ArticlePDF AvailableLiterature Review

Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges

Authors:

Abstract and Figures

The increasing population across the globe makes it essential to link smart and sustainable city planning with the logistics of transporting people and goods, which will significantly contribute to how societies will face mobility in the coming years. The concept of smart mobility emerged with the popularity of smart cities and is aligned with the sustainable development goals defined by the United Nations. A reduction in traffic congestion and new route optimizations with reduced ecological footprint are some of the essential factors of smart mobility; however, other aspects must also be taken into account, such as the promotion of active mobility and inclusive mobility, encouraging the use of other types of environmentally friendly fuels and engagement with citizens. The Internet of Things (IoT), Artificial Intelligence (AI), Blockchain and Big Data technology will serve as the main entry points and fundamental pillars to promote the rise of new innovative solutions that will change the current paradigm for cities and their citizens. Mobility-as-a-service, traffic flow optimization, the optimization of logistics and autonomous vehicles are some of the services and applications that will encompass several changes in the coming years with the transition of existing cities into smart cities. This paper provides an extensive review of the current trends and solutions presented in the scope of smart mobility and enabling technologies that support it. An overview of how smart mobility fits into smart cities is provided by characterizing its main attributes and the key benefits of using smart mobility in a smart city ecosystem. Further, this paper highlights other various opportunities and challenges related to smart mobility. Lastly, the major services and applications that are expected to arise in the coming years within smart mobility are explored with the prospective future trends and scope.
Content may be subject to copyright.
Sensors2021,21,2143.https://doi.org/10.3390/s21062143www.mdpi.com/journal/sensors
Review
EnablingTechnologiesforUrbanSmartMobility:Recent
Trends,OpportunitiesandChallenges
SaraPaiva
1
,MohdAbdulAhad
2,
*,GautamiTripathi
2
,NoushabaFeroz
2
andGabriellaCasalino
3,
*
1
InstitutoPolitécnicodeVianadoCastelo,4900367VianadoCastelo,Portugal;sara.paiva@estg.ipvc.pt
2
DepartmentofComputerScienceandEngineering,JamiaHamdard,NewDelhi110062,India;
gautami1489@gmail.com(G.T.);noushaba.feroz@gmail.com(N.F.)
3
DepartmentofComputerScience,UniversityofBariAldoMoro,70125Bari,Italy
*Correspondence:itsmeahad@gmail.com(M.A.A.);gabriella.casalino@uniba.it(G.C.)
Abstract:Theincreasingpopulationacrosstheglobemakesitessentialtolinksmartandsustainable
cityplanningwiththelogisticsoftransportingpeopleandgoods,whichwillsignificantlycontribute
tohowsocietieswillfacemobilityinthecomingyears.Theconceptofsmartmobilityemergedwith
thepopularityofsmartcitiesandisalignedwiththesustainabledevelopmentgoalsdefinedbythe
UnitedNations.Areductionintrafficcongestionandnewrouteoptimizationswithreducedeco
logicalfootprintaresomeoftheessentialfactorsofsmartmobility;however,otheraspectsmust
alsobetakenintoaccount,suchasthepromotionofactivemobilityandinclusivemobility,encour
agingtheuseofothertypesofenvironmentallyfriendlyfuelsandengagementwithcitizens.The
InternetofThings(IoT),ArtificialIntelligence(AI),BlockchainandBigDatatechnologywillserve
asthemainentrypointsandfundamentalpillarstopromotetheriseofnewinnovativesolutions
thatwillchangethecurrentparadigmforcitiesandtheircitizens.Mobilityasaservice,trafficflow
optimization,theoptimizationoflogisticsandautonomousvehiclesaresomeoftheservicesand
applicationsthatwillencompassseveralchangesinthecomingyearswiththetransitionofexisting
citiesintosmartcities.Thispaperprovidesanextensivereviewofthecurrenttrendsandsolutions
presentedinthescopeofsmartmobilityandenablingtechnologiesthatsupportit.Anoverviewof
howsmartmobilityfitsintosmartcitiesisprovidedbycharacterizingitsmainattributesandthe
keybenefitsofusingsmartmobilityinasmartcityecosystem.Further,thispaperhighlightsother
variousopportunitiesandchallengesrelatedtosmartmobility.Lastly,themajorservicesandap
plicationsthatareexpectedtoariseinthecomingyearswithinsmartmobilityareexploredwiththe
prospectivefuturetrendsandscope.
Keywords:smartmobility;sustainability;smartcities;smartservices
1.Introduction
Smartmobilityisanemergingconceptthatisincreasinglyalignedwithsustainable
worlddevelopment,takingintoaccountthe17sustainabledevelopmentgoalssetbythe
UnitedNations[1]for2030.Theconceptofmobility,andhowitwillarticulatewiththe
planningofcitiesandthelogisticsoftransportinggoodsandpeople,willexperiencedras
ticchangesinthecomingyears.Demographicgrowthcontinuestofollowanexponential
route,with6billionpeopleregisteredin1999,anapproximatenumberof7.7billionin
2020andapredictednumberofapproximately9billionexpectedfor2040[2].Thisgrowth
weseeincitiesallovertheworldwillnecessarilytranslateintotheneedfornewroute
optimizationalgorithmsforvehiclesandpeople,trafficmanagementtoreduceconges
tion,andgreateroptimizationinlogisticprocesses,amongothers.However,theconcept
ofsmartmobilitygoesfarbeyondsolvingtheseproblemssincefuturecontributionsare
expectedtorepresentdifferentiatingandtrulyinnovativesolutions[3].Thefocusonthe
sustainabilityofthesolutionsdeveloped,activetransport,theuseofenvironmentally
Citation:Paiva,S.;Ahad,M.A.;
Tripathi,G.;Feroz,N.;Casalino,G.
EnablingTechnologiesforUrban
SmartMobility:RecentTrends,
OpportunitiesandChallenges.
Sensors2021,21,2143.
https://doi.org/10.3390/s21062143
AcademicEditor:EnriqueAlba
Received:20February2021
Accepted:16March2021
Published:18March2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinsti
tutionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Sensors2021,21,21432of45
friendlyfuelsandengagementwithcitizensareaspectsthatshouldbepartofsmartmo
bilityinthecomingyears.Theimpacteddimensionswillthereforebevariedandinclude
sustainability,economyandliving,whichhasadirectimpactoncitizensandalsoongov
ernmententities[3].
Twokeyconceptsareatthebaseofwhatwillbetheevolutionofsmartmobilityin
thecomingyears:ononehand,thetransportofgoods,andontheother,theparadigm
shiftinthemobilityofpeoplethatwilltransitiontomobilityasaservice.Regarding
transportsofgoods,wealreadywitnessseveralrobotprototypesaroundtheworldthat
deliverbasicnecessitiestopeople’shomes,whichwillmeananadjustmenttohowbusi
nessesoperate(supermarkets,deliveryservices,amongothers).InternetofThings(IoT),
BigDataandArtificialIntelligence(AI)willplayafundamentalroleinnewsolutions.It
shouldbehighlightedthatthechangesthecomingyearswillbringwillpromoteinevita
blechangesinwhatwillbethejobsofthefuture.Regardingthetransportofpeople,trends
areevolvingtowardsamobilityasaserviceparadigm,withadrasticreductioninthe
numberofprivatevehiclesthatwillbefilledbyelectric,shared,lighterandsmallervehi
clesandwithautonomousdriving.
Thispaperprovidesanexhaustiveliteraturereviewofseveralsolutionsacrossmul
tipledomainsthatarerelatedtosmartmobilityinsmartcities.Thepaperalsoprovides
anoverviewaboutwhatissmartmobilityandtherelatedopportunitiesandchallenges.
Further,thepaperhighlightstheenablingtechnologiesthatarebeingusedinorderto
deliversmartservicestocitizens.Lastly,thefuturetrendsandconclusionsarepresented.
1.1.NeedandImportanceofSmartMobility
Smartmobilityenablesinhabitantstonavigateandmovefreelywithinthesmartcity
surroundings.Improvedtrafficmanagement,theavailabilityofalternativeroutes(incase
oftrafficoremergencies),anddedicatedroutesandnavigationforessentialservices(such
asambulances,governmentvehicles,officialmovements)canbefacilitatedbysmartmo
bility.Suchmobilityservicesareneededtoprovidecongestionfree,environmentfriendly
andsustainablealternativesfortheinhabitantsandadministrationsalike.Withsmartmo
bilitysolutionswecanhavetwofoldadvantagesbothforcitizensaswellasadministra
tions,asshowninFigure1.
Sensors2021,21,21433of45
Figure1.Needandimportanceofsmartmobility.
1.2.PaperOrganization
Thispaperisorganizedintosevensections.Thesecondsectionpresentsrecentde
velopmentswithinthesmartmobilitydomainsandalsoidentifiestheresearchgapsand
openissues.Thethirdsectionpresentsadescriptionofsmartmobilityanditsroleinsmart
cities.Afteranoverview,wepresentthemainopportunitiesandchallengesfortheadop
tionofsmartmobilityinthecomingyears.Thefourthsectionpresentssomeapplications
andservicesofsmartmobilitysuchasMobilityasaService,TrafficFlowOptimization,
OptimizationofLogistics,AutonomousVehiclesandOutdoorNavigationTechnologies.
Thefifthsectionpresentsenablingtechnologiesforsmartmobilityandtheirroleinreal
izingsmartmobilitysolutions,namelythecontributionofInternetofThings,BigData
andArtificialIntelligence.Finally,wepresentfuturetrendsandmainconclusionsinthe
sixthandseventhsections,respectively.Anoverviewofthepaperorganizationisshown
inFigure2.
Sensors2021,21,21434of45
Figure2.Overviewonthepaperorganization.
1.3.MainContributions
Themajorcontributionsofthispaperinclude:
Acomprehensivereviewofsmartmobilitysolutionsandrelatedservicesproposed
inthelastfewyears.
Thecontextualizationofhowsmartmobilityisframedwithinsmartcitiesanditskey
benefitsandattributes.
Sensors2021,21,21435of45
Discussionontheopportunitiesforsmartmobilitytobecomearealityinthecoming
yearsaswellasthemajorissuesandchallengesititsrealization.
Meaningfulinsightsintothefutureofthemobilityasaserviceparadigm.
OverviewoftheEnablingTechnologiesthatwillsupportsmartmobilityservicesand
applicationssuchasAI,IoT,blockchain,geospatialtechnologyandbigdata.
Futuretrendsforsmartmobility.
2.ResearchProgressinSmartMobilityandGapAnalysis
Thissectionprovidesadetaileddescriptionabouttheresearchprogressmadeinthe
fieldofsmartmobility.Wealsotrytoidentifytheresearchgapsintheexistingliterature.
Inordertoconductthesurvey,wehaveadoptedthestandardsystematicliteraturere
viewmethodology[4].Firstly,weperformedakeywordbasedsearchusingtheonline
researchpaperdatabasesScienceDirect(https://www.sciencedirect.com/accessedon15
January,2021)andIEEEXplore(https://ieeexplore.ieee.org/Xplore/home.jsp(accessed
on15January,2021)).Weprimarilyusedthekeyword“UrbanSmartMobility”tosearch
forarticles.Wereceived851resultsfromIEEEXploreand10,439resultsfromScience
Direct.Werefinedthesearchcriteriabyaddingtheterms“SmartCities”alongwith
smartmobility,whichreducedtheresultsto440(IEEEXplore)and8217(ScienceDirect).
Wefurtherrefinedthecriteriabyadding“Enablingtechnology”alongwiththeprevious
twokeywords,whichfurtherreducedtheresultstoatotalof2486papers.Next,refine
mentwasperformedonthebasisofpublicationyear.Weanalyzedthepapersfrom2011
to2020.Thisrefinementreducedthenumberofsearchresultsto2049.Wethenfiltered
thesearticlesbasedonthetitlecontentstoeliminatearticlesthatwereoutofthescopeof
thisreview.Finally,294articleswereleftandafurtherselectionhasbeenmadebasedon
theabstractcontents.Indeed,wereadtheabstractsofthese294articlestofurtherfilter
outarticleswhicharenotrelatedtoourprimefocus.Afterthisstep,186articleswere
left.These186articleswerereadthoroughlytounderstandtheirkeyproposals,discus
sionsandarguments.Finally,only81articles,whichcompletelymatchedourcriteria,
wereconsideredfortheanalysis.Thesearticleswerefurtheranalyzedanddiscussedto
identifytheirkeyfindingsandresearchgaps.Figure3showsthewordcloudofthere
sultsobtainedbythesearchqueryterms.
Figure3.Wordcloudofsearchqueryresults.

Sensors2021,21,21436of45
Figure4showsthestepsinvolvedinthereviewmethodologythathasbeenused:
1. ClassificationofArticlesonthebasisofthetype:wehavechosenonlypeerreviewed
research,reviewandsurveyarticlessatisfyingourcriteria;
2. IdentificationofPublicationYear:articlesfrom2011to2020onlywereanalyzedin
theliteraturereview;
3. ClassificationofArticlesonthebasisofkeywords:wehavecombinedthefollowing
keywords
a. SmartCity
b. UrbanSmartMobility
c. EnablingTechnology.
Oncethearticleswerefiltered,athoroughstudywasconductedtoidentifythecrux
andkeyfindingsofeachpaper.Thedetailsaboutthestateoftheartarediscussedbelow.
Figure4.Stepsinmethodologyadopted.
2.1.ResearchBasedonSmartMobilityApplications
Thissectionspecificallydiscussesthearticlesontheapplicationsofsmartmobility
forthecitizensofthesmartcity.Thesepapersincludeframeworkbased,applicationand
deploymentbasedsystems.
In[5],theauthorshavepresentedasmartmobilityapplication“UTravel”,whichis
basedon“UniversalProfilingandRecommendation(UPR)”.TheUTravelapplicationis
basedoncontextawarenessanduserprofilingandrecommendstheoptimalpointsof
interest(POIs)dependingontheuser’slocation.Theapplicationhasbeendevelopedand
deployedonbothAndroidandiPhoneplatforms.Toevaluatetheperformanceoftheap
plication,theauthorshaveconductedrealworldaswellassimulatedexperimentations
andobservedthattherecommendationsprovidedbytheproposedsystemexhibithigh
precision,coverageandrecall.Atrafficcontrolsystembasedoncooperativeagentsispre
sentedin[6],whichaimsatreducingtrafficjamsatroadintersections.Formodellingroad
intersections,theauthorshaveusedsmartagents,viz.“Viewagents”(tocountcars),
“TrafficLightagents”(tocontrolthedurationoftrafficlights)and“Intersectionagents”
(tocontrolthedurationofaparticulartrafficlight).Thesystemhasbeendevelopedfor
settingswhereseveraltrafficlightsoperateincollaboration,i.e.,“InfrastructuretoInfra
structure(I2I)”communication.Thesystemhasbeenimplementedusing“JavaAgentDe
velopmentFramework(Jade)”andvalidatedusing“SimulationofUrbanMObility
(SUMO)”.Theresultsshowthattheproposedsystemperformsbettertrafficcongestion
reductionthan“SmartTrafficLightsSystem(STLS)”.In[7],theauthorsintendtoevaluate
Sensors2021,21,21437of45
andidentifysmartmobilityactionstakingintoaccounttheirInformationandCommuni
cationTechnology(ICT)contentandobjectives.Theauthorshaveintroducedanovelac
tiontaxonomyinvolvingasystematicapproachtosmartmobilityandanalyzedtherole
ofICTinimprovingthequalityoflifeofpeople,increasingthepublicvalueandpromot
ingsmartmobilityactions.Asurveyhasbeenconductedthatidentifiesthreestagesof
smartmobilityactions,viz.“Starting”,“Intermediate”and“Mature”.Moreover,theau
thorsstatethatsmartcitizensarecrucialforimplementingaviable,successfulandsus
tainablesmartmobilityframework.Aframeworkfordevelopingandimplementingsmart
mobilityapplications,“SmartMobilityforAll(SMAll)”,isgivenin[8],whichleverages
theconceptof“microservicesorchestration”toimprovethehandlingofmultipledata
sourcesandthecreationofnovelservices.Theproposedsystemisaimedatassistingel
derlyand/ordisabledpersonstomoveinanurbansetting.Todothis,anetworkoftaxis
isdeployedtofulfiltheneedofeachapplicantandSMAllsynchronizestheinvolvedtaxi
operators,sometimescombiningcallsthatarenearbyinaneffectivemanner.Theauthors
maintainthatthedeploymentofSMAllresultsinimprovedqualityofservicewithlower
administrativeexpense.Tohandletheissuesregardingthesecurity,privacy,scalability
andmanagementof“SmartMobilityDatamarket(BSMD)”,asixlayerBlockchainarchi
tectureisproposedin[9].Thearchitectureenablestheexchangeofencrypteddatatothe
blockchainamonguserscomplyingwiththerulesofthetransactionprovidedbythedata
owner.TheauthorshaveassessedtheperformanceofBSMDovera370nodeblockchain
andestablishedthatBSMDsafeguardstheusers’privacyandsecuritybyofferingdata
accessmanagementcontrolandpreventingmessageinterceptionandspoofing.Within
theboundsofmobility,theauthorshaveclassifiedthreeimportantelementsinageneral
blockchain,viz.“sharedledger”,“peertopeernetwork”and“consensusmechanisms”.
SmartcontractsareaddedintoBSMDnodestocontrolaccesstothesharedmobilityin
formation.In[10],theauthorshavepresentedaframeworktoaidintheefficientdesigning
ofatrafficlightnetworkinanurbansettingtominimizetrafficjams.Theframework
“HITUL”assistsinthedecisionmakingoftrafficcontrolmanagementbydeterminingthe
idealtrafficlightschemesbyemployingmicrosimulationsandbioinspiredmethods.The
authorshaveevaluatedHITULthroughacasestudyoftheSpanishcityofMalagaand
observedthatitisaneffectivetechniquetowardsminimizingtrafficjams.Moreover,the
authorshaveused“SimulatorofUrbanMobility(SUMO)”toobtainarrangementsof
practicalscenariosbasedonactualmobilitytrendsinacity.In[11],theauthorsattempt
todemonstratethespectrumofdevelopmentof“SpanishSmartCity”measureswitha
viewtomobilityandenvironmentalconcerns.Theauthorshaveconductedastudyin62
citiesof“SpanishSmartCitiesNetwork(RECI)”andprovidedasynergisticmapdisplay
ingacomprehensiveevaluationandadvancementofthecitiesonthebasisofdemo
graphicandsocioeconomicvariables.Thefindingsindicatethatsmartmobilityisavital
elementofsmartcitiesandsmartenvironmenthaspooroutcomesinSpanishcities.A
novelapproachtopredicttheoccupancyrateofcarparkingspacehasbeengiven[12],
whichispremisedondeeplearningwithRecurrentNeuralNetworks(RNNs).Theau
thorshavepresentedtwometaheuristictechniquestooptimizetheperformanceofthe
RNNdesign,onebasedonGeneticAlgorithms(GA)andtheotherbasedonEvolution
Strategy(ES).Theauthorshaveexaminedtheoccupancyratesof29carparksinBirming
ham,UKandobservedthattheproposedapproachismoreusefulandexceedstheper
formanceofavailablecompetition.
2.2.Taxonomy,SurveysandReviewBasedPapers
Ataxonomyfortheformulationofsmartcityservicesispresentedin[13].Forthis
purpose,theauthorshaveanalyzedthelatestrelevantworkscovering42servicespro
videdby9smartcitiesglobally.Theproposedtaxonomyiseightdimensionalandoffers
astandardvocabularytofacilitatecommunicationregardingtheservices.Thetaxonomy
isaimedataidingpolicymakersandresearchersinthefurtherimprovementofthearea.
Theauthorshaveincorporatedgeneraldefinitions,conceptsandillustrationsforeach
Sensors2021,21,21438of45
dimensionandspecifiedservice.In[14],theauthorhaspresentedanovelactiontaxonomy
concerninganextensivemethodologyrelatedtosmartmobility.Athoroughsurveyhas
beenperformedcovering114worksregardingtheinfluenceofsmartactionsonthequal
ityoflifeofcitizens,theexpectationsofstakeholders,regularlyappliedsmartmobility
measuresandtheroleofICTinsmartmobility.Thesurveyhasresultedintheidentifica
tionofthreesmartmobilityactionphasesandsixsmartmobilitygoals.Moreover,the
papernotesthatthoughICTisnotessentialfortheimplementationofsmartcityactions,
itisimportantwhensmartmobilityactionsbecomeincreasinglycomplex,integratedand
extended.Theauthorshaveproposedadistributedadaptationmethodforensemble
basedsystemsinasmartmobilitycontextin[15].Theyhavepresentedthe“Collective
AdaptationEngine(CAE)”thatcanaddressmultipleissuescollectivelyinafeasibleand
scalablemanner.Toassesstheproposedmodel,the“DeMOCAS”frameworkhasbeen
usedtosimulatethecontextofurbanmobility.ThefindingsindicatethatCAEsolvesur
banmobilitychallengesandpromotessustainablemobility.In[16],theauthorshavepro
posedtheapplicationofsystemdynamicstosimulatesubstitutesforconventionalhuman
mobility.Ananalysisofsixscenariosispresentedforattainingoptimizeddecisionmak
ingwithinorganizations,definingtheprofilesoftravelersandachievingsustainable
smartmobilitywiththeeventualgoalofenhancingthecitizens’qualityoflife.Theanaly
sisisaimedatunderstandingtheprincipaldynamicinteractionsbetweenallthevariables
ofthesystemandmanagingtheircomplexity.Adetailedandrealisticstructurehasbeen
introducedin[17]todesignacomparativeanalysis,whichgaugescitiesbasedonthe
smartnessoftheirtransportframeworks.Theauthorshavegathereddatafrom26cities
globally,identified66indicatorsofsmartnessandobservedthatcitiessuchasSeattle,
LondonandSydneyhavethemostadvancedsmarttransportation,withLondonhaving
thebestemergencytransportfacilities,SingaporeandLondonhavingthebestpublic
transportfacilities,andParisandSeattlehavingthebestprivatetransportfacilities.In[18],
theauthorshaveanalyzedthelikelytransitionofpresentissuesofmobilitygovernance
withtheaimtosafeguardandincreasethepublicvalue.Fourcasestudieshavebeencon
ductedtostudydistinctmobilitygovernanceissuesandananalyticalstructurehasbeen
presentedtoevaluatethesmartmobilitygovernancenovelties.Furthermore,theauthors
assertthatthetransitioninmobilitygovernanceshouldbebackedwithtechnologicaltran
sition.In[19],theauthorshavefocusedonenhancingavitalelementofsmartmobility,
viz.positioninginasmartuniversitysettingactingasarepresentativeforasmartcity.An
indoorpositioningsystemintegratedwithanoutdoorpositioningsystemhasbeenpro
posedandimplementedtofacilitatepersistentindoorandoutdoornavigation.Theau
thorshaveimplementedtheproposedframeworkonthesmartuniversityplatform,
“SmartUJI”,atUniversitatJaumeI,Spain.Moreover,twomobileapplicationshavebeen
createdandimplementedbytheauthors—“SmartUJIAPP”(toprovidemapbasedinfor
mationregardingvariouscampusservices)and“SmartUJIAR”(toprovidecommunica
tionwiththecampusviaanaugmentedrealityinterface).Theevaluationofthetwoap
plicationsindicatestheirusefulassistancetovisitors,facultyandstudentsinenhancing
spatialpositionandfindinguniversityfacilities.Theauthorshavespecifiedarangeof
mobilityindicatorstoassesssmarturbanmobilityin[20].Theyhavepresentedarelevant
quantitativemethodologythatisapplicabletoanycitygloballywiththeaimtobench
marksmartcities.TheauthorshaveselectedItaliancitiesfortheevaluationofsustainable
transportationtogathercrucialdata,andtheyobservedthatthecityofTurinisthebest
withregardtosmarttransport.Moreover,itisnotedthatthenortherncitiesofItalyhave
overallbetterrankingthanthesoutherncities.Theauthorhasfocusedonthetransfor
mationfromanautomobilecommunitytoamultimodalcommunityin[21],fosteredby
theadventofsmartmobilitypoweredbyICT.Thepaperhighlightsthreeoutcomesob
tainedfromquantitativeanalysisofdatafromtheGermanregionofRhineMain.These
includetransportpoverty,multimodaldivideandcriticalthinkingasfactorscontributing
tomistrusttowardsmultimodalmobility,andthepaperrecommendsachangeinthis
perspectivetoenhancethedebatesurroundingmultimodality.Elevenmetropolitancities
Sensors2021,21,21439of45
inItalyhavebeenstudiedbytheauthorsin[22]toassessthepossibilityanddegreeof
applyingthesmartcitymodelwiththeaimtoboosttheeffectivenessandlivingconditions
ofurbanareas.Theauthorshaveidentifiedkeysmartcitymeasuresandparametersand
groupedthemtounderlinetheimpactofthesmartcitymodelonthemobilitysystems
andobservedthatapoorstartingplacelimitsitsimplementation.Thepaperclassifiesthe
smartmobilityparadigmintothreegroups,“accessibility”,“sustainability”and“ICT”,
andapplies28parameterstolocatecontextswiththebestaccessibilityandsustainability.
