ArticlePDF AvailableLiterature Review

Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates

Authors:
  • Kermanshah University of Medical Sciences, Kermanshah, Iran; and ; Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract and Figures

Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor -α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively , will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Content may be subject to copyright.
Molecules2021,26,2917.https://doi.org/10.3390/molecules26102917www.mdpi.com/journal/molecules
Review
TargetingMultipleSignalTransductionPathways
ofSARSCoV2:ApproachestoCOVID19
TherapeuticCandidates
SajadFakhri
1,
,ZeinabNouri
2,
,SeyedZachariahMoradi
1,3
,EsraKüpeliAkkol
4
,SanaPiri
1
,
EduardoSobarzoSánchez
5,6,
*,MohammadHoseinFarzaei
7,
*andJavierEcheverría
8,
*
1
PharmaceuticalSciencesResearchCenter,HealthInstitute,KermanshahUniversityofMedicalSciences,
Kermanshah6734667149,Iran;pharmacy.sajad@yahoo.com(S.F.);zmoradi@kums.ac.ir(S.Z.M.);
sanapiri@ymail.com(S.P.)
2
StudentResearchCommittee,KermanshahUniversityofMedicalSciences,Kermanshah6714415153,Iran;
zeinab7641@yahoo.com
3
MedicalBiologyResearchCenter,HealthTechnologyInstitute,KermanshahUniversityofMedicalSciences,
Kermanshah6734667149,Iran
4
DepartmentofPharmacognosy,FacultyofPharmacy,GaziUniversity,Etiler,06330Ankara,Turkey;
esrak@gazi.edu.tr
5
InstitutodeInvestigaciónyPostgrado,FacultaddeCienciasdelaSalud,UniversidadCentraldeChile,
Santiago8330507,Chile
6
DepartmentofOrganicChemistry,FacultyofPharmacy,UniversityofSantiagodeCompostela,
15782SantiagodeCompostela,Spain
7
MedicalTechnologyResearchCenter,HealthTechnologyInstitute,KermanshahUniversityofMedical
Sciences,Kermanshah6734667149,Iran
8
DepartamentodeCienciasdelAmbiente,FacultaddeQuímicayBiología,
UniversidaddeSantiagodeChile,Santiago9170022,Chile
*Correspondence:e.sobarzo@usc.es(E.S.S.);mh.farzaei@gmail.com(M.H.F.);
javier.echeverriam@usach.cl(J.E.)
Theauthorshavecontributedequallytothisreview.
Abstract:Duetothecomplicatedpathogenicpathwaysofcoronavirusdisease2019(COVID19),
relatedmedicinaltherapieshaveremainedaclinicalchallenge.COVID19highlightstheurgent
needtodevelopmechanisticpathogenicpathwaysandeffectiveagentsforpreventing/treatingfu
tureepidemics.Asaresult,thedestructivepathwaysofCOVID19areinthelinewithclinicalsymp
tomsinducedbysevereacutecoronarysyndrome(SARS),includinglungfailureandpneumonia.
Accordingly,revealingtheexactsignalingpathways,includinginflammation,oxidativestress,
apoptosis,andautophagy,aswellasrelativerepresentativemediatorssuchastumornecrosisfac
tor‐α(TNF‐α),nuclearfactorerythroid2relatedfactor2(Nrf2),Bax/caspases,andBeclin/LC3,re
spectively,willpavetheroadforcombatingCOVID19.Prevailinghostfactorsandmultiplesteps
ofSARSCoV2attachment/entry,replication,andassembly/releasewouldbehopefulstrategies
againstCOVID19.Thisisacomprehensivereviewofthedestructivesignalingpathwaysandhost–
pathogeninteractionofSARSCoV2,aswellasrelatedtherapeutictargetsandtreatmentstrategies,
includingpotentialnaturalproductsbasedcandidates.
