Ted M Ross

Ted M Ross
University of Georgia | UGA · Center for Vaccine Development, Department of Infectious Diseases

PhD

About

346
Publications
33,008
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,658
Citations
Additional affiliations
February 2013 - May 2015
Vaccine & Gene Therapy Institute of Florida
Position
  • Director of Vaccines and Viral Immunity
February 2013 - May 2015
Vaccine & Gene Therapy Institute of Florida
Position
  • Professor
August 2006 - April 2013
University of Pittsburgh
Position
  • Professor (Associate)
Education
August 1991 - December 1996
Vanderbilt University
Field of study
  • Microbiology and Immunology

Publications

Publications (346)
Article
Full-text available
Participants between the ages of 10–86 years old were vaccinated with split-inactivated influenza vaccine (Fluzone®) in six consecutive influenza seasons from 2016–2017 to 2021–2022. Vaccine effectiveness varies from season to season as a result of both host immune responses as well as evolutionary changes in the influenza virus surface glycoprotei...
Article
Full-text available
The hemagglutinin (HA) and neuraminidase (NA) surface proteins are the primary and secondary immune targets for most influenza vaccines. In this study, H2, H5, H7, N1, and N2 antigens designed by the computationally optimized broadly reactive antigen (COBRA) methodology were incorporated into an adjuvant-formulated vaccine to assess the protective...
Article
Full-text available
Influenza exposures early in life are believed to shape future susceptibility to influenza infections by imprinting immunological biases that affect cross-reactivity to future influenza viruses. However, direct serological evidence linked to susceptibility is limited. Here we analysed haemagglutination-inhibition titres in 1,451 cross-sectional sam...
Article
Full-text available
Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective i...
Article
Full-text available
The influenza viruses cause seasonal respiratory illness that affect millions of people globally every year. Prophylactic vaccines are the recommended method to prevent the breakout of influenza epidemics. One of the current commercial influenza vaccines consists of inactivated viruses that are selected months prior to the start of a new influenza...
Preprint
Influenza virus infections present a pervasive global health concern resulting in millions of hospitalizations and thousands of fatalities annually. To address the influenza antigenic variation, the computationally optimized broadly reactive antigen (COBRA) methodology was used to design influenza hemagglutinin (HA) or neuraminidase (NA) for univer...
Preprint
Full-text available
Background The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these...
Article
Full-text available
Adjuvants enhance immune responses stimulated by vaccines. To date, many seasonal influenza vaccines are not formulated with an adjuvant. In the present study, the adjuvant Advax-SM™ was combined with next generation, broadly reactive influenza hemagglutinin (HA) vaccines that were designed using a computationally optimized broadly reactive antigen...
Article
Full-text available
Introduction Anti-neuraminidase (NA) immunity correlates with the protection against influenza virus infection in both human and animal models. The aim of this review is to better understand the mechanism of anti-NA immunity, and also to evaluate the approaches on developing NA-based influenza vaccines or enhancing immune responses against NA for c...
Preprint
The on-going diversification of influenza virus necessicates annual vaccine updating. The vaccine antigen, the viral spike protein hemagglutinin (HA), tends to elicit strain-specific neutralizing activity, predicting that sequential immunization with the same HA strain will boost antibodies with narrow coverage. However, repeated vaccination with h...
Article
Full-text available
Background The implementation of mRNA vaccines against COVID-19 has successfully validated the safety and efficacy of the platform, while at the same time revealing the potential for their applications against other infectious diseases. Traditional seasonal influenza vaccines often induce strain specific antibody responses that offer limited protec...
Preprint
Full-text available
In humans, seasonal influenza viruses cause epidemics. Avian influenza viruses are of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against all influenza strains. The cyclic GMP-AMP (cGAMP) is a p...
Article
Full-text available
The COVID-19 pandemic, triggered by severe acute respiratory syndrome coronavirus 2, has affected millions of people worldwide. Much research has been dedicated to our understanding of COVID-19 disease heterogeneity and severity, but less is known about recovery associated changes. To address this gap in knowledge, we quantified the proteome from s...
Preprint
Full-text available
Due to its natural influenza susceptibility, clinical signs, transmission, and similar sialic acid residue distribution, the ferret is the primary animal model for human influenza research. Antibodies generated following infection of ferrets with human influenza viruses are used in surveillance to detect antigenic drift and cross-reactivity with va...
