ArticlePDF Available

Not driving alone: Commuting in the Twenty-first century

Authors:

Abstract and Figures

This paper investigates recent commuting trends in American workers. Unlike most studies of commuting that rely on Census data, this study utilizes the unique American Time Use Survey to detail the complex commuting patterns of modern-day workers. The data confirm what has been suspected, that incidence of driving alone has decreased substantially in recent years while carpooling has rebounded. The results from the multi-nominal logistic estimation of workers' commuting choices yield support for both the traditional economic determinants as well as for the newer, socio-economic factors. In addition to the cost savings, many commuters appear to value the social aspect of carpooling. Surprisingly, there is little evidence that the need for autonomy plays much of a factor in explaining worker�s choice of the journey to work. The estimated short-run elasticity of carpooling with respect to real gas prices appears to be quite high and largely accounts for the significant decline in the incidence of driving alone.
Content may be subject to copyright.
!
!
!
DEPARTMENT)OF)ECONOMICS)WORKING)PAPER)SERIES)
!
!
!
!
Not driving alone: Commuting in the Twenty-first century
Stephen B. DeLoach
Elon University
Thomas K. Tiemann
Elon University
Working Paper 2010-01
2075 Campus Box
Elon, NC 27244
Phone: (336) 278-5951
Fax: (336) 278-5952
Abstract
This paper investigates recent commuting trends in American workers. Unlike most studies of
commuting that rely on Census data, this study utilizes the unique American Time Use Survey to detail
the complex commuting patterns of modern-day workers. The data confirm what has been suspected,
that incidence of driving alone has decreased substantially in recent years while carpooling has
rebounded. The results from the multi-nominal logistic estimation of workers’ commuting choices yield
support for both the traditional economic determinants as well as for the newer, socio-economic factors.
In addition to the cost savings, many commuters appear to value the social aspect of carpooling.
Surprisingly, there is little evidence that the need for autonomy plays much of a factor in explaining
worker’s choice of the journey to work. The estimated short-run “elasticity” of carpooling with respect
to real gas prices appears to be quite high and largely accounts for the significant decline in the
incidence of “driving alone”.
JEL Code: R4
Keywords: Ride sharing, carpooling, commuting, gasoline process, social capital
1. Introduction
In the last decades of the twentieth century, driving alone increased while commuting
with others declined. Explaining the shift from carpools to driving alone between 1970 and
1990, Ferguson (1997) argued that three traditional economic factors were at play: the increase
in average wealth resulting in more cars per capita; the decrease in the real price of gasoline;
and the increase in the average education level of workers. While most economists explained
the trend strictly in traditional economic terms, others are likely to see it as indicative of a larger
cultural movement. In “Bowling Alone: America’s declining social capital,” Robert Putnam
(1995) describes the decline in informal interaction among Americans. In the same way that
Americans no longer join bowling leagues or civic clubs, the vast majority of workers in the
United States journey to work alone in a car, no longer interacting with neighbors at the bus
stop, train platform, or in a carpool.
Recently, however, there is reason to suspect that this long-run trend towards driving
alone may be reversing. Along with rising gasoline prices since 2003, the last five years have
seen the advent of “ride-sharing” web sites, opening of new rapid transit systems in some
American cities, and increased demand for public transportation in many others.
The first decade of the twenty-first century has also seen a revival of research that
implies that the traditional transportation economics/urban economics models of commuting
transportation choice, which balance monetary cost against journey time, are overly-simplistic.
In a purely theoretical exposition, Huang, Yang and Bell (2000) argue that preferences for
autonomy: self-reliance, independence, and privacy, should be considered along-side more
traditional economic incentives. Such complexity of incentives is backed by empirical evidence
as well. For example, McGuckin and Srinivasan (2005) find that 54 percent of weekday
commuters do non-work errands during their commute time. This result reinforces the older
research of Rosenbloom and Burns (1993), who argue that women’s household duties explain
2
important differences between men and women in response to a Transportation Demand
Management program.
There may also be a social dimension to modal choice. Charles and Kline (2006) argue
that carpooling requires social capital. While they find that some traditional economic factors
(e.g. urban form, population density, public transportation, gas prices, etc.) affect carpooling,
they also find evidence that social identification matters. Workers living in neighborhoods with a
greater proportion of workers of the same race are increasingly likely to carpool. Much earlier,
research by Dueker, Bain and Levin (1977) found that people preferred to form carpools with
friends of the same sex and job levels. They also found that those who perceived that riding
with others would result in a lack of privacy were less likely to join carpools. This reinforced the
finding of Horowitz and Sheth (1977) that the perception of the comfort and pleasantness of ride
sharing varied between those who carpooled and those who drove alone. Though they did not
specifically address it, the use of public transit is also likely to require higher levels of social
capital as commuters will probably be more willing to wait at a transit stop if they are
comfortable with those waiting with them.
The purpose of this paper is to investigate recent trends in American’s journey to work.
As argued above, this necessitates building a more complete empirical model of commuting
behavior, one that incorporates social capital as well as more traditional economic determinants.
Specifically, there are three key features to our model: first, we account for “sociability,”
following the work of Putnam (1995) and Charles and Kline (2006); second, building on Huang,
Yang, and Bell (2000) we control for differences in time demands from work and other family
obligations that might also play a role in determining a worker’s relative preference for the
independence and convenience driving alone versus carpooling or taking public transportation;
and third, we follow McGuckin and Srinivasan (2005) and others in making a distinction between
two types of carpools. A “true carpooler” is one who drives with friends and co-workers, while a
“fampooler” is one who drives with family members. Not surprisingly, the factors responsible for
3
choosing to join a true carpool are quite different from those responsible for choosing to
fampool. Another complexity we found is that many commuters, especially carpoolers,
fampoolers, and transit users, make complex, multimodal journeys.
The incorporation of all three of these factors is possible because we exploit a dataset
(American Time Use Survey 2003-07) previously unused in this literature. This dataset provides
a number of advantages in the context of our research question. First, unlike other nationally
representative samples (e.g., samples based on the decennial Census) it allows us to look at
trends in commuting since 2000. This is important since it is only recently that gas prices have
begun to rise precipitously. Second, unlike studies which are regionally focused (Hartgen and
Bullard 1993; Fellows and Pitfield 2000), because the American Time Use Survey is nationally-
representative we are able to control for differences in urban form. Third, because the data are
collected from individual activity diaries, the data reveal the length of each activity (e.g.,
traveling to work), where it takes place (e.g., private car) and who, if anyone, was present during
the activity (e.g., friend). This allows for a detailed view of contemporary commuting behavior of
American workers that has yet to be chronicled. It also allows us to identify those who make
multimodal journeys. Finally, since the activity diaries provide a glimpse into the daily life of the
American commuter, we are able to infer the degree to which family demands are present and
the extent of socialization in which workers are engaged.
