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Serotonrn-Dopamine Interaction and Its Relevance to Schizophrenia

Shitij Kapur, M.D., F.R.C.P.C., and Gary Remington, M.D., Ph.D., F.R.C.P.C.

Objective: The therapeutic success of clozapine and risperidone has focused attention on

the interaction between the serotonin and dopamine systems as an avenue for superior thera-

peutics in schizophrenia. The authors review the neurobiological basis for this interaction and

its clinical relevance. Method: The authors synthesized information from more than 1 00 pub-

lished articles obtained through electronic and bibliography-directed searches. Findings: The

serotonin system inhibits dopaminergic function at the level of the origin of the dopamine

system in the midbrain as well as at the terminal dopaminergic fields in the forebrain. Seroto-

nergic antagonists release the dopamine system from this inhibition. This disinhibition of the

dopamine system in the striatum may alleviate neuroleptic-induced extrapyramidal symptoms,

and a similar disinhibition in the prefrontal cortex may ameliorate negative symptoms. How-

ever, the benefits of combined serotonergic-dopaminergic blockade may be observed in only

a narrow dose range and may be lost with doses that produce suprathreshold dopaminergic

blockade. Conclusions: Serotonergic modulation of dopaminergic function provides a viable

mechanism for enhancing therapeutics in schizophrenia, but much remains unclear. Future

research will have to establish the existence of this interaction in humans in vivo, specify the

conditions under which it leads to optimal therapeutic benefits, and explore the possibility of

using specific serotonergic treatments as flexible adjuncts to typical neuroleptics, rather than

the present trend toward using single drugs with combined actions.

(Am J Psychiatry 1996; 153:466-476)

T he therapeutic success of clozapine and, more re-
cently, risperidone has focused attention on the Se-

rotonin system and its interaction with the dopaminer-
gic system as an avenue for superior treatment of
psychotic illnesses. Understanding the interaction be-

tween serotonin and dopamine and its therapeutic im-

plications is particularly timely because a number of
new antipsychotic medications (e.g., olanzapine, sero-
quel, sertindole, ziprasidone) with serotonin-dopamine
interaction profiles are being tested in clinical trials (1).
In the light of this burgeoning scientific and clinical in-
terest, we reviewed the neural basis and clinical rele-
vance of the serotonin-dopamine interaction. Evidence
for a primary role of serotonin in the etiology of schizo-
phrenia has been covered recently by others (2, 3) and

will not be a focus of this article.
This review is divided into three sections. The first

reviews the anatomy and physiology of the dopamine
and serotonin systems and the neural bases for their
interaction. The second section examines the functional
relevance of serotonin-dopamine interaction, as dem-

onstrated in animal models and experimental human
studies. The third section evaluates the role of the sero-

tonin-dopamine interaction in the efficacy of the

“atypical” neuroleptics like clozapine and risperidone.
We conclude by highlighting the unanswered questions
regarding the relevance of the serotonin-dopamine in-
teraction and, in doing so, indicate directions for future
research.

NEUROBIOLOGICAl. BASIS OF THE SEROTONIN-

DOPAMINE INTERACTION

The Dopamine and Serotonin Systems
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The dopaminergic system arises from groups of cells in
the midbrain. Neurons from the substantia nigra ascend

to the striatum, via the nigrostriatal pathway, and are
primarily involved in the modulation of motor behavior,
whereas neurons from the ventral tegmental area pro-

ject to the limbic (mesolimbic projections) and cortical
(mesocortical projections) regions and are involved in cog-

nition and modulation ofmotivation and reward (4). The



FIGURE 1. Functional Interactions Between the Serotonin-Dopamine Systems and Their Role in
Reducing Extrapyramidal Symptomsa
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This figure is a schematic representation of the mechanism and consequences of the interaction

between serotonin and dopamine at the level of the substantia nigra and the striatum. S-HT2 an-

tagonists and the S-HTIA autoreceptor agonists inhibit the serotonin system and thus release the
dopamine system from this inhibition (disinhibition of the dopamine system). The release of the

dopamine system from serotonergic inhibition ameliorates extrapyramidal symptoms.
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effects of dopamine released by

these projections are mediated
through a series of dopamine re-

ceptors (D1-D5) grouped into
two families, the D1 family (D1
and D5) and the D7 family (D2,
D3, D4), on the basis of their ge-
netic homology and common
second messenger systems. The

D1 receptors are prominent in
the cortical regions, D7 receptors
are prominent in the striatum,
and D3 and D4 receptors have a
higher distribution in the limbic
regions. Presynaptic dopamine
receptors may be localized on the

cell bodies in the midbrain (so-
matodendritic autoreceptors),
where they modulate the firing

of dopamine neurons, or on the
axonal terminals of dopamine
neurons (terminal autorecep-

tors), where they modulate the re-
lease ofdopamine (5, 6). Postsy-

Striatitm

naptic dopamine receptors me-
diate the effect of dopamine on

the nondopaminergic postsy-
naptic neurons.