Preprint
Full-text available
Influenza seasons occur annually, building immune history for individuals, but the influence of this history on subsequent influenza vaccine protection remains unclear. We extracted data from an animal trial to study its potential impact. The trial involved 80 ferrets, each receiving either one type of infection or a placebo before vaccination. We...
Preprint
Full-text available
Understanding the molecular mechanisms that underpin diverse vaccination responses is a critical step toward developing efficient vaccines. Molecular subtyping approaches can offer valuable insights into the heterogeneous nature of responses and aid in the design of more effective vaccines. In order to explore the molecular signatures associated wi...
Preprint
Full-text available
Many elderlies exhibited absent responses to influenza vaccines. Our exploration of this heterogeneity revealed associations with vaccine dose (HD vs. SD, OR: 0.59 (95%CrI, 0.4 to 0.87)), pre-vaccination titer levels (OR: 1.57 (95%CrI, 1.38 to 1.8), and gender (Male vs. Female OR: 2.12 (95%CrI, 1.38 to 3.25)).
Preprint
Full-text available
Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective i...
Article
Full-text available
Influenza virus infection alters the promoter DNA methylation of key immune response-related genes, including type-1 interferons and proinflammatory cytokines. However, less is known about the effect of the influenza vaccine on the epigenome. We utilized a targeted DNA methylation approach to study the longitudinal effects (day 0 pre-vaccination an...
Article
Full-text available
Each year, new influenza virus vaccine formulations are generated to keep up with continuously circulating and mutating viral variants. A next-generation influenza virus vaccine would provide long-lasting, broadly-reactive immune protection against current and future influenza virus strains for both seasonal and pre-pandemic viruses. Next generatio...
Preprint
Full-text available
Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human...
Article
Full-text available
Current FDA‐approved influenza vaccines are limited by variable year to year efficacy, low immunogenicity, and poor stability outside of cold‐chain storage. Polymeric microparticles can overcome many of these issues to provide an improved influenza vaccine platform. Here, an acetalated dextran microparticle platform is used to encapsulate a broadly...
Article
Full-text available
Zoonotic transmission of H5N1 highly pathogenic avian influenza virus (HPAIV) into the human population is an increasing global threat. The recent 2022 HPAIV outbreak significantly highlighted this possibility, increasing concern in the general population. The clinical outcomes of H5N1 influenza virus exposure can be determined by an individual’s p...
Article
Full-text available
Influenza virus outbreaks are a major burden worldwide each year. Current vaccination strategies are inadequate due to antigenic drift/shift of the virus and the elicitation of low immune responses. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) immunogens subvert the constantly mutating viruses; however, t...
Article
Influenza viruses infect 5–30% of the world’s population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from...
Article
Full-text available
Spike-encoding mRNA vaccines in early 2021 effectively reduced SARS-CoV-2–associated morbidity and mortality. New booster regimens were introduced due to successive waves of distinct viral variants. Therefore, people now have a diverse immune memory resulting from multiple SARS-CoV-2 Ag exposures, from infection to following vaccination. This level...
Article
Full-text available
Influenza B viruses (IBV) can cause severe disease and death much like influenza A viruses (IAV), with a disproportionate number of infections in children. Despite moving to a quadrivalent vaccine to include strains from both the B/Victoria and B/Yamagata lineages, vaccine effectiveness rates continue to be variable and low in many past seasons. To...
Article
The long-term effects of host factors on vaccine-elicited immune responses have not been well-studied, and the interactions of host factors with annual influenza vaccinations are yet to be explored. We analyzed data from a cohort of 386 individuals who received the standard-dose influenza vaccine and enrolled in multiple seasons (≥2) from 2016 to 2...
Article
Current seasonal influenza vaccines are limited in that they need to be reformulated every year in order to account for the constant mutation of the virus. Hemagglutinin (HA) immunogens have been developed using a computationally optimized broadly reactive antigen (COBRA) methodology, which are able to elicit an antibody response that neutralizes a...
Article
Traditional protein-based vaccine approaches to COVID-19 were overshadowed by the new mRNA and adenoviral vector vaccine approaches which were first to receive marketing authorization. The current study tested for the first time in repurposed aged (median 15.4 years) cynomolgus macaques, a novel Advax-CpG55.2™ adjuvanted recombinant extracellular d...
