Sina Mozaffari-Jovin

Sina Mozaffari-Jovin
Max Planck Institute for Biophysical Chemistry | MPIBPC · Department of Cellular Biochemistry

About

49
Publications
7,013
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,042
Citations

Publications

Publications (49)
Article
Full-text available
The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mu...
Article
The emergence of new SARS-CoV-2 variants has raised concerns about the effectiveness of COVID-19 vaccines. To address this challenge, small-molecule antivirals have been proposed as a crucial therapeutic option. Among potential targets for anti-COVID-19 therapy, the main protease (Mpro) of SARS-CoV-2 is important due to its essential role in the vi...
Article
Myostatin is a known negative regulator of muscle tissue growth. Thus, an inhibitor of myostatin may be therapeutically useful as an anabolic agent for the muscle tissue. A promising gene-silencing approach for gene therapy is DNA interference (DNAi), a sequence that is complementary to the promoter region of a target gene. To confer resistance to...
Article
Full-text available
Generating animal models can explore the role of new candidate genes in causing diseases and the pathogenicity of a specific mutation in the underlying genes. These animals can be used to identify new pharmaceutical or genetic therapeutic methods. In the present experiment, we developed a rpe65a knock out (KO) zebrafish as a retinitis pigmentosa (R...
Article
Full-text available
Rapid advancement in genome editing technologies has provided new promises for treating neoplasia, cardiovascular, neurodegenerative, and monogenic disorders. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful gene editing tool offering advantages, inc...
Article
Full-text available
Deep volumetric microscopy of live objects plays a critical role in biology and medicine. To this end, development of rapid and non-invasive optical methods for 3-dimensional (3D) imaging is still demanding. In this way, light-sheet fluorescence microscopy (LSFM) has emerged as a volumetric microscopy method having high spatial-temporal resolution...
Article
mRNA-lipid nanoparticle (mRNA-LNP) vaccines have proved their efficacy, versatility and unprecedented manufacturing speed during the COVID-19 pandemic. Here we report on the physicochemical properties, thermostability, immunogenicity, and protective efficacy of the nucleoside-modified mRNA-LNP vaccine candidate Iribovax® (also called SNEG2c). Injec...
Article
Full-text available
The CRISPR/Cas system, an innovative gene-editing tool, is emerging as a promising technique for genome modifications. This straightforward technique was created based on the prokaryotic adaptive immune defense mechanism and employed in the studies on human diseases that proved enormous therapeutic potential. A genetically unique patient mutation i...
Article
Full-text available
Beta-thalassemia is one of the most common monogenic inherited disorders worldwide caused by different mutations in the hemoglobin subunit beta (HBB) gene. Genome-editing based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system (CRISPR/Cas9) has raised the hope for life-long gene therapy of beta-thalasse...
Article
Full-text available
Plants respond to environmental stresses through controlled stem cell maintenance and meristem activity. One level of gene regulation is RNA alternative splicing. However the mechanistic link between stress, meristem function and RNA splicing is poorly understood. The MERISTEM-DEFECTIVE (MDF)/DEFECTIVELY ORGANIZED TRIBUTARIES (DOT2) gene of Arabido...
Article
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), officially named coronavirus disease (COVID19), is an emerging virus that caused the recent global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and...
Article
Full-text available
Retinitis Pigmentosa (RP) is a common form of inherited degenerative disease that often leads to blindness. About 10% autosomal dominant RP cases have been associated with mutations in PRPF31 gene, which is involved in pre‐mRNA splicing. This commentary summarises the key findings of our recent publication ‘Activation of autophagy reverses progress...
Article
Full-text available
Background Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers worldwide. Overexpression of EMT master transcription factors can promote differentiated cells to undergo cancer reprogramming processes and acquire a stem cell-like status. Methods The KYSE-30 and YM-1 ESCC cell lines were transduced with retroviruses expressing...
Preprint
Full-text available
Plants respond to environmental stresses through controlled stem cell maintenance and meristem activity. One level of transcriptional control is RNA alternative splicing. However the mechanistic link between stress, meristem function and RNA splicing is poorly understood. The MERISTEM-DEFECTIVE ( MDF )/ DEFECTIVELY ORGANIZED TRIBUTARIES ( DOT2 ) ge...
Article
Since the new variant of SARS-CoV-2, Omicron (BA.1) has raised serious concerns, it is important to investigate the effects of mutations in the NTD and RBD domains of the spike protein for the development of COVID-19 vaccines. In this study, computational analysis of the Wuhan and Omicron NTDs and RBDs in their unbound and bound states to mAb 4A8 a...
Article
Full-text available
