ArticlePDF Available

Mitigation of Cadmium Toxicity through Modulation of the Frontline Cellular Stress Response

Authors:

Abstract and Figures

Cadmium (Cd) is an environmental toxicant of public health significance worldwide. Diet is the main Cd exposure source in the non-occupationally exposed and non-smoking populations. Metal transporters for iron (Fe), zinc (Zn), calcium (Ca), and manganese (Mn) are involved in the assimilation and distribution of Cd to cells throughout the body. Due to an extremely slow elimination rate, most Cd is retained by cells, where it exerts toxicity through its interaction with sulfur-containing ligands, notably the thiol (-SH) functional group of cysteine, glutathione, and many Zn-dependent enzymes and transcription factors. The simultaneous induction of heme oxygenase-1 and the metal-binding protein metallothionein by Cd adversely affected the cellular redox state and caused the dysregulation of Fe, Zn, and copper. Experimental data indicate that Cd causes mito-chondrial dysfunction via disrupting the metal homeostasis of this organelle. The present review focuses on the adverse metabolic outcomes of chronic exposure to low-dose Cd. Current epidemio-logic data indicate that chronic exposure to Cd raises the risk of type 2 diabetes by several mechanisms , such as increased oxidative stress, inflammation, adipose tissue dysfunction, increased insulin resistance, and dysregulated cellular intermediary metabolism. The cellular stress response mechanisms involving the catabolism of heme, mediated by heme oxygenase-1 and-2 (HO-1 and HO-2), may mitigate the cytotoxicity of Cd. The products of their physiologic heme degradation, bilirubin and carbon monoxide, have antioxidative, anti-inflammatory, and anti-apoptotic properties .
Content may be subject to copyright.
Stresses2022,2,355–372.https://doi.org/10.3390/stresses2030025www.mdpi.com/journal/stresses
Review
MitigationofCadmiumToxicitythroughModulation
oftheFrontlineCellularStressResponse
SoisungwanSatarug
1,
*,DavidA.Vesey
1,2
andGlendaC.Gobe
1,3,4
1
KidneyDiseaseResearchCollaborative,TranslationalResearchInstitute,Brisbane4102,Australia
2
DepartmentofNephrology,PrincessAlexandraHospital,Brisbane4102,Australia
3
SchoolofBiomedicalSciences,TheUniversityofQueensland,Brisbane4072,Australia
4
NHMRCCentreofResearchExcellenceforCKDQLD,UQHealthSciences,RoyalBrisbaneandWomen’s
Hospital,Brisbane4029,Australia
*Correspondence:sj.satarug@yahoo.com.au
Abstract:Cadmium(Cd)isanenvironmentaltoxicantofpublichealthsignificanceworldwide.Diet
isthemainCdexposuresourceinthenonoccupationallyexposedandnonsmokingpopulations.
Metaltransportersforiron(Fe),zinc(Zn),calcium(Ca),andmanganese(Mn)areinvolvedinthe
assimilationanddistributionofCdtocellsthroughoutthebody.Duetoanextremelyslowelimina
tionrate,mostCdisretainedbycells,whereitexertstoxicitythroughitsinteractionwithsulfur
containingligands,notablythethiol(SH)functionalgroupofcysteine,glutathione,andmanyZn
dependentenzymesandtranscriptionfactors.Thesimultaneousinductionofhemeoxygenase1
andthemetalbindingproteinmetallothioneinbyCdadverselyaffectedthecellularredoxstateand
causedthedysregulationofFe,Zn,andcopper.ExperimentaldataindicatethatCdcausesmito
chondrialdysfunctionviadisruptingthemetalhomeostasisofthisorganelle.Thepresentreview
focusesontheadversemetabolicoutcomesofchronicexposuretolowdoseCd.Currentepidemio
logicdataindicatethatchronicexposuretoCdraisestheriskoftype2diabetesbyseveralmecha
nisms,suchasincreasedoxidativestress,inflammation,adiposetissuedysfunction,increasedinsu
linresistance,anddysregulatedcellularintermediarymetabolism.Thecellularstressresponse
mechanismsinvolvingthecatabolismofheme,mediatedbyhemeoxygenase1and‐2(HO1and
HO2),maymitigatethecytotoxicityofCd.Theproductsoftheirphysiologichemedegradation,
bilirubinandcarbonmonoxide,haveantioxidative,antiinflammatory,andantiapoptoticproper
ties.
Keywords:bilirubin;cadmium;carbonmonoxide;glycolysis;gluconeogenesis;heme;hemeoxy
genase1;hemeoxygense2;obesephenotype;hemeoxygenase2deficiency;stressresponse
1.Introduction
Theutilityofaredoxinertmetalcadmium(Cd)inmanyindustrialprocesses,and
theuseofphosphatefertilizerscontaminatedwithCdbytheagriculturalsectorhavere
sultedinwidespreaddispersionofthistoxicmetalintheenvironmentandsubsequently
thefoodchains[1–5].Volcanicemissions,biomassandfossilfuelcombustion,andciga
rettesmokeareadditionalsourcesofenvironmentalCdpollution[6–10].Cdincigarette
smokeasavolatilemetallicformandoxide(CdO)hasaparticularlyhightransmission
rate[10,11].Anexistenceofthenosetobraintransportrouteoftoxicmetalsraisesthe
possibilitythatairborneCdmayenterthecentralnervoussystem(CNS)byutilizinga
Cdalteredblood–brainbarrier[12–14].
Foodsthatarefrequentlyconsumedinlargequantities,suchasrice,potatoes,wheat,
leafysaladvegetables,andothercerealcrops,formthemostsignificantdietarysourcesof
Cd[15–17].Seafood(shellfish),mollusks,andcrustaceansareadditionaldietaryCd
sources[18,19].Cdentersthebodyfromthegutandlungsviathemetaltransportersand
Citation:Satarug,S.;Vesey,D.A.;
Gobe,G.C.MitigationofCadmium
ToxicitythroughModulationofthe
FrontlineCellularStressResponse.
Stresses2022,2,355–372.https://
doi.org/10.3390/stresses2030025
AcademicEditor:DavidR.Wallace
Received:1September2022
Accepted:14September2022
Published:15September2022
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2022bytheauthors.
Submittedforpossibleopenaccess
publicationunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Stresses2022,2,25356
pathwaysforzinc(Zn),calcium(Ca),iron(Fe),manganese(Mn),andpossiblyselenium
(Se)[17].Becauseofanextremelyslowexcretionrate,mostabsorbedCdisretainedin
cells,andthecellularcontentofCdincreaseswiththedurationofexposure(age)[17].
Evidencefromepidemiologicandexperimentalstudiessuggestthatlowenviron
mentalexposuretoCdmayincreasetheriskofdiseaseswithhighprevalence,suchas
chronickidneydisease(CKD),liverdisease,type2diabetes,andneurodegenerativedis
orders[15–17,20].Developingstrategiestopreventthesechronicailmentsisofglobalim
portanceintheabsenceofeffectivechelationtherapiestoreducetheCdbodyburden.
Inthepresentreview,wefocusontheeffectsofCdexposureoncellularintermediary
metabolismandthecytoprotectiveroleofmetalinducedstressresponses.Toxicmanifes
tationofCdinkidneys,liver,pancreas,andadiposetissuesarediscussedbecausethese
organsarecentraltothecontrolofbloodglucoselevels.BloodandurinaryCdlevelsthat
werefoundtobeassociatedwithadversemetabolicoutcomesareprovided.Evidencefor
Cdinducedoxidativestressandinflammatoryconditionsarereviewed.Theinterplaysof
hemeoxygenase1and2(HO1andHO)toregulateglycolysisandgluconeogenesisare
highlightedasistheirkeyroleasthefrontlinecellularstressresponsemechanismthat
neutralizesoxidativedamageandprotectsagainstabnormalglucosemetabolism,exces
siveweightgain,andobesity.
2.MeasuresofHumanCadmiumExposure
2.1.Entry,Distribuion,andExcretionofCadmium
AsFigure1depicts,ingestedCdisabsorbedbytheintestineandtransportedviathe
portalbloodsystemtoliver,whileinhaledCdistransportedtolungsandpossiblythe
CNSvianasaltobrainroute.Cdinducessynthesisofmetallothionein(MT)andthe
CdMTcomplexesareformedintheseorgans[21,22].
Figure1.Entry,distribution,andexitofcadmium.IngestedCd
2+
ionsareabsorbedandtransported
toliver,whileinhaledCdoxideandmetallicCdaretransportedtolungs.Thefractionofabsorbed
Cd
2+
ionsnottakenupbyhepatocytesinthefirstpassreachessystemiccirculationandisassimilated
bycellsthroughoutthebody.Inliverandlungs,CdinducessynthesisofMTwithresultantfor
mationofCdMTwithsubsequentreleaseintothecirculationandreabsorptionbykidneytubular
cells.TheCdabsorbedbythegutandlungsiseventuallyaccumulatedinthekidneytubularcells
andisexcretedinurineasCdMTbyinjuredordyingtubularepithelialcellsofthekidneys.
ThefractionofabsorbedCd
nottakenupbyhepatocytesinthefirstpassreachesthe
systemiccirculationandistakenupbytissuesandorgansthroughoutthebody,including
FoodsAir
Cd
Cd

UrineCdMT
BloodPlasma
Cd2+Albumin
Cd2+GSH
Cd2+aminoacids
CdMT
Fatcells.
Stresses2022,2,25357
theadiposetissue[23,24],pancreas[25],lungs,liver,andkidneys[26].Allnucleatedcells
havethecapacitytoassimilateCd2+ionsthatarenotboundtoMTthroughthetransport
ersforthemetalsrequiredfornormalcellularmetabolismandfunction.
Mostcells,hepatocytesincluded,donotassimilateCdMTduetoalackofmecha
nismsforproteininternalization(endocytosis).Kidneytubularepithelialcellsarewell
equippedwithsuchmechanisms,whichfacilitatereabsorptionofvirtuallyallfilteredpro
teinsforreutilization[27,28].KidneytubularcellsalsoassimilateCdinnonMTforms
throughmanyotherkidneytubulartransportersystems.
2.2.EndogenousSuppliersofCadmiumMetallothioneinComplexes
ThecellularformationofCdMThasbeenviewedasadetoxificationmechanismthat
preventsacutetoxicitybecausethe“free”Cd2+ionisthechemicallyreactivetoxicformof
thismetal.Intheory,eachMTmoleculecancarry7atomsofCd2+,7atomsofZn2+or12
atomsofCu2+,andthecomplexesaredenotedasCd7MT,Zn7MT,andCu12MT[29].How
ever,variousspeciesofmixedmetalcomplexes,suchasCd3Cu3ZnMT,Cd4CuZn2MT,and
Cd6CuMT,areformedinvivo,withthemolarcontentsofCddependentonlevelsofCd
exposure[29].
Thereareatleast16MTisoforms,andtheybelongtofourmajorfamilies,MT1–MT
4[30].Amongthesefamilies,MT1andMT2arethemostfrequentlyexpressedintissues,
includingleucocytesandkidneytubularepithelialcells[31–33].MT3hasahigherbind
ingaffinityforCuthanMT1/2,anditisexpressedinhighabundance,particularlyin
kidneysandneurons[34–36].CuboundtoMT3maybeinvolvedinthenephrotoxicity
andneurotoxicityofCdbecauseCuisaredoxactivemetalthatcancauseoxidativestress
[35].
TheCd2+ionssequesteredinhepaticCdMTcomplexesarethosefromthedietwhile
pulmonaryCdMTcontainsairborneCd.Liverandlungsserveasendogenousreservoirs
fromwhichCdMTcomplexesarereleasedascellsdie.CdMTcomplexesareredistributed
tokidneys.AlthoughtheformationofCdMTcomplexespreventacutecytotoxicity,itmay
increasetheriskoflongtermtoxicitybecauseCd2+ionscanbereleasedundercertaincon
ditions,leadingtoanincreasedsynthesisofnitricoxide(NO)thatliberatestheCd2+ions,
previouslyboundtoMT[37–39].
2.3.BloodCadmiumasanIndicatorofRecentExposure
Inthecirculation,lessthan10%ofCdispresentinplasma,andtheremainderisin
erythrocytes,wheremostCdinwholebloodisfound.Thechloride/bicarbonateanionex
changer([Cl/HCO3])isresponsibleforCduptakebyerythrocytes[40].Inplasma,Cdis
boundtotheaminoacidhistidineandproteins,suchasMT,prealbumin,albumin,α2
macroglobulin,andimmunoglobulinsGandA[41–43].Atanygiventime,thewhole
bloodCdlevelisindicativeofrecentexposurebecausetheaveragelifespanoferythro
cytesis120days.ThebiologicalhalflifeofbloodCdrangedbetween75and128days[44].
2.4.UrinaryCadmiumasanIndicatorofCumulativeLifetimeExposure
ThekidneyburdenofCdasμg/gtissueweightincreaseswithageproportionallyto
theamountassimilatedfromexogenoussourcesoveralifetime[26,45–47].Thebiological
halflifeofCdinthekidneycortexwasestimatedat30yearsfornonsmokers[38,39,45,46].
UrineCdhaslongbeenusedasanindicatorofacumulativelifetimeexposurebecause
thisparameteriscorrelatedwiththekidneyburdenofCdandotherdeterminantsofab
sorptionratethatincludethebodystatusofFeandZn[26,48].However,theexcretionof
Cdisindicativeofinjurytotubularepithelialcellsofthekidneys,discussedinSection2.4.
Interestingly,astudyofenvironmentallyexposedChinesesubjectsaged2.8to86.8years
(n=1235)showedthatCdexcretionlevelsincreasedwithage,peakingat50yearsinnon
smokingwomenand60yearsinnonsmokingmen[49].
Stresses2022,2,25358
2.5.RolesforZincTransportersintheBiliaryExcretionandCytotoxicityofCadmium
ASwedishautopsystudyreportedthatapproximately0.001–0.005%ofCdinthe
bodywasexcretedinurineeachday[45,46].ThiskidneyrouteofCdexcretionisex
tremelyslow.Incomparison,thebiliaryexcretionrateofCdappearedtobehigherandit
wassuggestedthatbilemightbeanimportantexcretionrouteforCd[46].Theeffectsof
GSHanddithiothreitolonCduptakeandonbiliaryreleaseofCdweredemonstrated
usingtheisolatedperfusedratliver[50].
ThebiliaryrouteofCdexcretionhasgainedsupportfromrecentresearchdatashow
ingthatZIP8,azinctransporter,wasinvolvedinhepaticexcretionofMnthroughbile
[51].BecauseZIP8alsomediatedCdtransport,itremainstobeseenifZIP8mediatesbil
iaryCdexcretion[51,52].ItisrelevantthattheexpressionoftheZIP8genewasmodulated
byintracellularglutathione(GSH)concentrations[53],andthehepatotoxicityofCdinrats
couldbeattenuatedbyGSHadministration[54].
EvidenceforZninfluxandZneffluxtransporters,notablyZIP8,ZIP14,andZnT1,as
thedeterminantsofCdcytotoxicityisincreasing[55–58].Afewaresummarizedherein.
Thepretreatmentoftheratliverepithelialcells(TRL1215)withcyproterone,asynthetic
steroidalantiandrogenwithastructurerelatedtoprogesterone,decreasedsensitivityto
CdthroughareductioninCdaccumulation[59].However,themolecularbasisforsucha
decreaseinCdaccumulationwasnotinvestigated.Itwasshowninanotherstudythat
silencingtheexpressionofaZn/Cdeffluxtransporter,ZnT1resultedinanincreasedCd
accumulationandenhancedCdtoxicity[60].AdecreaseinCdaccumulationtogetherwith
adecreaseinZIP8expression,assessedbyZIP8mRNAandZIP8proteinlevels,wasseen
inmetallothioneinnullcellsthatwereresistanttoCdtoxicity[61,62].
2.6.UrineCadmiumasaWarningSignofToxicityinProgress
IthaslongbeenviewedthatexcretedCdincludedCdmoleculesthatpassthrough
theglomerularfiltrationmembraneintothefiltratebutarenotreabsorbed[63].However,
itisnoteworthythattheprincipalformofCdinurineisCdMT[64],andthattheexcreted
CdMToriginatesfrominjuredordyingtubularcells[65].Thus,Cdexcretionisamanifes
tationofthecytotoxicityofCdaccumulationinkidneys’tubularcellsevenatverylow
exposurelevels.OurconceptualframeworkaccountingforthepathogenesisofCdin
ducednephropathyoriginatingfromtubularcellinjuryisdepictedinFigure2.
Figure2.Sequentialoutcomesoftubularcelltoxicinjuryofcadmiumaccumulationinkidneys.Cd
inflictstubularcellinjuryatlowintracellularconcentrations,andthetoxicityintensifiesasCdcon
centrationrises[65].Tubularinjurydisablesglomerularfiltration,leadingtonephronatrophy,glo
merulosclerosis,andinterstitialinflammationandfibrosis.Areductionintubularreabsorptionof
filteredproteins,RBPandβ2MGfollowstubularatrophyandnephronloss.Abbreviation:KIM1,
Tubularcellinjury.NAG,CdUrineKIM1,NAG,NGAL.
Tubularatrophy,
Interstitialinflammation,
andfibrosis.
Nephronloss
GFRfall.

