Teruyuki Tanaka

Teruyuki Tanaka
The University of Tokyo | Todai · Developmental Medical Sciences

About

22
Publications
3,542
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,023
Citations

Publications

Publications (22)
Article
Full-text available
Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjec...
Data
Representative images of dendrites and spines of Cdkl5 +/Y and Cdkl5 -/Y mice. (A) Representative tracings of dendrites of Cdkl5 +/Y and Cdkl5 -/Y neurons by Neurolucida. Scale bars = 100 μm. (B,C) Representative images of dendrites from Thy1-EGFP positive CA1 pyramidal neurons. Scale bars = 50 μm (B), and 5 μm (C). (EPS)
Article
Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders accompanied by intractable epilepsies, i.e. West syndrome or atypical Rett syndrome. Here we report generation of the Cdkl5 knockout mouse and show that CDKL5 controls postsynaptic localization of GluN2B-containing N-methyl-d-aspartate (NMDA) rece...
Article
Full-text available
Muscle satellite cells are indispensable for muscle regeneration, but the functional diversity of their daughter cells is unknown. Here, we show that many Pax7(+)MyoD(-) cells locate both beneath and outside the basal lamina during myofiber maturation. A large majority of these Pax7(+)MyoD(-) cells are not self-renewed satellite cells, but have dif...
Article
Full-text available
Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be c...
Article
Full-text available
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppress...
Article
The identification of causative genes for subcortical band heterotopias (SBH)/lissencephaly has expanded molecular-biological studies of neuronal migration and enabled the creation of mouse models, which have further advanced the understanding of the molecular basis of these disorders. Brain magnetic resonance imaging (MRI) demonstrates three major...
Article
Full-text available
The ability of the mature mammalian nervous system to continually produce neuronal precursors is of considerable importance, as manipulation of this process might one day permit the replacement of cells lost as a result of injury or disease. In mammals, the anterior subventricular zone (SVZa) region is one of the primary sites of adult neurogenesis...
Article
In comparison with other migratory cells, neurons exhibit a unique, highly polarized morphology and a distinctive pattern of movement. This migration consists of a repeating of three distinct phases: neurite outgrowth, movement of the centrosome into the leading process, and translocation of the nucleus towards the centrosome. The direction of move...
Article
The potential role of doublecortin (Dcx), encoding a microtubule-associated protein, in brain development has remained controversial. Humans with mutations show profound alterations in cortical lamination, whereas in mouse, RNAi-mediated knockdown but not germline knockout shows abnormal positioning of cortical neurons. Here, we report that the dou...
Article
Humans with mutations in either DCX or LIS1 display nearly identical neuronal migration defects, known as lissencephaly. To define subcellular mechanisms, we have combined in vitro neuronal migration assays with retroviral transduction. Overexpression of wild-type Dcx or Lis1, but not patient-related mutant versions, increased migration rates. Dcx...
Article
Full-text available
The centrosome plays diverse roles throughout the cellular mitotic cycle and in post-mitotic cells. Analysis of centrosome position and dynamics in living murine cells has been limited due to a lack of adequate reporters and currently requires either cell fixation/immunostaining or transfection with centrosome reporters. Here we describe the genera...
Article
Full-text available
During brain development, neurons migrate great distances from proliferative zones to generate the cortical gray matter. A series of studies has identified genes that are critical for migration and targeting of neurons to specific brain regions. These genes encode three basic groups of proteins and produce three distinct phenotypes. The first group...
Article
Mutations in the doublecortin (DCX) gene in human or targeted disruption of the cdk5 gene in mouse lead to similar cortical lamination defects in the developing brain. Here we show that Dcx is phosphorylated by Cdk5. Dcx phosphorylation is developmentally regulated and corresponds to the timing of expression of p35, the major activating subunit for...
Article
Humans with heterozygous inactivating mutations of the Lis1 gene display type I lissencephaly, a severe form of cortical dysplasia hypothesized to result from abnormal neuronal migration. Previously we reported the construction of an allelic series of the Lis1 gene in mice to analyze the effects of graded reduction of LIS1 protein on the pathogenes...
Article
Full-text available
Cyclin-dependent kinase 5 (Cdk5) null mice exhibit a unique phenotype characterized by perinatal mortality, disrupted cerebral cortical layering attributable to abnormal neuronal migration, lack of cerebellar foliation, and chromatolytic changes of neurons in the brainstem and the spinal cord. Because Cdk5 is expressed in both neurons and astrocyte...
Article
The identification of the specific genes responsible for several childhood neurologic disorders has provided a framework with which to understand key development stages in human brain development. Common genetic disorders of brain development include septo-optic dysplasia, schizencephaly, holoprosencephaly, periventricular heterotopia, lissencephal...

Network

Cited By