• Home
  • Shannon M.B. Yang
Shannon M.B. Yang

Shannon M.B. Yang

PhD in Marine Science

About

12
Publications
1,830
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
84
Citations
Introduction
Shannon has a PhD in Marine Science with a concentration in Chemical Oceanography.

Publications

Publications (12)
Article
Full-text available
Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near abse...
Preprint
Full-text available
Food webs trace the flow of organic matter and energy among producers and consumers; for pelagic marine food webs, network complexity directly influences the amount and form of carbon exported to the deep ocean via the biological pump. Here we present a synoptic view of mixed layer food web dynamics observed during the late summer 2018 EXport Proce...
Article
Full-text available
The growth of diatoms in the Southern Ocean, especially the region surrounding the West Antarctic Peninsula, is frequently constrained by low dissolved iron and other trace metal concentrations. This challenge may be overcome by mutualisms between diatoms and co-occurring associated bacteria, in which diatoms produce organic carbon as a substrate f...
Article
Full-text available
In the Southern Ocean, it is well‐known that iron (Fe) limits phytoplankton growth. Yet, other trace metals can also affect phytoplankton physiology. This study investigated feedbacks between phytoplankton growth and dissolved Fe, manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) concentrations in Southern Ocean shi...
Preprint
Full-text available
Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence...
Article
Full-text available
The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, phys...
Article
Full-text available
The partial pressure of carbon dioxide (pCO2) was surveyed across the Amazon River plume and the surrounding western tropical North Atlantic Ocean (15–0°N, 43–60°W) during three oceanic expeditions (May–June 2010, September–October 2011, and July 2012). The survey timing was chosen according to previously described temporal variability in plume beh...
Article
Full-text available
Electrochemical techniques like adsorptive cathodic stripping voltammetry with competitive ligand equilibration (ACSV-CLE) can determine total concentrations of marine organic ligands and their conditional binding constants for specific metals, but cannot identify them. Individual organic ligands, isolated from microbial cultures or biosynthesized...

Network

Cited By