America (Bogner et al. 2007).
Material: KUC230.
Smilacaceae
Smilax L.
Smilax sp.
Pl. 3, fig. 3
Incomplete shortly petiolate leaf lamina, at base round-
ed, ovate, margin entire, venation acrodromous, of which
only three centrally positioned primaries visible.
Discussion: Similar but much better preserved
leaves of the Smilacaceae were described from the Staré
Sedlo formation (Knobloch et al. 1996).
Material: NM G 8634a.
Dioscoreaceae
cf. Dioscorea L.
? Dioscorea sp.
Pl. 3, figs 1-2
A fragment of cordate leaf with 5 primaries radiating
from the incomplete leaf base. Venation of higher order
very thin, hardly visible. Individual half-moon shaped fruit-
lets ca. 6 mm long and 4.5 mm in diameter, well flattened
Discussion: Besides a fragment possibly repre-
senting Dioscorea foliage, two Dioscorea-like fruitlets were
recovered at Kučlín so far. One of the first documents was
recognised by S.R. Manchester (in Kvaček 2002a) as possi-
bly belonging to the Dioscoreaceae. We have not seen the
persistent apical tepals that should be expected, however
(Manchester and O’leary 2010). More complete fruits of
this plant group were recovered in the Hungarian Early
Oligocene site Eger-Kiseged (Andreánzsky 1959, as
Dioscoreocarpum). This element is certainly a liana like
termophilous plant typical of tropical–subtropical areas.
Material: KIN 448-2, KUC 216.
Arecaceae
Palm remains are very scanty at Kučlín and mostly pre-
served as isolated leaf segments.
Sabal ADANSON
Sabal rhaphifolia (STERNBERG) E. KNOBLOCH et KVAČEK
Pl. 2, fig. 14, pl. 3, fig. 9, pl. 18, fig. 1
1866 Cyperus chavannesi HEER; Ettingshausen, p. 26, pl. 6, fig. 3.
2009 Sabal rhaphifolia (STERNBERG) E. KNOBLOCH et KVAČEK;
Akhmetiev et al., p. 81, pl. 8, fig. 11.
93
Large portions of palm segments over 30 cm long, be-
longing most probably to a sabaloid palm, basal parts not
preserved, apical parts split. Smaller parts showing V-shaped
vernation of leaf lamina.
Discussion: Amore precise identification of leaf
segments is difficult due to the lack of important parts, in
particular the attachment of the petiole to the leaf.
Material: BP55.1151.1, KUC 458.
cf. Arecaceae indet.
Pl. 3, fig. 10
1868 Leptomeria bilinica ETTINGSHAUSEN, p. 12, pl. 34, fig. 7.
Small partly branched portions of an inflorescence/
/fructescence devoid of flowers.
Discussion: The fossils at hand may represent
fragments of palm infructescences rather than branches of the
Proteaceae assigned to Leptomeria, contrary to the opinion of
Ettingshausen (1868). The incomplete preservation makes it
difficult to be sure of the nature of such fossils at all.
Material: BP59 1144.1, 55 1136.2.
Poaceae (vel Cyperaceae)
We unite under this heading mostly impressions of
grass-like foliage. The preservation of the venation does not
allow more precise comparisons.
Poacites acuminatus ETTINGSHAUSEN
Pl. 2, fig. 15
1866 Poacites acuminatus ETTINGSHAUSEN, p. 24, pl. 6, fig. 6.
2001 Poacites acuminatus ETTINGSHAUSEN, Hably et al., p. 91,
pl.25, fig. 6.
Grass-like foliage without diagnostic traits.
Material: BP55 1142.1 and many others.
Musaceae
Musa L.
Musa bilinica ETTINGSHAUSEN
Pl. 2, figs 12-13
1866 Musa bilinica ETTINGSHAUSEN, p. 28, pl. 7, fig. 4.
Large portions of entire banana-like leaves with a midrib
and very dense secondaries at about 50°.
Discussion: This type of monocot foliage has
been recently treated in detail and transferred from Zingib-
eraceae to Musaceae (Fischer et al. 2009).
Material: BP55.1145.1.
Monocot inc. sed.
“Chamaerops” kutschlinica ETTINGSHAUSEN
Pl. 3, figs 7-8
1866 Chamaerops kutschlinica ETTINGSHAUSEN (Flabellaria
kutschlinica ETTINGSHAUSEN in figure captions), p. 32, pl.,
8, fig. 5.
1990 Chamaeorps kutschlinica ETTINGSHAUSEN; Bůžek et al.,
p. 172, fig. 3.23.
Poorly preserved impression of ca. 3 cm large tuber-like
rhizome with radiating narrow segments.
Discussion: The fossil described as Chamaerops
kutschlinica by Ettingshausen (1866) represents in fact
a nodular rhizome with radiating rootlets resembling leaf
segments
The holotype of this species is clearly not a foliar fossil.
The segments radiating from the rhizome are very doubtful,
probably rootlets. No similar fossils have been recovered to
bring further evidence that Chamaerops-like palms existed
in the Kučlín flora.
Material: BP59.1179.1.
Butomusheerii ETTINGSHAUSEN
Pl. 2, figs 10-11.
1866 Butomus heerii ETTINGSHAUSEN, p. 27, pl. 6, figs 12-14.
Infructescence impression joining in an umbel several
longly stalked bicarpellate fruitlets.
Discussion: This fruit remain is certainly inter-
esting, recalling Butomus fruits because of the umbellate
infructescence structure. However, this kind of infructes-
cence also occurs in the Araliaceae. The indidual fruit
organization, consisting of D-shaped wedges topped by per-
sistent divergent styles, resembles more closely the Arali-
aceae (S.R. Manchester, personal communication), but we
have not done more detailed comparative work to clearly
resolve its affinities.
Material: BP59.1103.1, NM G 8647b.
Arundoheerii ETTINGSHAUSEN
Pl. 2, fig. 16
1866 Arundo heerii ETTINGSHAUSEN, p. 20, pl. 4, fig. 5
Rhizome with several roundish differently sized traces of
secondary roots, or perhaps seed impressions, in a vertical line.
Discussion: Avery incomplete fossil presumed
to be Arundo, but for a definite proof it is very insufficient
and doubtful.
Material: BP59.1346.1.
Berberidaceae
Berberis L.
Berberis sp.
Pl. 5, fig. 5
Leaf simple, obovate, subsessile, apex rounded, base
arrow cuneate, margin simple, finely and sharply serrate in
the upper part of the lamina, venation semicraspedodro-
mous, midrib straight, secondaries densely spaced, subpar-
allel, at angles of 40–60 °, looping along the margin.
Discussion: Contrary to Berberis berberidifolia
(HEER) PALAMAREV et PETKOVA from the European Mio-
cene, this species does not form broader meshes of second-
aries inside the lamina. The affinity to Berberis is based
only on the sharp serration and the form of the lamina. Sim-
ilar foliage can be seen in many Asiatic species today.
Material: KUC 76, KUC 215.
94
? Mahonia NUTT.
cf. Mahonia sp.
Pl. 5, fig. 6
Leaflet incomplete, slightly asymmetrical, broadly ova-
te, 24 mm wide, 39 mm long, sessile, margin sharply sim-
ple dentate, venation semicrapedodromous (?), midrib straight,
basal secondaries opposite, higher at an angle of 45°, enter-
ing the marginal teeth.
Discussion: This quite incomplete impression is
assigned to Mahonia an acount of sharply tooth margin. A
closer comparison is difficult because of the inadeqately
preserved material.
Material: KUC 446.
Platanaceae
Platanus subgen. Glandulosa KVAČEK et MANCHESTER
Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ
et KVAČEK
Pl. 5, figs 7-11
1866 Sparganium netpuni ETTINGSHAUSEN, p. 31, pl. 7, figs 10,
11, 12, 13, 17, 18.
1866 Myirca reussii ETTINGSHAUSEN, p. 44, pl. 14, fig. 4.
1868 Hedycarya europaea ETTINGSHAUSEN, p. 3, partim, pl. 30,
fig. 4.
1868? Banksia ungeri ETTINGSHAUSEN; Ettingshausen, p. 16 (s.ic.).
1869 Ceratopetalum bilinicum ETTINGSHAUSEN, p. 6, pl. 40, figs 26,
30, 31.
1869 Bombax chorisiaefolium ETTINGSHAUSEN, p. 11, pl. 42,
figs 2, 4, 5.
1869 Celastrus deucalionis ETTINGSHAUSEN, p. 33, pl. 48, fig. 15.
1869? Celastrus acherontis ETTINGSHAUSEN, p. 33, pl. 48, fig. 9.
1869 Cunonia bilinica ETTINGSHAUSEN, p. 64, pl. 55, fig. 21.
1869 Ternstroemia bilinica ETTINGSHAUSEN, p. 17, pl. 47, figs 8,
9, 10.
1869 ?Elaeodendron persei UNGER; Ettingshausen, p. 36, pl. 48,
fig. 25, pl. 49, fig. 11.
? 1869 Elaeodendron degener(UNGER) ETTINGSHAUSEN; Ettings-
hausen, p. 37, pl. 49, fig.5,7, 8, 9, 10.
? 1869 Ceratopetalum haeringianum ETTINGSHAUSEN; Ettings-
hausen, p. 6, pl. 40, figs 27, 28, pl. 41, figs 4, 5.
1869 Maytenus europaea ETTINGSHAUSEN, p. 31, pl. 48, figs 10,
11, 13.
?1869 Sapindus fraxinifolius ETTINGSHAUSEN, p. 26, pl. 46,
figs 24, 25, 26, pl. 47, fig. 12.
1869 Hippocratea bilinica ETTINGSHAUSEN,p. 38 pro parte,
pl. 49, fig. 14.
1869 Rhus hydrophila (UNGER) ETTINGSHAUSEN; Ettingshausen,
p. 49, pl. 51, fig. 3 (Platanus neptuni mf. fraxinifolia).
1967 Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVA-
ČEK, p 205, pl. 1. figs 1-4, 6 (non 5 – Sloanea artocarpites),
pls 2-4.
1990 Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVA-
ČEK; Bůžek, Fejfar, Konzalová, Kvaček, p.172, figs 3.4-7.
2001 Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et
KVAČEK; Hably et al. p. 12, pl. 3, fig. 4;p. 14, pl. 5, figs 1-
2, p. 17, pl. 8, fig. 1, p. 25, pl. 17, fig. 2; p. 28, pl. 21, figs
2, 4, 5; p. 36, pl. 32, figs 2, 6; pp. 37-38, pl. 33, figs 4, 5,
pl. 34, figs 2, 3, 5, pl. 35, figs 1, 2; p. 39, pl. 38, fig. 2; p.
47, pl. 51, figs 3, 4; p. 52, pl. 60, fig. 3.
2002a Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVAČEK;
Kvaček, p. 222, pl. 3, fig. 7.
2004 Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVA-
ČEK mf. neptuni, p. 19, figs 2g, h, 3b; Platanus neptuni
(ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVAČEK mf. reussii
(ETTINGSHAUSEN) KVAČEK et MANCHESTER p. 19, figs, 5a, b,
c, f; Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ
et KVAČEK mf. fraxinifolia (JOHNSON et GILMORE) KVAČEK
et MANCHESTER, p. 19, figs 7b, c.
2007 Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVA-
ČEK; Kvaček and Teodoridis, p. 384, figs 2. G, H.
2008 Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVA-
ČEK; Kvaček, 94, pl. 1, figs 5-7.
Globular male inflorescens and female infructescences
on single stalks. Foliage twigs with alternate leaves attach-
ed to the twig by an enlarged petiole enveloping the axilary
bud. Leaves simple or trifoliolate (quiquefoliolate outside
Kučlín), usually crenate to creanulate, rarely entire. Stipules
only decayed on the top, strap-like (for more detailed
description see Kvaček and Manchester 2004).
Discussion: Kučlín is the type locality of this
unusual plane with oblanceolate leaves common and dis-
tinctive inflorescences in the Eocene to Miocene of Europe
(Walther 1985). One of the Kučlin specimens is important
in showing the alternate phylotaxy of unifoliolate leaves on
a branching twig (Kvaček et al. 2001). This species is a suc-
cessor of the still more ancient compound-leaved P. bella
(HEER) KVAČEK, MANCHESTER et GUO (2001) known from
the Palaeocene–Eocene of North America, Greenland and
East Asia. Besides Kučlín, P. neptuni has been documented
by its typical cuticular structure in various floras of Europe.
In the Zeitz floras, it is known more often in the trifoliolate-
quinquefoliolate form (Mai and Walther 1985, as Platanus
fraxinifolia). This ancient plane thrived abundantly on fer-
tile volcanic soils (Markvartice, Ipolytarnóc) and mostly
avoided fluviatile environment, contrary to the extant plane
trees growing often at streams.
M a t e r i a l : BP 55.2321.1, 55.2337.1, 55.2349.1,
55.2427.1, 55.2423.1, 55.2437.1, 55.2445.1, 55.2484.1,
55.2494.1, 55.2491,1, 55.2498.1, 56.1220.1, 59.119.1,
59.1144.1, 59.1148.1; NM G 427, G 432-4, G 417,
G 418, G 4635, G 4837, G 5061, G 7565, G 8114, G 8478,
G 8665-71.
Vitaceae
? Ampelopsis MICHX.
cf. Ampelopsis sp.
Pl. 5, fig. 12
Leaflet symmetrical, petiolule short, incomplete, lamina
lanceolate, 17 mm wide, 34 mm long, margin widely tooth-
ed, with 2 teeth on either side, blunt, apex elongate blunt,
venation craspedodromous, midrib straight, thick, second-
aries widely spreading, the lowermost subopposite, reach-
ing the lower teeth, higher veins not well visible, steeply
ending into the marginal teeth.
Discussion: The unique specimen of this mor-
photype is similar but much slender than Ampelopsis sp.
from Bechlejovice (Kvaček and Walther 2004, pl. 3, fig. 3)
recalling leaflets of the living A. arborea and A. orientalis.
95
An affinity to another genus of the Vitaceae, e.g., Partheno-
cissus, cannot be ruled out.
Material: KIN 363. 1.2.
Elaeocarpaceae
Sloanea L.
Sloanea belongs to tropical–subtropical elements spread
in Asia to Australia, Madagascar and tropical America
today, which was recognized by its characteristic fruits also
in Cenozoic deposits in North America (Manchester and
Kvaček 2009), Greenland and Europe (Reid and Chandler
1933, Rasky 1962, Kvaček et al. 2001). More than 120 extant
species have been reported and the modern affinities at the
species level are still under discussion. Similarly represen-
tatives of fossil species, particularly the whole plants based
on fruits and foliage, are difficult to delimit and recognize.
In the Bohemian Palaeogene two species have been descri-
bed based on foliage and both occur in the Kučlín flora.
Sloanea nimrodi and S. artocarpites. Besides, two kinds of
fruits are associated there, which are newly characterized
below.
Sloanea nimrodi (ETTINGSHAUSEN) KVAČEK et HABLY
Pl. 6, figs 3, 6
1869 Cissus nimrodi ETTINGSHAUSEN, p. 3, pl. 40, figs 3-4, 6-10.
1869 Celastrus cassinefolius UNGER; Ettingshausen, p. 31, pl. 48,
figs 17-18.
1869 Cassine palaeogea ETTINGSHAUSEN; Ettingshausen, p. 38,
pro parte pl. 46, fig. 13.
1869 Crataegus bilinica ETTINGSHAUSEN, p. 54, pl. 53, fig. 17.
1985 Dicotylophyllum sparsidentatum BŮŽEK, HOLÝ et KVAČEK;
Mai and Walther, p. 117, pl. 9, figs 1-3, text-figs 1/16-17,
2/17-19.
1995 Icaciniphyllum nimrodi (ETTINGSHAUSEN) KVAČEK et BŮŽEK,
p. 134, pl. 4, figs 1-6, text-fig. 2.
2001 Sloanea nimrodi (ETTINGSHAUSEN) KVAČEK et HABLY in
Kvaček et al., p. 117.
Leaves simple, broadly elliptic to obovate, 30–52 mm long
and 18–32 wide (L/W ratio < 2), petiole short, margin coar-
sely crenulate to double crenulate to sub-entire, venation
craspedodromous to eucamptodromous, midrib stout, straight,
secondaries in mostly in 5 pairs, basal pair slightly more
prominent, opposite, tertiaries much thinner, percurrent and
oblique to the secondaries, forming lops along the margin.
Lectotype established here: BP55. 2324.1
(Ettingshausen 1869, pl. 40, fig. 6) refigured in pl. 6, fig. 6.
Discussion: The leaves of S. nimrodi were at first
misinterpreted for the Icacinaceae foliage (Kvaček and
Bůžek 1995) or merged with a large-leaved S. olmediaefo-
lia (UNG.) KVAČEK et HABLY (as Icaciniphyllum arto-
carpites – Mai and Walther 2000), which is similar in its
epidermal structure. The co-occurring fruit at Kučlín,
described below as Sloanea manchesteri sp. n. reveals fur-
ther traits of this late Eocene small-leaved representative,
whose capsules bear longer and coarser spines. On the con-
trary, the Oligocene S. olmediaefolia has been accompanied
by finely and shortly spiny fruits of Sloanea engelhardtii sp.
n. (see below). S. elliptica (ANDREÁNSZKY) KVAČEK et
HABLY from the Hungarian Oligocene is another species
with robust, variable foliage and very large fruits covered
by long spines (Kvaček et al. 2001).
S. nimrodi occurs, besides Kučlín, also in the core Úc 9
of the North Bohemian Eocene and is common also in the
Late Eocene Zeitz Floral Assemblage of the Weisselster
Basin (Mai and Walther 1985 – as Dicotylophyllum sparsi-
dentatum; Mai and Walther 2000, pl. 5, fig. 6 – as Icacini-
phyllum artocarpites). It obviously preferred mesic habi-
tats, as its extant relatives, but occasionally appeared also in
the fluvial facies in the mine Haselbach and the sand pit
Klausa, as well as in the coal facies in the mine Profen (Mai
and Walther 2000). In the Kučlín flora S. nimrodi is accom-
panied by a large-leaved S. olmediaefolia, which is very
rare there but spread to other localities during the Oligocene
(Kvaček et al. 2001, Hably 2010).
Material: BP 55.1151.1 (paratype), BP 55.2313.1
(paratype), BP 55.2324.1 (lectotype), BP 55.2330.1, BP
2432.1 (paratypes), NM G 5033, G 7677, G 7895, G 7900a,b,
G 8673, G 8674, Olomouc Univ. 204, MMG KIN 266.
Sloanea manchesteri KVAČEK et TEODORIDIS sp. n.
Pl. 6, fig. 7
2002a Sloanea sp.; Kvaček, p. 231, pl. 4, fig. 8.
Compression of the indehisced spiny capsule, fruit body
almost globular, well flattened, ca. 12 mm in diameter,
inside smooth, outside with spines 8 mm long and 0.2 mm
thick, blunt, subparallel, well separated during the whole
length, densely covering the capsule valves.
Holotype established here: NM G 7895
– pl. 6, fig. 6.
Etymology: Appreciating help extended by our
colleague Steven R. Manchester towards better understand-
ing of the Cenozoic floras of North Bohemia.
Type locality: Kučlín in North Bohemain Čes-
ké středohoří Mountains, late Eocene.
Remarks: The only available specimen differs from
similar long spiny capsules of S. eocenica (RÁSKY) KVAČEK,
HABLY et MANCHESTER (2001) in a more globular form and
smaller dimensions.
Material: NM G 7895.
Sloanea olmediifolia (UNGER) HABLY et KVAČEK
Pl 6, fig. 4
1850b Artocarpidium olmediaefolium UNGER, p. 36, pl. 14, figs 1-2.
1853 Quercus goeppertii ETTINGSHAUSEN, p. 40, pl. 31, figs 17-18.
1869 Quercus artocarpites ETTINGSHAUSEN, p. 63, pl. 55, figs 19-19b.
1898 Viburnum oligocainicum ENGELHARDT, p. 22, pl. 1, fig. 61.
1898 Ampelopsis (Cissus) bohemica ENGELHARDT, p. 27, pl. 2,
figs 23-26.
1898 Elaedendron grandifolium ENGELHARDT, p. 33, pl. 2, fig. 32.
1898 Euonymus heeri ENGELHARDT, p. 33, pl. 2, fig. 32.
1898 Phyllites quercoides ENGELHARDT, p. 42, pl. 3, fig. 38.
1898 Phyllites amphirocifolius ENGELHARDT, p. 42, pl. 3, figs 47,
68, 75.
1976 Dicotylophyllum sparsidentatum BŮŽEK, HOLÝ et KVAČEK,
p. 105, pl. 10, figs 1-7, pl. 20, figs 5-6, pl. 21, figs 1-6, text-
fig. 8.igs. 1-5, pl. 4, figs 1-5, pl. 6, figs 1-7.
1995 Icaciniphyllum artocarpites (ETTINGSHAUSEN) KVAČEK et
BŮŽEK, p. 132, pl. 3, figs1-4, pl. 4, figs 7-9, pl. 6, figs 1-5,
text-fig. 1.
96
2001 Sloanea elliptica (ANDREÁNSZKY) KVAČEK et HABLY in
Kvaček et al., p.117, pl. 2, figs1-5, pl. 3, figs 1-5, pl. 4,
figs 1-5, pl. 6, figs 1-7.
2008 Sloanea olmediaefolia (UNGER) KVAČEK et HABLY in Hably
and Kvaček, p. 140, fig. 1.
Type: 1851/03/23 GBA, designated by Hably and
Kvaček (2008).
Leaves simple, lamina up to 10 cm long, ovate, base
cuneate, apex acute, margin finely widely (to coarsely in
Suletice-Berand) dentate, venation craspedodromous / sem-
icraspedodromous, midrib straight, secondaries widely
spaced, looping along the margin, partly entering the teeth
Remarks: The typical leaf morphotypes assigned to
Sloanea olmediifolia are quite rare in the Kučlín flora while
certain morphotypes may dominate in other plant assem-
blages, e.g., at Suletice-Berand (Kvaček and Walther1995),
probably due to microclimatic conditions. This type of fo-
liage is accompanied either by narrow ellipsoidal fruits with
shorter spines described below as Sloanea engelhardtii sp.
n. (at Markvartice, Holý Kluk Hill, Kundratice) or larger
fruits of the same type described as Sloanea elliptica
(ANDREÁNSZKY) KVAČEK,HABLY et MANCHESTER (2001)
(Tard Clay).
Material: ČB 4b.
Sloanea engelhardtii KVAČEK et TEODORIDIS sp. n.
Pl. 6, fig. 5
1898 Castanea kubinyi KOVÁTS; Engelhardt, p. 15, pl. 1, figs 21-
-23, 25.
1976 Carpolithes sp. 7; Bůžek et al., p. 118, pl. 9, figs 9-10.
1995 Carpolithes sp.; Kvaček and Walther, p. 30, fig. 3.
2001 Carpolithes sp.; Kvaček, Hably and Manchester, p. 115,
pl. 1, figs 6-7.
Compressions of the isolated narrow elliptical capsule
valves, partly in pairs, 15–20 mm wide and 8 mm wide,
inside smooth, outside densely covered with 3–5 mm long
blunt spines, subparallel, separated during the whole length.
Holotype established here: MMG Su-
Be 284 (illustrated by Engelhardt 1898, pl. 1, fig. 2, Kvaček
et al. 2001, pl. 1, figs 6-7 ).
Etymology: Appreciating contribution of Herman
Engelhardt, to the Tertiary palaeobotany in North Bohemia.
Type locality: Suletice-Berand, North Bohemi-
an České středohoří Mountains, Oligocene.
Remarks: Rare specimens of these fruits similar in
morphology to the designated type from Suletice-Berand
regularly accompany the large-leaved morphotype of
Sloanea in the Oligocene of ČSM (Kvaček et al. 2001, as
Sloanea sp.), newly also in the late Eocene flora at Kučlín.
Material: MMG KIN 398.
Fabaceae
Podocarpium A. BRAUN ex STITZENBERGER
Podocarpium hirsutum (ETTINGSHAUSEN) KVAČEK et
TEODORIDIS comb. n.
Pl. 5, figs 16-18
1869 Podogonium hirsutum ETTINGSHAUSEN, p. 60, pl. 55, fig. 11
(basionym).
A pod one-seeded, broadly oval, 23 mm long and 14 mm
wide, on the surface finely hairy, leaflet narrow elongate,
subsessile, rounded on the apex, slightly asymmetrical and
cuneate at the base, venation eucaptodromous, midrib
straight, thin, secondaries hardly visible, dense and steep.
Discussion: The fruit is similar to the common
species of Podocarpium podocarpum spread in Eurasian
Miocene, although the dense hairiness on the surface clear-
ly differentiate the Kučlín record from the rest of Podocar-
pium fossils. The foliage, which we assign to this unique
pod does not differ from the Miocene records.
Material: BP59.1106.2 (fruit and its counterpart),
KUC 414A.
Leguminocarpon GÖPPERT
Leguminocarpon sp.
Pl. 5, fig. 15
A fragment of a stout pod showing several traces of
rounded seeds up to 7 mm in diameter, densely attached to
the ventral side.
Discussion: The exact affinity of this fruit is not
quite clear, also some of similar forms can be detected in
the Hungarian Oligocene (Hably 1992).
Material: NM G 8648a, b.
Leguminosites BOWERBANK emend. SCHIMPER
Leguminosites sp. 1
Pl. 5, figs 19-20
Detached leaflets sessile, entire-margined, 20–25 mm
wide and ca. 50 mm long elliptic, midrib straight, medium
thick, secodaries very delicate eucaptodromous, dense, with
intersecondaries.
Material: KUC 423, KIN 358.
Leguminosites sp. 2
Pl. 6, figs 1-2
Compound leaves fragmentary, consisting of a few pairs
of opposite leaflets, most leaflets detached, sessile, entire-
margined, elliptical or narrow elongate, venation eucampto-
dromous, midrib straight, secondaries very thin, dense, at an
angle of ca. 60°.
Discussion: Legume leaflets are not rare in the
Kučlín flora and may represent several morphotypes with
variously shaped laminas. In the present treatment only two
are recognized. Closer affinities are difficult to judge mere-
ly on the morphology of foliage.
Material: KIN 209.1, KIN 388.
Rhamnaceae
Ziziphus MILLER
Ziziphus bilinica ETTINGSHAUSEN
Pl. 16, figs 3-5
1869 Ziziphus bilinicus ETTINGSHAUSEN, p. 40, pl. 51, fig. 1.
1990 Ziziphus ungeri HEER; Bůžek et al., p. 172, fig. 3.20.
2001 Ziziphus bilinicus ETTINGSHAUSEN; Hably et al., p. 41,
pl. 37, fig. 3.
97
Twig with attached alternate leaves, detached leaves
short petiolate, lamina ovate to broadly ovate, asymmetri-
cal, base rounded, margin serrate to fine serrate, apex miss-
ing, venation triveined, acrodromous , midrib slightly bent,
basal veins reaching well above half of the lamina or almost
into the apex, higher secondaries very few, thin, tertiaries
perpendicular to the midrib, dense.
Discussion: This species is often merged with
Ziziphus ziziphoides (UNGER) WEYLAND, a common Oli-
gocene plant in Europe. We maintain the Kučlín population
separate because Ziziphus-like morphotypes require a more
detailed revision in Europe, which is beyond the scope of
the present study.
Material: BP59.1139.1 (holotype), KUC 141A.
Ulmaceae
Cedrelospermum SAPORTA emend. Manchester
This morphogenus of the extinct Ulmaceae is based on
a detached fruit of Cedrelospermum aquense (SAPORTA)
SAPORTA, 1889 (?? Embothrites aquensis SAPORTA, 1865 re-
figured in Manchester 1987a,b, pl. 1, fig. 4) from the Oligo-
cene of France (Aix-en-Provence). In the genus Cedrelo-
spermum, Saporta (1889) originally included several kinds
of mesofossils, which he believed to represent seeds. In his
concept he included as a synonym Embothrites UNGER
arguing that such fossils do not belong to the Proteaceae.
Manchester (1987a,b: 120) firstly emended Cedrelosper-
mum for detached fruits only and incorrectly suggested as
the lectotype C. leptospermum (ETTINGSHAUSEN) MANCHES-
TER (= Embothrites leptospermos ETTINGSHAUSEN, 1853)
from Häring stressing the differences from the similar type
specimen of Embothrites borealis UNGER from Socka, Slo-
venia (Unger 1850b). He subsequently newly corrected his
previous typification (Manchester 1989: 261-262). He sug-
gested Cedrelospermum aquense as a type of Cedrelosper-
mum and offered a new emendation to include detached
fruits as well as fertile foliage twigs on the basis of more
complete material from the Paleogene of the USA (Cedrelo-
spermum lineatum (LESQUEREUX) MANCHESTER (= Bank-
sites lineatus LESQUEREUX, 1883), Florissant, C. nervosum
(NEWBERRY) MANCHESTER (= Planera nervosa NEWBERRY,
1883) as well the fruits from Europe. Manchester (1987a:
262) merged at this occasion C. aquense with the previous-
ly treated species C. leptospermum leaving the species tax-
onomy open. However, he noticed the size differences
among European Tertiary populations (Manchester 1987a:
262, footnote).