Furthermore,itisindicatedthatICTisineffectivewhenthetransportframeworkisinad
equate.Adistributedsystemformobilitydatamanagementandsemanticimprovement
hasbeenproposedin[23],whichwouldbenefittheareasoftrafficmanagement,mhealth,
urbankineticsexaminationandemergencymanagement,amongothers.Theproposed
system,“SemanticMOVE”,enablesthesemanticmanagementofmobilethings,andoffers
understandingofthemobilitysemanticsaswellastheidentificationofpotentialuser
movements,behaviorsandactivities.In[24],theauthorshavefocusedontheimportance
ofamultidisciplinaryandcollectivemethodologytosmartmobility,whichwouldenable
theshifttoa“smartermobility”toimprovecitydevelopmentandcitizens’qualityoflife.
AstudyhasbeenconductedinBelgiumtoanalyzetheadvancementofsmartmobility
fromtechnocenteredtousercentered.Theauthorsarguethatalthoughsolutionstosmart
mobilitychallengesaresoughtinnoveltechnologies,thesesolutionsarenotabsoluteand
smartmobilityoutgrowstechnologyandusers.In[25],theauthorhashighlightedthe
relationshipbetweensmartmobilityandsocialsustainabilityandclarifiedthedefinitions
ofthetwoconcepts.Thepaperindicatesthatthesocialsustainabilityofsmartmobility
dependsonthepathtakenbythelatter.Twodistinctscenarioshavebeengiven,thefirst
ofwhichinvolvesincreasedeaseofusepromotingtheprevalenceofcars,resultingin
socialdiscord,inequity,thescarcityofcardrivingandparkingspaces,etc.Thesecond
scenarioinvolvestheapplicationoftechnologiestoenableservicessuchasridesharing
andondemandrides,resultinginnegativeconsequencesontransportationworkersbut
apositiveimpactonsocialharmony,equityandavailability.Atheoreticalassessmentof
experimentalgovernanceispresentedin[26]throughtheanalysisoffundamentalliteral
andpracticalassumptionswithrespecttosmartmobility.Theauthorshaveselectedan
experimentalstudyofsmartmobilityinSwedentoexamineexperimentalgovernanceas
apolicytooltofacilitatetheobjectivesofpublicstakeholdersandassertthatthesestake
holdershaveaspecialroleinexperimentalgovernance.In[27],theauthorshavepre
sentedaquantitativeapproachforassessingtheurbanmobilityintheItalianareaofCa
gliariandrecommendedtheroadmaptoachievethefinestmobilityglobally.Thead
vantagesofsmartmobilityhavebeenanalyzedinCagliariandsimilarurbanareasby
choosingindicatorsbasedontherelevantdataoftheselectedcontexts.Thedataforthe
indicatorshavebeencollectedfromtheyear2014andclassifiedintogroups,anditisob
servedthatmobilitydatasharingisnotadequatesofar.In[28],theauthorhasexplored
theframeworkofcitizenengagementandefficiencyofJapaneseSmartCommunitiesto
contemplatethecollaborativedesignanddevelopmentofasmartmobilityframework.
Thepaperindicatestheanticipationoflittlefeedbackfromthecitizensandthedeploy
mentofICTtodirecttheparticipantsandmodifytheirbehavior.Itisobservedthatthe
currentsmartcityinitiativesareinanascentphasetocomprehendthattheobjectivesof
theadministration,focusedonenergysavingordevelopingalternateenergysources,
havelimitedICTdeploymentandtheICTrelatedprojectsarepoorlycoordinated.Aho
listicmethodologytomodeltheefficiencyofpublictransportfacilitiesisgivenin[29],
schemedasawholeinamultistakeholdercontextfromanendtoendperspective.The
authorsseektounderlinethekeyaspectsofthequalityofservicefromdistinctviewpoints
andhaveprovidedaholisticmethodologytomodellingthatsupportsthequalityofser
vicedesign,implementationandmonitoringinsmarttransport.Moreover,thepaperpre
sents“UCoMS”fortheanalysisofthequalityofservice,andtheproposedmethodology
hasbeenvalidatedintheItalianregionofApulia.In[30],theauthorseekstoanalyzethe
meaningof“smart”inthecontextofsmarturbanmobilityandtherelationshipbetween
Sensors2021,21,214310of45
smartnessandsustainability.Theauthorhasuncovereddiscordandinsufficiencyinthe
literaturepertainingtosmarturbanmobilityandhaspresentedandanalyzedthedefini
tionofsmarturbanmobility.Thepaperattemptstobridgethegapbetweentheconcepts
ofsmartandsustainableforthegrowthofurbanmobility.Acomprehensiveanalysisof
theroleplayedby“IntelligentTransportSystems(ITS)”inassistingurbansmartmobility
isgivenin[31].Atotalof71papershavebeenanalyzed,rangingfrom2006to2014,with
34%casestudiesand21%simulations.Thecasestudybasedworksanalyzethedeploy
mentofITSinurbancities,whilethesimulationbasedworksanalyzetheinfluenceofITS
onurbanmobilityandmeasurecost,timeandenvironmentalimpacts.Thepaperaimsto
detectthegapsintheliteratureandobservesagenericinsufficiencyofquantitativeframe
works.Theauthorsrecommendaroadmapforfutureresearchbasedontheidentified
inadequacies.
In[32],theauthorhighlightsthefactorsthatlinkcitizenstodifferentfacilities,espe
ciallymobilityandICTframeworksintheSenegalesecityofDakar.Itisobservedthat
motorizedmethodsamountto40%whilenonmotorizedmethodsamountto60%ofthe
overallmobility,andthepublicmobilitysectorislargelyinformal.Theauthorhasnoted
themeasurestakenbytheadministrationtobuildapositivesettingforICTdevelopment
anddeployment,includingEInfrastructure,EEducationandEGovernance.
2.3.Regional,GovernanceandCitizenCentricPapers
AcasestudyinthePortuguesecityofLisbonhasbeenpresentedin[33],whiches
tablishesaperformanceassessmentofpassengerandcommercialvehicleredirection.The
resultsindicatethatredirectingvehiclesnotonlyreducestravelduration,butincreases
theroadeffectivenessintheurbangridsandthetrafficoutputintheanalysisofroutes.
Moreover,itisobservedthattheeffectivenessishigherattheroutelevel(variationof16–
32%intraveland4–13%indelaytime)thanatthenetworklevel(averagevariationof2%
intraveland6%indelaytimefor10%driverconformityrate).Theconceptof“Vehicular
SocialNetworks(VSNs)”hasbeengivenin[34],focusingontheimportanceofhighly
efficientandsecuresmartcitytransmissioninVSNs.Thepaperproposesausecaseon
trajectorydataanalysisbasedtrafficanomalydetectionforVSNsandhighlightsVSNre
latedresearchchallengesandpotentialsolutionstofacilitatetherealizationandextensive
applicationofVSNs.In[35],theauthorsaimtoestablishanindicatorforassessingthe
degreeofsmartmobilitysolutionsdeployedinurbanareas.Thepaperindicatesthatthe
insufficiencyofcomprehensiveknowledgerelatedtotheevaluationofcertainratingsof
theexistingliteratureandtheinordinatelygeneralanalysisofsmartmobilitychallenges
havepromptedtheneedfortheindicator.Theproposedindicatorisintendedforfacili
tatingtheanalysisofmobilityscenariosinaccordancewiththenotionofsmartcities,en
ablingcomparisonsinvariedurbanareasfortheidentificationofbestpracticestopromote
theadvancementofsmartmobility.Ananalysisof“MobilityasaService(MaaS)”has
beenpresentedin[36]toevaluateitspotentialimpactforcitypolicymakerswithregards
togovernanceandsustainability.ThepaperstressesthatMaaSisnotafixedcommodity
butaconceptualwayofprovidingservicestocustomers.Moreover,thepotentialriskto
mobilityandsocialsustainabilityduetooverdependenceonsingleoperatorsofnovel
servicesandthepotentialimpactofnovelservicesoncurrentservicesaregiven.In[37],
theauthorshavefocusedonevaluatingthesmartnessoftransportsystemsinthecitiesof
Ghanaandillustratingtherealizationofthenotion.ItisobservedthatGhanaiancitiesare
predominantlyreliantonroadsforthemobilityofpeopleandcargo,andtheswiftincrease
inthenumberofvehiclesaccompaniedbyinsufficientexpansionofroadnetworkshas
weakenedtheefficiencyofurbanareas.Thepaperimpliesthatthelackofsmartmobility
inthesecitiesendangerstheirsustainabilityand,asaresult,necessitatesinvestmentin
mobilitysystemstogetherwithincreasedreceptionandtechnologicalawarenessamong
thecitizens.Ageneralframeworkfortheimplementationoffogcomputingfeaturesina
“VehicularadhocNetworks(VANET)”contextisintroducedin[38].Theproposedarchi
tecturehasbeenappliedintwoFogapplications,onefortheidentificationoftraffic
Sensors2021,21,214311of45
aberrations,andthesecondforpredictingbusarrivaltimetosupplypassengerinfor
mation.Theevaluationresultsindicatethattheoutcomesofthesetwoapplicationsare
akintothoseofferedbyCloud,theinformationofferedisfaster,reliableandrealtime,
andtheoveralltrafficisreduced.In[39],theauthorshavediscussedthe“autonomic
transportmanagementsystem”,whichisanICTbasedsystemforthemanagementof
transport.Thepresentedapproachenablestheformationofa“P2POverlayNetwork’on
theexistingnetworksandappliesIPv6alongwithmulticastandtransparentroutingfor
theeffortlessexpansionofthenetworktothemasses.Themethodologyenablesusersto
jointhenetworkusingtheirpersonaldevicesaswellastheintegrationofinfrastructures
suchastrafficmanagement,trafficlights,trains,etc.,intotheoverlaynetworkwithease.
AnanalysisofexistingIoTmethodsandnotionsconcerningsmartcitiesandsmart
mobilityispresentedin[40].Moreover,ananalysisofdifferentpropertiesandusesrelated
tosmartmobilityandrealtimetrafficmanagementsystemshasbeengiven.Thepaper
identifiesandaddressesthemajorchallengesrelatedtosmartcitiesandsmartmobility,
suchasunequalgeographicadvancement,privacyconcernsandthelackofcollaboration.
Furthermore,significantgapshavebeenidentifiedinthedomainofsmartmobilityre
garding“VehicularAdhocNetworks(VANETs)”and“SmartTrafficLights”.In[41],the
authorshaveillustratedtheimplementationof“ServiceDominantBusinessModelRadar
(SDBM/R)”inthecontextofsmartmobility.Theproposedframeworkisaimedatdesign
ingmobilityrelatedbusinessmodelsforthemobilityoftravelersandcargoinacollabo
rativefashion.Inamultistakeholderbusinesscontext,theauthorshavedesignedthesys
temasacentralelementinthedevelopmentofcomplexdigitalnoveltiesthatprovide
valuetousers.Asurveyhasbeenconductedtovalidatethemodelandtheinputfromthe
participantsindicatestherelevanceoftheproposedmodelanditspotentialforpractical
use.In[42],theauthorshaveexploredthecorrelationbetweenurbanintelligenceandsus
tainablemobilityformsforthemunicipalitiesinAustralia,toexplorewhethertheintelli
genceofcitiescontributestosustainablemobilityforms.Theimpactofgrowingbroad
bandinternetavailabilityonsustainablemobilitymodeisanalyzedusingamultivariate
multipleregressionmodel,anditisobservedthatgrowingbroadbandinternetavailabil
itydecreasestheuseofactive,publicmobilitymeans,whileincreasingtheuseofprivate
commutingmeans.Ananalysisoftheassociationbetweenthedeploymentofthesmart
citynotionandthesustainablemobilitynotionispresentedin[43].Theauthorshavealso
analyzedtheeffectofcarbondioxidereleasefromsmartcitycomponentsasadetermining
factorofmobility.TheUnitedNations’“ForFITS(ForFutureInlandTransportSystems)”
modelhasbeenusedtopredictthepossiblecarbondioxidereleaseresultingfromtheim
plementationoftheWarsawtransportsystem.Thefindingsindicatethatathorough
changeinthemobilityandenergydomainsisnecessarytoachievethereductiongoals
identifiedbythe“EuropeanUnion2011WhitePaperonTransport”.In[44],theauthor
hasfocusedonthenotionofsharedmobilityandhaspresentedananalysisofthepresent
literature.Thepaperobservesthatmostoftheliteratureisaimedatevaluatingtheeffect
ofsharedmobilityonfactorssuchasmodaltransition,congestion,transitclientele,vehicle
possessionandenvironmentalaspects,whilelittleconsiderationisgiventofemalesafety,
accessibilityandcomfortduringtravelling,revealingagrowinggenderparityinurban
mobility.
2.4.SummaryandResearchGapAnalysis
Thissectionsummarizesanoverviewofthestateoftheartaboutsmarturbanmo
bilityandidentifiestheresearchgapsandopenissueswithinitsdomain.Foreaseofcom
prehension,Table1summarizestheworkscoveredintheliteraturereview.

Sensors2021,21,214312of45
Table1.Summaryofliteraturereview.
S.No.Paper(Year)Focus
1.Amoretti,M.etal.(2017)Smartmobilityapplication“UTravel”basedon“Universal
ProfilingandRecommendation(UPR)”.
2.Belbachir,A.etal.(2019)Trafficcontrolsystembasedoncooperativeagents.
3.Benevolo,C.etal.(2016)Novelactiontaxonomyinvolvingasystematicapproachto
smartmobilityandanalysisoftheroleofICT.
4.Mirri,S.etal.(2016)SmartMobilityforAll(SMAll)—Frameworkfordeveloping
andimplementingsmartmobilityapplications.
5.Lopez,D.etal.(2020)
Sixlayerblockchainarchitecturetohandletheissuesre
gardingsecurity,privacy,scalabilityandmanagementof
“SmartMobilityDatamarket(BSMD)”.
6.Bravo,Y.etal.(2016)Framework“HITUL”forassistanceinthedecisionmaking
oftrafficcontrolmanagement.
7.Aletà,N.etal.(2017)
Spectrumofdevelopmentof“SpanishSmartCity”
measureswithaviewtomobilityandenvironmentalcon
cerns.
8.Camero,A.etal.(2018)
Predictionoftheoccupancyrateofcarparkingspaceprem
isedondeeplearningwith“RecurrentNeuralNetworks
(RNNs)”.
9.Cledou,G.etal.(2018)Taxonomyfortheformulationofsmartcityservices.
10.Dameri,R.P.(2017)Novelactiontaxonomyconcerninganextensivemethodol
ogyrelatedtoSmartMobility.
11.Bucchiarone,A.(2019)
CollectiveAdaptationEngine(CAE)—Distributedadapta
tionmethodforensemblebasedsystemsinsmartmobility
context.
12.DelVecchio,P.etal.
(2019)
Applicationofsystemdynamicstosimulatesubstitutesfor
conventionalhumanmobility.
13.Debnath,A.K.etal.
(2014)
Realisticstructuretodesignacomparativeanalysis,which
gaugescitiesbasedonthesmartnessoftheirtransport
frameworks.
14.Docherty,I.etal.(2018)
Analysisofthelikelytransitionofpresentissuesofmobility
governancewiththeaimtosafeguardandincreasethepub
licvalue.
15.TorresSospedra,J.etal.
(2015)
“SmartUJIAPP”and“SmartUJIAR”toenhancetheposi
tioningelementofsmartmobilityinasmartuniversityset
tingactingasarepresentativeforasmartcity.
16.Garau,C.etal.(2015)MobilityindicatorstoassesssmarturbanmobilityinItalian
cities.
17.Groth,S.(2019)
Transformationfromanautomobilecommunitytoamulti
modalcommunityfosteredbytheadventofsmartmobility
poweredbyICTinaGermanregion.
18.Battarra,R.etal.(2018)
Assessmentofthepossibilityanddegreeofapplyingthe
smartcitymodelwiththeaimtoboosttheeffectivenessand
livingconditionsofurbanareas.
19.Ilarri,S.etal.(2015)SemanticMOVE—distributedsystemformobilitydataman
agementandsemanticimprovement.
20.Papa,E.etal.(2015)
Multidisciplinaryandcollectivemethodologytosmartmo
bilitytoenabletheshifttoa“smartermobility”toimprove
thecitydevelopmentandcitizens’qualityoflife.
21.Jeekel,H.(2017)Relationshipbetweensmartmobilityandsocialsustainabil
ity.
22.Kronsell,A.etal.(2020)Theoreticalassessmentofexperimentalgovernancewithre
specttosmartmobilityinSweden.
Sensors2021,21,214313of45
23.Garau,C.etal.(2016)Quantitativeapproachforassessingurbanmobilityinthe
ItalianareaofCagliari.
24.Kudo,H.(2016)
FrameworkofcitizenengagementandefficiencyofJapa
neseSmartCommunitiestocontemplatethecollaborative
designanddevelopmentofasmartmobilityframework.
25.Longo,A.etal.(2019)
Holisticmethodologytomodeltheefficiencyofpublic
transportfacilitiesschemedasawholeinamultistake
holdercontextfromendtoendperspective.
26.Lyons,G.(2018)
Analysisofthemeaningof“smart”inthecontextofsmart
urbanmobilityandtherelationshipbetweensmartnessand
sustainability.
27.Mangiaracina,R.etal.
(2017)
Analysisoftheroleplayedby“IntelligentTransportSys
tems(ITS)”inassistingurbansmartmobility.
28.Mboup,G.(2017)
Highlightingthefactorsthatlinkcitizenstodifferentfacili
ties,especiallymobilityandICTframeworksintheSenega
lesecityofDakar.
29.Melo,S.etal.(2017)
CasestudyinthePortuguesecityofLisbonwhichestab
lishesaperformanceassessmentofpassengerandcommer
cialvehicleredirection.
30.Ning,Z.etal.(2017)
Conceptof“VehicularSocialNetworks(VSNs)”focusing
ontheimportanceofhighlyefficientandsecuresmartcity
transmissioninVSNs.
31.Orlowski,A.etal.(2019)Establishinganindicatorforassessingthedegreeofsmart
mobilitysolutionsdeployedinurbanareas.
32.Pangbourne,K.etal.
(2018)
Analysisof“MobilityasaService(MaaS)”toevaluateits
potentialimpactforcitypolicymakerswithregardstogov
ernanceandsustainability.
33.Peprah,C.etal.(2019)Evaluatingthesmartnessoftransportsystemsinthecities
ofGhanaandillustratingtherealizationofthenotion.
34.Pereira,J.etal.(2019)
Generalframeworkfortheimplementationoffogcompu
tingfeaturesin“VehicularadhocNetworks(VANET)”
context.
35.Schlingensiepen,J.etal.
(2016)
“Autonomictransportmanagementsystem”—ICTbased
systemforthemanagementoftransport.
36.Faria,R.etal.(2017)AnalysisofexistingIoTmethodsandnotionsconcerning
smartcitiesandsmartmobility.
37.Turetken,O.etal.(2019)Implementationof“ServiceDominantBusinessModelRa
dar(SDBM/R)”inthecontextofsmartmobility.
38.Yigitcanlar,T.etal.(2019)Correlationbetweenurbanintelligenceandsustainablemo
bilityformsforthemunicipalitiesinAustralia.
39.Zawieska,J.etal.(2018)Analysisoftheassociationbetweenthedeploymentofthe
smartcitynotionandthesustainablemobilitynotion.
40.Singh,Y.J.(2020)Notionofsharedmobilityfocusingongenderparity.
Authorsin[5,6]primarilyfocusedondescribingthebenefitsofsmartcitiesforthe
usersandhowsmartmobilitycanbeusedasanaidtosolvetrafficcongestion,urban
planning,recommendationsystems,etc.In[7],itwasconcludedthatresponsiblebehavior
andtheattitudeoftheinhabitantshaveapositiveeffectonsmartmobilityinitiatives.The
securityaspectsofsmartmobilitywerediscussedin[8,9].Someofthekeypointswhich
werefoundmissinginthereviewedliteratureinclude:
UserPrivacy
DataIntegrationissues
DataStandardizationissues
Sensorcharacteristics
Impactofexternalenvironmentonsensingcapabilitiesofsensors.
Sensors2021,21,214314of45
Inthispaper,wehaveprovidedaholisticreviewwhichcoverstheaboveaspectsin
additiontothosepreviouslydiscussed.Userprivacyconcernsandalackoftechnicaland
operationalknowhowrestrictcommonpeople,especiallyelderlypeople,womenandla
borerworkers,fromusingsmartmobilityservices[45].Severalprivacypreservingap
proacheshavebeendevelopedinrecentyearsfortheeffectiveadoptionandeaseofuse
ofmobilityservices[46,47].Thegovernanceissuesinsmartmobilityservices,including
consentbaseddatacapturing,manipulationsandusage,dataintegrationandstandardi
zationchallenges,werecoveredin[48–51].Theimportanceofsensorcharacteristicsfor
sensingandcapturingthedataaboutthesubjectanditssurroundingsplaysavitalrolein
developingeffectiveandintelligentmobilityinitiatives[52–55].Theimpactofexternal
environmentsontheperformanceofthesensorsisanessentialfieldofstudy,asdiscussed
in[56,57].Thematerialsusedinthedevelopmentofsensorsalsoplayanimportantrole
indecidingtheirusageandlife[57].
Apartfromthese,afewopenissueswhicharestillprevalentinsmartmobilityin
clude:
Enforcinguniformandubiquitousmobilitylaws,rulesandregulations
Citizenparticipationinmobilityinitiatives
Crowdsensinginsmartmobility
Interoperability
LegacyInfrastructuresetups
AmicableCooperationbetweenpublicprivatemobilityservicesplayers.