eGFR≤60mL/min/1.73m2
Tubularreabsorptionoffilteredproteins.

UrineRBPandβ2M.
Cd2+
Cd2+
RBP,
β2M,NAG
Cd
Stresses2022,2,25359
kidneyinjurymolecule1;NAG,Nacetyl‐β‐Dglucosaminidase,NGAL,neutrophilgelatinaseasso
ciatedlipocalin;RBP,retinalbindingprotein;β2M,β2microglobulin.
Inahistopathologicalexaminationofkidneybiopsiesfromhealthykidneytransplant
donors[66],thedegreeoftubularatrophywaspositivelyassociatedwiththelevelofCd
accumulation.TubularatrophywasobservedatrelativelylowCdlevels[66].InJapanese
residentsofaCdpollutionarea,theaveragehalflifeofthemetalamongthosewithlower
bodyburden(urinaryCd<5μg/L)was23.4years;inthosewithhigherbodyburden(uri
naryCd>5μg/L),theaveragehalflifewas12.4years[67,68].Thus,thelowerthebody
burden,thelongerthehalflifeofCd.Ahalflifeof45yearswasestimatedfromaCd
toxicokineticmodelthatuseddatafromSwedishkidneytransplantdonorsexposedto
lowenvironmentallevels[69].
3.ManifestationofCadmiumToxicity
PopulationbasedstudiesinmanycountriesandtheU.S.generalpopulationstudy
knownasNationalHealthandNutritionExaminationSurvey(NHANES)suggestad
verseeffectsofchronicexposuretoCdextendbeyondkidneysandbones.Table1pro
videsepidemiologicevidencefortheeffectsofCdinorgansinvolvedinthemaintenance
ofglucosehomeostasis,includingtheliver[70–72],pancreas[73–75],andkidneys[76–80],
Inthepostabsorptivestate,kidneyandliversupplyanequalamountofglucoseintothe
systemicbloodcirculation[81–83].
Table1.AdversehealtheffectsofcadmiumexposureinmultipleorgansevidentfromtheU.S.
NHANESdatasets.
OrgansNHANESDatasetsAdverseEffectsandRiskEstimatesReferences
Liver19881994
n12,732,≥20yrs
Inwomen,liverinflammationwasassociatedwithurinary
Cdlevels≥0.83μg/gcreatinine(OR1.26).
Inmen,liverinflammation,NAFLDandNASHwereassoci
atedwithurinaryCd≥0.65μg/gcreatininewithrespective
ORvaluesof2.21,1.30,and1.95.
Hyderetal.,2013
[70]
Liver19992015
n11,838,≥20yrs
ElevatedplasmaALTandASTwasassociatedwitha10fold
incrementofurinaryCdwithrespectiveORvaluesof1.36
and1.31.
Hongetal.,2021
[71]
Liver 19992016
n4411adolescents
ElevatedplasmaALTandASTwereassociatedwithurinary
Cdquartile4withrespectiveORvaluesof1.40and1.64.The
effectwaslargerinboysthangirls.
Xuetal.,2022
[72]
Pancreas19881994
n8722,≥40yrs
Risksofprediabetesanddiabeteswereassociatedwithuri
naryCdlevels12μg/gcreatininewithrespectiveORvalues
of1.48and1.24.
Schwartzetal.,2003
[73]
Pancreas20052010
n2398,≥40yrs
Anincreasedriskofprediabeteswasassociatedwithurinary
Cdlevels≥0.7μg/gcreatinineafteradjustmentforcovari
ates.
Walliaetal.,2014
[74]
Pancreas1999–2006
n4530adults
BMDL5andBMDL10ofurinaryCdlevelsderivedfromdia
betesendpointwereof0.198and0.365μg/gcreatinine,re
spectively.
Shietal.,2021
[75]
Kidneys19992006
n14,778,aged≥20yrs
ReducedGFRa(OR1.32),albuminuriab(OR1.92),andre
ducedGFRplusalbuminuria(OR2.91)wereassociatedwith
bloodCdlevels≥0.6μg/LwithrespectiveORvaluesof1.32,
1.92,and2.91.
NavasAcienetal.,
2009[76]
Kidneys19992006
n5426,aged≥20yrs
Albuminuria(OR1.63)wasassociatedwithurinaryCdlev
els>1μg/gcreatinineplusbloodCdlevels>1μg/L(OR
1.63).
Ferraroetal.,2010
[77]
Stresses2022,2,25360
ReducedeGFR(OR1.48)andalbuminuria(OR1.41)wereas
sociatedwithbloodCdlevels>1μg/LwithrespectiveOR
valuesof1.48and1.41.
Kidneys20072012
n12,577,aged≥20yrs
ReducedeGFR(OR1.80)andalbuminuria(OR1.60)wereas
sociatedwithbloodCdlevels>0.61μg/LwithrespectiveOR
valuesof1.80and1.60.
Madrigaletal.,2019
[78]
Kidneys20092012
n2926,aged≥20yrs
Anelevatedalbuminexcretionwasassociatedwithurinary
Cdlevels>0.220μg/LandbloodCdlevels>0.243μg/L.
Zhuetal.,2019
[79]
Kidneys20112012
n1545,aged≥20yrs
ReducedeGFR(OR2.21)andalbuminuria(OR2.04)wereas
sociatedwithbloodCdlevels>0.53μg/LwithrespectiveOR
valuesof2.21and2.04.
Linetal.,2014
[80]
NHANES,NationalHealthandNutritionExaminationSurvey;n,samplesize;HR,hazardratio;
OR,oddsratio;ALT,alanineaminotransferase;AST,aspartateaminotransferase;NAFLD,nonal
coholicfattyliverdisease;NASH,nonalcoholicsteatohepatitis;aReducedeGFR,estimatedglomer
ularfiltrationrate(eGFR)≤60mL/min/1.73m2;bAlbuminuria,urinaryalbumintocreatinineratio
≥30mg/g.
ThehepatoxicityofCdwasseeninbothchildrenandadults[70–72].Inadults,in
creasesinriskofliverinflammation,NAFLD,andNASHwereassociatedwithurinary
Cdlevels≥0.6μg/gcreatinine[70].Inchildren,hepatotoxicityofCdwasmorepro
nouncedinboysthangirls[72].InNHANEScyclesundertakenbetween1999and2016,
reducedeGFRandalbuminuriawereconsistentlyassociatedwithCdexposuremeasures
[76–80].
3.1.CadmiumandtheRiskofType2Diabetes
Prediabetesanddiabetesaredefinedasfastingplasmaglucose≥110mg/dLand126
mg/dL,respectively.Thenumberofpeoplewithprediabetesanddiabeteshavereached
epidemicproportionsglobally.Theepidemicisattributedtotheincreasingprevalenceof
obesity,leadingtoasearchforenvironmentalobesogenicsubstances.Incomparison,a
statisticallysignificantinverseassociationhasconsistentlybeenobservedbetweenCdex
posureandbodymassindexandothermeasuresofadiposity(Section3.2).Dietaryexpo
suretoCdisconsequentlytheleastexpectedandleastrecognizedenvironmentalriskfac
torfordiabetes.
IncreasesintherisksofprediabetesanddiabetesamongNHANES1988–1994partic
ipantswereassociatedwithurinaryCdlevelsof1–2μg/gcreatinine[73].Anincreased
riskofprediabetesamongNHANES2005–2010wasassociatedwithurinaryCdlevels≥
0.7μg/gcreatinineafteradjustmentforcovariates[74].Inariskanalysis,theprevalence
oftype2diabeteswaslikelytobesmallerthan5%and10%aturinaryCdlevelsof0.198
and0.365μg/gcreatinine,respectively[75].
IntheWuhanZhuhaiprospectivecohortstudy[84],fastingbloodglucoselevels
werefoundtoincreasewithurinaryCdoverathreeyearobservationperiod.Foreach10
foldincreaseinurinaryCd,theprevalenceofprediabetesroseby42%.Dose–response
relationshipsbetweenCdexposureandrisksofprediabetesanddiabeteswereobserved
intwometaanalyses,[85,86].Inariskanalysisofpooleddatafrom42studies,therisks
ofprediabetesanddiabetesincreasedlinearlywithbloodandurinaryCd;prediabetesrisk
reachedaplateauaturinaryCdof2μg/gcreatinine,anddiabetesriskroseasbloodCd
reached1μg/L[86].
Stresses2022,2,25361
3.2.AnInverseRelationshipbetweenCadmiumBodyBurdenandObesity
TherelationshipsbetweenCdexposurelevelsanddiseaseshownbyassociativestud
ieshaveoftenbeenignored.However,itisimportanttorecognizesuchassociationsas
theymayindicatemechanismsofdiseasepathogenesis.Thus,reportsofaninverserela
tionshipbetweenCdbodyburdenandobesityprovidedevelopmentaldatathatmaylead
tofuturesignificantcorrelationsthatdefinediseasepathogenesisandaidintherapyde
velopment.Hereinwereportsuchassociativestudiesthatreplicateanassociationob
servedbetweenCdandreducedriskofobesity.Thesedatacanbeinterpretedtosuggest
thatCdmayhavecausedthedysregulationofthecellularintermediarymetabolism(a
furtherdiscussioninSection4.3)andthattype2diabetesassociatedwithCdisindepend
entofobesity.
UrinaryCdlevelswereinverselyassociatedwithcentralobesityamongparticipants
ofNHANES1999–2002[87].AmongNHANES2003–2010participants,theirbloodCdlev
elswereinverselyassociatedwithbodymassindex(BMI)[88].Inanotheranalysisofdata
fromNHANES2001–2014,participantsaged20–80years(n=3982),withurinaryCdlevels
werenotassociatedwiththeriskofmetabolicsyndrome,buttheywereassociatedwitha
decreasedriskofabdominalobesity[89].Inametaanalysisofdatafrom11crosssectional
studies,Cdexposurewasnotassociatedwithanincreasedriskofmetabolicsyndrome,
butitwasassociatedwithdyslipidemia,especiallyintheAsianpopulation[90].
UrinaryCdwasassociatedwithareductioninriskofobesityby54%inchildrenand
adolescentsenrolledinNHANES1999–2011;aninverseassociationbetweenurinaryCd
andobesitywasstrongerintheyoungeragegroup(6–12years)thantheolderagegroup
(13–19years)[91].UrinaryCdlevelswereinverselyassociatedwithheightandBMIin
Flemishchildren,aged14–15years[92].
Similarly,aninverseassociationbetweenbloodCdandBMIwasseeninnonsmok
ersintheCanadianHealthSurvey2007–2011[93].AnegativeassociationbetweenCd
exposureandvariousmeasuresofobesitywereseeninbothmenandwomeninastudy
oftheindigenouspopulationofnorthernQuébec,Canada,whereobesitywashighly
prevalent[94].
AninverseassociationbetweenbloodCdandBMIwasnotedinagroupofKorean
men,40–70yearsofage[95].ThisKoreanpopulationstudyobservedaninversecorrela
tionbetweenfastingbloodglucoseandurinaryCdexcretionlevels,anda1.81foldin
creaseinriskofdiabetesamongmenwhohadurinaryCd>2μg/gcreatinine.
InaChinesestudy,urinaryCdexcretionrates≥2.95μg/gcreatininewereassociated
withreducedriskofexcessiveweightgainandreducedriskofobesity[96].Higheruri
naryCdlevelswereassociatedwithlowerBMIvaluesinastudyofresidentsofShanghai
withoutworkplaceexposuretoCd,showingthemedianurinaryCdexcretionof0.77μg/g
creatinine[97].
Ofinterest,lowerBMIfigureswereassociatedwithhigherCdaccumulationlevels
infattissuesinacohortstudyinSpain[23].Furthermore,anincreasedresistancetoinsu
linandhigherplasmainsulinlevelswereseeninsmokerswhoseadiposetissueCdlevels
wereinthemiddletertile,comparedtothosewithadiposetissueCdlevelsinthelowest
tertile1[24].
3.3.CadmiumInducedOxidativeStresssandInflammation
TheaforementionedstatisticallysignificantinverserelationshipbetweenCdbody
burdenandobesitysuggeststhataneffectofCdontheriskofdiabetesisindependentof
adiposityandinflammation,accompanyingexcessivebodyfats.Indeed,thereisevidence
thatCdmaycauseinflammationinadiposetissuesinaSwissautopsystudy,Cdaccumu
lationinomentumvisceralandabdominalsubcutaneousfattissueswerequantified[98].
Inaninvitrostudyusingtheadiposederivedhumanmesenchymalstemcells(FC0034),
Cdinthesamerangefoundinthosepostmortemfattissuesampleswasfoundtodisrupt
cellularZnhomeostasisandtocauseanincreaseintheexpressionofvariouspro
Stresses2022,2,25362
inflammatorycytokines[98].StudiesinmiceshowedthatCdcausedtheabnormaldiffer
entiationofadipocytes,resultinginsmalladipocytesandareductioninthesecretionof
adiponectin[99,100].
AsdatainTable2indicate,substantialevidenceforCdinducedoxidativestressand
inflammationcomesfromtheU.S.populationstudies,whichincludedNHANESIII
[101,102],astudyofhealthyNewYorkwomen[103];NHANES2003–2010[95];and
NHANES1999–2002[104,105].TheeffectsofCdontherisksofcardiovasculardiseaseand
allcausemortalitywerealsoindicated[106].Inthesestudies,serumγ‐glutamyltransfer
ase(GGT),Creactiveprotein(CRP),andshorteningofleucocytetelomerelengthwere
quantifiedastheyweremeasuresofincreasedoxidativestressandinflammation.Insome
ofthesereports,aprotectiveroleofcertainnutrientswasobserved.
Table2.Cadmiuminducedoxidativestressandinflammation.
BiomarkersDatasetsFindings References
SerumGGT.NHANESIII,
n10,098,aged≥20yrs.
SerumGGTwaspositivelyassociatedwithurinaryCd
levelsbetween0.002and23.4μg/gcreatinine.
SerumvitaminsCandEandcarotenoidswereinversely
associatedwithGGT.
Leeetal.,2006
[101]
SerumCRPand
fibrinogen
NHANESIII,
n6497,aged4079yrs.
ElevationsofserumCRPandfibrinogenwereassociated
withurinaryCdlevels≥0.93μg/gcreatininewithre
spectiveORvaluesof1.24and2.12.
Linetal.,2009
[102]
Serumbilirubin
Healthywomen,Buffalo,
NewYork
n259,aged18–44yrs.
