
Contents lists available at ScienceDirect

Fuel Processing Technology

journal homepage: www.elsevier.com/locate/fuproc

Density functional study of hydrogen sulfide adsorption mechanism on
activated carbon

Fenghua Shen, Jing Liu⁎, Zhen Zhang, Yuchen Dong, Chenkai Gu
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

A R T I C L E I N F O

Keywords:
H2S
Adsorption
Activated carbon
Density functional theory
Coal gasification

A B S T R A C T

A systematic theoretical study using the density functional theory was performed to provide molecular-level
understanding on the adsorption of hydrogen sulfide (H2S) on activated carbon. Both zigzag and armchair edge
sites of benzene ring models were considered as the possible active sites. The results indicate that the adsorption
of H2S molecule on activated carbon is highly thermally favorable. The adsorption energies of H2S on zigzag and
armchair edges are −664.9 and −349.6 kJ/mol, respectively. Activated carbon plays double role, not only
facilitates the dissociation of H2S molecule but also offers active sites for H2S adsorption. The dissociative ad-
sorption and evolution of H2S lead to the formations of CeS, CeSeC and CeSH, which is in agreement with
experimental data. The shape of the local active site has a strong effect on H2S adsorption. The atomic charge of
zigzag edge sites is more negative than that of armchair edge sites. Thus, the zigzag edge sites provide stronger
force to attract H2S than the armchair edge sites. Direct adsorption of H2S leads to the formations of CeS or
CeSH on activated carbon surface, followed by their evolution into CeSeC. These sulfur species including CeS,
CeSeC and CeSH are stable on activated carbon.

1. Introduction

Gasification based clean coal technology is regarded as one of the
most efficient and environmentally acceptable technologies for com-
prehensive utilization of coal [1,2]. However, several problems are still
needed to be solved in order to realize the large commercial utilization
of this technology. Hydrogen sulfide (H2S) included in gas products
from the gasification process is one of the contaminants causing cor-
rosion of turbine blades and poisoning of catalysts [3]. Therefore, the
removal of H2S from the coal-derived flue gas is a key part in the ga-
sification based clean coal technology.

The removal of H2S by using activated carbons as sorbents is con-
sidered as a safe and effective method for coal-derived flue gas de-
sulfurization [4–9]. Various experimental studies have been conducted
to investigate the removal of H2S by applying activated carbons [10].
However, the mechanism of H2S adsorption on carbon surface is still
unclear. Moreover, there is even controversy on H2S adsorption. Guo
et al. [11] studied the adsorption of H2S on activated carbons which
derived from oil palm shell. They found that all H2S adsorbed on ac-
tivated carbons could be desorbed at room temperature, suggesting a
pure physisorption process involved. Köchermann et al. [12] reported
that the adsorption of H2S on original carbons belonged to pure phy-
sisorption under dry and oxygen-free conditions. While Bouzaza et al.

[13] found that the oxidation of H2S on carbons could occur under a dry
atmosphere. They suggested that the high H2S adsorption capacity of
carbons could not owe solely to physisorption. Feng et al. [14] reported
that H2S could be strongly bonded to the unsaturated active sites on
carbon surface, which formed by the desorption of surface oxygen
functionalities. This implies that chemisorption could occur during H2S
adsorption on carbons. Although the removal of H2S by applying acti-
vated carbons has been studied experimentally, the adsorption me-
chanism of H2S on activated carbon has not been well established.

Understanding the detailed interactions of H2S with carbon surface
is important to the design of more effective sorbents for H2S removal.
Theoretical studies are needed to elucidate the mechanism of H2S ad-
sorption on carbon surface [15]. Density functional theory (DFT)
methods were extensively employed to investigate the adsorption me-
chanisms of gaseous molecules on solid materials [16–18]. It has be-
come a widely used method because it provides a very good balance
between accuracy and computational cost [19–22]. Therefore, theore-
tical calculations will be helpful in elucidating the mechanism of H2S
adsorption process.