The organization of the paper is as follows: (1) the data from 2003-07 are examined to
investigate the recent trends in commuting; (2) an econometric model is developed that extends
the traditional models from the urban/transportation economics literature on the determinants of
commuting by incorporating measures that account for individual preferences towards
autonomy and social capital formation; (3) results from the multinomial logistic regression are
discussed; and (4) conclusions and policy recommendations are made.
4
2. Recent Trends in the Journey to Work
This study examines weekday commuting decisions of American full-time workers
between 2003 and 2007. Unlike previous studies that rely on Census data or data collected
from a narrow geographic region, this project exploits national, individual cross-sectional data
from the American Time Use Survey (ATUS). By merging data from the Current Population
Survey (CPS) with the ATUS, we are able to study how daily worker decisions about commuting
are affected by other behaviors (proxied by time spent on household tasks and social activities),
individual characteristics, and urban form. In addition, pooling the data over a number of years
allows us to estimate the short-run elasticity of commuting with respect to changes in gasoline
prices.
While we stress understanding recent trends in carpooling, it is important to understand
the complexity of Americans’ journey to work. Any worker not working at home must decide
how to get to their job. Some commuters have little choice but to travel in a private car, while
others can choose between walking and riding, or between public transit and walking or public
transit and a private car, or some combination of modes. Faced with a variety of choice, the
commuter must then weigh the monetary costs, the time the journey takes, the importance of
flexibility in arriving and leaving work and performing other tasks as part of their commute, and
the probability and importance of social interaction as part of the journey.
The time and mode of the journey to work are determined from the daily time use diaries
in the ATUS survey. Participants in the CPS are surveyed about their place of residence,
personal and household characteristics and work experience for eight months. Four months
following their last CPS interview, a subset is chosen to complete the ATUS. Respondents are
randomly assigned a diary day and are asked to keep track of every activity during that 24 hour
period. If a respondent went to work on their diary day, they are included in our sample. This
results in 12,902 usable observations from 2003-2007. For the journey to work, we used the
“where” and “who with” questions that correspond to each activity. For example, suppose a
5
respondent says they traveled to work from 8:00am until 8:45am. We also know from the data
where they were while they did this activity (e.g., car, bus, train, plane, ferry, walking, etc.) and
who they were with at that location (e.g., with spouse, friends, co-workers, children, etc.) so we
know the mode of transportation and whether commuters are (1) alone, (2) with family members
or (3) with friends or co-workers. In completing this process, we found that many workers have
multimodal journeys as they combine modes of commuting. A significant number spend part of
this journey in a carpool or fampool, for example carpooling to the train station where they board
for the final part of their journey to work. The percentages of workers in our sample who
commute in all these various ways are detailed in Table 1.
Table 1 illustrates the complexity of the journeys for many commuters; about 15% of
commuters in 2007 combined modes of transport or types of car journeys on their trip to work.
Given this information, we have constructed our dependent variable from the following four
categories:
1. Single Drivers: those who drive alone in a private car, exclusively;
2. Fam-poolers: those who drive at least partly with family members but only travel in
private cars;
3. Carpoolers: those who drive at least partly with friends or co-workers but travel only
in private cars;
4. Other: those who commute in all other ways, including via bus, train, ferry, subway,
limo, walking, biking, multimodal. Note that more than half of these people have a
multimodal journey combining other forms of travel with traveling in a private car.
6
Table 1: Journey to Work by Detailed Type (weighted percentages)
All
2003
2004
2006
2007
Commute via Private Car
Only
88.05%
87.70%
86.84%
88.88%
86.20%
Simple car journey
Single Drivers
76.44%
78.04%
73.44%
75.11%
72.42%
Fam-poolers
4.49%
4.35%
4.54%
4.35%
4.35%
Carpoolers
3.37%
2.96%
3.37%
3.64%
2.50%
Sub-Total
84.30%
85.35%
81.35%
83.10%
79.27%
Multiple types of car journeys
Friends + Alone
2.08%
0.84%
3.74%
3.93%
5.69%
Family + Alone
1.34%
1.33%
1.58%
1.36%
0.12%
Family + Friends
0.29%
0.15%
0.16%
0.18%
0.12%
All of the above
0.06%
0.03%
0.00%
0.30%
0.01%
Sub-Total
3.77%
2.35%
5.48%
5.77%
5.94%
Other Modes of Commuting
11.95%
12.30%
13.16%
11.12%
13.80%
No Private Car Used
5.10%
5.18%
4.62%
5.38%
4.53%
Simple Car Journey and Other
Single Drivers
5.08%
5.37%
6.29%
4.53%
6.80%
Fam-poolers
0.50%
0.51%
0.53%
0.44%
0.52%
Carpoolers
0.57%
0.59%
0.58%
0.16%
1.75%
Sub-Total
6.15%
6.47%
7.40%
5.13%
9.07%
Multiple Types of Car Journeys and Other
Friends + Alone
0.25%
0.11%
0.42%
0.34%
0.01%
Family + Alone
0.23%
0.22%
0.67%
0.14%
0.01%
Family + Friends
0.13%
0.13%
0.06%
0.14%
0.01%
All of the above
0.07%
0.19%
0.00%
0.00%
0.00%
Sub-Total
0.68%
0.65%
1.15%
0.62%
0.03%
Total
100%
100%
100%
100%
100%
Table Notes:
ATUS provides sample weights for all cross section years so that the data are nationally
representative.
Percentages do not always add up due to rounding.
7
Figure 1: Decline of the Single Driver 2003-2007
Figure 2: Trends in Alternative Modes of the Journey to Work 2003-2007
70%
71%
72%
73%
74%
75%
76%
77%
78%
79%
2003
2004
2005
2006
2007
0.00%
2.00%
4.00%
6.00%
8.00%
10.00%
12.00%
14.00%
16.00%
2003
2004
2005
2006
2007
Other
Fam-Pooler
Car-Pooler
8
Figures 1 and 2 show that the incidence of commuting alone declined from 78 percent in
2003 to 72.4 percent in 2007. This is lower than the most recent Census estimates of 75.6%
(Census 2000). At the same time, traditional car-pooling more than doubled. Commuters using
only alternative forms of transportation (bus, train, walking, biking) increased only slightly;
driving with family members stayed relatively constant. Table 1 also reveals two interesting
facts that we do not analyze in this paper. First, while the number of commuters who use only
public transportation or walking or biking was roughly constant over the sample period, the
number combining private cars and “other” modes increased, including a large rise in the use of
carpools in combination with other modes. Second, “Dagwood Bumstead’ carpools (private car
only, simple journey carpools where each rider is picked up sequentially) are becoming more
scarce, while “Park and Ride” carpools (private car only, Friends+alone carpools) are becoming
more common.