Article
Questions remain regarding correlates of risk and immune protection against SARS-CoV-2 infection and vaccination response. Thus, we prospectively enrolled 200 participants with a high risk of SARS-CoV-2 occupational exposure. Longitudinal analysis of participant exposure risks, vaccination/infection status, and symptoms were assessed at 3, 6, and 1...
Article
The biggest challenge in developing a universal influenza vaccine is the extensive antigenic drift. In contrast to humoral immunity, cell-mediated immunity is more cross-reactive and can protect against various subtypes and drift variants. Our research group has described computationally optimized broadly reactive antigens (COBRA) to develop HA-bas...
Article
Full-text available
Influenza virus poses an ongoing human health threat with pandemic potential. Due to mutations in circulating strains, formulating effective vaccines remains a challenge. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) proteins is a promising vaccine strategy to protect against a wide range of current and fu...
Article
Full-text available
Introduction SARS-CoV-2 is the etiologic agent of coronavirus disease 2019 (COVID-19). Questions remain regarding correlates of risk and immune protection against COVID-19. Methods We prospectively enrolled 200 participants with a high risk of SARS-CoV-2 occupational exposure at a U.S. medical center between December 2020 and April 2022. Participa...
Article
Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recombinant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus protein 2 (VP2) of infectious bursal disea...
Article
Full-text available
Currently licensed vaccine adjuvants offer limited mucosal immunity, which is needed to better combat respiratory infections such as influenza. Mast cells (MCs) are emerging as a target for a new class of mucosal vaccine adjuvants. Here, we developed and characterized a nanoparticulate adjuvant composed of an MC activator [mastoparan-7 (M7)] and a...
Article
Full-text available
Under the ever-present threat of a pandemic influenza strain, the evolution of a broadly reactive, neutralizing, functional, humoral immune response may hold the key to protection against both circulating and emerging influenza strains. We apply a systems approach to profile hemagglutinin- and neuraminidase-specific humoral signatures that track wi...
Article
Full-text available
Adjuvants are essential components of subunit vaccines added to enhance immune responses to antigens through immunomodulation. Very few adjuvants have been approved for human use by regulatory agencies due to safety concerns. Current subunit vaccine adjuvants approved for human use are very effective in promoting humoral immune responses but are le...
Article
Influenza is a global health concern with millions of infections occurring yearly. Seasonal flu vaccines are one way to combat this virus; however, they are poorly protective against influenza as the virus is constantly mutating, particularly at the immunodominant hemagglutinin (HA) head group. A more broadly acting approach involves Computationall...
Article
Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual usin...
Article
Full-text available
Computationally optimized broadly reactive antigens (COBRAs) are a next-generation universal influenza vaccine candidate. However, how these COBRAs induce antibody responses when combined with different adjuvants has not previously been well-characterized. Therefore, we performed in vivo studies with an HA-based H1 COBRA, Y2, and an NA-based N1 COB...
Article
Full-text available
Influenza represents a major and ongoing public health hazard. Current collaborative efforts are aimed toward creating a universal flu vaccine with the goals of both improving responses to vaccination and increasing the breadth of protection against multiple strains and clades from a single vaccine. As an intermediate step toward these goals, the c...
Article
Full-text available
Initial exposure to influenza virus(es) during early childhood produces protective antibodies that may be recalled following future exposure to subsequent viral infections or vaccinations. Most influenza vaccine research studies use immunologically naïve animal models to assess vaccine effectiveness. However, most people have an extensive influenza...
Article
Full-text available
The influenza neuraminidase (NA) is a promising target for next-generation vaccines. Protection induced by vaccination with the computationally optimized broadly reactive NA antigen (N1-I COBRA NA) was characterized in both influenza serologically naive and pre-immune ferret models following H1N1 (A/California/07/2009, CA/09) or H5N1 (A/Vietnam/120...
Article
Full-text available
The serological response to the influenza virus vaccine is highly heterogeneous for reasons that are not entirely clear. While the impact of demographic factors such as age, body mass index (BMI), sex, prior vaccination and titer levels are known to impact seroconversion, they only explain a fraction of the response. To identify signatures of the v...
