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Abstract
Introduction Atrial fibrillation (AF) is an abnormal heart rhythm characterized by an irregular beating of the atria and is 
associated with an increased risk of heart failure, dementia, and stroke. Currently, the perturbation of plasma content due to 
AF disease onset is not well known.
Objectives To investigate dysregulated molecules in blood plasma of untreated AF patients, with the goal of identifying 
biomarkers for disease screening and pathological studies.
Methods LC-MS based untargeted metabolomics, lipidomics and proteomics analyses were performed to find candidate 
biomarkers. A targeted quantification assay and an ELISA were performed to validate the results of the omics analyses.
Results We found that 24 metabolites, 16 lipids and 16 proteins were significantly dysregulated in AF patients. Pathway 
enrichment analysis showed that the purine metabolic pathway and fatty acid metabolism were perturbed by AF onset. FA 
20:2 and FA 22:4 show great linear correlational relationship with the left atrial area and could be considered for AF disease 
stage monitoring or prognosis evaluation.
Conclusion we used a comprehensive multiple-omics strategy to systematically investigate the dysregulated molecules in the 
plasma of AF patients, thereby revealing potential biomarkers for diagnosis and providing information for pathological studies.
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1 Introduction

Atrial fibrillation (also called AFib or AF) is a quivering 
or irregular heartbeat (arrhythmia) that can lead to many 
heart-related complications (Iwasaki et al. 2011), includ-
ing blood clots (Vink et al. 2005), stroke (Kaarisalo et al. 
1997), and heart failure (Chamberlain et al. 2011), etc. The 
estimated number of individuals with AF globally in 2010 
was 33.5 million (Chugh et al. 2014), and in the United 
States, it is estimated that the number of adults with AF 
will more than double by the year 2050 (Go et al. 2001). 
Additionally, increases in the frequency of AF cases have 
been predicted (Chugh et al. 2014; Miyasaka et al. 2006). 
In the clinic, prior to a final confirmation of AF by a 12-lead 
(current golden standard) or single-lead ECG documenting 
P-waves (January et al. 2014), several methods are used 
in early screening for the disease, such as pulse palpation 
(Cooke et al. 2006), handheld single-lead ECGs (Lau et al. 
2013) and modified blood pressure monitors (Marazzi et al. 
2012). These methods have their own advantages, as well as 
shortcomings (Freedman et al. 2017). More importantly, the 
existing screening methods mentioned above mostly depend 
on the onset of AF, thus may leave episodes of paroxysmal 
AF undetected. Therefore, the identification of more reli-
able plasma biomarkers for the early diagnosis or prognosis 
evaluation of AF is both meaningful and urgent and can 
additionally aid in our understanding of the disease’s patho-
logical mechanism and provide new therapeutic targets.

 Proteomics (Pandey and Mann 2000) and metabolomics 
(Dettmer et  al. 2007) aim to study the entire proteome 
and metabolome expressed in a given biological sample. 
As complementary techniques to genomics (Gstaiger and 
Aebersold 2009) and transcriptomics, proteomics and 
metabolomics are more sensitive in response to external 
factors and can better reflect the true physiological status 
of a biological system. The rapid development of LC–MS-
based omics techniques (Ong and Mann 2005; Tyanova et al. 
2016) has allowed the reliable analysis of the expression 
patterns of hundreds to thousands of metabolites or proteins 
from biological samples (Steger et al. 2016; Wishart 2016), 
thereby providing useful information for biomarker screen-
ing and pathological and biological studies (Aebersold and 
Mann 2003; Cravatt et al. 2007; Saito and Matsuda 2010).

 Omics techniques have been used to facilitate the study 
of AF (Woods and Olgin 2014; Hyman and Deo 2017); 
however, most researchers have focused on the influence of 
drug therapy (Christersson et al. 2018), left atrial appendage 
closure (Fastner et al. 2018; Rusnak et al. 2018; Sattler et al. 
2017) or other surgical operations (Jung et al. 2018) on AF 
patients. Few studies have used samples from untreated AF 
patients in omics analyses, with the exception of Alonso and 
colleagues, who found two bile acids to be correlated with 

an increased risk of AF (Zeller et al. 2015; Ko et al. 2016). 
In the present study, through the integration of proteomic 
and metabolomic profiling, we characterize dysregulated 
metabolites, lipids and proteins from untreated AF patients 
relative to control patients who have angiocardiopathy with-
out AF. The results will provide candidate plasma biomark-
ers for AF diagnosis or prognosis, as well as provide clues 
for pathological study and the identification of new thera-
peutic targets.

