ArticlePDF Available

Generalized Predictive DC-Link Voltage Control for Grid-Connected Converter

Authors:
  • Zhejiang University

Abstract

The main function of the grid-connected converter in many applications is to control the DC-link voltage with high performance, i.e. strong disturbance rejection capability and good dynamic response. Take the grid connected PWM rectifier of a motor drive system as an example, good disturbance rejection capability is essential for the DC-link voltage control to address the varying loads on the motor side, and the dynamic process of the DC-link voltage control is preferred to be fast and overshoot-free, so as to adaptively adjust the DC-link voltage according to the motor speed and reduce the switching losses. However, the performance of the conventional PI-based DC-link voltage control is not always satisfying and can be further improved. In this paper, the generalized predictive control (GPC) method is applied to the DC-link voltage control of a grid-connected converter for the first time, which can provide both good disturbance rejection capability and satisfying dynamic performance. Moreover, stability analysis of the proposed GPC-based DC-link voltage control strategy is theoretically studied, and a parameter tuning guideline is provided. The effectiveness and advantages of the proposed method are validated with experimental results.
AbstractThe main function of the grid-connected
converter in many applications is to control the DC-link
voltage with high performance, i.e. strong disturbance
rejection capability and good dynamic response. Take the
grid connected PWM rectifier of a motor drive system as an
example, good disturbance rejection capability is essential
for the DC-link voltage control to address the varying loads
on the motor side, and the dynamic process of the DC-link
voltage control is preferred to be fast and overshoot-free, so
as to adaptively adjust the DC-link voltage according to the
motor speed and reduce the switching losses. However, the
performance of the conventional PI-based DC-link voltage
control is not always satisfying and can be further improved.
In this paper, the generalized predictive control (GPC)
method is applied to the DC-link voltage control of a grid-
connected converter for the first time, which can provide
both good disturbance rejection capability and satisfying
dynamic performance. Moreover, stability analysis of the
proposed GPC-based DC-link voltage control strategy is
theoretically studied, and a parameter tuning guideline is
provided. The effectiveness and advantages of the proposed
method are validated with experimental results.
Index terms DC-link voltage, generalized predictive
control (GPC), Grid-connected converter.
I. INTRODUCTION
       
       
       
 
       
       

  

 
  

       
        
     
 
         
       

       


         

 

      
       

 
        
      
    

       


      



       
       
      

  
         

        

     



          
         
     
        
        




      
       
   
         

    
   
       
         



Special Issue Commemorating 40 years of WEMPEC 2020


Fellow, IEEE
   
       
      
      

      

        
        


        



       

      
        

   
         
        






        

        
         
     
     

       
        
      


      



      

    
       

    
  




       
       
 
        


     
        
     
        
       

II. MATHEMATICAL MODEL
+
-
C
Grid
VSC
g
L
a
i
b
i
c
i
DC
V
L
i
CAP
i
a
v
b
v
c
v
g
R
Load
u




DC DC L
dV i i
dt C
-
=

Vi
DCL
    C      


 
( 1) ( ) ( ) / ( ) /
DC DC DC s L s
V k V k i k T C i k T C + = +  - 

Ts
    k      

           


1
dq dq g
dq dq dq
g g g
R
dj
dt L L L
= - - -
uv
i i i

uv
dqdq
ω
Lg Rg  


33
( ) ( )
22
DC DC d d q q d d q q
V i v i v i u i u i= +  +



III. PROPOSED GPC-BASED DC-LINK VOLTAGE CONTROL
AND IMPLEMENTATION
       
       


A. General Structure Introduction

      

        
        
     
       d
        
q




B. GPC for DC-Link Voltage Control
        
     

()
( 1) ( )
()
( 1) ( ) /
10 ()
( 1) 1 1 ( ) /
()
( ) [0 1] ()
DC DC s DC
DC DC s
mm
mm
DC
DC DC
m
hk
kk
yk
V k V k T C ik
V k V k T C
Vk
Vk Vk
+
 +
 

= + 
 

+
 

=


AB
xx
C

xmyh
    Am Bm  Cm  

N

()
mk= + YΩx F H


( 1)
( 2)
()
yk
yk
y k N
+


+

=

+

Y

()
( 1)
( 1)
hk
hk
h k N


+

=


+ -

H

mm
2
mm
mm
N



=



CA
CA
Ω
CA

mm
mmm mm
12
m m m m m m m m
00
NN--



=



CB
C A B C B
F
C A B C A B C B
   
         

* T * T
min ( ) ( )J
= - - + 
HY Y Q Y Y H R H


* * * * T
=[ ]
DC DC DC
V V VY
     

QdiagQQQNRdiagRRRN
        


 Q          Qkq  
RRkrR_stepk
R_step 

  
T 1 T *
( ) [ ( )]
mk
-
 = + -H F QF R F Q Y Ωx

        

*1
1
1
DC
iz-
=
-WH


 
1 0 0
N
=W
C. AC Current Reference Calculation
        

        
       

d
q  
3
2
DC DC d d
V i u i

         
d
*
*23
DC DC
dd
Vi
iu
=

 
         
          
 
 
         

D. Current Constraint
    
d
        
  
d
        
       

        
         


  d     
__d low d d up
i i i


__
*
33
22
d d low d d up
DC
DC DC
u i u i
i
VV


E. GPC for AC Current Control

    
         
       

         
        

        
         
      




*
DC
V
DC
V
+-
Vdc
PI
converter DC
bus
DC
V
*
d
i
*
q
i
id
PI
dq
i
*
dq
v
PWM
iq
PI
+-
dq
i
×
÷
2/3
DC
V
×
d
u
*
DC
i
Vdc
GPC
*
DC
V
DC
V
×
÷
2/3
converter DC
bus
DC
V
DC
V
×
d
u
*
d
i
*
q
i
*
dq
i
idq
GPC
dq
i
dq
i
*
dq
v
*
DC
i
PWM

       


1
1
1
1
( 1) ( )
1 0 0
( 1) ( )
1 0 0
( 1) ( ) /
/
( 1) ( )
1 1 0
( 1) ( )
1 0 1
s
s
dd
s
qq
s s s
s s s
dd
sm
dd
s
mm
s
m
kk
R
L
i k i k
R
i k i k
L T L
R T L
i k i k
L
i k i k
R
L
+

-


 +
 

--
 

 + 
 

=+

 

+
-
 

+
 
 


--


B
xx
A
()
()
()
()
()
()
() 0 0 1 0
( ) 0 0 0 1 ()
()
d
q
d
q
d
dd
md
hk
yk
vk
vk
ik
ik
ik
ik ik
ik








=








C

 
          
