Conference PaperPDF Available

Performance Evaluation of Cooperative Relay Networks with One Full-Energy Relay and One Energy Harvesting Relay

Authors:
    
      
  
          
      
   
        
          
         
          
         
          
       
        
        
       
     
    
   
      
            
       
          
       
          
     
       
       
        
        
       
        
      
        
         
         
       
      
          
       
         
      
        
         
         
         
       
       
         
       
         
      
         
         
         
        
           
         
          
           
         
        
           
        
       
 
          
         
         
        
        
  
          
         
         
        
         
          
         
        
         
           
          
        
      
          
         
          
          




       
    
        
        
           
   
      
         
         
 
 
         
    
        
          
        
     
        
   
          
        

    
  
      
           
          
       
   
   

   
   

        
         
          
         
          
 
       
           
         
         
           
          
        
      

   
    
 
    

  
           
 
    
   

          

          
           
           
   
   

        
       
         
         
            
       
        
         

  
   
 

         
            
  
     
        

  
     
         
   
   

         
           

         
        
  
        
  

         
  

        
 
  

       
  
  


   
        
      
         
 
     


 
       
      
     
  
     
       
       
         
        
  

 

 
       

   
 
       

 
   

         
         
 
   
 
  

 
 

  
     
     

        

 
 
  

   
  
 
  
 
        
   
      
   
  

   


         
       
      
      
         
  
   

   


        
  
    


     
       
 

     
    


         
   
  
   
    
        
          
      

   

 

         
   
        

   

 

      
         
       
     
    

 

      
  

 

       
         





 
      

 
 
  
  

 
     

       

   

 
 
  
 
    
         
         
         
    

      
   


      
   

        
    


  
         
        
       
            
         
          
           
        
         
        
       

         
   
        
       
       
         
          
            
         
            
            
 
          
         
           
            
      
          
        
      
         
    
           
    
  
 
  
 
   

   










           
  
 
        
        
       
       
       
        
         
      
  
       
       
 
   
            
           
  
            
        
         
      













           
   
   














            
  
           
         
        
       
             
       
          
                  
       
        
       
 
           
       
          
     
              
       
         
  
             
       
      
                
      
         
  
              
         
           

          
        
       
            
          
      
          
      
       
         
           
       
        

           
      
         

                 
         
        
        
   
             

          
              
       
        
         
     
 
 
          
      
