Takako Katherine Tamai

Takako Katherine Tamai
University College London | UCL · Department of Cell and Developmental Biology

About

55
Publications
7,192
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,533
Citations

Publications

Publications (55)
Article
Cryptochromes (Crys) represent a multi-facetted class of proteins closely associated with circadian clocks. They have been shown to function as photoreceptors but also to fulfill light-independent roles as transcriptional repressors within the negative feedback loop of the circadian clock. In addition, there is evidence for Crys being involved in l...
Article
Full-text available
Disturbances in sleep/wake cycles are common among patients with neurodegenerative diseases including Huntington’s disease (HD) and represent an appealing target for chrono-nutrition-based interventions. In the present work, we sought to determine whether a low-carbohydrate, high-fat diet would ameliorate the symptoms and delay disease progression...
Article
Full-text available
Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modul...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolutio...
Article
Full-text available
Seasonal changes in the environment lead to depression-like behaviors in humans and animals. The underlying mechanisms, however, are unknown. We observed decreased sociability and increased anxiety-like behavior in medaka fish exposed to winter-like conditions. Whole brain metabolomic analysis revealed seasonal changes in 68 metabolites, including...
Article
Full-text available
The circadian clock ensures that behavioral and physiological processes occur at appropriate times during the 24-hour day/night cycle, and is regulated at both the cellular and organismal levels. To identify pathways acting on intact animals, we performed a small molecule screen using a luminescent reporter of molecular circadian rhythms in zebrafi...
Article
Animals make use of changes in photoperiod to adapt their physiology to the forthcoming breeding season. Comparative studies have contributed to our understanding of the mechanisms of seasonal reproduction in vertebrates. Birds are excellent models for studying these phenomena because of their rapid and dramatic responses to changes in photoperiod....
Preprint
Full-text available
The methyl cycle is a universally conserved metabolic pathway operating in prokaryotes and eukaryotes. In this pathway, the amino acid methionine is used to synthesize S-adenosylmethionine, the methyl donor co-substrate in the methylation of nucleic acids, histone and non-histone proteins and many other molecules within the cell. The methylation of...
Article
Full-text available
Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet-lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time-consuming. We therefore performed a high-throughput chemical screen of exi...
Article
Full-text available
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternativ...
Chapter
Animals living outside tropical zones experience seasonal changes in the environment and accordingly, adapt their physiology and behavior in reproduction, molting, and migration. Subtropical birds are excellent models for the study of seasonal reproduction because of their rapid and dramatic response to changes in photoperiod. For example, testicul...
Article
Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism , and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given...
Chapter
This chapter discusses how the circadian clock can strongly influence and regulate the timing of the cell cycle in a variety of animals and tissues. Disruption of the circadian clock, by a variety of means, causes alterations in the regulation of the cell cycle, with a corresponding increase in cancer risk. Amongst the most significant effects of c...
Article
Full-text available
Biological clocks have evolved as an adaptation to life on a rhythmic planet, synchronising physiological processes to the environmental light-dark cycle. Here we examine circadian clock function in Mexican blind cavefish Astyanax mexicanus and its surface counterpart. In the lab, adult surface fish show robust circadian rhythms in per1, which are...
Article
Full-text available
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underly...
Article
Full-text available
A fundamental role of the circadian clock is to control biochemical and physiological processes such that they occur an optimal time of day. One of the most significant clock outputs from a clinical as well as basic biological standpoint is the timing of the cell cycle. Here we show that the circadian clock regulates the timing of mitosis in a ligh...
Article
Full-text available
The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lin...
Article
Melanopsin (OPN4) is an opsin photopigment that, in mammals, confers photosensitivity to retinal ganglion cells and regulates circadian entrainment and pupil constriction. In non-mammalian species, two forms of opn4 exist, and are classified into mammalian-like (m) and non-mammalian-like (x) clades. However, far less is understood of the function o...
Article
DAX-1 (DSS-AHC Critical Region on the X Chromosome-1) is a member of the nuclear hormone receptor superfamily that has an important role in steroidogenesis and gonadogenesis. To investigate the role of DAX-1 in the testis, a yeast two-hybrid screen was performed and SOX6, member of the Sry box (SOX) protein family, was cloned as candidate. The inte...
Article
Full-text available
Zebrafish tissues and cells have the unusual feature of not only containing a circadian clock, but also being directly light-responsive. Several zebrafish genes are induced by light, but little is known about their role in clock resetting or the mechanism by which this might occur. Here we show that Cryptochrome 1a (Cry1a) plays a key role in light...
