Ulf Skyllberg

Ulf Skyllberg
Swedish University of Agricultural Sciences | SLU · Department of Forest Ecology and Management

Professor

About

136
Publications
19,764
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,344
Citations
Additional affiliations
May 2005 - present
Swedish University of Agricultural Sciences
Position
  • Professor (Full)
Description
  • Thermodynamics - chemistry Soil chemistry
November 1996 - present
Swedish University of Agricultural Sciences
Position
  • Senior Researcher
October 1995 - October 1996
University of Minnesota Twin Cities
Position
  • PostDoc Position
Description
  • Post-Doc fellow

Publications

Publications (136)
Article
Full-text available
High deposition of nitrogen was postulated to drive losses of NO3- and nutrient base cations, causing soil acidification, nutrient deficiencies reducing tree growth and ultimately tree mortality. We tested these predictions in a uniquely long-term study involving three NH4NO3 addition treatments (N1-N3) in a boreal Pinus sylvestris forest. The lowe...
Article
Full-text available
Peatland vegetation takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remains, however, unclear. Here we presen...
Article
Full-text available
The most critical step for methylmercury (MeHg) bioaccumulation in aquatic food webs is phytoplankton uptake of dissolved MeHg. Dissolved organic matter (DOM) has been known to influence MeHg uptake, but the mechanisms have remained unclear. Here we show that the concentration of DOM-associated thiol functional groups (DOM-RSH) varies substantially...
Article
Sulfide ions are regarded to be toxic to microorganisms in engineered methanogenic systems (EMS), where organic substances are anaerobically converted to products such as methane, hydrogen, alcohols, and carboxylic acids. A vast body of research has addressed solutions to mitigate process disturbances associated with high sulfide levels, yet the es...
Article
The chemical and biological factors controlling microbial formation of methylmercury (MeHg) are widely studied separately, but the combined effects of these factors are largely unknown. We examined how the chemical speciation of divalent, inorganic mercury (Hg(II)), as controlled by low-molecular-mass thiols, and cell physiology govern MeHg formati...
Article
Full-text available
Low-molecular-mass (LMM) thiol compounds are known to be important for many biological processes in various organisms but LMM thiols are understudied in anaerobic bacteria. In this work, we examined the production and turnover of nanomolar concentrations of LMM thiols with a chemical structure related to cysteine by the model iron-reducing bacteriu...
Preprint
Full-text available
Peatland vegetation constantly takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic Methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down Methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remain, however, unclear. Here...
Article
Full-text available
Migratory connectivity is a metric of the co‐occurrence of migratory animals originating from different breeding sites, and like their spatial dispersion, can vary substantially during the annual cycle. Together, both these properties affect the optimal times and sites of population censusing. We tracked taiga bean geese ( Anser fabalis fabalis ) d...
Article
Peatlands are generally important sources of methylmercury (MeHg) to adjacent aquatic ecosystems, increasing the risk of human and wildlife exposure to this highly toxic compound. While microorganisms play important roles in mercury (Hg) geochemical cycles where they directly and indirectly affect MeHg formation in peatlands, potential linkages bet...
Article
Full-text available
Sediments represent the main reservoir of mercury (Hg) in aquatic environments and may act as a source of Hg to aquatic food webs. Yet, accumulation routes of Hg from the sediment to benthic organisms are poorly constrained. We studied the bioaccumulation of inorganic and methylmercury (HgII and MeHg, respectively) from different geochemical pools...
Preprint
Full-text available
Migratory connectivity is a metric of the co-occurrence of migratory animals originating from different breeding sites, and like their spatio-temporal distributions, can vary substantially during the annual cycle. Together, both these properties affect the optimal times and sites of population censusing. We tracked taiga bean geese (Anser fabalis f...
Article
Full-text available
A geographically constrained chronosequence of peatlands divided into three age classes (young, intermediate and old) was used to explore the role of biogeochemical influences, including electron donors and acceptors as well as chemical speciation of inorganic mercury (Hg(II)), on net formation of methylmercury (MeHg) as approximated by the fractio...