Withtherapidtechnologicaltransformations,theseopenissueswillsurelybead
dressedinyearstocome.Asthesmartcityinitiativeisslowlybecomingareality,exten
siveresearchisbeingconductedtohandlesuchopenissues[58,59].
3.SmartMobilityinSmartCities
3.1.Overview
Urbanmobilityisoneofthemajorcomponentsofasmartcitythatactsasacritical
factorbehindsmartandsustainabledevelopment.Today,nationsacrosstheglobeare
heavilyinvestingintransportinfrastructureasanapproachtoensuresmartandafforda
blemeansoftransportationtocitizens.Smartmobilityisoneofthekeydefiningfeatures
ofthesmartcity[60].Inmostdevelopingnations,whererapidurbanizationisincreasing
thedemandsofsmartandcleanermodesoftransport,theneedforsmartmobilityisever
increasing.Thekeymobilitychallengeinsuchcountriesdemandsthemassadoptionof
publictransportsystems.Thekeyattributesofthesmartmobilityconcept,asshownin
Table2,allowtheusersandotherstakeholdersclean,safeandefficienttravel.
Table2.Smartmobilityattributes.
AttributesSignificance
FlexibilityAllowsuserstochoosefromthemultiplemodesoftransportationtosuittheirneeds
usingsmartanddynamicnavigation.
EfficiencyProvidesefficientmobilityoptionswithminimumdisruptions,lowcostandmini
mumcommutetime.
IntegrationEnsuresendtoendrouteplansindependentofthetransportationmodes.
SustainabilityPromotescleanerandsustainableoperationswithminimumemissions.
SecurityandSafetyTheefficientdatasharingandconnectivitymodelsensureroadsafety.
SocialBenefitsProvidesequalopportunitiestocitizenstousepublictransport.Ensuringqualityof
lifetoall.
AutomationFacilitatesautomationinallprocesses.
ConnectivityTheentitiesinthenetworkareconnected.
AccessibilityAffordabletoall.
UserExperienceTheefficientprocessesensureabetteruserexperience.
Sensors2021,21,214315of45
Theconceptofsmartmobilityencompassestheshiftfromthetraditionaltransporta
tionsystemtoMobilityasaService(MaaS),whereintelligentinfrastructureconnectsvar
iousstakeholdersandentitiestoprovideanefficient,intelligentandsustainablesolution
[61].Itincludesmultiplemodesoftransportationincludingondemandmobilitysolu
tions,electricvehicles,bikes,rapidmasstransitfacilities,walking,etc.Thekeyideabe
hindsmartmobilityistoensurequalityservicetothecitizensandatthesametimemini
mizingtheimpactonthesurroundingenvironment[62].Figure5presentssomeofthe
keybenefitsofintegratingsmartmobilitysolutionsinasmartcityecosystem.
Figure5.Keybenefitsofusingsmartmobilityinasmartcity.
RealTimeInformationSystems:Theuseofemergingtechnologiesintheexisting
transportationsystemsandthedevelopmentofsmartmobilitysolutionsproviderealtime
datacollection,monitoring,andmanagement.Thedatacollectedfromvariousconnected
entitiesresultinefficientandsmartinformationsystems.
PredictiveMaintenance:Further,themachinelearningandartificialintelligencecon
ceptscanbeutilizedforthepredictivemaintenanceofvariousprocessesinadvance.This
isfacilitatedbycontinuousdatacollectionandmonitoring.
IntelligentParkingManagement:Therealtimedatacollectedfromsensorsandother
connecteddevicescanbeanalyzedtoprovideusefulinsightsintotheavailabilityofpark
ingslotsatvariouslocations.
IntelligentTrafficManagement:Theuseofefficientdataanalyticscanhelpinthereal
timemonitoringandmanagementoftraffictoavoidanyjamsandcongestions.Further,
realtimenotificationscanbesenttotheconnectedvehiclesregardingthestateofparking,
routes,etc.
AutomatedTollCollection:Thesmartmobilitysolutionsprovidehasslefreemove
mentsattollplazasbyfacilitatingautomaticpayments.
IntegratedTicketingSystems:TheMobilityasaServiceconceptprovidestheintegra
tionofseverallocalservices,thusfacilitatingasmartticketingsystemtoprovideeasyand
multimodalservicestocitizens.
SmartSurveillanceandRoadSafety:Thecamerasandothersecuritydevicesforming
apartoftheconnectednetworkhelpinmonitoringthestateoftraffic,thusenhancing
roadsafety.
Sensors2021,21,214316of45
Theemergenceofconnectedtechnologieshasopenednewpossibilitiesforurban
planningandmanagement.Theeconomicalandhumancostassociatedwithroadmis
hapsisprofound.Today,intelligenttransportmanagementsystemshaveenabledthecon
ceptofSmartMobility,makingdrivingandcommutingsaferandmoreefficient.Thecon
nectivitymodelsforsmartmobilityincludethecommunicationbetweenthevehiclesand
theotherconnectedentities,asshowninFigure6.
Figure6.Theprimaryconnectedvehiclemodelsforsmartmobility.
VehicletoInfrastructure:Vehiclesareconnectedtothetrafficinfrastructuresuchas
trafficlights,tolls,parking,pedestriancrossings,etc.,toenablethesharingofrealtime
trafficinformationandpredictingtrafficjamsanddelays.
VehicletoVehicle:Vehiclesareconnectedtoothervehiclestoensureroadsafety.The
datasharedbetweenvehiclesfurtherhelpinavoidingcongestionandparkingmanage
ment.
VehicletoCloudStorage:Vehicletostorageconnectivityhelpsinrealtimeinfor
mationsharing,storageandprocessing.
VehicletoPedestrians:Thisconceptconnectivitymodelconnectsvehiclestopedes
triansviasmartdevicessuchasmobilephonesandwearablestofacilitatepedestrian
safetyandofferrealtimeefficientmobilityoptionsandsolutions.
VehiclestoOtherEntities:Thisensuresacomprehensiveconnectivitymodelthatin
tegratessmartmobilitywithothersmartcitycomponentsandprocesses.
3.2.Opportunities
Smartmobilitysolutionscanbringunprecedentedbenefitsforthesmartcityecosys
tem.Smarttrafficmanagementtointelligentlanduseplanningandmanagementcanbe
madepossiblewiththehelpofsmartmobilitysolutions.Cityplannerscanexploitthe
intelligentmobilityapproachestocomeupwitheffectiveandefficientdesignplanswhich
canberealizedinsustainableandenvironmentallyfriendlyways.Thereareseveralop
portunitiesassociatedwithsmartmobilityapproachesforthecityplanners,authorities,
usersandotherinhabitantsofthesmartcity[5–11]:
StrategicRoutePlanningandDevelopment:TheBigDatageneratedfromtheubiq
uitouslyconnectedIoTdevicescanbeharnessedtoextractbetterinsightsaboutthetraffic
Sensors2021,21,214317of45
andcityroutes.Thisinformationcanfurtherbeusedforstrategicrouteplanningandde
velopment.
BusinessMarketingCampaigns—IntelligentAdsPlacement:Businessescanusedig
italsignboardsandhoardingstoeffectivelyplacetheirmarketingadvertisementsatcrit
icallocations(wheretheycanbemadevisibletomaximumvehicles/traffic).
DigitalAdsandRevenueGeneration:Therudimentaryposterandbannerbasedad
vertisementscanbereplacedwithdigitalcounterparts.Thishastwofoldbenefits.One,it
reducespaperwastage,andsecondly,sinceitcanbedynamicallyupdatedwithsimple
coding/programming,itconsumeslesstimeforsetupandupdates.
AlternateRouteManagementandIncentivizingCitizensforCooperatinginDecision
MakingandFollowingInstructions:lawmakerscantakerealtimedatabaseddynamic
decisionsfortrafficmanagement.Thisinformationcanbesharedwithcommutersto
avoidpossibletrafficcongestionsbysuggestingalternativeroutes.Governmentscanalso
incentivizethelawabidingcitizenswhohelpinfollowingandenforcingtheselaws.This
stepcanpromotecitizencentricparticipativegovernance.
OpportunitiesforBuilders,BusinessesandManufacturers:Builders,businessesand
manufacturerscancomeupwithinnovativesolutionsforprovidingsustainableanden
vironmentfriendlyalternativesfortheclassicalapproaches.Thearea/techniquesfocused
startupscanexploitthisopportunityforgrowingtheirbusinesses.
CheaperandMultipleOptionsforTransportation:Withsmartmobilitysolutionsin
place,citizenshavetheoptionforabetterqualityofservice(QoS)intermsofcomparative
costs,improvedandmultipleoptionsfortransportationandhasslefreecommutingexpe
rience.
ImprovedServiceability:Dataanalyticsapproachescanbeappliedtoprovidecitizen
centricservicestotheinhabitantsofthesmartcity.Sincethedecisionsandpoliciesare
datadriven,theycansurelyimprovetheQoS.
3.3.Challenges
Someofthemainchallengesthatarepresentedtosmartmobilitynowadaysinclude:
Infrastructure:Implementingsmartmobilitysolutionsinasmartcitysystemhas
highinfrastructuraldemandstoovercomethepressureonthesuboptimaltransportation
systemsinmostpartsoftheworld.Theincreasingpopularityofselfdrivingandelectric
vehiclesrequiresnetworkconnectivity,highbandwidthandelectricchargingstations.To
fullyutilizethepotentialofsmartmobility,thereisaneedtodeveloptheinfrastructure
thatcanrealizetheconceptssurroundingsmartsystems.
LastMileConnectivity:Oneofthemajorissuesinpublictransportationsystemsis
thelowcostlastmileconnectivity.Forefficientsmartmobilitysolutions,thereisaneed
fordoortodoorconnectivityirrespectiveofthemodeoftransportation.
SecurityandPrivacy:Theneedforconnecteddevicesandtherapidgenerationof
richpersonaldataposeseriousprivacyconcernsrelatedtodatasharingamongstdevices
andusers.Moreover,duetotheconnecteddevices,theentirenetworkisvulnerableto
outsideattackandbreaches.
Governance:Theconceptofsmartmobilityhasextendedthescopeofconventional
transportationsystemstoincludeotherstakeholderssuchastechcompaniesandservice
providers.Theinclusionofthesenewactorsrequiresmodifiedpoliciesandrulesgovern
ingthesmartmobility.Theregulationsgoverningsmartmobilitysystemsarestilllagging
behind.Withnostandardsgoverningtheuseofsmartmobilitysolutions,themassadop
tionofthesesmartsolutionsisstillfarfromreality.Thereisaneedtoseamlesslyintegrate
theexistingtrafficlawstomeetthedemandsofsmartmobilitysolutions.
InitialAdoption:Oneofthemajorissueswithsmarttransportationiscreatingaware
nessamongstthepotentialusersforitsadoption.Themajorityofsolutionsareintheearly
stagesofdevelopment,whichdoesnotprovidesignificantproofoftheexactgoalsofthe
mobilitysolutions.
Sensors2021,21,214318of45
DynamicRoutingandTransportationMobility:Theefficientsolutionsrequiredy
namicroutingsystemstoestimatethetraveldemandsoftheusersandoptimizetheavail
ableresourcestoprovidethesolutions.Thisprocessrequiressophisticatedsoftwareand
technologicalsolutions.
NetworkManagementandMonitoring:Thesmartecosystemscomprisemillionsof
connectedentities,whichmakesthenetworkmanagementandmonitoringcomplexand
costly.
DataAcquisitionandIntegration:Thedataarecollectedfromheterogeneoussources
withdifferentsecurityandprivacyprotocols.Handlingthelargevolumesofrealtime
datageneratedfromtheconnecteddevicesisacomplextask.
LegalChallenges:Theinvolvementofmultiplestakeholderssuchaspaymentcom
panies,governments,cityadministrations,publicprivatetransportation,users,etc.,re
quiresawelldefinedlegalsystemandsupportpoliciesforsmartmobility.
4.SmartMobilityServicesandApplications
4.1.MobilityasaService
TheemergenceoftheMobilityasaService(MaaS)paradigmisatrendthatisex
pectedinthecomingyearsintheareaofmobilityinsmartcities.Thecurrentrealityof
doortodoorjourneysseemstohaveitsdaysnumberedasitdoesnotcomplywiththe
sustainabledevelopmentobjectivesandlagsbehindtheMaaSplatformsintermsofcosts
andtraveltime[63].TheobjectiveofMaaSplatformsistoprovideanalternativetothe
useofprivatetransportationwithseveralunderlyingconsequences,includingareduction
intrafficcongestionandvolumerestrictionsonurbantransportcapacity.Inthecoming
years,wewillwitnesstheemergenceofaglobalplatformthatintegratesvariousmodes
oftransport,withanondemandserviceandwhereinformationisavailableinrealtime
andinapredictivemannerinsuchawaythatallowstheprovisionofservicessuchas
multimodalroutes.Severalserviceshaveappearedinrecentyearsthatpromotethevision
oftheMaaSparadigm:carpooling(sharingthecarforagiventripinordertoprevent
severalpeoplefromtravelingtothesameplace),ridesharingcompanies(companiesthat
matchpassengersandvehicledrivers),bicycleandescooterssharingsystems(systems
thatallowtherentalofbicyclesorelectricscootersforashortperiodoftime)orcarsharing
(carrentalmodelforshortperiodsoftime).Therecentadvancesinautonomouscarsare
apromisefortheshortmediumfuturetohelpmaterializetheMaaSparadigm.Thiswill
putinperspectivetheneedforpeopletoownacar,bothineconomictermsaswellasin
benefitscomparedtousingondemandservicesthatareexpectedtohavemuchmoreaf
fordablecostswhentheuseofautonomousvehiclesbecomeswidespread.
Oneofthechallengesthatthecomingyearswillbringincludesthecreationofa
globalMaaSplatformintegratingseveralgeographicallydispersedMaaSplatformsand
heterogeneousintheirgenesis,whichcouldalsoleadtothecreationofunifiedstandards.
TwomaincharacteristicscanbepointedouttoaMaaSsystem[63][64]:(1)tobemulti
modal,aMaaSplatformmustnecessarilyincludedifferenttypesandmodesoftransport,
and(2)tobeusercentric,theresultofaMaaSplatformmustbeadaptedtotheneedsand
preferencesofeachuser,preferablycollectedinanimplicitandtransparentwayaccord
ingtowhatisthehistoryandpatternsoftheirmobility.
SomeofthechallengesthataMaaSwillhelpsolveinasmartcityinclude[63,64]:
Highnumberofprivatecarswithinacity
Littleattractivenessforcitizenswhenitcomestousingpublictransport
Littleuseofactivemodesoftransport
Lessadequatelocationofspecificplacesforbicycles,scootersandparkinglinksand
itslackofintegrationwiththetransportnetwork
Lackofaccessibilitytotransportsystemsbypeoplewithdisabilitiesoroldpeople
Lackofinformationinrealtimeforcitizens
Sensors2021,21,214319of45
Lackofanintegratedpublictransportplatform,routessuitableforeachuser,on
demandparking,activemobilityandunifiedpaymentsystemsfortheentire
transportnetwork
Lackofunderstandingofcitizens’mobilitypatterns
Lackofinformationforcitizensabouttheconsequencesoftheirfeweractivehabits
inthecarbonscab
ThebenefitswecanexpectfromaMaaSinclude[63,64]:
Aneasierwayforcitizenstoplan,bookandpayformobilityservices(whichwill
alsofacilitatecitizensabandoningtheprivatevehicle)
Improvingtheefficiencyofthetransitnetwork
Reducedcostsforcitizens
Decreasedtrafficcongestion
Reducingtheecologicalfootprint
Predictingdemands
Makingpersonalizedsuggestionstocitizens
Allowingproviderstoplanaheadandmeetcitizens’needs
Increasingconvenience,effectivenessandcustomersatisfaction
Easeofpayment
Revenuegrowthfortransportationserviceproviders.
4.1.1.MaaSImplementationChallenges
Theemergenceofthesmartcityconcepthasbroughtaparadigmshiftinurbanmo
bilitysystems.Today,withtechnologiessuchasInternetofThings(IoT),WirelessSensor
Networks,DataAnalytics,BigData,etc.,thetransportationsectorisseeinganewscope
forsignificantchangesandtransformations.Today,thetransportsectorhasbecomea
complexsystemwithservicesintegratedintooneplatformgovernedbytechnology.MaaS
describesatransportsystemthatintegratesvarioustransportmediumsalongwithother
relatedservicestoprovideaseamlessondemandexperiencetousers[65].Anefficient
MaaSsystemprovidessignificantpotentialtofacilitatebusinessandopportunities.
Today,mostcitiesfacechallengesintermsoftheirtransportationsystemsandother
relatedservicessuchasparking,trafficcongestion,etc.MaaSplatformshavehugepoten
tialtoprovidesolutionstoovercometheexistingchallengesoftransportationsystemsand
alsohaveapositiveimpactontheenvironmentbypromotingandsupportingrenewable
energyresources[66].However,despitethisutopianconceptofondemandseamlessmo
bility,therearestillmanychallengesandissuespertainingtothesuccessfulintegrationof
MaaSintheexistingsmartcityecosystems.Table3presentssomeofthemajorissuesand
challengesandthepotentialsolutionsintheimplementationofMaaSplatformsinasmart
cityecosystem.
MultipleServicesIntegration:MaaSfocusesonaggregatingvariousservicessuchas
publictransport,privatetransport,ridesharing,carpoolservices,payments,parkingsys
tems,etc.,onasingleplatformtoensureondemandseamlessmobilitytotheusers.How
ever,theheterogeneousnatureoftheseservicesalongwiththeirdifferentsafetyandpri
vacyrequirementsmakestheentireintegrationprocessdifficultandchallenging.
PaymentSystemIntegration:thecompleteandefficientimplementationofMaaS
platformsensuringaseamlessmobilityexperiencerequiresahasslefreepaymentsystem
thatallowsuserstomanagethevariousmobilityservicesthroughasingleplatform.Inte
gratingasinglepaymentsysteminvolvesmultiplestakeholdersatdifferentlevelsofhi
erarchies,suchasbankingsystems,transportcompanies,parkingsystems,vehicleown
ers,etc.Thisrequiressignificanttechnologicaldevelopmentinovercomingthesecurity,
safetyandprivacyrequirementsofmultiplestakeholdersandheterogeneousentitiesand
services.
MaaSSubscriptionModels:currently,theexistingtransportationsystemsandcom
paniesprovidetheiruserswithsubscriptionmodelsbasedonweekly,monthlyandyearly
Sensors2021,21,214320of45
services.Thesepackagesallowuserstoavailvariousservicesatlowercostsasperthe
termsandconditionsoftheparticularcompany.Implementingasimilarservicewiththe
MaaSplatformrequirescooperationandcoordinationamongstvariouscompanies,trans
portationserviceproviders,governments,privateplayersandotherrelatedservices.En
suringasinglesubscriptionmodelforaMaaSplatformisstillachallenge.
DataandInformationSharingAmountsServiceProviders:theimplementationofan
efficientMaaSplatformrequiresrealtimedatasharingamongstthevariousservicepro
viderstoensurearealtimeseamlessmobilityservicetotheusers.Thisposesseriousse
curityandprivacyconcernsasmanystakeholdersdonotwishtosharetheirpersonal
information,paymenthistories,transportationpreferencesandhabitswithothers.Addi
tionally,sinceMaaSintegratesmultipleservicesatdifferenthierarchicallevels,thepri
vacyconcernsandsecuritytechniquesvarysignificantly.AspertheGeneralDataProtec
tionRegulation(GDPR),businessesmustprotectthepersonalinformationofusers
(https://gdprinfo.eu(accessedon3February2021)),andthereforeMaaSplatformsmust
alsocomplywiththedigitalprivacyoftheirusers.
LegalChallenges:MaaSplatformsfacilitatetheintegrationofmultipleservicesona
singleplatformandalsoprovideopportunitiesfornewbusinessmodels.Theinvolvement
ofmultipleservicessuchastransport,trafficsystems,parking,payments,ticketing,iden
titymanagement,datasharing,etc.,requiresstandardizedlawsandregulationsgovern
ingtheentireprocess.Currently,therearenolegalservicesandlawsthatregulatethe
entireMaaSplatform.
AdoptionChallenges:oneofthebiggestchallengesforthesuccessfulimplementa
tionofaMaaSplatformisthewillingnessofthevariousstakeholderssuchasusers,the
government,serviceproviders,etc.,toadopttheservicemodel.Althoughsmarttranspor
tationsystemsareslowlyandsteadilymakingtheirwayintothedailylivesofthepeople,
themassadoptionofplatformssuchasMaaSisstillfarfromreality.
Scalability:thescalabilityoftheMaaSplatformsfromalocalitytoacity,fromacity
toacountryandeventuallytotheentireworldrequiresrulesthatcanencompassthelaws
pertainingtovariousnations.Developingaservicemodelthatcanadapttomultiplecities
andcountriesandcanbereusedinmultiplejurisdictionsisstillachallenge.
TrustandCollaborationamongstStakeholders:theneedfortrustisoneofthemost
importantaspectsofasuccessfulcollaboration.MultipleentitiesinaMaaSplatformre
quireaclearunderstandingofthefinancial,societalandenvironmentalgainsofthecol
laboration.Thereareapprehensionsrelatedtotheneutralityandfairnessofthesystem
fromdifferentviewpoints.Fromtheuser’sviewpointtheremaybequestionsrelatedto
thequalityoftheserviceandvalueformoney,andtheserviceprovidersmayhavefears
relatedtothemannerinwhichthealgorithmsworkandtheservicesarepresentedtothe
users[67].
Table3.MobilityasaService(MaaS)implementationchallengesandpotentialsolutions.
SNoChallengesSolution
1MultipleServices
integration
Initiatinggoaldirecteddiscussionsamongstthevariousservice
providerstoensurecrossborderintegrations.
2PaymentSystem
Technologicalinterventionsbasedonemergingtechnologiessuch
asblockchain,canbeusedtoensurethesecurityandtransparency
ofthefinancialsystems.
3Subscription
ModelsinMaaS
Governmentandotherregulatingbodiesmustpromotecollabora
tionsthroughvariouspilotprograms.Customizedsubscription
modelsneedtobedevelopedtoenhancetheuserexperience.
4Dataandinfor
mationsharing
Datasharingmodelscanbedevelopedregulatingthegeneralprin
ciplesofdataandinformationsharingandensuringagreements
onthelevelsofdatasharingbetweenserviceproviders.
Sensors2021,21,214321of45
amongstservice
providers
5LegalChallengesThereshouldbegloballyrecognizedstandardsandlawsgovern
ingthevariousservicesprovidedundertheMaaSPlatform.
6AdoptionChal
lenges
TheMaaSplatformdevelopersmusttakemeasurestobuildtrust
amongsttheusersandcreateawarenessaboutthefinancial,socie
talandenvironmentalbenefitsofMaaS.
7Scalability
Internationalgovernmentalbodiesmustcollaborateforthedevel
opmentoflawsandstandardsgoverningthemobilityservicesand
tofacilitatejointventuresacrosscitiesandnations.
8
TrustandCollab
orationamongst
stakeholders
Thegoverningbodiesshouldensuretransparencyintheprocesses
bydraftingwelldefinedliabilitiesandmutualcontractualagree
mentsdocumentingtheagreeduponactionsandobjectives.