2  Experimental

2.1  Chemical materials

Ammonium acetate was purchased from Sigma-Aldrich (St. 
Louis, MO, USA). Formic acid, HPLC grade isopropanol, 
acetonitrile and methanol were purchased from Fisher Sci-
entific. Deionized water was produced by a Milli-Q system. 
The chemical standards were of analytical grade with typical 
purity of > 99%.

2.2  Ethical statement

The study was approved by the Clinical Ethics Committee 
of Peking University Third Hospital and conforms to the 
principles in the Declaration of Helsinki. The samples were 
obtained only from patients who agreed to undergo the exam 
for the purpose of laboratory research, and informed consent 
was obtained from all patients who were asked to donate 
blood. All methods were performed in accordance with the 
relevant guidelines and regulations.

2.3  Study population and design

Analyzed plasma samples were obtained from two cohorts 
(Fifty AF patients and fifty angiocardiopathy patients with-
out AF). The angiocardiopathy patients included as con-
trol group were patients with cardiovascular disease such 
as atherosclerosis, hypertension or coronary heart disease, 
but no AF. The two cohorts were matched with age and 
gender. The fifty AF patients were diagnosed by 12-lead 
ECG, and blood samples were collected before treatment. 
All participants were recruited from Peking University Third 
Hospital (Beijing, China) from December 2016 to December 
2017. Detailed information of the patients including medi-
cal history and data on medication were listed in Table S1 
and Table S5. Obsolete cerebral infarction was defined as 
cerebral infarction diagnosed by CT or MRI and the age of 
onset was more than 30 years, and was known by collecting 
medical history. Left atrial area (LAA) was measured by 
two-dimensional ultrasound on the four-chamber view of the 
apex of the heart, and the LAA measurement was performed 
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by qualified cardiologists according to the American Society 
of Echocardiography standard.

2.4  Samples preparation for metabolomics

After an overnight fast, 4 mL forearms systemic circulation 
vein blood were collected. Blood samples were transferred 
into 4 mL EDTA-K2 vacuum blood collection tubes (BD 
Vacutainer) and placed on ice. Plasma was separated by cen-
trifugation at 3000×g for 20 min, and then stored at − 80 °C 
until analysis. Metabolites and lipids were extracted from 
plasma samples using liquid–liquid extraction as follows: 
100 μL plasma was extracted by fourfold volume of cold 
chloroform: methanol (2:1). The mixture was vortexed and 
centrifuged at 13,000×g for 15 min. Then the upper aqueous 
phase (hydrophilic metabolites) and the lower organic phase 
(hydrophobic metabolites) were separately collected and 
evaporated at room temperature under vacuum. The evapo-
rated samples were stored at − 80 °C until LC–MS analysis.

2.5  High‑performance liquid chromatography 
for metabolomics

Metabolomics and lipidomics were performed on an Ulti-
mate 3000 UHPLC system coupled with Q-Exactive HF 
MS (Thermo Scientific). For the aqueous phase (metabo-
lomics), an Xbridge amide column (100  ×  2.1 mm i.d., 
3.5  μm; Waters) was employed for compound separa-
tion at 30 °C. The samples were suspended with 100 μL 
of acetonitrile:water (1:1, v/v) solution and the injection 
volume was 10 μL. For the lipid, chromatographic sepa-
ration was performed on a reversed phase X-select CSH 
C18 column (2.1 mm × 100 mm, 2.5 μm, Waters, USA) 
at 40  °C. The samples were suspended with 100 μL of 
chloroform:methanol (1:1, v/v) solution and then diluted 
threefold with isopropanol:acetonitrile:H2O (2:1:1, v/v/v) 
solution. The injection volume was 10 μL. Detailed methods 
can be found in Supplementary Materials.