Article
Torrefaction, pyrolysis and gasification are of interest to convert lignocellulosic biomass into fuels and chemicals. These techniques involve thermal treatment at low partial pressures of oxygen. However, little is known about the transformation of ash elements during these processes. The phase transition of the major ash element calcium (Ca) was...
Article
Full-text available
The chemical speciation of mercury (Hg), methyl mercury (MeHg), sulfur and iron was investigated in the sediment and porewater of Lake Ängessjön, a boreal, shallow (maximum depth 2.5 m), oligo-/dystrophic lake in northern Sweden. The lake receives terrestrial stream runoff from surrounding coniferous forest soils and peatlands having a low pH (4.6)...
Article
Full-text available
Methylmercury (MeHg) is a neurotoxin formed from inorganic divalent mercury (Hg II) via microbial methyla-tion, and boreal wetlands have been identified as major sources of MeHg. There is however a lack of studies investigating the relationship between the chemical speciation of Hg II and MeHg formation in such environments, in particular regarding...
Article
Wetlands are common sites of active Hg methylation by anaerobic microbes; however, the amount of methylmercury produced varies greatly, as Hg methylation is dependent upon both the availability of Hg and the composition and activity of the microbial community involved. In this study, we identified the major microbial guilds responsible for Hg methy...
Article
Full-text available
To advance the scientific understanding of bacteria-driven mercury (Hg) transformation processes in natural environments, thermodynamics and kinetics of divalent mercury Hg(II) chemical speciation need to be understood. Based on Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopic information, combined with competitive ligand...
Article
We investigated the influence of sulfate (SO4²⁻) deposition and concentrations on the net formation and solubility of methylmercury (MeHg) in peat soils. We used data from a natural sulfate deposition gradient running 300 km across southern Sweden to test the hypothesis posed by results from an experimental field study in northern Sweden: that incr...
Article
Full-text available
Peatlands are globally important ecosystems where inorganic mercury is converted to bioaccumulating and highly toxic methylmercury, resulting in high risks of methylmercury exposure in adjacent aquatic ecosystems. Although biological mercury methylation has been known for decades, there is still a lack of knowledge about the organisms involved in m...
Article
Full-text available
Forest soil organic matter (SOM) is an important dynamic store of C and N, which releases plant available N and the greenhouse gases CO2 and N2O. Early stages of decomposition of recent plant litters are better known than the formation of older and more stable soil pools of N and C, in which case classic theory stated that selective preservation of...
Article
The potential of using gene expression signature as a biomarker of toxicants exposure was explored in the microalga Chlamydomonas reinhardtii exposed 2 h to mercury (Hg) as inorganic mercury (IHg) and methyl mercury (MeHg) in presence of copper (Cu) and Suwannee River Humic Acid (SRHA). Total cellular Hg (THg = IHg + MeHg) decreased in presence of...
Article
Cellular uptake of inorganic divalent mercury (Hg(II)) is a key step in microbial formation of neurotoxic methylmercury (MeHg), but the mechanisms remain largely unidentified. We show that the iron reducing bacterium Geobacter sulfurreducens produces and exports appreciable amounts of low molecular mass thiol (LMM-RSH) compounds reaching concentrat...
Article
Full-text available
The formation of the potent neurotoxic methylmercury (MeHg) is a microbially mediated process that has raised much concern because MeHg poses threats to wildlife and human health. Since boreal forest soils can be a source of MeHg in aquatic networks, it is crucial to understand the biogeochemical processes involved in the formation of this pollutan...
Article
The origin and composition of dissolved organic matter (DOM) in porewater of lake sediments is intricate and decisive for fate of pollutants including mercury (Hg). While there are many reports on the relationship between dissolved organic carbon concentration (DOC) and mercury (Hg) concentrations in aquatic systems, there are few in which DOM comp...
