Sandra Ceccatelli

Sandra Ceccatelli
Karolinska Institutet | KI · Department of Neuroscience, Stockholm, Sweden

Professor

About

238
Publications
15,475
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,809
Citations
Introduction
Our research aims to: • Clarify the mechanisms behind the long-term alterations in affective behavior, i.e. depression, induced by developmental exposure to high levels of GC; • Investigate specific circadian rhythms alterations that precede the onset of depression; • Identify the molecular cascade that lead to alterations in neural progenitor cell survival and differentiation potential; • Identify potential preventive and therapeutic strategies.
Additional affiliations
January 2007 - present
Karolinska Institutet
September 1995 - November 2006
Karolinska Institutet
September 1994 - present
The Rockefeller University
Education
September 1982 - December 1986
University of Milan
Field of study
  • Child Neuropsychiatry
September 1976 - February 1982
University of Milan
Field of study
  • Medicine

Publications

Publications (238)
Preprint
Full-text available
Physical exercise (PE) as antidepressive therapy is a promising alternative, as shown by multiple meta-analyses. However, there is no consensus regarding optimal intensity and duration of exercise, and there are no objective criteria available for personalized indication of treatment. The aims of this study were (1) to evaluate whether individual a...
Preprint
Full-text available
Wrist actigraphy is a non-invasive technology to monitor activity over extended periods of time. Specific alterations in circadian patterns of activity have been described in several psychiatric disorders and are associated with symptom severity in major depressive disorder (MDD). The aim of this study was to investigate the correlations between ac...
Article
Full-text available
Exposure to prenatal insults, such as excess glucocorticoids (GC), may lead to pathological outcomes, including neuropsychiatric disorders. The aim of the present study was to investigate the long-term effects of in utero exposure to the synthetic GC analog dexamethasone (Dex) in adult female offspring. We monitored spontaneous activity in the home...
Article
Full-text available
Exposure to chemicals may pose a greater risk to vulnerable groups, including pregnant women, fetuses, and children, that may lead to diseases linked to the toxicants’ target organs. Among chemical contaminants, methylmercury (MeHg), present in aquatic food, is one of the most harmful to the developing nervous system depending on time and level of...
Preprint
Full-text available
The presence of serotonergic system during early pre-neural development is enigmatic and conserved amongst all studied invertebrate and vertebrate animals. We took advantage of zebrafish model system to address what is the role of early serotonin before first neurons form. Unexpectedly, we experimentally revealed the existence of delayed developmen...
Article
Full-text available
Objective measures, such as activity monitoring, can potentially complement clinical assessment for psychiatric patients. Alterations in rest–activity patterns are commonly encountered in patients with major depressive disorder. The aim of this study was to investigate whether features of activity patterns correlate with severity of depression symp...
Article
Full-text available
Glyphosate‐based herbicides (GBH) are among the most sold pesticides in the world. There are several formulations based on the active ingredient glyphosate (GLY) used along with other chemicals to improve the absorption and penetration in plants. The final composition of commercial GBH may modify GLY toxicological profile, potentially enhancing its...
Article
Clinical and preclinical evidence indicates that prenatal exposure to glucocorticoids may induce detrimental effects in the offspring, including reduction in fetal growth and alterations in the CNS. On this basis, the present study investigated whether in utero exposure to high levels of glucocorticoids is a risk factor that may lead to an exacerba...
Article
Full-text available
Alterations in circadian rhythms are closely linked to depression, and we have shown earlier that progressive alterations in circadian entrainment precede the onset of depression in mice exposed in utero to excess glucocorticoids. The aim of this study was to investigate whether treatment with the noradrenaline reuptake inhibitor desipramine (DMI)...
Article
Full-text available
Controversial evidence points to a possible involvement of methylmercury (MeHg) in the etiopathogenesis of autism spectrum disorders (ASD). In the present study, we used human neuroepithelial stem cells from healthy donors and from an autistic patient bearing a bi-allelic deletion in the gene encoding for NRXN1 to evaluate whether MeHg would induce...
Article
Full-text available
Pesticide exposure has been linked to the pathogenesis of neurodevelopmental and neurodegenerative disorders including autism spectrum disorders, attention deficit/hyperactivity, and Parkinson’s disease (PD). Developmental exposure to pesticides, even at low concentrations not harmful for the adult brain, can lead to neuronal loss and functional de...