4.1.2.AnalysisofSecurityThreats
AutonomousvehiclesusetechnologiessuchasInternetofThings,WirelessSensor
Networks,ArtificialIntelligence,andMachineLearning,amongothers,tocollect,analyze
andsharedataandeventuallymakeinformeddecisions.Theseautonomousvehiclesform
apartofalargernetworkcomprisingthousandsofinterconnectedentities.Thesetypesof
connectedenvironmentsconsistingofheterogeneousdevicesarehighlydependentonthe
individualdevice’ssecurityprotocols.Thismakesautonomousvehiclesvulnerabletosev
eraltypesofsecuritythreatsandattacks.Theseattackscantakeplaceatvariouslevels
suchasthenetworklevel,devicelevelandsoftwarelevel[68].Table4showsthevarious
typesofvulnerabilitiesinautonomousvehiclesatdifferentlevels.
Table4.VulnerabilitiesinAutonomousVehicles[68].
LevelsTargetSystemsDisruptedServices
Sensors
Camera,GPS,Li
DAR,Radar,prox
imitysensors,ultra
sonicsensors
Parkingassistance,objectidentification,
navigation,collisionavoidance,traffic
signalidentification,cruisecontrol
DeviceAccesscontrolsys
tems
Antitheftsystem,keylessentrysys
tems,signaljamming,replayattack
SoftwareInVehicleprotocols:
LIN,CAN,FlexRayCommunicationsystem
Thevulnerabilitiesatdifferentlevelsposeserioussecurityandprivacyconcernsre
latedtotheuseofautonomousvehicles.Someofthemajorsecurityconcernsincludedata
security,networksecurity,vehiclesecurityandfinancialsecurity[69].
Themaintypesofsecuritythreatsinclude:
1.DataTheft:Autonomousvehiclesandselfdrivingcarsformapartofalargernet
workofconnectedentitieswhichcontinuouslysharedatatoprovideaseamlessuser
experience.Someofthedatageneratedthroughdifferententitiesconsistofpersonal
userinformationsuchasfinancialdetails,contactdetails,travelhabitsandhistory.
Withthistypeofpersonaldataatdisposal,therearevulnerabilitiesrelatedtodata
theftthatcanbeusedbyattackers.
2.IdentityTheft:Theconceptofautonomousvehiclesfocusesonthetransferofcontrol
fromthehumandriverstothevehicles.Insuchscenarios,theconnectedvehiclesbe
comeeasytargetsofcybercriminalsandhackers.Thesevehiclesarepronetoidentity
Sensors2021,21,214322of45
theftwherethehackerscanobtainthevehicleidentificationinformationandmisuse
it.
3.DeviceHijacking:Vehiclehijackingisoneofthebiggestthreatstoautonomousve
hicles.Theattackerscangaincontrolofthevehiclesystemandsoftwareandmodify
thealgorithmstoremotelycontrolthevehicle.Oncehijacked,thehackerscanmodify
theimportantfunctioningunitssuchasthenavigationcontrolunit,engine,brakes,
heatingsystems,communicationsystems,vehiclecameraandvisionsystems.
4.DenialofService:Attackerscantakeadvantageofthevulnerabilitiesoftheleast
secureddevicesonthenetworktogaincontroloftheentirenetworkandoverwhelm
theconnectedentities.Thesetypesofattackscanbelaunchedonanindividualnode
orvehicletovehicleorvehicletoinfrastructure,resultinginacommunicationsys
temdisruption.
6.PrivacyInfringement:Autonomousvehiclescontinuouslygeneratedatasuchasthe
vehiclelocation.Thesedataprovidepersonalinformationrelatedtotheuser’stravel
historyandnavigation,whichcanbemisusedtotracktheuser’scurrentlocationand
otherwhereabouts.
7.FinancialFraud:IncountriessuchasIndiawheretolltaxesareautomaticallyde
ductedusingRFIDtagsonthevehicles,thereareseriousconcernsrelatedtothefi
nancialsecurityofthelinkedbankaccounts.Anyinsecurenetworkordevicemay
resultinbankingfraudsandotherrelatedattackssuchasransomware.
4.2.TrafficFlowOptimization
Thecontinuousgrowthoftrafficisaproblemthatmanycitiesfacetoday,asaresult
ofplanningthatinmanycaseswascarriedoutmanydecadesago,whenthecongestion
experiencedtodaywasnotexpected.Populationgrowth,whichistakingplaceworld
wide,hashadadirectimpactonthenumberofvehiclesontheroadswithoutproper
monitoringofinfrastructuresastheycannotadaptasquicklyaswhatwouldbenecessary
toavoidtheproblemoftrafficcongestion[70].Thishighnumberofvehiclesthatresulted
inmajortrafficcongestionhasalsoresultedinexcessivefuelconsumptionandgasemis
sionsandanincreaseinthenumberofaccidents.Alltheseaspectshaveadirectimpact
onseveraldimensionssuchaseconomic,environmentalandliving[71,72].TheUSDe
partmentofTransportation(DoT)[73]pointsoutthreemainsourcesfortrafficcongestion:
(1)eventsthatsomehowinfluencetraffic,suchasaccidents,workingareasorbadweather
conditions;(2)fluctuationsinthetrafficdemand,whicharethecauseofnothavingasim
ilarandconstantpattern,and(3)existinginfrastructure,whichincludestrafficcontrol
devicesandalsophysicalbottlenecks.TrafficManagementSystems(TMSs)arethesys
temsresponsibleforpreventingtrafficcongestionandimprovingtrafficefficiency.Tothis
end,oneoftheircomponentsisthecollectionofinformationfromvariousheterogeneous
sourcessuchasvehicles,trafficlightsandsensorsplacedindifferentlocationsoftheroad
infrastructure.TheprocessingofthesedataisanothervitalcomponentofaTMSwiththe
purposeofpredictingpotentialproblemsinapredictiveorevenrealtimemannerand
actinginatimelymannertoreducetrafficcongestionandallrelatedproblems[70].From
thevariousproposalsintheliteratureregardingTMSs,thefollowingcontributionscanbe
enumerated:speedadjustmentofthevehiclesothatitspendstheshortestpossibletime
stoppedatatrafficlight[74,75],thedetectionandpreventionoftrafficcongestion[76,77]
orrecommendationforalternativeroutes[71,77,78].
Someofthechallengesbeingfacedregardingtrafficflowoptimizationinclude[48]:
Optimizationoftheuseofroadinfrastructure
Integrationofdifferentdomains(air,landandsea)
Conductingpredictivetrafficanalysis,withemphasisonmomentswhenagreater
flowofvehiclesisexpected
Performingdataanalysisthatallowstrafficplanningandcontrolinrealtime
Sensors2021,21,214323of45
Optimizingthelocationofelectriccarchargingstationstotheplaceswheretheyare
mostindemand
Developingpredictivemodelsthatunderstandtheneedsofcitizensintermsofnew
mobilitymodels(includingescooters,ebikes,carsharing,carpooling).
Accordingto[2],TrafficControlandOptimizationwillbeachievedinthecoming
yearsthroughanetworkofintelligentsensors,locationbasedapplicationsandanintelli
gentinfrastructurethat,actinginanintegratedmanner,cancontributetomakingtraffic
management,drivingandevenparkingmoreefficient.ICTsolutionswillbethefunda
mentalbasisforcontrollingandoptimizingtraffic,allowing,forexample,collisionalarm
andlanekeepingsystemsandalsointegratingprivatevehicleswithsmartstreets,traffic
lightsandTMSs.Thistypeofsolutionandintegrationwillcontributetothesafetyand
convenienceofallstakeholders.Fromthemomentthatcars,streets,trafficlightsandcon
trolsystemsareinterconnected,realtimedataanalysiswillbepossibleandwillallow
trafficconditionstobeanalyzedandpreventiveactiontobetaken.Importantinformation
willthenbepossibletobeprovidedtouserstooptimizetheirroutesintermsoftimeand
inordertoavoidcongestionoraccidentsontheroad,adjustmentstobemadetothespeed
oftheirdrivingorinformationonnearbyparksorparkingspaces.Thisintegrationand
thepossibilityofrealtimeaccesstoinformationandinstantcommunicationwithdrivers
willbereflectedintermsofsafety,lessaccidents,greaterefficiencyindrivingandplan
ningroutesandreducingcongestion,aswellastheemissionofgases.
4.3.OptimizationofLogistics
Urbanmobilityandthecurrentchallengeswefacearenotjustaboutthemobilityof
peopleandprivatevehicles.Wemustalsotakeintoaccountthemobilityofgoods,com
mercialtransportandurbanlogistics.Theseaspectsarealsoimportanttoachievesustain
ableandenvironmentallyfriendlymobility.Ifwepreviouslyreferredtotrafficcongestion
withagreaterfocusonprivatevehicles,wemustalsoconsidertheimpactthatcommercial
fleetshaveontrafficcongestion.Ecommerceisnowadaysaglobalrealitywithanincreas
ingtendencyofuseevenfortheeaseitbringstotheconsumer.However,thisbringsthe
needfordeliveries,whichhasamajorimpactonurbanlogisticsandalsotrafficconges
tion.Anotheraspectisrestaurantsandhomedeliveries,whichstartedtoincreaseinsize
withUberEatsandothersimilarservices[79].Themobilityaspectassociatedwithbusi
nessesisthussomethingthatdeservesasmuchconcernasprivatemobility.Atthepresent
time,logisticsoperationsareverydefragmented,withlittleintegrationbetweenthevari
ousplayers,makinginefficientusethroughoutthesupplychain.Theseproblemswilltend
toworsenastheneedforthedeliveryofgoodsincreases,whichisexpectedtobealmost
certaingiventheincreaseinecommercebusinesses,homemealdeliveries,amongothers.
Aswiththeincreaseinthenumberofprivatevehicles,theincreaseinthenumberofde
liveriesandlogisticsprocesseswillalsohavesignificantconsequencesfortheincreasein
fuel,energyandmaterialcosts,makingtheneedtooptimizetheseprocessesobvious[2].
Someofthechallengesbeingfacedregardingtrafficflowoptimizationinclude[63]:
Vehiclesthatdelivernotbeingfullyfilledintermsoftheirtransportcapacity
Inefficientrouteoptimizationtomakedeliveries
Lackofcoordinationbetweentransportprovidersinordertoachieveanintegrated
waythatincludesseveralfleets
Littleawarenessbyconsumersandsuppliersofthecarbonfootprintimplicationsof
thelargenumberofdeliveries
Collisionofthedeliverytimeswiththehoursofgreatesttrafficcongestioninthecit
ies
Deliveriesmadeusingvehiclesthatusefossilfuels
Inefficientcoordinationofthedifferentmeansoftransport(sea,airandland)
Useofprivatetransportbycitizenswhenshopping,insteadofusingpublictransport.
Sensors2021,21,214324of45
Accordingto[2],smartlogisticsisrelatedtotheintegrationofvehicles,productsand
loadunitsthatallowrouteandloadoptimization,thusreducingwasteinthesystemasa
whole.Thecurrentdataandsensorprocessingtechnologywillallowthecreationofsolu
tionsthataimtoincreasetheflexibilityandefficiencyofroad,air,trainandmarinefreight
throughtheintegrationofthevariousplayersinthelogisticprocessthatincludesindivid
ualvehicles,roadsandloadunits.Itisexpectedthatplatformsforfleetmanagementand
optimizedroutecalculationwillallowincreasedefficiencyintheoperationalizationoflo
gisticssystemsaswellastheplanninginvolvedintheprocess,reducingcosts,transport
withloadsthatdonotmakeuseofthefullcapacityofthevehicle,accidentsorevendam
agetotheproducts.Sensortechnologycancontributetothemonitoringandtrackingof
thelocationofproductsandfleets,whichallowsrealtimechangestorouteswhenever
necessarytoavoidcongestionandreducetime.
4.4.AutonomousVehicles
Theautomationandrobotizationoftasks,withtheincreasingavailabilityofnewsen
sorsandsoftware,issomethingwecurrentlyassistinseveraldomains,fromindustryto
callcenters,applicationalsupporttoclients,amongmanyothers.Oneoftheapplications
ofautomationthatwecancallthemostambitiousistheAutonomousVehicle(AV).Ifwe
classifyAVsasambitiousitisbecausetheyinvolvepeopleandbecause,insomecases,we
maybetalkingaboutsituationsinwhichtheirphysicalintegrityisatstakeandevenlife
ordeathsituations.TheavailabilityofAVsisundeniablyagrowingtrend,andtodaywe
arewitnessinganexponentialevolutionuntilafewyearsfromnowwecanreachthecom
pleteautomationofvehicles.Thetechnologiesthatarepresentincitiestodayallowusto
anticipatethatinthecomingyearswewillhavefrankdevelopmentsregardingtheauto
mationofvehiclesforthedailycommutingthatallcitizensneedtoundertakefortheir
dailytasks[80].Thiswillundoubtedlyrevolutionizeurbanmobilityasweknowitina
verydrasticway.Theinfrastructuresofcitieswillhavetoundergosignificantchangesin
ordertoadapttothisnewreality.Theadventof5Gwillbeafundamentalpieceofthis
puzzle,withaspeed100timesfasterthan4G[81].TheAutomotiveVehicleReadiness
IndexreferstotheNetherlandsasthecountrymostprepared,intermsofinfrastructure,
toaccommodatefutureAVs,followedbySingaporeandtheUnitedKingdom.Threemain
characteristicscanbereferredtoasfundamentalwhenitcomestochanginginfrastructure
incities[81]:
Lanemarking:thesemarkingsarenotthebestfortoday’svehicles.Itisanaspectthat
willnecessarilyhavetobeimprovedtothepointthattheycanbereadefficientlyby
machines.
Roadsidesensors:thistypeofsensorshouldbeincludedinsidewalks,curbsand
lanes.Inthisway,itwillbepossibleforAVstobeawareoftheenvironmentthat
surroundsthemandthusactinapreventivewaytopossiblesituationsofdanger.
Smartsignage:imagerecognitioniscurrentlyusedtoreadtrafficsigns.Inthefuture,
itisexpectedthatthesignalswillbeabletosendasignalthatcanbereadbymachines
andthusfacilitatethereadingofthesignalsbytheautonomousvehicles.
TheintroductionofAVsisconsideredtohavethefollowingconsequencesincities
[82]:
Providingasaferandmorereliablemeansoftransport,
Reducingthenumberofaccidents,
Reducingtheneedforhumaninterventionduringdriving,
Reducingtrafficcongestion
Allowingelderlypeopleorpeoplewithdisabilitiestomaketheirliveseasier
Eliminationoftrafficlightsasautonomousvehicleswillbeabletoefficientlysetpri
orities
Reducing/eliminatingthetimespentsearchingforparkingspaces.
Sensors2021,21,214325of45
Onanotherhand,someofthechallengesfacingthewidespreadadoptionofAVsin
clude[43,82–84]:
Perception,planning,controlandethics
Dataprivacy
Transmissionsecurity
Processinglatency
Energyefficiency.
4.4.1.LevelsofAutonomousDriving
TheSocietyofAutomotiveEngineers[85]definedsixlevelsofvehicleautomation
whichwereadoptedbytheU.S.DepartmentofTransportation.Thelevelsrangefrom0
(fullymanual)to5(fullyautomated),asdescribedinFigure7.
Level0(FullyManual—NoDrivingAutomation):mostvehiclestodayareatthis
levelwheretheyarefullycontrolledbythedriver.Theremaybesomedriversupport
systems,suchasanemergencybrakingsystemandsometypeofwarningtothedriver,
butthatisnotconsideredautomation.
Level1(DriverAssistance):thislevelischaracterizedbytheexistenceofsometype
ofautonomousactiononthepartofthevehicle,suchasacceleratingorbraking(cruise
control),butdriverinterventionisstillrequiredinmostsituations.
Level2(PartialDriverAutomation):thislevelisessentiallycharacterizedbytheex
istenceofAutonomousAdvancedDrivingAssistants(ADAS)thatcontroltheacceleration
andbrakingperformedbythevehicle,inlimitedscenarios.Thelevelofautomationisstill
lowasthedrivermustmaintainfullattentionastheymayhavetotakecareofdrivingat
anytime.
Level3(ConditionalDrivingAutomation):level3representsasubstantialtechno
logicaladvancesincethevehiclemustbeabletocontroltheenvironmentaroundit,such
asitsspeedbasedonthemovementofthecarinfront.Evenso,thedrivermustremain
alertincasethevehicleisunabletoperformsometasks.
Level4(HighDrivingAutomation):themainfeatureintroducedatlevel4istheabil
ityofthevehicletobeabletotakeoveralmostalldrivingindependentlyandtointervene
incasesomethinggoeswrongorthereisafailure.Inmostcases,driverinterventionisnot
necessary,butthedrivercanstilltakecareofthecar,iftheywish.
Level5(FullDrivingAutomation):level5representsfullvehicleautomationwhere
thereisnoneedtohaveasteeringwheelorpedalsinthecar.Thevehiclewillbeableto
goanywhereandmakeallthenecessarydecisions.
Figure7.Levelofautomationofautonomousvehicles.
Sensors2021,21,214326of45
4.4.2.VehicleSensors
SensorswillplayakeyroleinassertingAVsandintheconfidencethatcitizenswill
haveinthesevehiclesandthesafetytheycanoffer.Thesensorswillbeanessentialpart
ofvehicletovehicle(V2V)andvehicletoinfrastructure(V2I)communicationandwill
feedAdvancedDrivingAssistanceSystems(ADAS)intherecommendationsgivento
drivers.Examplesoftheserecommendationsincludewarningsforthedrivertostayin
thecentralpartoftheroad,avoidingdrowsinessordistractionwhenmanagingcruise
control,orinmorecomplexsituationsthatcrossinformationfromtheoutsideweather
withthedriver’scondition(calmer,moreaggressive),orwiththeirheartbeat,whichare
amongmanyotheraspectsthatcanbemonitoredinordertocollectasmuchinformation
aspossibletocreateasafedrivingenvironmentthatdrasticallyreducesthenumberof
accidents.
Inordertocollecttheinformationmentionedabove,itisnecessarytohaveseveral
sensorsinthevehicles,namelyenvironmentsensorswhichareresponsibleforcollecting
informationfromtheenvironmentsurroundingthevehicle[86].Withintheenvironmen
talsensors,therearecamerasandremoteradarsplacedinfrontofthevehicle,longrange
radarsthatallowthedetectionofobjectsinfrontofthevehiclewhenitisathighspeed
andLidarLaserScannersthatallowthedetectionofobjectsatmediumdistances.Itis
normalforeachofthesesensorstobeplacedindifferentlocationsonthevehiclebecause
oftheeffectsoftime,thedetectionangleandthemaximumdistanceatwhichanobjectis
identified.Table5summarizesthevehicle’smainsensors,locationandtheirpurpose.
Sensors2021,21,214327of45
Table5.Vehiclesensors,locationanditspurpose.
SensorLocationPurpose
LongRangeRadarFrontcenterofthevehicle
EmergencyBrakingPedes
trianDetection
CollisionAvoidance
AdaptativeCruiseControl
LIDARFront,backand4corners
(diagonals)Environmentmapping
CameraFront,backand2sides
TrafficSignRecognition
LaneDepartureWarning
SurroundView
DigitalSideMirror
RearViewMirror
ShortMediumRangeRa
dar
Front,backandrearcor
ners
CrossTrafficAlert
RearCollisionWarning
4.4.3.VehicleCommunicationProtocols
VehicularAdhocNetworks(VANETs)playakeyroleinintelligenttransportsys
tems(ITS).InVANETs,thedevelopmentofaroutingprotocolforeffectivevehicularcom
municationspresentsseveralchallenges,whichcanbehighlighted[87]:
Saferouting:thesecurityofmessagesis,inallsystems,delicateandofenormous
importance.Inthisspecificcase,illegalmessagetamperingcanhaveveryserious
consequencesandevenhaveanimpactonlifeordeathsituations;
Reliablecommunication:linkrupturescansuddenlyhappenduetosomeVANETs’
characteristicssuchashighmobility,intermittentconnectivityorobstaclesincities,
andwhattodoincaseofpacketlossesisachallenge;
Determiningtheoptimalpathfromasourcetoadestination,takingintoaccountthe
densityoftrafficandtheshortestdistance;
Determiningaroutingstrategythatadaptstothetwodistinctenvironmentsof
VANETs:cityenvironmentandmotorways.
Thepositionbasedroutingprotocolisconsideredoneofthebestapproachesin
VANETs[87]andcanbeadoptedinanurbanenvironment(wherethebiggestchallenge
istheobstacles)aswellasonhighways.Intheliteratureandtakingintoaccountthechal
lengesofroutinginanurbanenvironment,therearemanyproposalsfortheadoptionof
thistypeofprotocolforcommunicationsV2VandV2I[88–92],withthevariouscategories
ofprotocolslistedinFigure8.
Sensors2021,21,214328of45
Figure8.Categoriesofprotocolsonvehicularcommunications.
4.4.4.EthicalIssues
Therecentpopularityofautonomousvehicleshasdrawntheattentionofautomobile
manufacturersfromallovertheworld.Autonomousvehiclesrepresentanymeansof
transportationthatarecapableofnavigatingtheroadswithnoorminimumhumaninter
ventionsandprovidepotentialsolutionstotheroadsafetyissuescausedbyhumanerrors
[93].Thetransitionfromapurelyhumanoperatedvehicletoafullyautomatedvehicleis
stillfarfromreality.However,manyautomobilecompaniesarealreadyofferingpartial
automationintermsofservicessuchasemergencybrakesapplication,assistedparking,
etc.Despitetheseveralbenefitsandtherisingpopularity,thedeploymentofthesevehi
clesontheroadposesseveralcriticalchallengesrelatedtotheoperations,technology,
legalaspectsand,mostofall,ethicalissues[94].
Sensors2021,21,214329of45
ThemainconcernsregardhowAVsshouldbehaveinextremetrafficsituations.In
theliterature,thisisknownasthetrolleyproblem,firstproposedin1967,whereamoral
choicemustbetaken,andtheAVshoulddecidewhethertokillfivepeoplebyallowing
thetrolleytoproceed,orkill“just”onepersonwhilestoppingthetrolley[95].Thisissue
hasbeendeeplydebatedastheMoralMachineExperiment(MME),butthereisstillno
solution.Fromthisresearch,itemergedthatcustomersarewillingtobuyAVsthatprior
itizethesafetyoftheirpassengers,whilsttheyagreeonothersbuyingAVsthatsacrifice
passengers’lifeforagreatergood[96].Thisisnomoreatechnologicalproblem,butPhi
losophy,LawandEthicsareinvolvedandtheindividualgoodisopposedtoagreaterone
[97].Thetrolleyproblemwasthefirstexampleofextremetrafficsituationsthatleadtoa
moralchoice.Severalsituationshavebeendiscussedintheliterature.Justtomentiona
few,oneregardswhethertokillachildoranelderlypersontoavoidanobstacle,or
whethertoinvadetheoppositecarriageway,thusinvolvingmorecarsinanaccident,to
avoidcollisionwithaheavygoodsvehiclethatsurelywouldstronglyinjuretheAV[98].
Fromatechnicalpointofview,thesechoicescanbeaddressedbyrulesthatembedthe
humandriverexperienceandreturnriskandgainprobabilities.However,firstofall,the
problemissocomplexthatitisnotpossibletoforeseeallpossiblesituations;moreover,
otherethicalandmoralissuesarise:thereistheneedtojudgeiftherulesareacceptable,
thenthesamerulesshouldbeadoptedbyallthecompanies,andfinallythemainissue
regardsthedamageresponsibility[98].Itisworthnotingthatwhilstinthescientificliter
aturethismoraldilemmahasbeenlargelydebated,andyetnoanswershavebeenfound,
industryreportsonthesametopicassumeapragmaticapproach.Indeed,theseextreme
trafficsituationsareconsideredtoberarecasesthatcannotbeavoided,anddamagesto
objectsandpeoplemustbeminimized[95].However,withthespreadofthefirstautono
mousvehicles,someaccidentshavealreadyhappened.Thisisthecaseofapedestrian
whowaskilledinArizonabyanUberselfdrivingcar(https://www.bbc.com/news/tech
nology54175359accessedon3February2021).