After more material from Europe has become available
(Wilde and Manchester 2003) Manchester’s suspicion can
be confirmed. The differences in the fruit size go along with
changes in co-occurring leaf morphology. At least two
species of Cedrelospermum are recognizable in Europe
(Wilde and Manchester 2003), one with small fruits and
narrower leaves (Häring, Messel, Kučlín) and others with
larger fruits and variable foliage (see also Kovar-Eder et al.
2004, Hably and Thiébaut 2002). From the late Eocene
diatomite at Kučlín, Kvaček (2002a) first announced such
fruits and foliage but treated both organs under the same
headings. In the present treatment, a traditional separa-
tion of the fruits and foliage morphogenera is pre-
ferred in spite of the interconnection between fruits
and foliage both in North America and Europe (Wilde
and Manchester 2002).
Cedrelospermum leptospermum (ETTINGSHAUSEN)
MANCHESTER
Pl. 6, figs 14-15.
1853 Embothrites leptospermos ETTINGSHAUSEN, p. 51, pl. 14,
figs 15-25.
1987a Cedrelospermum leptospermum (ETTINGSHAUSEN) MAN-
CHESTER, p. 122, pro parte (non pl. 1, figs 1-4, pl. 2, fig. 11).
1989 Cedrelospermum aquense (SAPORTA) SAPORTA; Manches-
ter, p. 270, pro parte, only fig. 41 (refigured type of Emboth-
rites leptospermos ETTINGSHAUSEN, p.51, pl. 14, fig. 21).
2002a Cedrelospermum leptospermum (ETTINGSHAUSEN) MAN-
CHESTER; Kvaček, p. 223, pro parte, only pl. 2, fig. 10.
2003 Cedrelospermum leptospermum (ETTINGSHAUSEN) MAN-
CHESTER emend. Wilde and Manchester, p. 148, pl. 1,
figs 1-2.
Lectotype: NHMV Ett. 13, Häring, Etting-
shausen 1853, pl. 14, fig. 21, Manchester 1989, fig. 45 (se-
lected by Wilde and Manchester 2003).
Samaras 9–11 mm long and 4–5 mm wide containing a
flattened elliptical endocarp 1.5–2 x 2.5 mm in size basally
and a slightly oblique oblong wing laterally attached to the
fruit body. The wing shows distally a minute stigmatic cleft.
Venation of the wing is not apparent due to poor preserva-
tion.
Discussion: The three specimens from Kučlín
match in size and form the more numerous fruits from
Häring (late Eocene) and do not differ from incomplete
samaras found in the middle Eocene of Messel (Wilde and
Manchester 2003, Collinson et al, in prep.). The Oligocene
fruits from Aix-en-Provence (Saporta 1889), Rott (Man-
chester 1987a) and the Lower–Middle Miocene from Ran-
deck (Rüffle 1963) and Parschlug (Kovar-Eder et al. 2004)
exceed in size of fruits all three Eocene populations and are
attributed to different species (Kovar-Eder et al 2004).
Material: MMG KIN 192, NM G 7894, DB KUC
116.
Tremophyllum RÜFFLE
On the basis of Quercus tremophylla WEBER from Rott
Rüffle (1963) installed a fossil genus of foliage now known
to correspond with the fruits of Cedrelospermum. At least
for Europe different species better show differentiation of
this extinct ulmoid through its evolution from the Eocene to
the Miocene in Europe.
Tremophyllum microphyllum (ETTINGSHAUSEN)
KVAČEK et TEODORIDIS comb. n.
Pl. 6, figs11-13, 16, 18-21.
1868 Banksia longifolia ETTINGSHAUSEN; Ettingshausen, p. 15,
pl. 35, figs11-12.
1869 Callicoma microphylla ETTINGSHAUSEN; pp. 5-6, pl. 40,
figs 17, 18, 21, 22 (Basionym).
2001 Callicoma microphylla ETTINGSHAUSEN; Hably et al, p. 16,
pl. 6, figs 3, 4, 5, 6, 8, 9, 10.
2002a Cedrelospermum sp. Kvaček, p. 221, pl. 2, fig. 3.
98
Leaves simple, petiole short, stout, lamina narrow, fal-
cate, uniform in form, from linear to narrow elliptic to nar-
row lanceolate, margin finely simple toothed, venation
craspedodromous, midrib thick, usually curved, secondaries
dense, the number of pairs corresponding to the marginal
teeth, higher-order venation reticulate.
Discussion: Tremophyllum microphyllum is simi-
lar to slender leaves attached to a fertile twig of Cedrelosper-
mum from Messel (Wilde and Manchester 2003). The Kučlín
population is much more variable in size and is one of the
most frequent morphotypes in the Kučlín flora.
Material: BP55.2394.1, 55.2304.1, 55 2421.1,
55.2431.1, 55.2482.1, 55.2492.1, 56.1144.1, at KUC, NM
G 7894, G 7897a,b, G 8641-44, G 8659, G 8664, G 8665
and many other specimens.
Ulmites KVAČEK,MANUM et BOULTER
Ulmites sp.
Pl. 6, fig. 17
1869 Rhamnus bilinicus UNGER; Ettingshausen, p. 41, pl. 50, fig. 19.
2001 Rhamnus bilinicus UNGER; Hably, p. 59, pl. 73, fig. 4.
Leaf simple, sessile, lamina minute, elliptical, regularly
serrate on margin.
Discussion: The unique specimen recalls ulmoid
foliage which is in larger specimens spread in various
Palaeogene sites, e.g., Messel and also at Spitsbergen
(Budantsev and Golovneva 2010, as Ulmus). Kvaček, Ma-
num and Boulter (1994) suggested a non-committal name
Ulmites for such morphotypes that may not unequivocally
belong to the genus Ulmus. Fertile remains of Ulmus were
recorded in the Eocene of North America (for review see
Denk and Dillhof 2005).
Material: BP59.1072.1.
Fagaceae
Eotrigonobalanus WALTHER et KVAČEK
Eotrigonobalanus furcinervis (ROSSMÄSSLER)
WALTHER et KVAČEK
Pl. 7, figs 8-10, pl. 18, figs 2-3
2002a Eotrigonobalanus furcinervis (ROSSMÄSSLER) WALTHER et
KVAČEK; Kvaček, p. 223, pl. 2, fig. 4.
(For more detailed synonymy see Kvaček and Walther
1989 and Knobloch et al.1996)
Leaves simple, lamina ovate, up to 160 mm long and
84 mm wide, margin shallowly to coarsely dentate, rarely
entire, venation semicraspedodromous (to camptodromous
in the entire parts), midrib strong, straight, running directly
to the apex region, apex not always fully preserved, second-
aries in ten to more pairs, slightly bent, at an angle of 40–50°,
in marginal region ending in loops which are connected
with the next apical secondary, mostly one intersecondary
between successive secondaries, tertiaries percurrent,
almost at a right angle to the secondaries, higher order of
venation not well preserved.
Discussion: Leaves of this extinct fagaceous ele-
ment are common in the Late Eocene fluviatile sandstones
of the Staré Sedlo Fm. and other sites of this kind in Ger-
many, Ukraine and elsewhere in Europe (Kvaček and Walt-
her 1989) but quite rare in volcanic facies. Several leaves
have been recovered at Kučlín, of which some of enormous
size (pl. 18, figs 2-3). Entire-margined E. furcinervis ssp.
flagelliformis (ROSSM.) E. KNOBLOCH et. KVAČEK occur
quite rarely. This tree preferred oligotrophic acidic soils of
peat-forming basins but occurred scarcely in mesophytic
volcanic assemblages.
Material: NM G 8629, G 8630, KUC 1.
Trigonobalanopsis KVAČEK et WALTHER
Trigonobalanopsis rhamnoides (ROSSMÄSSLER)
KVAČEK et WALTHER
Pl. 7, fig. 7
1988 Trigonobalanopsis rhamnoides (ROSSMÄSSLER) KVAČEK et
WALTHER, p. 405, pl. 2, figs 1-8, pls 50-54, pl. 55, figs 2-7,
pl. 56, figs 1-4, pl. 57, text-figs 2-4.
Leaves petiolate, incompletely preserved, lamina nar-
row elliptical, base cuneate, margin entire, venation brochi-
dodromous, midrib straight, secondaries very regularly dis-
posed, bent, subparallel, at an angle of ca. 35°. Higher-order
venation not preserved.
Discussion: This extinct member of the
Fagaceae has been usually recognized mainly according to
its rhamnoid venation (Phyllites rhamnoides ROSSM.). Its
occurrences in the Eocene are rare (Knobloch et al 1996). In
the volcanic facies Trigonobalanopsis was usually poorly
represented (Rott, as Rhamnus dechenii WEBER) while it
was a dominant element in the Miocene mastixioid floras
(Kvaček and Walther 1988). The occurrence of rare speci-
mens at Kučlín is quite exceptional outside the Late Eocene
riparian vegetation in the Bohemian Massif.
Material: KIN 372.
?Quercus L.
?Quercus sp.
Pl. 7, fig. 11
Oak-like cupule 10 mm in diameter covered densely by
minute scales adhearing to the surface.
Discussion: This is the only evidence of possible
oaks in the flora of Kučlín. The only minute specimen is an
equivocal proof because similar cupules are developed also
in Lithocarpus. And it may lead to the question whether
some of the leaf impressions determined as Eotrigonobal-
anus could in fact represent Quercus. Without preservation
of epidermal characters, it may be impossible to distinguish
some species of these genera.
In any case, the affinity of the cupule to the Fagaceae is
highly probable.
Material: KUC 401 B.
Juglandaceae
? Carya NUTT.
? Carya fragiliformis (STERNBERG) KVAČEK et WALTHER
Pl. 7, fig. 13
? 1825Phyllites fragiliformis STERNBERG, p. 42, index iconum,
pl. 50, fig. 1.
99
1866 Carya bilinica UNG. sp.; Ettingshausen, p. 46, pro parte,
pl. 52, fig. 7.
? 2007Carya fragiliformis (STERNBERG) WALTHER et KVAČEK,
pp. 110-112, pl. 11, figs 1-3, pl. 23, figs 8-10, text-fig. 6b.
Description: A single incomplete detached
leaflet, sessile, oval, lamina up to 35 mm wide, apex not
preserved, base rounded to cuneate, slightly asymmetrical,
margin subentire venation eucaptodromous, partly semi-
craspedodromous, midvein almost straight, secondaries in
7 pairs, opposite in the base of the lamina, then alternate,
more or less bent admedially, at angels of about 45°; ter-
tiaries percurrent, almost at right angle.
Remarks: This fragmentary leaflet may belong to
the foliage of Carya widely spread in the Oligocene of the
České středohoří Mountains. The specimen is very incom-
plete and the determination remains equivocal.
Material studied: BP55.2405.1, NM G 428.
Engelhardia LESCHEN. ex BUME.
Engelhardia orsbergensis (WESSEL et WEBER)
JÄHNICHEN, MAI et WALTHER
Pl. 7, figs 15-18
1856 Banksia orsbergensis WESSEL et WEBER, p. 146, pl. 25,
figs 9a-d.
?1868 Banksia haeringiana ETTINGSHAUSEN; Ettingshausen,
p. 16, pl. 35, figs 16-17.
1869 Sapindus cassioides ETTINGSHAUSEN, p. 26, pl. 46, figs 1-2,
3-6, 7.
1869 Sapindophyllum spinuloso-dentatum ETTINGSHAUSEN, p.
26, pl. 46, fig. 27.
1869 Sapindophyllum acuminatum ETTINGSHAUSEN, p. 27, sine ic.
?1869 Dodonea salicites ETTINGSHAUSEN, p. 28, pl. 47, fig. 11.
1880 Sapindus cassioides ETTINGSHAUSEN; Sieber, p. 87, pl. 2,
fig. 12.
1977 Engelhardia orsbergensis (WESSEL et WEBER) JÄHNICHEN,
MAI et WALTHER, pp. 326-346, pls 38-49, text-figs 1-3
(localities and stratigraphy see Jähnichen et al. 1977,
pp. 336-337).
1990 Palaeocarya orsbergensis (WESSEL et WEBER) JÄHNICHEN,
FRIEDRICH et TAKÁČ; Bůžek, Fejfar, Konzalová and
Kvaček, p. 172, fig. 3.18.
2001 Sapindus cassioides ETTINGSHAUSEN; Hably et al., pp. 35-36,
pl. 32, fig. 1, pl. 33, fig. 1.
2001 Sapindophyllum acuminatum ETTINGSHAUSEN; Hably et al.,
p. 35, pl. 30, fig. 6.
2002a Engelhardia orsbergensis (WEBER) JÄHNICHEN, MAI et WALT-
HER; Kvaček, p. 223.
Leaves pinnately compound, leaflets incompletely pre-
served, sessile, subopposite, lamina narrow oblong, straight
to slightly falcate, 40 and more mm long, and 10–20 mm
wide, base asymmetrical, cuneate to rounded, apex acute,
margin basally entire, higher up widely minutely serrate,
tooth tips bluntly acute, partly abmedially oblique, sinus
shallow, acute to blunt; venation semicraspedodromous,
midrib slightly curved to straight, thick, secondaries deli-
cate, dense, under wide angles, running and looping very
near the margin and sending veinlets near the sinus into the
tooth, intersecondaries dense, parallel with the secondaries;
venation details poorly preserved
Discussion: Leaflets of Engelhardia orsbergensis
occur quite rarely at Kučlín while they are common in the
Oligocene of, e.g., Suletice-Berand (Kvaček and Walther
1995), Holý Kluk hill at Proboštov (Radoň et al. 2006) and
Haselbach (Jähnichen et al. 1977, Walther in Mai and
Walther 1978). As in other sites, also at Kučlín they are
accompanied by fruits of E. macroptera (see below). Engel-
hardia belongs certainly to thermophilous and mesophytic
elements.
Material studied: NM G 360, G 8631, KIN
375, BP 55.2469.1.
Engelhardia macroptera (BRONGNIART) UNGER
Pl. 7, fig. 19
1869 Engelhardia brongniartii SAPORTA; Ettingshausen, p. 48,
pl. 53, figs 3-10.
1977 Engelhardia macroptera (BRONGNIART) UNGER; Jähnichen,
Mai and Walther, pp. 346-351, pls 54-56, text-figs 7-9
(localities and stratigraphy see Jähnichen et al. 1977,
p. 351).
Involucres trilobate, with the nutlet about 6 mm across,
basally attached, poorly preserved, medial lobe 30 mm, lat-
eral lobes 25 mm long and about 7 mm wide, widely spread,
elongate, at tips rounded, venation not preserved.
Remarks: Fruits of Engelhardia macroptera, a ter-
mophilic extinct species of the Juglandaceae, do not differ
from the other records of the same species in the volcanic
floras (e.g., Kvaček and Walther 1995). They are again
accompanied by typical leaves and isolated leaflets at
Kučlín (Engelhardia orsbergensis), inferred to belong to
the same plant as in many other sites (e.g., Holý Kluk,
Suletice-Berand).
Material: BP 55. 2347.1, 55.2372.1, 55.2459.1,
KIN 516, NM G 8658.
Hooleya E. M. REID et CHANDLER
Hooleya hermis (UNGER) E. M. REID et CHANDLER
Pl. 7, figs 20-21
1926 Hooleya hermis (UNGER) E. M. REID et CHANDLER, p. 93,
pl.6, figs 7-9.
2002a Hooleya hermis (UNGER) E. M. REID et CHANDLER;
Kvaček, p. 223, pl. 7, fig 6 above.
Fruits double winged, nut centrally positioned, ca. 6 mm
across, wings reniform, laterally attached in one plane,
showing very fine radially disposed venation.
Discussion: This extinct member of the Juglan-
daceae (Wing and Hickey 1984) was described from the
Early Oligocene to latest Eocene Bembridge Marl (Reid
and Chandler 1926), Socka (Unger 1850b) and from other
localities of the European Eocene (e.g., Eckfeld – Franken-
häuser and Wilde 1994, Messel – Manchester et al. 1994),
rarely in Early Oligocene (Manchester 1987a). Although
the whole plant is not known, typical slender, fine toothed
leaflets and complete leaves accompany these juglanda-
ceous fruits at Eckfeld (Wilde and Frankenhäuser 1998).
Also at Kučlín, these fruits co-occur with juglandaceous
foliage of this kind (see the next heading, specimens Nos
BP 55.2380.1, 55.2341.1, KIN 20.1).
Material: KIN126, 128, NM G 3724.
100
Juglandiphyllites BOULTER et KVAČEK
This fossil genus was installed for juglandoid foliage of
uncertain affinities (Boulter and Kvaček 1989).
Juglandiphyllites sp.
Pl. 7, fig. 12, pl. 8, figs 1-2
1868 Dryandroides acuminata ETTINGSHAUSEN, p. 52 sin. descr.,
pl. 35, fig. 10.
1869 Sapindus basilicus UNGER; Ettingshasusen, p. 25, pl. 47,
fig. 13.
2001 Dryandroides acuminatus ETTINGSHAUSEN; Hably et al.,
p. 51, pl. 59, fig. 9.
2001 Sapindus basilicus UNGER; Hably et al., p. 60, pl. 59, fig. 9.
Leaflets (?) sessile, lamina slightly asymmetrical, sub-
entire, 16 to 36 mm wide, 59 to 114 mm long, apex round-
ed, if preserved, base cuneate, venation semicraspedodro-
mous, midrib bent, secondaries closely spaced, dense, at
narrower angles on one side of the midrib than the other,
looping along the margin, intersecondaries partly present,
tertiaries not well preserved.
Discussion: These rare leaflets of juglandaceous
affinity are not assignable to a natural genus. We suspect
they may correspond to Hooleya.
Material: BP55.2380.1, 55.2341.1, KIN 20.1.
Malvaceae
Byttneriopsis KVAČEK et WILDE
The detailed circumscription of this morphogenus is
mainly based on rich and well preserved material from the
Middle Eocene of Messel allowing studies of epidermal
characters. Several malvalean leaf morphotypes can be dis-
tinguished in this plant taphocoenosis. The critical charac-
ter supporting malvalean affinities are specific types of tri-
chomes and their bases. Most typical are simple rounded to
elliptic bases, on which remains of the barrel-shaped glan-
dular trichomes composed of many segments parallel to the
trichome length are occasionally preserved. They corre-
spond to a general form of multicellular glandular trichomes
commonly distributed throughout the Malvales (see Kvaček
and Wilde 2010). Another kind of pubescence is represented
by complex trichome bases as sometimes seen in the mate-
rial from Messel, which may have carried stellate–multiradi-
ate trichomes. The latter are also characteristic of most
members of the malvalean alliance (e.g., Eriolaena).
The morphogenus Byttneriopsis differs from the two
other malvalean foliage morphogenera Byttneriophyllum
and Plafkeria in the symmetry of the basal venation. The
distinction from Dombeyopsis UNGER also with symmetri-
cal venation, which is accepted in a restricted sense as sug-
gested by Kvaček (2005), viz. to include the only species
D. lobata typical of trilobate leaves with occasionally undu-
late to dentate margins is in a different abaxial epidermis
with a dense indumentum of stellate trichomes. Other
leaves similar to the new morphogenus are those of “Ficus
truncata HEER sensu Bůžek (1971) which are also of mal-
valean affinity and have recently been discussed as Laria
rueminiana (HEER) G. WOROBIEC et KVAČEK possibly relat-
ed to Reevesia (Worobiec et al. 2010). They differ from Byt-
tneriopsis in showing a less regular tertiary and higher-
order venation between the primaries (Worobiec 2003; Wo-
robiec et al. 2010).
Byttneriopsis daphnogenes (ETTINGSHAUSEN)
KVAČEK et WILDE
Pl. 8, figs 4-6
1866 Ficus daphnogenes ETTINGSHAUSEN, p. 77 (basionym),
pl. 22, figs 1, 2 (lectotype), 8, 9.
1866 Ficus goeppertii ETTINGSHAUSEN, p. 73, partim, pl. 19,
figs 1, 2.
1866 Ficus gaudinii ETTINGSHAUSEN, p. 76, pl. 21, figs 1, 2.
1866 Ficus reussii ETTINGSHAUSEN, p. 79, pl. 22, figs 3, 4, 7, 10.
1866 Ficus rueminianum HEER sensu Ettingshausen (non Heer),
p. 76, pl. 22, fig. 5.
2010 Byttneriopsis daphnogenes (ETTINGSHAUSEN) KVAČEK et
WILDE, p. 166, figs 2A-J, 3A-E, 7A-H, 8A-B.
For further synonyms see Kvaček and Wilde (2010).
Lectotype: BP 55.2477.1 illustrated by Ettingshausen
(1866, pl. 22, fig. 2 as Ficus daphnogenes) – Kučlín, North
Bohemia, Late Eocene) and reillustrated in Hably et al. (2001).
Leaves alternate, variable in lamina shape and size as
well as in epidermal structure, simple, long petiolate, peti-
ole 3–4 cm long, often pulvinate at the attachment to lami-
na and geniculate; lamina entire margined, hypostomatic,
elongate to narrow ovate (length/width mostly more than
1.5), 4 to more than 6 cm long, 2.5–4 cm wide, symmetri-
cal to moderately asymmetrical at the base, rounded, rarely
truncate to subcordate, acute to acuminate at the apex, tex-
ture chartaceous to coriaceous, venation eucamptodromous,
basally triveined, rarely with thin additional outer basal
veins, midrib straight or slightly bent, lateral primaries thin,
slightly bent, reaching rarely more than half, but usually
one third of the lamina length or lower, secondaries irregu-
larly alternate, arising at uneven distances of about 1–3 cm
at an angle of 30–45°, bent, tertiaries percurrent or forked,
dense, almost perpendicular to the secondaries, areoles
mostly quadrangular without veinlets.
Discussion: The leaf anatomical characteristics
given by Kvaček and Wilde (2010) are based on the mate-
rial of Messel. The morphological variation of both popula-
tions of Messel and Kučlín does not differ in any respect.
Material: BP 55.2329.1, 55.2358.1, 55.24771.1,
55.2481, DB KUC-53, 160, 199, 200, CGS CB 13 and
many others, partly sine numero.
Byttneriopsis steuerii (ENGELHARDT) KVAČEK et WILDE
Pl 8, figs 10-13
2010 Byttneriopsis steuerii (ENGELHARDT) KVAČEK et WILDE,
p. 168, figs 2K, 3F, 4A-D, 5E, 6C-E, 8C-D.
Leaves simple, petiolate, petiole incomplete, often pul-
vinate, lamina broadly ovate, more than 120 mm long, 100
mm wide, shallowly cordate to truncate at base, apex miss-
ing, venation actinodromous–brochidodromous, typically
palmately 5 (to 7-veined), ± symmetrical, texture chartaceous.
Discussion: The flora of Kučlín yielded only two
specimens of this broader morphotype of Byttneriopsis,
which is much better represented at Messel.
Material: BD KUC 51, KUC 218.
101
cf. Acherniaephyllum RASKY
cf. Acherniephyllum hydrarchos (UNGER) HABLY
Pl. 8, fig. 3
1866 Populus mutabilis HEER; Ettingshausen, p. 85, pl. 28, fig. 8.
2001 Populus mutabilis HEER; Hably et al., p.58, pl. 72, fig. 2.
Leaf simple, long petiolate, lamina broadly oval, base
slightly cordate, apex blunt, missing, venation triveined,
midrib straight, basal veins starting at the very base, higher
secondaries widely spaced, poorly visible.
Discussion: Similar and much more abundant leaves
occur in the Oligocene of Hungary and Italy (Hably 2010).
Material: BP559.117.1.
Saportaspermum MEYER et MANCHESTER
Saportaspermum kovacsiae KVAČEK et WILDE
Pl. 8, figs 7-8
1959 Cedrelospermum sp. type I sensu É. Kovács, p. 140, fig. 7
(Lábatlan, MÁFI).
1959 Cedrelospermum sp. type II sensu É. Kovács, p. 140, fig. 8
(Lábatlan, MÁFI).
2010 Saportaspermum kovacsiae KVAČEK et WILDE, p. 172,
figs 9A-H.
Seeds winged, with an elliptical to subrounded seed
body, strengthened at the base and somewhat pointed at the
opposite end, with a single narrow elongate membranous
wing. Seed body oriented slightly obliquely to the long axis
of the wing. One of the lateral margins is straight, the other
slightly convex, distal end of wing rounded.
Discussion: Several morphotypes connected
with transitions can be recognized and assigned to this
species: In the opinion of Kvaček and Wilde (2010) they
represent mere stages of maturation. Specimens designated
Cedrelospermum sp. type I sensu Kovács (1959, p. 140, fig.
7 – Lábatlan) and most of the material from Messel and
Kučlín (Pl. 7, figs 8-9) represent fully mature seeds with a
robust seed body, sometimes truncate or with a more acute
base, ca. 9 mm long and 4–6 mm high. The wing is almost par-
allel-sided, slightly narrowed towards the end, 22 to 28 mm
long. The dorsal side of the wing is straight, slightly thick-
ened and indistinctly deflected behind the seed body; the
ventral side is also straight. The specimens from Lábatlan
designated as Cedrelospermum sp. type II sensu Kovács
(1959, p. 140, fig. 8, MAFI BK 3526/L 107 and other not
figured material BK 3487/L26, 24) are smaller than the pre-
vious morphotype I with the wing 16 mm long, the dorsal
side straight or slightly bent, ventral side straight. Not all
species of Cedrelospemum are assignable to C. kovacsiae
and are treated in a separate heading below.
Material studied:KIN 54, KUC 12A.
Saportaspermum sp. div.
Pl. 8, fig. 9
2002a Saportaspermum sp div., Kvaček, p. 224, pl. 1, fig. 4.
Winged seeds of smaller size than S. kovacsiae with the
wing attached obliquely to the seed body.
Discussion: Such seeds corresponding in general
form to the generitype (Meyer and Manchester 1997) were
originally described as belonging to the same group as
Cedrelospermum by Saporta (1889), but differ in the seed
form and the lack of wing venation. One part of bigger
seeds with the dorsal edge of the wing parallel to the seed
part was already treated as Cederelospermum kovacsiae
above. Some more different and smaller forms are still dis-
tributed during Eocene to Miocene times in Europe and
only during the Oligocene in North America. Seeds of the
Saportaspermum-type different from S. kovacsiae also
occur at Kučlín (Kvaček 2002a) and may belong to other
genera of the Malvaceae, e.g., Reevesia.
Material: KUC 456.
Acersotzkianum UNGER
Pl. 9, figs 8, 10
1850b Acer sotzkianum UNGER, p. 175, pl. 50, fig. 3.
1990 Acer bohemicum sensu Mai; Bůžek et al., pp. 171-172,
fig. 3.17.
2002a Acersotzkianum UNGER; Kvaček, p. 224, pl. 2, fig. 1.
Simple samaras of the form of halves of maple samaras.
Fruit body narrow oval straight on the dorsal side, slightly
rounded ventrally, blunt or shortly broadly stipulate apical-
ly, attached to broad wing arising one third of the fruit body
on the ventral side and continuing from the dorsal thickened
margin of the fruit. Wing very flat and thin almost without
any venation visible. On the fruit apex no traces of attach-
ment to a second fruit.
Discussion: Affinities of these fruits similar to
halves of maple double samara are controversial. These
samaras occur rarely at the Late Eocene type locality of
Socka (Unger 1850b) and they occur quite occasionally at
Kučlín. Unique specimens are known from the Mrtvý vrch
Hill and elsewhere in the České středohoří Mountains, e.g.,
in the Oligocene of Holý Kluk (Radoň, Kvaček and Walther
201). To our mind there are no other occurrences besides
those mentioned above and the type locality Socka of Oli-
gocene (? Eocene) age in Slovenia (Mai 1999). The nar-
rowed base of the seed part occasionally with short remains
of the stalk suggests that the fruits represent rather single
samaras, unlike the typical double samaras of maple. Mai
(1999) believes that the fruits of Acer subgen. Negundo are
most similar, but the Negundo-like foliage nowhere co-
occurs with the mentioned fruits. The much larger fruits of
very similar form belonging to the Malvaceae are common
in the late Miocene and Pliocene of Europe and assigned to
Malphigiaceae by Kräusel (1852) as Banisteriaecarpum.
We hesitate to use this fossil genus for the fruits from Socka
and Kučlín before a connection to the corresponding foliage
has been recognized.
Material: BP 55.1132,1, 55.2393.1, 55.2395.1,
NM G 7893a,b.