Objectives: Early, specific, and sensitive detection methods of COVID-19 are essential for force stopping its worldwide infection. Although CT images of the lung and/or viral RNA extraction followed by real-time reverse-transcriptase-polymerase chain reaction (rRT-PCR) are widely used; they have some limitations. Here, we developed a highly sensit...
Article
Full-text available
Introduction: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing fac...
Article
Full-text available
Methylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as on...
Preprint
Full-text available
Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP...
Article
Full-text available
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors ( PRPF3, 4, 6, 8, 31, SNRNP200, and RP9 ) have been linked to 15–20% of autosomal dominant RP (adRP) cases...
Article
Full-text available
Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome—the most common cause of deaf-blindness. Previously, SANS was shown to f...
Preprint
Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal the link between splicing machinery components with the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome – the most common cause of deaf-blindness. SANS functions has been a...
Article
PurposeRecently, ‘solid tumor biopsies’ have been challenged by the emergence of ‘liquid biopsies’, which are aimed at the isolation and detection of circulating cell-free tumor DNA (ctDNA) in body fluids. Here, we developed and optimized a method for selective capture of ctDNA on magnetic beads (SCC-MAG) for mutation detection in plasma of patient...
Article
Full-text available
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content o...
Article
Full-text available
Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well...
Article
Human nineteen complex (NTC) acts as a multimeric E3 ubiquitin ligase in DNA repair and splicing. The transfer of ubiquitin is mediated by Prp19-a homotetrameric component of NTC whose elongated coiled coils serve as an assembly axis for two other proteins called SPF27 and CDC5L. We find that Prp19 is inactive on its own and have elucidated the str...
Preprint
Full-text available
Mutations in pre-mRNA processing factors (PRPFs) cause 40% of autosomal dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed PRPFs cause retinal disease. To understand the molecular basis of this phenotype, we have generated RP type 11 (PRPF31-mutated) patient-specific retinal organoids and retinal pigment e...
Article
Full-text available
The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼500-residue N-terminal region, whose functions and molecular mechanisms are presently...
Article
Full-text available
Structural rearrangement of the activated spliceosome (B(act)) to yield a catalytically active complex (B*) is mediated by the DEAH-box NTPase Prp2 in cooperation with the G-patch protein Spp2. However, how the energy of ATP hydrolysis by Prp2 is coupled to mechanical work and what role Spp2 plays in this process are unclear. Using a purified splic...
Article
Full-text available
For each round of pre-mRNA splicing, a spliceosome is assembled anew on its substrate. RNA-protein remodeling events required for spliceosome assembly, splicing catalysis, and spliceosome disassembly are driven and controlled by a conserved group of ATPases/RNA helicases. The activities of most of these enzymes are timed by their recruitment to the...
Article
Spliceosome Helicase Introns are removed from eukaryotic premessenger RNA by the spliceosome. The spliceosome is assembled and disassembled during the course of each splicing reaction, and the RNA-protein remodeling involved is carried out by RNA helicases, whose activities must be closely regulated. Mozaffari-Jovin et al. (p. 80 , published online...
Article
Full-text available
Yeast U5 small nuclear ribonucleoprotein particle (snRNP) is assembled via a cytoplasmic precursor that contains the U5-specific Prp8 protein but lacks the U5-specific Brr2 helicase. Instead, pre-U5 snRNP includes the Aar2 protein not found in mature U5 snRNP or spliceosomes. Aar2p and Brr2p bind competitively to a C-terminal region of Prp8p that c...
Article
Full-text available
The spliceosomal RNA helicase Brr2 catalyzes unwinding of the U4/U6 snRNA duplex, an essential step for spliceosome catalytic activation. Brr2 is regulated in part by the spliceosomal Prp8 protein by an unknown mechanism. We demonstrate that the RNase H (RH) domain of yeast Prp8 binds U4/U6 small nuclear RNA (snRNA) with the single-stranded regions...
Article
Full-text available
Assembly of a spliceosome, catalyzing precursor-messenger RNA splicing, involves multiple RNA-protein remodeling steps, driven by eight conserved DEXD/H-box RNA helicases. The 250-kDa Brr2 enzyme, which is essential for U4/U6 di-small nuclear ribonucleoprotein disruption during spliceosome catalytic activation and for spliceosome disassembly, is th...
Article
Brr2 is a unique DExD/H box protein required for catalytic activation and disassembly of the spliceosome. It contains two tandem helicase cassettes that both comprise dual RecA-like domains and a noncanonical Sec63 unit. The latter may bestow the enzyme with unique properties. We have determined crystal structures of the C-terminal Sec63 unit of ye...
Article
Brr2 is a unique DExD/H box protein required for catalytic activation and disassembly of the spliceosome. It contains two tandem helicase cassettes that both comprise dual RecA-like domains and a noncanonical Sec63 unit. The latter may bestow the enzyme with unique properties. We have determined crystal structures of the C-terminal Sec63 unit of ye...

Network

Cited By