 
* * * * * * * T
=[ ]
d q d q d q
i i i i i iY
     
       
QjQjdQjqRjRjdRjq


dq

*
1
*1
1
d
q
v
z
v-

=
 -

 WH


1 0 0
0 1 0
N

=
W
IV. STABILITY ANALYSIS AND DESIGN REMARKS
     
 




         
        




    

       
       

A. Transfer Functions

         
       

        

          
          
          d


          
()k
 
T
2 2 2 2[ ( ) ( )]
N
=  M I I
is used
to exploit the current reference to the whole prediction horizon.
T 1 T
( + )-
=T F QF R F Q
is obtained from (8), and all the
other matrices are defined previously in Section II


        
  

1
() ()
open mm
zz-
-G=I A B WTΩ

1
*1
()
()
() ( ) ( )
mm
closed m
mm
z
yk
zy k z
-
-
-
-
I A B WT
G = = C M
I + I A B WTΩ

    



11
,1
(1 )( )
()
() () ()
mm
ym
mm
zz
yk
zkz
--
-
--
-
I A B
G = = C I + I A B WTΩ

        

B. Stability Analysis
       
          





1
() 0
mm
z-
-

=

det I + I A B WTΩ




       
         




        N 

         
       


*()yk
()uk
1
()
mm
z-
-I A B
()
m
xk
m
C
()yk
Ω
W
M
+-
T
U
GPC
PMSM
1d
Nd d
1Nd
Nd Nd
d Nd
1Nd
1d
2dd
21d
1d
2dd
2Nd d
Disturbance
1
1z-
-
()k
         

Q   
 R
    R    RdiagR
RRNRkrR_stepkr
R_step

 
      r    


rR_step

         
R_step         
R_step


     
C
C

C
         

   





 
        
r
R_step 
      
R_step
   Rg  
Lg

        

N
r
N
N
    r      R_step 

R_step       
R_step

  


N          r
R_step      


N       r
R_step




Parameters
Impacts
Prediction
horizon N
Large
Good stability
Small
Tend to be critically stable (resonance)
Weighting
factor r
Large
Tend to be critically stable (resonance)
Small
Good stability
Coefficient
R_step
Large
Outer loop: critically stable (resonance)
Inner loop: little impact
Small
Outer loop: unstable
Inner loop: little impact
Plant parameter
mismatch
Little impact
Green: starting points
Blue: ending points
Red: other points
Zoom in
Prediction horizon N increases from 10 to 200
Imag
Real
Weighting factor r increases from 1e-2 to 3.48e7
Green: starting points
Blue: ending points
Red: other points
Zoom in
Imag
Real
Coefficient R_step increases from 0.5 to 1.5
R_step=0.5
R_step=0.55 R_step=0.6
R_step=0.65
Green: starting points
Blue: ending points
Red: other points
Zoom in
Imag
Real
Estimated C increases from 1.2 mF to 46mF
Green: starting points
Blue: ending points
Red: other points
Zoom in
Imag
Real
Prediction horizon N increases from 1 to 20
Green: starting points
Blue: ending points
Red: other points
Imag
Real
Green: starting points
Blue: ending points
Red: other points
Weighting factor r increases from 1e-7 to 348
Imag
Real
Green: starting points
Blue: ending points
Red: other points
Coefficient R_step increases from 0.2 to 1.2
Imag
Real
Estimated Rg increases from 0.2 Ω to 7.67 Ω
Green: starting points
Blue: ending points
Red: other points
Imag
Real
Estimated Lg increases from 4 mH to 153.4 mH
Green: starting points
Blue: ending points
Red: other points
Imag
Real
C. Disturbance Rejection Analysis
       

         
         
      
        
       
ddd-
d-
   qq       




         

       
N
       N
N     
          


           

 r       

         
R_step        
      R_step  
        
          


          
          
        N
      
N
rR_step
 
         

N        r
R_step      


N          r
R_step      



D. Parameter Design Remarks
        
        
  
        N 
rR_step
  Gclosedz      

      
stepGclosedz   
           
        

       
 N        

N
Vdc
N


 N
       

       
       
N
N

-40
-20
0
20
40
100101102103
Frequency (Hz)
Phase (deg) Magnitude (dB)
-180
-90
0
90
180
N increases from 10
to 20, 50, 100, 200
N increases from 10 to
20, 50, 100, 200
-40
-20
0
20
40
100101102103
-180
-90
0
90
180
Phase (deg) Magnitude (dB)
Frequency (Hz)
r increases from 1e1 to 1e2, 1e3,
1e4 and 1e5
r increases from 1e1 to 1e2,
1e3, 1e4 and 1e5
-60
-40
-20
0
20
40
100101102103
-180
-90
0
90
180
Frequency (Hz)
Phase (deg) Magnitude (dB)
R_step decreases from 1.1
to 1, 0.95, 0.9, and 0.8
-40
-20
0
20
40
100101102103
-180
-90
0
90
180
Frequency (Hz)
Phase (deg) Magnitude (dB)
Estimated C increases from
3 to 4.5, 6, 9 and 12 mF
Estimated C increases from
3 to 4.5, 6, 9 and 12 mF
-80
-60
-40
-20
0
100101102103
0
90
180
270
360
Frequency (Hz)
Phase (deg) Magnitude (dB)
N increases from 1 to
2, 5, 10, 20
N increases from 1 to
2, 5, 10, 20
-80
-60
-40
-20
0
100101102103
0
90
180
270
360
Phase (deg) Magnitude (dB)
Frequency (Hz)
r increases from 1e-5 to 1e-4,
1e-3, 1e-2 and 1e-1
r increases from 1e-5 to 1e-4,
1e-3, 1e-2 and 1e-1
-100
-80
-60
-40
-20
100101102103
0
90
180
270
360
Frequency (Hz)
Magnitude (dB)
Phase (deg)
R_step decreases from 1.2
to 1, 0.8, 0.6, and 0.4
R_step decreases from
1.2 to 1, 0.8, 0.6, and 0.4
-80
-60
-40
-20
0
100101102103
0
90
180
270
360
Frequency (Hz)
Estimated Rg increases from
0.2 to 0.5, 1, 2 and 5 mF
Phase (deg) Magnitude (dB)
-80
-60
-40
-20
100101102103
0
90
180
270
360
Magnitude (dB)
Phase (deg)
Frequency (Hz)
Estimated Lg increases from
5 to 10, 20, 40 and 80 mF
Estimated Lg increases from
5 to 10, 20, 40 and 80 mF
N

rR_step
r
        
       r


r  
  r
r

       
r
R_step
R_step

R_step

N

       N r 
R_stepNr
R_step
NrR_step
r NR_step
R_stepNr


V. EXPERIMENTAL VALIDATION
       
   

        


d
In the experiments, the following three indexes are mainly
concerned: the step response speed, the overshoot, the peak
and duration of the transient processes caused by disturbances.