Areductioninserumbilirubinby4.9%wasassociated
witha2foldincreaseinbloodCd.
MedianCdlevel(interquartilerange)was0.3(0.19–0.43)
μg/L.
Pollacketal.,2015
[103]
CRP,GGT,
ALP,bilirubin
andwhitecell
count.
NHANES2003–2010,
n3056women,
n3288men.
SerumCRP,GGT,andALPlevelswereincreased,re
spectively,by47.5%,8.8%and3.7%,inurinaryCdquar
tiles4vs.1.
Consumptionofantioxidativeandantiinflammatory
nutrientswereassociatedwithanincreaseinserumbili
rubinby3%andreductions,respectively,inCRP,GGT,
ALP,andwhitebloodcellcountby7.4%,3.3%,5.2%,
and2.5%.
Colacinoetal.,
2014[104]
Telomere
length
NHANES1999–2002,
n2093withurinaryCd
data,n6796withblood
CdplusPbdata.
Telomereshorteningwasassociatedwithurinaryand
bloodCdlevelsbutnotbloodPb.
Zotaetal.,2014
[105]
Telomere
length
NHANES1999–2002,
n7120nonsmokers,
n2296smokers
AshortertelomerewasassociatedwithhigherCdexpo
sure,CRP,trunkfat,andinactivity.
Alongertelomerewasassociatedwithretinylstearate.
Pateletal.,2016
[106]
CRPandcardi
ovasculardis
ease
NHANES1999–2016
n38,223
CRP,triglycerides,totalcholesterol,andwhitecellcount
wereassociatedwithelevatedbloodCdlevels.Anin
creasedriskofcardiovasculardiseasewasassociated
bloodCd(OR1.45).
Maetal.,2022
[107]
Mortality
NHANES20012010
Prospective,n20,221,
meanfollowup9.1
years,
n2945withdiabetes
Riskofdyingfromallcausedwasincreasedby49%,
comparingbloodCdlevels>0.6vs.<0.24μg/L.
Cd,CRP,and25(OH)Dwereassociatedwithallcause
mortalityamongthosewithtype2diabetes.
Liuetal.,2022
[108]
NHANES,NationalHealthandNutritionExaminationSurvey;n,samplesize;OR,oddsratio;GGT,
γ‐Glutamyltransferase;CRP,Creactiveprotein;ALP,alkalinephosphatase.
Stresses2022,2,25363
4.MitigationoftheCytotoxicityofCadmium
Owingtoitshightoxicityandcumulativepotential,minimizingtheCdcontamina
tionofthefoodchainsandreducingCdlevelsinfoodcropstothelowestachievablelevels
areessentiallypreventivepublicmeasures.Here,wediscussthefrontlinecellularstress
responsethatmaybeacomplementarymeasuretomitigateharmfuleffectsofinevitable
exposuretosuchatoxicantasCd.
4.1.HemeOxygenase1andHemeOxygenase2(HO1,HO2)
HO1andHO2areenzymesinvolvedinthedegradationofhemetoretrieveFefor
reusebycellsandtogeneratecytoprotectivemolecules,carbonmonoxide(CO)andbili
verdinIXαfromwhichbilirubinisrapidlygenerated[109–111].TheeconomyofFeutili
zationrequiresthesalvagingofFe,sothebulkofFereleasedbytheactionofHO1and
HO2isreutilizedinthesynthesisofhemoproteins,suchasnitricoxidesynthase,various
enzymesofthemitochondrialrespiratorychain,andthecytochromeP450superfamily
[112].Ineverynucleatedcellofthebody,hemedegradationanddenovobiosynthesisof
hemeareindispensableandsimultaneousinductionofMTandHO1occursinmostnu
cleatedcellsofthebodyinresponsetoCdexposure[32,109,110,113].
4.2.ProductsofthePhysiologicHemeDegrdation
4.2.1.Bilirubin
Serumbilirubin,aproductofnormalhemedegradationandthecatalyticactivityof
biliverdinXI‐αreductase,contributesmostlytothetotalantioxidantcapacityofblood
plasma[114116].Duetoitslipophilicproperties,bilirubinisalipidperoxidationchain
breakerthatprotectslipidsfromoxidationmoreeffectivelythanthewatersolubleanti
oxidants,suchasglutathione[115,116].Theabilityofbilirubintoinhibittheoxidationof
lowdensitylipoproteinaccountsfortheassociationobservedbetweenhighertotalserum
bilirubinlevelsandlowerrisksofmetabolicsyndromeandnonalcoholicliverdisease
[117].Ofnote,recentexperimentaldatashowthatCdactivatedHO1geneandhemedeg
radationdidnotresultinformationofbilirubin[118].AfurtherdiscussionisinSection5.
4.2.2.CarbonMonoxide
Syntheticcarbonmonoxidereleasingmolecules(CORM)wereusedtostudyeffects
ofCOonmitochondrialbiogenesis[119–121].Inhighdoses,COhasantiinflammatory,
antiapoptotic,andvasodilatoryeffectsandiscardioprotective.Inlowlevelsachievable
throughinductionofHO1expression,COincreasesthegenerationofreactiveoxygen
species(ROS)bythemitochondria,presumablythroughtheinactivationofcytochromeC
oxidase(COX)[119].TheelevatedROSthenactivatesthePI3K/AKTsignalingpathway,
causingtheinhibitionofglycogensynthasekinase3β(GSK3β)andactivationofthenu
clearfactorerythroid2relatedfactor2(Nrf2)[122].CO,p62,andNAD(P)Hdehydrogen
asequinone1(NQO1)areallrequiredforthebiogenesisofmitochondriaandtheremoval
ofmitochondriawithseveredamage[122,123].MitochondrialROSproductionisamech
anismthatcellsusetoincreasetheircapacitytoadapttostress[124,125].Thus,HO1in
ductionrepresentsanimportantcellularstressresponsemechanism.Therepressionof
thisstressresponsegeneisequallyimportanttosustainthecellularredoxstate.
4.3.RoleofHO1,HO2,andPFKFB4intheHomeostasisofBloodGlucose
HO1andHO2areproductsoftwodifferentgenes[126].Thepromoterofthehu
manHO1geneisuniquebecauseitcontainstheGTrepeats,notfoundinrodentormu
rinespecies[109–111].Thegeneticpolymorphisms,suchaslongGTrepeats,areassoci
atedwithanelevatedriskforvariousdiseases,type2diabetesincluded[127,128].
CellularexpressionofHO1isregulatedbythetranscriptionfactor,including
CLOCK,Bmal,andPer,thatworktogethertogenerateday–nightcyclicalexpressionof
thegenesinvolvedinenergymetabolism[129–132].Disruptionofthediurnalcyclecaused
Stresses2022,2,25364
obesityinmice[133].ExpressionoftheHO1geneiscontrolledalsobyheme(itsown
substrate),thelevelsofglucose,oxygen,andshearstress[109,110,134,135].
ThecatalyticdomainsofHO1andHO2arehighlyhomologous,sharing93%of
theiraminoacidsequences.HO2,however,containsanadditionaldomain,whichhas
CysProdipeptidemotifsthatallowsbindingofhemeandinteractingwithotherproteins
thatincludeReverbα,ahemesensorthatcoordinatesmetabolicandcircadianpathways
[136–138].
Inadditiontohemedegradationactivity,HO2hasaregulatoryrolethatwasunrav
eledfromobeseanddiabeticmicelackingHO2expression.HO2deficiencyinmice
causedneitherlethalitynorinfertility,andHO2deficientmiceunderwentnormaldevel
opmenttoadulthoodwhentheydisplaythesymptomaticspectrumofhumantype2di
abetes,hyperglycemia,increasedfatdeposition,insulinresistance,andhypertensionwith
aging[139–141].ThenormaldevelopmentandnormalfecundityintheabsenceofHO2
expressionsuggestedthatHO1couldcompensateforthehemedegradationactivityof
HO2.However,HO1didnotcompensatefortheantidiabetogenicityandantiobesity
ofHO2.
Inaproteinmicroarraystudy,HO2waslinkedtotheglycolyticpathwaythrough
itsinteractionwith6phosphofructo2kinase/fructose2,6bisphosphatase4(PFKFB4)
[142].Inliver,PFKFB4isthekeyregulatorofglycolysis[143],andalackofHO2expres
sioncausespersistenthyperglycemiaduetoanimpairedabilitytosuppressglucosepro
duction.CdmaymimicthiseffectofHO2deficiency,therebycausinghyperglycemia.
BothHO1andHO2arerequiredtopreventafallofbloodglucoseduringfastingora
riseinbloodglucoseinapostabsorptiveperiod.HO2expressionensuresPFKFB4ex
pression.
AsFigure3a,bindicate,thehomeostasisofbloodglucoserequirescoordinatedacti
vationandrepressionofHO1,HO2,andPFKFB4.Failureinanyofthese(HO1,HO2
andPFKFB4)causeshyperglycemicandobesephenotypes.
(a)(b)
Figure3.CoordinatedexpressionofHO1,HO2,andPFKFB4.(a)ChangesinexpressionofHO1
andPFKFB4inthefastingstate.;(b)ChangesinexpressionofHO1,HO2,andPFKFB4inthepost
absorptiveperiod.Abbreviations:PFKFB4,6phosphofructo2kinase/fructose2,6biphosphatase4;
F2,6P
2
,fructose2,6biphosphate.
Intheliverofwildtypemice,loweredglycolysiswithenhancedgluconeogenesis
couldbeachievedinfastingstatebyHO1upregulationplusPFKFB4downregulation.
Inthepostabsorptivestate,highglycolysiswithsuppressedgluconeogenesiscouldbe
achievedbyHO1downregulationplusHO2andPFKFB4upregulation.HO1protein
expressionlevelsintheliverofHO2knockoutmicefellby35–40%[144].Apossiblecon
sequenceofareductioninexpressionlevelsofHO1isincreasedsusceptibilitytooxida
tivedamage.However,suchrepressionoftheHO1geneexpressionisanessentialmeta
bolicadaptationtosafeguardthecellularredoxstate.Thisisachievedbyutilizing
Fasting
IncreasedHO1expressionandreducedPFKFB4expression
preventafallinbloodglucose.
Minimizeuseofglucose.
Enhanceglucoseproduction.
Glucosereleaseintothecirculation.
ReduceF2,6P2.
Overproductionofglucosecauseshighbloodglucose
infastingperiod.
PostAbsorption
RepressedHO1expressionandincreasedHO2expression
preventariseinbloodglucose.
Reduceglucoseproduction.
IncreasePFKFB4expression.
IncreaseF2,6P2.
Increaseglucoseuseviaglycolysis.
Increaseglycogensynthesis.
Reduceglucoseproduction.
Impairedsuppressionofglucoseproductioncauses
highbloodglucoseinpostabsorptiveperiod.
Stresses2022,2,25365
NADPH(H
+
)forregeneratingreducedglutathione(GSH)ratherthanforhemecatabolism
[142].GSHrecyclingisamechanismformaintainingcellularredoxstate.Itiscentralto
normalproteinfoldingandcellfunction(seeFigure4ainSection4.3).
(a)(b)
Figure4.Hemeglucosecrosstalkandmitochondrialtargetofcadmium.(a)Hemedegradationcat
alyzedbyHO1andHO2utilizesNADPHfrompentosephosphatepathway.(b)Cadmiumin
ducedkidneytubularcelldeath.CdusestheZncarriermetallothionein(MT)andtransportersof
CaandFe,mitochondrialcalciumuniporter(MCU)andthedivalentmetaltransporter1(DMT1)to
reachthemitochondrialinnermembrane[145].There,CdreducesATPoutputandpromotesreac
tiveoxygenspecies(ROS)formation.ExtensivedamagecausesareleaseofmitochondrialDNA
(mtDNA).TheDNAsensingmechanism(cGASSTING)andnuclearfactorkappaB(NF‐кB)signal
ingpathwaysareactivated,proinflammatorycytokinesarereleased,andcelldeathensues.Abbre
viation:BVR,biliverdinreductase;PEP,phosphoenolpyruvate;cGAS,cyclicGMPAMPsynthase;
STING,stimulatorofinterferongenes;CdRE,Cadmiumresponseelement.
4.4.ExogenousHO1Inducers
Severaltherapeuticdrugs,suchasstatins(lipidloweringagents),rosiglitazone(anti
diabeticdrug),aspirin(antiinflammatorydrug),paclitaxelandrapamycin(anticancer
drugs),havebeenshowntoinduceHO1expression.Thetherapeuticefficacyofthese
drugsmaybeattributable,atleastinpart,toHO1induction[116,117].
Awiderangeofantioxidantsfromplantfoods,suchascurcumin,quercetin,tert
butylhydroquinone,andcaffeicacidphenethylester,areHO1inducers,asarecatechin
(ingreentea),α‐lipoicacid(inbroccoli,spinach),resveratrol(inredwine,grapes),carno
sol,sulforaphane(cruciferousvegetable),coffeediterpenescafestol,andkahweol[138–
140,146–148].Beneficialeffectsofconsumptionoftheseantioxidantscouldthusbemedi
atedinpartthroughtheinductionofHO1expression.
Diethighinantioxidativeandantiinflammatorynutrientswasassociatedwithin
creasedserumbilirubinlevelsandreducedoxidativestressandsystemicinflammation
[104].GreenteaconsumedinusualamountswasfoundtoincreaseHO1expression[149–
151].Oneofthetrialsincludedonlynonsmokingdiabeticsubjectswhohadnohistoryof
metaboliccomplicationsanddidnottakeregularfoodsupplements[150].Among43sub
jects,23hadthelongGTrepeats(GTrepeats≥25;L/Lgenotype)typeoftheHO1pro
moterandanother20hadshortGTrepeats(GTrepeats<25;S/Sgenotype).Accordingto
Westernblottingandthecometassay,HO1proteinlevelsincirculatinglymphocytes
wereincreasedby40%,whiletheleveloftheDNArepairenzyme8oxoguanineglycosyl
ase(hOGG1)wasincreased50%withDNAdamagebeingreducedby15%.Greentea
consumptionincreasedHO1proteinlevelsinlymphocytesinbothL/LandS/Sgenotype
Glucose
 