... Hatem Boujemâa boujemaa.hatem@supcom.tn 1 College of Computer Science and Engineering in Yanbu, Taibah University, Medina, Saudi Arabia 2 COSIM Lab, Tunis, Tunisia primary receivers. The outage probability of a mixed system with conventional and EH relays was derived in [20]. ...
... We propose an algorithm to optimize harvesting duration. The obtained throughput is better than [17][18][19][20] where α = 1/3 and the same durations were allocated to energy harvesting, source and relay transmission. Our results show that harvesting duration optimization allows up to 4 dB gain with respect to α = 1/3 [17][18][19][20]. ...
... The obtained throughput is better than [17][18][19][20] where α = 1/3 and the same durations were allocated to energy harvesting, source and relay transmission. Our results show that harvesting duration optimization allows up to 4 dB gain with respect to α = 1/3 [17][18][19][20]. Besides, we derive the throughput at the packet level while previous studies deal with symbol error probability analysis [17][18][19][20]]. ...
Article
Full-text available
In this paper, we analyze the performance of cooperative communications with radio frequency energy harvesting (EH). Different relay selection techniques are studied with optimal harvesting duration. The frame with duration T is decomposed in 3 slots. The duration of first slot is \({\alpha }T\), and it is dedicated for energy harvesting \((0<\alpha <1)\). The duration of second and third slots is \((1-\alpha )T/2\). The second and third slots are dedicated to source and relay transmission. When harvesting duration, \(\alpha \)T, increases, the packet error probability (PEP) decreases since the harvested energy is large. However, the available time for transmission, \((1-\alpha )T/2\), decreases. If harvesting duration is small, the PEP is high due to a low harvested energy. In this paper, we choose the value of harvesting duration to enhance the throughput. The proposed optimal harvesting duration allows up to 4 dB gain with respect to \(\alpha =1/3\), i.e., same duration used for EH and source transmission.
... When the distance between secondary and primary nodes is very large, the primary user can be detected only using multihop relaying. In [20], some relay nodes are equipped with a rechargeable battery while the rest of nodes harvest energy using RF signals. The secrecy outage probability of EH systems has been studied in [21][22][23][24][25]. Sensing algorithms for 5G networks were discussed in [26]. ...
... Theoretical results are very close to simulations. As we used the upper bound (20), the theoretical DP is larger than simulation results. Figure 4 studies the effect of the harvesting distance d h = 0.75, 1, 1.5 between A and PU/ relays for M = 2 hops and L = 1 branch. ...
Article
Full-text available
This paper deals with spectrum sensing using the energy detector (ED) with multiple hops multibranch relaying where the primary user (PU) and relays harvest energy from radio frequency signal transmitted from a given node A. The harvested energy is used by PU and relays to transmit signals to the fusion center where the ED is used to detect the PU. The study is valid for amplify and forward relaying, any number of hops and any number of branches. We also suggest a new lower bound of the detection probability using the cumulative distribution function of signal-to-noise ratio (SNR). When there are many available branches, only the best one is activated. The activated branch offers the highest end-to-end SNR.
... In CRN, primary and secondary users share the same spectrum while secondary users should not generate lot of interference to primary users (Kalluri et al., 2018;Xie et al., 2018;Yan et al., 2018). In practical systems, some nodes can harvest energy from RF signals while other nodes are equipped with a battery (Nhat et al., 2018). Secrecy outage probability and strictly positive secrecy capacity of energy harvesting systems have been analysed in Nhat et al. (2018), Behdad et al. (2018), Yao et al. (2018), Yin et al. (2018) and Lei et al. (2017). ...
... In practical systems, some nodes can harvest energy from RF signals while other nodes are equipped with a battery (Nhat et al., 2018). Secrecy outage probability and strictly positive secrecy capacity of energy harvesting systems have been analysed in Nhat et al. (2018), Behdad et al. (2018), Yao et al. (2018), Yin et al. (2018) and Lei et al. (2017). Distributed relay selection (DRS) algorithms have not been yet proposed for energy harvesting systems. ...
Article
In this paper, we suggest a Distributed Relay Selection (DRS) algorithm for Energy Harvesting (EH) systems. Each candidate relay amplify the source packet only when its SNR exceeds Signal to Noise Ratio (SNR) threshold $gamma_{th}$. Relay node harvest energy from Radio Frequency (RF) signals received from the source. Both harvesting duration and SNR threshold $gamma_{th}$ are optimized to maximize the throughput. Our results are compared to Opportunistic Amplify and Forward (OAF) and Uniform Relay Selection (URS).
... Energy harvesting for CRN has been considered in [21][22][23]. Hybrid networks with energy harvesting nodes and other non-harvesting nodes was studied in [24]. The secrecy outage probability of energy harvesting systems has been derived in [25][26][27][28]. ...
Article
This paper optimizes the throughput of cooperative Cognitive Radio Networks (CRN). There are multiple branches and multiple hops. Transmission is performed on the branch with the highest Signal to Interference plus Noise Ratio (SINR). Secondary source and relays have multiple receiving antennas to harvest energy from Radio Frequency (RF) signal received from Primary Transmitter PT. These secondary nodes have multiple transmitting antennas and transmission is performed from the best antenna. Also, secondary source and relays adapt their power to generate interference at Primary Receiver PR less than a given threshold I. We optimize harvesting duration to enhance the throughput in the secondary network.
... EH has been also applied in cooperative systems Huang et al., 2018;Babaei et al., 2018;Kalluri et al., 2018) where relay nodes assist the communication between the source and destination. EH for cognitive radio networks (CRN) allows to recharge the battery of both primary and secondary users Yan et al., 2018;Nhat et al., 2018). EH allows to increase battery life-time since RF signals are used to recharge it. ...