Keywords:coronavirus;SARSCoV2;COVID19;signalingpathway;inflammation;oxidative
stress;apoptosis;autophagy;naturalproducts
1.Introduction
Asaglobalpandemic,anoutbreakofnovelcoronavirus,namedsevereacuterespir
atorysyndromecoronavirus2(SARSCoV2),causedthecoronavirusdisease2019
(COVID19).Ithasbeenaseriousleadingcauseofmorbidityandmortalityworldwide
Citation:Fakhri,S.;Nouri,Z.;
Moradi,S.Z.;Akkol,E.K.;Piri,S.;
SobarzoSánchez,E.;Farzaei,M.H.;
Echeverría,J.TargetingMultiple
SignalTransductionPathwaysof
SARSCoV2:Approachesto
COVID19TherapeuticCandidates.
M
olecules2021,26,2917.https://
doi.org/10.3390/molecules26102917
AcademicEditor:Kyoko
NakagawaGoto
Received:18March2021
Accepted:11May2021
Published:14May2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Molecules2021,26,29172of31
[1,2].Coronaviruses(CoVs)areagroupofsinglestrandedenvelopedribonucleicacidvi
ruseswhichareclassifiedintofourgenera,includingα,β,γ,andδ.Inthepasttwodec
ades,twomembersoftheβ‐CoVswithazoonoticorigin,includingSARSCoVandMid
dleEastRespiratorySyndrome(MERS)CoV,causedtwoepidemicsinChinaduring
2002–2003andintheMiddleEastin2012,respectively[3–5].
TheclinicalmanifestationsofCOVID19mainlyencompasspneumoniarelated
symptoms,suchasfever,cough,andshortnessofbreath[6].Inseverepatients,itwould
leadtoacuterespiratorydistresssyndrome(ARDS),cardiovascular,neurological,hepatic,
renal,andgastrointestinalcomplications[7,8],whichallseemedtobecorrelatedwith
dysregulatedmechanisms.IthasbeenwellestablishedthattheSARSCoV2genomeis
closelyrelatedtothefirstSARSCoV[9].TheunderlyingmechanismsbywhichSARS
CoV2elicitsitsdetrimentaleffectsremainedunclear;however,possiblemechanismsen
compassinflammation,oxidativestress,apoptosis,autophagy,andtheprocessesassoci
atedwithvirusentryintohostcells,suchastheendocyticpathwayandangiotensincon
vertingenzyme2(ACE2)pathway[8,10–12].Asofyet,nospecificantiviraldrughasbeen
discoveredforSARSCoV2;hence,extensivestudieshavebeenignitedtofindeffective
drugsfortargetingtheaforementionedpathwaysandforcombatingCOVID19.Inlight
oftheoutbreak,severalnonspecificmedicationshavebeenexploited,suchasbroadspec
trumantiviral,antiinflammatory,antioxidant,andantiapoptotictherapies,immunother
apeuticagents,antibiotics,andsupportivecaresuchassupplementaryoxygen[13–15].
Despiteadvancementsinprovidingantiviraldrugs,theirassociatedtoxicityandhighfi
nancialcostsareasignificanthurdleintheirclinicalapplications[16].Therefore,there
existsadireneedtodiscovernew,safe,andmoreefficacioustreatmentalternativesto
achievesuccessfulhealingtherapies.
Inrecentreviews,theroleofoxidativestress[17],inflammation[18,19],andsome
hostfactors[20]weredevelopedseparately,withnofocusonallthetherapeuticagents,
therapeutictargets,host–pathogeninteraction,anddysregulatedsignalingpathwaysin
volvedinthepathogenesisofSARSCoV2.Inthepresentreview,wedescribethedysreg
ulatedsignalingpathwaysandhost–pathogeninteractionofSARSCoV2,aswellasrel
ativetherapeutictargetsandtreatmentstrategies,concentratingonoxidativestress,in
flammation,apoptosis,autophagy,theimmunesystem,andviruslifecycle.