Parameters
Values
DC capacitance

Line inductance
0.02 H
Line resistance

Sampling frequency
5 kHz
Grid voltage (phase to phase, peak)
40 V
Fixed DC load resistance
1
Switchable DC load resistance
3
A. Dynamic Performance Test
        
N=10 N=20 N=50
N=100 N=200
Vdc (V)
Time (s)
r=1e5 r=1e4 r=1e3
r=1e2 r=1e1
Vdc (V)
Time (s)
R_step=1.1 R_step=1 R_step=0.95
R_step=0.9 R_step=0.8
Vdc (V)
Time (s)
Preliminary selection of N
(as large as the processor allows)
Switching
frequency Computation
capability
Select weighting factor r
(balance between response speed and
noise rejection)
Select coefficient R_step
(fine-tune the step response, remove
overshoot, should not be too small)
Final selection of N
(reduce N until system performance
starts to be deteriorated)
Converter PC host
Adjustable
Transformer Dspace
DC loads


  
  
        

     d
          




         

B. Disturbance Rejection Test

      
       

          

   
         
  
      



      d  


          
       

         
    
 

        
         



  

90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
-4
-2
0
2
4
0 0.5 1 1.5 2
iabc (A)
Time (s)
ia ib ic
-2
0
2
4
00.5 1 1.5 2
idq (A)
Time (s)
id iq
0.18 s
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.1 s
-4
-2
0
2
4
00.5 11.5 2
iabc (A)
Time (s)
ia ib ic
-2
0
2
4
00.5 11.5 2
idq (A)
Time (s)
id iq
98
99
100
101
102
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.08 s
1.3 V
-4
-2
0
2
4
0 0.5 1 1.5 2
iabc (A)
Time (s)
ia ib ic
-2
0
2
4
0 0.5 1 1.5 2
idq (A)
Time (s)
id iq
98
99
100
101
102
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.08 s
1.3 V
-4
-2
0
2
4
0 0.5 1 1.5 2
iabc (A)
Time (s)
ia ib ic
-2
0
2
4
0 0.5 1 1.5 2
idq (A)
Time (s)
id iq




C. Comparison with Cascaded PI

      


          
     Kp
Ki    Kp Ki 

       
  




     

      

         

        
  d         


         

       

       
      
  
       

     

        
        

         

        


         



             
         

       
  
           

  



        


     
         
     



Performance indexes
GPC
PI
Overshoot
Vdc
0 V
1 V
Vdc
0 V
0 V
Response
speed
Vdc
0.13 s
0.13 s
Vdc
0.1 s
0.15 s
Disturbance
rejection
Transient
peak
DC Load
1.2 V
2.9 V
DC Load
1.2 V
2.9 V
Vgrid
0 V
2.5 V
Vgrid
0 V
1.5 V
Transient
duration
DC Load
0.08 s
0.4 s
DC Load
0.08 s
0.4 s
Vgrid
0 s
0.45 s
98
99
100
101
102
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
-4
-2
0
2
4
00.5 1 1.5 2
iabc (A)
Time (s)
ia ib ic
-2
0
2
4
0 0.5 1 1.5 2
idq (A)
Time (s)
id iq
-20
0
20
40
60
0 0.5 1 1.5 2
udq (V)
Time (s)
ud uq
Grid voltage decreases
from 40 V to 32 V
98
99
100
101
102
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
-4
-2
0
2
4
00.5 11.5 2
iabc (A)
Time (s)
ia ib ic
-2
0
2
4
00.5 11.5 2
idq (A)
Time (s)
id iq
-20
0
20
40
60
00.5 1 1.5 2
udq (V)
Time (s)
ud uq
Grid voltage increases
from 32 V to 40 V
Vgrid
0 s
0.4 s


         





         

D. Parameter Mismatch Test



        
       

        


        
        
       
      






       





   



     





        
        
       
      
        
        
         

       
        
 
      
        
        
        
       


     
        
98
106
114
122
0 0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
Vdc by GPC
Vdc by PI
Vdc ref.
118
120
122
0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
Vdc by GPC Vdc by PI
Vdc ref.
Zoom in
98
106
114
122
0 0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
Vdc by GPC
Vdc by PI
Vdc ref.
98
100
102
0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
Vdc by GPC Vdc by PI
Vdc ref.
Zoom in
95
100
105
00.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
Vdc by GPC Vdc by PI
Vdc ref.
95
100
105
0 0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
Vdc by GPC Vdc by PI
Vdc ref.
95
100
105
00.2 0.4 0.6 0.8 1
Vdc (V)
Time (s)
Vdc by GPC Vdc by PI
Vdc ref.
95
100
105
00.2 0.4 0.6 0.8 1
Vdc (V)
Time (s)
Vdc by GPC Vdc by PI
Vdc ref.


 
        



        
      

    
        
       








         




95
105
115
125
00.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 200% C
400% C Vdc ref.
115
120
125
0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 200% C
400% C Vdc ref.
Zoom in
95
105
115
125
00.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 200% C
400% C Vdc ref.
95
100
105
0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 200% C
400% C Vdc ref.
Zoom in
95
100
105
00.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 200% C
400% C Vdc ref.
95
100
105
0 0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 200% C
400% C Vdc ref.
95
100
105
00.2 0.4 0.6 0.8 1
Vdc (V)
Time (s)
100% C 200% C
400% C Vdc ref.
95
100
105
00.2 0.4 0.6 0.8 1
Vdc (V)
Time (s)
100% C 200% C
400% C Vdc ref.
95
105
115
125
00.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 50% C
25% C Vdc ref.
115
120
125
0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 50% C
25% C Vdc ref.
Zoom in
95
105
115
125
00.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 50% C
25% C Vdc ref.
95
100
105
0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 50% C
25% C Vdc ref.
Zoom in
95
100
105
0 0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 50% C
25% C Vdc ref.



         

E. Roles of Outer and Inner Loops (Simulation)












  
    


      




         



         

           

        





           
        





          






      Fig. 20   
  Fig. 20      
 
 Lg      
     


Fig.
20          
r 

Fig. 20

        C 
          
95
100
105
0 0.1 0.2 0.3 0.4 0.5
Vdc (V)
Time (s)
100% C 50% C
25% C Vdc ref.
95
100
105
00.2 0.4 0.6 0.8 1
Vdc (V)
Time (s)
100% C 50% C
25% C Vdc ref.
95
100
105
0 0.2 0.4 0.6 0.8 1
Vdc (V)
Time (s)
100% C 50% C
25% C Vdc ref.
    