Article
Mercury (Hg) remains hazardous in aquatic environments, because of its biomagnification in food webs. Nonetheless, Hg uptake and impact in primary producers is still poorly understood. Here, we compared the cellular toxicity of inorganic and methyl Hg (IHg; MeHg) in the aquatic plant Elodea nuttallii. IHg and MeHg regulated contigs involved in simi...
Article
Full-text available
A molecular level understanding of the thermodynamics and kinetics of the chemical bonding between mercury, Hg(II), and natural organic matter (NOM) associated thiol functional groups (NOM-RSH) is required if bioavailability and transformation processes of Hg in the environment are to be fully understood. This study provides the thermodynamic stabi...
Preprint
Full-text available
The formation of the potent neurotoxic methylmercury (MeHg) is a microbially mediated process that has raised much concern because MeHg poses threats to wildlife and human health. Since boreal forest soils can be a source of MeHg in aquatic networks, it is crucial to understand the biogeochemical processes involved in the formation of this pollutan...
Article
Wetlands are common net producers of the neurotoxin monomethylmercury (MeHg) and are largely responsible for MeHg bioaccumulation in aquatic food-webs. However, not all wetlands net produce MeHg - notable exceptions are black alder (Alnus glutinosa) swamps which net degrade MeHg. Here we report the mechanisms of MeHg demethylation in one such swamp...
Article
Mercury (Hg) contaminated sediments can be significant sources of Hg to aquatic ecosystems and, through re-emission processes, to the atmosphere. Transformation and release of Hg may be enhanced by various sediment perturbation processes, and controlling biogeochemical factors largely remain unclear. We investigated how rates of Hg transformations...
Article
Earlier studies have shown that boreal forest logging can increase the concentration and export of methylmercury (MeHg) in stream runoff. Here we test whether forestry operations create soil environments of high MeHg net formation associated with distinct microbial communities. Furthermore, we test the hypothesis that Hg methylation hotspots are mo...
Article
Full-text available
The first ever coordinated counts of wintering Taiga Bean Geese Anser f. fabalis at their three main wintering sites in NE Jutland showed that peak numbers increased from 1065 in winter 2004-2005 to 2300 in winter 2016-2017, an average annual increase of 5.3%. Elevated numbers in January 2012 and January/February 2016 suggest an influx from another...
Article
Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic...
Article
Boreal wetlands have been identified as environments in which inorganic divalent mercury (HgII) is transformed to methylmercury (MeHg) by anaerobic microbes. In order to understand this transformation and the mobility and transport of HgII and MeHg, factors and conditions in control of the solubility and chemical speciation of HgII and MeHg need to...
Article
Full-text available
The input of mercury (Hg) to ecosystems is estimated to have increased two- to fivefold during the industrial era, and Hg accumulates in aquatic biota as neurotoxic methylmercury (MeHg). Escalating anthropogenic land use and climate change are expected to alter the input rates of terrestrial natural organic matter (NOM) and nutrients to aquatic eco...
Article
The inhibitory effects of sulfide on microbial processes during anaerobic digestion have been widely addressed. However, other effects of sulfide are less explored, given that sulfide is a potential sulfur source for microorganisms and its high reactivity triggers a suit of abiotic reactions. We demonstrated that sulfide interaction with Fe regulat...
Article
Environmental contextThe chemical speciation of mercury (Hg) largely controls its biogeochemical cycling and exposure to biota. Here, we investigate the thermodynamic stabilities of complexes formed between inorganic divalent Hg (HgII) and 15 biogeochemically relevant low-molecular-mass (LMM) thiol ligands. This information is critical for accurate...
Article
Full-text available
Optimal supply of trace elements (TE) is a prerequisite for microbial growth and activity in anaerobic digestion (AD) bioprocesses. However, the required concentrations and ratios of essential TE for AD biotechnologies strongly depend on prevailing operating conditions as well as feedstock composition. Furthermore, TE in AD bioreactors undergo comp...