2.COVID19:GeneticsandStructure
SARSCoV2isasinglestrandedenvelopedribonucleicacidviruswithagenome
sizeof29,903nucleotides[21].ThissinglestrandofRNAiscoveredbyaphosphorylated
capsidproteinwhich,together,bothformanucleocapsid.Phospholipidbilayersshield
thenucleocapsidandarecoatedbyspikeglycoproteinand,probably,hemagglutinines
teraseprotein[22].Thevirusgenomeiscomprisedoftwountranslatedregions(UTRs)at
the5and3ends,whichconstitute265and358nucleotides,respectively,aswellas11
openreadingframes(ORFs)thatencode27structural,nonstructural,aswellasaccessory
proteins[23,24].TwooverlappingORF1aand1bcontaintwothirdsofthegenomeand
encode16nonstructuralproteins(NSPs)withinthepp1abgene.Theseproteinscomprise
NSP3(papainlike),NSP5(3Clikeproteasedomain),NSP12(RNAdependentRNApol
ymerase),NSP13(helicase),NSP14(3–5′exonuclease),aswellasotherNSPsthatareen
gagedwiththetranscriptionandreplicationoftheviralgenome[25,26].Theremaining
ORFscodestructuralproteinsincludingspikeprotein(S),envelopesprotein(E),mem
braneprotein(M),aswellasnucleocapsidprotein(N),andatleastsixaccessoryproteins
suchasorf3a,orf6,orf7a,orf7b,orf8,andorf10[27].Insomecases,thehemagglutininester
asegeneproposedtoincreasethevirusentrymediatedtoSproteinhasbeenlocatedbe
tweenORF1bandORFS[28].
Molecules2021,26,29173of31
3.ClinicalFeaturesofCOVID19Disease
MostpatientsinfectedwithSARSCoV2exhibitrespiratorycomplicationssuchas
pneumoniaandARDS.ARDSisacommonleadingcauseofdeathinpatientswith
COVID19,whichischaracterizedbypulmonaryandinterstitialtissuedevastation[29].
ThegeneticmaterialofSARSCoV2hasbeenidentifiedincerebrospinalfluid,indicating
thatSARSCoV2candirectlyattackthecentralnervoussystem,whichcontributestosev
eralneurologicaldamages.Thisproceduredevelopsneurologicalcomplications,includ
ingheadache,encephalitis,impairedconsciousness,epilepsy,taste/smelldisorders,and
nausea/vomiting[30–32].SARSCoV2exploitsneuronalpathways,suchastheolfactory
pathwayandbloodcirculationpathway,toenterthenervoussystem[33–35].During
SARSCoV2infection,impairmentoftherespiratorygaseousexchangeleadstohypoxia
andanaerobicmetabolism,aswellasacidicconditionsinthebrain,which,inturn,partic
ipateincerebraledemaandocclusionofthecerebralcirculation,andsubsequentlylead
toheadacheandacutecerebrovasculardisease[36].SARSCoV2alsoexertsitsdeleteri
ouseffectsonthenervoussystemthroughanintracranialcytokinestorm[37].Activation
ofmacrophages,microglia,andastrocytesenhancesthereleaseofproinflammatorycy
tokinesandprovokesnervedegenerationandtheapoptoticdeathofneuronalcells[38].
AgrowingnumberofpatientsinfectedwithSARSCoV2manifestsignsorsymptomsof
liverdysfunctionthatcanbeattributedtotherespiratorydistresssyndromeinducedhy
poxiaandthereleaseofhugecirculatingdetrimentalinflammatorymediatorswiththe
abilitytoinvadelivercells,causinghepatocytedamageandelevatedliverenzymes[39].
Additionally,thedownregulationofACE2bySARSCoV2mayenhancebloodpressure,
andtherebyelevatetheriskofintracranialhemorrhage[40].
AgrowingnumberofpatientsinfectedwithSARSCoV2manifestedsignsofliver
dysfunctionthatcanbeattributedtotherespiratorydistresssyndromeinducedhypoxia
andthereleaseofhugecirculatingdetrimentalinflammatorymediatorswiththeability
toinvadelivercells,causinghepatocytedamagesandelevatedliverenzymes[39].