(c) DC-link voltage step responses with different outer GPC tunings
(d) Grid voltage steps down with different outer GPC tunings
Fig. 20 Simulation results with different inner and outer GPC tunings.
VI. CONCLUSION
 

        

        
 
        
      

       
  

       

       
    


ACKNOWLEDGEMENT
        


REFERENCES
[1] L. Yin, Z. Zhao, T. Lu, S. Yang, and G. Zou, "An improved DC-link
voltage fast control scheme for a PWM rectifier-inverter system," IEEE
Trans. Ind. Appl., vol. 50, no. 1, pp. 462-473, Jan.-Feb. 2014.
[2] C. Liu, D. Xu, N. Zhu, F. Blaabjerg, and M. Chen, "DC-voltage
fluctuation elimination through a DC-capacitor current control for
DFIG converters under unbalanced grid voltage conditions," IEEE
Trans. Power Electron., vol. 28, no. 7, pp. 3206-3218, Jul. 2013.
[3] X. Liu and A. Lindemann, "Control of VSC-HVDC connected offshore
windfarms for providing synthetic inertia," IEEE Journal of Emerging
and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1407-1417,
Sep. 2018.
[4] M. Amin and M. Molinas, "Understanding the origin of oscillatory
phenomena observed between wind farms and HVDC systems," IEEE
Journal of Emerging and Selected Topics in Power Electronics, vol. 5,
no. 1, pp. 378-392, Mar. 2017.
[5] V. Jain and B. Singh, "A multiple improved notch filter-based control
for a single-stage PV system tied to a weak grid," IEEE Trans.
Sustainable Energy, vol. 10, no. 1, pp. 238-247, Jan. 2019.
[6] I. Trintis, B. Sun, J. M. Guerrero, S. Munk-Nielsen, F. Abrahamsen, and
P. B. Thoegersen, "Dynamic performance of grid converters using
adaptive DC voltage control," in 2014 16th European Conference on
Power Electronics and Applications, 2014, pp. 1-7.
[7] C. Jain and B. Singh, "An adjustable DC link voltage-based control of
multifunctional grid interfaced solar PV system," IEEE Journal of
Emerging and Selected Topics in Power Electronics, vol. 5, no. 2, pp.
651-660, 2017.
[8] M. F. Khan, W. Li, and Q. Gao, "An effective control strategy based on
DC-link voltage regulation for an electrolytic capacitor-less IPMSM
drive," in 2018 21st International Conference on Electrical Machines
and Systems (ICEMS), 2018, pp. 1246-1251.
[9] B. Berggren, K. Lindén, and R. Majumder, "Dc grid control through the
pilot voltage droop conceptmethodology for establishing droop
constants," IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2312-2320, Jun.
2015.
[10] J. Fang, H. Li, Y. Tang, and F. Blaabjerg, "Distributed power system
virtual inertia implemented by grid-connected power converters," IEEE
Trans. Power Electron., vol. 33, no. 10, pp. 8488-8499, Oct. 2018.
[11] H. Liu and Z. Chen, "Contribution of VSC-hvdc to frequency regulation
of power systems with offshore wind generation," IEEE Trans. Energy
Convers., vol. 30, no. 3, pp. 918-926, Sep. 2015.
[12] J. Zhang and M. Cheng, "DC link voltage control strategy of grid-
connected wind power generation system," in The 2nd International
Symposium on Power Electronics for Distributed Generation Systems,
2010, pp. 970-975.
[13] F. He, Z. Zhao, T. Lu, and L. Yuan, "Predictive DC voltage control for
three-phase grid-connected PV inverters based on energy balance
modeling," in The 2nd International Symposium on Power Electronics
for Distributed Generation Systems, 2010, pp. 516-519.
[14] J. Rodriguez et al., "State of the art of finite control set model predictive
control in power electronics," IEEE Trans. Ind. Inf., vol. 9, no. 2, pp.
1003-1016, May. 2013.
[15] F. Wang, X. Mei, J. Rodriguez, and R. Kennel, "Model predictive
control for electrical drive systems-an overview," CES Transactions on
Electrical Machines and Systems, vol. 1, no. 3, pp. 219-230, Sep. 2017.
[16] W. R. Sultana, S. K. Sahoo, S. Sukchai, S. Yamuna, and D. Venkatesh,
"A review on state of art development of model predictive control for
renewable energy applications," Renew Sust Energ Rev, vol. 76, pp.
391-406, Sep 2017.
[17] Z. Zhang, C. M. Hackl, and R. Kennel, "Computationally efficient
DMPC for three-level NPC back-to-back converters in wind turbine
systems with PMSG," IEEE Trans. Power Electron., vol. 32, no. 10, pp.
8018-8034, Oct. 2017.
[18] Y. A. I. Mohamed and E. F. El-Saadany, "Robust high bandwidth
discrete-time predictive current control with predictive internal
modela unified approach for voltage-source PWM converters," IEEE
Trans. Power Electron., vol. 23, no. 1, pp. 126-136, Jan. 2008.
90
95
100
105
110
115
120
125
130
1.5 1.7 1.9 2.1
Vdc (V)
Time (s)
Well tuned Inner GPC r×10
Lg overestimated Vdc_ref
99
99.2
99.4
99.6
99.8
100
100.2
100.4
100.6
100.8
101
2.2 2.3 2.4 2.5 2.6 2.7
Vdc (V)
Time (s)
Well tuned Inner GPC r×10
Lg overestimated Vdc_ref
90
95
100
105
110
115
120
125
130
1.5 1.7 1.9 2.1
Vdc (V)
Time (s)
Well tuned Outer GPC r×10
C overestimated Vdc_ref
99
99.2
99.4
99.6
99.8
100
100.2
100.4
100.6
100.8
101
2.2 2.3 2.4 2.5 2.6 2.7
Vdc (V)
Time (s)
Well tuned Outer GPC r×10
C overestimated Vdc_ref
[19] P. CortÉs, J. RodrÍguez, P. Antoniewicz, and M. Kazmierkowski,
"Direct power control of an afe using predictive control," IEEE Trans.
Power Electron., vol. 23, no. 5, pp. 2516-2523, Sep. 2008.
[20] D. Choi and K. Lee, "Dynamic performance improvement of ac/dc
converter using model predictive direct power control with finite
control set," IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 757-767, Feb.
2015.
[21] D. E. Quevedo, R. P. Aguilera, M. A. Perez, P. Cortes, and R. Lizana,
"Model predictive control of an AFE rectifier with dynamic references,"
IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3128-3136, Jul 2012.
[22] J.-Z. Zhang, T. Sun, F. Wang, J. Rodriguez, and R. Kennel, "A
computationally efficient quasi-centralized DMPC for back-to-back
converter PMSG wind turbine systems without DC-link tracking
errors," IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6160-6171, Oct.
2016.
[23] J. P. Ma, W. S. Song, S. L. Wang, and X. Y. Feng, "Model predictive
direct power control for single phase three-level rectifier at low
switching frequency," IEEE Trans. Power Electron., vol. 33, no. 2, pp.
1050-1062, Feb. 2018.
[24] W. S. Song, Z. X. Deng, S. L. Wang, and X. Y. Feng, "A simple model
predictive power control strategy for single-phase pwm converters with
modulation function optimization," IEEE Trans. Power Electron., vol.
31, no. 7, pp. 5279-5289, Jul. 2016.
[25] L. Tarisciotti et al., "Model predictive control for shunt active filters
with fixed switching frequency," IEEE Transa. Ind. Appl., vol. 53, no.
1, pp. 296-304, Jan.-Feb. 2017.
[26] A. P. Kumar, G. S. Kumar, and D. Sreenivasarao, "Model predictive
control with constant switching frequency for four-leg dstatcom using
three-dimensional space vector modulation," IET Gener. Transm. Dis.,
vol. 14, no. 17, pp. 3571-3581, Sep. 2020.
[27] M. Aguirre, S. Kouro, C. A. Rojas, J. Rodriguez, and J. I. Leon,
"Switching frequency regulation for FCS-MPC based on a period
control approach," IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5764-
5773, Jul 2018.
[28] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M.
Norambuena, "Model predictive control for power converters and drives:
Advances and trends," IEEE Trans. Ind. Electron., vol. 64, no. 2, pp.
935-947, Feb. 2017.
[29] X. Zhang, T. Shi, Z. Wang, Q. Geng, and C. Xia, "Generalized
predictive contour control of the biaxial motion system," IEEE Trans.
Ind. Electron., vol. 65, no. 11, pp. 8488-8497, Nov. 2018.
[30] M. G. Judewicz, S. A. González, N. I. Echeverría, J. R. Fischer, and D.
O. Carrica, "Generalized predictive current control (GPCC) for grid-tie
three-phase inverters," IEEE Trans. Ind. Electron., vol. 63, no. 7, pp.
4475-4484, Jul. 2016.
[31] J. A. Rossiter, Model-based predictive control. London: CRC Press,
2003.
[32] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, "Delay compensation
in model predictive current control of a three-phase inverter," IEEE
Trans. Ind. Electron., vol. 59, no. 2, pp. 1323-1325, Feb. 2012.
[33] Z. Zhou, C. Xia, Y. Yan, Z. Wang, and T. Shi, "Disturbances attenuation
of permanent magnet synchronous motor drives using cascaded
predictive-integral-resonant controllers," IEEE Trans. Power Electron.,
vol. 33, no. 2, pp. 1514-1527, Feb. 2018.
[34]             
speed and position of PMSM drives," IEEE Trans. Ind. Electron., vol.
63, no. 6, pp. 3889-3896, Jul. 2016.
[35] E. Jury and S. Gutman, "On the stability of the A matrix inside the unit
circle," IEEE Trans. Autom. Control, vol. 20, no. 4, pp. 533-535, Aug.
1975.
APPENDIX
A. Extra Experimental Results with Different PI Parameters