Article
Background: The spinal cord is composed of a large number of cells that interact to allow the organism to function. To perform detail studies of cellular processes involved in spinal cord injury (SCI), one must use repeatable and specific methods to target and injure restricted areas of the spinal cord. New method: We propose a robust method to...
Article
Methylmercury (MeHg) is a widespread environmental contaminant with established developmental neurotoxic effects. Computational models have identified glucocorticoid receptor (GR) signaling to be a key mediator behind the birth defects induced by Hg, but the mechanisms were not elucidated. Using molecular dynamics simulations, we found that MeHg ca...
Article
Full-text available
Cerium oxide nanoparticles (nanoceria) display antioxidant properties and have shown cytoprotective effects both in vitro and in vivo. Here, we explored the effects of nanoceria on neural progenitor cells using the C17.2 murine cell line as a model. First, we assessed the effects of nanoceria versus samarium (Sm) doped nanoceria on cell viability i...
Article
The constant interplay between environment (including both exogenous and endogenous factors) and epigenome (defined as the combination of chromatin, its covalent modifications and noncoding RNAs) triggers epigenetic events that, by modulating gene expression, capture information about changes in the environment. In this mini review, we will focus o...
Article
Full-text available
The developing nervous system is highly susceptible to methylmercury (MeHg), a widespread environmental neurotoxic contaminant. A wide range of morphological and functional outcomes have been described; however, there are still open questions regarding the mechanisms behind the developmental neurotoxic effects induced by low-level exposure. In the...
Article
Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adu...
Article
There is a large consensus that the prenatal environment determines the susceptibility to pathological conditions later in life. The hypothesis most widely accepted is that exposure to insults inducing adverse conditions in-utero may have negative effects on the development of target organs, disrupting homeostasis and increasing the risk of disease...
Article
Full-text available
Growing evidence links adverse prenatal conditions to mood disorders. We investigated the long-term behavioral alterations induced by prenatal exposure to excess glucocorticoids (dexamethasone-DEX). At 12 months, but not earlier, DEX-exposed mice displayed depression-like behavior and impaired hippocampal neurogenesis, not reversible by the antidep...
Article
Developmental exposure to excess glucocorticoids (GCs) has harmful neurodevelopmental effects, which include persistent alterations in the differentiation potential of embryonic neural stem cells (NSCs). The mechanisms, however, are largely unknown. Here, we investigated the effects of dexamethasone (Dex, a synthetic GC analog) by MeDIP-like genome...
Article
Full-text available
Developmental exposure to low dose of methylmercury (MeHg) has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnf)in mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic anim...
Article
Full-text available
Perfluorooctane sulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation...
Article
Amongst environmental chemical contaminants, methylmercury (MeHg) remains a major concern because of its detrimental effects on developing organisms, which appear to be particularly susceptible to its toxicity. Here, we investigated the effects of low MeHg levels on the development of the nervous system using both in vitro and in vivo experimental...
Article
Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSCs spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs...
Article
Methylmercury (MeHg) is an environmental contaminant with recognized neurotoxic effects, particularly to the developing nervous system. In the present study we show that nanomolar concentrations of MeHg can induce long-lasting effects in neural stem cells (NSCs). We investigated short-term direct and long-term inherited effects of exposure to MeHg...
Article
Full-text available
Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chro...
Data
Changes in amplitude of the 3 main peaks of spontaneous locomotor activity displayed during the dark phase. Repeated measures ANOVA followed by contrast analysis: * p<0.05; # p = 0.06; arrowheads indicate timepoints where only one group was significantly different from baseline. (EPS)
Data
Comparison between the expression profile in vivo and in vitro. This points towards microglia being the main source of alterations in mRNA expression for the proteins investigated during neuroinflammation. However, the interpretation of this observation is limited by a number of factors related to the origin of the samples and the in vivo vs. in vi...
Chapter