2.6  Mass spectrometry for metabolomics

Data-dependent acquisition (DDA) and parallel reaction 
monitoring (PRM) based targeted quantification assay 
were performed using the Q-Exactive HF MS (Thermo 
Scientific). For DDA–MS, acquisition was performed in 
positive ion mode and negative ion mode separately in 
TOP 10 mode. For PRM–MS, the m/z of the 14 targeted 
lipids (13 target lipids and 1 internal standard) were set in 
the inclusion list and each acquisition cycle consists of 1 
full MS1 scan at 60,000 resolution from 200 to 1200 m/z 
and 14 targeted MS2 scans at 30,000 resolution targeting 
the designated lipids. Samples (n = 100 in total) were ana-
lyzed in random order. Quality control (QC) samples were 

prepared by pooling equally volumes of all study samples, 
and were analyzed between every 10 samples during the 
entire LC–MS analytical sequence.

Detailed methods can be found in Supplementary 
Materials.

2.7  DDA–MS data analysis for metabolomics

Raw data collected from the DDA–MS were processed 
on MS–DIAL software (Tsugawa et al. 2015) according 
to user guide. Briefly, the raw MS data were converted 
from the vendor file format (.wiff) into the common file 
format of Reifycs Inc. (.abf) using the Reifycs ABF con-
verter (http://www.reify cs.com/AbfCo nvert er/index .html). 
After conversion, the MS–DIAL software was used for 
feature detection, spectra deconvolution, metabolite iden-
tification and peak alignment between samples. The MS/
MS spectra based metabolite identification was performed 
in MS–DIAL by searching the acquired MS/MS spectra 
against the MassBank database provided by MS–DIAL 
software, containing MS1 and MS/MS information of 
metabolites (8068 records in positive ion mode and 4782 
records in negative ion mode). The MS/MS spectra based 
lipid identification was performed in MS–DIAL by search-
ing the acquired MS/MS spectra against the software’s 
internal in silico MS/MS spectra database (version: Lipid-
DBs-VS23-FiehnO), which includes MS1 and MS/MS 
information of common lipid species. The tolerance for 
MS1 and MS/MS search were set to 0.01 Da and 0.05 Da, 
separately. Other parameters used in MS–DIAL were set as 
default. Raw mass spectrometric data have been deposited 
in MassIVE with ID: MSV000083774.

2.8  PRM–MS data analysis

Raw data were processed on Skyline software according 
to the protocols (https ://skyli ne.gs.washi ngton .edu/labke y/
proje ct/home/softw are/Skyli ne/begin .view). Raw MS data 
files were imported to the software for peak extraction. One 
precursor-product ion pair (transition) was pre-selected for 
each target lipid, and the peak area corresponding to each 
transition was calculated by the software. Finally, result 
containing lipid identifications and quantifications were 
exported in table format for further statistical analysis.

2.9  Samples preparation for proteomics

Total of 48 AF patients and 48 healthy controls were used 
in the proteomics study. We created three plasma pools for 
each group, each pool contained equal amounts of plasma 
from 16 subjects. Each pooled sample (4 μL crude plasma) 

http://www.reifycs.com/AbfConverter/index.html
https://skyline.gs.washington.edu/labkey/project/home/software/Skyline/begin.view
https://skyline.gs.washington.edu/labkey/project/home/software/Skyline/begin.view
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was subjected to Multiple Affinity Removal System (MARS) 
Human-14 column (Agilent) for high abundance protein 
depletion in accordance with the manufacturer’s recom-
mendations. The flow-through fractions (low abundance 
proteins) were collected and then digested according to the 
manufacturer’s protocol for filter-aided sample preparation 
(FASP). Proteins were digested by trypsin at a protein to 
enzyme ratio of 50:1 in 50 mM  NH4HCO3 buffer overnight 
at 37 °C, and released peptides were collected by centrifuga-
tion and evaporated under vacuum.