The serotonergic neurons also
arise from discrete midbrain

nuclei; the dorsal raphe nucleus

and the median raphe nucleus provide the most promi-
nent projections. The dorsal raphe nucleus projects to
the cortex and the striatal regions, and the median ra-
phe nucleus projects to the limbic regions (7). The sero-

tonin receptors are grouped on the basis of shared ge-
netic sequences and second messenger systems into
three classifications: 1 ) the 5-HT1 family (5-HTIA, 5-

HTID, S-HTIE, and S-HTIF), which uses G-protein-me-

diated signal transduction; 2) the 5-HT� family (5-HT2A,

5-HT2�, S-HT2�, and S-HT4), which uses phosphoino-
sitol-mediated signal transduction; and 3) the S-HT3

receptor, which uses ion-gated channels for signal
transduction (8). The somatodendritic serotonergic
autoreceptors, mainly 5-HT1A type, are found on the
serotonergic neurons in the raphe nuclei and modulate
the firing of the serotonergic neurons. The terminal

autoreceptors, probably S-HTID subtype, modulate the
release of serotonin from the serotonergic neurons. On

the other hand, postsynaptic serotonin receptors medi-
ate the action of serotonin on the nonserotonergic neu-
rons, with the 5-HT1A receptors being prominent in the
limbic regions and 5-HT2 receptors prominent in the

motor regions (7-10).

Serotonergic Inhibition of Dopaminergic Function
in the Midbrain

Serotonergic projections from the dorsal raphe (1 1,
12) project directly to the substantia nigra and inhibit

the firing of the dopaminergic neurons (7, 13). Most of
these raphe-nigral neurons arise as collaterals of the ra-
phe-striatal neurons, thus providing a neural basis for

coordinated modulation of midbrain and terminal do-
paminergic function (14). The stimulation of dorsal ra-
phe serotonergic fibers releases serotonin in the sub-
stantia nigra (13). This is associated with a decrease in

the firing rate of the dopamine neurons and antagonizes
dopamine-mediated behaviors, suggesting an inhibi-

tory modulation of the dopamine neurons in the sub-
stantia nigra by serotonin (11, 12, 15-19). This inhibi-
tory action seems to be modulated by S-HT2 receptors
located on the somatodendritic surface of the dopamine
neurons (9, 12, 17, 20). As expected, anatomical or
chemical lesions that disrupt the raphe-nigral projec-

tion (17, 18), 5-HT1A agonists that functionally inhibit
the raphe-nigral neurons (16, 21, 22), or 5-HT2 antago-
nists that antagonize the effect of the raphe-nigral sys-

tem (20) all lead to a biochemical and functional disin-
hibition of the dopamine system. Figure 1 illustrates the
major elements of this interaction.

Serotonergic Inhibition of Dopaminergic Function

in the Forebrain

Tract tracing (23, 24) and immunohistochemical
studies (25-27) have shown that serotonergic neurons

that arise in the dorsal raphe nucleus project uninter-
ruptedly via the medial forebrain bundle to the striatum
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and cortex (7). Stimulation of these raphe-striatal neu-
rons, or the striatal administration of serotonergic
agonists, causes an inhibition of striatal neuronal firing,
presumably by means of a decrease in synaptic dopa-
mine (24, 28-31 ). This effect seems to be mediated by

the 5-HT2 receptors (30, 32-36) and may result from a
decreased release (32, 33, 37, 38) or a decreased synthe-
sis of dopamine in the terminals (18, 35, 39, 40), al-

though the decreased synthesis has not been consis-

tently observed (41, 42). Nonetheless, the concept of

serotonergic modulation of dopamine function receives
clear impetus from in vivo positron emission tomogra-
phy (PET) studies in baboons showing that altanserin,

a S-HT2 antagonist, increases the release of endogenous
dopamine, while citalopram, a selective serotonin reup-
take inhibitor (SSRI), decreases the release of endo-
genous dopamine (43).