Overall the data suggest a complex set of factors that determine individuals’ choice of
transportation to work. Clearly something has changed the costs of commuting for the single
driver. At the same time, however, the stability of the so-called fampoolers over time suggests
that these workers consider a very different set of factors in making their decisions. Building a
model complex enough to capture the different incentives facing individual workers should give
us insight into the journey to work decision. This task is taken up in the following section.
3. Econometric Model
The choice of mode of transport to work depends on the relative costs and benefits of
the various modes. As the descriptive data suggests, it is reasonable to think about the journey
to work decision as having four distinctly different alternatives: driving alone; carpooling;
fampooling; and other alternative modes of transportation including multimodal journeys. Some
authors have chosen to construct their model around a binary choice between driving alone or
not (Duecker, Bair and Levin 1977; Horowitz and Sheth 1977). We believe there are
9
econometric and theoretical advantages to treating the three alternatives to driving alone as
independent alternatives, since the costs and benefits of each mode are likely to be
considerably different across workers.1
For the typical commuter there are four categories of factors that affect their decision:
(1) automobile operating costs; (2) assembly costs; (3) value derived from the creation,
maintenance and use of social capital and (4) value of autonomy. Each factor will have different
values for each commuter and for each mode of transport. For example, when choosing
between joining a carpool and driving to work alone, a worker considers the following:
Decreased automobile operating costs (e.g., fuel, repairs, ownership costs);
Increased social capital (e.g., time spent commuting with friends and co-workers);
Increased assembly time costs (e.g., carpooling adds extra time to the journey to work
because it is necessary for the members of the carpool to be assembled at the
beginning and disassembled at the end of the work day);
Decreased autonomy (e.g., must agree upon when to arrive at work and when to depart,
forego the ability to run errands while journeying to work, etc.).
Carpooling will be preferred over driving alone if the increased benefits compared to driving
alone are greater than the increased costs. Carpooling will be the final choice if wins a similar
comparison against fampooling and all other modes of transport.
The same logic can easily be applied to other alternatives. For example, riding the
subway clearly reduces automobile operating costs. However, there is increased assembly time
since one has to wait for the train, transfer, etc., along with a loss of autonomy. Though it is not
obvious, social capital is likely to be higher since there is an increased possibility of meeting
new people. Fampooling would also increase assembly time in the same way as carpooling,
though probably by a smaller amount. It is unclear the extent to which fampooling affects
operating costs. On one hand, families are economizing on the number of car trips; however,
taking the kids to school rather than having them walk or ride the bus increases total operating
costs. Since those choosing to fampool are probably those who need more autonomy to meet
family demands, this is likely to play an important role for these people. However, fampooling
reduces social capital.
10
In general, the choice of commuting for the ith individual can be written as
(1) ,
Where j represents the four distinct categories of mode of commuting and:
Yj is the mode of travel chosen on the diary day;
X1 is a matrix of variables affecting the expected costs of driving alone (and therefore the
benefits of using other modes);
X2 is a matrix of variables affecting the assembly costs of choosing a type j journey;
X3 is a matrix of variables affecting the value of socializing that may occur during a
journey to work of type j;
X4 is a matrix of variables affecting the value of autonomy lost or gained from a type j
journey to work.
Since the four modes of commuting each carry their own advantages and disadvantages,
anything that changes the relative value those factors play in an individual worker’s utility
function will affect their commuting decision.
We now turn our attention to discussing the various individual and household
characteristics that alter those relative costs and benefits. We also explain our measure of
gasoline price. Exact definitions are given in Table 2.
The variables that affect the direct cost of automobile operation included here are the
real price of a gallon of gasoline and the length of the individual’s commute. Both higher
gasoline prices and a longer journey are expected to raise the cost of a trip to work in a private
car. For example, as these rise, carpooling should become relatively more attractive than
driving alone since the costs are shared by the members of the pool. The length of commute is
measured by the total commuting time and is taken from the ATUS. Gasoline prices are
measured by a 12 month moving average, with the final month of the 12 month period being the
month when the ATUS was collected. It is adjusted for monthly inflation using the CPI. As
shown in Figure 3, before leveling off in 2007 real gas prices more than doubled between 2003
11
and 2006. This represents a precipitous rise in the costs of commuting by car. Of course, the
effect of these increases on commuters will vary depending on the relative wealth of the
individuals’ households. While there is no direct measure of household wealth in the ATUS, we
do know if the worker owns a house. This will serve as our proxy wealth in the model.
Table 2: Definition of Explanatory Variables
Operating Costs
Commutetime
Total time spent commuting to work during diary day
ln(rgas12)
Log of the 12-month moving average of the real price of a gallon of regular
gasoline
Own house
Dummy = 1 if the respondent owns a house
Assembly Costs
ln(ftrwage)
Log of full-time wages
Central city
Dummy = 1 if the respondent lives in the principal city
Suburb
Dummy = 1 if the respondent lives in a suburb
Density
Population density for metropolitan area of residence
Value of Social Capital
Eatdrink
Total time respondent spent eating and drinking during diary day
Ncalonetime
Total time non-commuting time respondent spent alone during diary day
Married
Dummy = 1 if the respondent is married
Male
Dummy = 1 if the respondent is male
Age
Age of respondent
Value of Autonomy
Working
Total time spent working during diary day
Shopping
Total time spent shopping during diary day
Cooking
Total time spent cooking during diary day
Kids
Dummy = 1 if respondent has children
12
Figure 3: Trends in National Average Gasoline Prices 2003-2007
All modes of commuting require some degree of assembly and disassembly, the costs of
which depend of the opportunity cost of one’s time. Since those with higher wages have a
higher opportunity cost, higher wages should result in a lower probability of selecting the
transportation modes that requires longer assembly: carpools and other modes. Fampoolers
incur assembly costs, though less so than carpools. A spouse is dropped off at one workplace
and the other continues on to another workplace or a child is dropped at school on the parent’s
journey to work. In contrast, the single driver incurs very low no assembly cost, simply the time
it takes to get to his or her car.