2.10  LC–MS analysis for proteomics

The samples (1 μg) were analyzed on a house-made C18 
column (75 μm × 10 cm, 3 μm) by using a U3000 UHPLC 
connected to a Q-Exactive HF mass spectrometer (Thermo 
Scientific). The peptides were separated by a linear gradient 
from 5 to 35% ACN with 0.1% formic acid at 300 nL/min 
for 60 min and linearly increased to 80% ACN in 1 min and 
maintained for 3 min. The column was re-equilibrated at 5% 
ACN for 5 min. The MS acquisition was performed in TOP-
20 DDA mode. Raw MS data file analysis was performed 
with MaxQuant software version 1.6.2.0 (http://www.maxqu 
ant.org/). For protein identification, MS/MS data were sub-
mitted to the UniProt human protein database (release 3.43, 
72,340 sequences) using the Andromeda search engine with 
the following settings: trypsin cleavage; fixed modification 
of carbamidomethylation of cysteine; variable modifications 
of methionine oxidation; a maximum of two missed cleav-
ages; false discovery rate calculated by searching the decoy 
database. Other parameters were set as default. Label-free 
quantitation (LFQ) was also performed in MaxQuant. The 
Minimum ratio count for LFQ was set to 2, and the match-
between-runs option was set to 1 min. Detailed method 
can be found in Supplementary Materials. Raw mass spec-
trometric data have been deposited in MassIVE with ID: 
MSV000083774.

2.11  Statistical analysis

Statistical analysis, principle component analysis (PCA), 
hierarchical clustering analysis and pathway enrichment 
analysis for DDA data were performed using Metaboana-
lyst 4.0 web service, an online tool for analyzing omics data. 
For the metabolomics analyses between group AF and con-
trol, grouped t test were performed, and significant metabo-
lites were identified based on the following criteria: (i) a 
p-value < 0.05 and (ii) a fold change ≥ 2. Enriched metabolic 
pathways were retrieved from KEGG or SMPDB database 
and redrawn using Adobe Photoshop. For the proteomics 
analyses, grouped t-test were performed and a p-value < 0.05 
was used as cutoff. χ2-test was used for the analysis of cat-
egorical variable. Functional protein association network 

construction and GO analysis were performed using 
STRING web service. Column graph, ROC analysis and 
correlation analysis for the PRM results were performed 
using GraphPad Prism 6. Quantitative results are reported 
in the form of the mean ± SEM. Associations between the 
quantitation of lipids and left atrial area were evaluated by 
Pearson correlation coefficient.

3  Results

3.1  Overview of the study workflow

In this study, 50 plasma samples were collected from 
patients with clinically confirmed AF, while 50 control 
plasma samples were collected from patients with common 
angiocardiopathy without AF. The patients’ age, sex, history 
of disease and AF related diagnostic records are presented 
by patient set in Table S1, and more detailed information of 
the patients are presented in Table S5. Clinical characteris-
tics, including age, sex, smoking status, and history of dis-
eases were comparable between the discovery and validation 
sets (Table S1). The comprehensive multi-omics workflow 
is shown in Fig. 1. LC–MS-based untargeted metabolomics, 
lipidomics and proteomics were performed to investigate 
possible dysregulated biological molecules in the plasma 
at the onset of AF. After statistical analysis and data min-
ing, 24 metabolites, 16 lipids and 16 proteins were found 
significantly dysregulated in AF patients. Further bioinfor-
matic analyses were employed to reveal perturbed pathways 
and provide clues to the pathological mechanism. We then 
validated part of the omics results with the use of a LC–MS-
based targeted quantification assay (PRM) and an ELISA. 
Lastly, ROC curves for the dysregulated molecules and cor-
relations between these molecules, and AF clinical factors 
were calculated to evaluate their potential use as biomarkers 
for AF diagnosis or prognosis.