The adsorption of gaseous sulfur species on carbon surface has been
studied previously by DFT calculations [23]. Yang et al. [24] in-
vestigated the carbon-catalyzed oxidation of SO2. They employed both
the zigzag and armchair edges of graphene to represent the carbon
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surface, and found that the oxidation of SO2 occurred on the zigzag
edge sites, whereas the armchair edge sites were not feasible sites.
Ashori et al. [25] studied the adsorption of H2S on carbon nanocone,
nanotube, and graphene. They found that the adsorption of H2S on
graphene belonged to physisorption, and the charge transfer between
H2S and graphene was negligible. However, they have only investigated
the interaction of H2S with the basal plane sites, which are quite limited
in its potential for representing all of the possible active sites on carbon
surface. It has been found that the active sites on the edge planes are
more active than that on the basal planes [19]. Unfortunately, the de-
tailed interactions of H2S molecule with the active sites on the edge
plane of activated carbon remain unclear, and the evolution processes
of the probable products are still uncertain.

The objective of this study is to elucidate the adsorption mechanism
of H2S on carbon surfaces by DFT calculations. All of the possible ap-
proaches of H2S adsorption on the edge sites of carbon surfaces were
considered. Mulliken atomic charge analysis was used to evaluate the
charge transfer between the bonding atoms. Energy profiles were pro-
vided to elucidate the possible pathways of H2S evolution on carbon
surfaces. To the authors' knowledge, this is the first theoretical study
about the adsorption of H2S on the activated carbon surface at the
molecular level. This will helpful for the design of more effective sor-
bents for H2S removal from the coal-derived flue gas.

2. Computational details

2.1. Methodology

All of the calculations were performed with Gaussian 03 program
package [26] implementation of DFT method. The geometry optimi-
zations and energy calculations were carried out at B3PW91/6-31G(d)
level of theory [27]. All of the structure geometries were fully opti-
mized in their ground electronic states. The ground state was de-
termined by performing single-point energy calculation at the same
level of theory for different electronic states, and the ground state was
the lowest-energy one. After geometry optimization, a frequency cal-
culation was performed to ensure the stability of the optimized struc-
ture. Furthermore, the energies were calculated by adding the zero-
point energy and thermal correction.

The adsorption energy (Eads) of H2S on carbon surface is calculated
as:

= − +E E E E( )ads AB A B (1)

where EAB is the total energy of the H2S/substrate system in an equi-
librium state; EA is the total energy of the adsorbate H2S molecule; EB is
the total energy of the substrate. A higher negative value of Eads cor-
responds to a stronger adsorption. Normally, if the adsorption energy is
less than −30 kJ/mol, the interaction belongs to physisorption. If the
adsorption energy is higher than −50 kJ/mol, the interaction belongs
to chemisorption [28,29].

2.2. Modeling the activated carbon surface

It is of great importance to establish a reasonable model for the
sorbent surface in order to investigate the interactions of H2S with
activated carbon surfaces. Activated carbons are macrostructures
formed mainly by aromatic clusters of different sizes. Solid-state 13C
NMR characterization data shows that carbon has chemical structures
consisting of 3–7 benzene rings [30]. It was found previously that the
reactivity of the active sites strongly depended on its local shape rather
than on the size of the cluster models [31,32]. Therefore, benzene ring
cluster models with zigzag (Zg) and armchair (Am) edge shapes were
employed in this study to simulate the carbon surface. The upper side
carbon atoms in the cluster models are unsaturated to simulate the
active sites and the carbon atoms on the other sides are terminated with
hydrogen atoms [19]. In our previous studies [33,34], similar cluster
models with different edge shapes and sizes have been used to represent
carbon structures for mercury species adsorption.

Fig. 1 illustrates the cluster models used for this study. The edge
carbon atoms on the upper sides were unsaturated to simulate the ac-
tive sites on carbon surface, and the carbon atoms on the other sides
were terminated with hydrogen atoms [35]. For zigzag edge shape, the
optimized bond lengths (average CeC: 1.41 Å, CeH: 1.09 Å) and bond
angles (average ∠CeCeC: 121°, ∠CeCeH: 120°) were obtained. For
armchair edge shape, the optimized bond lengths (average CeC: 1.40 Å,
CeH: 1.09 Å) and bond angles (average ∠CeCeC: 121°, ∠CeCeH:
120°) were obtained. Both bond lengths and bond angels of the opti-
mized structures were in good agreement with the experimental data
(CeC: 1.42 Å, CeH: 1.07 Å, ∠CeCeC: 120°, ∠CeCeH: 120°) [31].