Preprint
Full-text available
Background Influenza virus infection alters the promoter DNA methylation of key immune response-related genes, including type-1 interferons and proinflammatory cytokines. However, less is known about the effect of the influenza vaccine on the epigenome. We utilized a targeted DNA methylation approach to study the longitudinal effects (day 0 pre-vac...
Article
Full-text available
Seasonal influenza is a primary public health burden in the USA and globally. Annual vaccination programs are designed on the basis of circulating influenza viral strains. However, the effectiveness of the seasonal influenza vaccine is highly variable between seasons and among individuals. A number of factors are known to influence vaccination effe...
Article
A subunit or protein-based influenza vaccine can be a safer alternative to live attenuated vaccine (Flumist) and require fewer boosts than an inactivated vaccine (e.g. Fluzone). However, to form an effective subunit vaccine, an adjuvant is often needed. In this work we used electrospray to encapsulate the hydrophilic adjuvant CpG into microparticle...
Preprint
The COVID-19 pandemic, triggered by severe acute respiratory syndrome coronavirus 2, has affected millions of people worldwide. Much research has been dedicated to our understanding of COVID-19 disease heterogeneity and severity, but less is known about recovery associated changes. To address this gap in knowledge, we quantified the proteome from s...
Article
Full-text available
Background: Pandemic influenza viruses may emerge from animal reservoirs and spread among humans in the absence of cross-reactive antibodies in the human population. Immune response to highly conserved T cell epitopes in vaccines may still reduce morbidity and limit the spread of the new virus even when cross-protective antibody responses are lack...
Article
Full-text available
Better understanding of the molecular mechanisms underlying COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein are unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma...
Article
Full-text available
Molecular responses to influenza A virus (IAV) infections vary between mammalian species. To identify conserved and species-specific molecular responses, we perform a comparative study of transcriptomic data derived from blood cells, primary epithelial cells, and lung tissues collected from IAV-infected humans, ferrets, and mice. The molecular resp...
Preprint
Full-text available
The serological response to the influenza virus vaccine is highly heterogeneous for reasons that are not entirely clear. While the impact of demographic factors such as age, body mass index (BMI), sex, prior vaccination and titer levels are known to impact seroconversion, they only explain a fraction of the response. To identify signatures of the v...
Article
Full-text available
Even with the COVID-19 pandemic, tuberculosis remains a leading cause of human death due to a single infectious agent. Until successfully treated, infected individuals may continue to transmit Mycobacterium tuberculosis bacilli to contacts. As with other respiratory pathogens, such as SARS-CoV-2, modeling the process of person-to-person transmissio...
Article
Full-text available
Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune resp...
Article
Full-text available
There is limited knowledge on durability of neutralization capacity and antibody affinity maturation generated following two versus three doses of SARS-CoV-2 mRNA vaccines in naïve versus convalescent individuals (hybrid immunity) against the highly transmissible Omicron BA.1, BA.2 and BA.3 subvariants. Virus neutralization titers against the vacci...
Article
Full-text available
Among circulating influenza viruses in humans, H3N2 viruses typically evolve faster than other subtypes and have caused disease in millions of people since emerging in 1968. Computationally optimized broadly reactive antigen (COBRA) technology is one strategy to broaden vaccine-elicited antibody responses among influenza subtypes. In this study, we...
Article
Full-text available
A key to improving vaccine design and vaccination strategy is to understand the mechanism behind the variation of vaccine response with host factors. Glycosylation, a critical modulator of immunity, has no clear role in determining vaccine responses. To gain insight into the association between glycosylation and vaccine-induced antibody levels, we...
Preprint
Seasonal influenza is a primary public health burden in the USA and globally. Annual vaccination programs are designed on the basis of circulating influenza viral strains. However, the effectiveness of the seasonal influenza vaccine is highly variable between seasons and among individuals. A number of factors are known to influence vaccination effe...
Article
Full-text available
Strategies that improve influenza vaccine immunogenicity are critical for the development of vaccines for pandemic preparedness. Hemagglutinin (HA)-specific CD4⁺ T cell epitopes support protective B cell responses against seasonal influenza. However, in the case of avian H7N9, which poses a pandemic threat, HA elicits only weak neutralizing antibod...
Article
Computationally optimized broadly reactive Ag (COBRA) hemagglutinin (HA) immunogens have previously been generated for several influenza subtypes to improve vaccine-elicited Ab breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. We d...