Consider the assembly that takes place in traditional carpools. These “true carpools
can be assembled in two ways. In a Dagwood Bumstead Carpool (named after the cartoon
character who is in such a pool), the pool is assembled serially, with the driver going around to
$0.00
$0.50
$1.00
$1.50
$2.00
$2.50
$3.00
2003
2004
2005
2006
2007
Ave Gas Price
12-Mo Moving Ave
13
pick up those in the carpool. Park and Ride Carpools are assembled by meeting at a
designated place, like commuters who individually arrive at a park and ride lot and then join
together, forming the carpool. For both Dagwood and Park and Ride Carpools, the form of the
built environment (land use) has an effect on assembly time. If population density is greater,
assembly time in probably less, and the probability of carpooling will rise. Similarly, people
living in suburbs will probably have higher assembly times and carpool less, while those living in
central cities are more likely to choose carpooling over driving alone since assembling a carpool
is easier. The assembly time for riders of public transportation is also affected by urban form.
In cities with a more dense population, bus stops are more frequent and routes are more likely
to come closer to home and work. Not surprisingly, residents in the central city are more likely
to experience more convenient service than those in suburbs.
The value an individual worker places on the creation and maintenance of social capital
depends on a number of factors. The ATUS data tells us how individuals spend their time
during a typical day. If people are maximizing utility, we should be able to infer a great deal
about one’s personality from the amount of time they devote to various activities. Of particular
interest is the time individuals spend eating and drinking, and how much time they spend alone
(not including commuting time). We expect that people who spend more time eating and
drinking are more sociable. As a result, those individuals would be expected to be more likely to
choose transportation that allows for more social interaction like carpooling. Those who spend
more time alone probably place a lower value on social capital and would be more likely to drive
alone. We also expect that younger, single males place the highest value on social capital
formation and thus be more likely to choose to carpool.
Like social capital, we do not directly observe the value one places on autonomy. Again,
we can use data from the ATUS time use diary to make inferences about individual’s
preferences towards autonomy and flexibility in their commuting patterns. Those working longer
hours likely find it more difficult to coordinate arrival and departure from work times with others,
14
so we expect that those who work longer hours are less likely to carpool. Because of the
scarcity of leisure time, they also would tend to stay away from other modes that require large
assembly costs, like public transportation. Another set of indicators of the value workers place
on autonomy is related to household and family obligations. Those who are more active with
their families will find the loss of autonomy more costly. Therefore, those spending more time
cooking or shopping are less likely to carpool and are more likely to drive alone or fampool.
Similarly, having children will reduce the probability of carpooling and increase the probability of
fampooling.
4. Multinomial Results
We estimate two different models: (1) a full sample model, and (2) a model including
only those respondents who lived in metropolitan areas so that population density could be
included as a variable affecting assembly costs. Since population density is measured only for
people living in MSAs, the second model has about 30 percent fewer observations.
Nonetheless, the coefficient estimates remain quite stable across the two samples. The
multinomial results from each model are reported in Table 3. In Table 3, the baseline is driving
alone. Thus, the coefficients in each column show change in the log of the odds ratio of
choosing the mode in the column heading. For ease of interpretation, we have reported the
marginal effects in Table 4.
15
Table 3: Multinomial Logistic Regression Results (measured relative to P(single driver))
Full Sample
Metropolitan Sample
P(Fam)
P(Pool)
P(Public)
P(Fam)
P(Pool)
P(Public)
Coef.
Coef.
Coef.
Coef.
Coef.
Coef.
(std. error)
(std. error)
(std. error)
(std. error)
(std. error)
(std. error)
Commutetime
0.0042**
0.0069***
0.0116***
0.0038*
0.0079***
0.0127***
(0.0018)
(0.0010)
(0.0008)
(0.0023)
(0.0011)
(0.0010)
ln(rgas12)
-0.2715
0.5676***
0.2138
-0.2929
0.5872***
0.2452*
(0.2207)
(0.1829)
(0.1479)
(0.2560)
(0.2057)
(0.1630)
Own house
-0.1690
-0.4301***
-0.5953***
-0.1177
-0.4933***
-0.5828***
(0.1296)
(0.1139)
(0.0885)
(0.1440)
(0.1265)
(0.0977)
ln(ftrwage)
-0.5120***
0.1085
-0.2095**
-0.6289***
0.1269
-0.2445***
(0.0900)
(0.1042)
(0.0728)
(0.1107)
(0.1201)
(0.0836)
Central city
0.1618
0.0424
0.5058***
0.1539
0.2593
0.6004***
(0.1571)
(0.1541)
(0.1137)
(0.1981)
(0.2181)
(0.1637)
Suburb
0.0095
-0.1556
-0.0652
-0.0102
0.0489
0.0167
(0.1334)
(0.1340)
(0.1117)
(0.1753)
(0.1927)
(0.1594)
Density
-
-
-
0.0001
0.0000
0.0002***
(0.0001)
(0.0001)
(0.0001)
Eatdrink
0.0016
0.0044***
0.0023**
0.0020
0.0044***
0.0027***
(0.0015)
(0.0010)
(0.0009)
(0.0017)
(0.0011)
(0.0010)
Ncalonetime
-0.0035***
-0.0014***
0.0002
-0.0032***
-0.0014***
0.0002
(0.0006)
(0.0004)
(0.0003)
(0.0007)
(0.0005)
(0.0003)
Married
0.3098**
-0.3169***
-0.2077**
0.2719*
-0.3335***
-0.2416**
(0.1221)
(0.1119)
(0.0866)
(0.1403)
(0.1266)
(0.0964)
Male
-0.5287***
0.1218
0.0133
-0.6773***
0.1422
-0.0450
(0.1348)
(0.1194)
(0.0879)
(0.1531)
(0.1350)
(0.0981)
Age
-0.0082
-0.0197***
0.0061*
-0.0109*
-0.0194***
0.0039
(0.0051)
(0.0047)
(0.0034)
(0.0057)
(0.0055)
(0.0038)
Working
-0.0012**
-0.0013***
-0.0005
-0.0008
-0.0012***
-0.0004
(0.0005)
(0.0004)
(0.0003)
(0.0007)
(0.0004)
(0.0004)
Shopping
0.0013
-0.0018
0.0014
0.0014
-0.0008
0.0008
(0.0017)
(0.0018)
(0.0013)
(0.0020)
(0.0019)
(0.0014)
Cooking
0.0035**
0.0009
0.0001
0.0035**
-0.0008
-0.0005
(0.0015)
(0.0017)
(0.0012)
(0.0016)
(0.0020)
(0.0013)
Kids
0.2289*
0.0396
-0.0755
0.3606***
0.1448
-0.1101
(0.1197)
(0.1073)
(0.0818)
(0.1374)
(0.1218)
(0.0898)
Pseudo R2
0.1241
0.1394
Obs
12,902
10,152
Notes:
*, ** and *** denote statistical significance at the .10, .05 and .01 levels, respectively (two-tailed)
All models include controls for level of education, occupation, state of residence and top 20
cities
16
Table 4: Selected Marginal Effects: (From Full-Sample Model except where noted)
P(Fam)=0.0353
P(Pool)=0.0501
P(Public)=0.10
07
P(Single Driver)
=.8139
dy/dx
dy/dx
dy/dx
dy/dx
Operating Costs
Commutetime/60
0.0053
0.0157***
0.0600***
-0.0811***
ln(rgas12)
-0.0110
0.0264***
0.0175
-0.0329**
Own house
-0.0025
-0.0181***
-0.0569***
0.0775***
Assembly Costs