G6P
NADP
 
NADPH
Phosphogluconate

NADP


NADPH
Ribose5Phosphate

Oxaloacetate
TCA
Succinate

F6P
PFKFB4
F2,6P2+

F1,6P2
 
PEP

 

Pyruvate
 
AcetylCoA
 
ATP+CO2+H2O
Glycogen

GSH
ROS
GSSG

Bilirubin
 BVR
BiliverdinIXα,CO,Fe

HO1,HO2

Heme

δAminolevulinicAcid
 
Glycine+SuccinylCoA
HO1,MT
NF‐кB
CdRE
DMT1,Fe
MCU,Ca
MT,Zn
Cd2+
mtDNA
cGASSTING
NF
к
B
Acutemetalstressresponses
HO1,MT,SOD1(Zn/Cu),
MnSOD
Ca,Fe,Zndysregulation
ROS
ATPoutput
In
j
ur
y
Cytokines
IFN‐γ,TNF‐α,
IL1,6,12,23
TheMitochondrialTargetofCadmiumCytotoxicity
Stresses2022,2,25366
groups,althoughtheS/SgroupshowedhigherHO1proteinlevelsatbaseline,compared
totheL/Lgroup.ThistrialshowedthatgreenteaconsumptionmayreducecellularDNA
damagethroughinducedexpressionofHO1.
5.DifferentHO1GeneActivationMechanisms
AllnucleatedcellsofthebodyhavethecapacitytotakeupCdfromthecirculation
andtheymustsynthesizetheirownhemefortheirownuse.Adenovobiosynthesisof
hemeisarequisiteforcellularresponsetostressors,andthishasbeendemonstratedfor
Cdasastressor[117].CurrentevidencesuggeststhatCdinducestheexpressionofHO1
bymechanismsdifferentfromthoseusedbyendogenous(physiologic)HO1activators
(Section4.3)andprostaglandinD2(PGD2)[152].
PGD2isamajorcyclooxygenasemediator,synthesizedbyactivatedmastcellsand
otherimmunecellsandisimplicatedinallergicdisorders[153].Inastudyofacellculture
modelofhumanretinalepithelialcells,PGD2wasfoundtoactivatetheHO1genepro
moterthroughDprostanoid2(DP2)receptorinanenhancermanner[152].Incontrast,Cd
activatestheHO1promoterviatheCdresponseelement(CdRE,TGCTAGATTTT)and
Mafrecognitionantioxidantresponseelement(MARE,GCTGAGTRTGACNNNGC),also
knownasstressresponseelement(StRE)[113].Cdalsosuppresseslysosomaldegradation
ofNrf2[154]andcausesnuclearexportoftheHO1generepressorBach1,whichallows
transactivationoftheHO1genebytheNrf2/smallMafcomplex[155]
CdinducedexpressionoftheHO1increasesintracellularconcentrationofheme,a
stimulatorofgluconeogenesisandknowncauseofhyperglycemia.Thismayexplainhy
perglycemicstateinducedbyCd.However,CdinducedexpressionofHO1doesnotre
sultintheformationofbilirubin[118].Thereasonforthisphenomenonremainsunclear,
butitmayexplainanincreasedcellularoxidativestressthroughloweringlevelsofthe
antioxidativemolecule,bilirubin.
6.Conclusions
Thisnarrativereviewfocusedonadversemetabolicoutcomesofchronicexposureto
Cd.EpidemiologicdataindicatethatenvironmentalexposuretolowlevelsofCdincreases
theriskoftype2diabetesbyseveralmechanismsthatmayincludeoxidativestress,in
flammation,adiposetissuedysfunction,increasedinsulinresistance,andadysregulated
cellularintermediarymetabolism.HigherlevelsofCdaccumulationinadiposetissuesare
associatedwithlowerBMIandincreasedinsulinresistance.Astatisticallysignificantin
verseassociationbetweenCdexposureandobesityisuniversallyobservedinbothchil
drenandadults.Thus,Cdinducedtype2diabetesisindependentofadiposity.
Thecellularstressresponsemechanismsinvolvingthecatabolismofheme,mediated
byHO1andHO2,maymitigatethecytotoxicityofCd.Theproductsoftheirphysiologic
hemedegradation,bilirubin,andcarbonmonoxidehaveantioxidative,antiinflamma
tory,andantiapoptoticproperties.ExogenousHO1inducersmayraisethequantitiesof
theseprotectivemolecules,andthuscouldbeacomplementarymeasuretomitigatethe
cytotoxicityofCd.However,strategiesthatminimizeCdentryintothefoodchainsre
mainessentialpreventivepublicmeasures.
KnowledgegainedfromthephenotypicanalysesofHO2deficientmicethatdisplay
thesymptomaticspectrumofhumantype2diabeteshaveshownthatHO1,HO2,and
PFKFB4,thekeyregulatorsofglycolysis,arerequiredtopreventhyperglycemiaandan
obesephenotype.RepressionoftheHO1geneexpressionisanessentialmetabolicadap
tationofequalimportancetosafeguardthecellularredoxstate.
CdinducestheexpressionofHO1bymechanismsdifferentfromthoseofphysio
logicHO1geneactivators,andconsequentlyCdinducedHO1expressiondoesnotpro
ducebilirubinasaproduct.ThismayrepresentoneofthecytotoxicmechanismsofCd,
whichisinadditiontoahyperglycemicphenotype.
Stresses2022,2,25367
AuthorContributions:S.S.conceptualizedthereviewandpreparedaninitialdraftwithG.C.G.and
D.A.V.providinglogicaldatainterpretation.G.C.G.andD.A.V.reviewedandeditedthedraftman
uscript.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:Thisworkreceivednoexternalfunding.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Alldataarecontainedwithinthisarticle.
Acknowledgments:ThisreviewisdedicatedtothelateProfessorMichaelR.Moore,whowasDi
rectoroftheNationalResearchCentreforEnvironmentalToxicology(EnTox),Universityof
Queensland,between1994and2009.Hewasinstrumentalinestablishingtoxicologyresearchon
heavymetalsinAustralia,andhewasaninspirationtoallwhoworkedinthisfield.S.S.thanks
ProfessorShigekiShibaharaforhispatience,support,andguidanceonHO1andHO2research
undertakenbytheauthoratTohokuUniversity,Sendai,Japan.Thisworkwassupportedwithre
sourcesfromtheKidneyDiseaseResearchCollaborativeandtheDepartmentofNephrology,Prin
cessAlexandraHospital.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Järup,L.Hazardsofheavymetalcontamination.Br.Med.Bull.2003,68,167–182.
2. Garrett,R.G.Naturalsourcesofmetalstotheenvironment.Hum.Ecologic.RiskAssess.2010,6,945–963.
3. Verbeeck,M.;Salaets,P.;Smolders,E.TraceelementconcentrationsinmineralphosphatefertilizersusedinEurope:Abalanced
survey.SciTotalEnviron.2020,712,136419.
4. Zou,M.;Zhou,S.;Zhou,Y.;Jia,Z.;Guo,T.;Wang,J.Cadmiumpollutionofsoilriceecosystemsinricecultivationdominated
regionsinChina:Areview.Environ.Pollut.2021,280,116965.
5. McDowell,R.W.;Gray,C.W.Dosoilcadmiumconcentrationsdeclineafterphosphatefertiliserapplicationisstopped:Acom
parisonoflongtermpasturetrialsinNewZealand?Sci.TotalEnviron.2022,804,150047.
6. Jin,Y.;Lu,Y.;Li,Y.;Zhao,H.;Wang,X.;Shen,Y.;Kuang,X.Correlationbetweenenvironmentallowdosecadmiumexposure
andearlykidneydamage:Acomparativestudyinanindustrialzonevs.alivingquarterinShanghai,China.Environ.Toxicol.
Pharmacol.2020,79,103381.
7. Jung,M.S.;Kim,J.Y.;Lee,H.S.;Lee,C.G.;Song,H.S.AirpollutionandurinaryNacetyl‐β‐glucosaminidaselevelsinresidents
livingnearacementplant.Ann.Occup.Environ.Med.2016,28,52.
8. Wu,S.;Deng,F.;Hao,Y.;Shima,M.;Wang,X.;Zheng,C.;Wei,H.;Lv,H.;Lu,X.;Huang,J.;etal.Chemicalconstituentsoffine
particulateairpollutionandpulmonaryfunctioninhealthyadults:TheHealthyVolunteerNaturalRelocationstudy.J.Hazard.
Mater.2013,260,183–191.
9. Świetlik,R.;Trojanowska,M.Chemicalfractionationinenvironmentalstudiesofpotentiallytoxicparticulateboundelements
inurbanair:Acriticalreview.Toxics2022,10,124.
10. Repić,A.;Bulat,P.;Antonijević,B.;Antunović,M.;Džudović,J.;Buha,A.;Bulat,Z.Theinfluenceofsmokinghabitsoncadmium
andleadbloodlevelsintheSerbianadultpeople.Environ.Sci.Pollut.Res.Int.2020,27,751–760.
11. Pappas,R.S.;Fresquez,M.R.;Watson,C.H.Cigarettesmokecadmiumbreakthroughfromtraditionalfilters:Implicationsfor
exposure.J.Anal.Toxicol.2015,39,45–51.
12. Sunderman,F.W.,Jr.Nasaltoxicity,carcinogenicity,andolfactoryuptakeofmetals.Ann.Clin.LabSci.2001,31,3–24.
13. Branca,J.J.V.;Maresca,M.;Morucci,G.;Mello,T.;Becatti,M.;Pazzagli,L.;Colzi,I.;Gonnelli,C.;Carrino,D.;Paternostro,F.;
Nicoletti,C.;Ghelardini,C.;Gulisano,M.;DiCesareMannelli,L.;Pacini,A.EffectsofcadmiumonZO1tightjunctionintegrity
ofthebloodbrainbarrier.Int.J.Mol.Sci.2019,20,6010.
14. Branca,J.J.V.;Fiorillo,C.;Carrino,D.;Paternostro,F.;Taddei,N.;Gulisano,M.;Pacini,A.;Becatti,M.Cadmiuminducedoxi
dativestress:Focusonthecentralnervoussystem.Antioxidants(Basel)2020,9,492.
15. Satarug,S.;Vesey,D.A.;Gobe,G.C.Currenthealthriskassessmentpracticefordietarycadmium:Datafromdifferentcountries.
FoodChem.Toxicol.2017,106,430–445.
16. Satarug,S.;Gobe,G.C.;Vesey,D.A.;Phelps,K.R.Cadmiumandleadexposure,nephrotoxicity,andmortality.Toxics2020,8,
86.
17. Satarug,S.;Phelps,K.R.CadmiumExposureandToxicity.InMetalToxicologyHandbook;Bagchi,D.,Bagchi,M.,Eds.;CRCPress:
BocaRaton,FL,USA,2021;pp.219–274.
18. Arnich,N.;Sirot,V.;Rivière,G.;Jean,J.;Noël,L.;Guérin,T.;Leblanc,J.C.Dietaryexposuretotraceelementsandhealthrisk
assessmentinthe2ndFrenchtotaldietstudy.FoodChem.Toxicol.2012,50,2432–2449.
19. Sand,S.;Becker,W.AssessmentofdietarycadmiumexposureinSwedenandpopulationhealthconcernincludingscenario
analysis.FoodChem.Toxicol.2012,50,536–544.
Stresses2022,2,25368
20. KalantarZadeh,K.;Jafar,T.H.;Nitsch,D.;Neuen,B.L.;Perkovic,V.Chronickidneydisease.Lancet2021,398,786–802.
21. Sabolić,I.;Breljak,D.;Skarica,M.;HerakKramberger,C.M.Roleofmetallothioneinincadmiumtrafficandtoxicityinkidneys
andothermammalianorgans.Biometals2010,23,897–926.
22. McKenna,I.M.;Gordon,T.;Chen,L.C.;Anver,M.R.;Waalkes,M.P.ExpressionofmetallothioneinproteininthelungsofWistar
ratsandC57andDBAmiceexposedtocadmiumoxidefumes.Toxicol.Appl.Pharmacol.1998,153,169–178.
23. Echeverría,R.;Vrhovnik,P.;SalcedoBellido,I.;IribarneDurán,L.M.;Fiket,Ž.;Dolenec,M.;MartinOlmedo,P.;Olea,N.;Ar
rebola,J.P.LevelsanddeterminantsofadiposetissuecadmiumconcentrationsinanadultcohortfromSouthernSpain.Sci.
Total.Environ.2019,670,1028–1036.
24. SalcedoBellido,I.;GómezPeña,C.;PérezCarrascosa,F.M.;Vrhovnik,P.;Mustieles,V.;Echeverría,R.;Fiket,Ž.;PérezDíaz,
C.;BarriosRodríguez,R.;JiménezMoleón,J.J.;etal.Adiposetissuecadmiumconcentrationsasapotentialriskfactorforinsulin
resistanceandfuturetype2diabetesmellitusinGraMoadultcohort.Sci.TotalEnviron.2021,780,146359.
25. ElMuayed,M.;Raja,M.R.;Zhang,X.;MacRenaris,K.W.;Bhatt,S.;Chen,X.;Urbanek,M.;O’Halloran,T.V.;Lowe,W.L.,Jr.
Accumulationofcadmiumininsulinproducingβcells.Islets2012,4,405–416.
26. Satarug,S.;Baker,J.R.;Reilly,P.E.;Moore,M.R.;Williams,D.J.Cadmiumlevelsinthelung,liver,kidneycortex,andurine
samplesfromAustralianswithoutoccupationalexposuretometals.Arch.Environ.Health2002,57,69–77.
27. Christensen,E.I.;Birn,H.;Storm,T.;Weyer,K.;Nielsen,R.Endocyticreceptorsintherenalproximaltubule.Physiology2012,
27,223–236.
28. Nielsen,R.;Christensen,E.I.;Birn,H.Megalinandcubilininproximaltubuleproteinreabsorption:Fromexperimentalmodels
tohumandisease.KidneyInt.2016,89,58–67.
29. Krężel,A.;Maret,W.Thefunctionsofmetamorphicmetallothioneinsinzincandcoppermetabolism.Int.J.Mol.Sci.2017,18,
1237.
30. Krężel,A.;Maret,W.Thebioinorganicchemistryofmammalianmetallothioneins.Chem.Rev.2021,121,14594–14648.
31. Boonprasert,K.;Ruengweerayut,R.;Aunpad,R.;Satarug,S.;NaBangchang,K.Expressionofmetallothioneinisoformsinpe
ripheralbloodleukocytesfromThaipopulationresidingincadmiumcontaminatedareas.Environ.Toxicol.Pharmacol.2012,34,
935–940.
32. Boonprasert,K.;Satarug,S.;Morais,C.;Gobe,G.C.;Johnson,D.W.;NaBangchang,K.;Vesey,D.A.Thestressresponseofhu
manproximaltubulecellstocadmiuminvolvesupregulationofhaemoxygenase1andmetallothioneinbutnotcytochrome
P450enzymes.Toxicol.Lett.2016,249,5–14.