Although net charge distribution within a molecule cannot be
measured experimentally, this property is of great importance from the
point view of chemistry [34,36,37]. Mulliken method was used to
generate the atomic charge analysis by partitioning the electron density
among the atoms in a molecular system. The results of Mulliken atomic
charges for selected atoms are presented in Fig. 2. For the purpose of
present discussion, suffice it to point out that C(9) and C(22) on the
zigzag edge are more active than the other sites owing to their larger
negative atomic charge. This implies that C(9) and C(22) are the most
liable active sites for H2S adsorption on zigzag edge sites. Furthermore,
C(9) and C(22) on the zigzag edge are more active than those on the
armchair edge because of the higher negative atomic charge. The ac-
tivity of the active sites on the armchair edge is similar because of the
same atomic charges. Thus, C(9) and neighboring vacancy on zigzag
and armchair edges were used for H2S adsorption.

3. Results and discussion

3.1. Adsorption of H2S molecule on activated carbon

H2S adsorption on various sites and all possible adsorption or-
ientations of H2S on activated carbon surface were considered. In the
case of zigzag edge sites, two stable surface intermediates are obtained,
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Armchair (Am)Zigzag (Zg)

1.3881.394

Fig. 1. Activated carbon surface models.
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including Zg-A and Zg-B, as showed in Fig. 3(a). It is clear that H2S is
adsorbed dissociatively on the zigzag edge sites. H2S molecule dis-
sociates into SH and H atom in Zg-A, S atom and two H atoms in Zg-B.
In both cases, visible CeS bonds are formed by the dissociative ad-
sorption of H2S. The bond length of CeS in Zg-B is found to be 1.667 Å,
which is 0.098 Å shorter than that in Zg-A, indicating that CeS bond in
Zg-B is stronger. Moreover, there are some obvious increases in CeC
bond lengths where SH or S are directly involved, namely these CeS
bonds are substantially weakened by H2S adsorption. The adsorption
energy of H2S is found to be −442.0 kJ/mol in Zg-A, and −664.9 kJ/
mol in Zg-B. The results indicate that the adsorption of H2S on the
zigzag edge sites belongs to chemisorption.

In the case of armchair edge sites, three stable surface intermediates
are obtained, including Am-A, Am-B and Am-C, as showed in Fig. 3(b).
Similar to zigzag edge sites, H2S molecule is adsorbed dissociatively on
armchair edge sites. H2S molecule breaks down into SH and H atom in

Am-A and Am-B, and the two fragments are further adsorbed on surface
C sites. In Am-A, SH and H atom are bonded with C atoms in non-
adjacent benzene rings. In Am-B, SH and H atom are adsorbed on two
adjacent C atoms in the same benzene ring. In Am-C, dissociated H
atoms are bonded with C atoms, whereas S atom turns away from the
surface. Since the S atom does not interact with surface C sites, Am-C
will not be considered in the following discussions. The CeS bond
length in Am-B is shorter than that in Am-A, suggesting that CeS bond
in Am-B is stronger. The adsorption energy of H2S is −227.1 kJ/mol in
Am-A, and−349.6 kJ/mol in Am-B. The adsorption of H2S on armchair
edge sites belongs to chemisorption. The adsorption energy of H2S on
armchair edge sites is lower than that of zigzag edge sites, because of
the lower negative atomic charge of active C sites on armchair edge.

The calculation results discussed above indicate that H2S is ad-
sorbed dissociatively on activated carbon surface. This is similar to the
adsorption of H2S on ZnO surface [38]. Activated carbon is able to
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Fig. 2. Atomic charges of H2S adsorption: (a) zigzag edge; (b) armchair edge.
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facilitate the dissociation of H2S molecule and offer active sites for H2S
adsorption. Similar results have been reported experimentally by Feng
et al. [14]. They found that the dissociative adsorption is involved in
the adsorption of H2S on activated carbons. Moreover, the adsorption of
H2S on activated carbon belongs to chemisorption. Sun et al. [39]
studied experimentally the H2S removal abilities of various activated
carbons and they suggested that H2S can react with the active sites on
activated carbon by forming sulfur species. Cal et al. [40] performed
H2S removal experiments by activated carbons, and suggested that H2S
can react with active carbon sites. Feng et al. [41] conducted experi-
ment to investigate the adsorption of H2S on activated carbons. They
found that H2S could be adsorbed chemically on unsaturated active
sites. The calculation results agree well with these experimental results
that chemisorption occurs during H2S removal by activated carbons.