Preprint
Full-text available
Better understanding of the mechanisms of COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein is unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma samples and autops...
Article
In this study, we used multiple enzyme digestions, coupled with higher-energy collisional dissociation (HCD) and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to develop a mass-spectrometric (MS) method for determining the complete protein sequence of monoclonal antibodies (mAbs). The method was refined on an mAb of a...
Article
Full-text available
To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. He...
Article
Full-text available
Introduction: : Influenza virus is a major cause of seasonal epidemics and intermittent pandemics. Despite the current molecular biology and vaccine development, influenza virus infection is a significant burden. Vaccines are considered an essential countermeasure for effective control and prevention of influenza virus infection. Even though curre...
Article
Full-text available
The seasonal influenza vaccine is only effective in half of the vaccinated population. To identify determinants of vaccine efficacy, we used data from > 1,300 vaccination events to predict the response to vaccination measured as seroconversion as well as hemagglutination inhibition (HAI) titer levels one year after. We evaluated the predictive capa...
Article
Introduction: Universities are unique settings with large populations, congregate housing, and frequent attendance of events in large groups. However, the current prevalence of previous COVID-19 infection in university students, including symptomatic and asymptomatic disease, is unknown. Our goal therefore was to determine the prevalence of previo...
Article
Humans make SARS-CoV-2-specific antibodies, CD4+ T cells, and CD8+ T cells in response to infection. Neutralizing antibodies are associated with protective immunity against secondary infection and are the mechanism that can provide truly sterilizing immunity. While not necessarily providing sterilizing protection, T cell responses are critical for...
Article
Full-text available
In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we assessed anti-RBD antibody levels in over 1000 people and found no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, a significant waning of antibody levels was observed following vac...
Article
Full-text available
Sex differences in the pathogenesis of infectious diseases due to differential immune responses between females and males have been well documented for multiple pathogens. However, the molecular mechanism underlying the observed sex differences in influenza virus infection remains poorly understood. In this study, we used a network-based approach t...
Preprint
Full-text available
As of March 2022, there have been over 450 million reported SARS-CoV-2 cases worldwide, and more than 4 billion people have received their primary series of a COVID-19 vaccine. In order to longitudinally track SARS-CoV-2 antibody levels in people after vaccination or infection, a large-scale COVID-19 sero-surveillance progam entitled SPARTA (SeroPr...
Article
Full-text available
Commercial influenza virus vaccines often elicit strain-specific immune responses and have difficulties preventing illness caused by antigenically drifted viral variants. In the last 20 years, the H3N2 component of the annual vaccine has been updated nearly twice as often as the H1N1 component, and in 2019, a mismatch between the wild-type (WT) H3N...
Article
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal influenza viruses are co-circulating in the human population. However, only a few cases of viral co-infection with these two viruses have been documented in humans with some people having severe disease and others mild disease. In order to examine this phenomenon, ferrets wer...
Article
Full-text available
The COVID-19 pandemic has resulted in significant diversion of human and material resources to COVID-19 diagnostics, to the extent that influenza viruses and co-infection in COVID-19 patients remains undocumented and pose serious public-health consequences. We optimized and validated a highly sensitive RT-PCR based multiplex-assay for the detection...
Preprint
Among circulating influenza viruses in humans, H3N2 viruses typically evolve faster than other subtypes and have caused severe illness and deaths in millions of people since emerging in 1968. Computationally optimized broadly reactive antigen (COBRA) technology is one strategy to broaden vaccine-elicited antibody responses among influenza subtypes....
Article
Objective: The purpose of this study was to explore how both ongoing emotional distress and the experience of a targeted rejection over the past six months are associated with adolescents' antibody response to influenza virus vaccination. We predicted that experiencing a targeted rejection would amplify the hypothesized negative association betwee...
Article
Full-text available
Individuals with type 2 diabetes mellitus experience high rates of influenza virus infection and complications. We compared the magnitude and duration of serologic response to trivalent influenza vaccine in adults aged 50–80 with and without type 2 diabetes mellitus. Serologic response to influenza vaccination was similar in both groups: greater fo...