SincethistopicisverycriticalanditlimitsthedevelopmentofAVs,recently,ethical
guidelinesfortheautomotivesectorshavebeenreleasedbydetailingthefundamental
requirementsandpracticalrecommendationsforbothindustriesandpolicymakers[99].
Particularly,in2019sevenfundamentalrequirementswereproposedbytheHighlevel
ExpertGrouponArtificialIntelligence,whichincluded“humanagencyandoversight”,
“technicalrobustnessandsafety”,“privacyanddatagovernance,transparency”,“diver
sity,nondiscriminationandfairness”,“societalandenvironmentalwellbeing”and“ac
countability”.Then,theguidelineshavepointedoutthatfiverightsunderliethesere
quirements,namely:therightto“selfdeterminationandliberty”,“lifeandsecurity”,
“protectionofpersonaldata”,“equalityandnondiscrimination”andto“explanation”.
Table6summarizesthesevenrequirementsbyhighlightingtheirkeyconcernsandbrief
descriptions.Interestedreaderscanreferto[99]formoredetails.
Table6.Requirementsforautonomousvehiclesbasedonfundamentalrights.
RequirementsKeyConcernsDescription
Humanagency
andoversight
Whichlevelofauton
omyshouldbeal
lowed?
Isthestateofthedriver
suitableforobtaining
control?
Howcanpedestrians
andpeopleoutsidethe
AVexercisetheirauton
omy?
AVsmustallowalevelofautonomyto
thehumandrivers.Theyshouldbeal
lowedtooverridethedecisionofthema
chineintelligence.
Autonomyrequiresdriverstobein
formed.Ontheotherhand,AVsshould
monitorthedriver’sstateandblockthe
autonomyiftheirstatecouldcauserisks
(e.g.,theyaredrunk,sleepy,etc.).Finally,
Sensors2021,21,214330of45
humansoutsidethevehicleshouldalsobe
abletopreservetheirautonomy.
Technicalrobust
nessandsafety
HowtoprotectAVby
cyberattacksthataffect
vehiclesecurity?
Howtoautomatically
manageemergencysit
uations?
AVsmustberobusttoexternalcybersecu
rityattacks(e.g.,Hijacking,Abuse,Pas
sivebehavioralattacks).Datacommunica
tionsbetweenvehiclesandserversmust
notrevealprivatedatathatcouldaffect
thebehaviorofthevehicle.
Moreover,AVsmustprovidean“auto
maticsafeconditionstate”formanaging
emergencysituationsandminimizingthe
risks.
Privacyanddata
governance
Whichkindofdataare
stored?Whatistheir
aim?
Isthedrivercorrectly
informedaboutdata
storage?
Didtheyexplicitlyex
presstheirconsent?
Aredatalawsre
spected?
Autonomousvehiclescontinuouslycap
tureinformationtoenhancetheirartificial
intelligencesystems.Thesedatacontain
informationrelatedtouserbehaviorand
travelhistory.Sharingthepersonaluser
datamustcomplywiththeGDPR.These
personaldataarefurthervulnerableto
theftsandmisuse.
Moreover,thetypeoftheinformationcol
lectedfromtheAVsinfluencestheircapa
bilities.Thus,thekindofdataandtheir
scopemustbespecified(e.g.,geolocalisa
tiondatafornavigation,biometricdata
foruserrecognitionanddriver’sstate
evaluation,driverbehavioraldatafor
analysis).Datastorageleadstothefollow
inglegalissues:transparency(privacy
policiesmustclearlydescribewhichdata
arecollectedandwhy),explicitconsent,
sharingwiththirdparties,compliance
withdataprotectionstandardsandregu
lations.
Transparency
Cleardescriptionof
technicalinformation
behindtheAV
Explainability
Transparencyisstrictlyrelatedtoprivacy
anddatagovernance.Themanufacturers
mustprovideinformationaboutdatacol
lectionandtheiruse.
Moreoverdriversmustbeawareofthe
AV’smechanismsforaccountability.
Transparencyalsoregardstherighttoex
planation.DriversneedtotrustAVs,thus
transparencyandcommunicationofthe
underlyingfunctionalitymustbeclearly
explainedinawayhumanscanunder
stand.ExplainableArtificialIntelligence
studiestheseaspectsthatarecrucialin
smartcitieswherehumansandmachines
continuouslyinteract[100]
Diversity,nondis
criminationand
fairness
Intelligentsystems
learnfromavailable
dataandtheycanbebi
ased
Nodistinctionbetweenindividualsmust
beapplied.Thiscouldseemobvious,
sinceitisclearlystatedintheUniversal
Sensors2021,21,214331of45
Nodistinctionbetween
individualsmustbeas
sured
DeclarationofHumanRights,butitis
alsowellknownthatsystemsbasedonar
tificialintelligencecanbebiasedbythe
datausedtotraintheirmodels.Ithasal
readyhappened,indifferentdomains,
that“intelligentsystems”havediscrimi
natedagainstsomeethnicgroups.
Societalandenvi
ronmentalwellbe
ing
Whatwillbetheconse
quencesofanetimpact
ofintroducingAVs?
TheuseofAVsmustensureanincreasein
publichealthandmobility,reducethe
trafficflow,anddecreasecarbonemis
sions.
However,thereisuncertaintyregarding
thespreadinginusingAVs.Thiscould
causeanincreaseintotalpollutionand
congestion.TheintroductionofAVsmust
becombinedwithinfrastructurechanges
aimedtofacilitateandoptimizetheAV
experience.
Accountability
Whowillberesponsible
foranymishappenings
onoroffroad?
Whowillbepunished
andheldguiltyforacci
dentsandbreaking
laws?
Howwilltheinsurance
companyhandleissues
relatedtoautonomous
vehicleclaims?
Aspreviouslydiscussed,theattributionof
liabilityandresponsibilityisanopenis
sue.
Whowillberesponsiblefortheactionsof
theautonomousvehicleinsituations
wheretheentirecontrolisinhandsofthe
vehicleitself?Isittheresponsibilityofthe
humanoperator,thecarcompanyorthe
algorithms?
Incaseofaccidents,AVscannotbere
sponsible,sincetheyarenotmoralagents.
Thefulldeploymentofautonomousvehi
clesontheroadneedswellestablished
lawsandregulationsgoverningtheliabil
ityandresponsibilities.
Moreover,oncethevehicle’scontrolisin
thehandsofanalgorithmorsoftware,
whatwillbethecriteriatodefinerisky
andsafedriving?Howwilltheinsurance
companieshandletheclaimsrelatedtoac
cidentsandroadsafetyissues?[101]
4.5.OutdoorNavigationTechnologies
Outdoornavigationrepresentsanimportantcomponentofoneoftheservicesthat
canbedeliveredtocitizensundersmartmobility.Inthissection,wementionsomeofthe
techniquesthatarebeingusedtoachievethatandserveasthebasistodeliverapplications
andservicestocitizensinordertoeaseoneofthemostcommontasksnowadays,namely
whenweareinunknownplacesoralsowhenwearetalkingaboutpeoplewithpermanent
ortemporarydisabilitiessuchasvisuallyimpairedpeople,autisticpeopleorpeoplein
wheelchairsforwhomnavigationrepresentsamajorissue.Oneofthemainandfirsttech
nologiesforoutdoornavigationistheGlobalPositioningSystem.Itisatthebaseofthe
guidancesystemsthatemergedincars,anditsmainlimitationisitslimitedaccuracy.GPS
technologywasfirstmadeavailablewithadeliberateerror—calledSelectedAvailability
(SA)—thatcouldcauseanerrorof100mforcivilianusage,whichhighlylimitedapplica
tionsthatneedtohaveanaccuratepositioning[102].AGPSreceiverisbasedonsignals
Sensors2021,21,214332of45
receivedfromseveralnongeostationarysatellites.Thefactthatthenumberofsatellites,
aswellastheirposition,isvariabledirectlyaffectstheaccuracy[103–106].Evenafterthe
SAlimitationwasoverin2000,theaccuracyachievedwithonlytheuseofGPSislimited
forsolutionssuchashighprecisionagricultureorpedestriannavigationinlocationswith
tallbuildings[107].Tosolvetheselimitations,alternativeshaveemerged,suchasthose
basedondifferentialcorrectionsandwhichsupportmethodssuchasRTKorDGPS,which
stillhavethesignaldegradedorhaveinterruptionsdependingontherangeandquality
oftransmission[108].DGPScanbedefinedasarealtimepositioningmethodthatmakes
useofatleasttwoGPSreceivers,oneinstalledatapointwithknowncoordinates(called
abaseorreferencestation)andtheothermovingalongagivenpathwhosecoordinates
needtobediscovered.Thebasestationcalculatesthedifferentialcorrectionsandtrans
mitsthemtothemobilereceiversothattheaccuracyofitslocationcanbeimproved.An
otherapproachistheuseofactivebeaconsthatcanuseradio,sonarorlaseranddetermine
thelocationofthepersonorobjectbasedonthetriangulationofthesignal.Thedelayin
receivingthesignalcausesinaccuracyinthelocationobtainedandtherearealsohigh
costsintheassociatedinfrastructure,whichrequirestheexistenceofmanybeacons[109].
Deadreckoningisanancientmaritimetermtodescribenavigationbasedonthestarting
positionandavelocityvectorcomposedofspeedanddirectionandhowlongthevelocity
ismaintainedtodeterminethenewposition[110].Thistechnique,appliedtopedestrian
navigation,measuresandanalyzesaperson’swayofwalkinginordertounderstandand
measuredisplacementinrelationtoaninitialpositionbasedonasetofsensorsthatallow
theextractionofspeedandaltitudeinformation.Thecalculatedpositioningisbaseden
tirelyontheinformationcollectedthroughsensors[111],theerrorbeingaccumulatedbe
causethecurrentpositioniscalculatedbasedonthepreviousone,andsoon.Thismethod
hasbeenusedinconjunctionwithGPStoimprovethedeterminationofauser’sposition
outdoors.Deadreckoningisalsobeingusedintermsofnavigationandvehiclelocation
[9],whereitispossibletoinstallodometerandopticalsensorsforwheeldirectiondetec
tionandachievealowcostsolution,however,keepingtheproblemoferroraccumula
tion.Visualpositioningisatechniquethataimstoovercometheimprecisionofoutdoor
positioningobtainedwithpreviousmentionedtechnologiesusingvisualelementssuch
asmarkers,landmarkscombinedwithcameraimagescapturedbyasmartphone.Google
iscurrentlydevelopingitsVisualPositioningSystem(VPS)whichisintegratedwith
GoogleMapssothat,basedonaugmentedreality,navigationtakesonanotherdimension
whileusingthecameratoinspectthesurroundings,inferpositionandadjustpositioning
andnavigationrecommendations[112].Thisisachievedthroughconsiderablecomputa
tionalpowercombinedwithalargesetofdataonthebackendthatallowstherecognition
ofthepositionbasedontheimagecapturedbythecameraofthemobilephone,mostly
throughbuildingsandtouristspots.Thisapproachisfocusedontheuseofknownland
marks(monuments,etc.)thatcanthereforequicklyandunambiguously,oratleastwith
greatprecision,identifytheuser’scurrentposition.Someoftheadvantagesofthisap
proachinclude[112,113]:higheraccuracythanGPS,andthereforeanalternativeforloca
tionswithtallbuildings,addedvalueforblindpeople,whetheronthestreets,ataschool
orinanestablishment,usefulforsituationswhereapersonislostwithoutknowingtheir
location,addedvalueforcompanies,whocanusethissystemtoprovidenavigationin
formationtotheircustomerstotraveltotheirestablishment,eitheronfootorusingpublic
transport,theavailabilityofapplicationinindoorandoutdoorenvironments,highscala
bilityandlowcost.Likealltechnologies,thisonetoohasitslimitationsandchallenges,
whichincludedifficulty,insomelocations,tohavelandmarksthatcanbeusedtoaccu
ratelyidentifyaparticularlocation,difficultyinmappingtheinteriorofallbuildings,vul
nerabilitytoluminosity,causingshadowswithimpactontheidentificationofplaces,and
thepossibilityofpeopleorobjectsbeingabletoblockthecapturedimageandthuspre
venttherecognitionofthelocation.Passivemarkersarebeingusedtoprovideanopti
mizedroutethatgoesthroughseveralpointsofinterest.Thecurrentlocationcanbeob
tainedthroughpassivemarkersthatarestrategicallyplacednearpointsofinterestswhich
Sensors2021,21,214333of45
havebeenpreviouslymappedtoaSpatialMapGraph,usingmachinelearning[114].Pas
sivemarkers,inanoutdoorenvironment,mightberepresentedthroughQRcodesthat
areplacedinplacessuchaslamppostsortrees.Anexampleofvisuallandmarkbased
localizationisreportedin[115],wheretheauthorspresentastudyonlocationbasedon
georeferencedlandmarks,whoseimagesarecollectedbycamerasinordertoserveasan
inputtothelocationfunctionalitythatallowstheattainmentofthepreciselocationofmi
croaerialvehiclesinanurbanenvironment.Theuseofvision/landmarkbasedposition
ingisalsoreportedin[116],wheretheauthorsdescribetwodifferentwaysofacting:on
theonehand,whattheycall“singlesnapshotbasedpositioning”,whichconsistsofob
taininganimageandcomparingitwithasetofimagespreviouslytakenandgeorefer
encedthroughanimagematchingalgorithm.Ontheotherhand,theypresentascenario
basedon“continuouslocalization”,whichiscombinedwithadeadreckoningcompass
allowinganaccuracyof10to15m.
5.EnablingTechnologiestoSupportSmartMobility
5.1.OverviewofEnablingTechnologies
Smartmobilityisagrowingtrendduetotheadventofseveraltechnologiesandcon
ceptsthat,whencombined,allowustothinkofsolutionsthatwilleffectivelymakeadif
ferenceinthefutureintermsofnewproductsandnewdataprocessingalgorithmsand
techniquesthatwillprovideusefulinformationtothecitizens,inordertoprovidemore
autonomyandmorewellbeingintheirdailylives.Thereareseveralenablingtechnolo
giesthatcanfacilitatethesmoothadoptionofsmartmobility.Figure9showsthesetech
nologies[117–123].
Figure9.Enablingtechnologiestosupportsmartmobility.
Blockchain:Blockchaintechnologycanprovideaprivacypreserved,transparentand
trustlessarchitectureformobilityservicesforinhabitants.BlockchainbasedInternetof
Vehicles(IoV)architecturecanbecreatedforimprovedinteractionandcommunication
betweenvehiclesaswellasimprovedtrackingandmanagementoftrafficwithinsmart
cities.
SmartSensorsandIoT:Intelligentandenergyefficientsensortechnologycanbeef
fectiveforsensingandcollectingrealtimetrafficandmobilitydataofthevehiclesaswell
astheinhabitantstoprovideeffectivemobilitymanagement.Smartsensorbasedstreet
lightsandtrafficsignalscanautonomouslymakeintelligentdecisionsonthebasisofreal
timesituationstofacilitatethesmoothmanagementoftraffic.
Sensors2021,21,214334of45
ArtificialIntelligence(AI):Onthebasisofthedatacollectedfromdifferentsources,
AIbasedalgorithmscanbedevelopedtoprovideautonomousdecisionsaswellasfuture
predictionsaboutdifferentmobilityrelatedservicesandentities,suchastheconditions
ofroads,traffic,andstreetlights.Additionally,datacentricAIalgorithmscanbeusedby
organizationsforcustomercentrictargetmarketing.
GeospatialTechnologies:Intelligentgeospatialtechnologiescanprovideaccuratein
formationforthetrackingandtracingofvehiclesandcitizens.Thesetechnologiescanalso
facilitatealternativeroutesmanagementincaseofemergenciesanddisasters.
BigData:BigDataformsthebackboneofthesmartcityecosystem.Theenormous
amountofdatageneratedfromthesensorsandIoTdevicescanprovidevaluableinfor
mationaboutthesubjectanditssurroundings.Thisinformationcanbeusedtoextract
valuableinformation.
CleanEnergy:Smartmobilitymustbecomplementedbycleanenergyalternatives.
Cleanenergysourcessuchassolarenergy,windenergy,hydroenergyandbiomass,etc.,
mustbeadoptedtoprovidezeroemissionfuelstopowerthesmartcityecosystem.
Figure10showshowsomeoftheseconceptscancontributetosmartmobilityservices
andinfrastructures,startingfromthehardwarelevelgatheringdatabasedonanIoTlayer
composedofseveraldevicesonmultiplelevels;next,anaggregationlayerwithBigData
andthecreationofdatasetswithahugeamountofdata;andfinally,theprocessingofthat
informationusingAIthatwillalsoallowthepredictionoftrendsandsupportdecision
making.Allthiscombinedallowsthedeliveryofendservicestocitizenstoimprovemo
bilityinsmartcities.
Figure10.Contributionofsomeoftheenablingtechnologiestosmartmobility.
TheconceptofBigDataisanemergingtermthatisgainingmoreandmoreemphasis
giventhetechnologicalevolutionwearewitnessingandtheheterogeneityofsystemsand
sensorsthatemergeandwhichapplytovariousdomains.Atitsbase,thisconceptisin
trinsicallylinkedtotheexistenceoflargevolumesofdata,collectedfromvarioussources
and,therefore,heterogeneous.TherelevanceofBigDataonlyariseswheninformation
Sensors2021,21,214335of45
processingtechniquesareappliedtothesedatasothatpredictiveinformationandpattern
analysiscanhelptheminmakingdecisions.Thesourcesthatnowfeeddataintotheda
tasetsthatmakeupBigDataareimmenseandincludesmartphones,datafromsocialnet
works,vehiclesensors,GPSandlocationapplications,trafficlightsensorsandotherroad
locations,publicagencies,connectedcars,andcamerafeeds.
TheGeneralDataProtectionRegulationmayconstituteanobstacletotheuseand
adoptionofBigDatainsmartmobilityservices.Someexamplesinclude:
Realtimeinformationaboutthelocationcollectedfromsmartphonesthatcanbe
usedforvariousservicesonpeople’smobilitycanbeamajorbarrierintermsofpri
vacy;
Thecollectionofimagesofpeopleobtainedfromservicesformappingandrecogni
tionpurposes;
Theonboardunitsofthevehiclesmightbeassociatedwithplatenumberswhichare
consideredindirectidentifiers;
Thelackofverificationoftheaccuracyandrelevanceoftheinformationcollected.
BigData,combinedwithAItechniques,canallowsignificantimprovementsinsev
eralaspectsanddimensionsofsmartmobility[124]:
Portscalescanbeoptimizedifdataaresharedinadvanceinordertoimproveplan
ningandresourceallocation.InHamburg,forexample,electricvehiclesandreal
timenavigationareusedtoensurethesmoothflowoftrafficandthusreducecon
gestion;
Trafficlightscanbecontrolledbasedontrafficflowifthenecessarydataarecollected.
Inthisway,trafficincitiescanbeoptimizedandcongestioncanbereduced.Thisis
anexamplecurrentlyinpracticeinthecityofHongKong;
IoTsensorsandCCTVcamerascanalsobeusedfortrafficmanagement,thusreduc
ingcongestion;
Opendataaboutmobilitycanbeofaddedvaluetocitizensthatcanbeawareofreal
timetrafficdataandplantheirdaywithmoreinformationsoitcanbemoreefficient;
Parkingspacescanbemonitored,anddriverscanreduceparkingtimeandalsoCO2
emissions;
Ondemandandmoreadaptivemodesofcapacityplanningandoperationscanbe
achievedusingdatafromsensors,camerasandvehiclessothatinformationtocom
muterscanbegivensotheycanplantheirroutesmoreefficiently;
Fleetefficiencycanbeobtainedbycombiningrealtimetrafficdatatoproduceroute
optimizationusingAItechniques,reducingwaittimesandoptimizingenergycon
sumption;
Increasecitizens’securitybypreventinganomalydetectionandanticipatinginci
dents.
5.2.RoleofEnablingTechnologiesinSmartMobilityServicesandApplications
Inthissection,ananalysisismadeofthecurrentuseofenablingtechnologiesinthe
mainservicesandapplicationsintheareaofsmartmobilityaspreviouslydiscussedin
Section4.
5.2.1.RoleinMobilityasaService
InMaaSsystems,acentraloperatormadeavailablethroughanintermediatelayerof
thesystembecomesessentialtomanageallcommunicationbetweentransportcompanies,
passengersandotherstakeholdersofthesystem.In[125],theauthorsproposeablock
chainbasedsolutionthateliminatesthisintermediatelayer,promotingtrustandtrans
parencyamongallstakeholdersandeliminatingtheneedforcommercialagreementsbe
tweenthevariousMaaSagents.In[126],easy,quickandtrustedtransactionsarecovered,
usingAIandblockchainenabledsmartcontracts.
Sensors2021,21,214336of45
TheuseofgeospatialtechnologieshasbigapplicabilityinMaaSsolutions,bringing
addedvaluetotheentiresystemandassociatedservices.Oneexampleisthemonitoring
ofcommuters.In[127],theauthorsexploitMultiaccessEdgeComputing(MEC)topro
poseaMaaSsolutionthatcollectsandprocessesdatarelatedtothemobilityofcommuters
inordertobeabletorecommendoptimizedroutestakingintoaccounttheneedsand
preferencesofeachcommuter.Anotherstudy[128]alsousesMEC,IoTmessagingproto
colsandvirtualization(i.e.,digitaltwins)intheproposalofaframeworkthatcollectsdata
aboutcommutersinordertofeedthemonitoringofmobilitybythetransportplanning
solutions.
TheuseofBigDatainMaaSsystemsispresentintheaforementionedsolutionsthat
collectandprocessdatafromcommuters[127,128].Aspecificbigdataarchitectureispre
sentedin[129],motivatedbythespecificrequirementsofmobilityanalytics.
Withregardtocleanenergy,theentireconceptofMaaSrecommendstheprogressive
transitionfromprivatetopublicandsharedtransport,includingcarpoolingandcarshar
ing.Thisparadigmshiftwillbringwithitaconsequentreductioninvehiclesandtheemis
sionofCO2intotheatmosphere.In[130],theauthorspresentastudyofwhenthetransi
tiontoMaaScouldhappenonalargerscaleandwhatimpactitwillhaveonthechoiceof
formsofmobility.
5.2.2.RoleinTrafficFlowOptimizationandOptimizationofLogistics
Trafficoptimizationisoneoftheprimaryneedsintermsofmobility.In[131],the
authorsproposeablockchainbasedapproachfocusedonairtrafficoptimization,where
blockchaintechnologyisusedtoensureasecure,transparentanddecentralizedplatform.
Thetransportsector’scontributiontoCO2emissionsis23%,withtrafficcongestion
accountingfor¾ofthisvalue[132],hencetheoptimizationofthetrafficflow(privateand
alsofromthepointofviewoflogistics)isessentialifCO2emissionsaretobereduced.