Consistent with this inhibitory influence of serotonin
on dopamine, lesioning the serotonergic projections
disinhibits the dopamine system and causes an increase
in striatal dopamine levels (IS, 44). Similarly, 5-HT2

antagonists block serotonin’s inhibitory action on
striatal dopamine and result in increased dopamine 1ev-

els in the striatum (28, 31, 36, 43, 45). Similar evidence

exists for striatal control of limbic and cortical dopa-
mine function (10, 46). It is to be noted, however, that
serotonin has a direct influence on the cholinergic and

‘y-aminobutyric acid (GABA) system, and some of sero-
tonin’s effects on the dopamine system may be medi-

ated, indirectly, through its modulation of the GABA
and cholinergic system (17, 18, 47-49).

In summary, there is convincing evidence that the se-
rotonergic projections inhibit dopamine function at

two levels: at the level of the midbrain they inhibit the
firing of the dopamine cells projecting from the sub-

stantia nigra, and in the striatum and cortex they inhibit
the synaptic release of dopamine and probably the syn-

thesis of dopamine. As a result, serotonergic agonists,
serotonin precursors, and SSRIs enhance the inhibition
of the dopamine system. Conversely, lesions of the ra-
phe nuclei, 5-HT1A agonists (through their action on
autoreceptors), and 5-HT2 antagonists disinhibit the
dopamine system.

FUNCTIONAL RELEVANCE OF THE SEROTONIN-

DOPAMINE INTERACTION

Relevance of the Serotonin-Dopamine Interaction

in Animal Models of Extrapyramidal Symptoms

Neuroleptic-induced extrapyramidal symptoms in

humans result from occupancy of D2 receptors in the
striatum (50). Neuroleptic-induced catalepsy in ani-
mals, which represents a similar mechanism, provides a
valuable model to study extrapyramidal symptoms
(51). Since serotonin exerts an inhibitory influence on
the dopaminergic system, manipulations that inhibit se-
rotonin function (raphe lesions, S-HTIA autoreceptor

agonists, or 5�T2 antagonists) would be expected to

disinhibit the dopamine system and ameliorate cata-
lepsy. Conversely, enhancing serotonergic function
(with serotonin precursors, direct agonists, or SSRIs)
would be expected to further inhibit the dopamine sys-
tem and worsen catalepsy. We now examine evidence

in support of these paradigms.
In one of the earliest studies of this phenomenon,

Kostowski et al. (37) showed that lesions of the raphe

nuclei prevent and ameliorate neuroleptic-induced cata-
lepsy in rodents, a finding subsequently confirmed for

anatomical and chemical raphe lesions (52, 53). Fur-
thermore, there is a close relationship between the de-
gree of ablation of the raphe, the loss of serotonin in the

striatum, and the degree to which the catalepsy is pre-
vented (54).

S-HT1A agonists, by means of their action on soma-
todendritic autoreceptors, inhibit the firing of seroto-
nergic neurons. Several studies (55-58) reported a
beneficial effect of 5-HTIA agonists in reversing and

preventing the development of catalepsy in rodents, and
this effect has now been confirmed in primate models
of extrapyramidal symptoms (59, 60). It is specific for

the S-HTIA subtype, is not observed with other S-HT1
receptor subtypes (55), and is distinct from the S-HT2
effect (56). These findings suggest that the combination
of a S-HTIA agonist and a D,-antagonist may lead to
extrapyramidal symptom-free antipsychotic activity

(58). However, to our knowledge, no such studies exist
in humans.

With respect to 5-HT2 antagonism and its effect on

catalepsy in rodents, Maj et al. (61) reported that cy-

proheptadine, a 5-HT2 antagonist, prevents catalepsy,

although this interpretation is confounded by the an-
ticholinergic properties of cyproheptadine. Subsequent
reports using specific 5-HT2 antagonists have con-

firmed a role for 5-HT2 in alleviating catalepsy (53, 55,

56, 62) and have also shown that 5-Hi’, antagonists
enhance dopamine-mediated motor behavior in models
other than catalepsy (63, 64). Other groups, however,
failed to find this effect, even though they used drugs
with similar S-HT2 activity and similar animal models
(58, 65). The results in primate models of extrapyrami-
dal symptoms also show variance: there have been re-
ports of a beneficial effect of 5-HT2 antagonists in the
Cercopethicus species (66) but no such effects in several

investigations of the Cebus species (59, 67, 68).