       
           
  



Ki


Kp

       
         
Kp

      KpKi 

      Kp Ki 
        
        
        
         
KpKi
 



KpKiKpKiKpKiKpKiKpKi
Vdc reference steps up
Vdc reference steps down
DC load steps up
DC load steps down
(a)
(b)
(c)
(d)
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.15 s
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.1 s
90
95
100
105
110
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.08 s
1.3 V
90
95
100
105
110
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.08 s
1.3 V
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.76 s
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.72 s
90
95
100
105
110
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.96 s
3.3 V
90
95
100
105
110
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.83 s
3 V
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.4 s
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.36 s
90
95
100
105
110
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.6 s
4.1 V
90
95
100
105
110
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.53 s
4.4 V
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.27 s 0.78 s
1.8 V
90
100
110
120
130
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.68 s
0.24 s
2.3 V
90
95
100
105
110
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.42 s
4.8 V
0.74 s
90
95
100
105
110
00.5 11.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.37 s
5.4 V
0.72 s
(e)
(f)
B. PI Tuning with Linear Control Toolbox (MATLAB)





   
          
        
  Kp  Ki     

          


      
          
         


         


       


       





         
         





         

          
        







C. Simulation Results of Disturbance Rejection with Grid
Voltage Step
       


       
       




        
       

     

  


(a) Grid voltage increase (PI
(b) Grid voltage decrease (PI
90
100
110
120
130
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.15 s 0.52 s
1.4 V
90
100
110
120
130
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.24 s
90
95
100
105
110
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.39 s
2.9 V
90
95
100
105
110
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
3 V
0.42 s
90
100
110
120
130
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.1 s 0.44 s
2.7 V
90
100
110
120
130
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.32 s
0.06 s 5.6 V
90
95
100
105
110
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
0.34 s
2 V
90
95
100
105
110
0 0.5 1 1.5 2
Vdc (V)
Time (s)
Vdc Vdc ref.
2.2 V
0.31 s
Vdc by GPC Vdc by PI
Vdc ref.
Vdc by GPC Vdc by PI
Vdc ref.
compared with GPC)
compared with GPC)
(c) Grid voltage increase (DC-link
capacitance overestimated)
(d) Grid voltage decrease (DC-link
capacitance overestimated)
(e) Grid voltage increase (DC-link
capacitance underestimated)
(f) Grid voltage decrease (DC-link
capacitance underestimated)

Tao Wang
   


       
      

       

        

 


Z. Q. Zhu
     

      
       

   
      
      
      

 



        

         
           

Nuno M. A. Freire

     

       

    
    


      

David A. Stone     
     
  

       
      
       

  
    

Martin P. Foster     

       
      


      


   
       