The developing nervous system has a unique susceptibility to methylmercury (MeHg), as shown by the wide range of adverse morphological and functional outcomes reported by human and experimental animal studies. Despite regulations that have substantially decreased environmental mercury contamination, MeHg remains a global pollutant, and of special c...
Chapter
The neurotoxic effects of exposure to methylmercury (MeHg) during the early developmental period have been extensively investigated in different animal models, and a number of studies have been performed to analyze the relation between level/duration of the exposure and behavioural outcomes. This chapter provides an updated overview of the neurodev...
Article
A change in paradigm is needed in the prevention of toxic effects on the nervous system, moving from its present reliance solely on data from animal testing to a prediction model mostly based on in vitro toxicity testing and in silico modeling. According to the report published by the National Research Council (NRC) of the US National Academies of...
Book
Mercury (Hg) is a global pollutant that knows no environmental boundaries. Even the most stringent control of anthropogenic Hg sources will not eliminate exposure given its ubiquitous presence. Exposure to Hg occurs primarily via the food chain due to MeHg's accumulation in fish. Latest US statistics indicate that 46 States have fish consumption ad...
Article
Glucocorticoids (GC) are critical for normal development of the fetal brain, and alterations in their levels can induce neurotoxicity with detrimental consequences. Still, there is little information available on the effects of GC on human neural stem/progenitor cells (hNPC). In the present study, we have investigated the effects of the synthetic G...
Article
Developmental exposure to food contaminants, such as polychlorinated biphenyls (PCBs), has been considered as a possible cause of neurodevelopmental disorders. We have investigated the effects of noncytotoxic concentrations of PCBs 153 and 180 on spontaneous differentiation of rat embryonic neural stem cells (NSCs). Upon removal of basic fibroblast...
Article
The developing nervous system is particularly susceptible to toxicants, and exposure during development may result in long-lasting neurological impairments. The damage can range from subtle to severe, and it may impose substantial burdens on affected individuals, their families, and society. Given the little information available on developmental n...
Article
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are organic surfactants widely used in various industrial and consumer applications. Due to their chemical properties, these perfluorinated compounds (PFCs) have also become persistent contaminants. The risk of possible intrauterine and lactational exposure to these chemicals poses...
Chapter
Cells can be defined as “stem cells” when able to self-renew and differentiate into tissue-characteristic cells. Neural stem cells (NSCs) derived from the nervous system are able to generate neuronal and glial cells and are present not only in the developing nervous system, but also in specific regions of the adult brain. While embryonic NSCs play...
Chapter
IntroductionLearning DeficitsDepressionlike BehaviorGender-Related ToxicityMechanistic ConsiderationsConcluding RemarksAcknowledgmentsReferences
Article
Methylmercury is a widely distributed environmental toxicant with detrimental effects on the developing and adult nervous system. Due to its accumulation in the food chain, chronic exposure to methylmercury via consumption of fish and sea mammals is still a major concern for human health, especially developmental exposure that may lead to neurologi...
Article
Full-text available
Alterations in intrauterine programming occurring during critical periods of development have adverse consequences for whole-organ systems or individual tissue functions in later life. In this paper, we show that rat embryonic neural stem cells (NSCs) exposed to the synthetic glucocorticoid dexamethasone (Dex) undergo heritable alterations, possibl...
Article
Full-text available
Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal survival and differentiation. We examined the concentration of BDNF in cord serum from newborns exposed to methylmercury (MeHg) and polychlorinated biphenyls (PCB) in utero by maternal consumption of whale meat. The cohort consisted of 395 singleton births (206 boys a...
Article
Methylmercury (MeHg) and polychlorinated biphenyls (PCBs) are widespread environmental pollutants commonly found as contaminants in the same food sources. Even though their neurotoxic effects are established, the mechanisms of action are not fully understood. In the present study, we have used the mouse hippocampal neuronal cell line HT22 to invest...
Chapter
This title is not available to purchase from Royal Society of Chemistry. Please visit www.bioinorganic-chemistry.org/mils for title information. This volume, closely related to MILS-6, deals mainly with metal(loid)-alkyl derivatives but also with the rarer aryl compounds. Most of these (commonly toxic) compounds are formed in the environment by mi...
Article