ln(ftrwage)
-0.0168***
0.0071
-0.0178***
0.0274***
Central City
0.0035
-0.0012
0.0501***
-0.0524***
Suburb
0.0008
-0.0070
-0.0051
0.0114
Density/750#
-0.0018
-0.0010
0.0162***
-0.0170**
Value of Social Capital
Eatdrink/60
0.0023
0.0012***
0.0110**
-0.0249***
Ncalonetime/60
-0.0070***
-0.0038***
0.0020
0.0087***
Married
0.0115***
-0.0150***
-0.0185**
0.0220**
Male
-0.0191***
0.0066
0.0026
0.0099
Age
-0.0003
-0.0010***
0.0007**
0.0005
Value of Autonomy
Working/60
-0.0023**
-0.0033***
-0.0023
0.0078***
Shopping/60
0.0024
-0.0056
0.0080
-0.0048
Cooking/60
0.0070**
0.0023
0.0030
-0.0089
Kids
0.0081**
0.0019
-0.0078
-0.0021
Notes:
*, ** and *** denote statistical significance at the .10, .05 and .01 levels, respectively (two-tailed)
# From metropolitan sample with full controls and normalized by its standard deviation (750)
Looking at operating costs, the results are consistent with economic theory. As
commuting time and the cost of gasoline increase, the likelihood of being a single driver
decreases. Most interesting is the effects on the alternatives. Commuting time has the largest
positive effect on the use of public transportation with a smaller effect on carpooling. However,
some caution must be taken here since commuting time is likely to be endogenous to the choice
of transportation type. In contrast, as the price of gasoline increases, there is a relatively large
effect on carpooling but a statistically insignificant effect on public transportation. The estimated
17
carpooling elasticity with respect to gas prices is 0.527.2 This is high, but still lower than the
“naive” long-run estimates of 0.71 found by Ferguson (1997). Fampooling is not affected at all
by operating costs. This lack of an effect is consistent with our theory that fampooling would be
more a function of autonomy and socialization. Wealth, as proxied by homeownership,
increases the likelihood of driving alone since the relative costs of operating a car decrease as
wealth increases. But like the direct costs (commuting time and gas) discussed above, it plays
no part in the decision to fampooling.
Turning to the value of social capital, we see markedly different effects across the 4
modes of commuting. As expected, workers who spend more non-commuting time alone
(introverts) are also more likely to favor driving alone. Fampoolers and carpoolers, however,
are positively affected by social engagement, though the people they interact with are likely to
differ. Those who socialize more as measured by eating and drinking time also are more likely
to use other alternatives. Being married decreased the probability of carpooling or using
alternative methods of commuting, but it did increase the probability of fampooling and driving
alone. Fampooling more when one is married is not surprising, but driving alone might be.
Theory tells us that being married decreases the marginal benefits from socializing, a key
motivator for carpooling and taking other public alternatives to commuting.
Assembly costs appear to mostly affect driving alone (positive) and alternative modes
(negatively). Surprisingly, assembly costs did not have a significant effect on carpooling. Urban
form (density) and the location within the metropolitan area (city or suburb) had expected
effects. Density decreases the assembly time for alternative modes of commuting since
distances are shorter and public transportation more readily available. But the opportunity cost
of one’s time (measured by wages) makes a big difference. Within a family, the higher wage
earner is less likely to fampool (drop the kids off at school, etc.).
The costs associated with the loss of autonomy are often cited as reason people do not
carpool or take public transportation. However, with the exception of the total hours worked
18
(working) on carpooling, there is no evidence here to support that excuse. But autonomy does
factor into the decision to fampool. Parents who do the cooking or pick up the kids are the ones
more likely to fampool. Not surprisingly, the longer one works, the less likely they are to fampool
that day. Overall, however, the variables associated with the need for autonomy have relatively
little qualitative effect on commuting decisions.
5. Conclusion
This paper has investigated recent trends in commuting behavior of American workers.
While the topic has been researched for years, this paper has made a number of important
contributions to our understanding of commuter’s choices. First, we have exploited a dataset
that has previously been unused in this literature. As a result, we are the first to document with
nationally representative data the recent decline in the number of workers who drive alone on
their daily commute. Second, by relying on individuals’ daily activity diaries of their time use
rather than census data, we have been able to document the complexity of contemporary
American commuting patterns. Third, the time use data allows us to make inferences about the
effects of individual workers preferences for autonomy, convenience and social capital on their
modal choice. Though such factors have been discussed in the literature before, little research
has been undertaken to test such hypotheses with broad-based data sets.
The results indicate that far more goes into the cost-benefit calculus of deciding how to
commute to work than is often presumed. In addition to the obvious monetary considerations
and assembly costs, social capital plays a significant role in determining worker’s decisions.
Interestingly, though people often use the excuse of autonomy when they don’t carpool, our
results find little evidence that such concerns play a large role for commuters without heavy
family obligations. We do, however, find that familial needs largely drive the behavior of so-
called fampoolers.
19
There results also have intriguing policy ramifications. Current campaigns to increase
carpooling seem to be limited to billboards and public service announcements that increase
awareness of hotlines and websites where partners might be found. Our findings suggest that
more effective policy instruments might be awareness campaigns conducted where people
socialize like cafeterias or after-work meeting places (a carpool hotline number could be printed
on cocktail napkins or embossed on swizzle sticks) since people who are more social are more
likely to carpool. Also, providing “park and pool” lots near residences would provide designated
places for park and ride carpools to meet, reducing assembly time from that usually required for
the stereotypical Dagwood Bumstead carpool. Of course, given the relatively large elasticity of
carpooling with respect to gas prices we have found, policy makers could also consider using
gasoline taxes as a way to promote carpooling and ridership on public transportation (where
available).