100% C 200% C
400% C Vdc ref.
Zoom in
100% C 200% C
400% C Vdc ref.
Zoom in
100% C 50% C
25% C Vdc ref.
Zoom in
100% C 50% C
25% C Vdc ref.
Zoom in
... However, the high value of this resistance and its low damping effect do not guarantee the stability in practical application. On the other hand, the modified DCLV controller design scheme, combined with predictive control, is adapted in [17][18][19][20][21]. Also, the linearized model of DCLV is variously used to explored the DCLV stability [22,23]. ...
... Prevalent control structure of power converter including DCLV (15), reactive power (16), the current control loops (17), (18) is depicted in Figure 2. As a rule of thumb, the bandwidth of the outer DC-link and reactive power control loops should be at least about five times lower than that of the inner current control loop BW c , in the prevalent design scheme. Then, the outer control loops are designed independent from inner control loops. ...
... 1. Designing DCLV controller based on small-signal model of (27) instead of the simplified model of (14), which is named before "modified controller" [17][18][19][20][21]. As the model (27) is dependent on the operating point (i d 0 ∝ P dc−2 ), the controller should be either adaptive or designed for the worst-case of operating point. ...
Article
Full-text available
In future modern power systems, reliability and resilience could be an extreme challenge caused by the stability issues of the bidirectional power converters (BPCs). The non‐linear dynamics of DC link voltage (DCLV) of BPCs in interaction with the existing linear control schemes may decrease the stability margin and cause operating‐point‐dependent instability issues. Existing approaches may solve this issue by reducing the DCLV control loop bandwidth, which considerably degrades the system performance. To tackle this issue, first, the root cause of the instability challenge is analytically investigated, and then, a non‐linear stabilizer control scheme based on Lyapunov theorem is proposed. Considering the non‐linear dynamic of the BPCs and the interaction between dynamics of DC link voltage and AC currents in the proposed stabilizer, it guarantees the stability of the converter in both directions of power flow and the full range of loading conditions. The performance of the proposed scheme is verified through simulation of the system under various operating conditions, considering uncertainties, disturbances, and short‐circuit events, and comparing it with that of prevalent controllers.
... However, the high value of this resistance and its low damping effect do not guarantee the stability in practical application. On the other hand, the modified DCLV controller design scheme, combined with predictive control, is adapted in [17][18][19][20][21]. Also, the linearized model of DCLV is variously used to explored the DCLV stability [22,23]. ...
... Prevalent control structure of power converter including DCLV (15), reactive power (16), the current control loops (17), (18) is depicted in Figure 2. As a rule of thumb, the bandwidth of the outer DC-link and reactive power control loops should be at least about five times lower than that of the inner current control loop BW c , in the prevalent design scheme. Then, the outer control loops are designed independent from inner control loops. ...
... 1. Designing DCLV controller based on small-signal model of (27) instead of the simplified model of (14), which is named before "modified controller" [17][18][19][20][21]. As the model (27) is dependent on the operating point (i d 0 ∝ P dc−2 ), the controller should be either adaptive or designed for the worst-case of operating point. ...
Preprint
Full-text available
In future modern power systems, reliability and resilience could be an extreme challenge caused by the stability issues of the bidirectional power converters (BPCs). The non-linear dynamics of DC link voltage (DCLV) of BPCs in interaction with the existing linear control schemes may decrease the stability margin and cause operating-point-dependent instability issues. Existing approaches may solve this issue by reducing the DCLV control loop bandwidth, which considerably degrades the system performance. To tackle this issue, first, the root cause of the instability challenge is analytically investigated, and then, a non-linear stabilizer control scheme based on Lyapunov theorem is proposed. Considering the non-linear dynamic of the BPCs and the interaction between dynamics of DC link voltage and AC currents in the proposed stabilizer, it guarantees the stability of the converter in both directions of power flow and the full range of loading conditions. The performance of the proposed scheme is verified through simulation of the system under various operating conditions, considering uncertainties, disturbances, and short-circuit events, and comparing it with that of prevalent controllers.
... Between the two predictive control types, FCS-MPC is more widely studied in the DTP-PMSM drive field at the moment [14], thanks to its ease of achieving multi-objectives Generalized Predictive Current Control for Dual-Three-Phase PMSM to Achieve Torque Enhancement Through Harmonic Injection and multi-constraints. However, FCS-MPC faces several challenges, including the relatively large current/torque ripple, heavy computation burden for multi-phase machine (such as DTP-PMSM), static control error when with parameter mismatches, and more importantly, the short predictive horizon [18,19]. Single or at most double step prediction is often applied to FCS-MPC [20,21], since its computation burden increases exponentially with the prediction horizon. ...
... Single or at most double step prediction is often applied to FCS-MPC [20,21], since its computation burden increases exponentially with the prediction horizon. As an alternative, GPC can conveniently achieve multiple prediction steps, as well as inherently avoid the rest aforementioned drawbacks of FCS-MPC while remaining the good harmonic reference tracking capability [17][18][19]22], at the price of being difficult to achieve multi-objectives. Thus, for the application of this paper, GPC is a good choice as the current controller of DTP-PMSM, but few researches can be found at the moment. ...
... The parameter tuning of GPC is important and relatively tricky compared with PI. In the authors' previous work, the parameter tuning of GPC has been studied in detail [18], which is only briefly discussed here in this paper. In a GPC controller, three parameters should be tuned, namely, the prediction horizon N, and the weighting matrices Q and R. It should be noted that the control performance is impacted by the relationship between Q and R, rather than their absolute values. ...
Article
Full-text available
The output torque capability of a dual-three-phase permanent magnet synchronous machine (DTP-PMSM) can be increased by intentionally injecting proper harmonic currents, which can be beneficial in some applications that require high torque density. To achieve this, current references containing multiple harmonic components with time-varying frequencies must be accurately tracked by the current controllers, which can hardly be achieved by conventional control methods. Fortunately, to track these complex but predetermined current references, generalized predictive control (GPC) shows unique advantages for its characteristic of multi-step prediction and receding horizon optimization. In this paper, a current control strategy based on GPC is proposed for the DTP-PMSM, which enhances the output torque capability by tracking the harmonic current references with high accuracy in both phase and magnitude. Parameter tuning and model mismatch issues of the proposed GPC are discussed. The effectiveness and merits of the proposed control strategy are validated by comparison study based on simulation and experiments.
... It provides reliable and stable bus voltage to the poststage and meets the strict grid connection requirements. Critical to smooth operation of voltage source converters is bus voltage regulation, such as energy storage system and high-voltage DC transmission system [17][18][19]. There are several different types of AC/DC converter topologies that are used in battery charging and discharging converter, such as three-phase, two-stage single-phase, and so on [20,21]. ...
... Substituting Equation (9) and Equation (16) into Equation (19), the current expectation value can be stated as follows: ...
Article
Full-text available