Article
This paper deals with wireless energy harvesting using radio frequency (RF) signals for Nakagami channels. We derive the packet error probability (PEP) of relay node selection algorithms where all nodes harvest energy from RF signal emitted by node H. We set the harvesting duration to enhance the throughput. Our analysis is valid for Nakagami fading channels with arbitrary fading figure of different links.
... EH has been also applied in cooperative systems Huang et al., 2018;Babaei et al., 2018;Kalluri et al., 2018) where relay nodes assist the communication between the source and destination. EH for cognitive radio networks (CRN) allows to recharge the battery of both primary and secondary users Yan et al., 2018;Nhat et al., 2018). EH allows to increase battery life-time since RF signals are used to recharge it. ...
Article
This paper deals with wireless energy harvesting using Radio Frequency (RF) signals for Nakagami channels. We derive the Packet Error Probability (PEP) of different Relay Selection (RS) techniques where all nodes harvest energy from RF signal received from node H. Node H can be a base station. We choose the harvesting duration to maximize the throughput. Our analysis is valid for Nakagami fading channels with arbitrary fading figure of different links.
... Generated interference at primary nodes from secondary ones should be as low as possible. A combination of conventional relays and EH relays has been considered in [20][21][22]. Only a subset of relays harvest energy from wireless signals and the other ones does not harvest energy [23][24][25]. ...
Article
Full-text available
In cognitive radio networks, secondary nodes should sense the channel using spectrum sensing algorithms to detect primary activity. When primary user (PU) is idle, secondary users opportunistically transmit over this frequency hole. In this paper, we provide the detection probability (DP) of the energy detector (ED) for wireless energy harvesting systems. PU and relays harvest energy from radio frequency signal received from another node H. The harvested energy is used by PU to transmit its signal and by the relay to amplify PU signal to a fusion center (FC). The FC uses the relayed signal to detect PU activity using the ED. The major contribution of the paper is to show that the DP can be lower bounded using the cumulative distribution function of signal to noise ratio. This new approach is applied to compute the DP of the ED of cooperative spectrum sensing. The derived expressions of DP are valid for relays with arbitrary positions. The theoretical derivations are confirmed using simulation results obtained with MATLAB.
... EH for Nakagami fading channels has been suggested in [16]. EH can be used to charge the battery of PU and SU in CRN [17][18][19][20]. Security aspects of EH systems has been investigated in [21][22][23][24][25]. ...
Article
Full-text available
In this article, we suggest routing protocols with Energy Harvesting and adaptive transmit power for cognitive radio networks. the secondary source and relays harvest energy from wireless signal transmitted by node A. the transmitted power of secondary nodes is adapted so that interference to primary receiver (\(P_R\)) lower than interference threshold I. We suggest optimal routing that activates the best path between source and destination. Suboptimal routing is also considered where the network is decomposed in many subnetworks then the best path is activated in each subnetwork. One hop routing is also investigated where the best relay is selected in each subnetwork.
Article
In this paper, we suggest a new transmission technique for cognitive radio networks. The proposed adaptive underlay/interweave transmission technique is evaluated in the presence and absence of primary interference. The proposed adaptive underlay/interweave transmission technique offers 1–3 dB gains with respect to conventional cognitive radio networks (CRN) using either underlay or interweave. The proposed protocol is extended to CRN with energy harvesting using radio frequency (RF) signals. Our results are valid for any position of primary and secondary transmitter and receiver.
Article
In this paper, we optimize the throughput of cognitive radio networks (CRN) when all secondary nodes harvest energy from radio frequency signal received from primary transmitter (\(P_T\)). These secondary nodes are equipped with multiple antennas and adapt their power so that the interference at primary receiver \(P_R\) is less than interference threshold I. Our results are valid for cooperative CRN with opportunistic amplify and forward, partial and reactive relay selection. We also choose an appropriate value of harvesting duration to enhance the throughput at secondary destination.
Article
Full-text available
This paper investigates a full duplex wireless-powered two way communication networks, where two hybrid access points (HAP) and a number of amplify and forward (AF) relays both operate in full duplex scenario. We use time switching (TS) and static power splitting (SPS) schemes with two way full duplex wireless-powered networks as a benchmark. Then the new time division duplexing static power splitting (TDD SPS) and full duplex static power splitting (FDSPS) schemes as well as a simple relay selection strategy are proposed to improve the system performance. For TS, SPS and FDSPS, the best relay harvests energy using the received RF signal from HAPs and uses harvested energy to transmit signal to each HAP at the same frequency and time, therefore only partial self-interference (SI) cancellation needs to be considered in the FDSPS case. For the proposed TDD SPS, the best relay harvests the energy from the HAP and its self-interference. Then we derive closed-form expressions for the throughput and outage probability for delay limited transmissions over Rayleigh fading channels. Simulation results are presented to evaluate the effectiveness of the proposed scheme with different system key parameters, such as time allocation, power splitting ratio and residual SI.
Article
Full-text available