Realtimeanalysisoftrafficinformationisessentialtoefficientlymanageurbantraf
fic.In[133],theauthorsproposethemonitoringandanalysisoftrafficthroughunmanned
aerialvehicles(UAV)forrealtimevideocollection,andartificialintelligencetechniques
fortheprocessingandidentificationofmovingobjects.In[134],theauthorsproposea
modelforcollectingandanalyzingtrafficpatterns,usingcamerasatintersectionsinorder
tohelpreducetrafficcongestion.Inordertoreducenetworkcongestion,theauthorspro
poseprocessingattheedge,withoutsendingtheBigDatasettothecloud.Processingis
performedusingdeeplearningtechniquesandalgorithms.Isitimportanttohighlight
thatthesetypesofapproachescanalsohelptosolveproblemsrelatedtotransportation
morerelatedtothelogisticssector.
TheuseofsensorsandanIoTnetworkfortrafficmonitoringandoptimizationisthe
resultofnumerouscontributionsintheliterature[135].In[136],asolutionisproposedto
optimizethetrafficflowatintersectionsbasedonultrasonicsensorsintegratedwitha
RaspberryPithatoperateontheroadlines,takingintoaccountthedensityofthetraffic.
TheauthorsstresstheimportanceofusingIoTtodriveforsmartersafetyandsaferdevices
ontheroad.
Theperformanceofthevariousstakeholdersofthesupplychains,including
transportlogistics,needstransparencysothatitcanbeaconnected,intelligentandeffi
cientsystem.In[137],theauthorsproposeanewapproachtotheuseofblockchainto
ensuretheintegrityoftheperformancemonitoringofthelogisticssector.Ontheother
hand,in[138],andgiventhelackofatraceabilitymechanisminthelogisticaltransaction,
aswellastheintegrityandsecurityoftheinformation,theauthorsproposeatraceability
algorithminlogisticaltransactionsbasedonblockchain.
5.2.3.RoleinAutonomousVehicles
Theadoptionofblockchaininautonomousvehiclesalreadyhasseveralproposalsin
theliterature.Oneofitsapplicationsistosupportasystemthatstoreseventsthathap
penedintheautonomousvehicleandthatcanbeusefulwhenthereisanaccidentbetween
Sensors2021,21,214337of45
vehiclesorinvolvingahumanbeing[139].Inthesesituations,responsibilitymustbede
cidedonthebasisofasystemthatmakesitpossibletounderstandthevariouseventsthat
havetakenplaceintheautonomousvehicle.AnotherapplicationoftheblockchaininAVs
isrelatedtocarsharingorcarpoolingandtheguaranteeoftrustthatisintendedtoexist
amongeveryoneinvolvedinthistypeofsystem,whichisalsodirectlylinkedtothecon
ceptofMaaS[140].Blockchainandsmartcontractsarealsobeingusedtoensuretheau
thenticityandintegrityofthefirmwareupdateprocessbymanufacturersofthesystems
thatsupportAVs,whichareincreasinglysubjecttoattacks[141].
Geospatialtechnologiesaimattrackingandtracingvehiclesandpedestrians,thus
providingarangeofmobilityservices.In[142],asystemispresentedthattracksandmon
itorstheautonomousvehicleinrealtimeusingaFrequencyModulatedContinuousWave
(FMCW)radar.In[143],theauthorsproposeamodeltoaddresstheaccuracyoftracking
andvehiclestability.Themodelaimstoperformthepredictivecontrolthatintendsto
monitoranydeviationsinthetrajectoryinordertokeepthevehiclestable,evenathigh
speed.
OneoftherelevantaspectswithregardtoAVsisthechoiceofoptimaltrajectory.
Thischoice,in[144],ismadebytheauthorsusingBigDataminingandtheanalysisofreal
accidentdataaswellasrealtimedatafromconnectedvehicles.In[145],theauthorspro
poseanautonomousaccidentdetectionsysteminrealtimebasedoncomputationalintel
ligencetechniques.ThestudyusesBigDataprocessingmethodologiestoanalyze2015
trafficflowdatafromIstanbulcollectedfromdifferentsensors,whicharealsointrinsically
relatedtohowautonomousvehiclesareconnectedtotheInternetofThings.
Autonomousvehiclesrepresentthefuture,inwhichvehiclesareexpectedtobecon
nectedandelectric.Thisevolutionisdirectlylinkedtoclimateandenvironmentalsustain
ability,takingintoaccountanEUdirectivethatrequiresa40%reductioninCO2by2030
comparedto1990.ThereductioninCO2emissionsfromvehiclesgoeslargelythroughthe
transitionforelectricvehicles[146].
Visionbasedartificialintelligenceinautonomousvehiclesallowsasetoffeatures
includingthedetectionofobstaclesaswellasmechanismstoavoidthem[147].In[148],
theauthorsproposeawaytoincreasetheprocessingpowertoestimatethedistanceto
obstaclesusingComputeUnifiedDeviceArchitecture(CUDA)alongwithBelievePropa
gationAlgorithm(BPA).TheuseofAIforinvehiclevisionsystemstopowerAdvanced
DrivingAssistantSystems(ADAS)isexploredin[149].
Table7summarizes,foraneasierunderstanding,thestudiesthatapplyeachoneof
thetechnologiestothesmartmobilityserviceorapplication.
Table7.Summaryofstudiesthatapplyenablingtechnologiestomainservicesandapplicationof
smartmobility.
AutonomousVe
hicles
Optimizationof
Logistics
Mobilityasa
Service
TrafficFlowOp
timization
Blockchain[139–141][137
,
138][125
,
126
,
140][131]
Geospatialtech
nologies[142,143][133,134][127,128][133,134]
BigData[144
,
145][134][127–129][134]
CleanEnergy[146][132][130][132]
ArtificialIntelli
gence[147–149][133,134][126][133,134]
IoT[142][145][135][136][128][135
,
136]

Sensors2021,21,214338of45
6.FutureTrendsonSmartUrbanMobility
Smartmobilitysolutionsarecatalyzingaparadigmshiftintheareaofmobilityman
agementinsmartcities.Severalinnovativeapproachesarebeingdevisedtoimprovethe
stateoftheartofsmartmobility.Afewimportantfactorstobeconsideredinclude:
Mobilityindegradedvision
Electricvehicles
Alternatefuels
Mobilitysolutionsinnaturalcalamitiesanddisasters
Mobilityfordifferentlyabledcitizens
Inclusive,environmentfriendly,sustainableandefficienttransportation
IoTbaseddynamictrafficmanagement
Transparentanddistributedtrafficmanagement
Securityofcitizens,devicesandvehicles.
ArtificialIntelligenceisoneofthepioneeringtechnologiesbeingexploitedinrecent
yearstoprovidestateoftheartmobilitysolutions.Deeplearningbasedobjectdetection
andidentificationcanbeusedtoprovideimprovedvisibilityinconditionsofdegraded
vision(suchaslowlightareas,foggy,windyorrainyenvironments)[150–152].IoTbased
roadconditionmonitoring,environmentmonitoring,andsurroundingmonitoringcan
provideunprecedentedinformationwhichcanbeusedtopredictfutureconditionstoaid
inthedesiredcourseofactions.Blockchaintechnologycanprovideadistributed,trans
parent,andimmutableVehicletoEverything(V2X)networkforeffective,securedand
privacypreservedmanagementofthesmartmobilityecosystem[153–156].Technology
forlowcarbonemissions,alternativefuels,electricvehiclesandimprovedbatteriescan
alsoaidintheprotectionoftheenvironmentandattainingsustainabledevelopmentgoals
forbetterenvironmentforabetterqualityoflife(QoL).Extensiveresearchwasconducted
inthefieldofcommunicationstoprovideconnectivityintimesofnaturalcalamityand
disasters[157,158].Affordablesatellitebasedcommunicationtechnologiesarebeingex
ploredtoprovideconnectivityinextremeandunavoidableconditions.
7.Conclusions
Thelastfewyearshavealreadymadesomeadvancesandthefirststepstowardsthe
constructionoffuturesmartcitiesknown,namelyintermsofmobility.Theincreaseinthe
worldpopulationinevitablyhasconsiderableconsequencesonthewayurbanmobility
operates,notleastbecausecitieswereplanneddecadesorevenhundredsofyearsago,
takingintoaccountamuchsmallerpopulationandwhereinfrastructureneedswerevery
different.Achallengenowarisesinadaptingcitiestocurrentneeds.However,theevolu
tiontowardscitiesandsmartmobilitywillnotinvolvemakingmorespaceforvehiclesor
moreroads;rather,itwillundergoaculturalparadigmshiftinwhichpeoplewillhaveto
stopusingtheirprivatecarstoswitchtosharedtransport,whichmaythusreducenot
onlythenumberofvehiclesincirculation,butalsocontributetoreducingtheecological
footprint.Inadditiontothetechnologicalissueassociatedwiththischange,wealsohave,
andinaverymarkedway,anunderlyingculturalchangebecausethereisacertaincom
fortandfacilitationintheuseofourowncarsthatwillnotbeeasytochangefromone
momenttothenext.Citizensmustrealizethenegativeconsequencesfortheenvironment
ofmaintainingthecurrentstateandtheimpossibilityofmanagingsomanycarswithin
thecitieswiththehighestpopulationdensity,andwhiletheremustbeanefforttoraise
awarenessofthebenefits,wewillallgainfromthisculturalandparadigmshift.
Technologyanditsexponentialevolution,whichisexpectedtocontinueinthecom
ingyears,willsupportthetransitionfromSmartMobilitytoaMobilityasaServicepar
adigm,wherevehiclesharing,carsharing,andcarpoolingwillbringtheemergenceofa
newdimension.TheIoTandtheconnectivitythatwillbeabletobeestablishedbetween
vehicles,trafficlights,andpedestrians,amongothers,willallowtheevolutiontointelli
genttrafficmanagementsystemswithreducedcongestionandeventhenumberof
Sensors2021,21,214339of45
accidents,whichisthemainpremisethatLevel5AutonomousVehiclesintendtoachieve.
Tothisend,wewillhavethebigcontributionofBigDataandAIthat,together,willpro
cessgiganticvolumesofinformationcollectedfromtheIoTandwillallowservicestobe
madeavailabletocitizensthatwillmaketheirdailylivesmucheasierandwillallowpre
ventiveactionindecisionmakingwithregardtothemanagementofvehicle,fleetand
pedestriantraffic.
AuthorContributions:Conceptualization,M.A.A.,S.P.andG.T.;methodology,S.P.,G.C.andN.F.;
formalanalysis,M.A.A.,G.T.,G.C.;investigation,S.P.,G.C.andN.F.;resources,M.A.A.,S.P.,G.T.;
datacuration,N.F.,G.C.,G.T.;writing—originaldraftpreparation,M.A.A.,S.P.,G.T.;writing—re
viewandediting,N.F.,G.C.S.P.;supervision,M.A.A.,G.T.,N.F.;fundingacquisition,G.C.Allau
thorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
Acknowledgments:GabriellaCasalinoacknowledgesfundingfromtheItalianMinistryofEduca
tion,UniversityandResearchthroughtheEuropeanPONprojectAIM(AttractionandInternational
Mobility),nr.1852414,activity2,line1.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. UnitedNations.TransformingOurWorld:The2030AgendaforSustainableDevelopment.2020.Availableonline:https://sus
tainabledevelopment.un.org/post2015/transformingourworld(accessedon21January2021).
2. UnitedNations.WorldPopulationProspects.2020.Availableonline:https://population.un.org/wpp/Graphs/Probabilis
tic/POP/TOT/900(accessedon2March2021).
3. Gouveia,J.P.;Seixas,J.;Giannakidis,G.SmartCityEnergyPlanning.InProceedingsofthe25thInternationalConferenceCom
paniononWorldWideWeb—WWW’16Companion,Montréal,QC,Canada,11–16April2016;pp.345–350,
doi:10.1145/2872518.2888617.
4. Ruhlandt,R.W.S.Thegovernanceofsmartcities:Asystematicliteraturereview.Cities2018,81,1–23.
5. Amoretti,M.;Belli,L.;Zanichelli,F.UTravel:Smartmobilitywithanoveluserprofilingandrecommendationapproach.Per
vasiveMob.Comput.2017,38,474–489.
6. Belbachir,A.;ElFallahSeghrouchni,A.;Casals,A.;Pasin,M.Smartmobilityusingmultiagentsystem.ProcediaComput.Sci.
2019,151,447–454.
7. Backhouse,J.Ataxonomyofmeasuresforsmartcities.InProceedingsofthe13thInternationalConferenceonTheoryand
PracticeofElectronicGovernance,Athene,Greece,23–25September2020.
8. Mirri,S.;Prandi,C.;Salomoni,P.;Callegati,F.;Melis,A.;Prandini,M.Aserviceorientedapproachtocrowdsensingforacces
siblesmartmobilityscenarios.Mob.Inf.Syst.2016,2016,2821680.
9. Lopez,D.;Farooq,B.Amultilayeredblockchainframeworkforsmartmobilitydatamarkets.Transp.Res.PartCEmerg.Technol.
2020,111,588–615.
10. Bravo,Y.;Ferrer,J.;Luque,G.;Alba,E.(2016,June).Smartmobilitybyoptimizingthetrafficlights:Anewtoolfortrafficcontrol
centers.InInternationalConferenceonSmartCities;Springer:Cham,Switzerland,2016;pp.147–156.
11. Aletà,N.B.;Alonso,C.M.;Ruiz,R.M.A.SmartmobilityandsmartenvironmentintheSpanishcities.Transp.Res.Procedia2017,
24,163–170.
12. Camero,A.;Toutouh,J.;Stolfi,D.H.;Alba,E.Evolutionarydeeplearningforcarparkoccupancypredictioninsmartcities.In
InternationalConferenceonLearningandIntelligentOptimization;Springer:Cham,Switzerland,2018;pp.386–401.
13. Cledou,G.;Estevez,E.;Barbosa,L.S.Ataxonomyforplanninganddesigningsmartmobilityservices.Gov.Inf.Q.2018,35,61–
76.
14. Dameri,R.P.ICTintensityinsmartmobilityinitiatives.InSmartCityImplementation;Springer:Cham,Switzerland,2017;pp.
85–108.
15. Bucchiarone,A.Collectiveadaptationthroughmultiagentsensembles:Thecaseofsmarturbanmobility.AcmTrans.Auton.
Adapt.Syst.(Taas)2019,14,1–28.
16. DelVecchio,P.;Secundo,G.;Maruccia,Y.;Passiante,G.Asystemdynamicapproachforthesmartmobilityofpeople:Implica
tionsintheageofbigdata.Technol.Soc.Chang.2019,149,119771.
17. Debnath,A.K.;Chin,H.C.;Haque,M.M.;Yuen,B.Amethodologicalframeworkforbenchmarkingsmarttransportcities.Cities
2014,37,47–56.
18. Docherty,I.;Marsden,G.;Anable,J.Thegovernanceofsmartmobility.Transp.Res.PartAPolicyPr.2018,115,114–125.
Sensors2021,21,214340of45
19. TorresSospedra,J.;Avariento,J.;Rambla,D.;Montoliu,R.;Casteleyn,S.;BeneditoBordonau,M.;Huerta,J.Enhancinginte
gratedindoor/outdoormobilityinasmartcampus.Int.J.Geogr.Inf.Sci.2015,29,1955–1968.
20. Garau,C.;Masala,F.;Pinna,F.Benchmarkingsmarturbanmobility:AstudyonItaliancities.InInternationalConferenceon
ComputationalScienceandItsApplications;Springer:Cham,Switzerland,2015;pp.612–623.
21. Groth,S.Multimodaldivide:Reproductionoftransportpovertyinsmartmobilitytrends.Transp.Res.PartA:PolicyPr.2019,
125,56–71.
22. Battarra,R.;Gargiulo,C.;Tremiterra,M.R.;Zucaro,F.SmartMobilityinItalianMetropolitanCities:Acomparativeanalysis
throughindicatorsandactions.Sustain.CitiesSoc.2018,41,556–567.
23. Ilarri,S.;Stojanovic,D.;Ray,C.Semanticmanagementofmovingobjects:Avisiontowardssmartmobility.ExpertSyst.Appl.
2015,42,1418–1435.
24. Papa,E.;Lauwers,D.Smartmobility:Opportunityorthreattoinnovateplacesandcities.InProceedingsofthe20thInterna
tionalConferenceonUrbanPlanningandRegionalDevelopmentintheInformationSociety(REALCORP2015),Gent,Belgium,
5–7May2015;pp.543–550.
25. Jeekel,H.Socialsustainabilityandsmartmobility:Exploringtherelationship.Transp.Res.Procedia2017,25,4296–4310.
26. Kronsell,A.;MukhtarLandgren,D.ExperimentalGovernanceofSmartMobility:SomeNormativeImplications.InShaping
SmartMobilityFutures:GovernanceandPolicyInstrumentsintimesofSustainabilityTransitions;EmeraldPublishingLimited:
Bingley,UK,2020.
27. Garau,C.;Masala,F.;Pinna,F.Cagliariandsmarturbanmobility:Analysisandcomparison.Cities2016,56,35–46.
28. Kudo,H.Codesign,Cocreation,andCoproductionofSmartMobilitySystem.InInternationalConferenceonCrossCultural
Design;Springer:Cham,Switzerland,2016;pp.551–562.
29. Longo,A.;Zappatore,M.;Navathe,S.B.Theunifiedchartofmobilityservices:Towardsasystemicapproachtoanalyzeservice
qualityinsmartmobilityecosystem.J.ParallelDistrib.Comput.2019,127,118–133.
30. Lyons,G.Gettingsmartabouturbanmobility–aligningtheparadigmsofsmartandsustainable.Transp.Res.PartAPolicyPr.
2018,115,4–14.
31. Mangiaracina,R.;Perego,A.;Salvadori,G.;Tumino,A.Acomprehensiveviewofintelligenttransportsystemsforurbansmart
mobility.Int.J.Logist.Res.Appl.2017,20,39–52.
32. Mboup,G.Smartinfrastructuredevelopmentmakessmartcities—PromotingsmarttransportandICTindakar.InSmartEcon
omyinSmartCities;Springer:Singapore,2017;pp.871–904.
33. Melo,S.;Macedo,J.;Baptista,P.Guidingcitiestopursueasmartmobilityparadigm:Anexamplefromvehicleroutingguidance
anditstrafficandoperationaleffects.Res.Transp.Econ.2017,65,24–33.
34. Ning,Z.;Xia,F.;Ullah,N.;Kong,X.;Hu,X.Vehicularsocialnetworks:Enablingsmartmobility.IEEECommun.Mag.2017,55,
16–55.
35. Orlowski,A.;Romanowska,P.SmartCitiesConcept:SmartMobilityIndicator.Cybern.Syst.2019,50,118–131.
36. Pangbourne,K.;Stead,D.;Mladenović,M;Milakis,D.Thecaseofmobilityasaservice:Acriticalreflectiononchallengesfor
urbantransportandmobilitygovernance.InGovernanceoftheSmartMobilityTransition;EmeraldPublishingLimited:Bingley,
UK,2018;pp.33–48.
37. Peprah,C.;Amponsah,O.;Oduro,C.AsystemviewofsmartmobilityanditsimplicationsforGhanaiancities.Sustain.Cities
Soc.2019,44,739–747.
38. Pereira,J.;Ricardo,L.;Luís,M.;Senna,C.;Sargento,S.Assessingthereliabilityoffogcomputingforsmartmobilityapplications
inVANETs.FutureGener.Comput.Syst.2019,94,317–332.
39. Schlingensiepen,J.,Nemtanu,F.,Mehmood,R.,McCluskey,L.Autonomictransportmanagementsystems—Enablerforsmart
cities,personalizedmedicine,participationandindustrygrid/industry4.0.InIntelligentTransportationSystems–Problemsand
Perspectives;Springer,Cham,Switzerland,2016;pp.3–35.
40. Faria,R.;Brito,L.;Baras,K.;Silva,J.Smartmobility:Asurvey.InProceedingsofthe2017InternationalConferenceonInternet
ofThingsfortheGlobalCommunity(IoTGC),Funchal,Portugal,10–13July2017;pp.1–8.
41. Turetken,O.;Grefen,P.;Gilsing,R.;Adali,O.E.Servicedominantbusinessmodeldesignfordigitalinnovationinsmartmobil
ity.Bus.Inf.Syst.Eng.2019,61,9–29.
42. Yigitcanlar,T.;Kamruzzaman,M.Smartcitiesandmobility:DoesthesmartnessofAustraliancitiesleadtosustainablecom
mutingpatterns?J.UrbanTechnol.2019,26,21–46.
43. Zawieska,J.;Pieriegud,J.Smartcityasatoolforsustainablemobilityandtransportdecarbonisation.Transp.Policy2018,63,39–
50.
44. Singh,Y.J.Issmartmobilityalsogendersmart?J.Gend.Stud.2020,29,832–846.
45. Zhang,M.;Zhao,P.;Qiao,S.Smartnessinducedtransportinequality:Privacyconcern,lackingknowledgeofsmartphoneuse
andunequalaccesstotransportinformation.Transp.Policy2020,99,175–185.
46. Deebak,B.D.;AlTurjman,F.AsmartlightweightprivacypreservationschemeforIoTbasedUAVcommunicationsystems.
Comput.Commun.2020,162,102–117.
47. Oliveira,T.A.;Oliver,M.;Ramalhinho,H.Challengesforconnectingcitizensandsmartcities:ICT,egovernanceandblock
chain.Sustainability2020,12,2926.
48. Dowling,R.Smartmobility:Disruptingtransportgovernance?InGovernanceoftheSmartMobilityTransition;EmeraldPublishing
Limited:Bingley,UK,2018.
Sensors2021,21,214341of45
49. Docherty,I.Newgovernancechallengesintheeraof‘Smart’mobility.InGovernanceoftheSmartMobilityTransition;Emerald
PublishingLimited:Bingley,UK,2018.
50. Putnam,D.;Kovacova,M.;Valaskova,K.;Stehel,V.Thealgorithmicgovernanceofsmartmobility:Regulatorymechanismsfor
driverlessvehicletechnologiesandnetworkedautomatedtransportsystems.Contemp.Read.LawSoc.Justice2019,11,21–26.
51. DeBlas,I.;Mediavilla,M.;CapellánPérez,I.;Duce,C.Thelimitsoftransportdecarbonizationunderthecurrentgrowthpara
digm.EnergyStrategyReviews,2020,32,100543.
52. ElDin,D.M.;Hassanien,A.E.;Hassanien,E.E.(2020).Informationintegrityformultisensorsdatafusioninsmartmobility.In
TowardSocialInternetofThings(SIoT):EnablingTechnologies,ArchitecturesandApplications;Springer,Cham,Switzerland,2020;
pp.99–121.
53. Saponara,S.;Neri,B.(2016,April).Radarsensorsignalacquisitionand3DFFTprocessingforsmartmobilitysurveillancesys
tems.InProceedingsofthe2016IEEESensorsApplicationsSymposium(SAS),Catania,Italy,20–22April2016;pp.1–6.
54. GarciaFont,V.;Garrigues,C.;RifàPous,H.Acomparativestudyofanomalydetectiontechniquesforsmartcitywirelesssensor
networks.Sensors2016,16,868.
55. Adam,M.S.;Anisi,M.H.;Ali,I.Objecttrackingsensornetworksinsmartcities:Taxonomy,architecture,applications,research
challengesandfuturedirections.FutureGener.Comput.Syst.2020,107,909–923.
56. Jin,X.;Feng,C.;Ponnamma,D.;Yi,Z.;Parameswaranpillai,J.;Thomas,S.;Salim,N.Reviewonexplorationofgrapheneinthe
designandengineeringofsmartsensors,actuatorsandsoftrobotics.Chem.Eng.J.Adv.2020,4,100034.