Article
Final harvest (clear-cutting) of coniferous boreal forests has been shown to increase stream water concentrations and export of the neurotoxin methyl mercury (MeHg) to freshwater ecosystems. Here the spatial distribution of inorganic Hg and MeHg in soil as a consequence of clear-cutting are reported. A comparison of soils at similar positions along...
Article
Net formation of methylmercury (MeHg) in sediments is known to be affected by the availability of inorganic divalent mercury (HgII) and by the activities of HgII methylating and MeHg demethylating bacteria. Enhanced autochthonous organic matter deposition to the benthic zone, following increased loading of nutrients to the pelagic zone, has been su...
Article
Effects of Boreal forest harvest on mercury (Hg) and methyl mercury (MeHg) soil pools and export by stream runoff were quantified by comparing 10 reference watersheds (REFs) covered by >80year old Norway spruce (Picea abies Karst.) forests with 10 similar watersheds subjected to clear-cutting (CCs). While total Hg soil storage did not change, MeHg...
Article
This article deals with the interrelationship between overall chemical speciation of S, Fe, Co, and Ni in relation to metals bio-uptake processes in continuous stirred tank biogas reactors (CSTBR). To address this topic, laboratory CSTBRs digesting sulfur(S)-rich stillage, as well as full-scale CSTBRs treating sewage sludge and various combinations...
Article
The carbon matrix in cell walls of lignocellulosic plants has high recalcitrance to chemical and biological decomposition. Thermal treatments, such as torrefaction and pyrolysis are therefore of interest to pre-process biomass. Reed canary grass (RCG) as biomass model was treated at 90, 300, 400 and 500 °C in N2 atmosphere. The induced cell wall ch...
Article
Full-text available
Bean Geese Anser fabalis were counted at all known spring staging sites in south-central Sweden within the time window when geese migrating along the western and central flyways had left their wintering grounds in Denmark and southernmost Sweden, but before they had crossed the Bothnian Bay to Finland. Reliable counts were obtained for seven years...
Article
Soils comprise the largest terrestrial mercury (Hg) pool in exchange with the atmosphere. To predict how anthropogenic emissions affect global Hg cycling and eventually human Hg exposure, it is crucial to understand Hg deposition and re-emission of legacy Hg from soils. However, assessing Hg deposition and re-emission pathways remains difficult bec...
Article
Dark reduction of Hg(II) to Hg(0) in deep waters, soils and sediments accounts for a large part of legacy Hg recycling back to the atmosphere. Natural organic matter (NOM) plays a dual role in the process, acting as an electron donor and complexation agent of Hg(II). Experimental determination of rates of dark Hg(II) reduction is complicated by the...
Article
Mass-dependent (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope signatures of different mercury (Hg) sources and help understand transformation processes at contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution sources in Sweden contaminated with elemental liquid Hg (mai...
Article
Neurotoxic methylmercury (MeHg) formed from inorganic divalent mercury (Hg(II)) accumulates in aquatic biota and remains at high levels worldwide. It is poorly understood to what extent different geochemical Hg pools contribute to these levels. Here we report quantitative data on MeHg formation and bioaccumulation, in mesocosm water-sediment model...
Article
We investigated the equilibrium chemistry and chemical speciation of S, Fe and metals (Co, Ni, Cu, Zn, Cd, and Pb) in eight full scale Continuous Stirred Tank Biogas Reactors (CSTBR). Five reactors were digesting a mixture of different types of organic wastes (referred to as Co-Digestion; CD) and three were digesting Sewage Sludge (SS). Iron was co...
Article
The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performan...
Article
The corrinoid protein, HgcA has been shown to be essential for Hg methylation in anaerobic bacteria. We investigated the diversity of hgcA from temperate and tropical wetland soils where Hg methylation is demonstrated. Sequences obtained from both environments clustered with those from the δ-Proteobacteria, Chloroflexi, and Methanomicrobia with sig...