Sterculia L.
Sterculia crassinervia (ETTINGSHAUSEN) PROCHÁZKA
Pl. 9, figs 7, 9, 11
1868 Platanus aceroides GÖPPERT; Ettingshausen, p. 84, pl. 29,
fig. 7.
1869 Acer crassinervium ETTINGSHAUSEN, p. 22, pro parte, pl. 45,
figs 9-13, 15-16 (non 8, 14 = “Acer” sotzkianum UNG.).
102
1975 Sterculia crassinervia (ETTINGSHAUSEN) PROCHÁZKA in Pro-
cházka and Bůžek, p. 59.
1990 Sterculia crassinervia (ETTINGSHAUSEN) PROCHÁZKA et
BŮŽEK, Bůžek et al., p. 172, fig. 3.15.
Leaves simple, trilobate (abnormally bilobate, with one
lobe reduced), petiole long, indistinctly geniculate at the
attachment with the lamina, lamina broadly ovate to quad-
rangular, entire-margined or widely , wide and long, lobes
short and blunt, directed to the leaf apex, main apical lobe
wide tringular, venation tri-palmate, primaries arising direct-
ly from the lamina base, secondary veins widely spaced.
Lectotype selected by Procházka and Bůžek (1975) has
been illustrated by Ettingshausen (1869, pl. 45, fig. 13) and
is housed in Budapest Natural History Museum (BP
55.2416.1) – refigured in pl. 9, fig. 11.
Discussion: Such leaves recalling maples already
described from Kučlín (Ettingshausen 1869, as Acer
crassinervium) were originally joined with the fruits of
A. sotzkianum under the same taxon Acer crassinervium by
Ettingshausen (1869). When Procházka (in Procházka and
Bůžek 1975) made a revision of the Tertiary maples occur-
ring in the Bohemian Massive he rejected Ettingshausen’s
opinion that the leaves represent true maples and transferred
these leaves of A. crassinervium to the genus Sterculia
(Malvaceae sensu lato) on the basis of the venation, large
morphological variation and overall comparison with the
maples. In our opinion the malvalean affinities of A. cra-
siervium are more probable, even though it may not be
appropriate to assign it directly to Sterculia. The leaves of
this kind are morphologically variable and some recall other
malvalean morphotypes described above as Byttneriopsis.
Neither Procházka nor we are able to suggest any living
species of Sterculia with leaf morphology that would support
the affinity to this genus. The fusion of leaves with quite
unusual fruits as suggested by Ettingshausen cannot be sup-
ported. The fruits of A. sotzkianum occur independently from
S. crassinervia at Sotzka and Holý Kluk (Radoň et al. 2006),
the leaves are not accompanied with the fruits at Bechlejovice,
where S. crassinervia occurs at the single locality besides
Kučlín (Kvaček and Walther 2004, Manchester 1987).
M a t e r i a l : BP 55.2393.1, 55.2416.1, 55.2476.1,
NM G 3677.
Sterculia labrusca (UNGER) UNGER
Pl. 9, figs 5-6. pl. 13, figs 6-7
1850a Laurus labrusca UNGER, p. 433.
1850b Sterculia labrusca UNGER; Unger, p. 175, pl. 49, figs 1-11.
1869 Sterculia labrusca UNGER; Ettingshausen, p. 13, pl. 43,
figs 4, 5.
1990 Sterculia labrusca UNGER; Bůžek et al., p. 172, fig. 3.25.
Leaves simple, with thick petiole, lamina trilobate,
lobes narrow and partly apically directed, partly patent,
margin entire, venation tri- palmate, primaries thick, arising
directly from the lamina base, secondaris veins numerous,
arising perpendicularly, intersecondaries thin and parallel,
venation of higher order poorly preserved.
Discussion: These trilobate leaves with sleder,
almost parallel-sided lobes were rarely recovered at Kučlín
(Ettingshausen 1869, pl. 43, figs 4-5). This species varies in
leaf size and lobes. Most of the specimens recovered in the
Staré Sedlo Fm. (Knobloch et al. 1996) are smaller, but the
leaf described by Engelhardt (1876, pl. 27, fig. 17) from the
Žitenice quartzite matches well that from Kučlín. The other
occurrences in the European Palaeogene (e.g., Geiseltal –
Rüffle et al. 1976) may differ specifically and suggest that
this foliage taxon may fall into smaller morphotypes, as
already recognized by Ettingshausen (1869).
The affinity of Sterculia labrusca is not fully clarified
(Knobloch et al. 1996) and the often suggested as Brachy-
chiton (Sterculiaceae), is unlikely because of its modern
distribution in Australia. In its epidermal anatomy the mate-
rial from Geiseltal (Rüffle et al. 1976) deviates from the
standard pattern of living sterculias (lack of stellate tri-
chomes, paracytic stomata). No other leaf anatomical data
are available from other occurrences in Europe, in particu-
lar from the type locality Socka in Slovenia.
Material: BP55. 2401.1, NM G 8654.
? Luheopsis LANGERON
? Luheopsis sp.
Pl. 9, figs 3-4
Leaf fragmentary, ? orbicular, on the base shallowly cor-
date margin coarsely dentate, venation is not visible except
for the straight midrib.
D i s c u s s i o n : Similar aberrant leaf forms are
known from the Palaeocene of France (Menat, Sezanne –
Langeron 1900).
Material: KUC 226.
Trapaceae
Hemitrapa MIKI
Hemitrapa cf. pomelii (BOULEY) MAI
Pl. 7, figs 4-6
2003 Hemitrapa cf. pomelii (BOULEY) MAI; Wójcicki and Kva-
ček, p. 167, figs 2a-c.
Fruits fully decayed showing only parallel surface
strands of epicarps in a form of oval fruit body with only
weakly indicated four thorns.
Discussion: The objects were designated by Wój-
cicki (in Wójcicki and Kvaček 2003) as fruits of Hemitra-
pa, They are fully flattened and due to long maceration in
water they are devoid of all coal matter. The lateral thorns
are preserved only occasionally (Wójcicki and Kvaček
2003, figs 2c). The affinities to Hemitrapa pomelii cannot
be fully verified pending new better preserved specimens.
Material: KIN 25, KIN 449, NM G 8296a, b, G
8650, G 8649.
Rutaceae
Chaneya WANG et MANCHESTER
This type of fossil fruit with persistent corolla was orig-
inally referred to the genus Porana BURM. (Convolvula-
ceae) as Porana oehningensis HEER. In a recent revision of
103
this extinct genus Teodoridis and Kvaček (2005) reinter-
preted floral morphology, the apocarpous superior gynoeci-
um, the floral disc and oil cells in the petals, and suggested
affinities to the Rutales, namely the Simaroubaceae or
Rutaceae. The newly recognized species described below
differs from the previously described Eurasian representa-
tives of this extinct genus by narrow delicate petals.
Chaneya palaeogaea (ETTINGSHAUSEN)
KVAČEK et TEODORIDIS comb.n.
Pl. 10, fig. 4
1868 Diospyros palaeogaea ETTINGSHAUSEN, p. 45 (basionym),
pro parte, pl. 38, fig. 25 (non pl. 38, fig. 32 leaf, pl. 38,
fig. 26 fruit).
Lectotype: BP56.1133.1 refigured in pl. 10, fig. 4
selected here.
Pentamerous corolla with attached fruit in the centre,
petals narrow acuminate, up to 17 mm in length, fruit glob-
ular, 3 mm in diameter.
Discussion: As stated above, the fossil genus
Chaneya was established on the detached pentamerous per-
sistent corollas previsouly assigned to Porana. The true po-
sition of these remains was recognized after a more detailed
study of the type collection from the Middle Miocene of
Europe (Teodoridis and Kvaček 2005). The genus was also
recognized in Palaeogene of Europe and Asia (Wang and
Manchester 2000). The new record from Kučlín differs
from the prevously described species by narrow acuminate
sepals and overall smaller dimensions.
Material: BP56.1133.1 (lectotype).
Simaroubaceae
Ailantus DESF.
Ailanthus tardensis HABLY
Pl. 10, figs 9-10
2001 Ailanthus tardensis HABLY, p. 210, pl. 3, figs 1-7 (Nagy-
batony brickyard, Obuda).
2002a Ailanthus cf. confucii UNGER; Kvaček, p. 224, pl. 2, fig. 6.
Mericarps with spindle-shaped entire-margined wing,
acute to round at apex, cuneate at base, shortly stipitate, 21
to more than 32 mm long, 6–7 mm wide, with centrally
positioned roundish seed 4 mm in diameter, venation poor-
ly preserved except strong intramarginally positioned ven-
tral vein supplying the seed and margin it in the middle of
the seed.
Discussion: Incomplete fruits of Ailanthus recov-
ered in the Kučlín diatomite match by their shape and the
position of the seed that from the Upper Eocene of Célas
(Laurent 1899) and other similar fruits from the Middle
Eocene of Messel (Collinson 1988) and many other Tertiary
localities (for the review see Corbet and Manchester 2004).
Most of them belong to the A. confucii type. Hably (2001)
recognized two more species: A. tardensis HABLY is distin-
guished by the ventral vein running intramarginally (con-
trary to A. confucii with marginal position of the ventral
vein – Corbett and Manchester 2004) and roundish seed.
A. gigas UNGER from Socka (Unger 1850b) exceeds all
other fossil fruits by double size. One of the mericarps from
Kučlín clearly shows the intramarginal ventral vein sug-
gesting that the population from the Eocene of Kučlín is
conspecific with that of the Hungarian Oligocene. It stress-
es further common features of the two floras containing
Doliostrobus and many other common elements.
Material: NM G 7898a,b, G 8633a,b, DB KUC 77.
Ailanthus palaeorhus (ETTINGSHAUSEN)
KVAČEK et TEODORIDIS comb. n.
Pl. 10, figs 7-8, 11
1869 Cupania palaeorhus ETTINGSHAUSEN, p. 27, pl. 46, fig. 12
(basionym).
2001 Cupania palaeorhus ETTINGSHAUSEN; Hably et al., p. 20,
pl. 10, fig. 7.
Leaflets asymmetrical, long petiolulate, lamina narrow
falcate, 42–57 mm long and 9–15 mm wide, margin widely
irregularly (?glandular) crenate, venation semicraspedodro-
mous, midrib bent, secondaries irregularly spaced, almost
perpendicular to the midrib, tertiaries very thin
Discussion: Rare leaflets are assignable to Ailan-
thus on the gross morphology and recall some Early Mio-
cene Ailanthus foliage that accompany Ailanthus fruits at
Parschlug (Kovar-Eder et al. 2004) and elsewhere. The
morphotype from the Late Eocene of Kučlín is morpholog-
ically quite variable as it is common in leaflets of com-
pound leaves. The glands on the margin considered diag-
nostic of Ailanthus (Corbet and Manchester 2004) are not
quite distinctly preserved due to strong compression.
Material: BP 55.2496.1 (Holotype of Cupania
palaeorhus ETTINGSHAUSEN, 1869, p. 27, pl. 46, fig. 12).
cf. Ailanthus sp.
Pl. 10, figs 1-3, 5-6
Leaflets ?subsessile, lamina narrow elongate, slightly
falcate, base rounded, apex acute, margin coarsely widely
dentate, venation semicraspedodromous, midrib straight to
bent, secondaries very thin, bent, at wide angles, looping
well within the lamina with intersecondaries.
Discussion: Ettingshausen (1869) identified such
leaves housed at BP as Salix varians. The teeth on the mar-
gin differ decidedly from the willows. Additional material
suggested that these remains might represent leaflets. Due
to coarsely dentate margin an affinity to Ailanthus is tenta-
tively suggested.
Material: BPs.n., NM G 8633a, b.
Hydrangeaceae DUMORTIER
Hydrangea L.
Hydrangea microcalyx SIEBER
Pl. 10, figs 12-13
1881 Hydrangea microcalyx SIEBER, p. 16, pro parte, only figs
26, 27, 31.
1963 Hydrangea microcalyx SIEBER; Mai, p. 77, pl. 10, figs 7-9,
text-fig. 13.
Tetramerous petaloid calyces of sterile flowers 17–31 mm
in the diameter, partly attached to straight stalks, showing
104
scars at intervals of 7–9 mm after fertile flowers, individual
sepals obovate to broadly obovate, 6–12 mm long and 4–10
mm broad, in one whorl free, of almost the same size,
entire, round to slightly emarginated apically, cuneate,
shortly stipitate basally to subsessile. Venation camptodro-
mous–brochidodromous to reticulate, thin wavy main vein
gives raise two lateral veins soon radiating from the base,
and a few higher secondaries at wide angles, tertiaries very
fine, reticulate.
Discussion: Sterile persistent calyces of this
hydrangea have been rarely found in the Kučlín diatomite,
usually isolated. The slab with the illustrated types (Sieber
1881, NM G 337) shows two long stalked sterile flowers
and confirms that the fossils came from widely ramified
inflorescences of both sterile peripheral and fertile perfect
flowers concentrated into dense groups. The latter are diffi-
cult to recognize in the impression material. Most other
recovered fossils represent sterile florets.
Hydrangea microcalyx is the oldest record of this genus
in Europe. Similar remains were more frequently reported
from the Oligocene (Walther and Kvaček 2007). Specific
differences are difficult to recognize according to the mor-
phology of sterile flowers only, which show uniform mor-
phology even comparing impression material from the
European and North American records (Meyer and Man-
chester 1997). Besides Kučlín, the richest sites of fossil
hydrangeas in ČSM are connected with termophilic assem-
blages at Suletice (Brabenec 1909, Kvaček and Walther
1995) and the Holý Kluk Hill (Radoň et al. 2003). A single
flower has been lately recognized in the Late Oligocene
flora of Rott, Rhineland (Winterscheid and Kvaček, in
prep.). In no case the foliage belonging to the flowers has
been suggested leaving the question open, if all records of
these flowers belong to a single species.
Tetramerous flowers of Hydrangea differ decidedly by
the broader form and venation pattern from the extinct
genus Raskya, which produced similar tetramerous flowers
and occurs at Kučlín (see below). The extinct genus Cha-
neya characterized by persistent pentamerous flowers
recently reinterpreted as persistent corollas (see above)
superficially recalls sterile calyces of Hydrangea and can be
easily mistaken for such remains. However, some of the
type specimens from Sośnica assigned to Hydrangea show
remains of a pentamerous apocarpic gynoeceum typical of
Chaneya (Manchester and Zastawniak 2007) and differ also
in the venation (five basal primaries).
Due to the quite diversified foliage morphology of the
living hydrangeas (McClintock 1957) it is a difficult task to
suggest one from among the co-occurring morphotypes at
Kučlín as belonging to the described flower remains. The
stalked sterile flowers remaining on the periphery of vari-
ously formed inflorescences are characteristic of many of
the ca. 80 living species. Considering the accompanying
flora, most cultivated hydrangeas frost hardy are improba-
ble living relatives, namely H. paniculata SIEB. et ZUCCARI-
NI (Japan, China), Perhaps H. aspera D. DON (Himalayas to
Java) or H. quercifolia BARTR. (Florida) may come into
question.
Material studied: NM G 337 (HOLO), NM G
7038a,b, G 75987, G 7892a,b.
Icacinaceae
Palaeohosiea KVAČEK et BŮŽEK
Palaeohosiea bilinica (ETTINGSHAUSEN)
KVAČEK et BŮŽEK
Pl. 5, figs 13-14
1869 Amygdalus bilinica ETTINGSHAUSEN, p. 55, pro parte pl. 53,
fig. 22 (non fig. 23).
1880 Amygdalus bilinica ETTINGSHAUSEN; Sieber, p. 26, pl. 4,
fig. 24.
1925 Natsiaum eocenicum CHANDER, p. 29, pl. 4, fig. 7a-d,
text-fig. 11.
1963 Prunus bilinica (ETTINGSHAUSEN) MAI, p. 75 (non pl. 10,
figs 1-2 = Palaeohosiea suleticensis KVAČEK et BŮŽEK).
1966 Hosiea eocenica (CHANDER) TAKHTAJAN, p. 1226.
1978 Hosiea bilinica (ETTINGSHAUSEN) HOLÝ in Mai and
Walther, p. 125 (non pl. 45, figs 4-6).
1995 Palaeohosiea bilinica (ETTINGSHAUSEN) KVAČEK et BŮŽEK,
p. 125, pl. 1, fig. 15, pl. 1, fig. 15.
Casts of fully flattened ovate to rounded endocarps, 3.8
cm long and 2.8 cm wide, with randomly arranged deep
longitudinal ridges on the surface and short, shallow hori-
zontal ridges, delimiting ca. 50 polygonal facets. Minute
papillation of locule impressions not clearly seen.
Discussion: Holý (in Mai and Wather 1978) first
recognized the affinity of these fruit remains from Kučlín to
Icacinaceae and assigned them to Hosiea in line of the pre-
vious studies by Chandler (1925 as Natsiatum) and Takhta-
jan (1966 as Hosiea). A more detailed study of extant fruits
of Icacinacae (Bůžek and Kvaček 1995) revealed differ-
ences from the extant genera and motivated a separation of
the fossils into an independent fossil genus Palaeohosiea.
Endocarps of this paratropical liana of the Icacinaceae,
closely related to Iodes (Manchester 1999) have been rarely
encountered at Kučlín. Fruits of Palaeohosiea suleticensis
KVAČEK et BŮŽEK, which may belong to closely related
species, occur in the Oligocene of Suletice and Holý Kluk
(Kvaček and Bůžek 1995, Radoň et al. 2006). Similar fruits
have been described from the Palaeocene and Eocene of
England and the Oligocene of Germany (Kvaček and Bůžek
1995). Also newly established Icacinicaryites corrugatus
(BROWN) PIGG, MANCHESTER et DEVORE (“corrugata”) from
the Palaeocene of the USA may not taxonomically differ
(Pigg et al 2008).
Material: KUC 5A, NM G 364.
Ebenaceae
? Diospyros L.
Diospyros ?microcalyx (ETTINGSHAUSEN)
KVAČEK et TEODORIDIS comb. n.
Pl. 13, figs 10-18
1868 Macreightia microcalyx ETTINGSHAUSEN, p. 46, pl. 39,
figs 2-5 (basionym).
2001 Macreightia microcalyx ETTINGSHAUSEN; Hably et al.,
p. 28, pl. 19. figs 3, 4, Pl. 20, fig. 3.
Detached tripartite calyces laterally compressed, parly
shortly stipitate, joining narrow lanceolate sepals without
105
any remains of fruits; some may be more than tripartite, like
Chaneya palaeogaea described above
Discussion: The above described remains were
interpreted by Ettingshausen (1868) as belonging to Diosy-
ros subgen. Macreightia. The state of preservation does not
allow verifying his view. The leaves we associate with
Diospyros ?microcalyx indeed have similarities to Diospy-
ros in general. Calyces of Diospyros ?microcalyx belong to
the frequent fossils at Kučlín.
M a t e r i a l : BP 55.2342.1, 55.2500.1, numerous
specimens at NM and DB.
Apocynaceae (vel ? Lythraceae)
Apocynophyllum HEER
Fossil genus of sterile foliage with intramarginal vein,
partly assigned to the Lythraceae because of a fruiting twig
with seeds of Decodon (Kvaček and Sakala 1999), partly
used also for foliage of similar morphology widely sptread
in the Apocynaceae.
Apocynophyllum bilinicum (ETTINGSHAUSEN)
KVAČEK et TEODORIDIS comb. n.
Pl. 7, figs 1-2
1868 Nerium bilinicum ETTINGSHAUSEN, pp. 30-31, pl. 36, fig. 20
(basionym).
2001 Nerium bilinicum ETTINGSHAUSEN; Hably et al., p. 30,
pl. 23, fig. 6.
Leaves petiolate, lamina narrow elongate, entire mar-
gined, venation eucaptodromous, midrib thick, straight,
secondaries numerous, regularly spaced, at wide angles,
forming loops along the margin, tertiary veins regularly
spaced, dense.
Discussion: This type of foliage can be expected
with plants producing seeds of Apocynaceae. However, we
have no evidence to support the theory that the seeds
described below belong to the same plant.
Material: BP55.2447.1, ? 55.2457.1, KUC 411.
Apocynaceae
Apocynospermum E. M. REID et CHANDLER
Apocynospermum striatum E. M. REID et CHANDLER
Pl. 11, figs 6-9
1926 Apocynospermum striatum E. M. REID et CHANDLER, p. 118,
Pl. 8, fig. 3.
Detached spindle-shaped seeds distinctly longitudional-
ly striate with a long terminal coma, usually occurring soli-
tarily, exceptionally adhering together or attached to long
axis.
Discussion: Such seed remains have been recog-
nised as belonging to Apocynaceae–Asclepiadaceae by
Reid and Chandler (1926). The fruit bodies, which would
contain the seeds, have not been determined. The corre-
sponding foliage may be suspected among Apocynophyl-
lum-like morphotypes described above. Occurrences of Apo-
cynospermum in Europe are from Eocene to Miocene in age
(Echitonium UNGER p.p. by earlier authors). According to
the priority (Manchester, S.R., personal communication)
the correct name for such fossils is Cypselites HEER (1859).
In north Bohemia, similar forms are known besides Kučlín
also from Mrtvý Vrch and also from the Oligocene sites,
e.g., Kundratice (Kvaček and Walther 1998).
Material: KUC 73, 118, 453, 454, G 68675.
Angiospermae fam. inc.
The following part includes angiosperm elements of the
Kučlín flora based on fruits, seeds and foliage without clar-
ified systematic positions. After more precisely defined taxa
also an annotated list of enigmatic fossils follows to charac-
terize diversity of the flora. The synonymies of the morpho-
types are limited in view of insufficient diagnostic traits and
partly poor and fragmentary preservation.
Pungiphyllum FRANKENHÄUSER et WILDE
This genus was originally established for spiny lobed
leaves from the middle Eocene site Eckfeld identified as
Pungiphyllum waltheri FRANKENHÄUSER et WILDE and
some larger forms of Pungiphyllum cruciatum (A. BRAUN)
FRANKENHÄUSER et WILDE, usually referred to “Quercus
cruciata A. BR. and spread in the European Tertiary. The
generitype as well as all known epidermal structures of
Quercuscruciata differ in the type of stomata from the
Fagaceae (Kvaček and Walther 1981, Frankenhäuser and
Wilde 1995). Individual populations of these enigmatic
plants vary in the leaf shape and size during the Tertiary.
Small and often shallow lobed forms from the Middle
Eocene of Eckfeld, which were described as an independent
species Pungiphyllum waltheri FRANKENHÄUSER et WILDE
(1995), differ from the population of Kučlín, formerly com-
pared with the Middle Eocene material (Kvaček 2002a), but
it is separated as suggested below.
Pungiphyllum heerii (SIEBER) KVAČEK
et TEODORIDIS comb. n.
Pl. 15, figs 1-5
1881 Ilex heerii SIEBER, partim p. 87, pl. 4, fig. 23 (missing)(non
Ilex heerii NATHORST 1888).
1990 Quercuscruciata A. BR; Bůžek et al. p. 170, fig. 3.26
2002a Pungiphyllum cf.waltheri FRANKENHÄUSER et WILDE;
Kvaček, p. 224, pl. 2, fig 5.
Neotype: The originally proposed type specimen
of Ilex heerii SIEBER from Kučlín has not been recovered in
the old collections in Prague or elsewehere. We propose
a similar spiny leaf impression from the same locality fig-
ured as Pungiphyllum cf. waltheri FRANKENHÄUSER et
WILDE by Kvaček. The specimen is refigured in Kvaček
(2002a, pl. 2, fig. 5) and in this paper on pl. 15, figs 4-5, and
housed in the collections of DB under the number of KUC
74A, B.
Leaves simple, narrow ovate, petiolate, 10–20 mm long,
and 20–40 mm long, at the base cuneate to rounded, on the
margin spiny irreg ularly simple toothed, sinuses rounded,
venationt, camptodromous to secmicraspedodromous-cras-
pedodromou, midrib thick, straight secondaries numerous,
106
dense, with intersecondaries, looping along the margin,
rarely entering the larger teeth directly, tertiary veins dis-
tinct, straight to convex, alternate, percurrent, looping by
the margin, venation of the higher orders regular polygonal
reticulate; areolation distinct to moderately developed, 3- to
4-sided; veinlets poorly preserved, dichotomous branching.
Dicussion: Only few similar, slightly larger leaves
of this kind have been recovered at Kučlín. The material of
Kučlín connects small leaves of Pungiphyllum waltheri
FRANKENHÄUSER et WILDE from the Middle Eocene of Eck-
feld with much larger and typically coarsely dentate mor-
photypes included so far into Pungiphyllum cruciatum,
which were commonly reported from the Oligocene to
Miocene of central Europe (Kvaček and Walther 1981).
Material: KUC 74A, B (neotype), KUC 38, KUC
55 b KUC 213, KUC 214A, B.
Craspedodromophyllum CRANE
This fossil genus was established for deatched leaves
with craspedodromous venation. The type material is relat-
ed to extinct Betulaceae (Crane 1981).
Craspedodromophyllum betuloides
KVAČEK et TEODORIDIS sp. n.
Pl. 13, figs 1-2
Holotype: DB KUC 4 reproduced in pl. 13, fig.1
Leaf long petiolate with petiole 12 mm long, sidewards
bent, lamina triangulate broadly ovate, 50 mm wide, 60 mm
long, margin double serrate, teeth coarse, weakly differenti-
ated, sharp, moderately spaced, venation craspedodromous,
midrib stout, straight, secondaries in 4 pairs, straight, at
angles of 40–50°, rarely forked near margin, basal pair
starting on the very lamina base, tertiaries weak, irregularly
disposed.
Discussion: This enigmatic leaf morphotype
recalls a foliage of a common birch except marginal wider
and coarse teeth.
Material: DB KUC 4.
Camptodromites BOULTER et KVAČEK
This fossil genus was established for detached entire-
margined leaves with eucamptodromous venation (Boulter
and Kvaček 1989). The generitype comes from the
Palaeocene of Mull.
Camptodromites sp.
Pl. 12, figs 8-11
1868 Berchemia multinervis HEER; Ettingshausen, p. 41, pl. 49,
fig. 15.
Leaves simple, subsessile, lamina elliptic, ca 60 mm
long and 30 mm wide, margin entire, venation eucampto-
dromous, midrib straight, secondaries numerous, densely
spaced, subparallel, looping with the margin, tertiaries very
delicate, dense, almost perpencicular to secondaries.
Discussion: Similar leaves ascribed to Berchemia
and occurring in the European Miocene (Bůžek 1971) dif-
fer from the above described morphotype in marginal vena-
tion, which in the latter case merges the margin.
Material: BP55.2451.1, NM G8632a, b, KUC 399.
Majanthemophyllum WESSEL et WEBER
Majanthemophyllum sp.
Pl. 14, figs 9-10
Simple leaf narrow elongate, entire-margined, ca 32 mm
long and 5 mm wide, apex incomplete, ? acute, base narrow
cuneate, inconspicuously narrowed into a petiole, venation
steeply acrodromous, consisting of 5 primaries, midrib
inconspicuously thickened, higher-order venation probably
reticulate, hardly visible.
Discussion: Similar leaves of Majanthemophyl-
lum petiolatum are larger and much better preserved (Olgo-
cene of Rott). Its preserved epidermal anatomy (see Kvaček
and Wilde 2010) is equivocally recalling really enigmatic
monocots of the Smilacaceae and some authors assigned it
to Smilax (Walther in Mai and Walther 1978). The present
single specimen from Kučlín is aberrant in its small size and
can hardly be assigned without any doubts to M. petiolatum
typically spread in the Late Oliogcene and Miocene in
Europe (see Kvaček and Wilde 2010).
Material: KUC 191.
Raskya MANCHESTER et HABLY
1997 Raskya MANCHESTER et HABLY, p. 236.
Type: Raskya vetusta (ETTINGSHAUSEN) MANCHESTER
et HABLY.
This so far monotypic genus was erected for quadrisepa-
lous hypogenous fruits of unknown affinities previously
interpreted by Reid and Chandler (1926) as belonging to
Abelia. Manchester and Hably (1997) recognized the cor-
rect position of the ovary/fruit and ruled out the Caprifoli-
aceae with epigynous persistent calyces as a relative fami-
ly. In spite of large-scale comparisons they did not find
a satisfactory relationship for this genus. An extinct Juglan-
daceous genus Cruciptera MANCHESTER (1991) is distin-
guished by an inferior differently formed globose fruit, con-
trary to the superior elongate-fusiform in Raskya. The other
similar genera with fruits subtended by wings radiating in
a propeller manner, e.g., Asterocarpinus MANCHESTER et
CRANE, are distinguished by fruit morphology and venation
of sepals (Manchester and Hably 1997). Only a single
species of Raskya has been known so far and its all occur-
rences are confined to the Upper Eocene to Oligocene of
Europe.