With the continuous progress of new energy technology, new energy vehicles have ushered in a stage of rapid development. As the central core of new energy vehicle, the power accumulator batteries have been attracting increasing attention. To obtain the exact electrical characteristics of the power battery, battery charging and discharging are integral component. A bidirectional grid‐connected AC/DC converter with predictive load‐feedforward compensation is presented in this article. Derive a predictive load‐feedforward model from the state space model of the rear DC/DC converter to reduce the bus voltage fluctuations caused by load variations. Firstly, the system structure for battery charging and discharging system is presented, and then the underlying principle of predictive load‐feedforward control is analyzed. Secondly, the predictive load‐feedforward model is built and discussed. Finally, build a system simulation model in MATLAB/Simulink and set up an experimental platform in the lab. Simulation results show that the predictive load‐feedforward control can reduce the bus voltage fluctuation and regulation time by about 84% and 50%, respectively, when the load power varies substantially. The findings of experimental studies also indicate that with predictive load‐feedforward control can significantly suppress bus voltage fluctuations and improve the dynamic response of the converter.
... In contrast, DPC schemes use an inner power loop where the switches actuation signals are directly generated. Both schemes employ an outer voltage loop to control the rectifier output voltage, usually a proportional-integral (PI) controller [12], [15], in a cascade or master-slave configuration. ...
... Then, the converter state is obtained optimizing a cost function with power and voltage terms. Recently, [15] has proposed a generalized predictive control voltage controller for fast response and disturbance rejection, noting the requirement of a long horizon for voltage control, however not much attention has been paid to the NMP behavior of the system. ...
Article
Full-text available
Three-phase active front end rectifiers are a widely used power topology in applications such as renewable energy interfaces and motor drives, among many others. Its control is usually performed by a cascade combination of linear controllers which must be properly tuned for correct operation, and which depend on the operating point and system parameters. These family of controllers place inherent limits on the system dynamic response. On the other hand, the predictive control approach has been proposed as an alternative technique for these converters due to its fast dynamic response, simple concept, flexibility, multiple objective capability, among other desirable properties. In the case of power converter applications, short prediction horizons are usually used due to computational limitations. However, when short horizons are considered, the non-minimum phase characteristic of the rectifier voltage response can introduce stability issues, as its direct inversion is not possible without jeopardizing it. Indeed, this may lead to voltage regulation loss, and in the worst case, overcurrents that could damage the converter. To overcome such problem, this paper proposes a new concept for a predictive horizon one voltage controller for grid-connected three-phase active front end rectifiers. The proposal is based on the minimum and non-minimum phase plant factorization concept and the use of different sampling periods, to prevent the direct inversion of the non-minimum phase voltage dynamic. Simulated and experimental results are included and show its correct operation, even with a horizon one predictive voltage controller, thus ensuring the fastest response of the system for a given sampling time.
... The reference grid currents are obtained through dc-link voltage control control [23] and [24]. The DC-Link voltage control uses the PI controller to generate a suitable current reference. ...
Conference Paper
This paper conducts an analysis of the Finite Set Model Predictive Control (FS-MPC) approach as it is applied to a three-phase four-leg converter in conjunction with a pho-tovoltaic system connected to a distributed system. Residential areas receive their power supply from a delta/wye-connected distribution transformer featuring a grounded neutral conductor, which establishes a three-phase four-wire distribution system. Typically, the loads in a low voltage distributed system are single-phase and unbalanced, potentially leading currents into the neutral that could overload the neutral conductor. The control strategy ensures sinusoidal currents with a high power factor while reducing the neutral current within the system. Simulations and experimental results are included to validate the efficacy of the proposed control strategy.
Article
This paper introduces the control and operation of a grid-connected converter with an energy storage system. A complete mathematical model was presented for the developed converter and its control system. The system under study was a small microgrid comprising an AC grid that is feeding a DC load through a converter. The converter was connected to the AC grid through an R-L filter. The classical linear controllers have limitations due to their slow transient performance and low robustness against parameter variations and load disturbances. In this paper, machine-learned controllers were used to dealing with those drawbacks of the traditional controller. First, a study for conventional nested loop Proportional Integral (PI) was introduced for both outer and inner loops PI-PI controller. A Data-Driven Online Learning (DDOL) controller was then proposed. A comparison between the normal traditional PI-PI controller and the proposed DDOL ones was made under different operating scenarios. The converter control was tested under various operational conditions, and its dynamic and steady-state behavior was analyzed. The model was done through a MATLAB Simulink to check the normal operation of the network in a grid-connected mode under different load disturbances and AC input voltage. Then, the system was designed, fabricated, and implemented in a hardware environment in our Energy Systems Research Laboratory (ESRL) testbed, and the hardware test results were verified. The results showed that the proposed DDOL controller was more robust and had better transient and steady state performances.
Article
In this paper, the transient stability for dc-link voltage of doubly-fed induction generator (DFIG)-based wind turbine (WT) is studied detailly during low voltage ride-through (LVRT). Firstly, referring to the rotor swing equation of synchronous generator (SG), the nonlinear large-signal model of dc-link voltage is established, in addition, the damping power, static slip power and dynamic slip power are derived. Consequently, the transient performance of dc-link voltage under the different operation conditions of DFIG is revealed during LVRT. Furthermore, the instability form of dc-link voltage with the motion process of equivalent power angle is analyzed by the energy function of dc-link voltage. In addition, the impacts of dc voltage control loops parameter, the active current of the stator and the slip on the stabilization process of dc-link voltage are studied. Analysis result indicates that the insufficient damping and large unbalanced power would deteriorate the transient behavior and steady-state level of dc-link voltage. Therefore, an additional damping and slip power feedforward control strategy is proposed, which would make the transition process of dc-link voltage smoother and significantly improve the voltage steady-state level. Finally, simulation and experimental results validate the effectiveness of theoretical analysis.
Article
Full-text available
This paper reviews the classification and application of the model predictive control (MPC) in electrical drive systems. Main attention is drawn to the discrete form of MPC, i.e. finite control set model predictive control (FCS-MPC), which outputs directly the switching states of power converters. To show the diversity and simple realization with various control performances of the strategy, in this paper, several different FCS-MPCs with their working mechanisms are introduced. Comparison of FCS-MPC with conventional control strategies for electric drives is presented. Furthermore, extensive control issues, e.g. encoderless control and disturbance observation are also included in this work. Finally, the trend of research hot topics on MPC is discussed.
Article
Full-text available
In this study, model predictive control (MPC) with constant switching frequency is proposed for four‐leg distribution static compensator (FL‐DSTATCOM) to compensate the current related power quality issues. MPC techniques having many advantages compared to conventional pulse width modulation and hysteresis control techniques. In MPC, the future behaviour of the controlled variable is predicted using the model of the system and a cost function is formed using reference and predicted variable. MPC for DSTATCOM applications consider the difference between the reference and actual DSTATCOM current as a cost function and selects the switching state which minimises the cost function. However, while using MPC, the switches of DSTATCOM operate in variable switching frequency and sometimes the values are also very high. Due to this reason higher switching losses, unequal stress appear across the inverter switches and it also reduces the lifetime of the switch. Therefore, in this study, the concept of three‐dimensional space vector modulation is adopted to achieve a constant and user‐defined switching frequency MPC for FL‐DSTATCOM to conquer the limitations of conventional variable switching frequency MPC. The validation of the proposed work is achieved using simulation and experimental studies.