Article
Several previous studies reported stimulatory effects on biogas process performance after trace metal supplementation. However, the regulation of the bioavailability in relation to chemical speciation, e.g. the role of sulfide is not fully understood. The objective of the present study was to determine the effect of sulfide on chemical speciation a...
Article
We report experimentally determined first-order rate constants of MeHg photolysis in three waters along a Boreal lake-wetland gradient covering a range of pH (3.8-6.6), concentrations of total organic carbon (TOC 17.5-81 mg L-1), total Fe (0.8-2.1 mg L-1), specific UV254nm absorption (3.3-4.2 L mg-1 m-1) and TOC/TON ratios (24-67 g g-1). Rate const...
Article
An important issue in mercury (Hg) biogeochemistry is to explore the influence of aqueous Hg(II) forms on bacterial uptake, and subsequent methyl mercury formation, under iron(III) and sulfate reducing conditions. The success of this is dependent on relevant information on the thermodynamic stability of Hg-sulfides. In the present study, we determi...
Article
Wetlands are generally considered to be sources of methyl mercury (MeHg) in northern temperate landscapes. However, a recent input-output mass balance study during 2007-2010 revealed a black alder (Alnus glutinosa) swamp in southern Sweden to be a consistent and significant MeHg sink, with a 30-60% loss of MeHg. The soil pool of MeHg varied substan...
Article
Monomethylmercury (MeHg) in fish from freshwater, estuarine and marine environments are a major global environmental issue. Mercury levels in biota are mainly controlled by the methylation of inorganic mercuric mercury (HgII) to MeHg in water, sediments and soils. There is, however, a knowledge gap concerning the mechanisms and rates of methylation...
Article
Four years of catchment export and wetland input-output mass balances are reported for inorganic Hg (Hg(inorg)), methyl mercury (MeHg), dissolved organic carbon (DOC), and sulfate in eight Swedish boreal wetlands. All wetlands had a history of artificial drainage and seven were subjected to small-scale flooding during the complete study period (two...
Article
Despite methylmercury (MeHg) production in boreal wetlands being a research focus for decades, little is known about factors in control of methylation and demethylation rates and the effect of wetland type. This is the first study reporting potential Hg methylation (k m ) and MeHg demethylation rate constants (k d ) in boreal wetland soils. Seven...
Article
The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequen...
Chapter
IntroductionPhysicochemical Properties, Oxidation States, Chemical Forms, Structures, and Concentrations of Mercury in the EnvironmentAqueous Phase: Major Ligands and Their Affinities for Mercury(II)Liquid and Solid Phases of Mercury in Soils and SedimentsReactions of Mercury(II) with Soil and Sediment Particle SurfacesStabilization of Nanoparticul...
Article
The biogeochemistry of mercury (Hg) is very complex, tightly linked to the activity of bacteria and to sulfur and iron geochemistry. In focus are processes resulting in a net production of the toxic and bioaccumulating methyl mercury (MeHg) molecule. Chemical speciation analysis requires a multidisciplinary approach. Mercury LIII-edge EXAFS has, in...
Article
This study quantified the heavy metal contamination caused by firing 500 high-velocity 7.62-mm jacketed Swedish military rounds. Contamination of solid and aqueous phases was studied, with Pb and Sb being the two contaminants of primary interest. The distribution of the Pb and Sb were measured in terms of depth of penetration in sand and grain size...
Article
Knowledge about the chemical speciation of Hg(II) is a prerequisite for a proper understanding of biogeochemical processes in control of the transformation of Hg(II) into toxic and bioaccumulating monomethyl mercury. Of critical importance are structures and the stability of Hg(II)-complexes with inorganic and organic sulfur ligands in aqueous and...
Article
Emission rates of gaseous monomethylmercury (CH(3)Hg(II)), as well as elemental mercury (Hg(0)) and dimethylmercury [(CH(3))(2)Hg(II)], were determined in Hg-contaminated water-sediment microcosms (duplicates of three treatments) by gaseous species-specific isotope dilution analysis (SSIDA). Incubation of approximately 500 g (wet mass) of sediments...