33. Hennigar,S.R.;Kelley,A.M.;McClung,J.P.Metallothioneinandzinctransporterexpressionincirculatinghumanbloodcells
asbiomarkersofzincstatus:Asystematicreview.Adv.Nutr.2016,7,735–746.
34. Garrett,S.H.;Sens,M.A.;Todd,J.H.;Somji,S.;Sens,D.A.ExpressionofMT3proteininthehumankidney.Toxicol.Lett.1999,
105,207–214.
35. Vašák,M.;Meloni,G.Mammalianmetallothionein3:Newfunctionalandstructuralinsights.Int.J.Mol.Sci.2017,18,1117.
36. Sabolić.,I.;Škarica,M.;Ljubojević,M.;Breljak,D.;HerakKramberger,C.M.;Crljen,V.;Ljubešić,N.Expressionandimmuno
localizationofmetallothioneinsMT1,MT2andMT3inratnephron.J.TraceElem.Med.Biol.2018,46,62–75.
37. Misra,R.R.;Hochadel,J.F.;Smith,G.T.;Cook,J.C.;Waalkes,M.P.;Wink,D.A.Evidencethatnitricoxideenhancescadmium
toxicitybydisplacingthemetalfrommetallothionein.Chem.Res.Toxicol.1996,9,326–332.
38. Satarug,S.;Baker,J.R.;Reilly,P.E.;Esumi,H.;Moore,M.R.Evidenceforasynergisticinteractionbetweencadmiumandendo
toxintoxicityandfornitricoxideandcadmiumdisplacementofmetalsinthekidney.NitricOxide2000,4,431–440.
39. Zhu.J.;Meeusen,J.;Krezoski,S.;Petering,D.H.ReactivityofZn,Cd,andapometallothioneinwithnitricoxidecompounds:
Invitroandcellularcomparison.Chem.Res.Toxicol.2010,23,422–431.
40. Lou,M.;Garay,R.;Alda,J.O.Cadmiumuptakethroughtheanionexchangerinhumanredbloodcells.J.Physiol.1991,443,123–
136.
41. Horn,N.M.;Thomas,A.L.Interactionsbetweenthehistidinestimulationofcadmiumandzincinfluxintohumanerythrocytes.
J.Physiol.1996,496,711–718.
42. Sagmeister,P.;Gibson,M.A.;McDade,K.H.;Gailer,J.Physiologicallyrelevantplasmad,lhomocysteineconcentrationsmobi
lizeCdfromhumanserumalbumin.J.Chromatogr.BAnal.Technol.Biomed.LifeSci.2016,1027,181–186.
43. Scott,B.J.;Bradwell,A.R.Identificationoftheserumbindingproteinsforiron,zinc,cadmium,nickel,andcalcium.Clin.Chem.
1983,29,629–633.
44. Järup,L.;Rogenfelt,A.;Elinder,C.G.;Nogawa,K.;Kjellström,T.Biologicalhalftimeofcadmiuminthebloodofworkersafter
cessationofexposure.Scand.J.WorkEnviron.Health1983,9,327–331.
45. Elinder,C.G.;Lind,B.;Kjellström,T.;Linnman,L.;Friberg,L.Cadmiuminkidneycortex,liver,andpancreasfromSwedish
autopsies.Estimationofbiologicalhalftimeinkidneycortex,consideringcalorieintakeandsmokinghabits.Arch.Environ.
Health1976,31,292–302.
46. Elinder,C.G.;Kjellstöm,T.;Lind,B.;Molander,M.L.;Silander,T.Cadmiumconcentrationsinhumanliver,blood,andbile:
Comparisonwithametabolicmodel.Environ.Res.1978,17,236–241.
47. Barregard,L.;FabriciusLagging,E.;Lundh,T.;Mölne,J.;Wallin,M.;Olausson,M.;Modigh,C.;Sallsten,G.Cadmium,mercury,
andleadinkidneycortexoflivingkidneydonors:Impactofdifferentexposuresources.Environ.Res.2010,110,47–54.
48. Akerstrom,M.;Barregard,L.;Lundh,T.;Sallsten,G.Therelationshipbetweencadmiuminkidneyandcadmiuminurineand
bloodinanenvironmentallyexposedpopulation.Toxicol.Appl.Pharmacol.2013,268,286–293.
Stresses2022,2,25369
49. Sun,H.;Wang,D.;Zhou,Z.;Ding,Z.;Chen,X.;Xu,Y.;Huang,L.;Tang,D.Associationofcadmiuminurineandbloodwith
ageinageneralpopulationwithlowenvironmentalexposure.Chemosphere2016,156,392–397.
50. Graf,P.;Sies,H.Hepaticuptakeofcadmiumanditsbiliaryreleaseasaffectedbydithioerythritolandglutathione.Biochem.
Pharmacol.1984,33,639–643.
51. Fujishiro,H.;Himeno,S.NewinsightsintotherolesofZIP8,acadmiumandmanganesetransporter,anditsrelationtohuman
diseases.Biol.Pharm.Bull.2019,42,1076–1082.
52. Liang,Z.L.;Tan,H.W.;Wu,J.Y.;Chen,X.L.;Wang,X.Y.;Xu,Y.M.;Lau,A.T.Y.TheimpactofZIP8diseaseassociatedvariants
G38R,C113S,G204C,andS335Tonseleniumandcadmiumaccumulations:Thefirstcharacterization.Int.J.Mol.Sci.2021,22,
11399.
53. Aiba,I.;Hossain,A.;Kuo,M.T.ElevatedGSHlevelincreasescadmiumresistancethroughdownregulationofSp1dependent
expressionofthecadmiumtransporterZIP8.Mol.Pharmacol.2008,74,823–833.
54. Ren,L.;Qi,K.;Zhang,L.;Bai,Z.;Ren,C.;Xu,X.;Zhang,Z.;Li,X.Glutathionemightattenuatecadmiuminducedliveroxidative
stressandhepaticstellatecellactivation.Biol.TraceElem.Res.2019,191,443–452.
55. Satarug,S.;Vesey,D.A.;Gobe,G.C.Theevolvingroleforzincandzinctransportersincadmiumtoleranceandurothelialcancer.
Stresses2021,1,105–118.
56. Satarug,S.;Garrett,S.H.;Somji,S.;Sens,M.A.;Sens,D.A.Zinc,zinctransporters,andcadmiumcytotoxicityinacellculture
modelofhumanurothelium.Toxics2021,9,94.
57. Satarug,S.;Garrett,S.H.;Somji,S.;Sens,M.A.;Sens,D.A.AberrantexpressionofZIPandZnTzinctransportersinUROtsacells
transformedtomalignantcellsbycadmium.Stresses2021,1,78–89.
58. Takiguchi,M.;Cherrington,N.J.;Hartley,D.P.;Klaassen,C.D.;Waalkes,M.P.Cyproteroneacetateinducesacellulartolerance
tocadmiuminratliverepithelialcellsinvolvingreducedcadmiumaccumulation.Toxicol.2001,165,13–25.
59. Ohana,E.;Sekler,I.;Kaisman,T.;Kahn,N.;Cove,J.;Silverman,W.F.;Amsterdam,A.;Hershfinkel,M.SilencingofZnT1ex
pressionenhancesheavymetalinfluxandtoxicity.J.Mol.Med.2006,84,753–763.
60. Fujishiro,H.;Doi,M.;Enomoto,S.;Himeno,S.HighsensitivityofRBL2H3cellstocadmiumandmanganese:Animplication
oftheroleofZIP8.Metallomics2011,3,710–718.
61. Fujishiro,H.;Ohashi,T.;Takuma,M.;Himeno,S.SuppressionofZIP8expressionisacommonfeatureofcadmiumresistant
andmanganeseresistantRBL2H3cells.Metallomics2013,5,437–444.
62. Nordberg,M.;Nordberg,G.F.Metallothioneinandcadmiumtoxicologyhistoricalreviewandcommentary.Biomolecules2022,
12,360.
63. Wolf,C.;Strenziok,R.;Kyriakopoulos,A.Elevatedmetallothioneinboundcadmiumconcentrationsinurinefrombladdercar
cinomapatients,investigatedbysizeexclusionchromatographyinductivelycoupledplasmamassspectrometry.Anal.Chim
Acta2009,631,218–222.
64. Satarug,S.;Vesey,D.A.;Ruangyuttikarn,W.;Nishijo,M.;Gobe,G.C.;Phelps,K.R.Thesourceandpathophysiologicsignificance
ofexcretedcadmium.Toxics2019,7,55.
65. Akesson,A.;Lundh,T.;Vahter,M.;Bjellerup,P.;Lidfeldt,J.;Nerbrand,C.;Samsioe,G.;Strömberg,U.;Skerfving,S.Tubular
andglomerularkidneyeffectsinSwedishwomenwithlowenvironmentalcadmiumexposure.Environ.HealthPerspect.2005,
113,1627–1631.
66. Barregard,L.;Sallsten,G.;Lundh,T.;Mölne,J.Lowlevelexposuretolead,cadmiumandmercury,andhistopathologicalfind
ingsinkidneybiopsies.Environ.Res.2022,211,113119.
67. Suwazono,Y.;Kido,T.;Nakagawa,H.;Nishijo,M.;Honda,R.;Kobayashi,E.;Dochi,M.;Nogawa,K.Biologicalhalflifeof
cadmiumintheurineofinhabitantsaftercessationofcadmiumexposure.Biomarkers2009,14,77–81.
68. Ishizaki,M.;Suwazono,Y.;Kido,T.;Nishijo,M.;Honda,R.;Kobayashi,E.;Nogawa,K.;Nakagawa,H.Estimationofbiological
halflifeofurinarycadmiumininhabitantsaftercessationofenvironmentalcadmiumpollutionusingamixedlinearmodel.
FoodAddit.Contam.PartAChem.Anal.Control.Expo.RiskAssess.2015,32,1273–1276.
69. Fransson,M.N.;Barregard,L.;Sallsten,G.;Akerstrom,M.;Johanson,G.Physiologicallybasedtoxicokineticmodelforcadmium
usingMarkovchainMonteCarloanalysisofconcentrationsinblood,urine,andkidneycortexfromlivingkidneydonors.Tox
icol.Sci.2014,141,365–376.
70. Hyder,O.;Chung,M.;Cosgrove,D.;Herman,J.M.;Li,Z.;Firoozmand,A.;Gurakar,A.;Koteish,A.;Pawlik,T.M.Cadmium
exposureandliverdiseaseamongUSadults.J.Gastrointest.Surg.2013,17,1265–1273.
71. Hong,D.;Min,J.Y.;Min,K.B.AssociationbetweencadmiumexposureandliverfunctioninadultsintheUnitedStates:ACross
sectionalstudy.J.Prev.Med.PublicHealth2021,54,471–480.
72. Xu,Z.;Weng,Z.;Liang,J.;Liu,Q.;Zhang,X.;Xu,J.;Xu,C.;Gu,A.Associationbetweenurinarycadmiumconcentrationsand
liverfunctioninadolescents.Environ.Sci.Pollut.Res.Int.2022,29,39768–39776.
73. Schwartz,G.G.;Il’yasova,D.;Ivanova,A.Urinarycadmium,impairedfastingglucose,anddiabetesintheNHANESIII.Diabetes
Care2003,26,468–470.
74. Wallia,A.;Allen,N.B.;Badon,S.;ElMuayed,M.AssociationbetweenurinarycadmiumlevelsandprediabetesintheNHANES
20052010population.Int.J.Hyg.Environ.Health2014,217,854–860.
75. Shi,P.;Yan,H.;Fan,X.;Xi,S.Abenchmarkdoseanalysisforurinarycadmiumandtype2diabetesmellitus.Environ.Pollut.
2021,273,116519.
Stresses2022,2,25370
76. NavasAcien,A.;TellezPlaza,M.;Guallar,E.;Muntner,P.;Silbergeld,E.;Jaar,B.;Weaver,V.Bloodcadmiumandleadand
chronickidneydiseaseinUSadults:Ajointanalysis.Am.J.Epidemiol.2009,170,1156–1164.
77. Ferraro,P.M.;Costanzi,S.;Naticchia,A.;Sturniolo,A.;Gambaro,G.Lowlevelexposuretocadmiumincreasestheriskofchronic
kidneydisease:AnalysisoftheNHANES1999–2006.BMCPublicHealth2010,10,304.
78. Madrigal,J.M.;Ricardo,A.C.;Persky,V.;Turyk,M.Associationsbetweenbloodcadmiumconcentrationandkidneyfunction
intheU.S.population:Impactofsex,diabetesandhypertension.Environ.Res.2018,169,180–188.
79. Zhu,X.J.;Wang,J.J.;Mao,J.H.;Shu,Q.;Du,L.Z.Relationshipsofcadmium,lead,andmercurylevelswithalbuminuriainUS
Adults:ResultsfromtheNationalHealthandNutritionExaminationSurveyDatabase,2009–2012.Am.J.Epidemiol.2019,188,
1281–1287.
80. Lin,Y.S.;Ho,W.C.;Caffrey,J.L.;Sonawane,B.Lowserumzincisassociatedwithelevatedriskofcadmiumnephrotoxicity.
Environ.Res.2014,134,33–38.
81. Stumvoll,M.;Meyer,C.;Mitrakou,A.;Nadkarni,V.;Gerich,J.E.Renalglucoseproductionandutilization:Newaspectsin
humans.Diabetologia,1997,40,749–757.
82. Gerich,J.E.Roleofthekidneyinnormalglucosehomeostasisandinthehyperglycaemiaofdiabetesmellitus:Therapeutic
implications.Diabet.Med.2010,27,136–142.
83. DeFronzo,R.A.;Davidson,J.A.;Prato,S.D.Theroleofthekidneysinglucosehomeostasis:Anewpathtowardsnormalizing
glycaemia.DiabetesObesityMetab.2012,14,5–14.
84. Xiao,L.;Li,W.;Zhu,C.;Yang,S.;Zhou,M.;Wang,B.;Wang,X.;Wang,D.;Ma,J.;Zhou,Y.;etal.Cadmiumexposure,fasting
bloodglucosechanges,andtype2diabetesmellitus:AlongitudinalprospectivestudyinChina.Environ.Res.2021,192,110259.
85. Guo,F.F.;Hu,Z.Y.;Li,B.Y.;Qin,L.Q.;Fu,C.;Yu,H.;Zhang,Z.L.Evaluationoftheassociationbetweenurinarycadmiumlevels
belowthresholdlimitsandtheriskofdiabetesmellitus:Adoseresponsemetaanalysis.Environ.Sci.Pollut.Res.Int.2019,26,
19272–19281.
86. Filippini,T.;Wise,L.A.;Vinceti,M.Cadmiumexposureandriskofdiabetesandprediabetes:Asystematicreviewanddose
responsemetaanalysis.Environ.Int.2022,158,106920.
87. Padilla,M.A.;Elobeid,M.;Ruden,D.M.;Allison,D.B.Anexaminationoftheassociationofselectedtoxicmetalswithtotaland
centralobesityindices:NHANES9902.Int.J.Environ.Res.PublicHealth2010,7,3332–3347.
88. Jain,R.B.Effectofpregnancyonthelevelsofbloodcadmium,lead,andmercuryforfemalesaged1739yearsold:Datafrom
NationalHealthandNutritionExaminationSurvey2003–2010.J.Toxicol.Environ.HealthA,2013,76,58–69.
89. Noor,N.;Zong,G.;Seely,E.W.;Weisskopf,M.;JamesTodd,T.Urinarycadmiumconcentrationsandmetabolicsyndromein
U.S.adults:TheNationalHealthandNutritionExaminationSurvey2001–2014.EnvironInt.2018,21,349–356.
90. Wang,X.;Mukherjee,B.;KarvonenGutierrez,C.A.;Herman,W.H.;Batterman,S.;Harlow,S.D.;Park,S.K.Urinarymetalmix
turesandlongitudinalchangesinglucosehomeostasis:TheStudyofWomenʹsHealthAcrosstheNation(SWAN).Environ.Int.
2020,145,106109.
91. Shao,W.;Liu,Q.;He,X.;Liu,H.;Gu,A.;Jiang,Z.Associationbetweenlevelofurinarytraceheavymetalsandobesityamong