The European Food Safety Authority (EFSA) was asked by the European Commission to assess recent scientific information on the toxicity of ochratoxin A and, if necessary, to update its opinion on ochratoxin A in food adopted on 4 April 2006 by the Scientific Panel on the Contaminants in the Food Chain (CONTAM Panel). Five publications, most of which...
Article
Methylmercury is a global pollutant and potent neurotoxin whose abundance in the food chain mandates additional studies on the consequences and mechanisms of its toxicity to the central nervous system. Formulation of our new hypotheses was predicated on our appreciation for (a) the remarkable affinity of mercurials for the anionic form of sulfhydry...
Article
Full-text available
Alternative splicing of pre-mRNA increases proteomic diversity, a crucial mechanism in defining tissue identity. We demonstrate differentially spliced interleukin (IL)-7 in distinct anatomic areas in the adult, in developing human brains and in normal human neuronal progenitor (NHNP) cells. IL-7c (c, the canonical form spanning all six exons) or it...
Article
Full-text available
Mercury and mercurial compounds are among the environmentally ubiquitous substances most toxic to both wildlife and humans. Once released into the environment from both natural and anthropogenic sources, mercury exists mainly as three different molecular species: elemental, inorganic, and organic. Potential health risks have been reported from expo...
Article
Akt has been implicated in pro-survival and anti-apoptotic activities in many cell types, including dorsal root ganglion (DRG) and spinal motor neurons. In this immunohistochemical study we have monitored phosphorylated Akt (p-Akt) levels in adult mouse DRGs and spinal cord following unilateral peripheral sciatic nerve transection (axotomy) or carr...
Article
A simple and reliable solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) method was developed for the single-step determination of PCBs 126 and 153 in rat brain and serum, using liquid/liquid and solid phase extraction (SPE) as reference techniques. The multi-factor categorical experimental design used to study simultaneo...
Article
Full-text available
One of the earliest morphological changes occurring in apoptosis is cell shrinkage associated with an increased efflux of K(+) and Cl(-) ions. Block of K(+) or Cl(-) channels prevents cell shrinkage and death. Recently, we found evidences for the activation of a voltage-dependent anion channel in the plasma membrane (pl-VDAC) of a hippocampal cell...
Article
Methylmercury (MeHg) is one of the most significant public health hazards. The clinical findings in the victims of the Japanese and Iraqi outbreaks have disclosed the pronounced susceptibility of the developing brain to MeHg poisoning. This notion has triggered worldwide scientific attention toward the long-term consequences of prenatal exposure on...
Article
Methylmercury (MeHg) is a widespread environmental and food toxicant which has long been known to affect neurodevelopment in both humans and experimental animals. Risk assessment for MeHg is mainly based on human data coming from the massive episodes of poisoning in Japan and Iraq, as well as from large scale epidemiological studies concerning chil...
Article
Methylmercury (MeHg) is a widespread environmental and food toxicant which has long been known to affect neurodevelopment in both humans and experimental animals. Risk assessment for MeHg is mainly based on human data coming from the massive episodes of poisoning in Japan and Iraq, as well as from large scale epidemiological studies concerning chil...
Article
Full-text available
Substantial evidence indicates that predisposition to diseases can be acquired during early stages of development and interactions between environmental and genetic factors may be implicated in the onset of many pathological conditions. Data collected over several decades have shown that chemicals are among the relevant factors that can endanger CN...
Article
Full-text available
Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular respons...
Article
The Notch receptor is essential for neural stem cell (NSC) characteristics. Relatively high concentrations (micromolar) of methylmercury (MeHg) activate Notch signalling in Drosophila cell lines; however, exposure of MeHg at such concentrations is rare, and the implications for mammalian cells are unclear. We have shown that MeHg at a nanomolar ran...
Article
Full-text available
Galanin is a neuropeptide with a wide range of effects in the nervous and endocrine systems, mediated through three G protein-coupled receptor subtypes (GalR1–3). Interestingly, galanin and its receptors are also expressed in certain tumors. Here we studied the effects of galanin in rat pheochromocytoma (PC12) cells stably transfected with GFP-tagg...
Article
Me-Hg and PCB153 are known neurotoxic contaminants which tend to accumulate in food, particularly in fish. Aim of this study was to perform asynchronous and combined exposure to Me-Hg and PCB153 in a neuronal rat cell line (PC12) to better characterise the antagonism observed at some combination concentrations. PC12 cells were treated with three co...

Network

Cited By