Raskya vetusta (ETTINGSHAUSEN) MANCHESTER et HABLY
Pl. 15, figs 10-11
1869 Ononis vetusta ETTINGSHAUSEN, p. 56, pl. 55, figs 7-9.
1881 Tetrapteris vetusta (ETTINGSHAUSEN) SIEBER, p. 19, pl. 4,
figs 19-20.
1926 Abelia quadrialata E. M. REID et CHANDLER, p. 133, pl.8,
figs 29-31, text-fig. 11 (Bembridge).
1997 Raskya vetusta (ETTINGSHAUSEN) MANCHESTER et HABLY,
p. 236, pls. 1-2, text-fig. 1.
Neotype: NM G 7569 designated by Manchester
and Hably (1997, pl. 2, fig. 7), Kučlín.
The fruits are preserved as elongate-fusiform impres-
sions, transversed by numerous ribs and attached to the cen-
107
tre of the hypogynous quadripetalous calyx. The position of
the fruit is obviously superior. Fossil calyces devoid of
fruits occur more frequently. The sepals are entire on mar-
gin, free, obovate-spatulate, slightly curved on the tips,
7–11.5 mm long and max. 4 mm wide. The venation of
sepals is very steep, free, dichotomizing, not well preserved
in the studied specimens. The fruit body attains 9 mm in
length, in the compressed state it looks 1 mm in cross sec-
tion but this value does not correspond to the natural thick-
ness due to compression. No remains of styles are observ-
able on the fruit tip.
Discussion: The above described material com-
plements the description of the neotype selected by Man-
chester and Hably (1997) from the same locality Kučlín as
Ononis vetusta Ettingshausen, basionym. It brings definite
evidence that the record from Kučlín bears all features diag-
nostic for Raskya as numerous better preserved specimens
from Hungary and England described by Manchester and
Hably (1997), which were employed for the re-interpreta-
tion of the genus. Due to a large diversity of the Kučlín flora
and unknown affinities of Rasky it is at present impossible
to suggest further organs of Raskya and attempt to recon-
struct the whole plant. Aspects of the plant assemblages asso-
ciated with occurrences of Raskya in Bohemia (Kučlín),
Hungary (Eger-Kiseged, Obuda) and England (Bembridge)
stress thermophilous character of this plant element.
Material: NM G7567a, b (neotype), DB KUC 16a,b,
KUC 445.1.
Callistemophyllum bilinicum ETTINGSHAUSEN
Pl. 12, figs 4-7
1869 Callistemophyllum bilinicum ETTINGSHAUSEN, p. 53, pl. 6,
fig. 7, pl. 7, fig. 1.
1990 Callistemophyllum bilinicum ETTINGSHAUSEN; Bůžek et al.,
p. 172, fig. 3.27.
2002 Callistemophyllum bilinicum ETTINGSHAUSEN; Hably, p. 16,
pl. 6, fig. 7.
Leaves simple, linear, entire, parallel-margined. Venation
eucamptodromous, secondaries dense, looping with inter-
secondaries elong the margin.
Discussion: This type of foliage has been known
as Callistemophyllum SAPORTA from various Palaeogene
sites of Europe but in no case its true nature has been clari-
fied, also at Kučlín. Velenovský (coll. NM) identfied such
leaf forms from Kučlín as Ficus multinervis HEER.
Material: BP55.2314.1, 55.2371.1, NM G 8663.
Ternstroemites sp.
Pl. 10, fig. 14; Pl. 11, figs 1-5
Leaves long petiolate narrow elliptic, coarsely dentate,
glandular (?)
Discussion: The margin and the form recall Theaceae.
Material: KUC 159, KUC 190, KUC 210 KUC
450, KUC 452.
cf. Salix sp.
Pl. 6, figs 8-10
1868 Myrsine doryphora UNGER; Ettingshausen, p. 35, pl. 40,
figs 6, 13.
1868 Myrsine heeri ETTINGSHAUSEN, p. 36, pl. 38, fig. 11.
2001 Myrsine heeri ETTINGSHAUSEN; Hably et al., p. 29, pl. 21,
fig. 3.
Leaves linear, elongate to lanceolate, subentire, vena-
tion eucaptodromous, midrib straight, secondaries dense, at
wide angles to the midrib.
Discussion: Specimens assigned to this entity
are very poorly preserved. Their identification as foliage of
Salix is very equivocal.
Material: BP55.2462.1.
Dicotylophyllum sp. 1
Pl. 11, figs 10-11
1869 Amygdalus bilinica ETTINGSHAUSEN, p. 55, fig. 23;
2001 Amygdalus bilinica ETTINGSHAUSEN, Hably et al, p. 12,
pl. 2, fig. 4.
The morphotype recalls Platanus neptuni mf. reussii.
Material: BP55.2357.1.
Dicotylophyllum sp. 2
Pl. 11, fig. 12
1868 Andromeda protogaea UNGER; Ettingshausen, p. 48, p. 39,
fig. 9.
Possibly Ericaceae.
Material: BP55.2470.1.
Dicotylophyllum sp. 3
Pl. 11, figs 13-15
1868 Apocynophyllum amsonia UNGER; Ettingshausen, p. 28,
pl. 37, fig. 3.
1869 Eucalyptus oceanica UNGER; Ettingshausen, pp. 52-53, pro
parte, pl. 54, figs 20-21.
2001 Apocynophyllum amsonia UNGER; Hably et al., p. 43,
pl. 42, fig. 3.
2001 Eucalyptus oceanica UNGER; Hably et al, p. 52, pl. 62,
figs 2-3.
Leaves lanceolate ovate, entire-margined, venation
hardly visible.
Material: BP 55.2352.1, BP 56.1134.1, BP
59.1111.1., BP 59.1134.1., KUC 411.
Dicotylophyllum sp. 4
Pl. 11, fig. 16
Leaf petiolate, lamina bipartite (? anomally), apical and
lateral lobes shallowly widely crenulate, venation not visi-
ble except primaries.
Discussion: It is probably just a part of a com-
pound/lobed leaf. Some aralias may produce similar forms.
Material: KUC 81.
Dicotylophyllum sp. 5
Pl. 11, figs 17-18
1868 Ardisia harpyarum ETTINGSHAUSEN, pp. 40-41, pl. 38, fig. 1.
2001 Ardisia harpyarum ETTINGSHAUSEN, Hably et al., p. 13, pl.
3, fig. 3.
Leaf ? sub-sessile, lamina entire-margined, narrow elon-
gate, fragmentarily preserved, base narrow cuneate, texture
108
? papyraceous, venation eucamptodromous, secondaries
slitghly wavy, tertiaries reticulate
Material: BP55.245.1.
Dicotylophyllum sp. 6
Pl. 11, figs 19-20
1881 Aristolochia grandifolia SIEBER, p. 81, pl. 3, figs 22a, b.
A large fragment of a lobed leaf (with counterpart BPas
Sterculia sensu Ettinsghausen).
Discussion: The reconstruction of the lamina
indeed recalls a leaf of Aristolochia. The fossil itself is
unfortunately very fragmentary and not determinable.
Material: NM G 354, BP 55.2326.1.
Dicotylophyllum sp. 7
Pl. 11, figs 21-22
1869 Baloghia miocenica ETTINGSHAUSEN, p. 45, pl. 50, fig. 22.
2001 Baloghia miocenica ETTINGSHAUSEN; Hably et al., p. 13,
pl. 4, fig. 2.
Leaves narrow elliptic, entire-margined, venation eu-
camptodromous, midrib thin, secondaries hardly observ-
able.
Material: BP55.2340. 1.
Dicotylophyllum sp. 8
Pl. 12, figs 1-3
1868 Bumelia oreadum UNGER; Ettingshausen, p. 43, pl. 38,
figs 13-15.
2001 Bumelia oreadum UNGER; Hably, p. 45, pl. 47, figs 4, 6,
pl. 48, fig. 4.
Leaves obovate, entire-margined, midrib straight, sec-
ondaries very thin, hardly observable.
Material: BP55.2375.1.
Dicotylophyllum sp. 9
Pl. 12, fig. 12
1869 Cassine palaeogea ETTINGSHAUSEN, p. 38, pl. 46, fig. 14.
2001 Cassine palaeogea ETTINGSHAUSEN; Hably et al., p. 17,
pl. 7, fig. 3.
Similar to leaves of Sloanea nimrodi.
Material: BP55.2315.1.
Dicotylophyllum sp. 10
Pl. 12, fig. 13
1869 Celastrophyllum mimusops ETTINGSHAUSEN, p. 36, pl. 49,
figs 2, 2b.
2001 Celastrophyllum mimusops ETTINGSHAUSEN; Hably et al.,
p. 17, pl. 7, fig. 4.
Leaf (? leaflet) obovate, entire-margined, venation eucam-
ptodromous, midrib thick, secondaries closely spaced, on
one side at wider angles than on the other, tertiaries reticu-
late.
Discussion: Similar leaflets are produced by
a number of legumes.
Material: BP55.2486.1.
Dicotylophyllum sp. 11
Pl. 12, figs 14-16
1869 Celastrus lucinae ETTINGSHAUSEN, p. 32, pl. 48, fig. 26.
1869 Celastrus aeoli (ETTINGSHAUSEN) ETTINGSHAUSEN, p. 32,
pl. 48, fig. 28.
1990 Celastrus lucinae ETTINGSHAUSEN, Bůžek et al., p. 172,
fig. 38.
2001 Celastrus lucinae ETTINGSHAUSEN, Hably et al., p. 17, pl. 8,
fig. 2.
2001 Celastrus aeoli (ETTINGSHAUSEN) ETTINGSHAUSEN; Hably
et al., p.47, pl. 53, fig. 1.
Leaves obovate, finely serrate with complicated steep
brochidodromous–reticulate venation.
Material: BP55.2445.55. 5429.1.
Dicotylophyllum sp. 12
Pl. 12, figs 17-18
Leaves elliptic, entire-margined, midrib straight, sec-
ondaries hardly visible, venation eucamptodromous (?).
Discussion: Probably a poorly preserved speci-
men of Trigonobalanopsis rhamnoides.
Material: KIN 242, KIN 359.
Dicotylophyllum sp. 13
Pl. 13, figs 3-4
A twig of lanceolate alternate (?) leaves, margin entire,
venation eucamptodromous, secondaries quite closely
spaced.
Material: KIN 381.
Dicotylophyllum sp. 14
Pl. 13, fig. 5
Leaf petiolate, petiole thick, lamina elongate, entire-
margined, midrib thick, straight, venation eucamptodro-
mous, secondaries closely spaced, at almost right angle,
with intersecondaries, higher-order venation not preserved
Material: KIN 208.
Dicotylophyllum sp. 15
Pl. 13, fig. 8
Leaf long petiolate, lamina obovate, entire-margined,
venation ? eucaptodromous, midrib straight, secondaries
hardly visible.
Material: KIN 23.
Dicotylophyllum sp. 16
Pl. 13, fig. 9
Leaf ? subsessile, lamina elliptic, entire-margined, vena-
tion eucamptodromous.
Material: KIN 431.
Dicotylophyllum sp. 17
Pl. 14, fig. 1
1869 Eugenia apollinis UNGER; Ettingshausen, p. 52, pl. 53,
fig. 16.
2001 Eugenia apollinis UNGER; Hably et al., p. 53, pl. 62, fig. 5.
109
Leaf entire-margined, lanceolate, midrib medium thick,
secondaries regularly spaced, tertiaries reticulate.
Material: BP55.2485.1.
Dicotylophyllum sp. 18
Pl. 14, fig. 2
Leaf entire-margined, lamina elongate, base rounded,
venationbrochidodromous, midrib thick, straight, secondar-
ies in regular loops subparallel, at angles of ca. 60°, with
thin intersecondaries.
Discussion: Similar to Ficus lobkowitzii ETTINGS-
HAUSEN from the Miocene Břešťany Clay.
Material: KUC 441.
Dicotylophyllum sp. 19
Pl. 14, fig. 3
1866 Ficus kutschlinica ETTINGSHAUSEN, p. 68, pl. 20, figs 8, 8b.
2001 Ficus kutschlinica ETTINGSHAUSEN; Hably et al., p. 23,
pl. 14, fig. 2.
Leaf similar by coarsely toothed margin to Pungiphyl-
lum cruciatum.
Material: BP55.1108.1.
Dicotylophyllum sp. 20
Pl. 14, figs 4-5
1866 Ficus urani ETTINGSHAUSEN, p. 75, pl. 21, fig. 5.
2001 Ficus urani ETTINGSHAUSEN; Hably et al, p. 24, pl. 16, fig. 2.
Leaf elliptic with eucamptodromous venation consisting
of a thin midrib and regularly arranged looping secondaries.
The basal pair is slightly more prominent.
Discussion: The leaf may represent an aberrant
form of Byttneriopsis.
Material: BP55.2401.1.
Dicotylophyllum sp. 21
Pl. 14, figs 6-7
1869 Laurelia glandulifera ETTINGSHAUSEN, p.64, pl. 55, fig. 20.
2001 Laurelia glandulifera ETTINGSHAUSEN; Hably et al., p. 26,
pl. 18, fig. 2.
Elliptic leaf with glandular toothed margin. Venation
hardly visible.
Material: BP55.2410.1.
Dicotylophyllum sp. 22
Pl. 14, fig. 8
1868 Ligustrum priscum ETTINGSHAUSEN, p. 24, pl. 36, fig. 8.
2001 Ligustrum priscum ETTINGSHAUSEN; Hably et al., p. 29,
pl. 19, figs 6-7.
A small linear lanceolate leaf with hardly visible venation.
Material: BP55.2362.1.
Dicotylophyllum sp. 23
Pl. 14, fig. 11
1868 Notelaea philyrae ETTINGSHAUSEN, p. 24, pl. 36, fig. 14.
2001 Notelaea philyrae ETTINGSHAUSEN; Hably et al., p. 30,
pl. 23, fig. 7.
Leaf lanceolate, entire-margined, venation eucampto-
dromous, midrib straight, secondaries dense, at 40° to the
midrib, looping, with intersecondaries.
Material: BP55.2370.1.
Dicotylophyllum sp. 24
Pl. 14, figs 12, 13
1868 Olea olympica ETTINGSHAUSEN, p. 23, pl. 36, fig. 13.
2001 Olea olympica ETTINGSHAUSEN; Hably et al., p. 30, pl. 24,
fig. 1.
1868 Olea feroniae ETTINGSHAUSEN, p. 22, pl. 36, fig. 15.
2001 Olea feroniae ETTINGSHAUSEN; Hably et al., p. 30, pl. 23,
fig. 7.
Leaves narrow elliptic, entire-margined, without visible
venation, probably coriaceous.
Material: BP55.2368.1, 55.2471.1.
Dicotylophyllum sp. 25
Pl. 14, fig. 14
1869 Pleiomerites reticulatus ETTINGSHAUSEN, p. 38, pl. 38, fig. 6.
2001 Pleiomerites reticulatus ETTINGSHAUSEN, Hably et al.,
p. 32, pl. 25, fig. 3.
Leaf narrow elliptic, entire-margined, without visible
venation.
Material: BP55.2392.1.
Dicotylophyllum sp. 26
Pl. 15, fig. 6
1869 Rhamnus paucinervis ETTINGSHAUSEN, p. 43, pl. 49, fig. 19.
2001 Rhamnus paucinervis ETTINGSHAUSEN; Hably et al., p. 33,
pl. 27, fig. 2.
Leaf narrow elliptic, entire-margined, venation eucamp-
todromous, secondarie steep, widely spaced and irregular.
Discussion: Such a type of venation can be seen
in various lauroids.
Material: BP55.2479.1.
Dicotylophyllum sp. 27
Pl. 15, fig. 7
1881 Quercus cf. tephrodes UNGER; Sieber, p. 76, pl. 3, fig. 17.
Leaf ovate, on the apex wavy probably due to demage,
otherwise entire-margined. Venation eucamptodromous,
secondaries regularly disposed.
Material: NM G 352.
Dicotylophyllum sp. 28
Pl. 15, figs 8-9
1866 Quercus kutschlinica ETTINGSHAUSEN, p. 61, pl. 17, figs 11, 12.
2001 Quercus kutschlinica ETTINGSHAUSEN; Hably et al., p. 32,
pl. 25, fig. 3.
Aberrant leaf form probably due to injury.
Material: BP55.2468.1.
Dicotylophyllum sp. 29
Pl. 15, fig. 12
1868 Santalum salicinum ETTINGSHAUSEN; Ettingshausen, p. 12,
pl. 37, figs 5, 6.
110
2001 Santalum salicinum ETTINGSHAUSEN; Hably et al., p. 60, pl.
34, fig. 6.
Leaf entire-margined, lamina lanceolate without well
visible venation, probably coriaceous.
Material: BP55.1190.1.
Dicotylophyllum sp. 30
Pl. 16, figs 6-9
1868 Sapotactites daphnes (UNGER)ETTINGSHAUSEN, p. 41,
pl. 38, fig. 8.
1868 Sapotacites bilinicus ETTINGSHAUSEN, p. 42, pl. 38, fig. 22.
2001 Sapotactites daphnes (UNGER)ETTINGSHAUSEN; Hably et
al. p. 60, pl. 78, fig. 1.
2001 Sapotacites bilinicus ETTINGSHAUSEN; Hably et al., p. 36,
pl. 31, fig. 5.
Leaves entire-margined, subsessile (?) oblanceolate to
elongate, venation ? eucaptodromous, midrib straight, thick,
secondaries hardly visible due to coriaceous texture.
Material: BP55.2463.1, 55.2465.1.
Dicotylophyllum sp. 31
Pl. 16, figs 10-14
1869 Saxifragites crenulatus ETTINGSHAUSEN, p. 7, pl. 41, figs 1-3.
1990 Saxifragites crenulatus ETTINGSHAUSEN, Bůžek et al.,
p. 172, fig. 3.11.
2001 Saxifragites crenulatus ETTINGSHAUSEN; Hably et al., p. 36,
pl. 30, figs 4-5.
Leaves sub-sessile, lamina elongate, slightly falcate, at
the base asymmetrical, margin glandular, finely crenulate.
Material: BP55.2405.1, 55.2495.1, KUC 429, 430.
Dicotylophyllum sp. 32
Pl. 17, fig. 1
1869 Sciadophyllum haidingeri ETTINGSHAUSEN, p. 2, pl. 40, fig. 1.
2001 Sciadophyllum haidingeri ETTINGSHAUSEN; Hably et al., p.
37, pl. 33, fig. 6.
Leaf long petiolate, lamina narrow elliptical, venation
not discernible.
Discussion: The morphotype is characterized by
a probably coriaceous texture and an unusually long petiole.
Material: BP55.2331.1.
Dicotylophyllum sp. 33
Pl. 17, fig. 2
1869 Sorbus palaeoaria ETTINGSHAUSEN, p. 48, pl. 53, fig. 24.
2001 Sorbus palaeoaria ETTINGSHAUSEN, Hably et al., p. 37,
pl. 34. fig. 4.
Leaf fragment showing regular craspedodromous sec-
ondaries and finely serrate margin.
Discussion: It recalls Betulaceae rather than Ro-
saceae and belongs certainly to foliage of a summergreen
plant.
Material: BP59.843.1.
Dicotylophyllum sp. 34
Pl. 17, fig. 3
1868 Styrax stylosa HEER; Ettingshausen, p. 47, pl. 80, fig. 4.
2001 Styrax stylosa HEER; Hably et al., p. 61, pl. 80, fig 4.
Leaf petiolate, lamina lanceolate, entire-margined,
venation eucamptodromous, midrib slightly bent, secondar-
ies moderately steep, widely spaced.
Material: BP55.2418.1.
Dicotylophyllum sp. 35
Pl. 16, figs 1-2
Leaf elongate, parallel-margined, margin entire, vena-
tion eucamptodromous, midrib straight, thick, secondaries
very dense, at more than 80°, looping very near the margin,
intersecondaries single present.
Material: KUC 228.1A.
Carpolithes sp. 1
Pl. 17, figs 4-6
Dichasial infructescence with small rounded remains of
fruits 3 mm in diameter.
Material: KUC 43A, B.
Carpolithes sp. 2
Pl. 17, fig. 7
A group of long stalked elongate flower impressions.
Material: KIN 377.
Carpolithes sp. 3
Pl. 17, fig. 8
A group of sessile striated broadly oval capsule fruits
4 mm long.
Material: KIN 249.1.
Carpolithes sp. 4
Pl. 17, fig. 9
Roundish seeds well flattened, 4 and 6 mm in diameter.
Material: KIN 27.1.
Carpolithes sp. 5
Pl. 17, fig. 10
Stalked capsule (?) obovate, strongly compressed 10 mm long
.
Material: KIN 48.
Carpolithes sp. 6
Pl. 17, fig. 11
A group of longly stalked strongly compressed roundish
fruits 3 mm in diameter.
Material: KIN 50.
Carpolithes sp. 7
Pl. 17, fig. 12
A group of stalked strongly compressed flower remains
ca. 12 mm long.
Material: KIN 256.
Carpolithes sp. 8
Pl. 17, fig. 13
Mold of a stone broadly elliptic, on apex showing dehis-
cence line, 13 mm wide and ca. 20 mm long.
Material: KIN 460.
111
Carpolithes sp. 9
Pl. 17, fig. 14
A cyllindrical catkin 5 mm wide and 35 mm long con-
sisting of narrow densely arranged pointed bracts.
Material: KIN 38.1.
Carpolithes sp. 10
Pl. 17, fig. 15
Calyces (?) stalked elongate, 8 mm long attached in
group to a twig.
Material: KIN 269.
Carpolithes sp. 11
Pl. 17, fig. 6
1869 Paliurus favonii UNGER; Ettingshausen, p. 39, pro parte,
pl. 50, fig. 7.
2001 Paliurus favonii UNGER; Hably et al., p. 56, pl. 59, fig. 5.
An impression of berry (?); the locality was wrongly
indicated by Ettingshausen (1869) as Sobrussan (Zabruša-
ny) and the fossil has nothing to do with the fruits of Pali-
urus favonii. According to the matrix the sample comes
clearly from Kučlín.
Material: BP55.1163.1.
General characteristics of the flora of Kučlín
Among the studied sites in north Bohemia dated as Late
Eocene, Kučlín belongs to the most noteworthy. Differ-
ences between these floras (Kvaček 2002a) are due to two
factors. First the possibilities of collecting vary from site to
site (Kučlín vs. Mrtvý vrch vs. cores at Lbín vs. Roudníky).
Second, different environmental conditions may bias the
composition of coeval floras (mesophytic vegetation on fer-
tile volcanogenic soils vs. azonal vegetation in alluvial set-
tings in the Staré Sedlo Formation). Similar phenomenon
can be noticed in the Middle Eocene of Germany, when
comparing plant assemblages of the lignite basin of the
Geiseltal and the maar fills of Eckfeld and Messel (Wilde
1995). The same applies to the Early Oligocene vegetation
of Haselbach representing coal-forming and alluvial vege-
tation in comparison with Oligocene “volcanic” plant
assemblages in the České středohoří Mountains, Markvar-
tice and Seifhennersdorf (Kvaček and Walther 2001).
The flora of Kučlín was explored for a longest period
and its plant assemblages are most diversified. Aquatic and
helophytic plants (Nymphaeaceae, Araceae and other
monocots) were confined to shallow water of the lake. Deep
swamps were not developed along the lake, at least in such
an extent to produce mighty lignite layers. The only
hygrophilic conifer, Doliostrobus, was present, but in medi-
um frequency. The other trees common in the basins and the
alluvial sandy facies (oligotrophic substrates), notably
Eotrigonobalanus, Steinhauera, Sabal, were either rare or
lacking. The most common plant fossils in the Kučlín
diatomite are seeds of Nymphaeaceae, which may belong to
the same plants as co-occurring rhizomes of Nymphaea
polyrrhiza. Other herbaceous elements (ferns, monocots)
are rare. We may reasonably assume that also the araceous
Nitophyllites bohemicus, represented by a few fragments,
belonged to helophytic vegetation, which bordered the vol-
canic lake. Rare remains of Sabal, Musaceae (Musa bilini-
ca) and strap-like monocot foliage are further elements of
this community. Heavy infructescenses and whole branches
of Platanus neptuni may indicate that even this tree grew
partly on the banks near the lake. The Kučlín flora is typi-
cally heterogenous, and includes also mesophytic elements,
which were blown into the lake by wind (winged fruits or
seeds of Raskya vetusta, “Acersotzkianum, Engelhardia
macroptera, Hooleya hermis, Apocynospermum).
The overall character of the vegetation of Kučlín fits
best to a flatland with surrounding moderate uplands. Most
of the recovered woody plants including lianas are meso-
phytic, like Lauraceae (narrow-leafed Daphnogene, Lauro-
phyllum), Juglandaceae (Engelhardia, Hooleya), Icacina-
ceae (Palaeohosiea), Elaeocarpaceae (Sloanea), and even
subxerophytic (Cedrelospermum, Ziziphus, Podocarpium).
Affinities of many plants from Kučlín have not been clari-
fied so far but none of them can be interpreted as a modern
Arcto-Tertiary element in the sense of Kvaček (1994), i.e.,
an Oligocene immigrant from Asia. Tetraclinis salicornio-
ides, Platanus neptuni, Sterculia labrusca, Raskya vetusta
and others accompany evergreen forests elsewhere in
Europe, mainly in the Late Eocene and earliest Oligocene.
Physiognomy of the vegetation of Kučlín was similar to the
Middle Eocene sites of Messel and Eckfeld (Wilde 1989,
Wilde and Frankenhäuser 1998) and the Oligocene sites
Suletice-Berand and Holý Kluk (Kvaček and Walther 1995,
Radoň et al. 2006). These floras, however, are of different
age and include partly different species spectra.
The Kučlín Lake was obviously a freshwater reservoir
as documented by diatoms (Řeháková in Malkovský et al.
1985). Facultative halophytes, like Acrostichum, cannot
unequivocally provide evidence of salt marshes; because
today this fern is spread also outside mangroves (see
Frankenhäuser and Wilde 1993). The fish fauna includes the
only marine representative, Morone that penetrates inland
into the freshwater environment via rivers (Micklich and
Böhme 1997, Přikryl 2008). But successors of another
member of the fish fauna – a percoid Bilinia (Obrhelová
1969, 1976) today also live in marine environments. There-
fore, Obrhelová and Obrhel (1987) supposed a higher min-
eral content in the lake due to mineral springs. The remain-
ing Thaumaturus and Amia (treated recently as Cyclurus by
Gaudant 1977, 1996, Bellon et al. 1998) are obligate fresh-
water dwellers, like other aquatic animals – – Diplocynodon
(Kafka 1911), Trionyx (Laube 1882), little crayfish (Meyer
1852, Frič 1872) and a newly recovered frog (coll. DB).
The freshwater diatoms Melosira distans, Fragilaria and
Synedra dominate algal taphocoenoses. Řeháková (in
Malkovský et al.1985) lists 19 species of pennate diatoms
and a stenothermic Eunotia clevei typical of cold waters.
She recognized the Kučlín assemblage as the most ancient
among diatomite occurrences.
The land around the Kučlín Lake was well above the
ground water, where evergreen forests with rare ferns on the
floor were developed. Even low slopes can be expected due
to the presence of subxerophytic plants, like Cedrelosper-
mum with extremely narrow leaves, and Ziziphus. Palyno-
logical data (Mazancová in Horáčková et al. 1967, Kon-
zalová 1981) provide additional information on the sur-
112
rounding vegetation. The pollen spectra from the marl
underlying the diatomite yielded the bituminous alga Botryo-
coccus, which is typical of stagnant eutrophic waters, and
microsporangia of aquatic ferns. Among leptosporangiate
ferns, a thermophilic climber (Lygodium), Gleicheniaceae
and some more exotic spores of unknown affinities have
been noted. Conifers are represented by the cupressaceous
hiatus-dubius group, but also by the araucarioid pollen
probably corresponding to Doliostrobus. Various bisaccate
forms document the Pinaceae, including the haploxylon-
type today partly referred to Cathaya. Among the Juglan-
daceae-Myricaceae group, pollen of Carya, Engelhardia
and Myrica occurred. Tilioid pollen documents some
extinct members of the Malvales. Various forms of tri-
colpoporoid pollen have usually been interpreted as
Fagaceae, Leguminosae, Nyssaceae, Aquifoliaceae and
Araliaceae, tetracolpoporoid forms as Sapotaceae and Meli-
aceae. Noteworthy are stratigraphically significant sporo-
morphs – the rhizophorus-type (comparable with the lianas
Iodes ~ Palaeohosiea, Icacinaceae) and Cupaneidites (Myr-
taceae vel Sapindaceae). Among monocots, rare pollen of
Sparganium and palms has been identified. Beetles inhabit-
ing dry land dominate by 90 % among the insects (Prokop
in press). The Curculionoidea makes half of the respetive
taphocoenosis, two other groups – Elateridae and Bupresti-
dae are also well represented, while only a single aquatic
element, Anisops heidenii DEICHM., is present. In composi-
tion and aspect, the Kučlín insect fauna matches those of
the Middle Eocene sites Eckfeld and Messel. Large forms,
whose extant analogues are most diversified in modern
tropic and subtropic areas (Dascillidae, Buprestidae, and
Trogositidae), suggest its very thermophilic character.