Cardiovascularcomplicationssuchasacutemyocardialinfarction,venousthrombo
embolicevents,myocarditis,andheartfailuremayalsooccurinpatientswithCOVID19
duetodirectvirusinvasionthroughACE2,endothelialdysfunction,hypoxia,excessive
inflammatoryresponses,oxidativestress,elevatedlevelofangiotensin(Ag)II,andather
oscleroticplaquerupture[41,42].Besides,elevatedcardiacbiomarkers,includingtro
poninT,havealsobeendemonstratedtobeassociatedwithincreasedinflammatory
markers,suggestingthatmyocardialinjuryislinkedtoinflammation[43].
Gastrointestinalsymptoms,suchasvomiting,diarrhea,orabdominalpain,areother
commonclinicalmanifestationsofCOVID19duringtheearlyphasesofthedisease.In
testinaldysfunctionleadstochangesinintestinalmicrobes,therebypromotinginflamma
torycytokines[44].Consequently,ACE2ishighlyexpressedinthegastrointestinaltract
andSARSCoV2directlyinvadestheguttractthroughbindingwithACE2receptors.In
thisregard,ACE2isconsideredakeyregulatorofintestinalinflammationandcanen
hancetheriskofcolitisandothergastrointestinalsymptoms[45].
ClinicaldatahavedemonstratedthepresenceofSARSCoV2particlesinurinesam
plesofpatientsinfectedwithCOVID19[46].IthasbeenreportedthatSARSCoV2pos
sessesdetrimentalimpactsonkidneyfunctionandcausessigns/symptomsofacutekid
neyinjury[47].TheexpressionofACE2onpodocytesandtubuleepithelialcellsmakes
thekidneyahostcandidateforSARSCoV2[48].Localinflammatory/immunereaction,
directcytotoxicviraleffect,hypoxia,aswellassecondaryinfections/sepsisinducetheoc
currenceofendothelialdysfunction,tubularinjury,andheavyproteinuria[49].Therefore,
giventheinvolvementofhostfactorssuchasACEandrelatedcomplicationsattributed
tooxidativestress,aswellasinflammation,apoptosis,andautophagyinthecomplica
tionsofCOVID19,targetingthemisofgreatimportance.
Molecules2021,26,29174of31
4.SARSCoV2Infection
SARSCoV2undergoesvariousstepsoffusion,uncoating,nucleicacidsynthesis,in
tegration,protease,andassembly/releasetowardsinfection;therefore,detailed
knowledgeofinfectionpathwaysiscriticaltotacklingCOVID19.Ithasbeenwellestab
lishedthatSARSCoV2entersthehostcellsviatwopathways,includingtheendocytic
pathwayandnonendosomalpathway,withthehelpofproteases(e.g.,TMPRSS2);both
contributetothereleaseofthenucleocapsidintothecytoplasm[22].Amongthosefactors,
SARSCoV2utilizestheendocyticpathwayastheprincipalmechanismforviralentry
intoseveraltypesofhostcells.TheSproteinonthesurfaceofacoronaviruscaninteract
withthereceptorandtheninvadethehostcellsthroughclathrinmediatedendocytosis
[11].Recentadvanceshavehighlightedthecriticalroleofsuchhostreceptors,including
ACE2,glucoseregulatedprotein78(GRP78),clusterofdifferentiation147(CD147),and
dipeptidylpeptidase(DPP4)inviralinfection.
4.1.ACE2
Revealingthefirstphaseofviralentryintothehostcells,fusion/entrythroughfacil
itatingcoreceptorscouldbetargetedbyappropriatetherapeuticagents[50].Recentad
vanceshavehighlightedthecriticalroleofsuchhostreceptorsinviralinfection,including
ErbB1,tyrosinekinasereceptors(TKRs)[51],tolllikereceptors(TLRs)[52],TNF‐α,ILs,
interferon(IFN)‐γ,andotherreceptorsaffectingtheimmunesystem[53].Theinvolve
mentofotherreceptorsrelatedtoTcellshasalsobeenshowntoplaycriticalrolesinviral
infection,suchascytotoxicTlymphocyteantigen4(CTLA4),programmeddeath1(PD
1),aswellasTcellimmunoglobulin(Ig)andmucindomaincontainingmolecule3(TIM
3)[54,55].