childrenaged619years:NHANES1999–2011.Environ.Sci.Pollut.Res.Int.2017,24,11573–11581.
92. Dhooge,W.;DenHond,E.;Koppen,G.;Bruckers,L.;Nelen,V.;VanDeMieroop,E.;Bilau,M.;Croes,K.;Baeyens,W.;Schoeters,
G.;etal.InternalexposuretopollutantsandbodysizeinFlemishadolescentsandadults:Associationsanddoseresponserela
tionships.Environ.Int.2010,36,330–337.
93. Garner,R.;Levallois,P.CadmiumlevelsandsourcesofexposureamongCanadianadults.HealthRep.2016,27,10–18.
94. Akbar,L.;Zuk,A.M.;Martin,I.D.;Liberda,E.N.;Tsuji,L.J.S.Potentialobesogeniceffectofacomplexcontaminantmixtureon
CreeFirstNationsadultsofNorthernQuébec,Canada.Environ.Res.2021,192,110478.
95. Son,H.S.;Kim,S.G.;Suh,B.S.;Park,D.U.;Kim,D.S.;Yu,S.D.;Hong,Y.S.;Park,J.D.;Lee,B.K.;Moon,J.D.;etal.Associationof
cadmiumwithdiabetesinmiddleagedresidentsofabandonedmetalmines:Thefirsthealtheffectsurveillanceforresidentsin
abandonedmetalmines.Ann.Occup.Environ.Med.2015,27,20.
96. Nie,X.;Wang,N.;Chen,Y.;Chen,C.;Han,B.;Zhu,C.;Chen,Y.;Xia,F.;Cang,Z.;Lu,M.;etal.BloodcadmiuminChinese
adultsanditsrelationshipswithdiabetesandobesity.Environ.SciPollut.Res.Int.2016,23,18714–18723.
97. Feng,X.;Zhou,R.;Jiang,Q.;Wang,Y.;Yu,C.Analysisofcadmiumaccumulationincommunityadultsanditscorrelationwith
lowgradealbuminuria.Sci.TotalEnviron.2022,834,155210.
98. Gasser,M.;Lenglet,S.;Bararpour,N.;Sajic,T.;Wiskott,K.;Augsburger,M.;Fracasso,T.;Gilardi,F.;Thomas,A.Cadmium
acuteexposureinducesmetabolicandtranscriptomicperturbationsinhumanmatureadipocytes.Toxicol.2022,470,153153.
99. Kawakami,T.;Sugimoto,H.;Furuichi,R.;Kadota,Y.;Inoue,M.;Setsu,K.;Suzuki,S.;Sato,M.Cadmiumreducesadipocytesize
andexpressionlevelsofadiponectinandPeg1/Mestinadiposetissue.Toxicol.2010,267,20–26.
100. Kawakami,T.;Nishiyama,K.;Kadota,Y.;Sato,M.;Inoue,M.;Suzuki,S.Cadmiummodulatesadipocytefunctionsinmetal
lothioneinnullmice.Toxicol.Appl.Pharmacol.2013,272,625–636.
101. Lee,D.H.;Lim,J.S.;Song,K.;Boo,Y.;Jacobs,D.R.,Jr.Gradedassociationsofbloodleadandurinarycadmiumconcentrations
withoxidativestressrelatedmarkersintheU.S.population:ResultsfromthethirdNationalHealthandNutritionExamination
Survey.Environ.HealthPerspect.2006,114,350–354.
102. Lin,Y.S.;Rathod,D.;Ho,W.C.;Caffrey,J.L.CadmiumexposureisassociatedwithelevatedbloodCreactiveproteinandfibrin
ogenintheU.S.population:Thethirdnationalhealthandnutritionexaminationsurvey(NHANESIII,19881994).Ann.Epi
demiol.2009,19,592–596.
Stresses2022,2,25371
103. Pollack,A.Z.;Mumford,S.L.;Mendola,P.;Perkins,N.J.;Rotman,Y.;WactawskiWende,J.;Schisterman,E.F.Kidneybiomarkers
associatedwithbloodlead,mercury,andcadmiuminpremenopausalwomen:Aprospectivecohortstudy.J.Toxicol.Environ.
HealthA2015,78,119–131.
104. Colacino,J.A.;Arthur,A.E.;Ferguson,K.K.;Rozek,L.S.Dietaryantioxidantandantiinflammatoryintakemodifiestheeffectof
cadmiumexposureonmarkersofsystemicinflammationandoxidativestress.Environ.Res.2014,131,6–12.
105. Zota,A.R.;Needham,B.L.;Blackburn,E.H.;Lin,J.;Park,S.K.;Rehkopf,D.H.;Epe,E.S.Associationsofcadmiumandlead
exposurewithleukocytetelomerelength:FindingsfromNationalHealthandNutritionExaminationSurvey,1999–2002.Am.J.
Epidemiol.2014,181,127–136.
106. Patel,C.J.;Manrai,A.K.;Corona,E.;Kohane,I.S.Systematiccorrelationofenvironmentalexposureandphysiologicalandself
reportedbehaviourfactorswithleukocytetelomerelength.Int.J.Epidemiol.2017,46,44–56.
107. Ma,S.;Zhang,J.;Xu,C.;Da,M.;Xu,Y.;Chen,Y.;Mo,X.Increasedserumlevelsofcadmiumareassociatedwithanelevated
riskofcardiovasculardiseaseinadults.Environ.Sci.Pollut.Res.Int.2022,29,1836–1844.
108. Liu,Y.;Yang,D.;Shi,F.;Wang,F.;Liu,X.;Wen,H.;Mubarik,S.;Yu,C.Associationofserum25(OH)D,cadmium,CRPwithall
cause,causespecificmortality:Aprospectivecohortstudy.Front.Nutr.2022,9,803985.
109. Shibahara,S.Thehemeoxygenasedilemmaincellularhomeostasis:Newinsightsforthefeedbackregulationofhemecatabo
lism.Tohoku,J.Exp.Med.2003,200,167–186.
110. Shibahara,S.;Han,F.;Li,B.;Takeda,K.Hypoxiaandhemeoxygenases:Oxygensensingandregulationofexpression.Antiox.
RedoxSignal.2007,9,2209–2225.
111. MuñozSánchez,J.;ChánezCárdenas,M.E.Areviewonhemeoxygenase2:Focusoncellularprotectionandoxygenresponse.
Oxid.Med.CellLongev.2014,2014,604981.
112. Khan,A.A.;Quigley,J.G.Controlofintracellularhemelevels:Hemetransportersandhemeoxygenases.Biochim.Biophys.Acta
2011,1813,668–682.
113. Takeda,K.;Ishizawa,S.;Sato,M.;Yoshida,T.;Shibahara,S.Identificationofacisactingelementthatisresponsibleforcad
miummediatedinductionofthehumanhemeoxygenasegene.J.Biol.Chem.1994,269,22858–22867.
114. Zhang,F.;Guan,W.;Fu,Z.;Zhou,L.;Guo,W.;Ma,Y.;Gong,Y.;Jiang,W.;Liang,H.;Zhou,H.Relationshipbetweenserum
indirectbilirubinlevelandinsulinsensitivity:Resultsfromtwoindependentcohortsofobesepatientswithimpairedglucose
regulationandtype2diabetesmellitusinChina.Int.J.Endocrinol.2020,2020,5681296.
115. Lin,J.P.;Vitek,L.;Schwertner,H.A.Serumbilirubinandgenescontrollingbilirubinconcentrationsasbiomarkersforcardio
vasculardisease.Clin.Chem.2010,56,1535–1543.
116. Durante,W.Targetinghemeoxygenase1inthearterialresponsetoinjuryanddisease.Antioxidants(Basel)2020,9,829.
117. Liang,C.;Yu,Z.;Bai,L.;Hou,W.;Tang,S.;Zhang,W.;Chen,X.;Hu,Z.;Duan,Z.;Zheng,S.Associationofserumbilirubinwith
metabolicsyndromeandnonalcoholicfattyliverdisease:Asystematicreviewandmetaanalysis.Front.Endocrinol.(Lausanne)
2022,13,869579.
118. Takeda,T.A.;Mu,A.;Tai,T.T.;Kitajima,S.;Taketani,S.Continuousdenovobiosynthesisofhaemanditsrapidturnoverto
bilirubinarenecessaryforcytoprotectionagainstcelldamage.Sci.Rep.2015,5,10488.
119. Levitt,D.G.;Levitt,M.D.Carbonmonoxide:Acriticalquantitativeanalysisandreviewoftheextentandlimitationsofitssecond
messengerfunction.Clin.Pharmacol.2015,7,37–56.
120. Stuckim,D.;Steinhausen,J.;Westhoff,P.;Krahl,H.;Brilhaus,D.;Massenberg,A.;Weber,A.P.M.;Reichert,A.S.;Brenneisen,P.;
Stahl,W.Endogenouscarbonmonoxidesignalingmodulatesmitochondrialfunctionandintracellularglucoseutilization:Im
pactofthehemeoxygenasesubstratehemin.Antioxidants(Basel)2020,9,652.
121. Stucki,D.;Stahl,W.Carbonmonoxide—Beyondtoxicity?Toxicol.Lett.2020,333,251–260.
122. Itoh,K.;Ye,P.;Matsumiya,T.;Tanji,K.;Ozaki,T.EmergingfunctionalcrosstalkbetweentheKeap1Nrf2systemandmito
chondria.J.Clin.Biochem.Nutr.2015,56,91–97.
123. Ryoo,I.G.;Kwak,M.K.RegulatorycrosstalkbetweentheoxidativestressrelatedtranscriptionfactorNfe2l2/Nrf2andmito
chondria.Toxicol.Appl.Pharmacol.2018,359,24–33.
124. Sena,L.A.;Chandel,N.S.Physiologicalrolesofmitochondrialreactiveoxygenspecies.Mol.Cell2012,48,158–167.
125. Zhang,B.;Pan,C.;Feng,C.;Yan,C.;Yu,Y.;Chen,Z.;Guo,C.;Wang,X.Roleofmitochondrialreactiveoxygenspeciesin
homeostasisregulation.Redox.Rep.2022,27,45–52.
126. Shibahara,S.;Yoshizawa,M.;Suzuki,H.;Takeda,K.;Meguro,K.;Endo,K.FunctionalanalysisofcDNAsfortwotypesof
humanhemeoxygenaseandevidencefortheirseparateregulation.J.Biochem.(Tokyo)1993,113,214–218.
127. Bao,W.;Song,F.;Li,X.;Rong,S.;Yang,W.;Wang,D.;Xu,J.;Fu,J.;Zhao,Y.;Liu,L.Associationbetweenhemeoxygenase1
genepromoterpolymorphismsandtype2diabetesmellitus:AHuGEreviewandmetaanalysis.Am.J.Epidemiol.2010,172,
631–636.
128. Ma,L.L.;Sun,L.;Wang,Y.X.;Sun,B.H.;Li,Y.F.;Jin,Y.L.AssociationbetweenHO1genepromoterpolymorphismsanddiseases
(Review).Mol.Med.Rep.2022,25,29.
129. Zhang,Y.;Fang,B.;Emmett,M.J.;Damle,M.;Sun,Z.;Feng,D.;Armour,S.M.;Remsberg,J.R.;Jager,J.;Soccio,R.E.;etal.Discrete
functionsofnuclearreceptorReverbαcouplemetabolismtotheclock.Science2015,348,1488–1492.
130. Everett,L.J.;Lazar,M.A.NuclearreceptorReverbα:Up,down,andallaround.TrendsEndocrinolMetab.2014,25,586–592.
131. Bass,J.;Takahashi,J.S.Circadianintegrationofmetabolismandenergetics.Science2010,330,13491354.
Stresses2022,2,25372
132. Medina,M.V.;Sapochnik,D.;GarciaSolá,M.;Coso,O.Regulationoftheexpressionofhemeoxygenase1:Signaltransduction,
genepromoteractivation,andbeyond.Antioxid.RedoxSignal.2020,32,1033–1044.
133. Sahar,S.;SassoneCorsi,P.Metabolismandcancer:Thecircadianclockconnection.Nat.Rev.Cancer2009,9,886896.
134. Wu,N.;Yin,L.;Hanniman,E.A.;Joshi,S.;Lazar,M.A.Negativefeedbackmaintenanceofhemehomeostasisbyitsreceptor,
Reverbalpha.GenesDev.2009,23,2201–2209.
135. Igarashi,K.;WatanabeMatsui,M.Wearingredforsignaling:TheHemeBachaxisinhememetabolism,oxidativestressre
sponseandironimmunology.TohokuJ.Exp.Med.2014,232,229–253.
136. Hanna,D.A.;Moore,C.M.;Liu,L.;Yuan,X.;Dominic,I.M.;Fleischhacker,A.S.;Hamza,I.;Ragsdale,S.W.;Reddi,A.R.Heme
oxygenase2(HO2)bindsandbufferslabileferrichemeinhumanembryonickidneycells.J.Biol.Chem.2022,298,101549.
137. Fleischhacker,A.S.;Carter,E.L.;Ragsdale,S.W.Redoxregulationofhemeoxygenase2andthetranscriptionfactor,RevErb,
throughhemeregulatorymotifs.Antioxid.RedoxSignal.2018,29,1841–1857.
138. Fleischhacker,A.S.;Gunawan,A.L.;Kochert,B.A.;Liu,L.;Wales,T.E.;Borowy,M.C.;Engen,J.R.;Ragsdale,S.W.Theheme
regulatorymotifsofhemeoxygenase2contributetothetransferofhemetothecatalyticsitefordegradation.J.Biol.Chem.2020,
295,5177–5191.
139. Sodhi,K.;Inoue,K.;Gotlinger,K.H.;Canestraro,M.;Vanella,L.;Kim,D.H.;Manthati,V.L.;Koduru,S.R.;Falck,J.R.;Schwartz
man,M.L.;etal.EpoxyeicosatrienoicacidagonistrescuesthemetabolicsyndromephenotypeofHO2nullmice.J.Pharmacol.
Exp.Ther.2009,331,906–916.
140. Yao,H.;Peterson,A.L.;Li,J.;Xu,H.;Dennery,P.A.Hemeoxygenase1and2differentiallyregulateglucosemetabolismand
adiposetissuemitochondrialrespiration:Implicationsformetabolicdysregulation.Int.J.Mol.Sci.2020,21,7123.
141. Burgess,A.P.;Vanella,L.;Bellner,L.;Gotlinger,K.;Falck,J.R.;Abraham,N.G.;Schwartzman,M.L.;Kappas,A.Hemeoxygenase
(HO1)rescueofadipocytedysfunctioninHO2deficientmiceviarecruitmentofepoxyeicosatrienoicacids(EETs)andadi
ponectin.CellPhysiol.Biochem.2012,29,99–110.
142. Li,B.;Takeda,K.;Ishikawa,K.;Yoshizawa,M.;Sato,M.;Shibahara,S.;Furuyama,K.Coordinatedexpressionof6phos
phofructo2kinase/fructose2,6bisphosphatase4andhemeoxygenase2:Evidenceforaregulatorylinkbetweenglycolysis
andhemecatabolism.TohokuJ.Exp.Med.2012,228,27–41.
143. Okar,D.A.;Manzano,A.;NavarroSabatè,A.;Riera,L.;Bartrons,R.;Lange,A.J.PFK2/FBPase2:Makerandbreakerofthe
essentialbiofactorfructose2,6bisphosphate.TrendsBiochem.Sci.2001,26,30–35.
144. Han,F.;Takeda,K.;Ishikawa,K.;Ono,M.;Date,F.;Yokoyama,S.;Furuyama,K.;Shinozawa,Y.;Urade,Y.;Shibahara,S.In
ductionoflipocalintypeprostaglandinDsynthaseinmouseheartunderhypoxemia.Biochem.Biophys.Res.Commun.2009,385,
449–453.
145. Thévenod,F.;Lee,W.K.;Garrick,M.D.Ironandcadmiumentryintorenalmitochondria:Physiologicalandtoxicologicalimpli
cations.Front.CellDev.Biol.2020,8,848.
146. Hahn,D.;Shin,S.H.;Bae,J.S.Naturalantioxidantandantiinflammatorycompoundsinfoodstufformedicinalherbsinducing
hemeoxygenase1expression.Antioxidants(Basel)2020,9,1191.