In order to further evaluate the bond strength in H2S adsorbed
structures, Mulliken population analyses are performed to analysis the
interaction between atoms. Generally, if the value of the bond popu-
lation is highly positive, the bond will be a strong covalent bond;
whereas if it is close to zero, no interaction will be occurred between
the atoms [19,42]. Some pertinent bond populations of H2S adsorption
on zigzag edge sites are listed in Table 1. The dissociation of H2S mo-
lecule can be further verified by the bond population between S atom
and H atom. In Zg-A, the bond population of SeH is 0.254, suggesting a
strong interaction of S with H. However, S does not interact with H′ in
Zg-A as indicated by S-H′ bond population (zero). This implies that H2S
molecule decomposes into SH and H atom in Zg-A. In Zg-B, both the
bond populations of SeH and S-H′ are zero, implying that H2S molecule
breaks down into S atom and two H atoms. Moreover, the bond po-
pulation of CeS in Zg-B is higher compared with that in Zg-A. This
suggests that CeS bond in Zg-B is stronger. The high positive value of
CeS bond populations in these structures indicates that S and SH are
strongly bonded with surface C atoms. In addition, the bond popula-
tions of C(8)eC(9) and C(9)eC(10) are decreased upon the adsorption
of H2S. For example, the bond population of C(8)eC(9) in Zg-B de-
creases from 0.334 to 0.231, and the bond population of C(9)eC(10)
decreases from 0.341 to 0.226. This indicates that C(8)eC(9) and C(9)
eC(10) have been weakened by H2S adsorption.

The bond populations of H2S adsorption on armchair edge sites are
listed in Table 2. Similar to the adsorption of H2S on zigzag edge sites,
CeC bonds are weakened where SH or H is directly adsorbed. The bond
population of CeS in Am-B is higher compared to that in Am-A. This
indicates that the interaction of S atom with C atom is stronger in Am-B.
Moreover, the bond populations of CeS in Am-A and Am-B are found to
be highly positive, indicating a strong interaction of S atom with surface
C site.

The results of Mulliken population analyses suggest that stable CeS
and CeSH species could be formed by the adsorption of H2S molecule
on activated carbon. XPS analysis results found that sulfur species can
incorporate into the carbon matrix, resulting in the formation of CeS,
CeSeC and CeSeH [43,44]. Shi et al. [45] analyzed the adsorption of
H2S on activated carbon by using XPS. They found that CeS groups can

be formed by H2S adsorption. The calculation results are consistent
with the XPS analysis results. Feng et al. [46] studied the adsorption of
H2S on activated carbons, and found that sulfur species adsorbed on
carbon surface could not be removed entirely under high temperature
(800 °C) in an inert environment. They suggested that sulfur species
formed by H2S dissociative adsorption could be embedded into the
carbon matrix with the formation of CeS bond. The calculation results
agree well with the experimental results.

The atomic charges of H2S adsorption on the zigzag edge are
showed in Fig. 2(a). It is clear that the atomic charges of active C atoms
in those structures become more negative after H2S adsorption. This
indicates that the adsorption of H2S on the zigzag edge leads to charge
transfer among atoms. For example, in Zg-B, the atomic charge of C(9)
increases from−0.081 to−0.148. Furthermore, S atom in the free H2S
molecule has a negative charge of −0.258, and it decreases to −0.172
after H2S adsorption. The atomic charges of H2S on the armchair edge
are illustrated in Fig. 2(b). Similar to zigzag edge, the adsorption of H2S
on armchair edge leads to charge transfer among atoms. This conclu-
sion is obvious that the atomic charges of C atoms, which bonded with
SH and H, are more negative after H2S adsorption. For example, in Am-
A, the atomic charge of C(9) changes from −0.047 to −0.229. The
results of atomic charge indicate that charge transfer among atoms
occurs during H2S adsorption, and thus enhancing the interaction of S
atom with surface C atoms. The electrons of S and H atoms in the
molecular H2S transfer to the surface C atoms. The charge transfer
proves the chemisorption of H2S on activated carbon surface.