Article
Full-text available
Background Limited knowledge exists regarding antibody affinity maturation following mRNA vaccination in naïve vs. COVID-19 recovered individuals and potential sex differences. Methods We elucidated post-vaccination antibody profiles of 69 naïve and 17 COVID-19 convalescent adults using pseudovirus neutralization assay (PsVNA) covering SARS-CoV-2...
Article
Full-text available
The hemagglutination inhibition (HAI) assay is a well-established and reproducible method that quantifies functional antibody activity against influenza viruses and, in particular, the capability of an antibody formulation to inhibit the binding of hemagglutinin (HA) to sialic acid. However, the HAI assay does not provide full insights on the bread...
Preprint
Full-text available
The computationally optimized broadly reactive antigen (COBRA) approach has previously been used to generate hemagglutinin (HA) immunogens for several influenza subtypes that expand vaccine-elicited antibody breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled...
Article
Full-text available
In this study, we hypothesized that the humoral response to trivalent seasonal influenza virus vaccines was influenced by rapid antigenic switching of H1 HA. We tested archived sera and peripheral blood mononuclear cells (PBMC) collected at prior to vaccination at day 0, as well as days 30 and 90 after vaccination during the 2009/2010 and 2010/2011...
Article
Full-text available
H5N1 COBRA hemagglutinin (HA) sequences, termed human COBRA-2 HA, were constructed through layering of HA sequences from viruses isolated from humans collected between 2004–2007 using only clade 2 strains. These COBRA HA proteins, when expressed on the surface of virus-like particles (VLP), elicited protective immune responses in mice, ferrets, and...
Article
Full-text available
Two serious public health challenges have emerged in the current COVID-19 pandemic namely, deficits in SARS-CoV-2 variant monitoring and neglect of other co-circulating respiratory viruses. Additionally, accurate assessment of the evolution, extent, and dynamics of the outbreak is required to understand the transmission of the virus. To address the...
Preprint
Full-text available
The seasonal influenza vaccine is only effective in half of the vaccinated population. To identify determinants of vaccine efficacy, we used data from >1,300 vaccination events to predict the response to vaccination measured as seroconversion as well as hemagglutination inhibition (HAI) levels one year after. We evaluated the predictive capabilitie...
Preprint
Full-text available
Individuals with type 2 diabetes mellitus experience high rates of influenza virus infection and complications. We compared the magnitude and duration of serologic response to trivalent influenza vaccine in adults aged 50-80 with and without type 2 diabetes mellitus. Serologic response to influenza vaccination was similar in both groups: greater fo...
Article
Full-text available
As the COVID-19 pandemic continues, the authorization of vaccines for emergency use has been crucial in slowing down the rate of infection and transmission of the SARS-CoV-2 virus that causes COVID-19. In order to investigate the longitudinal serological responses to SARS-CoV-2 natural infection and vaccination, a large-scale, multi-year serosurvei...
Article
Full-text available
Each person has a unique immune history to past influenza virus infections. Exposure to influenza viruses early in life establishes memory B cell populations that influence future immune responses to influenza vaccination. Current influenza vaccines elicit antibodies that are typically strain specific and do not offer broad protection against antig...
Article
Full-text available
The hemagglutinin (HA) surface protein is the primary immune target for most influenza vaccines. The neuraminidase (NA) surface protein is often a secondary target for vaccine designs. In this study, computationally optimized broadly reactive antigen methodology was used to generate the N1-I NA vaccine antigen that was designed to cross-react with...
Article
Full-text available
Influenza is a highly contagious viral respiratory disease that affects million of people worldwide each year. Annual vaccination is recommended by the World Health Organization with the goal of reducing influenza severity and limiting transmission through elicitation of antibodies targeting the hemagglutinin (HA) glycoprotein. The antibody respons...
Article
Full-text available
Influenza virus vaccines have been designed for human and veterinary medicine. The development for broadly protective influenza virus vaccines has propelled the vaccine field to investigate and include neuraminidase (NA) components into new vaccine formulations. The antibody-mediated protection induced by NA vaccines is quantified by inhibition of...
Article
The development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombi...
Preprint
Full-text available
Background In the current phase of COVID-19 pandemic, we are facing two serious public health challenges that include deficits in SARS-CoV-2 variant monitoring, and neglect of other co-circulating respiratory viruses. Additionally, accurate assessment of the evolution, extent and dynamics of the outbreak are required to understand the transmission...

Network

Cited By