This variance in the findings may reflect differences
in the relevance of the serotonin-dopamine interaction
across different species or differences in the models used

to study extrapyramidal symptoms (68). The latter sug-
gestion is buttressed by the demonstration in physio-
logical experiments (38) that S-HT2 antagonism may

ameliorate the functional effects of D7 antagonism
when it is partial but may not be able to reverse the

effects if D7 blockade is complete. In addition, a recent
report (69) showed that ritanserin, a 5-HT2 antagonist,
was able to antagonize haloperidol-induced catalepsy
when induced with low doses of haloperidol but was

ineffective when suprathreshold doses of haloperidol
were used to induce catalepsy. Thus, 5-HT2 blockade
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may bestow only a limited protection from the effects

of D, blockade, a concept that will be of particular rele-

vance in the discussion of the antagonism between 5-

HT, and D7 in the clinical context.
In keeping with the overall argument, serotonergic

agonists would be expected to further inhibit the dopa-

mine system and worsen extrapyramidal symptoms. In-

deed, it has been reported that S-hydroxytryptophan (a
precursor of serotonin) and quipazine (a direct acting

agonist) worsen haloperidol-induced catalepsy in rats

(53, 62). Similarly, SSRIs enhance serotonergic trans-
mission and worsen extrapyramidal symptoms in ro-

dent and primate models, although the effect in pri-
mates may be species-dependent (62, 66, 67).

In summary, manipulations that inhibit the serotonin

system (e.g., raphe lesions, 5-HTIA agonists, and S-Hi’,

antagonists) disinhibit the dopamine system and offer

an indirect avenue to alleviate neuroleptic-induced

extrapyramidal symptoms. The different interactions

and their functional effects on extrapyramidal symp-

toms are illustrated in figure 1.

Relevance of the Serotonin-Dopamine Interaction

in Alleviating Extrapyramidal Symptoms in Humans

The earliest convincing evidence for serotonin-dopa-

mine interaction in humans came from Ceulemans et al.
(70), who treated patients with schizophrenia with se-

toperone, a S-HT, antagonist, in an open trial and dem-

onstrated a beneficial effect on extrapyramidal symp-
toms. It was unclear in this study, however, whether the

benefit resulted from the discontinuation of the typical
neuroleptic or from the initiation of the setoperone. In

subsequent studies, Reyntjens et al. (71 ), Gelders (72),

and Bersani et al. (73) used ritanserin, a more specific
S-HT2 antagonist, in double-blind, placebo-controlled,
add-on trials and showed a significant improvement in
extrapyramidal symptoms. Beneficial effects of ritan-
serin have now been reported in neuroleptic-induced

akathisia (74, 75) and in tremor arid akinesia observed

in Parkinson’s disease (76-78). Silver et al. (79) have
reported a beneficial trend for cyproheptadine in ame-

liorating extrapyramidal symptoms in patients receiv-

ing neuroleptics, although its anticholinergic properties

confound the role of its 5-HT2 blockade. In contrast,
Korsgaard and Friis (80), using mianserin in a double-
blind crossover trial in patients with neuroleptic-in-

duced parkinsonism, failed to find a beneficial effect of
5-HT2 antagonism.

SSRIs, the most commonly used serotonergic agon-

ists, are known to induce an akathisia-like syndrome

(81-83). More recent reports (77, 84, 85) also impli-

cated SSRIs in a variety of extrapyramidal symptoms,

ranging from tremor to dystonic reactions. Although

some of the subjects in these studies were receiving
neuroleptics or had Parkinson’s disease (86), cases of de

novo onset of characteristic parkinsonian symptoms
have also been reported (85). Epidemiologic studies

(87) suggest that SSRI-induced extrapyramidal symp-

toms are definite, but rare, occurrences reported in one

out of 1,000 individuals treated with these drugs. This
suggests that in some individuals who are either receiv-

ing drugs inducing D2 antagonism or have asympto-

matic Parkinson’s disease the marginal increase in do-
pamine antagonism caused by the SSRI is enough to

push them over the threshold for extrapyramidal symp-

toms (87). However, for the majority of individuals the
degree of D2 antagonism induced by SSRIs does not by
itself cross the extrapyramidal symptom threshold.

The Serotonin-Dopamine Interaction

and Negative Symptoms

Negative symptoms of schizophrenia involve a syn-

drome of flattened affect, alogia, and amotivation ac-

companied by emotional and social withdrawal. Typi-
cal antipsychotics have limited efficacy against negative
symptoms, and many patients freed from their delu-

sions and hallucinations are still unable to resume pro-

ductive lives due to enduring negative symptoms. De-
spite their critical clinical importance, there are few, if

any, convincing animal models of negative symptoms

(88). However, the neuropsychological similarity of pa-

tients with prominent negative symptoms to patients
with frontal lesions and data from neuroimaging stud-
ies link negative symptoms to frontal dysfunction (89-