Vegetation of Kučlín
The above described fossil plant assemblage of Kučlín
was evaluated using IPR-vegetation analysis in the follow-
ing characteristic: BLD 46 %, BLE 41%, SCL+LEG 12%,
ZONAL HERB (D-HERB + M-HERB) 3.5 %, sum of taxa
106, sum of zonal taxa 82, sum of zonal woody angio-
sperms 88, problematic taxa 6 (for detailed taxa scoring see
Teodoridis 2011a). According to the thresholds of key com-
ponents for a defined vegetation types (the first four above
mentioned components) modified by Teodoridis et al.
(2011a, table 8), the flora of Kučlín belongs to the “Broad-
leaved Evergreen forest (BLEF)” vegetation type. Compar-
ing the result of Kučlín to those from the Late Eocene sites
from Weisselster Basin (Haselbach, Kayna-Süd, Klausa,
Knau, Mosel, Phönix-Nord and Profen, i.e., BLE 68–92 %
and BLD 8–25 %) and the Staré Sedlo Formation (Český
Chloumek, Nový Kostel, Staré Sedlo and Žitenice, i.e.,
BLE 55–66 % and BLD 17–34 %) referred by Teodoridis et
al. (submitted), the Kučlín assemblage shows significantly
low value of the BLE component and/or predominance of
BLD component. On the other hand the value of SCL+LEG
component distinctly overlapped those from the Late
Eocene sites from Saxony and North Bohemia that proved
the above stressed taxonomic uniqueness of Kučlín. IPR
results of taxonomically close sites of the Early Oligocene
from the Czech Republic and Germany (i.e., Kundratice,
Seifhennersdorf, Knížecí-Hrazený, Suletice-Berand, Holý
Kluk and Markvartice-Veselíčko) show variability of the
BLE and BLD components from 50 to 65 % vs. 29 to 35 %
(Teodoridis 2011b, Teodoridis et al. in prep.). Similarly the
site of Suletice-Berand indicates a predominance of
SCL+LEG component equalling to 16 % and can be inter-
preted as the closest physiognomicly related assemblage to
Kučlín based on results of the cluster analysis (Teodoridis
et al. in prep.). The relatively low value of the BLE compo-
nent at Kučlín is due to a close affinity to modern vegeta-
tion units of Eurya-Cryptomeria japonica association,
Tsuga sieboldii subassociation and of summarized results
for Eurya-Cryptomeria japonica association from Yakushi-
ma Island in Japan. These vegetation types are empirically
defined as Mixed Mesophytic Forest vegetation (Teodoridis
et al. 2011a). The affinity is also corroborated by the cluster
analysis sensu Teodoridis et al. (2011a, submitted). The
Leaf Size Analysis (LSA) applied on Kučlín shows an
almost balance percentage of the microphyllous and noto-
phyllous leaf size categories (45.6 vs 46.8 %) and 7.6 % of
marcrophyllous leaves. This result corresponds best with
those of the Late Eocene sites of Profen (41 %, 39 %, 11 %)
and Staré Sedlo (34 %. 53 %, 12 %) – see Mai and Walther
(1985), Teodoridis et al. (submitted) as well with modern
vegetation units from extrazonal and zonal zones of sub-
tropical and warm-temperate areas in China and Japan
(Oshawa and Ozaki 1992, Tang and Oshawa 1999). Kvaček
(2010) defined a Mid-latitude Notophyllous Broad-leaved
Evergreen Forest vegetation type documented at the Middle
Eocene floras of Eckfeld (Germany) and Lábatlan (Hun-
gary) and at the Late Eocene floras of Hordle (England) and
Kučlín (Czech Republic). Our results of IPR-vegetation
analysis and LSA corroborate the former Z. Kvaček’s opin-
ion, however, the predominance of the notophyllous taxa
are not so significant.
Paleoclimatic signals
The plant assemblage of Kučlín was evaluated by
CLAMP and LMA techniques. CLAMP employed a phys-
iognomic characteristic of Kučlín presented in table 1 and
used the 189 physiognomic and meteorological reference
datasets sensu Jacques et al. (2011). The CLAMP results of
Kučlín are as follows: MAT 16.8 °C, WMMT 26.1 °C,
CMMT 8.1 °C, 3-WET 638 mm, 3-DRY 14.2 mm,
GROWSEAS 9.6 month, GSP 126.7 cm, MMGSP 89 mm,
RH 69.1 %, SH 8.7 g/kg, and ENTHAL 32.4 kJ/kg. Leaf
Margin Analysis (LMA) estimates of MAT1is 23.0 °C
(sensu Wolfe (1979) and MAT2is 20.5 °C (sensu Su et al.
2010), and value of the sampling error sensu Miller et al.
(2006) is 1.9 °C. The obtained climate proxies correspond
more or less to those of stratigraphic analogous sites from
the Staré Sedlo Formation and the Weisselster Basin, such
as Staré Sedlo locality (i.e., MAT = 16.2°C, WMMT =
= 25.9°C and CMMT = 6.3°C, MAT1= 19.9°C, MAT2=
= 17.7°C SE = 2.9°C) and proxies based on the compiled
late Eocene floras from the Weisselester Basin (i.e., MAT =
= 17.2°C, WMMT = 24.2°C and CMMT = 8.4°C, for local-
ity Knau MAT1= 24.4°C, MAT2= 21.7°C SE = 3.9°C) –
see for detailed Teodoridis (2011b), Teodoridis et al. (sub-
mitted). Anyway, the analogous Late Eocene floras from
Saxony (Haselbach, Knau and Profen) and the Czech
Republic (Staré Sedlo) exhibit the following average paleo-
113
climatical character derived from the Coexistence Approach
application sensu Mosbrugger and Utescher (1997): MAT
18 °C, WMMT 26 °C, CMMT 9 °C, and MAP 1272 mm
(for detail see Roth-Nebelsick et al. 2004, Mosbrugger et al.
2005, Uhl et al. 2007). These paleoclimatic proxies as well
our CLAMP results are comparable with the former esti-
mates, i.e., MAT = 15–20°C, WMMT 15–23 °C, and CMMT
= 6–13°C, for the Weisselster Basin (Mai and Walther 1983)
and Staré Sedlo Formation (Knobloch et al. 1996).
Acknowledgments
Highly appreciated are field activities of many persons,
namely P. and Z. Dvořák, M. Radoň, J. Valíček, J. Vedral
and others, who complemented the fossil record of north
Bohemia by new fossil material. Thanks are due to curators
of the respective collections at the National Museum, and
the Czech Geological Survey, Prague, the Hungarian Natur-
al Museum, Budapest, the Natural History Museum, Vienna,
the Geological Survey, Vienna, and the State Nature History
Collections, Dresden for the access to the fossil material.
J. Ulrych, V. Cajz, J. Prokop, S. R. Manchester, V. Wilde,
H. Frankenhäuser, H. Walther, R. Brzobohatý, B. Ekert,
O. Schultz, N. Micklich, and M. Böhme contributed to our
study by consultations and supply of unpublished data in
geology, taxonomy, ecology and taphonomy. The study was
financially supported by the grant projects of the Grant Agency
of the Czech Republic (GAČR), i.e., No. 205/08/0643
(Z. Kvaček) and No. P210/10/0124 (V. Teodoridis), and the
Ministry of Education CR (J 13/98: 113100006).
References
Akhmetiev, M., Walther, H., Kvaček, Z. (2009): Mid-lati-
tude Palaeogene floras of Eurasia bound to volcanic set-
ting and palaeoclimatic events – experience obtained
from the Far East Russia (Sikhote-Alin’) and Central
Europe (Bohemian Massif). – Acta Mus. Nat. Pragae,
Ser. B, Hist. Nat., 65(3-4): 61–121.
Andreánszky, G. (1954): Mangrove-Fern in Hungary from
the Oligocene. – Bot. Közl., 44: 135139.
Andreánszky, G. (1959): Contributions à la connaisance de
la flore de l’Oligocène inférieur de la Hongrie et un
essay sur la reconstruction de la flore contemporaine.
– Acta Bot. Acad. Sci. Hung., 5: 137.
Barthel, M. (1976): Eozäne Floren des Geiseltales. Farne
und Cycadeen. – Abh. Zentr. Geol. Inst., 26: 439–498.
Becker, H. F. (1969): Fossil plants of the Tertiary Beaver-
head Basin in Southwestern Montana. – Palaeonto-
graphica B, 127: 1-142.
Bellon, H., Bůžek, Č., Gaudant, J., Kvaček, Z., Walther, H.
(1998): The České středohoří magmatic complex in
Northern Bohemia – 40K-40Ar ages for volcanism and
biostratigraphy of the Cenozoic freshwater formations.
– Newslett. Stratigr., 36: 77–103.
Bogner, J., Johnson, K. R., Kvaček, Z., Upchurch, G. R. Jr.
(2007): New fossil leaves of Araceae from the Late Cre-
taceous and Paleogene of western North America. – Zit-
teliana A 47: 133–147.
Boulter, M. C., Kvaček, Z. (1989): The Palaeocene flora of
the Isle of Mull. – Palaeontology, Spec. Pap. 42: 1–149
Brabenec, B. (1909): Souborná květena českého útvaru tře-
tihorního. – Archiv pro přirodovědecké prozkoumání Čech,
19(3): 1–144.
Braun, A. (1852): Über fossile Goniopteris – Arten.
– Z. deutsch. Geol. Ges., 4: 545–564.
Březinová, D., Holý, F. Kužvartová, A., Kvaček, Z. (1994):
A silicified stem of Podocarpoxylon helnstedtianum
Gottwald, 1966 from the Palaeogene site Kučlín (NW
Bohemia). – J. Czech Geol. Soc., 39: 221–234.
Table 1. Percentages of foliar physiognomic characters of the
studied fossil flora of Kučlín.
Kučlín
Lobed 11,54
No Teeth 70,51
Tth Regular 23,40
Teeth Close 15,06
Teeth Round 13,53
Teeth Acute 16,60
Tth Compound 0,00
Nanophyll 0,00
Leptophyll I 0,00
Leptophyll II 0,00
Microphyll I 12,60
Microphyll II 36,47
Microphyll III 33,40
Mesophyll I 14,38
Mesophyll II 1,54
Mesophyll III 1,54
Apex Emargnate 2,56
Apex Round 24,77
Apex Acute 45,28
Apex Attenuate 27,33
Base Cordate 4,27
Base Round 33,76
Base Acute 61,96
L:W < 1:1 1,28
L:W 1-2:1 10,68
L:W 2-3:1 22,85
L:W 3-4:1 45,15
L:W > 4:1 19,99
Obovate 11,54
Elliptic 47,05
Ovate 41,41
78
Foliar Physiognomic Characters [%]
Total number of taxa
Length to Width
Character States
Shape
Character
States
Margin Character States
Size Character States
Apex Character
States
Base
Character
States
114
Brown, J. T. (1975): Equisetum clarnoi, a new species
based on petrifactions from the Eocene of Oregon.
– Amer. J. Bot., 62(4): 410–415.
Budantsev, L. Y., Golovneva, L. B. (2009): Florulae fossilis
arcticae II, Paleogene flora of Spitsbergen. – Russian
Academy of Sciences, Komarov botanical Institute,
Sankt Petersburg, 398 pp.
Bůžek, Č. (1958): Paleobotanické výzkumy pískovcové
a sopečné serie v ovlasti Českého středohoří. – Věst.
Ústř. Úst. Geol., 33: 291–293.
Bůžek, Č. (1971): Tertiary flora of the northern part of
Pětipsy area (North-Bohemian Basin). – Rozpr. Ústř.
Úst. Geol., 36: 1–118.
Bůžek, Č., Holý, F. (1964): Předběžná zpráva o paleonto-
logickém výzkumu na Trupelníku u Kučlína jihovýchod-
ně od Bíliny, – Zprávy o geol. Výzk. v r. 1963: 203–204.
Bůžek, Č., Holý, F., Kvaček, Z. (1967): Eine bemerken-
swerte Art der Platanaceae LINDL. (1836) im nordböh-
mischen Tertiär. – Monatsber. Deutsch. Akad. Wiss.
Berlin, 9: 203–215.
Bůžek, Č., Holý, F., Kvaček, Z. (1968a): A preliminary
report on the taxonomy and distribution of an extinct
Conifer, Doliostrobus Marion. – Čas. Nár. Muz. Ř. přír.,
137: 60–64.
Bůžek, Č., Holý, F., Kvaček, Z. (1968b): Die Gattung
Doliostrobus Marion und ihr Vorkommen im nordböh-
mischen Tertiär. – Palaeontographica, Abt. B, 123:
153–172.
Bůžek, Č., Holý, F., Kvaček, Z. (1968c): On the typification
of Doliostrobus, an extinct coniferous genus. – Taxon,
17: 553–556.
Bůžek, Č., Holý, F., Kvaček, Z. (1976): Tertiary flora from
Volcagenic Series at Markvartice and Veselíčko near
Česká Kamenice (České středohoří Mts.). – Sbor. Ústř.
Úst. geol., Paleont., P, 18: 69–132.
Bůžek, C., Fejfar, O., Konzalová, M., Kvaček, Z. (1990):
Floristic changes around Stehlin`s Grande Coupure in
Central Europe. – In: Knobloch, E., Kvaček, Z. (eds),
Proc. Symp. “Paleofloristic and Paleoclimatic Changes
in the Cretaceous and Tertiary” 1989, Geological Sur-
vey Publisher, Prague, pp. 167–181.
Cajz, V. (2000): Proposal of lithostratigraphy for the České
středohoří Mts. Volcanics. – Věst. Čes. Geol. Úst.,
75(1): 7–16.
Chander, M.E.J. (1925): The Upper Eocene flora of Hordle,
Hants. 1. – London, 32 pp.
Ching, R. (1963): A reclassification of the family The-
lypteridaceae from the mainland of Asia. – Acta Phyto-
tax. Sin., 8: 289–335.
Collinson, M. E. (1980): Recent and Tertiary seeds of the
Nymphaeaceae sensu lato with a revision of Brasenia
ovula (Brongn.) Reid and Chandler. – Ann. Bot. 46:
603–632.
Collinson, M. E. (1988): The special significance of the
Middle Eocene fruit and seed flora from Messel, West
Germany. – Cour. Forsch.-Inst. Senckenberg, 107:
187–197.
Corbet, S. L., Manchester, S.R. (2004): Phytogeography
and fossil history of Ailanthus (Simaroubaceae). – Int. J.
Plant Sci. 165(4): 671–690.
Crane, P. R. (1981): Betulaceous leaves and fruits from the
British Upper Paleocene. – Bot. J. Linn. Soc., 83: 103–136.
Deichmüller, J.V. (1881): Fossile Insecten aus dem
Diatomenschiefer von Kurschlin bei Bilin, Böhmen.
– Nova Acta Ksl. Leop. Carol. Deutsch. Akad. Natur-
forsch., 42(6): 293–331.
Denk, T., Dillhoff, R. M. (2005): Ulmus leaves and fruits
from the Early-Middle Eocene of northwestern North
America: Systematics and implications for character
evolution within Ulmaceae. – Can. J. Bot., 83: 1663–1681.
Dolezych, M., Sakala, J. (2007): Wood of Doliostrobus -
Podocarpoxylon versus Doliostroboxylon. – Palaeobo-
tany – contributions to the evolution of plants and veg-
etation (Recognizing the contribution of Zlatko Kvaček
on the occasion of his 70th year) in the National Muse-
um at Prague, Czech Republic, 28-29 June 2007, 22–23.
Ehrenberg, C. G. (1836): Nachrichten über das Vorkommen
fossiler Infusorien. – Ber. bekanntm. Verh. Königl.
Preuss. Akad. Wiss. Berlin, 1836: 50–54.
Ehrenberg, C. G. (1844): Über einen deutlichen Einfluss
des unsichtbar kleinen organischen Lebens als vulka-
nisch gefrittete Kieselmasse auf die Massenbildung von
Bimstein, Tuff, Trafs, vulkanischem Conglomerat und
auch auf das Muttergestein des nordasiatischen Ma-
rekanits. – Ber. bekanntm. Verh. Königl. Preuss. Akad.
Wissensch. Berlin, 1844: 324–344.
Ehrenberg, C. G. (1854): Mikrogeologie. Einundvierzig
Tafeln mit über viertausend grossentheils colorirten Fig-
uren, Gezeichnet vom Verfasser. – Voss, Leipzig, 374 pp.
Engelhardt, H. (1876): Tertiärpflanzen aus dem Leitmerit-
zer Mittelgebirge. Ein Beitrag zur Kenntniss der fossilen
Pflanzen Böhmens. – Nova Acta Ksl. Leop.-Carol.
Deutsch. Akad. Naturforsch., 38 (4): 341–440.
Engelhardt, H. (1885): Die Tertiärflora des Jesuitengrabens
bei Kundraditz in Nordböhmen. – Acta Leopoldina, 48:
275–324.
Engelhardt, H. (1898): Die Tertiärflora von Berand im Böh-
mischen Mittelgebirge.– Abh. dt. mediz. Ver. f. Böh-
men, Prag, 1(3): 77–123.
Ettingshausen, C. (1853): Die Tertiaerfloren der Oesterrei-
chischen Monarchie. 2. Tertiäre Flora von Häring in Tirol.
Abh. K.-K. Geol. Reichsanstalt, II, Abt. 3(2): 1–118.
Ettingshausen, C. (1866): Die fossile Flora des Tertiär-
beckens von Bilin. I. Theil. (enthaltend die Thallo-
phyten, kryptogamischen Gefässplanzen, Monokotyle-
donen, Coniferen, Juliflo und Oleraceen). – K.K. Hof-
und Staatsdruckerei, Wien, 98 pp. (Separatum from
Denkschr. k. Akad. Wiss., math.-nat. Cl., 26)
Ettingshausen, C. (1868): Die fossile Flora des Tertiärbeck-
ens von Bilin, II. (enthaltend die Thymelaeen und
Gamopetalen). – K.K. Hof- und Staatsdruckerei, Wien,
3–54 (Separatum from Denkschr. k. Akad. Wiss., math.-
nat. Cl., 28):
Ettingshausen, C. (1869): Die fossile Flora des Tertiärbeck-
ens von Bilin, III. (Enthaltend die Diapetalen und die
allgemeinen Resultate der Bearbeitung). – K.K. Hof-
und Staatsdruckerei, Wien, 110 pp. (Separatum from
Denkschr. k. Akad. Wiss., math.-nat. Cl., 29).
Fataliev, R. A. (1960). Fossil ferns from the Sarmatian lay-
ers between rivers Kura and Iori in Transcaucasia. –
Bot. Zhurn., 45(8): 1213–1218 (in Russian).
115
Fischer, T. C., Butzmann, R. Meller, B., Rattei, T., New-
man, M., Hölscher, D. (2009): The morphology, system-
atic position and inferred biology of Spirematospermum
– An extinct genus of Zingiberales. – Rev. Palaeobot.
Palyn., 157: 391–426.
Frankenhäuser, H., Wilde, V. (1993): Farne aus der mit-
teleozänen Maarfüllung von Eckfeld bei Manderscheid
in der Eifel. – Mainzer Naturwiss. Arch. 31: 149–167.
Frankenhäuser, H., Wilde, V. (1994): Zweiflügelige Juglan-
daceen-Früchte aus dem Mitteleozän von Eckfeld bei
Manderscheid (Eifel). – Mainzer Naturwiss. Arch. 16,
143–150.
Frankenhäuser H., Wilde, V. (1995): Stachelspitzige Blätter
aus dem Mitteleozän von Eckfeld (Eifel). – Abh. Staatl.
Mus. Mineral. Geol. Dresden, 41: 97–115.
Frič, A. (1872): Uber Palaeomon exul, eine neue Crustacee
aus dem Polierschiefervon Kutschlin bei Bilin in Böh-
men. – Sitz.-Ber.kön. böhm. Gesel.Wiss. Prag, math.-
naturwiss. Cl. 1872: 37.
Gardner, J. S., Ettingshausen, C. (1879–1882): The British
Eocene flora I–III. – Palaeontographical Society, pp. 1–38,
39–58, 59–86. London.
Gaudant, J. (1977): Additions l’ichthyofaune stampiennes
d’Aix-en-Provence (Bouches-du-Rhne). – Géol. méditerr.
4: 205–210.
Gaudant, J. (1996): Rectifications de nomenclature rela-
tives à l’ichthyofaune oligo-miocène ducalquicole de
Bohême. – J. Czech Geol. Soc., 41: 91–96.
Giebel, C. (1857): Palaeontoiogische Untersuchungen. 1. 1.
Lonchopteris. Germari n.sp. aus dem Steinkohlenge-
birge von Löbejün. – Zeitschrift für die Gesammten
Naturwissenschaften Haile, 10-11: 301–303.
Grambast, L. (1962): Flore de l’oligocene superieur du
Bassin de Paris.– Ann. Paleontol., 48: 85–162.
Guo, S-X., Kvaček, Z., Manchester, S. R., Zhou, Z.-K. (in
press): Foliage and seed cones of the extinct genus
Ditaxocladus (Cupressaceae) from the Upper Creta-
ceous to Paleocene of Asia and North America.
– Palaeontographica, Abt. B.
Hably, L. (1992): Distribution of legumes in the Tertiary of
Hungary. In: Herendeen, P. S. and Dilcher, D. L. (eds):
Advances in Legume Systematics Part 4, Fossil Record.
pp. 169-187, Botanical Garden, Kew.
Hably, L. (2001): Fruits and leaves of Ailanthus Desf. from
the Tertiary of Hungary. – Acta Palaeobot. 41: 207–219.
Hably, L. (2010): The Early Oligocene flora of Santa
Giustina (Liguria, Italy) – Revisionand comparison with
the flora of the Tard Clay Formation. – Revista Ital.
Palaeont. Stratigr., 116: 405–420.
Hably L., Kvaček Z.(1998): New plant elements in the Tard
Clay Formation from Eger-Kiseged. – Acta Palaeobot.,
38: 5–23.
Hably, L., Kvaček, Z. (2008): Nomenclatural types and tax-
onomy of Unger’s (1850) and Ettingshausen,’S (1853)
fossil leaves recognized as new Sloanea records in the
European Paleogene. – N. Jb. Geol. Paläont. Abh.
249(2): 139–142.
Hably, L., Manchester S.R.(2000): Fruits of Tetrapteris
(Malpighiaceae) from the Oligocene of Hungary and
Slovenia. – Rev. Palaeobot. Palynol., 111: 93–101.
Hably, L., Thiébaut, M. (2002): Revision of Cedrelosper-
mum (Ulmaceae) fruits and leaves from the Tertiary of
Hungary and France. Palaeontographica, Abt. B., 262
(1-4): 71–90.
Hably, L., Erdei, B., Kvaček, Z. (2001): 19th century’s
palaeobotanical types and originals of the Hungarian
Natural History Museum. – Hungarian Natural History
Museum, Budapest, 235 pp.
Heer, O. (1855): Die tertiäre Flora der Schweiz: Criptoga-
men, Gymnospermen und Monocotyledonen. – J. Wurs-
ter, Winterthur, 117 pp.
Heer, O. (1859): Die tertiäre Flora der Schweiz: Die
gamopetalen und polypetalen Dicotyledonen. – J. Wurs-
ter, Winterthur, 377 pp.
Heer, O. (1868): Flora Fossilis Arctica I. – F. Schulthess,
Zürich, 192 pp.
Hibsch, J. E. (1905): Geologische Karte des böhmischen
Mittelgebirges. Blatt XI (Kostenblatt-Milleschau).
Nebst Erläuterungen. Mit 1 geol. Karte. – Tschermaks
Mineral. Petrogr. Mitt., Wien, 24(4): 249–298.
Hibsch, J. E.(1908): Geologische Karte des böhmischen
Mittelgebirges. Blatt VII (Teplitz-Boreslau). Nebst
Erläuterungen. Mit 1 geol. Karte. – Tschermaks Miner-
al. Petrogr. Mitt., Wien, 27 (1): 1–104.
Hibsch, J. E. (1924): Erläuterungen zur geologischen Karte
der Umgebung von Bilin. Mit 1 geol. Karte. – Geol.
Staatsanstalt der tschechoslowak. Republik, Prag, 148 pp.
Hibsch, J. E.(1926): Erläuterungen zur Geologischen Über-
sichtskarte des Böhmischen Mittelgebirges und der
unmittelbar angrenzenden Gebiete. Mit Karte im
Maßstabe 1 : 100000. Heimatkunde des Elbegaues Tetschen.
3. Lieferung. – Im Selbstverlage herausgegeben vom
Freien Lehrerverein des polit. Bezirkes Tetschen, 143 pp.
Hibsch, J. E. (1927): Geologie des Aussiger Bezirkes. – In:
Heimatkunde des Bezirkes Aussig. 1. Die Landschaft.
Erdgeschichte des Bezirkes, Herausgegeben im Selb-
stverlage des Aussig-Karbitzer Lehrervereines, Aussig,
pp. 61–121.
Hibsch, J. E. (1930): Geologischer Führer durch das Böhmis-
che Mittelgebirge. Sammlung geologischer Führer XXXIV.
– Verlag von Gebrüder Borntraeger, Berlin, 363 pp.
Hibsch, J. E.(1935): Das geologische Alter der Knollen-
steine am Südabhang des Böhmischen Mittelgebirges
(Leitmeritz Nord) und ihr Verhältnis zu den sie ein-
schliessenden Emscher Sanden. – Mineral. Petrogr.
Mitt., 46: 398–399.
Hibsch, J. E., Seemann, F. (1913): Geologische Karte des
böhmischen Mittelgebirges. Blatt IX (Leitmeritz-Trieb-
sch). Nebst Erläuterungen. Mit 1 geol. Karte. – Tscher-
maks Mineral. Pe-trogr. Mitt., Wien, 32(1/2): 1–128.
Holttum, R.E. (1978): Lomariopsis group. – Flora Male-
siana, II, 1(4): 255–314.
Holý, F. (1964): Kučlín. – In: Krutský, N. et al. (eds):
Sborník k XV. Sjezdu ČSMG s exkurzním průvodcem.
Teplice, pp. 212–213.
Horáčková D. et al. (1967): Výpočet zásob – surovina
diatomit, Kučlín 518 229 002. – MS Geoindustria, Dubí
u Teplic.
116
Houša, V. (1956): Nová nálezy fosilních ráčků v českých
třetihorách. – Vesmír, 35(2): 68–69.
Iljinskaja, I. A. (1960): On remains of the Eocene flora from
the mountain Kiin-Kerish in the Zaisan Basin. – Dokl.
Akad. Nauk SSSR, 130: 1349–1351 (in Russian).
Iljinskaja, I. A. (1963): Fossil flora of the Mountain Kiin-
Kerish of the Zaisan Basin. – II. Acta Inst. Bot. Ko-
marov. Ser. 8, Palaeobot., 4:141–187. (In Russian with
English summary.)
Jahnichen, H., Mai, D. H., Walther, H. (1977): Blätter und
Früchte von Engelhardia Lesch. ex. Bl. (Juglandaceae)
aus dem europaischen Tertiar. – Feddes Repert., 88: 323–363.
Jacques, F. M. B, Su, T., Spicer, R. A., Xing, Y., Huang, Y.,
Wang, W., Zhou, Z. (2011): Leaf physiognomy and cli-
mate: Are monsoon systems different? – Global Planet.
Change, 76 (1-2): 56–62.
Jókely, J. (1858): Das Leitmeritzer vulcanische Mittelge-
brige in Böhmen .(Östlicher Teil). – Jahrb. K.-k. Geol.
Reichstanst., 9(2): 398–442.
Judd, W. S., Campbell, Ch. S., Kellogg, E. A., Stevens, P. F.,
Donoghue, M. J. (2002): Plant systematics. A phyloge-
netic approach. Second Edition. – Sinauer Associates ,
Inc. Pubisher, Sunderland, Mass. USA, 576 pp.
Junge, F. W., Dolezych, M., Walther, H., Böttger, T., Kühl,
A., Kunzmann, L., Morgenstein, P., Steinberg, T. Stan-
ge, R. (2005): Ein Fenster in Landschaft und Vegetation
vor 37 Millionen Jahren: Lithologische, sedimengeo-
chemische und paläobotganische Befunde aus einem
Paläoflusssystem des Weißelsterbeckens. – Mauritania
19: 185–273.