ContinuousuncoatingandnucleicacidsynthesiswiththeinvolvedenzymesofRNA
polymeraseareotherstepsinvirusreplication,includingforSARSCoV2.Viralchain
terminaseandproteaseshavealsobeenshowntobepromisingtargetsagainstCOVID19
complications.Asthefinalstepofviralinfection,theviralreleasecouldalsobeahopeful
targetincombatingCOVID19.Nowadays,hostcoreceptorshavebeenconsideredcriti
calagentswithundeniablerolesinstimulatingtheimmunesystemandincreasingviral
infection[56].TheanalysisofnucleicacidsequencewithinthespikeproteinsofSARS
CoV2predictedtheroleofACE2inthecellularentryofthevirus,whichwasconfirmed
byaninvitrostudy[56].
SynthesizedACE2isfoldedandNglycosylatedintheendoplasmicreticulum(ER)
thenpassestoGolgiapparatusforfurthermodificationsandpackagingandisthentrans
portedtotheplasmamembrane[57].CleavageofACE2byAdisintegrinandmetallopro
teinase17(ADAM17)leadstothereleaseofsolubleACE2intotheextracellularenviron
ment.Consequently,angiotensinreceptorI(ARI)enhancesADAM17expressionwhich,
inturn,elevatessolubleACE2,andcanthereforepreventSARSCoV2entrance[57,58].
Additionally,inresponsetoSARSCoV2,bindingviaclathrinmediatedendocytosisand
theinternalizationofboththevirusanditsreceptor,ACE2,occur[59].
TherateexpressionofACE2anditscleavagefromthecellmembranecontributeto
theregulationofACE2activity[60].IthasbeenwellestablishedthatAgII,whichmiti
gatesACE2expression,passesthroughtypeIIalveolar(AT2)andtypeIalveolar(AT1)
extracellularregulatedkinase(ERK)/p38mitogenactivatedproteinkinase(MAPK)path
way,therebyplayingapivotalroleintheregulationofassociatedreceptors[61].Addi
tionally,hypoxiainducedfactor1α(HIF1α)enhancestheproductionofACE,which,in
turn,booststheproductionofAgII,andthenleadstoareducedlevelofACE2[62].SARS
CoV2induceddownregulationofACE2leadstoanaugmentationoftheproinflamma
toryfactor,AgII,andcauseslunginjury[63].TherecognizedreceptorofSARSCoV2,
ACE2,ismainlyexpressedinasmallsubsetoflungcells[64].Onlyminimalpercentages
ofmonocytes/macrophagesinthelungexpressedACE2[64].Itpresentsthepossibilityof
directcellularinfection(withnoACE2engagement)ortheexistenceofotherreceptors
Molecules2021,26,29175of31
involvedinSARSCoV2entrances[65,66].Ingeneral,thecriticalroleoftherenin–angio
tensinsystem(RAS)hasbeenindicatedinvariouspathologicalandphysiologicalpro
cesses.Consequently,angiotensinogenisconvertedtoAgIbyrenin.AgIis,inturn,con
vertedtoAgIIthentoAg(1–7),andMasbyACE1andACE2,respectively.WhileAgII
bindstoARIandmakespathologicaloutcomes,MasbindstoMasRtoexertprotective
responsesagainstCOVID19[67,68].Therefore,ACE2couldplaythedoubleedgedrole
ofbeingacoreceptorforSARSCoV2entryandgeneratingMasforprotection[69].As
attainedbyCOVID19clinicaltrials,susceptibilitytoCOVID19infectionisinadirect
correlationwiththeactivityofACE2.Sincethisenzymeisenrichedinthelungs,heart,
brain,kidneys,intestine,testes,andplacenta[70–72],thereisahigherrateofviruspres
enceandpathogenesis[73].TheseresultsindicatedthatAgIIislikelytobetheprimary