Further, the interactions in these stable configurations are char-
acterized by the electron density difference contour, as shown in Fig. 4.
Solid line areas correspond to an increased density in the complex,
while losses are denoted by the dotted line regions. In these H2S ad-
sorbed structures, obvious solid line areas exist between S atom and C
atom, indicating the formation of covalent bond due to the electron
transfer. This electron transfer decreases the electron density of the
SeH bond, which results in the weakening or breaking of SeH bond.

To evaluate the H2S removal ability of activated carbon, the com-
parison of activated carbon with various adsorbents were carried out
from the point view of adsorption energy, and summarized in Table 3. It
is clear that the adsorption energy of H2S on activated carbon surface is
higher than that of the other adsorbents, indicating a higher H2S re-
moval ability.

3.2. Co-adsorption of dissociated species of H2S on activated carbon

In order to investigate the adsorption and evolution processes of H2S
on activated carbon surface, it is necessary to investigate the co-ad-
sorption of dissociated species of H2S on non-neighboring sites, namely,
the co-adsorption of SH and H, as well as the co-adsorption of S, H and
H, respectively.

The surface intermediates formed by dissociated species of H2S co-
adsorption on zigzag edge are presented in Fig. 5(a). Zg-C represents
the intermediate formed by SH and H co-adsorption on zigzag edge. The

Table 1
Bond populations of H2S and dissociated species on zigzag (Zg) edge of activated carbon.

Zigzag edge H2S on zigzag edge Dissociated species on zigzag
edge

Zg Zg-A Zg-B Zg-C Zg-D Zg-E

C(8)–C(9) 0.334 0.279 0.231 0.224 0.232
C(9)–C(10) 0.341 0.336 0.226 0.319 0.237 0.304
C(10)–C(22) 0.373
C(9)–S 0.279 0.493 0.294 0.477 0.231
C(22)–S 0.231
S-H 0.254 0 0.248 0 0
S-H′ 0 0 0 0 0

Table 2
Bond populations of H2S and dissociated species on armchair (Am) edge of activated
carbon.

Armchair edge H2S on armchair edge Dissociated species on
armchair edge

Am Am-A Am-B Am-C Am-D Am-E Am-F

C(8)–C(9) 0.652 0.440 0.436 0.437 0.420 0.427 0.399
C(9)–C(10) 0.461 0.373 0.408 0.441 0.373 0.405 0.336
C(8)–S 0.285
C(9)–S 0.246 0.282 0.283 0.340
S-H 0 0.247 0 0 0.248 0
S-H′ 0.248 0 0 0.247 0 0
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co-adsorption energy of SH and H in Zg-C is −421.1 kJ/mol. Zg-D and
Zg-E represent the structures of S, H and H co-adsorption on zigzag
edge. The co-adsorption energy of S, H and H is −621.3 kJ/mol in Zg-
D, and is −646.2 kJ/mol in Zg-E. The co-adsorptions of dissociated
species of H2S on zigzag edge sites are highly exothermic processes.

The surface intermediates formed by dissociated species of H2S co-
adsorption on armchair edge are illustrated in Fig. 5(b). Am-D and Am-
E represent the intermediates formed by SH and H co-adsorption on
armchair edge. The co-adsorption energy of SH and H is −216.3 kJ/
mol in Am-D, and is −256.6 kJ/mol in Am-E. Am-F represents the
structure of S, H and H co-adsorption on armchair edge. The co-ad-
sorption energy of S, H and H is −386.3 kJ/mol in Am-F. The co-ad-
sorptions of dissociated species of H2S on armchair edge are highly
exothermic processes. Similar to the adsorption of H2S molecule, the co-
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Fig. 4. Electron density difference contour plot of H2S on activated carbon: (a) Zg-A; (b) Zg-B; (c) Am-A; (d) Am-B.

Table 3
The comparison of the adsorption energy of the most stable structure of H2S on activated
carbon with the other adsorbents.