Kafka, J. (1908): Studie v oboru třetihorního útvaru
v Čechách. Několik profilů z hnědouhelných pánví
severočeských. – Arch. přír. Prozk. Čech, 14(4): 1–77.
Kafka, J. (1911): Einige Profile aus den Braunkhlenbecken
Nordböhmens. – Arch. Naturwiss. Landesdurchforsch.
Böhmens, 14(4): 1–92.
Klomínský J. (ed.) (1994): Geological atlas of the Czech
Republic. Stratigraphy. – Czech Geological Survey, Praha.
Knobloch, E., (1961): Die oberoligozäne Flora des Pirsken-
berges bei Šluknov in Nord-Böhmen. – Sbor. Ústř. Úst.
geol., Paleont., 26: 241–315.
Knobloch, E., Kvaček, Z. (1976). Miozäne Blätterfloren
vom Westrand der Böhmischen Masse. – Rozpr. Ústř.
Úst. geol., 42: 1–131.
Knobloch, E., Konzalová, M., Kvaček, Z. (1996): Die
obereozäne Flora der Staré Sedlo-Schichtenfolge in
Böhmen (Mitteleuropa). – Rozpr. Čes. Geol. Úst., 49:
1–260.
Köhler, J. (1979): Die Fossillagerstädte Enspel, ein Vegeta-
tion, Vegetationsdynamic und Klima im Oberoligozän.
– Unpubl. Dissertation Eberhard-Karlsuniversität
Tübingen.
Konzalová, M. (1981): Boehlensipollis und andere Mikro-
fossilien des böhmischen Tertiärs (vulkanogene Schichten-
folge). – Sbor. geol. Věd, P, 24: 135–162.
Kopecký L. et al. (1990a): Základní geologická mapa ČSSR
1 : 25 000, list 02-341 Bílina. Ústř. Úst. geol., Praha.
Kopecký L. et al. (1990b): Vysvětlivky k základní geolo-
gické mapě ČSSR 1 : 25 000, list 02-341 Bílina. Ústř.
Úst. geol., Praha.
Kovács, E. (1959): Note sur la flore Eocène de Labatlan
(Transdanubiedu Nord). – Annales Universitatis Scien-
tiarum Budapestinensis de Rolando Eötvös Nominatae,
Sectio Biologica 2: 135–140.
Kovar-Eder, J., Kvaček, Z. (2003): Towards vegetation
mapping based on the Fossil Plant Record. – Acta Univ.
Carol. Geol., 46(4/2002): 7–13.
Kovar-Eder, J., Kvaček, Z., (2007): The integrated plant
record to reconstruct Neogene vegetation: the IPR veg-
etation analysis. – Acta Palaeobot., 77(2): 391–418.
Kovar-Eder, J., Kvaček, Z., Ströbitzer-Hermann, M. (2004):
The Miocene Flora of Parschlug (Styria, Austria)
– Revision and Synthesis. – Ann. Naturhist. Mus. Wien,
105 A: 45–159.
Kovar-Eder, J., Jechorek, H., Kvaček, Z., Parashiv, V. (2008):
The integrated plant record to reconstruct Neogene
zonal vegetation in Europe. – Palaios, 23: 97–111
(appendix 1-9 on web).
Kräusel, R. (1952): Die tertiäre „Riesenahorn“ Banisteriae-
carpum nov. gen. Die systematische Stellung von Acer
giganteum und Acer otopteris GOEPP. – Abh. Secken-
berg. Naturforsch. Ges., 485: 75-80.
Krutzsch, W. (1971): Atlas der mittel- und jungtertiaren dis-
persen Sporen- und Pollen- sowie der Mikroplankton-
formen des nordlichen Mitteleuropas, 6. – VEB Gustav
Fischer, Jena, 234 pp.
Kunzmann, L. (1999): Koniferen der Oberkreide und ihre
Relikte im Tertiär Europas. – Abh. Staatl. Mus. Mineral.
Geol. Dresden, 45:1–191
Kvaček, Z. (1971): Supplementary notes on Doliostrobus
Marion. – Palaeontographica, Abt. B 135: 115–126.
Kvaček, Z. (1989): Fosilní Tetraclinis Mast. (Cupressaceae).
– Čas. Nár. Muz., Ř. přír., 155: 45–54.
Kvaček, Z. (1994): Connecting links between the Arctic
Paleocene and European Tertiary floras. In: Boulter, M.
C., Fisher, H. C. (eds), Cenozoic plants and climates of
the Arctic. NATO ASI Series, 127: 251–266.
Kvaček, Z. (2002a): Late Eocene landscape, ecosystems
and climate in north Bohemia with particular reference
to the locality Kučlín near Bílina. – Bull. Czech Geol.
Surv., 77: 217–236.
Kvaček, Z. (2002b): Proposal to conserve the name
Doliostrobus Marion (1888) (fossil Pinopsida) against
Doliostrobus Marion (1884)(fossil Lycopsida). – Taxon,
51: 820–821.
Kvaček, Z. (2002c): Novelties on Doliostrobus (Dolio-
strobaceae), an extinct conifer genus of the European
Palaeogene. – Čas. Nár. Muz. 171: 131–175
Kvaček Z. (2005): Early Miocene records of Craigia (Mal-
vaceae s.l.) in the Most Basin, North Bohemia - whole
plant approach. – Journal of the Czech Geological Soci-
ety 49(2004): 161–171.
Kvaček, Z. (2008): Whole-plant reconstructions in fossil
angiosperm research. – Int. J. Plant Sci., 169(7): 918–927.
Kvaček, Z. (2010): Forest flora and vegetation of the Euro-
pean early Palaeogene – a review. – Bull. Geosci. 85(1):
63–76.
Kvaček, Z., Bůžek, Č. (1995): Endocarps and foliage of the
flowering plant family Icacinaceae from the Tertiary of
Europe. – Tert. Res., 15(3): 121–138.
117
Kvaček, Z., Hably, L. (1991): Notes on the Egerian strato-
type flora at Eger (Wind brickyard), Hungary, Upper
Oligocene. – Ann. Hist.-Nat. Mus. Nat. Hung., 83: 49–82.
Kvaček Z., Manchester, S. R. (2004): Vegetative and repro-
ductive structure of the extinct Platanus neptuni from
the Tertiary of Europe and relationships within the Pla-
tanaceae. – Pl. Syst. Evol., 244: 1–29.
Kvaček, Z., Sakala, J. (1999): Attached fruits/seeds and
leaves of Decodon (Lythraceae) from the Lower Miocene
of North Bohemia (Czech Republic). – Rev. Palaeobot.
Palynol., 107: 201–222.
Kvaček, Z., Teodoridis, V. (2007): Tertiary macrofloras of
the Bohemian Massif: a review with correlations within
Boreal and Central Europe. – Bull. Geosci., 82(4):
409–418.
Kvaček, Z., Walther, H. (1981): Studium über “Quercus
cruciata” und analoge Blattformen aus dem Tertiär
Europas. – Acta palaeobot., 21(2): 77–100.
Kvaček, Z., Walther, H. (1988): Revision der mitteleu-
ropäischen tertiären Fagaceen nach blattepidermalen
Charakteristiken. II. Teil. Castanopsis (D. Don) Spach,
Trigonobalanus Forman, Trigonobalanopsis Kvaček
and Walther. – Feddes Repert., 99: 395–418.
Kvaček, Z., Walther, H. (1989): Revision der mitteleu-
ropäischen tertiären Fagaceen nach blattepidermalen
Charakteristiken. III. Teil. – Dryophyllum Debey ex
Saporta und Eotrigonobalanus Walther and Kvaček gen.
nov. – Feddes Repert., 100: 575–601.
Kvaček, Z., Walther, H. (1995): The Oligocene volcanic
flora of Suletice-Berand near Ústí nad Labem, North
Bohemia - a review. – Acta Mus. Nat. Pragae, Ser. B.,
Hist. nat., 50: 25–54.
Kvaček, Z., Walther, H. (1998): The Oligocene volcanic
flora of Kundratice near Litoměřice, České středohoří
Volcanic complex (Czech Republic). – Acta Musei Nat.
Pragae, Ser. B, Hist. Nat., 54: 1–43.
Kvaček, Z., Walther, H. (2001): The Oligocene of Central
Europe and the development of forest vegetation in
space and time based on megafossils. – Palaeontographi-
ca, Abt. B, 159: 125–148.
Kvaček, Z., Walther, H. (2003): Reconstruction of vegeta-
tion and landscape development during the volcanic
activity in the České středohoří Mountains. – Geolines,
Hibsch Spec. Vol., 15: 60–64.
Kvaček, Z., Walther, H. (2004): Oligocene flora of Bechle-
jovice at Děčín from the neovolcanic area of the České
Středohoří Mountains, Czech Republic. – Acta Musei
Nationalis Pragae, ser. B – Hist. Nat., 60: 9–60.
Kvaček, Z., Wilde, V. (2006): A critical re-evaluation of
monocotyledons as described by Weyland and co-
authors from the Rhenish browncoal (Miocene, Ger-
many). – Palaeontographica, Abt. B., 273: 139–160.
Kvaček, Z., Wilde, V. (2010): Foliage and seeds of mal-
valean plants from the Eocene of Europe. – Bull.
Geosci. 85(1): 163–182.
Kvaček, Z., Hably, L., Manchester, S. R. (2001): Fruits and
foliage of Sloanea (Elaeocarpaceae) from the Early
Oligocene of Hungary and Slovenia. – Palaeontographi-
ca, Abt. B., 159: 113–124.
Kvaček, Z., Manchester, S.R., Guo S. (2001): Trifoliate
leaves of Platanus bella (HEER) comb. n. from the Pale-
ocene of North America, Greenland, and Asia and their
relationship among extinct and extant Platanaceae. – Int.
J. Plant. Sci., 162: 441–458.
Kvaček, Z., Manchester, S. R., Schorn, H. E. (2000): Cones,
seeds, and foliage of Tetraclinis salicornioides (Cupres-
saceae) from the Oligocene and Miocene of western
North America: a geographic extension of the European
Tertiary species. – Int. J. Plant Sci., 161(2): 331–344.
Kvaček, Z., Manum, S. B., Boulter, M. C. (1994): Angio-
sperms from the Palaeogene of Spitsbergen, including
an unfinished work by A. G. Nathorst. – Palaeonto-
graphica, Abt. B., 232: 103–128.
Langeron, M. (1900): Contribution a 1’etude de la flore fos-
sile de Sezanne. – Soc. Hist. Nat. Autun Bull., 13: 333–370.
Laube, G. (1882): Notitz über das Vorkommen von Tri-
onyxresten im Diatomaceenschiefer von Kutschlin bei
Bilin. – Verh. K.-K. Geol. Reichsanst. 6: 107–108.
Laube, G. (1901): Synopsis der Wirbeltierfauna der böhm.
Braunkohlenformation. – Abh. Dtsch. Naturwiss. med.
Ver. Böhmen, Lotos, 2: 1–75.
Laurent, L. (1899): Flore des calcaires de Célas. – Ann.
Mus. hist. nat. Marseille, sér. 2 (1): 1–148.
Lesquerux, L. (1883): Contributions to the fossil flora of the
western Territories, part 3, the Cretaceous and Tertiary
floras. – Report of the U.S. Geological Survey of the
Territories 8: 1–283.
Mach, K., Dvořák, Z. (2011): Geology of the site Kučlín,
the Trupelník Hill. – Acta Mus. Nat. Pragae, ser. B
– Hist. Nat., 67: 77–82.
Mai, D. H. (1963): Beiträge zur Kenntnis der Tertiärflora
von Seifhennersdorf (Sachsen). – Jahrb. Staatl. Mus.
Mineral. Geol., 1963: 39–114.
Mai, D. H. (1995): Tertiäre Vegetationsgeschichte Europas:
Methoden und Ergebnisse. Gustav Fischer Verlag, Jena,
691 pp.
Mai, D. H. (1999): Beiträge zur Kenntnis einiger
Holzgewächse im europäischen Tertiär. – Feddes
Repert., 110: 37–72.
Mai, D. H., Walther, H. (1985): Die obereozänen Floren des
Weißelster-Beckens und seiner Randgebiete. – Abh.
Staatl. Mus. Mineral. Geol. Dresden, 33: 1–26.
Mai, D. H., Walther, H. (2000): Die Fundstellen eozäner
Floren des Weißelster-Beckens und seiner Randgebiete.
– Altenburger Naturwiss. Forsch., 13: 1-59.
Mai, D.H., Walther, H. (1978): Die Floren der Haselbacher
Serie im Weißelster-Becken (Bezirk Leipzig DDR).
– Abh. Staatl. Mus. Mineral. Geol. Dresden, 28:1–200.
Malkovský, M. et al. (1985): Geologie severočeské hně-
douhelné pánve a jejího okolí. – Ústřední geologický
ústav, Praha, 424 pp.
Manchester, S. R. (1987a): The fossil history of the Juglan-
daceae. – Monogr. Syst. Bot., 21: 1–137.
Manchester, S. R. (1987b): Extinct ulmaceous fruits from
the Tertiary of Europe and western North America.
– Rev. Palaeobot. Palyn., 52: 119–129.
Manchester, S. R. (1989): Attached reproductive and vege-
tative remains of the extinct American-European genus
118
Cedrelospermum (Ulmaceae) from the Early Tertiary of
Utah and Colorado, USA. – Am. Jour. Bot., 76: 256–276.
Manchester, S. R. (1991): Cruciptera, a new juglandaceous
winged fruit from the Eocene and Oligocene of western
North America. – Syst. Botany, 16(4): 715–725.
Manchester, S. R., Hably, L. (1997): Revision of “Abelia
fruits from the Paleogene of Hungary, Czech Republic
and England. – Rev. Palaeobot. Palynol., 96: 231–240.
Manchester, S.R., Kvaček, Z.. (2009): Fruits of Sloanea
(Elaeocarpaceae) in the Paleogene of North America
and Greenland. – Int. J. Plant Sci., 170(7): 941–950.
Manchester, S.R., E. O’Leary (2010): Phylogenetic Distrib-
ution and Identification of Fin-winged Fruits.
– Bot. Rev., 76:1–82.
Manchester, S. R., Zastawniak, E. (2007): Fruit with peri-
anth remains of Chaneya Wang and Manchester (Extinct
Rutaceae) in the Upper Miocene of Sos’nica, Poland.
– Acta Palaeobot., 47: 253–259.
Manchester, S. R., Collinson, M. E., Goth, K. (1994): Fruits
of the Juglandaceae from the Eocene of Messel, Ger-
many, and implications for early Tertiary phytogeo-
graphic exchange between Europe and western North
America. – Int. J. Plant Sci., 155: 388–394.
Marion, A. F. (1888): Doliostrobus sternbergii. Nouveau
genre de conifères fossiles. – Ann. Sci. Geol., 20(3): 1–20.
McClintock, E. (1957): A monograph of the genus Hydran-
gea. – Proceedings of the California Academy of Sciences,
29: 147–256.
McIver, E.E., Basinger, J.F. (1993): Flora of the Ravenscrag
Formation (Paleocene), Southwestern Saskatchewan,
Canada. – Palaeontographica Canadiana 10: 1–167.
Menzel, P. (1901): Die Gymnospermen der nordböhmis-
chen Braunkohlenformation. I, II. Sitz.-Ber. – Abh. natur-
wiss. Gesell. Isis Dresden, 1900 (2): 49–69, 85–110.
Meyer, H. (1852): Beschreibungen der fossilen Decapoden,
Fische, Batrachien und Säugerthiere aus den tertiären
Süsswassergebilden des nördlichen Böhmens. Palaeon-
tographica, 2: 43–73.
Meyer, H.W., Manchester, S. R. (1997): The Oligocene
Bridge Creek Flora of the John Day Formation, Oregon.
Univ. California Publ. Geol. Sci., 141: 1–195.
Micklich, N., Böhme, M. (1997): Wolfbarsch-Funde (Perci-
formes, Moronidae) aus den Süsswasser-Diatomiten
von Kučlín (Böhmen) nebst Anmerkungen zur tax-
onomischen Stellung von „Perca lepidota aus den
Säussewasser-Kalken von Öningen(Baden). – Paläont.
Zeitschr., 71: 117–128.
Miller, I. M., Brandon, M. T., Hickey, L. J. (2006): Using
leaf margin analysis to estimate the mid-Cretaceous
(Albian) paleolatitude of the Baja BC block. – EPSL
245: 95–114.
Moran, R. C. (2000): Monograph of the neotropical species
of Lomariopsis (Lomariopsidaceae). – Brittonia 52: 55–111.
Mosbrugger, V., Utescher, T. (1997): The coexistence
approach – a method for quantitative reconstructions of
Tertiary terrestrial palaeoclimate data using plant fossils.
– Palaeogeogr., Palaeoclimat., Palaeoecol., 134: 61–86.
Mrázek, A., Procházka, M. (1953): Zpráva o výzkumu
diatomitů v Českém Středohoří. – MS Archiv ÚÚG, Praha.
Nathorst, A.G. (1888): Zur fossilen Flora Japan’s. – Palaeont.
Abh., 4: 195–250.
Newberry, J. S. (1883): Brief descriptions of fossil plants,
chiefly Tertiary, from westem North America. – Proc.
U.S. Natl. Mus. 5: 502–514.
Obrhelová, N. (1969): Die Karpfenfische des Tsche-
choslowakischen Süssswassertertiärs. – Čas. mineral.
geol., 14(1): 39–52.
Obrhelová, N. (1976): Eine neue Percoiden-Art (Pisces) aus
dem Nordböhischen Süsswassertertiärs. Bemerkungen
zur Gattung Bilinia OBRHELOVÁ 1971. – Čas. mineral.
geol., 21: 233–256.
Obrhelová, N. (1979): Süsswasser-Ichthyofauna im Tertiär
der ČSSR. – Čas. mineral. geol., 24: 135–146.
Obrhelová, N., Obrhel, J. (1987): Paläoichthyologie und
Paläoökologie des kontinentalen Tertiärs und Quartärs
in der ČSSR. – Zeitschr. geol. Wiss., 15(6): 709–731.
Ohsawa, M., Ozaki, K. (1992): Hierarchical analysis of
vegetation/environment pattern for east Asian extra-
tropical evergreen broad-leaved forests. – Japan J. Bio-
meteorol. 29: 93–103.
Pigg, K. B., Manchester, S. R., DeVore, M. L. (2008): Fruits
of Icacinaceae (Tribe Iodeae) from the Late Paleocene
of western North America. – Am. J. Botany, 95(7): 824–832.
Přikryl, T. (2008): Sea bass fish Morone sp. (Teleostei) from
the north Bohemian Palaeogene (Tertiary, Czech Repub-
lic). – Bull. Geosci., 83(1): 117–122.
Procházka, J., Bůžek, Č. (1975): Maple leaves from the Ter-
tiary of North Bohemia. – Rozpr. Ústř. Úst. geol., 41:
1–87.
Radoň, M. (2001): Výzkum třetihorních lokalit v Českém
středohoří [Research of the Tertiary localities in the
České středohoří Mountains]. – MS Unpublished clos-
ing report of the project KZ97P01OMG085, Regional
Museum, Teplice, 380 pp. (in Czech).
Radoň, M., Kvaček, Z., Walther, H.(2006): Oligocene plant
megafossils from the newly recovered locality of the
Holý Kluk hill near Proboštov (České středohoří Moun-
tains, Czech Republic). – Acta Univ. Carol. Geol. 2003,
47(1-4): 95–124.
Rasky, K. (1962): Tertiary plant remains from Hungary
(Upper Eocene and Middle Oligocene). – Ann. Hist.-
Nat. Mus. Nat. Hung., 54: 31–55.
Raunkiaer, C. (1934): The life forms of plants and statisti-
cal plant geography. – Clarendon Press, Oxford, 632 pp.
Reid, E. M., Chandler, M. E. J. (1926): The Bembridge
Flora. Catalogue of Cainozoic plants in the Department
of Geology 1, 5. – Brit. Mus. (Nat. Hist.), London,
206 pp.
Reid, E. M., Chandler, M. E. J. (1933): The flora of the
London Clay. – Brit. Mus. (Nat. Hist.), London, 561 pp.
Reuss, A. E. (1840): Die Umgebung von Teplitz und Bilin
in Beziehung auf ihre geognostische Verhälltnisse. Ein
Beitrag zur Physiohnomie des böhmischen Mittelge-
birges. – Priv. Ed., Prag, Leitmeritz, und Teplitz, 298 pp.
Reuss, A. E.(1844): Die Kreidegebilde des westlichen Böh-
mens, ein monographischer Versuch. Nebst Bemerkun-
gen über die Braunkohlenlages jenseits der Elbe und
119
eine Übersicht der fossilen Fischreste Böhmens. – C. W.
Medau, Prag, 303 pp.
Reuss, A. E. (1852): Die geognostischen Verhaltnisse des
Egerer Bezirkes und des Ascher Gebietes in Bohmen.
– Abh. K.-k. Geol. Reichsanstalt 1: 1–72.
Reuss, A. E., Meyer, H. (1852): Die tertiäre Süsswasserge-
bilde des nördlichen Böhmens und ihre fossilen Thier-
reste. – Palaeontographica, 2: 1–73.
Rüffle, L., Müller-Stoll, W.R., Litke, R. (1976): Eozäne
Floren des Geiseltales. Weitere Ranales, Fagaceae, Lo-
ranthaceae, Apocynaceae. – Abh. Zentr. Geol. Inst., 26:
199–282.
Rüffle, L. (1963): Die obermiozane (sarmatische) Flora von
Randecker Maar. – Palaontol. Abh., Abt. B., Palaobot.,
1(3): 139–298.
Rüffle, L., Süss, H. (2001): Beitrag zur systematischen Stel-
lung der ausgestorbenen Koniferengattung Doliostrobus
Marion nach holzanatomischen Gesichtspunkten. – Fed-
des Repert., 112, 413–419.
Sakala, J. (2011): Silicified stem from the Late Eocene fos-
sil locality of Kučlín (Czech Republic): overview and new
remarks. – Acta Mus. Nat. Pragae, Ser. B, Hist. Nat.,
67(3-4): 145–148.
Sakala, J. (2003): Podocarpoxylon helmstedtianum Gott-
wald from Kučlín (Late Eocene, Czech Republic) rein-
terpreted as Tetraclinoxylon vulcanense Privé. – Feddes
Repert., 114: 25-29.
Saporta, G. (1862): Études sur la végétation du sud-est de la
France à l’époque tertiaire. – Ann. Sci. Nat. Bot., Ser. 4,
17: 191–311.
Saporta, G. (1865): Études sur la végétation du sud-est de la
France à l’époque tertiaire. – Ann. Sci. Nat. Bot., Ser. 5,
4: 5–264.
Saporta, G. (1889): Dernières adjonctions à la flore d’Aix-
en-Provence. – Ann. Sci. Nat. Bot. 7e sér., 10: 1–192.
Sieber, J. (1879): Ein Beitrag zur Kenntnis der Flora der
Diatomaceenschiefer von Kutschlin bei Bilin. – Verh. K.
K. geol. Reichsanst., 11: 241–243.
Sieber, J. (1881): Zur Kenntniss der nordböhmischen
Braunkohlenflora. – Sitz.-Ber. k. Akad. Wiss. I. Abt., 82:
67–101.
Spicer, R. A. (2000): Leaf physiognomy and climate
change. – In: Culver, S.J., Rawson, P., (Eds.): Biotic
Response to Global change. The Last 145 Million Years.
Cambridge University Press, Cambridge. pp. 244–264.
Spicer, R. A. (2007): Recent and Future of CLAMP: Build-
ing on the Legacy of Jack A. Wolfe. – Cour. Forsch.-
Inst. Senckenberg 258: 109–118.
Spicer, R. A. (2011): CLAMP on-line: http://clamp.ibcas.
ac.cn/Clampset2.html.
Spicer, R. A., Herman, A. B., Kennedy, E. M. (2004): Foliar
physiognomic record of climatic conditions during dor-
mancy: Climate leaf analysis multivariate program
(CLAMP) and the cold month mean temperature. – J. Geol.,
112: 685–702.
Spicer, R. A., Valdes, P. J., Spicer, T. E. V., Craggs, H. J.,
Srivastava, G., Mehrotra, R. C., Yang, J. (2009): New
development in CLAMP: calibration using global grid-
ded meteorological data. – Palaeogeog., Palaeoclimat.,
Palaeoecol., 283: 91–98.
Stur, D. (1870): Ueber zwei neue Fame aus den Sotzka-
Schichten von Mottnig in Krain. – K.-k. geol. Reich-
sanstalt Jahrb., 20: 9.
Sternberg, K. (1825): Versuch einer geognostisch-botanis-
chen Darstellung der Flora der Vorwelt IV. – Ernst
Brenck’s Wittwe, Regensburg, 48 pp.
Su, T. Xing, Y. W. Liu, Y.S, Jacques, F.M.B., Chen, W.Y.
Huang, Y. J., Zhou, Z.K. (2010): Leaf margin analysis:
a new equation from humid to mesic forests in China.
– Palaios, 25: 234–238.
Takhtajan, A. (1966): Major phytochorias of the Late Cre-
taceous and Early Tertiary on the territory of the U. S. S.
R. and adjacent countries (in Russian). – Bot. Zh., 51:
1217-1230.
Tang, C.Q., Ohsawa, M. (1999): Altitudinal distribution of
evergreen broad-leaved trees and their leaf-size pattern
on a humid subtropical mountain, Mt. Emei, Sichuan,
China. – Plant Ecol., 145: 221–233.
Teodoridis V., Kvaček Z. (2005): The extinct genus
Chaneya Wang et Mancheser in the Tertiary of Europe –
a revision of Porana – like fruit remains from Öhningen
and Bohemia. – Rev. Palaeobot. Palynol., 134: 85–103.
Teodoridis, V., Mazouch, P. Spicer, R. A., Uhl, D. (2011a):
Refining CLAMP – investigations towards improving
the Climate Leaf Analysis Multivariate Program. – Pa-
laeogeogr., Palaeoclimat., Palaeoecol., 299(1–2): 39–48.
Teodoridis, V., Kovar-Eder, J., Mazouch, P. (2011b): The
IPR-vegetation analysis applied to modern vegetation in
SE China and Japan. – Palaios 26: 623–638.
Teodoridis, V., Kovar-Eder, J., Marek, P., Kvaček, Z.,
Mazouch, P. (2011c): The Integrated Plant Record veg-
etation analysis – a new on-line application. – Acta Mus.
Nat. Pragae., 67(3–4): 159–165.
Ter Braak, C.J.F. (1986): Canonical correspondence Analy-
sis: a new eigenvector technique for multivariate direct
gradient analysis. – Ecology 67: 1167–1179.
Uhl, D., Klotz, S., Traiser, Ch., Thiel, Ch., Utescher, T.,
Kowalski, E., Dilcher, D. L. (2007): Cenozoic paleo-
temperatures and leaf physiohnomy – a European perspec-
tive. – Palaeogeogr. Palaeoclim. Palaeoecol., 248: 24–31.
Ulrych, J., Pivec, E. (1997): Age-related contrasting alka-
line volcanic series in North Bohemia. – Chem. Erde,
57: 311–336.
Ulrych, J., Cajz, V., Adamovič, J. (eds.) (1998): Excursion
guide. Magmatism and rift basin evolution. IUGS Pro-
ject 369, Subproject 2a, Workshop – Final Session.
Czech Republic, Liblice, September 7-11, 1998.
– Czech Geological Survey, Prague, 59 pp.
Ulrych, J., Cajz, V., Balogh, K., Erban, V. (2001): Geo-
chemistry of the stratified volcanosedimentary complex
in the central part of the České středohoří Mts., north
Bohemia. – Krystalinikum, 27: 27-49.
Unger, F. (1847): Chloris protogaea. Beitrage zur Kenntnis
der Flora der Vorwelt. Vol. 8–10. – Leipzig, pp. 93–149.
Unger, F. (1850a): Genera et species plantarum fossilium.
– W. Braunüller, Vindobonnae, 628 pp.
Unger, F. (1850b). Die fossile Flora von Sotzka. – Denkschr.
Akad. Wiss. Wien, Math.-Naturwiss. Kl., 2: 131–197.
Unger, F. (1866): Sylloge plantarum fossilium. III. –
Denkschr. Akad. Wiss., math.-naturwiss. Kl., 25: 1–76.
120
van Gelderen, C. J., van Gelderen D. M. (2004): Encyclo-
pedia of Hydrangeas. – Timber Press. Portland, 280 pp.
Váně, M. (1999): Geologie Lounska pro třetí tisíciletí. –
Vlastním nákladem, Chomutov, 471 pp.
Váně, M. (2001): Geologické postavení skalicko-žitenic-
kých eocénních křemenců u Litoměřic. Geological posi-
tion of Eocene quartzite in Skalice-Žitenice close to Li-
toměřice. – Sbor. Severočes. Muz. Přír. Vědy, 22: 3–6.