57. Krech,M.;Trunk,A.;Groche,P.Controllingthesensorpropertiesofsmartstructuresproducedbymetalforming.ProcediaEng.
2017,207,1415–1420.
58. Nkenyereye,L.;Islam,S.R.;Bilal,M.;AbdullahAlWadud,M.;Alamri,A.;Nayyar,A.Securecrowdsensingprotocolforfog
basedvehicularcloud.FutureGener.Comput.Syst.2021,120,61–75.
59. Sun,G.;Sun,S.;Sun,J.;Yu,H.;Du,X.;Guizani,M.Securityandprivacypreservationinfogbasedcrowdsensingontheinternet
ofvehicles.J.Netw.Comput.Appl.2019,134,89–99.
60. Chourabi,H.;Nam,T.;Walker,S.;GilGarcia,J.R.;Mellouli,S.;Nahon,K.;Pardo,T.A.;Scholl,H.J.Understandingsmartcities:
Anintegrativeframework.InProceedingsofthe201245thHawaiiInternationalConferenceonSystemScience(HICSS),Maui,
HI,USA,4–7January2012;pp.2289–2297.
61. Danesin,A.;Linares,P.Therelevanceofthelocalcontextforassessingthewelfareeffectoftransportdecarbonizationpolicies.
Astudyfor5Spanishmetropolitanareas.EnergyPolicy,2018,118,41–57.
62. Benevolo,C.;Dameri,R.P.;D’auria,B.Smartmobilityinsmartcity.InEmpoweringOrganizations;Springer:Cham,Switzerland,
2016;pp.13–28.
63. Mark,S.;Chen,H.;Teng,Y.;Edgar,E.;Koh,J.MobilityasaService.2018.Availableonline:https://www.eurobiz.com.cn/mo
bilityasaservice/(accessedon12December2020).
64. AI4CITIES.Mobility.2020.Availableonline:https://ai4cities.eu/challenges/mobility(accessedon12December2020).
65. Hietanen,S.MobilityasaService.NewTransp.Model2014,12,2–4.
66. Giesecke,R.;Surakka,T.;Hakonen,M.Conceptualisingmobilityasaservice.InProceedingsofthe2016EleventhInternational
ConferenceonEcologicalVehiclesandRenewableEnergies(EVER),MonteCarlo,Monaco,6–8April2016;pp.1–11.
67. Jittrapirom,P.;Caiati,V.;Feneri,A.M.;Ebrahimigharehbaghi,S.;AlonsoGonzález,M.J.;Narayan,J.Mobilityasaservice:A
criticalreviewofdefinitions,assessmentsofschemes,andkeychallenges.UrbanPlan.2017,2,13.
68. Ren,K.;Wang,Q.;Wang,C.;Qin,Z.;Lin,X.Thesecurityofautonomousdriving:Threats,defenses,andfuturedirections.Proc.
Ieee2019,108,357–372.
69. Parkinson,S.;Ward,P.;Wilson,K.;Miller,J.Cyberthreatsfacingautonomousandconnectedvehicles:Futurechallenges.IEEE
Trans.Intell.Transp.Syst.2017,18,2898–2915.
70. deSouza,A.M.;Brennand,C.A.;Yokoyama,R.S.;Donato,E.A.;Madeira,E.R.;Villas,L.A.Trafficmanagementsystems:Aclas
sification,review,challenges,andfutureperspectives.Int.J.Distrib.Sens.Netw.2017,doi:10.1177/1550147716683612.
71. DeSouza,A.M.;Yokoyama,R.;Boukerche,A.Icarus:Improvementoftrafficconditionthroughanalertingandreroutingsys
tem.Comput.Netw.2016,110,118–132.
72. Karagiannis,G.;Altintas,O.;Ekici,E.Vehicularnetworking:Asurveyandtutorialonrequirements,architectures,challenges,
standardsandsolutions.Ieee.Commun.Surv.Tutor.2011,13,584–616.
73. USDoT.TrafficCongestionandReliability:TrendsandAdvancedStrategiesforCongestionMitigation.2015.Availableonline:
http://www.ops.fhwa.dot.gov/congestion_report/chapter2.htm(accessedon21January2021).
74. Rakha,H.;Kamalanathsharma,R.Ecodrivingatsignalizedintersectionsusingv2icommunication.InProceedingsofthe2011
14thInternationalIEEEConferenceonIntelligentTransportationSystems(ITSC),Washington,DC,USA,5–7October2011;
pp.341–346.
75. Barba,C.;Mateos,M.;Soto,P.Smartcityforvanetsusingwarningmessages,trafficstatisticsandintelligenttrafficlights.In
Proceedingsofthe2012IEEEIntelligentVehiclesSymposium(IV),AlcaládeHenares,Spain,3–7June2012;pp.902–907.
76. Bauza,R.;Gozálvez,J.Trafficcongestiondetectioninlargescalescenariosusingvehicletovehiclecommunications.J.Netw.
Comput.Appl.2013,36,1295–1307.
77. Younes,M.;Boukerche,A.Efficienttrafficcongestiondetectionprotocolfornextgenerationvanets.InProceedingsofthe2013
IEEEinternationalconferenceoncommunications(ICC),Budapest,Hungary,9–13June2013;pp.3764–3768.
Sensors2021,21,214342of45
78. Doolan,R.;Muntean,G.M.EcoTrec—AnovelVANETbasedapproachtoreducingvehicleemissions.IEEETrans.Intell.Transp.
2016,18,608–620.
79. Shukla,N.;Choudhary,A.K.;Prakash,P.K.S.;Fernandes,K.J.;Tiwari,M.K.Algorithmportfoliosforlogisticsoptimizationcon
sideringstochasticdemandsandmobilityallowance.Int.J.Prod.Econ.2013,141,146–166.
80. Petrovic,N.;Kocic,D.Adoptinglinearoptimizationtosupportautonomousvehiclesinsmartcity.InProceedingsofthe2019
27thTelecommunicationsForum(TELFOR),Belgrade,Serbia,26–27November2019;pp.1–4,doi:10.1109/TEL
FOR48224.2019.8971185.
81. Zoria,S.SmartCities:ANewLookattheAutonomousVehicleInfrastructure.2020.Availableonline:https://www.iot
forall.com/autonomousvehicleinfrastructure(accessedon18January2021).
82. Yaqoob,I.;Khan,L.U.;Kazmi,S.A.;Imran,M.;Guizani,N.;Hong,C.S.AutonomousDrivingCarsinSmartCities:RecentAd
vances,Requirements,andChallenges.IEEENetw.2019,34,174–181.
83. Lin,L.;Zhu,J.J.PathPlanningforAutonomousCarParking.InProceedingsoftheASME2018DynamicSystemsandControl
Conference,Atlanta,GA,USA,30September–3October2018;pp.1–10,doi:10.1115/dscc20189195.
84. Dave,R.;Boone,E.S.;Roy,K.EfficientDataPrivacyandSecurityinAutonomousCars.J.Comput.Sci.Appl.2019,7,31–36,
doi:10.12691/jcsa715.
85. SAE.TaxonomyandDefinitionsforTermsRelatedtoDrivingAutomationSystemsforOnRoadMotorVehicles.2018.Availa
bleonline:https://www.sae.org/standards/content/j3016_201806/(accessedon18January2021).
86. Taraba,M.;Adamec,J.;Danko,M.;Drgona,P.Utilizationofmodernsensorsinautonomousvehicles.InProceedingsofthe
2018ELEKTRO,Mikulov,CzechRepublic,21–23May2018;pp.1–5,doi:10.1109/ELEKTRO.2018.8398279.
87. Abbasi,I.A.;ShahidKhan,A.AReviewofVehicletoVehicleCommunicationProtocolsforVANETsintheUrbanEnvironment.
FutureInternet2018,10,14,doi:10.3390/fi10020014.
88. Jerbi,M.;Senouci,S.M.;Meraihi,R.;Doudane,Y.G.Animprovedvehicularadhocroutingprotocolforcityenvironments.In
Proceedingsofthe7thIEEEInternationalConferenceonCommunication,Glasgow,UK,24–28June2007;pp.3972–3979.
89. Liu,J.;Wan,J.;Wang,Q.Asurveyonpositionbasedroutingforvehicularadhocnetworks.J.Telecommun.Syst.Arch.2016,62,
15–30.
90. Lin,Y.W.;Chen,Y.S.;Lee,S.L.RoutingProtocolsinVehicularAdHocNetworks:ASurveyandFuturePerspectives.J.Inf.Sci.
Eng.2010,26,913–932.
91. Lee,K.C.;Lee,U.;Gerla,M.SurveyofRoutingProtocolsinVehicularAdHocNetworks.InAdvancesinVehicularAdHocNet
works:DevelopmentsandChallenges;InformationScienceReference(anImprintofIGIGlobal);IGIGlobal:NewYork,NY,USA,2009;
pp.113–175.
92. Bilal,S.M.;Khan,A.R.;Ali,S.Reviewandperformanceanalysisofpositionbasedroutingprotocols.Wirel.Pers.AreaCommun.
2016,1,559–578.
93. Brodsky,J.S.Autonomousvehicleregulation:Howanuncertainlegallandscapemayhitthebrakesonselfdrivingcars.Berkeley
Technol.LawJ.2016,31,851–878.
94. Pattinson,J.A.;Chen,H.;Basu,S.Legalissuesinautomatedvehicles:Criticallyconsideringthepotentialroleofconsentand
interactivedigitalinterfaces.Hum.Soc.Sci.Commun.2020,7,1–10.
95. Martinho,A.;Herber,N.;Kroesen,M.;Chorus,C.Ethicalissuesinfocusbytheautonomousvehiclesindustry.Transp.Rev.
2021,1–22,doi:10.1080/01441647.2020.1862355.
96. Holstein,T.;DodigCrnkovic,G.;Pelliccione,P.Ethicalandsocialaspectsofselfdrivingcars.arXiv2018,arXiv:1802.04103.
97. Coeckelbergh,M.Responsibilityandthemoralphenomenologyofusingselfdrivingcars.Appl.Artif.Intell.2016,30,748–757.
98. Birnbacher,D.;Birnbacher,W.Fullyautonomousdriving:Wheretechnologyandethicsmeet.IEEEIntell.Syst.2017,32,3–4.
99. Lütge,C.;Poszler,F.;Acosta,A.J.;Danks,D.;Gottehrer,G.;MihetPopa,L.;Naseer,A.AI4People:EthicalGuidelinesforthe
AutomotiveSector–FundamentalRequirementsandPracticalRecommendations.Int.J.Technoethics(Ijt)2021,12,101–125.
100. Alonso,J.M.;Mencar,C.BuildingCognitiveCitieswithExplainableArtificialIntelligentSystems.InProceedingsoftheCEX@
AI*IAConference,Bary,Italy,14–17November2017.
101. Hevelke,A.;NidaRümelin,J.Responsibilityforcrashesofautonomousvehicles:Anethicalanalysis.Sci.Eng.Ethics2015,21,
619–630.
102. Kaplan,C.J.;Hegarty,E.D.UnderstandingGPS:PrinciplesandApplications;ArtechHouse:Worwood,MA,USA,2006.
103. Kourogi,M.;Sakata,N.;Okuma,T.;Kurata,T.Indoor/OutdoorPedestrianNavigationwithanEmbeddedGPS/RFID/Selfcon
tainedSensorSystem.InAdvancesinArtificialRealityandTeleExistence.ICAT2006;Springer:Berlin/Heidelberg,Germany,2006.
104. Panzieri,S.;Pascucci,F.;Ulivi,G.AnoutdoornavigationsystemusingGPSandinertialplatform.Ieee/AsmeTrans.Mech.2002,
7,134–142.
105. Parkinson,B.W.;Spilker,J.J.GlobalPositioningSystem:TheoryandApplications;AmericanInstituteofAeronauticsandAstro
nautics:Reston,VA,USA,1996.
106. Wellenhof,B.H.;Lichtenegger,H.;Collins,J.GlobalPositioningSystem,5thed.;Springer:Berlin/Heidelberg,Germany,1992.
107. Lee,J.Globalpositioning/GPS.InInternationalEncyclopaediaofHumanGeography;Elsevier:Amsterdam,TheNetherland,
2009;pp.548–555.
108. Sejas,M.;Saatkamp,E.;Junior,J.PosicionamentoporDGPS:ExperimentosparaavaliaçãodastécnicasRDS,NTRIPeDGPS.
Rev.Bras.Geomática2013,1,8–16.
Sensors2021,21,214343of45
109. Lin,H.Y.;Lin,J.H.;Wang,M.L.Avisualpositioningsystemforvehiclenavigation.InProceedingsoftheIEEEConferenceon
IntelligentTransportationSystem,Vienna,Austria,16September2005.
110. Loewy,R.G.Avionics:AʺNewʺSeniorPartnerinAeronautics.AIAAJ.1999,37,1337–1354.
111. Zhang,M.;Yang,J.;Zhan,J.;Dai,Y.ADeadReckoningBasedLocalPositioningSystemforIntelligentVehicles.InProceedings
ofthe2019IEEEInternationalConferenceonPower,IntelligentComputingandSystems(ICPICS),Shenyang,China,12–14July
2019;pp.513–517.
112. WifiAttendance.VisualPositioningSystem—AllYouNeedtoKnow.Availableonline:https://www.wifiattend
ance.com/blog/visualpositioningsystem/(accessedon20January2021).
113. Shi,T.;Wang,H.;Cui,W.;Ren,L.Indoorpathplanningforhexrotoraircraftwithlandmarkbasedvisualnavigation.InPro
ceedingsofthe201512thInternationalConferenceonFuzzySystemsandKnowledgeDiscovery,FSKD2015,Zhangjiajie,China,
15–17August2016;pp.340–344.
114. Anup,S.;Goel,A.;Padmanabhan,S.Visualpositioningsystemforautomatedindoor/outdoornavigation.InProceedingsofthe
TENCON2017—2017IEEERegion10Conference,Penang,Malaysia,5–8November2017;pp.1027–1031.
115. Wendel,A.;Maurer,M.;Bischof,H.VisuallandmarkbasedlocalizationforMAVsusingincrementalfeatureupdates.InPro
ceedingsofthe2012SecondInternationalConferenceon3DImaging,Modeling,Processing,Visualization&Transmission,
Zurich,Switzerland,13–15October2012;pp.278–285.
116. Steinhoff,U.;Omerčević,D.;Perko,R.;Schiele,B.;Leonardis,A.Howcomputervisioncanhelpinoutdoorpositioning.In
EuropeanConferenceonAmbientIntelligence;Springer:Berlin/Heidelberg,Germany,2007;Volume4794,pp.124–141.
117. Zan,T.T.T.;Gueta,L.B.;Okochi,T.Enablingtechnologyforsmartcitytransportationindevelopingcountries.InProceedings
ofthe2015IEEEInternationalConferenceonSmartCity/SocialCom/SustainCom(SmartCity),Chengdu,China,19–21December
2015;pp.170–174.
118. Moscholidou,I.;Pangbourne,K.ApreliminaryassessmentofregulatoryeffortstosteersmartmobilityinLondonandSeattle.
Trans.Policy2020,98,170–177.
119. Sigg,S.;Fu,X.Socialopportunisticsensingandsocialcentricnetworking:Enablingtechnologyforsmartcities.InProceedings
ofthe2014ACMInternationalWorkshoponWirelessandMobileTechnologiesforSmartCities,Philadelphia,PA,USA,11
August2014;pp.83–90.
120. Balakrishna,C.Enablingtechnologiesforsmartcityservicesandapplications.InProceedingsofthe2012SixthInternational
ConferenceonNextGenerationMobileApplications,ServicesandTechnologies,Paris,France,12–14September2012;pp.223–
227.
121. Akabane,A.T.;Immich,R.;Madeira,E.R.;Villas,L.A.iMOB:Anintelligenturbanmobilitymanagementsystembasedonve
hicularsocialnetworks.InProceedingsofthe2018IEEEVehicularNetworkingConference,Taipei,Taiwan,5–7December2018.
122. Ahad,M.A.;Paiva,S.;Tripathi,G.;Feroz,N.Enablingtechnologiesandsustainablesmartcities.Sustain.CitiesSoc.2020,61,
102301.
123. Bhushan,B.;Khamparia,A.;Sagayam,K.M.;Sharma,S.K.;Ahad,M.A.;Debnath,N.C.Blockchainforsmartcities:Areviewof
architectures,integrationtrendsandfutureresearchdirections.Sustain.CitiesSoc.2020,61,102360.
124. Basis.Mobility.2020.Availableonline:https://basisai.com/industries/mobility(accessedon21January2021).
125. Nguyen,T.H.;Partala,J.;Pirttikangas,S.BlockchainBasedMobilityasaService.InProceedingsofthe201928thInternational
ConferenceonComputerCommunicationandNetworks(ICCCN),Valencia,Spain,29July–1August2019;pp.1–6,
doi:10.1109/ICCCN.2019.8847027.
126. Karinsalo,A.;Halunen,K.SmartContractsforaMobilityasaServiceEcosystem.InProceedingsofthe2018IEEEInternational
ConferenceonSoftwareQuality,ReliabilityandSecurityCompanion(QRSC),Lisbon,Portugal,16–20July2018;pp.135–138,
doi:10.1109/QRSC.2018.00036.
127. Campolo,C.;Cuzzocrea,D.;Genovese,G.;Iera,A.;Molinaro,A.AnOMALightweightM2McompliantMECFrameworkto
TrackMultimodalCommutersforMaaSApplications.InProceedingsofthe2019IEEE/ACM23rdInternationalSymposium
onDistributedSimulationandRealTimeApplications(DSRT),Cosenza,Italy,7–9October2019;pp.1–8,doi:10.1109/DS
RT47707.2019.8958677.
128. Campolo,C.;Genovese,G.;Molinaro,A.;Pizzimenti,B.DigitalTwinsattheEdgetoTrackMobilityforMaaSApplications.In
Proceedingsofthe2020IEEE/ACM24thInternationalSymposiumonDistributedSimulationandRealTimeApplications(DS
RT),Prague,CzechRepublic,14–16September2020;pp.1–6,doi:10.1109/DSRT50469.2020.9213699.
129. Vouros,G.;Glenis,A.;Doulkeridis,C.TheDeltaBigDataArchitectureforMobilityAnalytics.InProceedingsofthe2020IEEE
SixthInternationalConferenceonBigDataComputingServiceandApplications(BigDataService),Oxford,UK,3–6August
2020;pp.25–32,doi:10.1109/BigDataService49289.2020.00012.
130. Viet,R.D.;Molin,E.MobilityasaService:Doesitcontributetosustainability?InProceedingsofthe2020ForumonIntegrated
andSustainableTransportationSystems(FISTS),Delft,TheNetherlands,3–5November2020;pp.192–197,
doi:10.1109/FISTS46898.2020.9264902.
131. Duong,T.;Todi,K.K.;Chaudhary,U.;Truong,H.DecentralizingAirTrafficFlowManagementwithBlockchainbasedRein
forcementLearning.InProceedingsofthe2019IEEE17thInternationalConferenceonIndustrialInformatics(INDIN),Helsinki,
Finland,22–25July2019;pp.1795–1800,doi:10.1109/INDIN41052.2019.8972225.
132. InternationalEnergyAgency(IEA).CO2EmissionsfromFuelCombustion—Highlights;InternationalEnergyAgency:Paris,France,
2014.
Sensors2021,21,214344of45
133. Zhang,H.;Liptrott,M.;Bessis,N.;Cheng,J.RealTimeTrafficAnalysisusingDeepLearningTechniquesandUAVbasedVideo.
InProceedingsofthe201916thIEEEInternationalConferenceonAdvancedVideoandSignalBasedSurveillance(AVSS),Tai
pei,Taiwan,18–21September2019;pp.1–5,doi:10.1109/AVSS.2019.8909879.
134. Sreekumar,U.K.;Devaraj,R.;Li,Q.;Liu,K.RealTimeTrafficPatternCollectionandAnalysisModelforIntelligentTraffic
Intersection.InProceedingsofthe2018IEEEInternationalConferenceonEdgeComputing(EDGE),SanFrancisco,CA,USA,
2–7July2018;pp.140–143,doi:10.1109/EDGE.2018.00028.
135. Ramesh,K.;Lakshna,A.;Renjith,P.N.SmartTrafficCongestionmodelinIoTAReview.InProceedingsofthe20204thInter
nationalConferenceonElectronics,CommunicationandAerospaceTechnology(ICECA),Coimbatore,India,5–7November
2020;pp.651–658,doi:10.1109/ICECA49313.2020.9297631.
136. Talukder,M.Z.;Towqir,S.S.;Remon,A.R.;Zaman,H.U.AnIoTbasedautomatedtrafficcontrolsystemwithrealtimeupdate
capability.InProceedingsofthe20178thInternationalConferenceonComputing,CommunicationandNetworkingTechnol
ogies(ICCCNT),Delhi,India,3–5July2017;pp.1–6,doi:10.1109/ICCCNT.2017.8204095.
137. Kuhi,K.;Kaare,K.;Koppel,O.Ensuringperformancemeasurementintegrityinlogisticsusingblockchain.InProceedingsof
the2018IEEEInternationalConferenceonServiceOperationsandLogistics,andInformatics(SOLI),Singapore,31July–2Au
gust2018;pp.256–261,doi:10.1109/SOLI.2018.8476737.
138. Liang,S.;Li,M.;Li,W.ResearchonTraceabilityAlgorithmofLogisticsServiceTransactionBasedonBlockchain.InProceedings
ofthe201918thInternationalSymposiumonDistributedComputingandApplicationsforBusinessEngineeringandScience
(DCABES),Wuhan,China,8–10November2019;pp.186–189,doi:10.1109/DCABES48411.2019.00053.
139. Guo,H.;Li,W.;Nejad,M.;Shen,C.C.ProofofEventRecordingSystemforAutonomousVehicles:ABlockchainBasedSolu
tion.IEEEAccess2020,8,182776–182786,doi:10.1109/ACCESS.2020.3029512.
140. Hasan,M.G.M.M.;Datta,A.;Rahman,M.A.PosterAbstract:ChainedofThings:ASecureandDependableDesignofAutono
mousVehicleServices.InProceedingsofthe2018IEEE/ACMThirdInternationalConferenceonInternetofThingsDesignand
Implementation(IoTDI),Orlando,FL,USA,17–20April2018;pp.298–299,doi:10.1109/IoTDI.2018.00048.
141. Baza,M.;Nabil,M.;Lasla,N.;Fidan,K.;Mahmoud,M.;Abdallah,M.BlockchainbasedFirmwareUpdateSchemeTailoredfor
AutonomousVehicles.InProceedingsofthe2019IEEEWirelessCommunicationsandNetworkingConference(WCNC),Mar
rakesh,Morocco,15–19April2019;pp.1–7,doi:10.1109/WCNC.2019.8885769.
142. Hwang,T.;Kim,S.;Kim,S.;Jang,G.;Park,J.;Park,S.;Matson,E.T.;Kim,K.AnApproachforReducingComputationalTime
forRealTimeAutonomousVehicleTracking.InProceedingsofthe201818thInternationalConferenceonControl,Automation
andSystems(ICCAS),PyeongChang,Korea,17–20October2018;pp.1760–1763.
143. Sun,C.;Zhang,X.;Zhou,Q.;Tian,Y.AModelPredictiveControllerwithSwitchedTrackingErrorforAutonomousVehicle
PathTracking.IEEEAccess2019,7,53103–53114,doi:10.1109/ACCESS.2019.2912094.