Article
Full-text available
Renewable energy sources (RESs), e.g. wind and solar photovoltaics, have been increasingly used to meet worldwide growing energy demands and reduce greenhouse gas emissions. However, RESs are normally coupled to the power grid through fast-response power converters without any inertia, leading to decreased power system inertia. As a result, the grid frequency may easily go beyond the acceptable range under severe frequency events, resulting in undesirable load-shedding, cascading failures, or even large-scale blackouts. To address the ever-decreasing inertia issue, this paper proposes the concept of distributed power system virtual inertia, which can be implemented by grid-connected power converters. Without modifications of system hardware, power system inertia can be emulated by the energy stored in the dc-link capacitors of grid-connected power converters. By regulating the dc-link voltages in proportional to the grid frequency, the dc-link capacitors are aggregated into an extremely large equivalent capacitor serving as an energy buffer for frequency support. Furthermore, the limitation of virtual inertia, together with its design parameters, are identified. Finally, the feasibility of the proposed concept is validated through simulation and experimental results, which indicate that 12.5% and 50% improvements of the frequency nadir and rate-of-change-of-frequency (RoCoF) can be achieved.
Article
In this paper, a control scheme based on improvement in generalized integrator is implemented on a three phase single stage grid tied solar photovoltaic system with the distribution static compensator capabilities under grid abnormal conditions of voltage distortion and voltage unbalance. The photovoltaic-voltage source converter system compensates for the reactive power consumed by nonlinear load at point of common coupling provides load balancing and mitigates harmonics. The proposed multiple-improved-notch-filter based quadrature signal generator control approach extracts the load current fundamental component, independent of the grid voltage. This control has better DC offset and harmonics component rejection capability in comparison to a conventional second order generalized integrator algorithm. The perturb and observe based maximum power point tracking algorithm is applied for the extraction of maximum power from the photovoltaic array. The system is analyzed under different abnormal conditions of voltage distortions, voltages unbalance, the voltage swell, voltage sag, load currents unbalance and insolation change on a prototype developed in the laboratory. The system performance is found to be satisfactory, within limits as described in an IEEE-519 standard while feeding active power to distribution network and connected loads.
Article
In order to overcome the redundancy of the biaxial motion system's traditional control structure and the cumbersome nature of the controller parameter adjustment, this paper simplifies the traditional control structure, and proposes a generalized predictive contour control strategy applicable to biaxial motion system based on the idea of unified modeling. The two permanent magnet synchronous motors (PMSMs) that drive biaxial motion system are considered as a whole to establish a unified model. Through the idea of multi-step prediction, rolling optimization and feedback correction in generalized predictive control, the optimal control input signal is obtained by coordinating the tracking error and contour error. In addition, an actuating value limitation has to be taken into account to design a realizable generalized predictive contour control for the biaxial system. At the same time, the closed-loop stability analysis of the generalized predictive contour control system is carried out according to the optimal control principle and the state equation model. The experimental results show that the proposed control strategy can not only accurately track the contour trajectory at steady state, but also improve the transient contour tracking performance.
Article
One of the main drawbacks with the use of Finite Control Set Model Predictive Control (FCS-MPC) in power converters is the variable switching frequency. When not taken into consideration it can vary randomly depending mainly on the operating point of the system and the sampling time. This will produce a wide distributed voltage and current spectrum, causing audible noise, resonances, and poor steady-state behavior. To address this issue, a new algorithm, based on the control of the switching period within the cost function, is proposed in this paper. The algorithm shows to be very effective in achieving a regular commutation pattern, similar to PWM techniques, which is evidenced even by similarities in the side-band harmonics generated in the voltage spectrum. The algorithm is easy to design and implement, demanding very low computation power, and enables a combination of the advantages of FCS-MPC with the benefits of a PWM-like power quality. Simulations and experimental results are presented to validate the proposed method, which are compared to previously reported FCS-MPC techniques dealing with the same challenge.
Article
This paper presents a generator emulation control (GEC) based method to provide synthetic inertia with a VSC-HVDC converter station and furthermore a coordinated control strategy for VSC-HVDC connected offshore windfarms (OWFs) to achieve enhanced ability of serving synthetic inertia. Given that the increasing penetration of renewable energy sources may lead to a significant reduction of system inertia and will thus result in a greater risk of instability, an extended control loop to emulate both the inertia and the droop characteristics of a synchronous generator (SG) is firstly added, with which the VSC-HVDC converter station can provide active power support by using the stored energy in the dc-link capacitors to increase the inertia of power system. To provide larger synthetic inertia with reasonable volume of dc-link capacitors, a coordinated control strategy for VSCHVDC connected OWFs is further proposed to utilize the OWFs to supply additional energy needed by the GEC strategy. The validity of the proposed control methods is verified exemplarily by simulation results of a threeterminal VSC-HVDC system with two connected OWFs.
Article
Renewable energy sector is undergoing rapid expansion as the global focus is shifting towards cleaner, reliable and sustainable resources. As the new installation of these resources are well underway, there is tremendous potential for exploring these to more advanced control algorithms. Model predictive control is gaining immense popularity because of its flexible controllability, its ability to be used in any of application irrespective of its field as well as the availability of fast processors. This paper presents a systematic review on Photo-voltaic (PV) and wind energy systems controlled by Model predictive control approach. The work presented here will help the researchers to further explore the flexibility of this controller for design, analysis and implementation in renewable energy systems.
Article
This paper presents a new model predictive direct power control (MP-DPC) to overcome the drawbacks of model predictive control (MPC) for single phase three-level rectifiers in the railway traction drive system, including huge online calculation, poor power control precision at the low switching frequency and variable switching frequency. To do so, an exact analytical solution of instantaneous power estimation is adopted to predict active and reactive powers in next duty cycle updating interval for achieving the deadbeat control and reducing the predictive error at the low switching frequency (below 1kHz). The optimal d-axis and q-axis components of input voltage within next duty cycle updating interval of the adopted rectifier in rotating coordinate system are directly calculated by minimizing the cost function. And the optimal drive pulses are generated by pulse width modulation stage in the proposed MP-DPC, other than evaluating cost function for each voltage vector in traditional MP-DPC. Finally, the influence of inductance mismatch on control system is analyzed, and an inductance estimation method is shown to improve the control precision. An experimental comparison with other five different DPC schemes has verified the effectiveness of the proposed MP-DPC scheme.