3.2  Metabolomic profiling and dysregulated 
metabolites in AF

After processing the raw MS data, a principal compo-
nent analysis (PCA) was used to create an overview of 
the metabolomic expression profiles of all the samples in 
positive (Fig. 2a) and negative (Fig. 2b) ion modes. Pooled 
quality control (QC) samples were closely clustered in the 
PCA score plots, while the AF and control groups showed 
a trend of partial separation. After peak alignment and 
the removal of missing values, over two thousand features 
with acquired MS/MS spectra were obtained. 394 fea-
tures in positive ion mode and 224 in negative ion mode 
were reliably identified by MS/MS spectra comparison. 
Of these features, further statistical analysis revealed a 

http://www.maxquant.org/
http://www.maxquant.org/
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total of 24 dysregulated metabolites (16 in positive ion 
mode, Fig. 2c; 10 in negative ion mode, Fig. 2d; Guano-
sine 5′-monophosphate and inosine were detected in both 
ion modes) between the AF and control groups (FC > 2 
and t-test p-value < 0.05, Table S2). Hierarchical cluster-
ing analysis was performed on these metabolites, and a 
heat map was used to visualize their expression profiles 
(Figure S1a). Correlation analysis showed that eight of 
the metabolites (uridine 5′-diphosphate, AMP, uridine 
5′-monophosphate, hypoxanthine, para-aminobenzoic 
acid, adenine, adenosine 3′-monophosphate and guano-
sine 5′-monophosphate) had expression patterns that were 
positively correlated, while others showed no correlation 
(Figure S1b).

3.3  Lipidomic profiling and dysregulated lipids 
in AF

As with the data processing procedures for the metabo-
lomic features, PCA was used for an overview of the 
expression patterns of the lipids in all the samples. Simi-
lar to results found for the metabolomic profiles, the lipid 
QC samples were closely clustered in the PCA score plots 
both in positive (Fig. 3a) and negative (Fig. 3b) ion modes. 
However, the AF and control groups did not show obvious 
trends of separation. In total, 821 features in positive ion 
mode and 259 in negative were reliably identified by MS/
MS spectra comparison. Statistical analysis revealed two 
lipids in positive ion mode (Fig. 3c) and 14 lipids in nega-
tive ion mode (Fig. 3d) that were dysregulated between the 
AF and control groups (FC > 2 and t-test p-value < 0.05, 
Table S3). The majority of the dysregulated lipids (12/16) 
was fatty acids which were upregulated in the AF group, 

Fig. 1  Flowchart of the study workflow. One hundred patients were 
included in the study, of which 50 were AF patients without thera-
peutic treatment. 50 patients with angiocardiopathy but no AF onset 
were included as a control group. In the discovery stage, untargeted 
metabolomics, lipidomics and proteomics were performed to inves-

tigate dysregulated molecules in the patients’ plasma. In the valida-
tion stage, the omics results were validated by a targeted quantitative 
assay and an ELISA. Pathway enrichment, correlation analysis and 
ROC analysis were also performed to further gain insights from the 
omics data
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as shown in Figure S1c. The other two upregulated lipids 
were acyl-carnitines, which is in agreement with the 
metabolomic results, which indicated an upregulation 
of acetyl-carnitines in AF patients (Fig. 2a, Table S2). A 
heat map was used to show the expression profiles of the 
16 dysregulated lipids (Figure S1c). Correlation analysis 
demonstrated that the 12 fatty acids had positively corre-
lated expression patterns, while the other lipids exhibited 
little to no correlation (Figure S1d).

3.4  Bioinformatic analysis reveals perturbed 
metabolic pathways

The 24 dysregulated metabolites and 16 dysregulated 
lipids were used to search against KEGG and SMPDB 
pathway databases. Two metabolic pathways were found 
to be significantly perturbed by AF disease onset with 
FDR adjusted p-value of < 0.05 (Fig. 4a, b). One is the 
pathway of purine metabolism, of which seven metabo-
lites (adenine, 3′-AMP, adenosine 3′ 5′-diphosphate, aden-
osine monophosphate, guanosine monophosphate, hypox-
anthine and inosine) were observed to be upregulated in 