Walther, H. (1985): Das Vorkommen der Gattung Platanus
L. im Tertiär des Weisselster-Beckens (Bezirk Leipzig,
DDR). – Hallesches Jb. Geowiss., B, 10: 9–19.
Walther, H. (1994): Invasion of arcto-tertiary elements in
the Paleogene of Central Europe. – NATO ASI Ser., I.
27: 239–250.
Walther, H., Kvaček, Z. (2007): Early Oligocene flora of
Seifhennersdorf (Saxony). – Acta Mus. Nat. Pragae, ser.
B - Hist. Nat., 63(2-4): 85–174.
Wang, Ch. W. (1961): The forests of China. – Maria Moors
Cabot Foundation Publication Series, 5: 1–313.
Wang, Y., Manchester, S. R. (2000): Chaneya, A new genus
of winged fruit from the Tertiary of North America and
eastern Asia. – Int. J. Pl. Sci., 161:167–178.
Webb, D. A. (1959): A physiognomic classification of Aus-
tralian rain forest. – Jour. Ecology, 47: 551–570.
Wessel, P., Weber, C. O. (1856): Neuer Beitrag zur Tertiär-
flora der Niederheinischen Braunkohlen-formation. – Pa-
laeontographica, 4: 11–130.
Wilde, V. (1989): Untersuchungen zur Systematik der Blat-
treste aus dem Mitteleozän der Grube Messel bei Darm-
stadt (Hessen, Bundesrepublik Deutschland). – Cour.
Forsch.-Inst. Senckenberg, 115: 1–214.
Wilde, V. (1995): Die Makroflora aus dem Mitteleozän des
Geiseltalgebietes, kurze Übersicht und Vergleiche. –
Hallesches Jb. Geowiss., B, 17: 121–138.
Wilde, V., Frankenhäuser, H. (1998): The Middle Eocene
plant taphocoenosis from Eckfeld (Eifel, Germany).
– Rev. Palaeobot. Palynol., 101: 7–28.
Wilde, V., Kvaček, Z., Bogner, J.(2005): Fossil leaves of
the Araceae from the olEocene of Europe. – Int. J. Plant
Sci., 166: 157–183.
Wilde, V., Manchester, S.R. (2003): Cedrelospermum-fruits
(Ulmaceae) and related leaves from the Middle Eocene
of Messel (Hessen, Germany). – Cour. Forsch.-Inst.
Senckenberg, 241: 147–153.
Wing, S.L., Hickey, L. J. (1984): The Platycarya perplex.
– Amer. J. Bot., 71(3): 388–411.
Wójcicki, J. J., Kvaček, Z. (2003): The earliest fossil record
of the Trapaceae in Europe from the Late Eocene
diatomite of Kučlín, north Bohemia. – Phytologia bal-
canica 9(2): 165–174.
Wolfe, J. A. (1979): Temperature parameters of the humid
to mesic forests of eastern Asia and their relation to
forests of other regions of the Northern Hemisphere and
Australasia. – USGS Professional Paper 1106: 1–37.
Wolfe, J. A. (1993): A method of obtaining climatic param-
eters from leaf assemblages. – USGS Bulletin 2040: 1–73.
Wolfe, J. A., Spicer, R. A. (1999): Fossil leaf character
states: multivariate analysis. – In: Jones, T.P., Rowe,
N.P. (eds.): Fossil Plants and Spores: Modern Tech-
niques. Geological Society, London, pp. 233–239.
Worobiec, G. (2003): New fossil flora from the Neogene
deposits in the Bełchatow lignite mine. – Acta Palaeo-
bot. Suppl. 3: 3–133.
Worobiec, G., Worobiec, E., Kvaček, Z. (2010): Neogene
leaf morphotaxa of Malvaceae s.l. in Europe. – Int. J.
Plant Sci., 131(8): 892–914.
Yang, J., Spicer. R. A., Spicer, T. E. V., Li, Ch. S. (2011):
‘CLAMP Online’: a new web-based palaeoclimate tool
and its application to the terrestrial Paleogene and Neo-
gene of North America. – Palaeobiodiversity and Pa-
laeoenvironments 91: 163–183.
Přehled svrchnoeocénní květeny Kučlína
u Bíliny v severních Čechách
Zlatko Kvaček – Vasilis Teodoridis
Na základě morfologické studie většiny dosud publiko-
vaných fosilních dokladů o svrchnoeocenní květeně dia-
tomitu Kučlína z Českého středohoří severních Čech je
podán přehled o jejím složení. Obsahuje zástupce jak vy-
mřelých tak současných rodů vyšších rostlin doložených
především listovými morfologickými typy, méně často plo-
dy a semeny.
Doklady lze zařadit mezi kapradiny (Osmundaceae,
Thelypteridaceae, Blechnaceae etc.), jehličnany (Cupres-
saceae, Doliostrobaceae) a hlavně mezi krytosemennén ros-
tliny. Byli zjištěni zástupci čeledí Nymphaeaceae, Magnoli-
aceae, Lauraceae, Platanaceae, Ulmaceae, Fagaceae, Jug-
landaceae, Fabaceae a řady dalších zčásti exotických sku-
pin. Mezi nimi jsou nejčastější Icacinaceae, Simarouba-
ceae a Rutaceae. Často se vyskytují zástupci zcela vy-
mřelých skupin, které se dosud nepodařilo zařadit mezi
žijící čeledi (např. Raskya). U řady z nich se nepodařilo
zjistit žádné příbuzenské vztahy. V celku obsahuje kučlín-
ská flóra podle této revize 95 taxonů založených na lis-
tových fosiliích a 34 taxonů založených na plodech a se-
menech. Rostlinné společenstvo Kučlína obsahuje jednak
eocénní indexové elementy (Hooleya, Byttneriopsis) a ta-
ké mnohé další přežívající do oligocénu (Eotrigonobal-
anus) a miocénu (Platanus neptuni). Paleoenvironmentál-
ní a klimatické odhady odvozenné podle charakteru olis-
tění krytosemenných rostlin dokládají poměry srovnatelné
s jinými květenami eocénního a oligocenního stáří a roz-
šiřují informaci o vývoji klimatu střední Evropy v tomto
časovém úseku.
Explanation of the plates
PLATE 1
Equisetum ettingshausenii KVAČEK et TEODORIDIS sp. n.
1. Fully flattened stem, holotype, orig. Ettingshausen 1866,
pl. 2, fig. 15, as Equisetites bilinicus, BP 55.2366 (scale
bar 10 mm).
2. Nodal diaphragm, paratype, NM G 8652a (scale bar 5 mm).
121
3. Fragment of a leafy sheath, NM G 8653 (scale bar 5 mm).
Osmunda lignitum (GIEBEL) STUR
4. Fragmentary pinna showing venation, NM G 7896a
(scale bar 5 mm).
5. Detail of Fig. 4 (scale bar 5 mm).
Pronephrium stiriacum (UNGER) E. KNOBLOCH et KVAČEK
6. Fragmentary pinna, KUC 234 (scale bar 5 mm).
Lomariopsis (?) bilinica ETTINGSHAUSEN
7. Partial pinna, orig. Ettingshausen 1866, pl. 3, fig. 13, BP
55.2489.1 (scale bar 10 mm).
8. Detail of Fig. 7 (scale bar 5 mm).
Acrostichum sp.
9. Detail of frond, CGU s.n. (scale bar 10 mm).
Pronephrium stiriacum (UNGER) E. KNOBLOCH et KVAČEK
10. Fragmentary sterile leaf, assigned by Ettingshausen to
Aspidium fischeri, BP 55.2353.1 (scale bar 5 mm).
Rumohra recentior (UNGER) BARTHEL
11 Fragmentary sterile frond, NM G 416 (scale bar 5 mm).
12. Deail of anadromous venation from Fig. 13 (scale bar 1 mm).
13. Large part of a leafy frond, KUC 37 (scale bar 10 mm).
Doliostrobus taxiformis (STERNBERG) KVAČEK var. stern-
bergii MAI et WALTHER
14. Leafy twig, orig. Ettingshausen 1866, pl. 13, fig. 6, as
Sequoia sternbergii, BP 55.2443.1 (scale bar 5 mm).
15. Cone scale, orig. Sieber 1881, as Carpolithes carpini
cuiusdam ?, NM G 363 (scale bar 5 mm).
16. Leafy twig, orig. Menzel 1901, as Sequoia sternbergii,
KIN 2.1 (scale bar 5 mm).
Tetraclinis salicornioides (UNGER) KVAČEK
17. Seed, KUC 457A (scale bar 1 mm).
18. Twig fragment, NM G 8598 (scale bar 5 mm).
Doliostrobus taxiformis (STERNBERG) KVAČEK
19. Seed with one lateral wing, KUC 445.2 (scale bar 5 mm).
Anoectomeria brongniartii SAPORTA
20. Leaf scar (?or a group of seeds), KUC 457A (scale bar
10 mm).
PLATE 2
Anoectomeria brongniartii SAPORTA
1. Leaf scar, (?or a group of seeds), KUC 457A (scale bar
3 mm).
2. Leaf scar on a rhizome, orig. Ettingshausen 1869, pl. 41,
fig. 14, BP 55.2336.1 (scale bar 5 mm).
3. Leaf scar on a rhizome, orig. Ettingshausen 1869, pl. 41,
fig. 11, BP 55.2428.1 (scale bar 5 mm).
Nymphaeaceae gen.
4. Leaf, NM G 8638 (scale bar 10 mm).
5. Detail of G 8639 (scale bar 10 mm).
Nymphaea polyrhiza SAPORTA
6. Leaf scar on a rhizome, NM G 8635 (scale bar 5 mm).
7. Leaf scar on a rhizome, KUC 419A (scale bar 5 mm).
8. Leaf scar on a rhizome, NM G 8657a (scale bar 10 mm).
Sabrenia vel Dusembaya sp.
9. Seed (scale bar 3 mm).
Butomusheerii ETTINGSHAUSEN
10. Inflorescence, NM G 8647b (scale bar 10 mm).
11. Inflorescence, detail of orig. Ettingshausen 1866, pl. 6,
fig. 12, BP 59.1103.1 (scale bar 3 mm).
Musa bilinica ETTINGSHAUSEN
12. Leaf fragment, orig. Ettingshausen, 1866, pl. 7, fig. 5,
BP 55.1145.1 (scale bar 10 mm).
13. Detail of fig. 12 (scale bar 5 mm).
Sabal rhaphifolia (STERNBERG) E. KNOBLOCH et KVAČEK
14. Leaf fragment, orig. Ettingshausen 1866, pl. 6, fig. 3, as
Cyperus chavannesi (scale bar 10 mm).
Poacites acuminatus ETTINGSHAUSEN
15. Leaf fragment Ettingshausen 1866, pl. 6, fig. 6, BP
59.1142.1 (scale bar 5 mm).
Arundoheerii ETTINGSHAUSEN
16. Fragment of rhizome, orig. Ettingshausen 1866, pl. 4,
fig. 5, BP 59.1346.1 (scale bar 5 mm).
PLATE 3
? Dioscorea sp.
1. Partial fruitlet, KIN 448-2 (scale bar 3 mm).
2. Foliage fragment, KUC 216 (scale bar 10 mm).
Smilax sp.
3. Foliage fragment, NM G 8634a (scale bar 10 mm)
Nitophyllites bohemicus WILDE, KVAČEK et BOGNER
4. Leaf apex, NM G 77728 (scale bar 10 mm).
cf. Orontium sp.
5. Leaf base, KUC 431 (scale bar 10 mm).
6. Detail of fig. 5 (scale bar 5 mm).
“Chamaerops” kutschlinica ETTINGSHAUSEN
7. ?Rhizome, orig. Ettingshasuen 1866, pl. 7, fig. 16, BP
59.1179.1 (scale bar 10 mm).
8. Detail of fig. 7 (scale bar 5mm).
Sabal rhaphifolia (STERNBERG) E. KNOBLOCH et KVAČEK
9. Leaf fragment, BP 55.2360.1 (scale bar 10 mm).
cf. Arecaceae gen.
10. ? Fragment of inflorescence, orig. Ettingshasuen 1868,
pl. 34, fig. 7, as Leptomeria bilinica, BP 59.1144.1(scale
bar 10 mm).
Nitophyllites bohemicus WILDE, KVAČEK et BOGNER
11. Leaf base, holotype, NM G 7778 (scale bar 10 mm).
Magnolia longipetiolata ETTINGSHAUSEN
12. Leaf base, syntype, Ettingshausen 1869, pl. 41, fig. 9,
BP 59.1113.1 (scale bar 10 mm).
PLATE 4
Magnolia longipetiolata ETTINGSHAUSEN
1. Leaf, KUC 442 (scale bar 10 mm).
Magnoliaceae gen.
2. Leaf, BP 59.1156.1 (scale bar 5 mm).
3. Leaf, ident. by Ettingshausen as Magnolia crassifolia
GÖPP., BP 55.2343.1 (scale bar 10mm).
4. Detail of fig. 3 (scale bar 10 mm).
5. Leaf, orig. Ettingshausen 1869, pl. 41, fig. 7, as Magno-
lia primaeva (scale bar 10 mm).
Liriodendron sp.
6. Leaf, NM G 8655(scale bar 10 mm).
7. Detail of fig. 6 (scale bar 3 mm).
Daphnogene cinnamomifolia (BRONGNIART) UNGER
8. Leaf, orig. Ettingshausen 1868, pl. 33, fig. 17, as Cin-
namomum polymorphum, BP 55.2426.1 (scale bar 10 mm).
9. Leaf, orig. Ettingshausen 1868, pl. 33, fig. 17, as Cin-
namomum buchii, BP 59.1100.1 (scale bar 10 mm).
Daphnogene sp.
10. Leaf, KUC 146a (scale bar 10 mm).
11. Leaf, NM G 8646 (scale bar 5 mm).
12. Leaf, orig. Ettingshausen 1868, pl. 31, fig. 12, as Sas-
safras aesculapi, BP 55.1171.1 (scale bar 10 mm).
122
Laurophyllum sp. 1
13. Leaf, orig. Ettingshausen 1868, pl. 31, fig. 1, as Nectan-
dra arcinervia, BP 55.2413.1 (scale bar 10 mm).
14. Leaf, KUC 415B (scale bar 10 mm).
Laurophyllum sp. 2
15. Leaf, orig. Ettingshausen 1868, pl. 31, fig. 10, as Laurus
nectandroides, BP 55.2312.1(scale bar 10 mm).
PLATE 5
Laurophyllum sp. 2
1. Leaf, orig. Ettingshausen 1869, pl. 48, fig. 19, as Celas-
trus microtropoides, BP 55.2419.1 (scale bar 10 mm).
2. Leaf, orig. Ettingshausen 1869, pl.35, fig. 29, as Cin-
chonidium bilinicum, BP 59.2344.1 (scale bar 10 mm).
3. Leaf, orig. Ettingshausen 1869, pl. 36, fig. 1, as Cinchoni-
dium randiaefolium, BP 55.1233.1 (scale bar 10 mm).
4. Detail of fig. 3 (scale bar 5 mm).
Berberis sp.
5. Leaf, KUC 76 (scale bar 5 mm).
cf. Mahonia sp.
6. Leaflet ?, KUC 446 (scale bar 10 mm).
Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVAČEK
7. Inflorescence, type, Ettingshausen 1866, pl. 7, fig. 10, as
Sparganium neptuni, BP 59.2498.1 (scale bar 5 mm).
8. Inflorescence, type, Ettingshausen 1866, pl. 7, fig. 11, as
Sparganium neptuni, BP 55.2491.1, (scale bar 5 mm).
9. Leaf, orig. Ettingshausen 1869, pl. 41, fig. 5, as Cera-
topetalum haeringianum, BP 2437.1 (scale bar 10 mm).
10. Leaf, forma fraxinifolia, KIN 84 (scale bar 10 mm).
11. Entire-margined leaf form, KUC 440 (scale bar 10 mm).
cf. Ampelopsis sp.
12. Leaf, KIN 363.1 (scale bar 5 mm).
Palaeohosiea bilinica (ETTINGSHAUSEN) KVAČEK et BŮŽEK
13. Mold of endocarp, orig. Sieber 1891, as Prunus bilinica,
NM G 363 (scale bar 3 mm).
14. Mold of endocarp, KUC 5B (scale bar 3 mm).
Leguminocarpon sp.
15. Fragmentary pod, NM G 8648a (scale bar 10 mm).
Podocarpium hirsutum (ETTINGSHAUSEN) comb. n.
16. Leaflet, KUC 414 (scale bar 10 mm).
17. Detail of fig. 16 (scale bar 3 mm).
18. Pod, type, orig. Ettingshausen 1869, pl. 55, fig. 11, as
Podogonium hirsutum, BP 59.1106.1 (scale bar 3 mm).
Leguminosites sp. 1
19. Leaflet, KIN 358 (scale bar 10 mm).
20. Leaflet, KUC 423 (scale bar 10 mm).
PLATE 6
Leguminosites sp. 2
1. Leaflet, KIN 209 (scale bar 10 mm).
2. Leaflet, KIN 388 (scale bar 10 mm).
Sloanea nimrodi (ETTINGSHAUSEN) KVAČEK et HABLY
3. Leaf, NM G 7900b (scale bar 10 mm).
Sloanea olmediifolia (UNGER) KVAČEK et HABLY
4. Leaf, ČB 4b (scale bar 10 mm).
Sloanea engelhardtii KVAČEK et TEODORIDIS, sp. n.
5. Fruit, type, KIN 398 (scale bar 5 mm).
Sloanea nimrodi (ETTINGSHAUSEN) KVAČEK et HABLY
6. Leaf, type, orig. Ettingshausen 1868, pl. 40, Fig. 6, as
Cissus nimrodi, BP 55.2324.1 (scale bar 10 mm).
Sloanea manchesteri KVAČEK et TEODORIDIS, sp. n.
7. Fruit, type, NM G 7895 (scale bar 5 mm).
cf. Salix sp.
8. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 11 as Myr-
sine heeri, BP 55.2462.1 (scale bar 10 mm).
9. Leaf, orig. Ettingshausen 1868, pl. 37, fig. 6 as Myrsine
doryphora, BP 55.2354.1 (scale bar 10 mm).
10. Leaf, orig. Ettingshausen 1868, pl. 37, fig. 13 as Myr-
sine doryphora, BP 55.1116.1 (scale bar 10 mm).
Tremophyllum microphyllum (ETTINGSHAUSEN) KVAČEK et
TEODORIDIS, comb. n.
11. Leaf, orig. Ettingshausen 1869, pl. 40, fig. 15, as Calli-
coma microphylla, BP 55.2492.1, (scale bar 5 mm).
12. Leaf, orig. Ettingshausen 1869, pl. 40, fig. 21, as Calli-
coma microphylla, BP 55.2421.1, (scale bar 5 mm).
13. Leaf, orig. Ettingshausen 1869, s. ic., as Callicoma
microphylla, BP 55.2438.1 (scale bar 5 mm).
Cedrelospermum leptospermum (ETTINGSHAUSEN) MANCHESTER
14. Fruit, NM G 7894 (scale bar 3 mm).
15. Fruit, KIN 192 (scale bar 3 mm).
Ulmites sp.
17. Leaf, orig. Ettingshausen 1869, pl. 50, fig. 19, as Rham-
nus bilinica, BP 59.1072.1 (scale bar 5 mm).
Tremophyllum microphyllum (ETTINGSHAUSEN) KVAČEK et
TEODORIDIS, comb. n.
16. Leaf, NM G 7897a (scale bar 5 mm).
18. Leaf, KIN 35 (scale bar 10 mm).
19. Leaf, KUC 418 (scale bar 5 mm).
20. Leaf, KIN 40 (scale bar 10 mm).
21. Leaf, KIN 78 (scale bar 10 mm).
PLATE 7
Apocynophyllum bilinicum (ETTINGSHAUSEN) KVAČEK et
TEODORIDIS, comb. n.
1. Leaf, orig. Ettingshausen 1868, pl. 36, fig. 20, as Neri-
um bilinicum, BP 55.2447.1 (scale bar 10 mm).
2. Detail of fig. 1 (scale bar 10 mm).
3. Leaf, orig. Ettingshausen 1868, pl. 39, fig. 19, as Rhodo-
dendron haueri, BP 55.2457.1 (scale bar 10 mm).
Hemitrapa cf. pomelii (BOULEY) MAI
4. Fruit, NM G 8650 (scale bar 10 mm).
5. Fruit, NM G 8649 (scale bar 5 mm).
6. Fruit, KIN 449(scale bar 10 mm).
Trigonobalanopsis rhamnoides (ROSSMÄSSLER) KVAČEK et
WALTHER
7. Leaf, KIN 372 (scale bar 10 mm).
Eotrigonobalanus furcinervis (ROSSMÄSSLER) KVAČEK et
WALTHER
8. Leaf, NM G 8629 (scale bar 10 mm).
9. Detail of fig. 8 (scale bar 5 mm).
10. Leaf, KUC 1 (scale bar 10 mm).
?Quercus sp.
11. Cupule, KUC 401B (scale bar 3 mm).
Juglandiphyllites sp.
12. Leaflet, orig. Ettingshausen 1868, pl. 35, fig. 10, as Dryan-
droides acuminata, BP 55.2380.1 (scale bar 10 mm).
? Carya fragiliformis (STERNBERG) KVAČEK et WALTHER
13. Leaflet, orig. Ettingshausen 1869, pl. 52, fig.7, as Carya
bilinica, BP 55.2495.1 (scale bar 10 mm).
123
14. Detail of fig. 13 (scale bar 10 mm).
Engelhardia orsbergensis (WESSEL et WEBER) JÄHNICHEN,
MAI et WALTHER
15. Leaflet, NM G 360 (scale bar 10 mm).
16. Leaflet, NM G 8631 (scale bar 10 mm).
17. Leaflet, KIN 375 (scale bar 10 mm).
18. Leaflet, orig. Ettingshausen 1869, pl. 47, fig.5 as Sapin-
dus bilinicus, BP 55.2495.1 (scale bar 10 mm).
Engelhardia macroptera (BRONGNIART) UNGER
19. Fruit, KIN 516 (scale bar 5 mm).
Hooleya hermis (UNGER) E.M. REID et CHANDLER
20. Fruit, KIN 128 (scale bar 5 mm).
21. Fruit, KIN 126 (scale bar 5 mm).
PLATE 8
Juglandiphyllites sp.2
1. Leaflet, orig. Ettingshausen 1869, pl. 47, fig. 13, as Sa-
pindus basilicus, BP 55.2341.1 (scale bar 10 mm).
2. Leaflet, KIN 20.1 (scale bar 10 mm).
cf. Acherniephyllum hydrarchos (UNGER) HABLY
3. Leaf, orig. Ettingshausen 1866, pl. 22, fig. 11, as Popu-
lus mutabilis, BP 56.1140.1 (scale bar 10 mm).
Byttneriopsis daphnogenes (ETTINGSHAUSEN) KVAČEK et WILDE
4. Leaf, KUC 53 (scale bar 10 mm).
5. Leaf, orig. Ettingshausen 1866, pl. 22, fig. 1, as Ficus
daphnogenes, BP 55.2481.1 (scale bar 5 mm).
6. Leaf, orig. Ettingshausen 1869, pl. 43, fig. 1, as Stercu-
lia deperdita, BP 55.2361 (scale bar 10 mm).
Saportaspermum kovacsiae KVAČEK et WILDE
7. Seed, KIN 54 (scale bar 5 mm).
8. Seed, KUC 12A (scale bar 5 mm).
Saportaspermum sp.
9. Seed, KUC 456 (scale bar 5 mm).
Byttneriopsis steuerii (ENGELHARDT) KVAČEK et WILDE
10. Leaf, KIN 409 (scale bar 20 mm).
11. Leaf, KUC 218 (scale bar 10 mm).
12. Detail of KUC 51 (scale bar 10 mm).
13. Leaf, KUC 51 (scale bar 10 mm).
PLATE 9
cf. Magnolia longipetiolata ETTINGSHAUSEN
1. Enormously large leaf, holotype of Ficus hercules Etting-
shausen, 1866, pl. 21, fig. 1, BP 55.2327.1 (scale bar 10 mm).
2. Detail of fig. 1 (scale bar 10 mm).
? Luheopsis sp.
3. Leaf, KUC 226 (scale bar 10 mm).
4. Detail of fig. 3 (scale bar 5 mm).
Sterculia labrusca (UNGER) UNGER
5. Leaf, orig. Ettingshausen 1868, pl. 43, fig. 4, BP 55.
2401.1 (scale bar 10 mm).
6. Detail of fig. 5 (scale bar 10 mm).
Sterculia crassinervia (ETTINGSHAUSEN) PROCHÁZKA
7. Detail of leaf, orig. Ettingshausen 1869, pl. 45, fig. 12,
as Acer crassinervium, BP 55 2476.1 (scale bar 10 mm).
9. Leaf, orig. Ettingshausen 1869, pl. 45, fig. 9, as Acer
crassinervium, BP 55 2393.1 (scale bar 10 mm).
11. Leaf, lectotype, orig. Ettingshausen 1869, pl. 45, fig. 13,
as Acer crassinrevium, BP 55 2416.1 (scale bar 10 mm).
Acersotzkianum UNGER
8. Fruit, NM G 7893a (scale bar 10 mm).
10. Detail of orig. Ettingshausen 1869, pl. 45, fig. 8, as Acer
crassinervium, BP 55 1132.1 (scale bar 3 mm).
Ailanthus palaeorhus (ETTINGSHAUSEN) KVAČEK et TEODO-
RIDIS, comb. n.
12. Leaflet, KUC 453 (scale bar 10 mm).
13. Leaflet, lectotypus, orig. Ettingshausen 1869, pl. 46,
fig. 12, BP 55.2486.1 (scale bar 10 mm).
PLATE 10
cf. Ailanthus sp,
1. Leaflet, BP s.n. ident. Ettingshausen as Salix varians
(scale bar 10 mm).
2. Detail of fig. 1 (scale bar 5 mm).
3. Leaflet, BP s.n. ident. Ettingshausen as Salix varians
(scale bar 10 mm).
Chaneya palaeogaea (ETTINGSHAUSEN) KVAČEK et TEODO-
RIDIS comb. n.
4. Flower, type, orig. Ettingshausen 1868, pl. 38, fig. 25, as
Diospyros palaeogea. BP 56.1133.1 (scale bar 5 mm).
cf. Ailanthus sp.
5. ? Leaflet, NM G 8633a (scale bar 10 mm).
6. Detail of fig. 5 (scale bar 5 mm).
Ailanthus palaeorhus (ETTINGSHAUSEN) KVAČEK et TEODO-
RIDIS comb. n.
7. Leaflet, KUC 428A (scale bar 5 mm).
8. Detail of fig. 7 (scale bar 5 mm).
11. Leaflet, orig. Ettingshausen 868, pl. 35. fig. 8, as Grevil-
lea grandis (scale bar 10 mm).
Ailanthus tardensis HABLY
9. Fruit, KUC 77 (scale bar 5 mm).
10. Fruit, NM G 7898b (scale bar 5 mm).
Hydrangea microcalyx SIEBER
12. Flower, holotype, Sieber 1881, NM G 337 (scale bar
10 mm).
13. Flower, NM G 7892 (scale bar 5 mm).
Ternstroemites sp.
14. Leaf, KUC 450 (scale bar 5 mm).
PLATE 11
Ternstroemites sp.
1. Leaf, KUC 159 (scale bar 10 mm).
2. Leaf, detail of fig. 1 (scale bar 10 mm).
3. Leaf, KUC 452 (scale bar 10 mm).
4. Leaf, detail of KUC 210 (scale bar 10 mm).
5. Leaf, KUC 190 (scale bar 10 mm).
Apocynospermum striatum E. M. REID et CHANDLER
6. Two seeds together, KUC 118 (scale bar 5 mm).
7. Seed, KUC 73 (scale bar 10 mm).
8. Seed, KUC 454 (scale bar 10 mm).
9. Seed, KUC 453 (scale bar 5 mm).
Dicotylophyllum sp. 1
10. Leaf, orig. Ettingshausen 1869, pl. 53, fig. 23, PB
55.2357.1 (scale bar 10 mm).
11. Detail of fig. 10 (scale bar 5 mm).
Dicotylophyllum sp. 2
12. Leaf, orig. Ettingshausen 1868, pl. 39, fig. 9, as Andro-
meda protogaea, BP 55.2470.1 (scale bar 10 mm).
124
Dicotylophyllum sp. 3
13. Leaf, orig. Ettingshausen 1869, pl. 54, fig. 20, as Euca-
lyptus oceanica, BP 59.1134.1 (scale bar 10 mm).