Sorbents Adsorption energy (kJ/mol) Reference

Fe2O3 −107.5 [47]
Gallium nitride −31.8 [48]
Pt-SWCNT −481.6 [49]
TiO2 −169.8 [50]
Cu2O −86.4 [51]
ZnO −131.6 [38]
Activated carbon −664.9 Present study
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Fig. 5. Co-adsorption structures of dissociated species of H2S
on activated carbon: (a) zigzag edge; (b) armchair edge.
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adsorption of dissociated species of H2S on zigzag edge is more exo-
thermic than that on armchair edge.

Table 1 display the corresponding bond populations of co-adsorp-
tion of dissociated species of H2S on zigzag edge. In Zg-E, the bond
populations of C(9)eS and C(22)eS are both 0.231. This indicates that
S atom is interacting with the two C atoms C(9) and C(22), namely
CeSeC is formed. In addition, the high positive values of CeS bond
populations in these intermediates indicate that CeS, CeSH and CeSeS
formed by the co-adsorption of dissociated species of H2S on activated
carbon surface are stable.

3.3. The evolution process and energy of different pathways of H2S on
activated carbon surface

To characterize the probable reaction pathways of H2S on activated
carbon surface, schematic energy profiles of H2S adsorption and evo-
lution were examined. The energies of these optimized structures are
relative to the reactants. The evolution processes and energy profiles of
H2S on zigzag edge are presented in Fig. 6. It is clearly that the inter-
mediate Zg-B is the most likely structure to be formed by H2S molecule
adsorption on zigzag edge because its pathway is more exothermic. If
the intermediate Zg-B transforms into the intermediate Zg-D with H
atom migrating to C(29), only an energy of 43.6 kJ/mol is needed.
Moreover, the intermediate Zg-A is also likely to be formed because the
pathway is highly exothermic. The transformation of the intermediate
Zg-A into the intermediate Zg-C requires an energy of 20.9 kJ/mol.

Although the migration of H atom on carbon surface is endothermic,
this process would proceed possibly because the fuel gases have higher
temperatures. In addition, the reaction energy of H2S adsorption can
also compensate for the required energy. After the migration of H, the
intermediate Zg-E will be formed because its pathway is exothermic.
The total energy of CeSeC forming pathway is 18.7 kJ/mol for inter-
mediate Zg-B, and −204.2 kJ/mol for intermediate Zg-A.

The reaction pathways of H2S adsorption and evolution on armchair
edge are presented in Fig. 7. The above calculation results show that
only CeSH species can be formed by the direct adsorption of H2S mo-
lecule on armchair edge. So the evolution process of C-SH species is
necessary to be investigated. In Am-F, CeS species is formed by the co-
adsorption of S, H and H on armchair edge. Am-F can be obtained from
Am-B via Am-E, and an energy of 93.0 kJ/mol is required. Meanwhile,
CeS species can also be obtained from Am-A via Am-D. The total energy
of CeS forming on armchair edge from intermediate Am-A is
−159.2 kJ/mol. The calculation results indicate that CeS, CeSeC and
CeSH can be formed by H2S adsorption on activated carbon surface,
which is in agreement with XPS analysis results [43,44].

4. Conclusions

The density functional theory calculation and cluster model were
employed to investigate the adsorption mechanism of H2S on activated
carbon surface at the molecular level. The adsorption of H2S on carbon
surface is a dissociative process and belongs to chemisorption. The
active sites on the zigzag edge are more active for H2S adsorption than
those on the armchair edge, because of their higher negative atomic
charges. Thus, the adsorption of H2S on zigzag edge sites is more exo-
thermic. The direct adsorption of H2S molecule leads to the forming of
CeS or CeSH on the zigzag edge, and CeSH on the armchair edge.
During the process of H2S adsorption, charge transfer occurs and elec-
trons of S and H atoms in the molecular H2S transfer to the surface C
atoms. The co-adsorption of SH and H, as well as the co-adsorption of S,
H and H are highly exothermic processes. Stable CeSeC can be formed
by the co-adsorption of S, H and H on activated carbon surface. The
evolution processes and energy profiles of H2S on activated carbon
surface were obtained. The results indicates that activated carbon plays
double role, first as a catalyst for H2S molecule dissociation, and second
as a sorbent offering active sites for H2S adsorption.
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