Fig. 2  Overview of the untargeted metabolomic results. a PCA score 
plot for the metabolites detected in positive ion mode. The samples 
in different groups are presented by different colors: red, AF (n = 50); 
green, control (n = 50); blue, QC. Circles represent the 95% confident 
interval. b PCA score plot for the metabolites detected in negative 
ion mode. The samples in different groups are presented by differ-
ent colors: red, AF (n = 50); green, control (n = 50); blue, QC. Circles 

represent the 95% confident interval. c Scatter plots presenting fold 
change (FC) and t-test p-value of the identified metabolites in posi-
tive ion mode. The X-axis represents the log2-transformed FC, and 
the Y-axis represents the log10-transformed p-value. d Scatter plots 
presenting FC and t-test p-value of the identified metabolites in nega-
tive ion mode. The X-axis represents the log2-transformed FC, and 
the Y-axis represents the log10-transformed p-value
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AF patients in the metabolomic analysis. The other is the 
pathway of alpha linolenic acid and linoleic acid metabo-
lism, of which nine fatty acids (FA 18:1, 18:2, 20:3, 20:4, 
20:5, 22:4, 22:5, 22:6) were seen to be upregulated in AF. 
Functional protein association network of the 16 dysregu-
lated proteins was constructed and proteins enriched in 
different molecular functions or pathways were shown by 
different node colors (Fig. 4c).

3.5  Overview of proteomic results and dysregulated 
proteins

Plasma protein profiling was analyzed by label-free proteom-
ics. 747 proteins were identified. After statistical analysis, 
5 upregulated and 11 downregulated proteins were found, 
as shown in Fig. 5a and Table S4. Further GO analysis 
(Table S6) revealed potential links between proteomics 

Fig. 3  Overview of the untargeted lipidomic results. a PCA score plot 
for lipids detected in positive ion mode. Samples in different groups 
are presented by different colors: red, AF (n = 50); green, control 
(n = 50); blue, QC. Circles represent 95% confident interval. b PCA 
score plot for lipids detected in negative ion mode. Samples in differ-
ent groups are presented by different colors: red, AF (n = 50); green, 
control (n = 50); blue, QC. Circles represent 95% confident interval. c 

Scatter plots presenting FC and t-test p-value of the identified lipids 
in positive ion mode. X axis represents log2 transformed FC, and Y 
axis represents log10 transformed p-value. d Scatter plots presenting 
FC and t-test p-value of the identified lipids in negative ion mode. 
X axis represents log2 transformed FC, and Y axis represents log10 
transformed p-value
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and metabolomics results, as some proteins were enriched 
in the biological process of triglyceride transport, having 
the molecular function of phospholipid binding and sulfur-
compound binding, and are localized to the high-density 
lipoprotein particle. To validate the proteomic results, we 
randomly chose one dysregulated protein, glutathione syn-
thetase (GSS), to be quantified using an ELISA. As shown 
in Fig. 5b, GSS showed statistically significant upregulation 
in the AF group, which is in accordance with the proteomic 
result.

3.6  Candidate biomarker validation and correlation 
analysis with left atrial area

A PRM-based targeted lipid quantification assay was per-
formed to quantify 13 lipids, including 11 dysregulated 
lipids found in the lipidomic analysis and 2 others (FA 16:0 
and FA 18:0).  C13 FA 16:0 was used as an internal standard 
to exclude measurement errors. As shown in Fig. 6a, these 

FAs showed significant upregulation in the AF group except 
for FA 18:0, which is consist with the lipidomic results. 
Further ROC analysis was performed using the expression 
levels of the FAs. Nine FAs showed an AUC greater than 
0.8 (Table S7), and the ROCs of the FAs with the top 5 
AUCs (FA 18:2, 18:3, 20:3, 20:4, and 22:4) are presented 
in Fig. 6b–f. The correlation between the FA expression pat-
terns and the left atrial area (a clinical parameter for AF 
prognosis evaluation) was also performed. Two FAs (20:2 
and 22:4) were found to have significant correlations with 
the left atrial area in AF patients (Fig. 6g, i) while no signifi-
cant correlations were found in the control group (Fig. 6h, j).