91 ). It has been suggested that this may reflect, at least
in part, hypodopaminergic function in the prefrontal

cortex (92-95). Such a model would predict that in-

creasing dopaminergic function in the prefrontal cortex

may relieve negative symptoms, a view that led to the

use of dopamine agonists with some success (96, 97).
Given the inhibitory effect of serotonin on dopami-

nergic transmission, it has been hypothesized that drugs

inhibiting serotonergic function may disinhibit dopami-

nergic transmission in the prefrontal cortex and, as a
result, may improve negative symptoms (97). This hy-

pothesis is supported by reports that clozapine, which
is thought to improve negative symptoms, induces an

increased turnover of dopamine in the prefrontal cortex
of rodents, an effect not seen with typical antipsychotics
(98, 99). More recent studies (100-102) suggest that

this property of clozapine can be explained by its S-HT2

antagonism. Thus, if current speculations regarding the

role of the prefrontal cortex in negative symptoms are

correct, 5-HT, antagonists could ameliorate negative
symptoms by means of their effects on the dopami-
nergic system. It is worth noting that serotonergic pro-

jections also have a direct inhibitory effect on the
prefrontal neurons, separate from their effect on the do-
paminergic projections. Accordingly, some of the ef-
fects of S-HT2 blockers on negative symptoms in ani-
mal models and humans may reflect a direct effect
rather than a dopamine-mediated effect on prefrontal

neurons (46, 103).
Ceulemans et al. (70) provided the first supporting

clinical evidence by demonstrating that setoperone, a
S-HT, antagonist, resulted in a significant improve-
ment in emotional withdrawal, autistic behavior, and
dysphoria in patients with schizophrenia. Reyntjens et
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al. (71) and Gelders (72), in an add-on, double-blind,
placebo-controlled study of ritanserin, found a signifi-
cant improvement in negative and affective symptoms
in the ritanserin-treated patients only. This finding has
now been replicated in another study (104), where
maximum improvement was noted in affective flatten-
ing and social relationships. Similar results have also

been reported in a study employing cyproheptadine in
patients with predominantly negative symptoms (79),
although the 5-HT2 activity of cyproheptadine is con-
founded with its histaminergic and cholinergic effects.

A little surprising, then, are the results of Silver and
Nassar (105), Spina et al. (106), and Goff et a!. (107),
who found equally significant improvement in negative
symptoms with SSRI treatment. This presents an inter-
esting puzzle-S-HT2 antagonists and SSRIs have op-
posing effects on the serotonergic system and, through
the serotonin-dopamine interaction, on the dopaminer-
gic system, so how do both of these drugs improve

negative symptoms? The answer lies, perhaps, in the
possibility that what are currently recognized as nega-

tive symptoms may in fact reflect separate pathophysi-
ological entities (90, 108, 109). Therefore, it is conceiv-
able that both SSRIs and S-HT2 antagonists may

improve manifest negative symptoms: the SSRIs may
exert an effect on the depressive component of negative
symptoms, and the S-HT2 antagonists may exert an ef-
fect on the extrapyramidal symptom component of
negative symptoms.

ROLE OF THE SEROTONIN-DOPAMINE INTER-

ACTION IN THE EFFECTS OF CLOZAPINE
AND RISPERIDONE

Extrapyramidal Symptoms

Numerous reports have established clozapine’s vir-
tual freedom from extrapyramidal symptoms in usual
doses (1 10-1 13). Is this related to clozapine’s seroto-

nin-dopamine interaction profile? It had been postu-
lated that clozapine’s high ratio of S-HT2 to D2 affinity
may account for its diminished extrapyramidal symp-
toms (1 14, 1 1 5). However, recent PET studies suggest
otherwise. It has been shown that patients receiving
conventional neuroleptics experience extrapyramidal
symptoms only when D2 occupancy exceeds a thresh-
old, somewhere in the range of 75%-80% D2 occu-
pancy (SO). Extrapyramidal symptoms are not ob-
served below these levels of D2 occupancy, even with
the classical neuroleptics. Clozapine’s D2 occupancy
varies from 20% to 67% (1 1 6, 1 1 7) and has never been
shown to exceed the putative threshold for extrapy-
ramidal symptoms. Thus, clozapine’s low extrapy-
ramidal symptom profile is explained more parsimoni-
ously on the basis of its low D2 occupancy, and there
appears to be no need to invoke the role of the seroto-
nin-dopamine interaction to explain its superiority in
alleviating extrapyramidal symptoms (118).