Article
Full-text available
Zebrafish are typically used as a model system to study various aspects of developmental biology, largely as a consequence of their ex vivo development, high degree of transparency, and, of course, ability to perform forward genetic mutant screens. More recently, zebrafish have been developed as a model system with which to study circadian clocks....
Article
Full-text available
In the classical view of circadian clock organization, the daily rhythms of most organisms were thought to be regulated by a central, 'master' pacemaker, usually located within neural structures of the animal. However, with the results of experiments performed in zebrafish, mammalian cell lines and, more recently, mammalian tissues, this view has c...
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they...
Article
The identification of specific clock-containing structures has been a major endeavour of the circadian field for many years. This has lead to the identification of many key components of the circadian system, including the suprachiasmatic nucleus in mammals, and the eyes and pineal glands in lower vertebrates. However, the idea that these structure...
Article
Several endocrine and neuronal functions are governed by the cAMP-dependent signalling pathway. In eukaryotes, transcriptional regulation upon stimulation of the adenylyl cyclase signalling pathway is mediated by a family of cAMP-responsive nuclear factors. This family consists of a large number of members that may act as activators or repressors....
Article
Full-text available
Mutations in the human DAX-1 gene lead to X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. DAX-1 has been proposed to play a role in steroidogenesis because it is highly expressed in adrenocortical and testicular Leydig cells and because loss-of-function mutations lead to low serum levels of steroid hormones. Recent reports...
Chapter
The structural organization of most transcription factors is intrinsically modular, in most cases including a DNA binding domain and an activation domain. It has been shown that these domains can be interchanged between different factors and still retain their functional properties. This modularity suggests that, during evolution, increasing comple...
Article
Mutations of the orphan nuclear receptors, steroidogenic factor 1 (SF-1) and DAX-1, cause complex endocrine phenotypes that include impaired adrenal development and hypogonadotrophic hypogonadism. These similar phenotypes suggest that SF-1 and DAX-1 act in the same pathway(s) of endocrine development. To explore this model, we now compare directly...
Article
The CREM gene encodes both repressors and activators of cAMP-dependent transcription in a tissue and developmentally regulated manner. In addition, multiple and cooperative phosphorylation events regulate the function of the CREM proteins. CREM plays a key physiological and developmental role within the hypothalamic-pituitary axis. There is a funct...
Article
Full-text available
In eukaryotes, transcriptional regulation upon stimulation of the adenylate cyclase signalling pathway is mediated by a family of cAMP-responsive nuclear factors. This family consists of a large number of members which may act as activators or repressors. These factors contain the basic domain/leucine zipper motifs and bind as dimers to cAMP-respon...
Article
Full-text available
Yeast metallothionein, encoded by the CUP1 gene, and its copper-dependent transcriptional activator ACE1 play a key role in mediating copper resistance in Saccharomyces cerevisiae. Using an ethyl methanesulfonate mutant of a yeast strain in which CUP1 and ACE1 were deleted, we isolated a gene, designated CUP9, which permits yeast cells to grow at h...
Article
Full-text available
Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothion...
Article
Yeast metallothionein, encoded by the CUP1 gene, and its copper-dependent transcriptional activator ACE1 play a key role in mediating copper resistance in Saccharomyces cerevisiae. Using an ethyl methanesulfonate mutant of a yeast strain in which CUP1 and ACE1 were deleted, we isolated a gene, designated CUP9, which permits yeast cells to grow at h...
Article
Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothion...
Article
Full-text available
Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and...
Thesis
Copper-zinc superoxide dismutase (CuZnSOD) catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen, and plays an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking CuZnSOD, which is encoded by the SOD1 gene, exhibit a variety of growth defects, including hypersensitivity...
Article
Full-text available
Two independent pathways of transcriptional regulation that show functional homology have been identified in yeast. It has been demonstrated previously that SWI5 encodes a zinc finger DNA-binding protein whose transcription and cellular localization both are cell cycle regulated. We show that ACE2, whose zinc finger region is nearly identical to th...
Article
Cardiolipin (CL) synthase activity was characterized in mitochondrial extracts of the yeast Saccharomyces cerevisiae and was shown for the first time to utilize CDP-diacylglycerol as a substrate. CL synthase exhibited a pH optimum of 9.0. Maximal activity was obtained in the presence of 20 mM magnesium with a Triton X-100: phospholipid ratio of 1:1...
Article
The nicotinic acetylcholine receptor (nAchR) mediates communication between nerve and skeletal muscle. The properties, levels and distribution of these receptors change during development of the neuromuscular junction. These changes may be due, in part, to expression of different gene products. We are using nuclease protection experiments and cDNA...

Network

Cited By