147. Stec,D.E.;Hinds,T.D.Jr.NaturalproducthemeoxygenaseinducersastreatmentfornonalcoholicfattyLiverdisease.Int.J.
Mol.Sci.2020,21,9493.
148. Keller,A.;Wallace,T.C.Teaintakeandcardiovasculardisease:Anumbrellareview.Ann.Med.2021,53,929–944.
149. Han,K.C.;Wong,W.C.;Benzie,I.F.Genoprotectiveeffectsofgreentea(Camelliasinensis)inhumansubjects:Resultsofa
controlledsupplementationtrial.Br.J.Nutr.2011,105,171–179.
150. Choi,S.W.;Yeung,V.T.F.;Collins,A.R.;Benzie,I.F.F.RedoxlinkedeffectsofgreenteaonDNAdamageandrepair,andinflu
enceofmicrosatellitepolymorphisminHMOX1:Resultsofahumaninterventiontrial.Mutagenesis2015,30,129–137.
151. Ho,C.K.;Choi,S.W.;Siu,P.M.;Benzie,I.F.Effectsofsingledoseandregularintakeofgreentea(Camelliasinensis)onDNA
damage,DNArepair,andhemeoxygenase1expressioninarandomizedcontrolledhumansupplementationstudy.Mol.Nutr.
FoodRes.2014,58,1379–1383.
152. Satarug,S.;Wisedpanichkij,R.;Takeda,K.;Li,B.;NaBangchang,K.;Moore,M.R.;Shibahara,S.ProstaglandinD2inducesheme
oxygenase1mRNAexpressionthroughtheDP2receptor.Biochem.Biophys.Res.Commun.2008,377,878–883.
153. Spik,I.;Brénuchon,C.;Angéli,V.;Staumont,D.;Fleury,S.;Capron,M.;Trottein,F.;Dombrowicz,D.Activationoftheprosta
glandinD2receptorDP2/CRTH2increasesallergicinflammationinmouse.J.Immunol.2005,174,3703–3708.
154. Stewart,D.;Killeen,E.;Naquin,R.;Alam,S.;Alam,J.DegradationoftranscriptionfactorNrf2viatheubiquitinproteasome
pathwayandstabilizationbycadmium.J.Biol.Chem.2003,278,2396–2402.
155. Suzuki,H.;Tashiro,S.;Sun,J.;Doi,H.;Satomi,S.;Igarashi,K.CadmiuminducesnuclearexportofBach1,atranscriptional
repressorofhemeoxygenase1gene.J.Biol.Chem.2003,278,49246–49253.
... However, most experimental studies examined Cd-induced diabetes along with the impacts of high-fat diet in the belief that obesity is a major contributing factor. 11 Like obesity, ample epidemiologic and experimental data suggest, as a mitochondrial toxicant, Cd can cause oxidative stress, inflammation [156][157][158], disrupt intermediary metabolism, and insulin resistance in many tissues, including insulin-dependent and non-dependent types [159][160][161]. ...
Preprint
Full-text available
Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and life-style factors that could induce excessive weight gain. Inverse relationships between various measurements of obesity and cadmium exposure have been observed across the populations of children and adults. These imply that the diabetogenic action of cadmium is independently of adiposity. However, like obesity, cadmium induces oxidative stress, chronic systemic inflammation, and insulin resistance. Of concern, obesity appeared to enhance diabetogenic effects of cadmium. This review provides an update of knowledges on the mechanisms underlying diabetogenic effects of cadmium. The role of kidney as an organ that produces and releases glucose to the circulation. This organ is responsible also for filtration and reabsorption of glucose and contributes to blood glucose homeostasis along with the liver. Universal cellular stress response involving induction of heme oxygenase-1 (HO-1) and a unique role of HO-2 as a regulator of glucose metabolism. Rapid and massive increased expression of HO-1 in response to cadmium does not result in the formation of bilirubin, a potent anti-oxidant. The crosstalk of heme, glucose and glutathione ensures the cellular redox state and cellular functional integrity are maintained. Metformin showed a limited therapeutic efficiency on cadmium-induced glucose tolerance and lipid accumulation.
Article
Full-text available
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and-2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension.
Article
Full-text available
Objective Metabolic syndrome (MetS) and non-alcoholic fatty liver disease (NAFLD) are the leading chronic diseases worldwide. There are still many controversies about the association between serum bilirubin and MetS or NAFLD. This study aims to evaluate the association of serum total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL) with MetS and NAFLD.Methods Multiple databases were searched for relevant studies until November 2021. Randomized controlled trials, cross-sectional and cohort studies evaluating the association between serum bilirubin levels and MetS or NAFLD were included.ResultsTwenty-four cross-sectional and cohort studies with 101, 517 participants were finally analyzed. Fifteen studies and 6 studies evaluated the association between bilirubin and MetS or NAFLD in health screening population, respectively, while 3 studies evaluated the association between bilirubin and non-alcoholic steatohepatitis (NASH) in NAFLD patients. Random effect model analysis showed the inverse association between TBIL and MetS in male (95%CI=0.71-0.96) and gender-neutral (95%CI=0.61-0.91) group. However, no significant association was found in females. Notably, the inverse association between DBIL and MetS was noticed in male (95%CI=0.36-0.75), female (95%CI=0.16-0.58) and gender-neutral population (95%CI=0.67-0.92). IBIL level was inversely associated with MetS in females (95%CI=0.52-0.96), whereas no statistical correlation presented in males. TBIL was not statistically correlated with NAFLD in gender-neutral or male subgroup. Similarly, there were no association between DBIL or IBIL and NAFLD in gender-neutral subgroup. However, the negative correlation between DBIL and NAFLD existed in males (95%CI=0.76-0.96). In NAFLD patients, IBIL analysis showed an inverse association with NASH (95%CI=0.01-0.12).Conclusion Serum TBIL and DBIL levels, especially DBIL levels, assume an inverse correlation with MetS in healthy population. Serum IBIL is inversely associated with the onset and degree of NASH in NAFLD patients. Exogenous bilirubin supplement may be a potential strategy to assist in lowering the risk of developing MetS and NAFLD.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42021293349
Article
Full-text available
Introduction To explore the relationship between serum 25(OH)D, cadmium, and CRP with all-cause mortality among people in diabetic and non-diabetic. Methods This study used data from the NHANES (2001–2010). Cox regression was used to analyze the relationship between Serum 25(OH)D, cadmium, CRP, and all-cause, cause-specific mortality. We used restricted cubic splines to explore the dose-response relationship between serum 25(OH)D, cadmium, CRP, and all-cause mortality. Results During a mean follow-up of 9.1 years, the study included 20,221 participants, 2,945 people with diabetes, and 17,276 people without diabetes. Compared with serum 25(OH)D deficiency group in diabetic patients, the sufficient serum 25(OH)D group was associated with lower all-cause mortality (HR = 0.41, 95%CI 0.28-0.60, P < 0.001) and cardiovascular mortality (HR = 0.46, 95%CI 0.22–0.95, P = 0.04). Compared with the low cadmium group, the high cadmium group was associated with higher all-cause mortality (HR = 1.49, 95%CI 1.06–2.09, P = 0.02). Compared with the low CRP group, the high CRP group was associated with higher all-cause mortality (HR = 1.65, 95%CI 1.24–2.19, P = 0.001) and cancer mortality (HR = 3.25, 95%CI 1.82–5.80, P < 0.001). Restricted cubic splines analysis showed a significant nonlinear association between serum 25(OH)D (P-nonlinearity P < 0.001), cadmium (P-nonlinearity = 0.002), CRP (P-nonlinearity = 0.003), and HR for all-cause mortality risk in diabetic patients. The results were similar among non-diabetic patients, but with different levels of risk. Sensitivity analysis and subgroup analysis presented the results of population studies with different follow-up times, different genders and ages. Conclusions In diabetic patients, serum 25(OH)D, cadmium, and CRP were related to all-cause mortality; serum 25(OH)D was related to cardiovascular mortality; CRP was related to cancer mortality. The results were similar among non-diabetic patients, but with different levels of risk.
Article
Full-text available
Obesity is considered as a major public health concern with strong economic and social burdens. Exposure to pollutants such as heavy metals can contribute to the development of obesity and its associated metabolic disorders, including type 2 diabetes and cardiovascular diseases. Adipose tissue is an endocrine and paracrine organ that plays a key role in the development of these diseases and is one of the main target of heavy metal accumulation. In this study, we determined by inductively coupled plasma mass spectrometry cadmium concentrations in human subcutaneous and visceral adipose tissues, ranging between 2.5 nM and 2.5 µM. We found a positive correlation between cadmium levels and age, sex and smoking status and a negative correlation between Cd and body mass index. Based on cadmium adipose tissue concentrations found in humans, we investigated the effects of cadmium exposure, at concentrations between 1 nM and 10 µM, on adipose-derived human mesenchymal stem cells differentiated into mature adipocytes in vitro. Transcriptomic analysis highlighted that such exposure altered the expression of genes involved in trace element homeostasis and heavy metal detoxification, such as Solute Carrier Family transporters and metallothioneins. This effect correlated with zinc level alteration in cells and cellular media. Interestingly, dysregulation of zinc homeostasis and transporters has been particularly associated with the development of obesity and type 2 diabetes. Moreover, we found that cadmium exposure induces the pro-inflammatory state of the adipocytes by enhancing the expression of genes such as IL-6, IL-1B and CCL2, cytokines also induced in obesity. Finally, cadmium modulates various adipocyte functions such as the insulin response signaling pathway and lipid homeostasis. Collectively, our data identified some of the cellular mechanisms by which cadmium alters adipocyte functions, thus highlighting new facets of its potential contribution to the progression of metabolic disorders.
Article
Full-text available