20
6. References
Census2000. U.S. Census Bureau. Summary File 3. Table P30.
Current Population Survey. U.S. Census Bureau. (2008) http://www.census.gov/cps/.
Charles KK, Kline K (2006) Relational costs and the production of social capital: Evidence from
carpooling. Econ J 116:581604.
Dueker KJ, Bair BO, Levin IP (1977) Ride Sharing: Psychological Factors. Transp Eng J
103:685-692 .
Fellows NT, Pitfield DE (2000) An economic and operational evaluation of urban car-sharing.
Transp Res Part D 5:1,1-10.
Ferguson E (1997) The rise and fall of the American carpool: 1970-1990. Transp 24:349376.
Huang H, Yang H, Bell MGH (2000) The models and economics of carpools. Ann Reg Sci 34:
55-68.
Hartgen DT, Bullard KC (1993) What has happened to carpooling: Trends in North Carolina,
1980 to 1990. Transp Res Rec, 1390:50-59.
Horowitz AD, Jagdish N Sheth JN (1977) Ride Sharing to Work: An Attitudinal Analysis. Transp
Res Rec 637:1- 7.
McGuckin N, Srinivasan N (2005) The Journey-to-Work in the Context of Daily Travel.
Presented at the Census Data for Transportation Planning Conference.
http://onlinepubs.trb.org/onlinepubs/archive/conferences/2005/censusdata/Resource-Journey-
to-Work.pdf Accessed March 23, 2010.
Morency C (2007) The ambivalence of ridesharing. Transp 34:239253.
Putnam R (1995) Bowling Alone: America’s Declining Social Capital. J Democr 6:1, 65-78.
Rosenbloom S, Burns E. (1993) Gender Differences in Commuter Travel in Tucson:
Implications for Travel Demand Management Programs. Transp Res Rec 1404:82-90.
21
Notes
1 If the choices are not independent, then estimation would require nested logit.
2 Table 4 shows that the marginal effect of a change in the log of real gas prices is 0.0264. So, a
100 percent increase in gas prices results in a 0.0264 increase in the probability of carpooling.
Since the marginal probability of carpooling is 0.0501, this translates into a 52.7 percent
increase in the probability of carpooling.
... are able to do so through modelling the interaction of autonomous agents (17). 18 The ABM aimed at simulating the actions and interactions of autonomous agents are not 19 ...
... According to literature review, the agent-based models are also used in non-computing related 5 scientific domains and can provide valuable information on society and the outcomes of social 6 actions or phenomena. A detailed literature review on technical (18,19), focuses on the 7 development of carpooling support systems, and empirical, interrelationships between 8 willingness to carpool and socio-economic attributes of carpooling, is presented. 9 ...
... The graph contains three lines, a blue, a green and an orange colored lines representing the active groups and destruction of the existing groups remains same, the remaining curve leveled off with 17 minor fluctuations up to the end of the simulation. 18 The graph in the Figure 4 we observed that respectively 5.09%, 7.03% and 9.23% of the commuters started to carpool 45 within the simulated period. The Flemish travel survey (OVG, 2013), shows that 9.51% of the 46 1,600 respondents carpool for home work commuting (8.85% for the OVG, 2012). ...
Conference Paper
Full-text available
In order to commute by carpooling, individuals need to communicate, negotiate and coordinate, and in most cases adapt their agenda (daily schedule) to enable cooperation. Through negotiation, agents (individuals) can reach complex agreements in an iterative way which meet the criteria for the successful negotiation. The procedure of negotiation and trip execution in the carpooling consists of a number of steps namely; (i) explore the social network, (ii) negotiate agenda to reach complex agreements, and (iii) long term trip execution. This paper presents a conceptual design of an organizational-based and agent-based model (ABM) of a set of candidate carpoolers that serves as a proof of concept and is an extension of a simple negotiation model for carpooling. The proposed model is used for simulating the interactions of autonomous agents with their agenda and explore social networks to initiate agent communication to trigger the negotiation process. The schedule adaptation depends on the preferences among feasible schedules of the individuals, generally depends on both the time of day and on the duration of the participation. In this simulation of the evolution we consider a daily schedule that consists of three activities (home, work and home) and a chain of two intermediate trips (home-to-work and work-to-home) only. We carried out a validation study of our results with real data collected in Flanders, Belgium. From the simulation’s discussions, it is possible to understand the causes why people can adapt their daily schedule to enable cooperation in order to carpool. The future research will mainly focus on enhancing the mechanism for negotiation between agents.
... Carpooling includes deciding who will be driving, arranging schedules and sharing travel expenses such as fuel and tolls. However, one common approach is to just rotate the participant who takes the car, and thus avoiding money exchange [1]. ...
Conference Paper
Carpooling is a car sharing practice first adopted in the United States of America during the fuel crisis in the 1970s. Since then, and after some ups and downs, this practice has been growing in recent years, being currently used throughout the world. With the evolution of mobile technologies, carpooling had the opportunity to expand, especially through mobile applications and web pages. With these technologies, it is possible for anyone in any part of the globe to search for others that wish to go to the same place and want to share their car. With this practice, people intend to save money, help preserve the environment, reduce congestions in cities, increase the number of places available to park and meet new people. This paper introduces MoCaS – Mobile Carpooling System –, a carpool service offered for registered users. In this system, each user can enter his travels and make appointments, assign ratings, register vehicles and add travel preferences. All this is possible via a web interface and also via a mobile application that together give greater support to those seeking such services. MoCaS distinguishes itself from other systems by offering innovative services, namely in the mobile component, that through location services allows for the booking of trips in real-time; in other words, not only trips that have not started, but trips that are already underway and that end up intersecting the user's position. Besides this novelty, this system provides a real-time map, where all trip stops are visible, as well as the location of carpoolers who are currently traveling. Both the web and the mobile applications were successfully developed, achieving good results in the performed tests, and are currently being prepared for deployment.
... Related research about the carpooling concept is largely separated into two parts; (i) a technical study and (ii) an empirical study. The first part focuses on the development of carpooling support systems with travel route matching techniques [3,4]. In the second part the overall trend of carpooling or interrelationship between willingness-to-carpool and socio-economic attribute of carpooler in study area is treated as a topic in general [5,6]. ...