Article
Concentrations of inorganic, mercuric mercury (Hg(II)), methyl mercury (MeHg) and ancillary chemistry measured in first-order streams draining 0-4 (N = 20) and 4-10 (N = 27) year-old clear-cuts of former Norway Spruce Picea abies (Karst.) forest stands were compared with concentrations in streams draining >70 year-old Norway Spruce reference stands...
Article
The determination of the chemical environment of Pb in natural samples is a challenge of great importance in environmental and health physics. We report a high energy resolution fluorescence detection (HERFD) X-ray absorption near-edge spectroscopy (XANES) study at the Pb L(3) and L(1) absorption edges to determine the chemical environment of Pb in...
Article
Mercury (Hg) levels are alarmingly high in fish from lakes across Fennoscandia and northern North America. The few published studies on the ways in which silviculture practices influence this problem indicate that forest operations increase Hg in downstream aquatic ecosystems. From these studies, we estimate that between one-tenth and one-quarter o...
Article
Daily counts and conservative estimates of turn-over showed that at least 3000 Taiga Bean Geese regularly used the Ume River Delta as the major staging site along the Western Flyway (following the west coast of the Gulf of Bothnia) during spring 2003-2008. Counts across all staging sites yielded 2700-3700 geese in southern Västerbotten and 4000-480...
Article
Aniline and 2,4,6-trinitrotoluene (TNT) were equilibrated with particulate (POM) and dissolved organic matter (DOM) from an organic soil at different compositions of adsorbed major cations (Na, Al) and pH (aniline: 3.7-5.1, TNT: 4.8-5.0). After separation of POM, concentrations of (14)C-labelled aniline and TNT* (including TNT degradation products)...
Article
This paper discusses some recent advances in spectrometric methods and approaches for mercury speciation analysis of environmental samples with focus on isotope dilution techniques for determination of mercury species' concentrations in gaseous samples and reaction rates in soils and sediments. Such analytical data is important inter alia in fundam...
Article
Current research focus in mercury biogeochemistry is on the net production and accumulation of methyl mercury (MeHg) in organisms. The activity of iron- and sulfate-reducing bacteria (FeRB and SRB) has been identified as important for MeHg production. There are indications of a passive uptake of neutral Hg-sulfides by SRB, as well as of a facilitat...
Article
Specific, potential demethylation rate constants (kd, day− 1) were determined in fresh and brackish water sediments from seven different sites in Sweden originally contaminated with either Hg0(l) or phenyl-Hg. Variations in kd among and within sites were related to ambient concentrations of Hg (1–1143 nmol g− 1) and MeHg (4.4–575pmol g− 1), and to...
Article
The long-term sustainability of forest soils may be affected by the retention of exchangeable nutrient cations such as Ca2+ and the availability of potentially toxic cations such as Al3+. Many of our current concepts of cation exchange and base cation saturation are largely unchanged since the beginnings of soil chemistry over a century ago. Many o...
Article
The distribution of different iron (Fe) species in soils, sediments, and surface waters has a large influence on the mobility and availability of Fe, other nutrients, and potentially toxic trace elements. However, the knowledge about the specific forms of Fe that occurs in these systems is limited, especially regarding associations of Fe with natur...
Article
The speciation of Cu in soils and surface waters is largely influenced by complexation reactions with natural organic matter (NOM). In this Study, ion selective electrode data for the binding of Cu2+ to a forest peat soil were collected as a function of equilibration time, pH (2.4-6.6), and total Cu(II) concentration (1-54g Cu kg(-1) dry soil). As...
Article
X-ray absorption fine structure (EXAFS) spectroscopy spectra were collected for three brominated persistent pollutants: 6-bromo-2,4,5-trichlorophenol (BrTriClP), pentabromophenol (PentaBrP) and 3,3′,5,5′-tetrabromobisphenol A (TBBA). The substances were selected to be symmetrical (BrTriClP and TBBA) or asymmetrical (PentaBrP) with respect to the at...