In this paper, we propose an energy harvesting (EH)-based spectrum access model in cognitive radio (CR) network. In the proposed scheme, one of available secondary transmitters (STs) helps a primary transmitter (PT) forward primary signals to a primary receiver (PR). Via the cooperation, the selected ST finds opportunities to access licensed bands to transmit secondary signals to its intended secondary receiver (SR). Secondary users are assumed to be mobile, hence, optimization of energy consumption for these users is interested. The EH STs have to harvest energy from the PT's radio-frequency (RF) signals to serve the PT-PR communication as well as to transmit their signals. The proposed scheme employs incremental relaying technique in which the PR only requires the assistance from the STs when the transmission between PT and PR is not successful. Moreover, we also investigate impact of hardware impairments on performance of the primary and secondary networks. For performance evaluation, we derive exact and lower-bound expressions of outage probability (OP) over Rayleigh fading channel. Monte-Carlo simulations are performed to verify the theoretical results. The results present that the outage performance of both networks can be enhanced by increasing the number of the ST-SR pairs. In addition, it is also shown that fraction of time used for EH, positions of the secondary users and the hardware-impairment level significantly impact on the system performance.
Article
Full-text available
In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.
Article
Full-text available
In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward (AF) and decode-and-forward (DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocols, in the proposed protocol, a secondary source attempts to transmit its signal to a secondary destination with help of two secondary relays. One secondary relay always operates in AF mode, while the remaining one always operates in DF mode. Moreover, we also propose a relay selection method, which relies on the decoding status at the DF relay. For performance evaluation and comparison, we derive the exact and approximate closed-form expressions of the outage probability for the proposed protocol over Rayleigh fading channel. Finally, we run Monte Carlo simulations to verify the derivations. Results presented that the proposed protocol obtains a diversity order of three and the outage performance of our scheme is between that of the conventional underlay DF protocol and that of the conventional underlay AF protocol.
Article
This paper considers a dual-hop wireless powered cooperative system with multiple relays, which consists of a source (S), a destination (D), and multiple relay candidates. These relay candidates can harvest energy from the interference signals to transfer the decoded data to D. Two classic relay selection schemes, i.e., the optimal source-relay link (OSRL) and optimal source-relay-destination link (OSRDL) schemes, are considered to choose a best relay to aid the transmission between S and D under the conditional decode-and-forward (DF) scheme. The closed-form expressions of the outage probability for the two considered relay selection schemes have been derived and verified over independent Nakagami- $m$ fading channels.
Conference Paper
In this paper, we evaluate performances of various transmit antenna selection (TAS) protocols in underlay cognitive radio network under impact of hardware impairments. In particular, a secondary base station (SB) selects one of available antennas to transmit its data to a secondary user (SU) that randomly appears in radio range of the SB. In the first proposed scheme (named RAND), the SB randomly selects one antenna to serve the SU. In the second proposed method (named MAXP), the antenna with maximum transmit power will be used to transmit the data. In the third proposal scheme, an optimal TAS method is proposed to maximize the instantaneous signal-to-noise ratio (SNR) of the SB-SU links. For performance evaluation, we derive exact and asymptotic closed-form expressions of average outage probability (AOP) for the proposed protocols over Rayleigh fading channel. Monte-Carlo simulations are then performed to verify the theoretical results.
Article
In this paper, we present a coordinated multicast scheme via a relay station (RS) over a single frequency network (SFN). According to the type of feedback information delivered from the RS to the adjacent base stations (BSs) involved in the coordinated multicast, the schemes are classified into the phase coordination multicast based on the RS (PCMR) and the vector coordination multicast based on the RS (VCMR). For the performance analysis, we derive the mathematical upper bound of an achievable rate from the BSs to the RS for the coordinated multicast based on RS. Through this analysis, we demonstrate that the PCMR and the VCMR achieve more gains over the noncoordinated multicast in terms of the number of RS antennas, the number of adjacent BSs, and the number of BS antennas. Through simulation, we derive a range of distances between the home BS and the RS, the number of users, and the number of user antennas, providing evidence that the RS-based multicast outperforms the conventional multicast.
Article
Multi-hop relay networks have been widely considered as a promising solution to extend the coverage area and to reduce the deployment cost by deploying the relay stations (RSs) in mobile communication systems. Suitable deployment for the RSs is one of the most important features of the demand nodes (DNs) to obtain a high data transmission rate in such systems. Considering a tradeoff among the network throughput, the deployment budget, and the overall coverage of the systems, efficient RS deployment schemes and corresponding algorithms must be developed and designed. A novel cluster-based RS deployment scheme is proposed in this paper to select the appropriate deployment locations for the relay stations from the candidate positions. To make an ideal cluster distribution, the distances between the DNs are calculated when deploying the RSs. We take into account the traffic demands and adopt a uniform cluster concept to reduce the data transmission distances of the DNs. On the basis of the different candidate positions, the proposed scheme makes an adaptive decision for selecting the deployment sites of the RSs. A better network throughput and coverage ratio can be obtained by balancing the network load among the clusters. Simulation results show that the proposed scheme outperforms the previously known schemes in terms of the network throughput and the coverage ratio. Additionally, a suitable deployment budget can be implemented in multi-hop relay networks.