Article
Full-text available
Carpooling is an emerging alternative transportation mode that is eco-friendly and sustainable as it enables commuters to save time, travel resource, reduce emission and traffic congestion. The procedure of carpooling consists of a number of steps namely (i) create a motive to carpool, (ii) communicate this motive with other interested agents, (iii) negotiate a plan with the interested agents, (iv) execute the agreed plans and (v) provide a feedback to all concerned agents. The state-of-the-art research work on agent-based modeling is limited to a number of technical and empirical studies that are unable to handle the complex agent behavior in terms of coordination, communication and negotiations. In this paper we present a conceptual design of an agent-based model (ABM) for the carpooling application that serves as a proof of concept. Our agent-based model for the carpooling application is a computational model that is used for simulating the interactions of autonomous agents and to analyze the effects of change in factors related to the infrastructure, behavior and cost. In our agent-based carpooling application we use agent profiles and social networks to initiate our agent communication model and then employ a route matching algorithm and a utility function to trigger the negotiation process between agents. We plan to, as a part of the future work, develop a prototype of our agent-based carpooling application on the basis of the work presented in this paper. Furthermore, we also intend to carry out a validation study of our results with real data.
Article
Full-text available
Global warming experienced on the earth in the last few decades has been attributed to greenhouse effect caused by accelerated CO2 emissions from the burning of fossil fuels. This study determined and described the effectiveness of transport policies on emission of CO2 from motorized road transport system in Kisumu City using stakeholder and document analyses. The theoretical framework of this study was the Systems Theory and the Clean Development Mechanism. The study recommended that the government should invest heavily in the public transport sector by enacting laws and policies aimed at discouraging the importation and use of low seating capacity vehicles and invest in the high seating capacity vehicles (BRT) and non-motorized road transport. KEY WORDS: transport policies, carbon dioxide (CO2 ), emission motorized road
Article
Full-text available
The global increase in the number of motor vehicles in the urban environment has greatly contributed to the increase in the amount of carbon dioxide released to the atmosphere which contributes to global warming. The study analyzed the relationship between the total CO2 emission from motorized road transport and the atmospheric CO2 concentration using the digital CO2 meter to sample atmospheric air to determine the atmospheric CO2 concentration in parts per million by volume at various time intervals in the Kisumu Bus Park and within the city and its neighborhoods’. The theoretical framework of this study was the Kinetic Theory of Gases. The study recommended that the government should invest heavily in the public transport sector by enacting laws and policies aimed at discouraging the importation and use of low seating capacity vehicles and invest in the high seating capacity vehicles (BRT) and non-motorized road transport. KEY WORDS: motorized road transport, BRT, carbon dioxide, emission
Article
Full-text available
This chapter describes a case study referring to a project named DIscourse in COmmunity of practices through TEcnologies (DI.CO.TE.)1. The project takes place in Southern Italy from 2009 through 2012; it involves 60 Small and Medium Enterprises (SMEs). Within a psychological point of view and a socio-constructivist approach, the main scope of the project is to introduce "externality" as a concept able to introduce and develop innovative practices for SMEs for environmental, economic, and social sustainability. Two focus group discussions involving 14 entrepreneurs and 106 questionnaires administered to employees were analyzed to explore various parameters of externalities, such as: (1) how externality is conceived; (2) the interplay between a sense of community and a re-definition and negotiation of identity; (3) the role of technology; the sense of belonging, and (4) the propensity to collaborate. Data are analyzed through both thematic discourse analysis and quantitative frequencies analysis. Results show that entrepreneurs hold a multidimensional definition of externality, meditated by their professional and private experience. Ultimately, the reflection on externalities sustains a sense of innovation connected to multi-membership and to re-negotiation of the sense of identity. Within this framework, technology is conceived as a tool supporting the appropriation and sharing of externalities.
Conference Paper
This paper identifies some of the barriers to the adoption of car-sharing, termed carpooling in the US, and develops a framework for deriving trusted recommendations based on social network information. The framework is established on a semantic modelling approach putting forward its suitability to resolving adoption barriers while also highlighting the characteristics of trust and social network information that can be exploited. Identification is made of potential vocabularies, ontologies and public social networks which can be used as the basis for deriving direct and indirect trust values in an implementation and will form part of the focus for future work.
Conference Paper
We present an ongoing research on an Integrated Real-time Mobility Assistant (IRMA). IRMA is a software system that targets the personal mobility in a near future scenario, based on green, shared and public transports. IRMA handles end-to-end itineraries that may involve multiple transport systems, and encompasses both commuter mobility and visitor mobility. The objective of IRMA is to make practically feasible a mobility that balances efficiency of time, energy/pollution and cost. Therefore, IRMA supports users in plotting the itinerary and also when en-route. IRMA architecture includes a smartphone application and a set of web services to gather and interpret any relevant source of information, that includes open data, crowd data and big data. The technology is SOA/EDA (Service Oriented Architecture / Event Driven Architecture) and uses GTFS format to access open data. IRMA, after being proved on test cases, shall be tested by the students of University of Pavia. IRMA concept is a step ahead current personal mobility systems that simply suggest and track itineraries.
Article
Full-text available
A mathematical model of ride sharing was proposed and tested by using data collected in the Chicago area in 1975. The purpose of the model development was to determine how perceived advantages and disadvantages of ride sharing determine behavioral predispositions toward it. The main conclusions are that (a) demographic and travel characteristics are poor indicators and predictors of the choice between driving alone and ride sharing; (b) the study of attitudes toward ride sharing and driving alone provides answers that are relevant to the question of how to develop ride-sharing stategies; (c) with the exception of individuals having a relatively high socioeconomic status, appeals based on public-interest issues of energy, traffic, and air quality have little chance of changing attitudes toward ride sharing; (d) perceptions of drivers toward time loss and the characteristics of convenience and reliability of ride sharing would need to change before their travel behavior would change and perceptions of economic advantages have a minor role in the determination of behavioral predisposition toward ride sharing; and (3) to override negative perceptions about ride sharing, campaigns should address its positive aspects related to the use of travel time and its convenience and reliability. To find a library where the publication may be available, visit: http://worldcat.org/issn/03611981. Otherwise, the order URL is: http://www.trb.org/Publications/Pages/262.aspx. Reference link: http://trid.trb.org/view.aspx?id=73083
Article
Full-text available
Recent declines in carpooling among American commuters are analyzed using data derived from the US Census of Population, the Nationwide Personal Transportation Study, and the American Home Survey. The most important factors associated with recent declines in carpooling to and from work in the US include increasing household vehicle availability, falling real marginal fuel costs, and higher average educational attainments among commuters. Age, sex, family income, household lifecycle characteristics, urban form, racial diversity and relative poverty appear to have had smaller effects on observed changes in carpooling for the work trip.