In recent years, studies of heavy metal air pollution have increasingly gone beyond determining total concentrations of individual toxic metals. Chemical fractionation of potentially toxic elements in airborne particles is becoming an important part of these studies. This review covers the articles that have been published over the last three decades. Attention was paid to the issue of atmospheric aerosol sampling, sample pretreatment, sequential extraction schemes and conditions of individual extractions. Geochemical forms of metals occurring in the air in urban areas were considered in detail. Based on the data sets from chemical fractionation of particulate matter samples by three sequential extraction procedures (SEPs)—Fernández Espinosa, BCR and Chester’s—the compilation of the chemical distribution patterns of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn was prepared. The human health risk posed by these toxic and/or carcinogenic elements via inhalation of atmospheric particles was estimated for two categories of polluted urban areas: the commonly encountered pollution level and the high pollution level.
Article
Full-text available
Mitochondria are the main source of reactive oxygen species (ROS) in cells. Early studies have shown that mitochondrial reactive oxygen species (mROS) are related to the occurrence and adverse outcomes of many diseases, and are thus regarded as an important risk factor that threaten human health. Recently, increasing evidence has shown that mROS are very important for an organism’s homeostasis. mROS can regulate a variety of signaling pathways and activate the adaptation and protection behaviors of an organism under stress. In addition, mROS also regulate important physiological processes, such as cell proliferation, differentiation, aging, and apoptosis. Herein, we review the mechanisms of production, transformation, and clearance of mROS and their biological roles in different physiological processes. © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Article
Full-text available
More than one and a half centuries ago, adverse human health effects were reported after use of a cadmium-containing silver polishing agent. Long-term cadmium exposure gives rise to kidney or bone disease, reproductive toxicity and cancer in animals and humans. At present, high human exposures to cadmium occur in small-scale mining, underlining the need for preventive measures. This is particularly urgent in view of the growing demand for minerals and metals in global climate change mitigation. This review deals with a specific part of cadmium toxicology that is important for understanding when toxic effects appear and, thus, is crucial for risk assessment. The discovery of the low-molecular-weight protein metallothionein (MT) in 1957 was an important milestone because, when this protein binds cadmium, it modifies cellular cadmium toxicity. The present authors contributed evidence in the 1970s concerning cadmium binding to MT and synthesis of the protein in tissues. We showed that binding of cadmium to metallothionein in tissues prevented some toxic effects, but that metallothionein can increase the transport of cadmium to the kidneys. Special studies showed the importance of the Cd/Zn ratio in MT for expression of toxicity in the kidneys. We also developed models of cadmium toxicokinetics based on our MT-related findings. This model combined with estimates of tissue levels giving rise to toxicity, made it possible to calculate expected risks in relation to exposure. Other scientists developed these models further and international organizations have successfully used these amended models in recent publications. Our contributions in recent decades included studies in humans of MT-related biomarkers showing the importance of MT gene expression in lymphocytes and MT autoantibodies for risks of Cd-related adverse effects in cadmium-exposed population groups. In a study of the impact of zinc status on the risk of kidney dysfunction in a cadmium-exposed group, the risks were low when zinc status was good and high when zinc status was poor. The present review summarizes this evidence in a risk assessment context and calls for its application in order to improve preventive measures against adverse effects of cadmium exposures in humans and animals.
Article
Full-text available
Evidence from previous studies has shown that exposure to cadmium (Cd) is associated with cardiovascular disease, kidney disease, and osteoporosis, but the effects of Cd on liver toxicity in adolescents are unclear. The data of 4411 adolescents who participated in the US The National Health and Nutrition Examination Survey (NHANES) during 1999–2016 was analyzed. Liver function was indicated by the levels of alanine aminotransferase (ALT) and aspartate amino transferase (AST). The associations between the levels of urinary Cd and liver function were evaluated using multivariate logistic regression models adjusted for covariates. The results showed that the odds ratios of ALT and AST in the highest quartiles of urinary Cd were 1.40 (95% confidence interval [CI], 1.07–1.82) and 1.64 (95% CI, 1.10–2.44), respectively, compared with the lowest quartiles, which were similar to using urinary creatinine as the covariate. We also found linear regression of associations of urinary Cd with elevated ALT and AST levels in boys. In addition, one augmented urinary Cd concentration unit (Log10) was associated with a 0.04-mg/dL increase in C-reactive protein and a 0.53-mg/dL decrease in HDL cholesterol in the fully adjusted model. Our results add novel evidence that exposure to Cd might be positively associated with indicators of liver injury, indicating the potential toxic effect of Cd exposure on the adolescent liver. Further confirmatory studies are needed.
Article
Full-text available
Heme oxygenases (HO) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms of HO: the inducible HO-1, which is up-regulated in response to various stressors, including excess heme, and the constitutive HO-2. While much is known about the regulation and physiological function of HO-1, comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is largely dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or over-expressed HO-2, as well as various HO-2 mutant alleles, we found that endogenous heme is too limiting a substrate to observe HO-2-dependent heme degradation. Rather, we discovered a novel role for HO-2 in the binding and buffering of heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor that controls heme bioavailability. When heme is in excess, HO-1 is induced and both HO-2 and HO-1 can provide protection from heme toxicity via enzymatic degradation. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with the labile heme pool being oxidized, thereby providing new insights into heme trafficking and signaling.
Article
Objective To investigate the effects of chronic non-occupational exposure to cadmium (Cd) on renal injury in residents living in the urban areas of China. Methods In this cross-sectional study, we recruited 1000 participants in Shanghai from August 2015 to August 2017 and collected data on their socio-demographic characteristics, lifetime occupation, and lifestyle factors. The urinary Cd, urinary albumin, urinary creatinine, serum creatinine, urea, and uric acid levels were tested, and 683 participants completed those measurements. Results The median urinary Cd concentration of this study population was 0.77 μg/g. The urinary Cd concentration was significantly higher in the female, older, and lower body mass index populations. There were 148 participants with dominant albuminuria who had higher urinary Cd levels than those without dominant albuminuria (0.98 vs. 0.72 μg/g; P < 0.001). Among participants without dominant albuminuria, there were 134 participants with low-grade albuminuria (13.84 ≤ ACR < 30 mg/g) and 401 participants who had normal urinary albumin excretion (ACR < 13.84 mg/g). Compared with those who had normal urinary albumin excretion, those with low-grade albuminuria had significantly higher urinary Cd levels (0.83 vs. 0.69 μg/g; P < 0.001). Among those without dominant albuminuria, participants in the highest quartile of urinary Cd were more likely to have low-grade albuminuria than those in the lowest quartile (Odd's ratio = 2.98; P < 0.001). Further adjustment for age, sex, and BMI or other potential confounding factors did not change the magnitudes of the associations. Moreover, we conducted multivariable stepwise linear regression analysis within 134 low-grade albuminuria participants and demonstrated that urinary Cd concentration (P < 0.001) were independent determinants of urine albumin after adjusting for relevant confounders. Conclusion The urinary Cd levels observed in Chinese urban adults are substantial and associated with an increased risk of low-grade albuminuria. Our findings suggest that potential sources of environmental Cd exposure should be explored, and the associated renal toxicity should be studied in more detail in future.
Article
Background Lead (Pb), cadmium (Cd) and mercury (Hg) are all nephrotoxic metals, and a large part of the body burden of Cd and Hg is found in the kidneys. There are, however, few studies on associations between exposure to these toxic metals and renal biopsy findings, and none at low-level exposure. Aim To examine the hypothesis that low-level concentration of Pb, Cd or Hg in the kidneys is associated with histopathological changes in the kidneys. Methods We determined concentrations of Pb, Cd and Hg in kidney, blood and urine in 109 healthy kidney donors, aged 24–70 years. The renal biopsies were scored according to the Banff classification regarding tubular atrophy, interstitial fibrosis, glomerulosclerosis, arteriosclerosis, and arteriolohyalinosis. Kidney function was assessed based on glomerular filtration rate (GFR) as well as urinary excretion of albumin, low molecular weight proteins, kidney injury molecule 1 and N-acetylglucose aminidase. Associations between metal concentrations and histopathological changes, were assessed in models also including age, sex and smoking. Results The median kidney concentrations of Pb, Cd and Hg were 0.08, 13 and 0.21 μg/g, respectively. There were signs of tubular atrophy in 63%, interstitial fibrosis in 21%, glomerulosclerosis in 71%, arteriosclerosis in 47%, and arteriolohyalinosis in 36% of the donors, but, as could be expected, the histopathological findings were limited, mostly Banff grade 1. In models adjusted for age, sex and smoking, kidney Cd was positively associated with tubular atrophy (p = 0.03) and possibly with arteriolohyalinosis (p = 0.06). Kidney Hg was associated with arteriosclerosis (p = 0.004). Discussion and conclusions The results suggest that even low levels of Cd in the kidney can induce a mild degree of tubular atrophy. This is in line with previous findings at high-level Cd exposure. The association between kidney Hg and renal arteriosclerosis was unexpected, and may be a chance finding.