14. Leaf, KUC 411 (scale bar 10 mm).
15. Detail of fig. 14 (scale bar 5 mm).
Dicotylophyllum sp. 4
16. Leaf, KUC 81 (scale bar 10 mm).
Dicotylophyllum sp. 5
17. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 1, as Ardisia
laharpii, BP 55.2415.1 (scale bar 10 mm).
18. Detail of fig. 17 (scale bar 5 mm).
Dicotylophyllum sp. 6
19. Leaf, counterpart of orig. Sieber 1881, as Aristolochia
grandifolia, det. Ettingshausen as Sterculia, BP s.n.
(scale bar 10 mm).
20. Detail of fig. 19 (scale bar 5 mm).
Dicotylophyllum sp. 7
21. Detail of fig. 22 (scale bar 10 mm).
22. Leaf, orig. Ettingshausen 1869, pl.50, fig. 22, as Ba-
loghia miocenica, BP 55.2340.1 (scale bar 10 mm).
PLATE 12
Dicotylophyllum sp. 8
1. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 13, as Bumelia
oreadum, BP 55.2386.1 (scale bar 5 mm).
2. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 15, as Bumelia
oreadum, BP 55.2322.1 (scale bar 5 mm).
3. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 12, as Bumelia
oreadum, BP 55.2375.1 (scale bar 5 mm).
Callistemophyllum bilinicum ETTINGSHAUSEN
4. Leaf, orig. Ettingshausen 1869, pl. 54, fig. 1, as Callis-
temophyllum melaleucaeforme, BP 55.2320.1 (scale bar
10 mm).
5. Leaf, NM G 8663, det. Velenovský as Salix (scale bar
10 mm).
6. Leaf, orig. Ettingshausen 1869, pl. 55, fig. 2, as Calliste-
mophyllum bilinicum, BP 55.2314.1 (scale bar 10 mm).
7. Detail of fig. 6 (scale bar 5 mm).
Camptodromites sp.
8. Leaf, orig. Ettingshausen 1869, pl. 49, fig. 15, as Ber-
chemia multinervis, BP 55.2451.1 (scale bar 10 mm).
9. Leaf, KUC 399 (scale bar 10 mm).
10. Leaf, NM G 8632a (scale bar 10 mm).
11. Detail of fig. 10 (scale bar5 mm).
Dicotylophyllum sp. 9
12. Leaf, orig. Ettingshausen 1869, pl. 46, fig. 13, as Cas-
sine palaeogea, BP 55.2320.1 (scale bar 10 mm).
Dicotylophyllum sp. 10
13. Leaf, orig. Ettingshausen 1869, pl. 49, fig. 2, as Celas-
trophyllum mimusops, BP 55.2486.1 (scale bar 10 mm).
Dicotylophyllum sp. 11
14. Leaf, orig. Ettingshausen 1869, pl. 48, fig. 28, as Celas-
trus aeoli, BP 55.2445.1 (scale bar 10 mm).
15. Leaf, orig. Ettingshausen 1869, pl. 48, fig. 26, as Celas-
trus luciae, BP 55.2429.1 (scale bar 10 mm).
16. Detail of fig. 15 (scale bar 5 mm).
Dicotylophyllum sp. 12
17. Leaf, KIN 242 (scale bar 10 mm).
18. Leaf, KIN 359 (scale bar 10 mm).
PLATE 13
Craspedodromophyllum betuloides KVAČEK et TEODORIDIS
sp. n.
1. Leaf, holotype, KUC 4 (scale bar 10 mm).
2. Detail of fig. 1 (scale bar 10 mm).
Dicotylophyllum sp. 13
3. Leaves on a twig, KIN 381 (scale bar 10 mm).
4. Another part of the twig, KIN 381 (scale bar 10 mm).
Dicotylophyllum sp. 14
5. Leaf, KIN 208 (scale bar 10 mm).
Sterculia labrusca (UNGER) UNGER
6. Leaf, NM G 8654 (scale bar 10 mm).
7. Detail of fig. 6 (scale bar 10 mm).
Dicotylophyllum sp. 15
8. Leaf, KIN 23 (scale bar 10 mm).
Dicotylophyllum sp. 16
9. Leaf, KIN 431 (scale bar 10 mm).
Diospyros ?microcalyx (ETTINGSHAUSEN) KVAČEK et TEO-
DORIDIS comb. n.
10. Leaf, KUC 437 (scale bar 10 mm).
11. Detail of fig. 10 (scale bar 10 mm).
12. Leaf, BP s.n., as Diospyros, det. Ettingshausen (scale
bar 10 mm).
13. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 34, as Dios-
pyros paradisiaca, BP 55.2439.1 (scale bar 10 mm).
14. Calyx, KIN 26 (scale bar 5 mm).
15. Calyx, KIN 313.1 (scale bar 5 mm).
16. Calyx, orig. Ettingshausen 1868, pl. 39, fig. 4, as
Macreightia microcalyx, BP 55.2342 (scale bar 5 mm).
17. Calyx, KIN 285 (scale bar 5 mm).
18. Calyx, orig. Ettingshausen 1868, pl. 39, fig. 5, as
Macreightia microcalyx, BP 55.2500 (scale bar 5 mm).
PLATE 14
Dicotylophyllum sp. 17
1. Leaf, orig. Ettingshausen 1869, pl. 53, fig. 16, as Euge-
nia apollinis, BP 55.2485.1 (scale bar 10 mm).
Dicotylophyllum sp. 18
2. Leaf, KUC 441 (scale bar 10 mm).
Dicotylophyllum sp. 19
3. Leaf, orig. Ettingshausen 1866, pl. 20, fig. 8 a, b, as
Ficus kutschlinica, BP 55.2485.1 (scale bar 10 mm).
Dicotylophyllum sp. 20
4. orig. Ettingshausen 1866, pl. 21, fig. 5, as Ficus urani,
BP 55.2408.1 (scale bar 10 mm).
5. Detail of fig. 4 (scale bar 10 mm).
Dicotylophyllum sp. 21
6. Leaf, orig. Ettingshausen 1869, pl. 55, fig. 20, as Laure-
lia glandulifera, BP 55.2410.1 (scale bar 10 mm).
7. Detail of fig. 6 (scale bar 5 mm).
Dicotylophyllum sp. 22
8. Leaf, orig. Ettingshausen 1868, pl. 20, fig. 8 a, b, as
Ligustrum priscum, BP 55.2362.1 (scale bar 10 mm).
Majanthemophyllum sp.
9. Leaf, KUC 191 (scale bar 10 mm).
10. Detail of fig. 9 (scale bar 5 mm).
Dicotylophyllum sp. 23
11. Leaf, orig. Ettingshausen 1868, pl. 36, fig.14, as Note-
laea phillyrae, BP 55.2370.1 (scale bar 10 mm).
125
Dicotylophyllum sp. 24
12. Leaf, orig. Ettingshausen 1868, pl. 36, fig. 15, as Olea
feroniae, BP 55.2368.1 (scale bar 10 mm).
13. Leaf, orig. Ettingshausen 1868, pl. 36, fig. 13, as Olea
olympica, BP 55.2471.1 (scale bar 10 mm).
Dicotylophyllum sp. 25
14. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 6, as Pleio-
merites reticulatus, BP 59.1107.1 (scale bar 10 mm).
PLATE 15
Pungiphyllum heerii (SIEBER) KVAČEK et TEODORIDIS comb. n.
1. Leaf, KUC 48 (scale bar 10 mm).
2. Leaf, KUC 214A (scale bar 10 mm).
3. Leaf, KUC 55b (scale bar 10 mm).
4. Leaf, neotype, KUC 74A (scale bar 5 mm).
5. Detail of fig. 4 (scale bar 3 mm).
Dicotylophyllum sp. 26
6. Leaf, orig. Ettingshausen 1869, pl. 49, fig. 19, as Rham-
nus paucinervis, BP 55.2479.1 (scale bar 10 mm).
Dicotylophyllum sp. 27
7. Leaf, orig. Sieber 1881, as Quercus, NM G 352 (scale
bar 10 mm).
Dicotylophyllum sp. 28
8. Leaf, orig. Ettingshausen 1866, pl. 17, fig. 11, as Quer-
cus kutschlinica, BP 55.2468.1 (scale bar 10 mm).
9. Detail of fig. 8 (scale bar 10 mm).
Raskya vetusta (ETTINGSHAUSEN) MANCHESTER et HABLY
10. Winged fruit, NM G 7567a (scale bar 5 mm).
11. Winged fruit, KUC 168 (scale bar 5 mm).
Dicotylophyllum sp. 29
12. Leaf, orig. Ettingshausen 1868, pl. 34, fig. 6, as San-
talum salicinum, BP 59.1190.1 (scale bar 10 mm).
PLATE 16
Dicotylophyllum sp. 35
1. Leaf, KUC 228.1A (scale bar 10 mm).
2. Detail of fig. 1 (scale bar 10 mm).
Ziziphus bilinica ETTINGSHAUSEN
3. Leafy twig, orig. Ettingshausen 1869, pl. 51, fig. 1, BP
59.1139.1 (scale bar 10 mm).
4. Detail of fig. 3 (scale bar 10 mm).
5. Leaf, KUC 141A (scale bar 10 mm).
Dicotylophyllum sp. 30
6. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 22, as
Sapotacites bilinicus, BP 55.2463.1 (scale bar 10 mm).
7. Leaf, orig. Ettingshausen 1868, pl. 38, fig. 23, as
Sapotacites daphnes, BP 55.2465.1 (scale bar 10 mm).
8. Leaf, NM G 355 (scale bar 10 mm).
9. Detail of fig. 8 (scale bar 10 mm).
Dicotylophyllum sp. 31
10. Leaf, orig. Ettingshausen 1869, pl. 41, fig. 1, as Saxi-
fragites crenulatus, BP 55.2409.1 (scale bar 5 mm).
11. Detail of fig. 10 (scale bar 10 mm).
12. Leaf, KUC 430 (scale bar 10 mm).
13. Detail of Fig. 12 (scale bar 10 mm).
14. Leaf, KUC 429 (scale bar 10 mm).
PLATE 17
Dicotylophyllum sp. 32
1. Leaf, orig. Ettingshausen 1869, pl.40, fig. 1, as Sciado-
phyllum haidingeri, BP 55.2331.1 (scale bar 10 mm).
Dicotylophyllum sp. 33
2. Leaf, orig. Ettingshausen 1869, pl. 53, fig. 24, as Sorbus
palaeoaria, BP 59.843.1 (scale bar 10 mm).
Dicotylophyllum sp. 34
3. Leaf, orig. Ettingshausen 1869, pl. 38, fig. 33, as Styrax
stylosa, BP 55.2418.1 (scale bar 10 mm)
Carpolithes sp. 1.
4. Infructescence, KUC 43A (scale bar 1 mm).
5. Infructescence, KUC 43B (scale bar 10 mm).
Carpolithes sp. 11
6. Fruit impression, as Paliurus favonii, orig Ettingshausen
1869, pl. 50, fig. 7, BP 55.1163.2 (scale bar 5 mm).
Carpolithes sp. 2
7. Fruit impression, KIN 377 (scale bar 5 mm).
Carpolithes sp. 3
8. Fruit impression, KIN 249.1 (scale bar 10 mm).
Carpolithes sp. 4
9. Fruit impression, KIN 460 (scale bar 5 mm).
Carpolithes sp. 5
10. Fruit impression, KIN 48 (scale bar 5 mm).
Carpolithes sp. 6
11. Fruit impression, KIN 50 (scale bar 5 mm).
Carpolithes sp. 7
12. ? Inflorescence, KIN 256(scale bar 10 mm).
Carpolithes sp. 8
13. Fruit impression, KIN 460 (scale bar 10 mm).
Carpolithes sp. 9
14. Catkin, KIN 38.1 (scale bar 10 mm).
Carpolithes sp. 10
15. ? Inflorescence, KIN 269 (scale bar 10 mm).
PLATE 18
Sabal rhaphifolia (STERNBERG) E. KNOBLOCH et KVAČEK
1. A large segment of the leaf, KUC 458 (scale bar 10 mm).
Eotrigonobalanus furcinervis (ROSSMÄSSLER) WALTHER et
KVAČEK
2. Large part of the leaf base, ČB 1 (scale bar 10 mm).
3. Upper part of coarsely dentate leaf apex, ČB 2 (scale bar
10 mm).
PLATE 19
Kučlín locality, Trupelník Hill
1. View to south, place of excavation of the fossil trunk in
1976, photo M. Mag (courtesy Regional Museum Teplice).
2. Excavation in 2011, photo P. Dvořák.
126
PLATE 1
127
PLATE 2
128
PLATE 3
129
PLATE 4
130
PLATE 5
131
PLATE 6
132
PLATE 7
133
PLATE 8
134
PLATE 9
135
PLATE 10
136
PLATE 11
137
PLATE 12
138
PLATE 13
139
PLATE 14
140
PLATE 15
141
PLATE 16
142
PLATE 17
143
PLATE 18
144
PLATE 19
1
2
... Of particular note is the absence of araucariaceous pollen, such as that produced by Araucarites europeus, which Kvaček and Teodoridis (2011) related to Doliostrobus. However, some of the pollen grains of unknown taxonomic attribution figured by Gruas-Cavagnetto (1973), (e. g. ...
... Comparison of the flora from the Alès and Saint-Chaptes basins is also possible with coeval plant localities from Central Europe (Table 4, Fig. 9). Examples of taxa that are shared between Central European plant localities and Alès and Saint Chaptes basins include Populus L in Bourgas, Hvoyna and Eleshnita, Bulgaria (Bozukov et al., 2009), Doliostrobus in Kučlin (Kvaček and Teodoridis, 2011) and Staré Sedlo, both in the Czech Republic (Knobloch et al., 1996), and Häring in Austria (Erdei and Rákosi, 2009), Byttneriopsis in Kučlin, Czech Republic (Kvaček and Wilde, 2010) and presumably in the Isle of Wight, England (Hayes and Collinson, 2014). As matter of fact Doliostrobus and Byttneriopsis from Alès and Saint-Chaptes basins represent the most southern occurrence of these genera ( Fig. 9; Table 4). ...
... The first locality of Kučlín is a relic of the volcanogenic complex on the top of the Trupelník Hill near Bílina. The deposit contains a richly fossiliferous diatomite with flora, fossil insects, crayfish, fish, and other vertebrates; see [79] and other papers in the same issue; and it represents a volcanic facies coeval with the fluvial settings of the Staré Sedlo Formation, late Eocene in age. I will focus on the unique 7.5-m-tall trunk, discovered in 1976 by F. Holý. ...
Chapter
In the area of the Central and NW Bohemia, Czech Republic, the fossil wood is quite abundant, found in different states of preservation and present from Paleozoic (Pennsylvanian), through Mesozoic (Upper Cretaceous), to Cenozoic (upper Eocene to lower Miocene). So, this small area is ideal to demonstrate various aspects of the fossil wood analyses, including anatomy (unifacial vs. bifacial cambium, formation of tyloses and its significance, early vs. late wood, unambiguity of scientific terminology, stem vs. root wood), taphonomy (completeness of fossil record, influence of environment on mode of preservation, influence of preservation on wood anatomy and preservation potential, discrepancy between the record of wood and other organs), systematics (stem vs. crown group, wide concept of fossil wood genera, “mosaic” species, wood of extinct plants), and palaeoclimatic reconstruction (definition of “wood type,” subjective vs. objective methods). The majority of the studied woods were thin-sectioned following the standard techniques and observed with a compound light microscope.
... These ants are considered far less frost-resistant (Antropov et al. 2014) compared to Ficus. It should be noted that the geological age of the localities on which Givulescu (1994) relies in his conclusions is often given based on very outdated data; for instance, the geologically important 'untermiozänen Flora von Bilin' in the Czech Republic (Givulescu 1994, p. 5) is actually dated as late Eocene (Kvaček and Teodoridis 2011). After all, the genus name of these plant fossils is mostly used in quotation marks, as 'Ficus' (e.g. ...
Article
Two new species of the genus Demimaea from the subfamily Curculioninae are described from Rovno amber. Demimaea zherichini n. sp. is similar to the extant Demimaea mori but differs by its black antennae and tarsi, larger body, body lacking dense, white setae, sparsely not coarsely punctate pronotum and its narrower elytral interstriae. Demimaea gratshevi n. sp. differs from D. zherichini n. sp. by its smaller body, its comparatively longer scape extending towards the compound eye and its convex and wide elytral interstriae. This is the first fossil record of the subtribe Demimaeina. Assumptions are made about the presence of Moraceae plant species in the Eocene of Northern and Eastern Europe, particularly the genus Ficus. LSID urn:lsid:zoobank.org:pub:D89E9989-37B6-4E71-9D6E-8D616DAD2C75
... Dies würde die zeitliche Einordnung nach [Jurková et al., 2007] [Vinken, 1988] und teilt die Auffassung von [Kvaček & Walther, 2003] [Kvaček & Walther, 2003] belegen. Nach [Walther, 2005] können die Staré Sedlo Schichten mit dem Makroflorenkomplex Bembridge-Zeitz korreliert werden, eine Anbindung an die Proto-Nordsee ist durch die marine Fischfauna in Kučlín belegt [Kvaček & Teodoridis, 2011]. ...
Thesis
Full-text available
Tektono-stratigraphische Entwicklung der Tertiärbecken der östlichenOberlausitz im Grenzbereich Sachsen-Polen-Böhmen
... siehe auch Nr. 539, 951,1097,1322,2045, 2478, 2481, 2744, 3289,5604,5679) 3176.Bellmann, H.-J. (1975): Graywacke Kaolin in the Leipzig Area (Espenhain Open Cast Mine). − In: Störr, M. (Ed.): Kaolin deposits of the GDR in the northern region of the Bohemian massif: 207−215, Greifswald (Ernst-Moritz-Arndt-Univ.). ...
Book
Full-text available
Bibliographie der im Zeitraum von 2011 – 2015 erschienenen Veröffentlichungen zu geowissenschaftlichen Problemen des sächsischen Territoriums. German Bibliography for the period from 2011 – 2015 with published publications to geoscientific topics of the Saxon territory (Saxony in Germany).
... The most likely connection to the ocean would have been towards the north into the Atlantic Ocean (Micklich & Böhme, 1997;Scotese, 2014). Palaeoclimate reconstructions, based on the fossil flora and fauna of the Trupelník Hill field site, suggest a seasonal warm-temperate to subtropical palaeoenvironment during the late Eocene (Kvaček, 2002;Kvaček & Teodoridis, 2011;Chroust, Mazuch & Hernández Luján, 2019). ...
Article
Full-text available
A collection of exceptionally well-preserved fossil specimens of crustaceans, clearly representatives of Isopoda, is presented here. Excavated from the late Eocene (approximately 40 million years ago) freshwater sediments of the Trupelník hill field site near Kučlín, Czech Republic, these specimens are preserved with many details of the appendages. The morphological characteristics of the fossils were documented using macro-photography with polarised light, as well as stereo imaging. These characteristics, especially including the trunk appendage morphology, were compared to those of related extant groups from different ontogenetic stages. All specimens are conspecific, representing a single species Parvucymoides dvorakorum gen. et sp. nov. Morphometric analysis of body shapes and sizes of the reconstructed fossils and related extant species were performed. These analyses provided insight into the ontogenetic stages of each reconstructed fossil specimen. In combination with the morphological assessment, the results indicate that the fossils represent at least two (possibly three) developmental stages, including immatures. The morphology of the appendages suggests that these fossils were parasites. The fossils are interpreted as either representatives of Cymothoidae or at least closely related to this group.
Article
A comprehensive anatomical and mineralogical study of fossil wood fragments from fields in the vicinity of Bečov and Břvany villages (NW Bohemia, Czech Republic) indicates that Taxodioxylon gypsaceum (Cupressaceae s.l.) predominates, but also identifies another coniferous wood: Pinuxylon parryoides (Pinaceae) and three angiosperms Quercoxylon böckhianum, Castanoxylon bavaricum and Lithocarpoxylon sp. (all Fagaceae). This paper therefore presents the first occurrence of Pinaceae and Fagaceae fossil wood in the volcanic rocks of the České Středohoří Mts. as well as its youngest palaeobotanical record in general, late Oligocene in age (26.56 ± 0.38 Ma). The samples were buried by alkaline pyroclastic deposits and were mineralized by carbonates. Two distinct depositional processes burying the fossil woods were identified. Closer to the vent, the woods occur in a nearvent pyroclastic fall deposits of the former pyroclastic cone, whereas more distant sites consist of pyroclastic flow deposits. Carbonate mineralization mostly consists of dolomite, but subordinate amounts of magnesite (likely the first time this is documented in fossil wood) as well as calcite and siderite are present. Only one sample collected in the same area, bearing clear signs of riverbed transport (Lithocarpoxylon sp.), was perfectly silicified, but its origin remains unclear.
Article
Full-text available
In this contribution, the diversity of functional leaf architecture and its association with climate is studied for extant woody dicot species of North America and Europe/South West Asia. The results are compared to fossil leaves of seventeen locations in Central Europe ranging from the Paleogene to Neogene. Four functional leaf traits, lobation, margin, type of primary and secondary venation, were selected as defining sixteen basic functional architectures (Trait Combination Types, TCT). Diversity of leaf architecture was studied as Shannon diversity (meaning frequency and evenness of TCT occurrence) as realized by site-specific species composition. The extant data indicate significant positive correlations of Shannon diversity of leaf architecture with temperature particularly for North America. After having reached a peak at about 18 °C MAT, functional diversity of leaf architecture then declines in North America with rising MAT. This decline occurs mostly for drier sites, probably because humidity becomes more influential at higher MAT, with low water availability driving selective pressure towards adaptive convergence. The data indicate that warm environments are able to accommodate a higher variety of leaf types than colder environments, unless water supply is scarce. The fossil data essentially agree with the recent data, with the exception of sites harbouring fossil leaves preserved in marine sediments. Here, the diversity of leaf architecture is lower which is probably due to taphonomic bias. Highest leaf architecture diversity was found for the Pliocene sites, although no distinct relationship with stratigraphic age could be identified. The results of this study indicate that diversity of leaf architecture may be a useful source of information for palaeoecology and palaeoclimate and merits further study.
Article
Full-text available
The fossil flora from brackish late Burdigalian (Ottnangian) sediments in Brno-Líšeň (the Czech Republic) contributes to our knowledge of floristic evolution and palaeoclimatic changes in the Western Carpathians. The fossil material investigated for this study comprises fragmentary leaf imprints, few fruits/seeds, and dispersed pollen from a single palynomorph-rich sample. Macro remains include 3 ferns (Osmunda parschlugiana, Salvinia reussii, ?Polypodiaceae gen. et sp. indet.) and 17 angiosperms (e.g., Daphnogene polymorpha, “Parrotia” pristina, Leguminophyllum spp., Podocarpium podocarpum, cf. Engelhardia orsbergensis, Ulmus sp., Schoenoplectiella cf. ragozinii). The palynospectrum comprises 106 taxa, including abundant palaeotropical elements of zonal evergreen forest, i.e., Sapotaceae, Palmae, Engelhardia, Platycarya, Fagaceae, Araliaceae and Cornus-Mastixia, accompanied by arctotertiary elements of deciduous zonal forest (Quercus, Carpinus, Fagus, Carya, Juglans, Tilia, Betula, Parrotia) and deciduous azonal (riparian) forest (e.g., Alnus, Salix, Ulmus). Aquatic plants, algae (Prasinophyceae, Botryococcus) and marine dinoflagellates indicate a marine environment with freshwater impact. Plant taxa possibly representing open areas such as Olea, Celtis, Buxus, Ephedra, Rosaceae and Poaceae are sporadic, as well as conifers of extrazonal forest such as Cedrus, Tsuga, Picea. The studied palynospectrum contains abundant thermophilic elements and does not point to a cooling event, as reported by previous authors from the Polish part of the Carpathian Foredeep.
Article
Equisetum clarnoi is described from four silicified stem fragments and numerous small roots from the Eocene Clarno Chert of Jefferson County, Oregon. Stems are up to 8.0 mm in diam and have sunken stomata arranged vertically in a single line flanking each of the external biangulate stem ridges, features that clearly ally this species with the subgenus Hippochaete. External stem ridges are equal in number to the carinal hypodermal bands. The hypodermis is composed of fibers and has prominent carinal bands up to 0.75 mm long and shorter vallecular bands. Cortical parenchyma cells enclose prominent vallecular canals which are lined by specialized thick-walled parenchyma cells. The double, common endodermis has prominent casparian strips. Vascular bundles are composed of four to seven metaxylem tracheids flanking each side of the phloem and protoxylem tracheids which occur singly on the internal surface of the small carinal canals. Leaf sheaths in cross section have an adaxial fibrous layer and an external or near external fibrous bundle. Roots are up to 2.0 mm in diam and have paired cuboidal epidermal cells from which root hairs arise. The stele of the root is central and shows exarch primary xylem maturation. Equisetum clarnoi most closely resembles the extant Equisetum hyemale var. affine.
Article
We report on the leaves, fruits, inflorescences, and pollen of two fossil species in the genus Platycarya. The association of these dispersed organs has been established by their repeated co‐occurrence at a large number of localities, and for two of the organs (fruit and pistillate inflorescence, and pollen and staminate inflorescence) by apparent organic attachment of compression fossils. Each of the two species can be distinguished by characteristics of all the known megafossil organs. We also review the fossil record of dispersed platycaryoid fruits and inflorescences, recognizing three additional species of Platycarya and two of Hooleya. Two of the fossil Platycarya species are morphologically very different from the living Platycarya strobilacea Sieb. et Zucc., but they show the diagnostic features of the genus. Hooleya is a generalized member of the Platycaryeae that is probably close to the ancestry of Platycarya. The two Platycarya species known from multiple organs provide a remarkable example of mosaic evolution in which fertile and foliar structures have attained different levels of morphological specialization. The leaves, often considered the most plastic of plant organs, retain several features that are otherwise seen only in the Engelhardieae. These similarities in leaf architecture between the fossil Platycarya species and Engelhardieae are advanced features for the Juglandaceae, and thus indicate a sister‐group relationship between the two lines. In contrast to the leaves, the fruits, inflorescences, and pollen of the fossil Platycarya species are almost as specialized as those of the extant P. strobilacea and bear little resemblance to the same structures in other genera of the family. The morphology, taphonomy, sedimentary setting, and geographic and stratigraphic distribution of three of the fossil platycaryoid species suggest that they were wind‐dispersed, early successional plants that grew in thickets. This habit is retained by Platycarya strobilacea and is typical of many of the amentiferae (e.g. Myricaceae, Betulaceae). The r ‐selected life‐history pattern of the Platycarya line may well have contributed to its low diversity through geologic time.
Article
http://digitalcommons.library.umaine.edu/fac_monographs/1172/thumbnail.jpg
Article
A number of vegetative plant remains with anatomical structure preserved, mostly dispersed cuticles and tissue fragments, from the Miocene of the Niederrheinisches Becken (Lower Rhine Basin, northwestern Germany) were previously ascribed to monocotyledons by WEYLAND and co-authors. Critical re-evaluation of these records has revealed inconsistencies and errors in systematic and taxonomic interpretations. Some of the taxa are not monocotyledons at all and had to be transferred to other groups of anglosperms (c. g., Pandanus rhenanus KRAUSEL & WFYLAND = ? Cleyera rhenana (KRAUSEL & WEYLAND) comb. n.) or conifers (e.g., Palmophyllum multiseriale WEYLAND = Cathaya multiserialis (WEYLAND) comb. n.). Some others are based on fragments of tissue often without cuticles that are not sufficiently diagnostic to confirm systematic affinity (e.g., Scitamineophyllum inflatum WEYLAND); in some instances the taxa have even been based on mixed preparations (e.g. Palmophyllum marcodurense WEYLAND Pinaceae & dicotyledons, Glumophyllum spinosum WEYLAND = anglosperms & Fungi imperfecti Inc. sed.). Among the re-evaluated taxa, we accept only Zingiberoideophyllum liblarense KRAUSEL & WEYLAND (Zingiberales), Dioscoreopbyllum liblarense KRAUSEL & WEYLAND (ordo Inc.), Virgisolicutis striata (WEYLAND) comb. n. (Smilacaceae), Spinopalmoxylon daemonorops (UNGER) WEYLAND, KILPPER & BERENDT (Arecaceae) and Versipalmicutis rhenana (KRAUSEL & WEYLAND) SCHNEIDER (Arecaceae) as valid assignments to recognisable monocotyledons. Of the originally suggested groups only Arecaceae, Smilacaceae, and Zingiberales can be confirmed in the material, while putative Araceae, Bromeliaceae, Cyperaceae, Dioscoreaceae, Gramineae and Pandanaceae have not been proven. Rhizomes and sheathing stems of putative commelinalean affinity were wrongly assigned to Zingiberoideophyllum (Z. Juraskyi WEYLAND & KILPPER).