Article
Full-text available
Utilising cost benefit analysis techniques, in exactly the same way as the UK Government evaluates new roads and public transport schemes (i.e. COBA), car-sharing can be shown to produce very high net benefits to society. This paper shows that if a scheme were to be set up in the West Midlands area, UK, then even with the most conservative estimates of car-share participation, net benefits would be comparable to those produced by major road schemes. Indeed, slightly less conservative estimates of participation give net benefits in excess of road schemes.
Article
Full-text available
For studying carpooling problems, this paper presents two models, namely deterministic and stochastic, and gives the economic explanations to the model solutions. We investigate the jockeying behavior of work commuters between carpooling and driving alone modes through solving each model for both no-toll equilibrium and social optimum. The logit-based stochastic model involves the consideration on preference option of mode choice. Under some assumptions, the paper explains how the amount of carpooling is affected by fuel cost, assembly cost, value of time, preferential or attitudinal factors and traffic congestion. It is found that carpooling is sensitive to traffic congestion reduction only when a congestion externality-based tolling scheme is implemented.
Article
Journal of Democracy 6.1 (1995) 65-78 As featured on National Public Radio, The New York Times, and in other major media, we offer this sold-out, much-discussed Journal of Democracy article by Robert Putnam, "Bowling Alone." You can also find information at DemocracyNet about the Journal of Democracy and its sponsor, the National Endowment for Democracy. Many students of the new democracies that have emerged over the past decade and a half have emphasized the importance of a strong and active civil society to the consolidation of democracy. Especially with regard to the postcommunist countries, scholars and democratic activists alike have lamented the absence or obliteration of traditions of independent civic engagement and a widespread tendency toward passive reliance on the state. To those concerned with the weakness of civil societies in the developing or postcommunist world, the advanced Western democracies and above all the United States have typically been taken as models to be emulated. There is striking evidence, however, that the vibrancy of American civil society has notably declined over the past several decades. Ever since the publication of Alexis de Tocqueville's Democracy in America, the United States has played a central role in systematic studies of the links between democracy and civil society. Although this is in part because trends in American life are often regarded as harbingers of social modernization, it is also because America has traditionally been considered unusually "civic" (a reputation that, as we shall later see, has not been entirely unjustified). When Tocqueville visited the United States in the 1830s, it was the Americans' propensity for civic association that most impressed him as the key to their unprecedented ability to make democracy work. "Americans of all ages, all stations in life, and all types of disposition," he observed, "are forever forming associations. There are not only commercial and industrial associations in which all take part, but others of a thousand different types -- religious, moral, serious, futile, very general and very limited, immensely large and very minute. . . . Nothing, in my view, deserves more attention than the intellectual and moral associations in America." Recently, American social scientists of a neo-Tocquevillean bent have unearthed a wide range of empirical evidence that the quality of public life and the performance of social institutions (and not only in America) are indeed powerfully influenced by norms and networks of civic engagement. Researchers in such fields as education, urban poverty, unemployment, the control of crime and drug abuse, and even health have discovered that successful outcomes are more likely in civically engaged communities. Similarly, research on the varying economic attainments of different ethnic groups in the United States has demonstrated the importance of social bonds within each group. These results are consistent with research in a wide range of settings that demonstrates the vital importance of social networks for job placement and many other economic outcomes. Meanwhile, a seemingly unrelated body of research on the sociology of economic development has also focused attention on the role of social networks. Some of this work is situated in the developing countries, and some of it elucidates the peculiarly successful "network capitalism" of East Asia. Even in less exotic Western economies, however, researchers have discovered highly efficient, highly flexible "industrial districts" based on networks of collaboration among workers and small entrepreneurs. Far from being paleoindustrial anachronisms, these dense interpersonal and interorganizational networks undergird ultramodern industries, from the high tech of Silicon Valley to the high fashion of Benetton. The norms and networks of civic engagement also powerfully affect the performance of representative government. That, at least, was the central conclusion of my own 20-year, quasi-experimental study of subnational governments in different regions of Italy. Although all these regional governments seemed identical on paper, their levels of effectiveness varied dramatically. Systematic inquiry showed that the quality of governance was determined by longstanding traditions of civic engagement (or its absence). Voter turnout, newspaper readership, membership in choral societies and football clubs -- these were the hallmarks of a successful region. In fact, historical analysis suggested that these networks of organized reciprocity and civic solidarity...
Article
The conventional automobile transportation system is plagued with increasing congestion, pollution, energy consumption, and costs. These problems diminish the automobile's prime advantage of providing personalized, flexible transportation. Ride sharing--carpooling, vanpooling--can deal directly and effectively with these problems at a minimum cost. However, ride sharing has not become widely accepted. A carpooling attitidinal survey indicates that the two most important deterrents to potential carpoolers are the extra time requirements and the loss of independence. Ongoing research involves the analysis of the commuter decision-making process with regard to their mode choice. Models of experimental psychology are being used to study factors underlying individual preferences. These studies relate carpooling as a mode choice preference to interpersonal factors (i.e., composition of the carpool in terms of sex; prior acquaintanceship of potential riders) as important determinants of carpooling desirability.
Article
Ridesharing is quite a popular topic of discussion among transport authority personnel. It is perceived to be a viable alternative to classical modes of transportation, and receives a great deal of political support from transport planners. However, not much objective information is available on ridesharing behaviors. We use travel survey data to study the evolution of the ridesharing market in an urban area. Our study is based on data from four large-scale OD surveys conducted in the Greater Montreal Area (1987, 1993, 1998 and 2003). In the latest survey conducted in Montreal, car passengers were asked to identify the driver who gave them the opportunity to travel in this way. Their answers were classified according to the type of driver; for instance, a member of their household, a neighbor or a co-worker. We use this information to calibrate a model matching car passengers and car drivers belonging to the same household. This will be referred to as IHHR (intra-household ridesharing). Preliminary results reveal that approximately 70% of all trips made by car passengers are the result of IHHR. Furthermore, around 15% of those trips are questionable, in that they were exclusively generated for another individual’s purposes, consequently generating an additional trip for the journey back home. Moreover, this percentage increased over time. Objective data regarding ridesharing and its evolution in an urban area will undoubtedly help decision makers gain a clearer profile of this means of travel and help to realign attitudes on the issue.
Article
This article posits that individuals can more easily form social connections with people if they are of the same race. If true, the greater the incidence among his neighbours of persons of his race, the more likely an individual is to make neighbourhood social capital connections and the more likely he is to engage in activities which require it. The article tests this idea using an indicator of individual social capital never previously studied: whether the person uses a carpool to get to work. The analysis accounts for fixed differences across neighbourhoods, and a variety of extensions address possible differential racial sorting into neighbourhoods. The evidence strongly supports the article's hypothesis. Copyright 2006 Royal Economic Society.