As for risperidone, a series of trials have confirmed

that, in doses ranging from 4 to 8 mg/day, risperidone
produces significantly fewer extrapyra midal symptoms

than haloperidol (119-121), although the superiority

of risperidone in producing fewer extrapyramidal
symptoms is not as striking as that of clozapine. First,

the difference between risperidone and haloperidol in
terms of extrapyramidal symptoms became statistically

indistinguishable at doses beyond 6-8 mg (119, 120).

Second, no significant difference in producing extrapy-

ramidal symptoms was found when risperidone was
compared with perphenazine, a medium-potency agent
with a tendency to produce fewer extrapyramidal

symptoms than haloperidol (122). Furthermore, recent
PET data suggest that risperidone and haloperidol are
almost equipotent at the dopamine D2 receptor (123,
124); therefore, the comparative dose of haloperidol in
these clinical trials (10-20 mg/day of haloperidol) may
have been too high (1, 125). Studies have shown that
mean doses of 3.7 mg/day (126), 4 mg/day (127), or 3.3

mg/day (128) are as effective as 10-50 mg/day of halo-

peridol and produce significantly fewer extrapyramidal
symptoms. This raises the question of whether 4-8 mg

day of risperidone would have shown the same supe-
riority in terms of extrapyramidal symptoms had it

been compared with a lower dose of haloperidol. Al-
though clozapine causes virtually no extrapyramidal
symptoms, risperidone’s superiority is only relative to
high-potency neuroleptics and disappears with increas-
ing dosage. This suggests that the mechanism for ris-
peridone’s superiority in terms of extrapyramidal

symptoms may be different from that of clozapine.
The clue to risperidone’s having few extrapyramidal

symptoms at lower doses, as well as the diminution of
this benefit at high doses, may lie in the operation of the

mechanism of the serotonin-dopamine interaction. At a
dose of 6 mg/day, risperidone demonstrates higher 5-
HT2 than D2 occupancy (its 5-HT2 occupancy ranges
from 80% to near saturation [129], and its D, occu-

pancy lies in the 74%-83% range, bordering on the
extrapyramidal symptom threshold 1123, 1291). At this
dose, the presence of potent 5-HT2 antagonism may re-
duce risperidone’s risk of extrapyramidal symptoms in
comparison with a conventional neuroleptic. However,

as discussed earlier, the ability of S-HT2 antagonism to

counter the effects of D2 antagonism is limited. As the
dose of risperidone is increased beyond 6 mg/day, su-

prathreshold D2 blockade may result, and the seroto-
nin-dopamine interaction mechanism may no longer be

able to alleviate extrapyramidal symptoms (123).
It has been proposed that antipsychotics require a par-

ticular ratio of S-HT2 to D2 affinities (greater affinity for
5-HT2 than D2) to obtain the beneficial effects of seroto-
nin-dopamine interaction with respect to extrapyramidal
symptoms (1 14, 1 15). However, the S-F-IT2 to D2 affinity
ratio of a drug is a fixed number, while the relative level

of 5-HT2 and D2 blockade produced by a drug is a func-

tion of the dose. This is illustrated in figure 2. At low
doses, a drug with combined 5-HT2 and D, antagonist

activity shows marked preference for the S-HT2 receptors,

whereas at the higher dose, both the D2 and the S-HT2
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receptors are almost completely blocked.

Figure 2 demonstrates how the difference

between the 5-HT2 blockade and D2 block-

ade is notable when the level of D2 occu-
pancy is just beyond the extrapyramidal

symptom threshold, and this may prevent

the clinical expression of extrapyramidal

symptoms. However, at doses that result in

suprathreshold D2 occupancy, the prepon-
derance of S-HT2 blockade as well as the

benefits related to the serotonin-dopamine
interaction may be lost. This view is borne

out by recent studies in animals (69), as well
as reports using PET imaging with risperi-

done in humans (123). Therefore, the thera-
peutic window observed in clinical trials

with risperidone (1 1 9, 120) may not be pe-

culiar to risperidone but may simply reflect

limits of serotonergic protection in the face

of high D2 dopamine blockade.

Negative Symptoms

Prospective, controlled studies have

demonstrated clozapine’s superiority to
conventional neuroleptics in the treat-

ment of negative symptoms (110, 130,
131). In the case of risperidone, the cvi-

dence is less clear. Of the published pro-

spective, double-blind trials, two (119, 120) reported

risperidone to be superior to haloperidol, but another

two studies (132, 133) failed to find such a difference.

In addition, these effects may be lost over time (121)

and may be evident only when low doses of risperidone
are compared with relatively higher doses of haloperi-
dol (1 19, 120, 132). Moreover, few of these studies
have appropriately controlled for changes in factors

such as depression, extrapyramidal symptoms, and psy-

chotic withdrawal, which could confound the improve-

ment in negative symptoms. When these confounding

factors are controlled statistically, some studies (134,

135) found an effect of clozapine and risperidone on
primary negative symptoms, but others (136) failed to

distinguish these effects from changes in extrapy-

ramidal symptoms and psychosis.