4  Discussion

Atrial fibrillation is one of the most common and serious 
abnormal heart arrhythmias, yet ideal biomarkers for early 
diagnosis or prognosis prediction is still needed (Woods and 

Fig. 4  Metabolic pathways enriched by dysregulated metabolites and 
lipids. a The pathway of purine metabolism. Seven metabolites (red-
colored) were detected up-regulated in AF by our metabolomics anal-
ysis. The pathway diagram was derived from KEGG database. b The 
pathway of Alpha linolenic acid and linoleic acid metabolism. Nine 
fatty acids (red-colored) were detected up-regulated in AF. The path-
way diagram was derived from SMPDB pathway database. c Func-

tional protein association network of the 16 dysregulated proteins 
constructed using STRING web service. Proteins enriched in different 
molecular functions or pathways are shown by different node colors 
and interaction types are presented by different colors: yellow, text-
mining; black, co-expression; blue, curated database; purple, experi-
mentally determined
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Olgin 2014). The early detection of asymptomatic AF would 
provide an opportunity to prevent or decrease unfavorable 
disease outcomes by the early implementation of appropri-
ate therapeutic strategies (Chugh et al. 2014). In the present 
study (as illustrated in the flowchart in Fig. 1), we employed 
three untargeted omics analytical strategies to comprehen-
sively analyze the dysregulated molecules in plasma from 
AF patients, and further PRM and ELISA assays validated 
the reliability of our omics data. Finally, bioinformatics and 
multi-omics correlative analysis revealed AF related meta-
bolic pathways. Thus, to the best of our knowledge, the pre-
sent study is the first to reliably provide a comprehensive 
view of plasma content profiles of untreated AF patients. 
Our results will provide not only potential biomarkers for AF 
diagnosis or prognosis but also clues to further understand 
the AF pathological mechanism.

LC–MS-based omics strategies such as proteomics and 
metabolomics have been proven to be powerful tools for the 
identification of biomarkers and in pathological studies. In 
comparison to genetics, proteomics and metabolomics are 
more closely related to phenotypic expression and influential 
environmental factors, and thus can better reflect the state 
of the human body. Among the 24 dysregulated metabolites 
identified, eight with highly positively correlated expres-
sion levels (Figure S1) were found to belong to the purine 
metabolic pathway (Fig. 4a). This result indicates that the 
purine pathway may be involved in AF disease progress and 
that these metabolites could potentially be developed into 
an analytical panel of biomarkers for AF diagnosis. Previ-
ous studies (Suzuki et al. 2012; Letsas et al. 2010; Liu et al. 

2011) have reported that plasma uric acid is upregulated in 
AF patients and is correlated with AF burden (Letsas et al. 
2010). Interestingly, uric acid is the end product of purine 
metabolism. Another metabolite related to purine metabo-
lism, adenosine, has been reported to induce AF (Li et al. 
2016). Taken together with the findings of the current study, 
the purine metabolic pathway is strongly implicated in AF 
disease progression. Another interesting molecular group 
from our results is the fatty acids, which were found in the 
lipidomic analysis. Twelve unsaturated fatty acids with 
carbon numbers ranging from 18 to 22 were found to be 
upregulated in AF patients, and their expression levels were 
highly correlated with each other (Figure S1). Nine of these 
fatty acids belong to the alpha linolenic acid and linoleic 
acid metabolic pathway, which occurs mainly in the endo-
plasmic reticulum (Fig. 4b). Fatty acids have been reported 
to be downregulated in DCCV treated AF patients (Jung 
et al. 2018). However, our results showed that in untreated 
AF patients, FAs were upregulated. This suggests that the 
levels of FAs may be used as a potential marker for AF dis-
ease diagnosis and in evaluation of therapeutic effect. Also, 
FAs and glucose are the principal energy substrates in car-
diomyocytes to produce ATP (Harada et al. 2017), thus the 
upregulation of free FAs in plasma may be related to the FA 
intake or metabolism dysfunction of cardiomyocyte. Addi-
tionally, another lipid species, acylcarnitines, was found to 
be upregulated in AF in both the metabolomic (acetyl-car-
nitine) and lipidomic (acylcarnitine 14:1 and 14:2) results, 
validating the reliability of the omics analyses.