144. Najada,H.A.;Mahgoub,I.Autonomousvehiclessafeoptimaltrajectoryselectionbasedonbigdataanalysisandpredefined
userpreferences.InProceedingsofthe2016IEEE7thAnnualUbiquitousComputing,Electronics&MobileCommunication
Conference(UEMCON),NewYork,NY,USA,20–22October2016;pp.1–6,doi:10.1109/UEMCON.2016.7777922.
145. Ozbayoglu,M.;Kucukayan,G.;Dogdu,E.Arealtimeautonomoushighwayaccidentdetectionmodelbasedonbigdatapro
cessingandcomputationalintelligence.InProceedingsofthe2016IEEEInternationalConferenceonBigData(BigData),Wash
ington,DC,USA,5–8December2016;pp.1807–1813,doi:10.1109/BigData.2016.7840798.
146. Zaffiro,G.;Marone,G.SmartMobility:NewrolesforTelcosintheemergenceofelectricandautonomousvehicles.InProceed
ingsofthe2019AEITInternationalConferenceofElectricalandElectronicTechnologiesforAutomotive(AEITAUTOMOTIVE),
Turin,Italy,2–4July2019;pp.1–5,doi:10.23919/EETA.2019.8804575.
147. Mishra,S.K.;Das,S.AReviewonVisionBasedControlofAutonomousVehiclesUsingArtificialIntelligenceTechniques.In
Proceedingsofthe2019InternationalConferenceonInformationTechnology(ICIT),Bhubaneswar,India,19–21December2019;
pp.500–504,doi:10.1109/ICIT48102.2019.00094.
148. Choi,Y.K.CUDAImplementationofBeliefPropagationforStereoVision.InProceedingsofthe13thInternationalIEEEAnnual
ConferenceonIntelligentTransportationSystems,MadeiraIsland,Portugal,19–22September2010.
149. Davies,E.R.Computervision:Principles,Algorithms,Applications,Learning,5thed.;AcademicPress:Cambridge,MA,USA,2017.
150. Pandey,A.;Puri,M.;Varde,A.Objectdetectionwithneuralmodels,deeplearningandcommonsensetoaidsmartmobility.
InProceedingsofthe2018IEEE30thInternationalConferenceonToolswithArtificialIntelligence(ICTAI),Volos,Greece,5–7
November2018.
151. Mauri,A.;Khemmar,R.;Decoux,B.;Ragot,N.;Rossi,R.;Trabelsi,R.;Boutteau,R.;Ertaud,J.Y.;Savatier,X.DeepLearningfor
RealTime3DMultiObjectDetection,Localisation,andTracking:ApplicationtoSmartMobility.Sensors2020,20,532.
152. Karballaeezadeh,N.;Zaremotekhases,F.;Shamshirband,S.;Mosavi,A.;Nabipour,N.;Csiba,P.;VárkonyiKóczy,A.R.Intelli
gentroadinspectionwithadvancedmachinelearning;hybridpredictionmodelsforsmartmobilityandtransportationmainte
nancesystems.Energies2020,13,1718.
153. Bittencourt,L.F.;DiazMontes,J.;Buyya,R.;Rana,O.F.;Parashar,M.Mobilityawareapplicationschedulinginfogcomputing.
IEEECloudComputing,2017,4,26–35.
154. Vaa,T.;Penttinen,M.;Spyropoulou,I.Intelligenttransportsystemsandeffectsonroadtrafficaccidents:stateoftheart.Iet
Intell.Transp.Syst.2007,1,81–88.
155. López,D.;Farooq,B.Ablockchainframeworkforsmartmobility.InProceedingsofthe2018IEEEInternationalSmartCities
Conference(ISC2),KansasCity,MO,USA,16–19September2018;pp.1–7.
Sensors2021,21,214345of45
156. Sun,J.;Yan,J.;Zhang,K.Z.Blockchainbasedsharingservices:Whatblockchaintechnologycancontributetosmartcities.Fi
nanc.Innov.2016,2,1–9.
157. Hank,P.;Müller,S.;Vermesan,O.;VanDenKeybus,J.Automotiveethernet:Invehiclenetworkingandsmartmobility.In
Proceedingsofthe2013Design,Automation&TestinEuropeConference&Exhibition(DATE),Grenoble,France,18–22March
2013;pp.1735–1739.
158. Schnieder,M.;West,A.Evaluationofalternativebatterychargingschemesforonewayelectricvehiclesmartmobilitysharing
systemsbasedonrealurbantripdata.InProceedingsofthe2019IEEE5thInternationalforumonResearchandTechnologyfor
SocietyandIndustry(RTSI),Florence,Italy,9–12September2019;pp.296–301.
Article
Full-text available
This research meticulously delves into the dynamic evolution of mobile networks, specifically charting the course from 4G to 6G within the context of smart cities. It carefully illuminates the distinct roles played by 5G and 6G, highlighting their unique mobility characteristics. Motivated by observed challenges in handover scenarios, particularly in urban and high-speed environments like trains, the study addresses the complexities of implementing Distributed Mobility Management during inter-handover shifts, revealing a 38% success rate in Handover Failure (HOF) recovery. A thorough analysis ensues, scrutinizing the message structures of various protocols and their extensions employed to address handover challenges. The paper not only identifies limitations but also proposes innovative protocol schemes to overcome inter-handover link failures and delays. Introducing the novel SRNEMO DMM framework, the paper aims to provide a comprehensive understanding of ongoing research efforts and potential future directions, reshaping the landscape of handover scenarios in high-traffic urban environments.
Conference Paper
Full-text available
The vision regarding ageing is often influenced by negative stereotypes, which lead to considering the over-55 user only in need of targeted assistance and care. Observing the current situation, this view should be no longer exhaustive: they are active users, capable of exercising agency, with needs and desires beyond care and assistance, and bearers of experience and knowledge. It is therefore clear that design strategies to develop services for this user group must necessarily broaden their horizons and begin to consider areas that have been scarcely explored. The contribution focuses on the topic of urban mobility and proposes a preliminary analysis process, based on the scientific literature and on the analysis of case studies to highlight good design practices, and carried out within a joint research platform, whose structure, functions, and role is also highlighted. Lastly, it proposes a mapping of design directions to be applied to implement age-friendly solutions.
Article
Full-text available
The financial industry has become increasingly technology-driven, making technical talent a critical asset for success. Firms that can attract and retain top technical talent have a significant competitive advantage in developing innovative products, improving operational efficiency, and staying ahead of industry trends. However, the financial sector often faces challenges in attracting and retaining technical talent, as these individuals are in high demand across various industries. This paper explores the key strategies that financial firms can employ to attract and retain technical talent. It discusses the importance of offering competitive compensation and benefits, providing continuous learning and development opportunities, fostering a positive work culture and environment, creating opportunities for innovation and impact, implementing effective recruitment and onboarding processes, and developing targeted retention strategies. The paper emphasizes the need for a comprehensive and integrated approach to talent management, as financial firms strive to build and maintain a high-performing technical workforce that can drive innovation and success in the industry. It also highlights the importance of adapting talent strategies to meet the changing needs and expectations of technical professionals, as technology continues to evolve and transform the financial sector. By implementing these strategies, financial firms can position themselves as the employer of choice for top technical talent, enabling them to stay competitive and thrive in the rapidly changing business landscape.
Article
Full-text available
Embedded AI and machine learning at the edge refer to the deployment of artificial intelligence and machine learning models directly on resource-constrained edge devices, rather than relying on cloud-based processing. This paradigm shift is driven by the increasing computational power of edge devices, the need for real-time processing and decision-making, and growing concerns around data privacy and security. This paper provides a comprehensive overview of the key components, technologies, and use cases of embedded AI and edge computing. It discusses the motivations behind this approach, including reduced cloud/network dependency, improved efficiency, and the ability to enable new classes of applications that require low-latency responses. The review covers essential hardware platforms for edge devices, such as microcontrollers, system-on-chip (SoC) devices, and single-board computers. It also examines the leading embedded machine learning frameworks, including TensorFlow Lite, PyTorch Mobile, Edge Impulse, and OpenVINO, which enable the deployment of AI models on resource-constrained edge systems. Furthermore, the paper explores the challenges and considerations associated with embedded AI, such as resource constraints, model optimization and deployment strategies, and security and privacy implications. It also discusses emerging trends and developments in this field, including advancements in edge hardware, the rise of specialized edge AI chips, and the integration of edge computing with 5G and IoT ecosystems. The findings of this review highlight the significant potential of embedded AI and machine learning at the edge to drive innovative applications in areas like computer vision, audio processing, and sensor data analytics, while addressing the growing demand for real-time, privacy-preserving, and cloud-independent AI solutions.
Article
Full-text available
Personalization has become a critical strategy for businesses in the modern, customer-centric landscape. By tailoring products, services, and experiences to individual customers based on their unique preferences and behaviors, companies can drive increased customer satisfaction, loyalty, and revenue. This paper provides a comprehensive overview of personalized customer experiences and recommendation systems. First, the paper defines personalization and outlines the key benefits it offers to both customers and businesses. It then delves into the core components of personalized experiences, including data collection and customer profiling, personalization algorithms and recommendation engines, and the application of personalized content and product recommendations across various touchpoints. The paper also examines the organizational and technological requirements for implementing effective personalized customer experiences, as well as the development of personalization strategies and use cases. Additionally, it explores the challenges and best practices associated with personalization, such as privacy concerns, data quality issues, and the need for continuous improvement through testing and machine learning. Looking to the future, the paper discusses emerging trends and technologies that will shape the evolution of personalized experiences, including advancements in artificial intelligence and machine learning, the rise of omnichannel and cross-device personalization, and the increasing importance of predictive analytics and anticipatory personalization. Finally, the paper underscores the vital role of personalized customer experiences in the modern business landscape and the need for ethical considerations as these practices become more sophisticated.
Article
Full-text available
The rapid adoption of cloud computing has transformed the software development landscape, enabling organizations to achieve greater agility, scalability, and cost-efficiency. However, this shift also introduces new security challenges that must be addressed. The integration of security practices, known as DevSecOps, has emerged as a critical approach to ensure secure software development in cloud environments. This document provides a comprehensive overview of the key principles and practices of DevSecOps for secure software development in the cloud. It discusses the importance of integrating security seamlessly into the entire software development lifecycle, automating security testing and compliance checks, and fostering a culture of shared responsibility among development, operations, and security teams. The document also highlights the benefits of adopting DevSecOps in cloud environments, including improved security posture, faster time-to-market, and enhanced collaboration and efficiency. Furthermore, the document explores the future outlook of DevSecOps in the cloud, offering recommendations for organizations to stay ahead of emerging security trends, upskill their teams, and continuously improve their DevSecOps practices. By following these recommendations, organizations can position themselves for long-term success in secure software development and deployment in the cloud.
Article
Full-text available
The rapid growth of financial data and the increasing demand for real-time decision-making have highlighted the limitations of traditional centralized data processing approaches. Edge computing, which brings data processing and analysis closer to the source, offers a promising solution to address these challenges. This paper explores the role of secure edge devices in enabling real-time financial data processing. The paper begins by discussing the importance of real-time financial data processing and the challenges of traditional centralized data processing. It then delves into the benefits of edge computing for financial data, including reduced latency, improved security and data privacy, and enhanced scalability and resilience. The design of secure edge devices is a crucial aspect, and the paper examines the hardware and software considerations, such as secure enclaves, trusted execution environments, secure operating systems, and secure communication protocols. It also highlights the key security challenges and considerations, including secure boot, firmware updates, remote management, and anomaly detection. The paper then presents various use cases and applications of secure edge devices in the financial sector, including high-frequency trading, fraud detection and prevention, and regulatory compliance and risk management. Finally, it explores emerging trends and technologies, such as the integration of 5G and edge computing, quantum-resistant cryptography, and decentralized finance (DeFi) solutions, that will shape the future of secure edge devices for real-time financial data processing. The insights provided in this paper can aid financial institutions in understanding the potential of secure edge devices and guide them in the design and deployment of these technologies to gain a competitive edge in the ever-evolving financial landscape.
Article
Full-text available
The financial industry operates in a highly regulated environment, with a wide range of laws and standards governing the handling of sensitive customer data and financial transactions. Maintaining compliance with stringent data privacy and security regulations, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA), is critical for financial institutions to avoid hefty fines, legal liabilities, and reputational damage. This paper explores how the use of Trusted Execution Environments (TEEs) can help financial institutions meet these regulatory compliance requirements. TEEs provide a hardware-based security solution that can be leveraged to protect customer data, secure the processing of financial transactions, and demonstrate the integrity and reliability of data processing and reporting to regulators. The paper outlines the key use cases of TEEs in financial compliance, including protecting customer data, securing financial transactions, and facilitating compliance with regulatory reporting requirements. It also examines the benefits of adopting TEEs for regulatory compliance, such as improved data privacy and security, reduced risk of data breaches and compliance violations, and enhanced trust and credibility with regulators and customers. Additionally, the paper discusses the challenges and considerations associated with integrating TEEs into existing systems and infrastructure, vendor selection and security evaluation, and ongoing maintenance and monitoring. The conclusion summarizes the key points and provides recommendations for financial institutions on navigating the future of financial compliance through the strategic adoption of TEE-based solutions.
Article
Full-text available
Multiparty computation (MPC) and homomorphic encryption are two powerful cryptographic techniques that enable secure computations on encrypted data. This paper provides a comprehensive overview of the synergies between these two areas and explores their applications, challenges, and future directions. The paper first introduces the fundamental principles of MPC and homomorphic encryption, highlighting their individual strengths and limitations. It then delves into the ways in which these techniques can be combined, leveraging the homomorphic properties of encryption to enhance MPC protocols and vice versa. The resulting hybrid approaches offer improved efficiency, security, and functionality for a wide range of applications. The paper examines several real-world use cases where MPC and homomorphic encryption have been successfully applied, including privacy-preserving data analytics, secure multi-party machine learning, electronic voting and auctions, and secure cloud computing. These applications demonstrate the transformative potential of these cryptographic methods in safeguarding sensitive data and enabling collaborative computations without compromising individual privacy. Despite the significant advancements in this field, the paper also identifies key challenges and future research directions. These include improving the efficiency and practicality of current schemes, addressing key management and key escrow issues, establishing industry standards and best practices, and exploring emerging trends such as post-quantum secure schemes and the integration with other cryptographic primitives. The paper concludes by emphasizing the far-reaching impact of MPC and homomorphic encryption, and the promising future of this rapidly evolving field of cryptography. As organizations and individuals increasingly rely on data-driven decision-making and collaborative computing, these techniques hold the potential to transform various industries and applications, ushering in a new era of secure and privacy-preserving computations.
Article
Full-text available
As financial services firms increasingly embrace cloud computing technologies, maintaining business continuity and resilience in the face of disruptive events has become a critical priority. This presentation provides a comprehensive overview of the key elements of incident response and disaster recovery planning for cloud-based financial services. The session begins by highlighting the importance of business continuity planning in the cloud computing landscape, covering the unique challenges and risks that financial firms face. It then delves into the essential components of incident response planning, including the identification of critical systems and data, the establishment of incident response protocols, and the roles and responsibilities of the incident response team. The presentation also explores disaster recovery planning strategies, such as defining recovery time and point objectives, developing robust data backup and replication approaches, and implementing failover and failback procedures. Emphasis is placed on the importance of regular testing and drills to validate the effectiveness of the disaster recovery plan. Furthermore, the session addresses the integration of business continuity planning, addressing critical business functions, alternate work sites, communication tools, and vendor management. It also discusses the regulatory compliance requirements and industry standards relevant to incident response and disaster recovery in the financial sector. Drawing from real-world case studies and best practices, the presentation aims to equip attendees with practical guidance and recommendations to enhance the resilience and preparedness of their cloud-based financial services operations. By the end of the session, participants will have a comprehensive understanding of the strategies and techniques necessary to effectively plan for and respond to disruptive incidents in the cloud.
Conference Paper
Full-text available
In recent years, there has been substantial research scope for Autonomous Unmanned Ground Vehicles (AUGV) which is a burning topic for researchers and scientists. The concept of AUGV had been introduced way back to the 1920s and at that time it was mainly applied in war fronts, such as in Teletanks, Infantry Tanks, Goliath tracked mine etc. during 2nd world war. After the introduction of Artificial Intelligence (AI) techniques, AUGV has been used in different fields of applications, such as in transport systems, control systems, space science, manufacturing, etc. All the works demonstrated in these applications were mainly on vision-based obstacle avoidance for autonomous ground vehicles. In some of the work, LIDAR based camera embedded at the top of the vehicle for acquiring images which are directly connected to the GPS monitoring system has been implemented. Some of the evolutionary and swarm intelligence based optimization techniques, such as Particle Swarm Optimization (PSO) have been successfully applied for this interesting and challenging problem. Moreover, hybridization of variants of neural networks, probabilistic based model, heuristic optimization techniques has been effectively implemented in AUGV. The basic motto of these nature-inspired techniques is to complete the tasks, such as optimizing the path, optimizing the system parameters and controller, etc., required for both static as well as dynamic obstacles avoidance.
Article
Full-text available
The onset of autonomous driving has provided fertile ground for discussions about ethics in recent years. These discussions are heavily documented in the scientific literature and have mainly revolved around extreme traffic situations depicted as moral dilemmas, i.e. situations in which the autonomous vehicle (AV) is required to make a difficult moral choice. Quite surprisingly, little is known about the ethical issues in focus by the AV industry. General claims have been made about the struggles of companies regarding the ethical issues of AVs but these lack proper substantiation. As private companies are highly influential on the development and acceptance of AV technologies, a meaningful debate about the ethics of AVs should take into account the ethical issues prioritised by industry. In order to assess the awareness and engagement of industry on the ethics of AVs, we inspected the narratives in the official business and technical reports of companies with an AV testing permit in California. The findings of our literature and industry review suggest that: (i) given the plethora of ethical issues addressed in the reports, autonomous driving companies seem to be aware of and engaged in the ethics of autonomous driving technology; (ii) scientific literature and industry reports prioritise safety and cybersecurity; (iii) scientific and industry communities agree that AVs will not eliminate the risk of accidents; (iv) scientific literature on AV technology ethics is dominated by discussions about the trolley problem; (v) moral dilemmas resembling trolley cases are not addressed in industry reports but there are nuanced allusions that unravel underlying concerns about these extreme traffic situations; (vi) autonomous driving companies have different approaches with respect to the authority of remote operators; and (vii) companies seem invested in a lowest liability risk design strategy relying on rules and regulations, expedite investigations, and crash/collision avoidance algorithms.
Article
Full-text available
This paper presents the work of the AI4People-Automotive Committee established to advise more concretely on specific ethical issues that arise from autonomous vehicles (AVs). Practical recommendations for the automotive sector are provided across the topic areas: human agency and oversight, technical robustness and safety, privacy and data governance, transparency, diversity, non-discrimination and fairness, societal and environmental wellbeing, as well as accountability. By doing so, this paper distinguishes between policy recommendations that aim to assist policymakers in setting acceptable standards and industry recommendations that formulate guidelines for companies across their value chain. In the future, the automotive sector may rely on these recommendations to determine relevant next steps and to ensure that AVs comply with ethical principles.
Article
Full-text available
Autonomous vehicles are capable of sensing their environment and navigating without any human inputs. However, when autonomous vehicles are involved in accidents between themselves or with human subjects, liability must be indubitably decided based on accident forensics. This paper proposes a blockchain-inspired event recording system for autonomous vehicles. Specifically, we design the mechanism of “Proof-of-Event” with a dynamic federation consensus to achieve indisputable accident forensics by providing trustable and verifiable event information. We propose a dynamic federation consensus scheme to verify and confirm the new block of event data in an efficient way without any central authority. We conduct numerical analyses and prototyped experiments based on the proposed fast leader election algorithm and the Hyperledger Fabric blockchain network. The results show that our system is effective and feasible in generating and storing accident records in blockchain-based vehicular networks. The security capability of the proposed scheme is also discussed against multiple threats and attack scenarios.
Article
Full-text available
This article presents a comprehensive review on the recent development of graphene and its derivatives in the design and engineering of smart sensors, actuators and soft robotics. Comparing with traditional materials used in the fabrication of sensors and actuators, graphene and its derivatives obviously improved the sensitivity and selectivity of the devices due to their unique properties stemmed from graphene. In this article, we summarized mechanisms, design and engineering, and development of different graphene-based sensors actuators and soft robotics. We also selectively discussed on different techniques and methodologies to improve the performance of graphene-based sensors actuators and soft robotics, especially sensitivity and selectivity. To yield significant improvement and extend the field of applications, scientists have to improve the production of high-quality graphene, enhance the interface and interaction between graphene and other materials, develop multi-functional sensors or actuators, and finally achieve industrial production. Finally, the current challenges, prospective and potential soft robot application of various graphene-based sensors and actuators have been highlighted in detail.
Article
Full-text available
Some of the first ‘automated’ vehicles to be deployed on our roads will require a system of shared driving with a human driver. While this creates technical and operational challenges, the law must also facilitate such a transfer. One method may be to obtain the driver’s consent to share operational responsibility and to delineate legal responsibility between vehicle and driver in the event of an accident. Consent is a voluntary agreement where an individual is aware of the potential consequences of their consent, including the risks. The driver of a partially automated vehicle must be informed of potential risks before giving consent to share operational responsibility with a vehicle. This paper will refer to the potential dangers associated with shared operational responsibility, in particular where there has been a request for the driver to take back control from the automated vehicle. Drivers may experience a delay in regaining situational awareness, making such transfers risky. It is argued that where an interactive digital interface is used to convey information such as driver responsibilities, risk and legal terms, there may be fundamental weaknesses in human-machine interaction whereby drivers are likely to ignore vital information. The use of an interactive digital interface alone may be insufficient to inform drivers about the risks, their responsibilities and legal terms affecting liability. If the problems identified are not addressed, it is argued that consent will fail to demarcate legal responsibility between automated vehicles and drivers. Ongoing research into automated vehicle driver training is considered as part of the preparation required to design driver education to a level whereby drivers may be able to sufficiently understand the responsibilities involved in operating a partially automated vehicle. This has implications for future driver training, licensing and certification.
Article
The new paradigm of fog computing was extended from conventional cloud computing to provide computing and storage capabilities at the edge of the network. Applied to vehicular networks, fog-enabled vehicular computing is expected to become a core feature that can accelerate a multitude of services including crowd-sensing. Accordingly, the security and privacy of vehicles joining the crowd-sensing system have become important issues for cyber defence and smart policing. In addition, to satisfy the demand of crowd-sensing data users, fine-grained access control is required. In this paper, we propose a secure and privacy-preserving crowd-sensing scheme for fog-enabled vehicular computing. The proposed architecture is made by a double layer of fog nodes that is used to generate crowd-sensing tasks for vehicles, then collect, aggregate and analyze the data based on user specifications. To ensure data confidentiality and fined-grained access control, we make use of ciphertext-policy attribute-based encryption with access update policy (CP-ABE-UP), which is a well-known one-to-many encryption technique. The policy update algorithm allows the fog nodes to outsource the crowd-sensing data to other fog nodes or to data users directly. We also adopted the ID-based signature tied to pseudonymous techniques to guarantee the authentication and privacy-preservation of the entities in the system. From the upper fog layer to the data user, we show that an information-centric networking (ICN) approach can be applied to maximize the network resources and enhance the security by avoiding unauthorized and unauthenticated data owners. The security analysis confirms that our approach is secure against known attacks, whereas the simulation results show its efficiency in terms of communication with little computational overhead.