If we assume that these drugs have a primary effect
on negative symptoms, how do we explain this effect?
The preferential S-HT2 antagonism and resulting sero-
tonin-dopamine interaction are promising candidates

for an explanation. This is supported by independent
clinical trials that have shown the superiority of selec-

tive 5-HT2 antagonists in ameliorating negative symp-

toms and by the fact that the shared feature distinguish-
ing clozapine and risperidone from conventional

neuroleptics is their relatively higher S-HT2 than D2 an-

tagonism. However, these drugs are multifaceted, and

clozapine demonstrates high affinities for the dopamine

D4, serotonin 5-HTIC, adrenergic a�, muscarinic, and
histamine H1 receptors, while risperidone also exhibits
high affinity for dopamine D4, histamine H1, and ad-

FIGURE 2. Relationship Between Dose of Antipsychotic, 5�HT2 and D2 Receptor Oc�
cupancy, and Extrapyramidal Symptomsa

- D2st�rathreshold
‘ 5-H; pn�ecIlon bat
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Dose of a 5-H1 I D2 antipsychotic 0

aThe figure demonstrates that levels of both 5-HT, (dashed curve) and D, receptor

occupancy (solid curve) rise with increasing doses of an antipsychotic with S-HT, and

D, properties. At low doses, the 5-HT, occupancy is much higher than D, occupancy

(5-HT,>D,). However, at high doses the difference is negligible (S-HT,--D,). The ar-

row on the left represents the threshold for extrapyramidal symptoms in the absence

of S-HT, blockade. At dose A, the level of D2 blockade is just above the extrapyramidal

symptom threshold, but extrapyramidal symptoms are prevented because the S-HT,

blockade is greater than the D2 blockade. However, at dose B, the D, blockade is

suprathreshold and the difference between S-HT, and D, blockade is minimal, con-

ditions that result in the appearance ofextrapyramidal symptoms despite the presence

of 5-HT, blockade.

renergic ai receptors (137, 138). In view ofthe putative

roles of these other neurotransmitters in negative symp-

toms (79, 96, 139), it may be premature to assign the

superiority of clozapine and risperidone in the treat-

ment of negative symptoms solely to their serotonin-do-

pamine interaction properties.

FUTURE DIRECTIONS

In summary, convincing evidence for the functional
relevance of the serotonin-dopamine interaction in alle-
viating extrapyramidal symptoms in humans is avail-

able from clinical trials in which specific 5-HT2 block-

ers have been added, and this is further buttressed by

the superior extrapyramidal symptom profile of risperi-

done. The question still remains as to how S-HT2 an-
tagonism prevents or alleviates extrapyramidal symp-

toms in humans. Animal data permit us to postulate
two plausible hypotheses, outlined in figure 3. Con-

comitant 5-HT2 antagonism could release endogenous
dopamine in the striatum, which in turn may displace
the neuroleptic from D2 sites in the striatum. Such a
hypothesis would predict that the addition of a S-HT2

antagonist would shift the D2 occupancy curve to the
right, thus increasing the dose at which the extrapy-

ramidal symptom threshold is crossed (hypothesis I
in figure 3). On the other hand, 5-HT2 blockade may

elevate the threshold for extrapyramidal symptoms
through the modulating influences on cholinergic or

GABA-ergic mechanisms without a direct effect on



FIGURE 3. Two Hypotheses Regarding the Mechanisms Whereby 5-HI2 Antagonists Diminish
Extrapyramidal Symptomsa
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depicts original ft occupancy curve, and the curve with dashes depicts the D, curve under the

influence of 5-HT, antagonists). The extrapyramidal symptom threshold remains the same,

hut the dose at which extrapyramidal symptoms manifests shifts because of a shift in the curve.

In hypothesis II, the addition of the 5-HT, blockade raises the threshold of extrapyramidal

symptoms, without a direct effect on D occupancy. This mechanism also increases the dose

at which the extrapyramidal symptoms become clinically observable, hut there is no change
in the curve for 1) occupancy. Both mechanisms plausibly explain the observed finding that

the addition of 5-HT) antagonism delays extrapyramidal symptoms.
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Hypothesis I

5-HT� bbcl�ieshitts D�occupancycttvetthe d�1

occupancy. In this case, one would expect no change in

the curve relating D, occupancy to dose, but one would

expect that the level of D, occupancy producing extra-
pyramidal symptoms would be higher, i.e., the extrapy-

ramidal symptom threshold would be raised (hypothe-

515 II in figure 3). It is now possible to measure the

effects of 5-HT, antagonism on endogenous dopamine
and D, blockade in humans, in vivo, and to relate these

findings to clinical outcomes. Therefore, these two hy-

potheses concerning the role of the serotonin-dopamine

interaction in alleviating extrapyramidal symptoms are

eminently testable, and it is hoped that future research

will address them.