Fig. 5  Dysregulated proteins revealed by proteomics. a Heat map pre-
senting the expressive patterns of 16 dysregulated proteins. Sample 
category is presented in red (AF, n = 3 pooled biological replicates) 
and green (control, n = 3 pooled biological replicates), and the inten-

sity of protein is presented from blue (low intensity) to red (high 
intensity). b Grouped scatter plot presenting the concentration (U/
mL) of GSS analyzed by ELISA (AF group, n = 45; control group, 
n = 45)
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LC–MS-based proteomic analysis is a widely used tool 
for plasma biomarker screening. Due to the limited through-
put of the proteomic workflow, pooled samples were used 
for the biomarker screening procedure. One of the identi-
fied dysregulated proteins from the screening, GSS, was 
randomly chosen for validation using an ELISA with indi-
vidual samples; the ELISA showed consistent results with 
the proteomic outcome. Taking together the multi-omics 
results we acquired, potential links are found between dys-
regulated proteins and metabolites/lipids. GSS is the sec-
ond enzyme in the glutathione (GSH) biosynthesis pathway 
(Liang et al. 1999), catalyzing the formation of glutathione, 
which is an important antioxidant (Foyer et al. 1995). In the 
metabolomics results, cystine and oxidized glutathione were 
detected down-regulated in AF patients (Table S2). Con-
sidering the increased oxidative stress from AF (Watanabe 
2012), we may infer that the glutathione related metabolic 
pathway is perturbed. Bioinformatics analysis also reveals 
that dysregulated proteins were enriched in lipid metabolism 
related functions or pathways such as lipid binding, trans-
fer and cholesterol metabolism (Fig. 4c). Considering the 
up-regulation of FAs in lipidomic results, FA related lipid 
metabolic pathways may be involved in AF pathological 
progress. But considering the plasma is not the place where 
biochemical reaction is performed, the expressive correla-
tion between proteins and metabolites/lipids in plasma may 
not reflect the true reaction status in cardiomyocytes, so the 
exact regulative mechanism need to be further validated and 
studied in tissues or cells.

The LC–MS-based targeted quantification assay (MRM 
assay) is seen as the gold standard for accurate metabolite 
quantification (Garcíacañaveras et al. 2012). PRM is a newly 
applied strategy for targeted quantitative analyses of pro-
teins (Peterson et al. 2012), metabolites (Zhou et al. 2016) 
and lipids (Zhou et al. 2017) with the advantages of good 
reliability and feasibility (Zhou and Yin 2016). In the pre-
sent study, we used a PRM-based quantification assay to 
validate our lipidomic results, reliably quantifying 13 fatty 
acids in plasma samples (Fig. 6a). The results showed great 

consistency between the lipidomic analysis and the targeted 
quantification assay. Except the 11 dysregulated lipids found 
in the lipidomic analysis, we also included FA 16:0 and 18:0 
in the targeted quantification assay, which were not found 
to be changed in the lipidomic results. FA 18:0 was found 
unchanged in the targeted quantification, however, FA 16:0 
was changed. Due to this discrepancy, we rechecked the 
results of the lipidomic analysis, and found that FA 16:0 
indeed showed trends of upregulation (FC of 1.6) but did 
not reach the cutoff set for the screening (FC of 2). There-
fore, we verified the upregulation of FAs in AF patients by 
both lipidomics and targeted quantification. The nine FAs 
which have an AUC greater than 0.8 can be potential bio-
markers for AF diagnosis. What’s more, FA 20:2 and FA 
22:4 show great linear correlational relationship with the left 
atrial area, which is a widely employed index in the clinic 
for AF prognosis evaluation (Sievers et al. 2004). These two 
lipids could be considered for AF disease stage monitoring 
or prognosis evaluation.

5  Conclusions

In conclusion, we have demonstrated there to be a metabolic 
disturbance in the plasma of AF patients, and several dys-
regulated molecules were identified including metabolites, 
lipids and proteins. Our results can help in the identifica-
tion of novel biomarkers or effective therapeutic targets and 
provide clues for a better understanding of AF pathology. 
However, further validation of these candidate biomarkers 
in larger sample cohorts using a double-blind test is needed 
before they can be applied in clinical diagnosis. Addition-
ally, functional studies with biological experiments are also 
needed to illustrate the exact molecular mechanism of AF 
onset.
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ciples in the Declaration of Helsinki. The samples were obtained 
only from patients who agreed to undergo the exam for the purpose 
of laboratory research, and informed consent was obtained from all 
patients who were asked to donate blood. All methods were performed 
in accordance with the relevant guidelines and regulations.

Informed consent Awritten informed consent was obtained from all 
the included patients.
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