Article
The Taiga Bean Goose Anser fabalis fabalis is one of few goose species under current decline. The species uses three flyways: the Scandinavian population migrates west of the Baltic Sea and die Bothnian Bay, the Finnish and western Russian populations take a central flyway, and the central Russian population migrates east of the Baltic Sea. On 17-2...
Article
Relationships between the short-term mono-methyl mercury (MeHg) production, determined as the specific, potential methylation rate constant Km (day(-1)) after 48 h of incubation with isotope-enriched 201Hg(II) at 23 degrees C, and the long-term accumulation of ambient MeHg, were investigated in contaminated sediments. The sediments covered a range...
Article
In 1999 the Swedish Parliament adopted fifteen National Environmental Quality Objectives (NEQO), one of these is the objective of "Thriving wetlands" with thee goal to restore 12 000 ha of wetlands until 2010. Given the current knowledge about methyl mercury (MeHg) production in wetlands, and subsequent bioaccumulation, the objective of thriving we...
Article
A correct description of the chemical speciation of Hg and MeHg is a prerequisite for understanding biogeochemical processes like retention-mobilization, methylation-demethylation and bioaccumulation. Binding affinity experiments and spectroscopic studies have clearly established that both inorganic Hg and methyl mercury (MeHg) are strongly complex...
Article
Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethy...
Article
This paper discusses some recent advances in spectrometric methods and approaches for mercury speciation analysis of environmental samples with focus on isotope dilution techniques for determination of mercury species' concentrations in gaseous samples and reaction rates in soils and sediments. Such analytical data is important inter alia in fundam...
Article
This paper summarizes recent studies on the environmental fate of chloroaromatic compounds in chlorophenol (CP)-contaminated soil and groundwater at Swedish sawmill sites. Relative proportions of CPs, polychlorinated phenoxy phenols (PCPPs), polychlorinated diphenyl ethers (PCDEs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibe...
Article
Sediments contaminated by various sources of mercury (Hg) were studied at 8 sites in Sweden covering wide ranges of climate, salinity, and sediment types. At all sites, biota (plankton, sediment living organisms, and fish) showed enhanced concentrations of Hg relative to corresponding organisms at nearby reference sites. The key process determining...
Article
The retention and mobility of hydrophobic organic contaminants (HOCs) in soil is mainly determined by hydrophobic partitioning to dissolved and particulate organic matter (DOM and POM, respectively). The aqueous phase, DOM, and POM fractions were extracted and separated from soils at three sites contaminated with technical chlorophenol formulations...
Article
Biotic transformation of inorganic mercury, Hg(II), to mono methyl mercury (MeHg) is proposed to be largely controlled by passive uptake of neutral Hg complexes by sulfate reducing bacteria (SRB). In this study, the chemical speciation of Hg(II) in seven locally contaminated sediments covering environments such as (i) brackish water, (ii) low-produ...
Article
Cadmium (Cd) is a toxic trace element and due to human activities soils and waters are contaminated by Cd both on a local and global scale. It is widely accepted that chemical interactions with functional groups of natural organic matter (NOM) is vital for the bioavailability and mobility of trace elements. In this study the binding strength of cad...
Article
Even if it is generally accepted that associations with natural organic matter (NOM) to a great extent determine the bioavailability and mobility of trace metals in soils and waters, the knowledge about the identity of NOM functional groups involved is still limited. In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was u...
Article
Accurate determination of methyl mercury (MeHg) concentrations in sediment pore waters is crucial for an improved understanding of mercury (Hg) biogeochemistry, and for improved risk assessment of Hg contaminated sites. In the present study, effects of oxic (air) and anoxic (N2) filtration (after centrifugation) on determined pore water MeHg concen...

Network

Cited By