The second major therapeutic role for the serotonin-
dopamine interaction is in alleviating negative symptoms.

The clinical evidence available demonstrates improve-
ment in negative symptoms with S-HT2 antagonists but

does not unequivocally distinguish between primary and
secondary improvements in negative symptoms. None-

theless, how might the serotonin-dopamine interaction
help in the amelioration of negative symptoms? It is pos-
tulated that negative symptoms result from hypo-

dopaminergic function in the prefrontal cortex. One could

hypothesize that 5-HT2 antagonism, by disinhibiting the

dopaminergic system, would lead to enhanced dopami-
nergic transmission in the prefrontal cortex, which in turn
could ameliorate negative symptoms. Although current

neuroimaging technologies permit the measurement of

dopamine receptors in the striatum, methods for evaluat-

ing D2 receptors or dopamine levels in the prefrontal cor-

tex are still in their infancy. There-
fore, investigating this aspect of se-

rotonin-dopamine interaction in hu-

mans may have to await the develop-

ment of valid in vivo measures of the

cortical dopamine system.

An assumption implicit in the

above explanations of the serotonin-

dopamine interaction is that the ef-
fect ofthe serotonin-dopamine inter-

action is different in different brain

regions. It is conventionally held that

antipsychotic action results from

inhibiting dopaminergic function

in the mesolimbic system and that

similar inhibition in the striatum

and the prefrontal cortex leads to the

production or exacerbation of extra-

pyramidal symptoms and negative

symptoms, respectively. We have ar-

gued here that antipsychotics with a

serotonin-dopamine interaction pro-

file may ameliorate extrapyramidal

symptoms and negative symptoms

by disinhihiting the dopamine system
in the striatum and the prefrontal

cortex. However, a similar func-
tional disinhibition in the mesolim-
bic regions would counteract the
primary antipsychotic action. There-

fore, our reasoning can he held together only if we can

demonstrate that serotonin’s influence on the dopamine

system in the mesolimbic regions is either quantitatively
or qualitatively different from its effect in the striatum
and the prefrontal cortex.

Finally, we raise the issue of using two drugs, one
with specific 5-HT, and another with specific D2 an-
tagonism, to obtain the benefits of the serotonin-dopa-
mine interaction. It is claimed ( 140) that newer antipsy-

chotic agents like risperidone have an optimal balance
of S-HT, and D, affinities, which provides the benefits

of the serotonin-dopamine interaction. However, the

crucial element is not the balance of 5-HT, and D, af-
finities of a givcn drug in a test tube, but the relative
levels of S-HT, and D, antagonism it produces in a

given patient. The limitation inherent in any drug that
has both S-HT, and D, antagonism is that any effort to
increase S-HT, blockade inexorably increases D2 an-
tagonism and vice versa (figure 2). Although recent

clinical trials have demonstrated the success of drugs
like risperidone, it is quite likely that independent con-

trol over the 5-HT, and D, system may provide for even

more effective treatment. Low-potency neuroleptics

that can be regarded as fixed combinations of anti-D2

and anticholinergic activity have been largely replaced

by higher potency neuroleptics that provide relatively
selective D, blockade and that are electively and flex-
ibly combined with doses of anticholinergics. Thus,

with better understanding of the role and implications

of the serotonin-dopamine interaction, clinicians may
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find that using two agents that permit independent con-

trol over the D2 and S-HT2 systems permits more mdi-
vidualized and efficacious therapy.

The widespread study of the serotonin-dopamine in-
teraction from a basic and clinical viewpoint promises

a certain and substantive change in the pharma-
cotherapy of schizophrenia. The evidence is not un-

equivocal. The discovery of new receptor subtypes and
a better understanding of their functional relevance will

call for a constant reevaluation of existing knowledge.
However, the facts are sufficiently coherent to permit

the specification of testable hypotheses and to provide
a logical framework for understanding the therapeutic

benefits of the serotonin-dopamine interaction. The

next few years will lead to a clearer understanding and,
we hope, a more effective use of the serotonin-dopa-
mine interaction for the benefit of our patients.
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