targetofSARSCoV2inthelungs[68].Moreover,therearesexdifferencesintheexpres
sionofACE2.SexhormonesinmalesmadeahigherexpressionofACE2thaninfemales,
withagreaterinfectiousrate[68,74].TheACE/ACE2activityratioinmaleserumishigher
thaninfemales.Individualswithcoexistingdisorders,includingpneumonia[73],diabe
tes[75],alongwithaging[74,76,77],cigaretteuse[78],pregnancy[71,79],hypoxia,and
HIF1α[62,80],wereshowntobemoresusceptibletothedysregulationoftheACE/ACE2
ratio.Overall,themolecularmechanismsandsignalingpathwaysbywhichSARSCoV2
elicitsitsharmfuleffectsareincompletelyunderstood,andafewmoleculeshavebeen
identifiedasatargetofSARSCoV2.Forinstance,ithasbeenshownthatSARSCoV2
reinforceschemokineassociatedinflammationandfibrosisthroughIFN,withACE2in
ducedRas/Raf/mitogenactivatedproteinkinasekinase(MEK)/ERK/activatingprotein1
(AP1)andcaseinkinase(CK)2‐p21activatedkinase1(PAK1)signalingpathways[81].It
hasbeenreportedthattheaforementionedpathwayoffersthepotentialforpulmonary
vascularremodelingandexaggeratedhypoxia[82].AberrantactivationofPAK1hinders
immunesystemsandparticipatesinthepromotionofviralinfection[83].Therefore,the
suppressionofPAK1oritisupstreampotentiallyrepressedSARSCoV2infection.In
casesofSARSCoV2infection,ACE2hasattractedsubstantialattentioninCOVID19
pathogenicity[69].InappropriateregulationofACE2/Ag(1–7)/Masreceptorand
ACE1/AgIItype1receptorpathwayscouldenhanceACE2,andtherebyincreasethe
chancesofviralentry[69,84].Ontheotherhand,downregulationofACE2bySARSCoV
2infectioninhibitsthedegradationofAgIIintoAg(1–7),exacerbatesinflammation,and
leadstovascularpermeabilityandcardiovascularcomplications[69].
4.2.TMPRSS2
Ithasbeenwellestablishedthattheproteolyticcleavageoftheviralenvelopeglyco
proteinbyeitherintracellularorextracellularproteases,suchastrypsin,furin,cathepsin,
ortransmembraneproteaseserine2(TMPRSS2),playsanimportantroleinSARSCoV
entry[85].Amongthem,TMPRSS2hasbeenshowntoactivatethespikeproteinof
COVID19forviralfusionandinfectivity[86].Anaccumulationoffindingshighlighted
thatthehostproteaseTMPRSS2,employedfortheentryofSARSCoV2intolungepithe
lium,isanattractivetargetforpharmacologicintervention.Ithasbeenshownthatphar
macologicinhibitionofTMPRSS2blocksSARSCoV2entryintohumanlungcells.Addi
tionally,inhibitionofTMPRSS2preventedSARSCoV1infectioninanimalmodels.The
TMPRSS2geneexpressesaproteinof492aminoacidswhichanchorstotheplasmamem
brane.Itcanbedividedintothecatalyticchainandnoncatalyticchainpartsthroughau
tocatalyticcleavagebetweenArg255andIle256.Aftercleavage,themajorityofmature
proteasesaremembranebound,buttheirsubstantialportionscanbereleasedintothe
extracellularspace[87].IthasbeenrevealedthatTMPRSS2genepromoterpossesses15
bpandrogenresponseelement,andTMPRSS2transcriptionisupregulatedinthepresence
ofandrogens[88].TheactivationofSARSCoVbyTMPRSS2suppressestheblockageof
SARSCoVbyIFNinducedtransmembraneproteins,aclassofIFNstimulatedhostcell
proteinsthatparticipateininhibitingtheentryofvariousenvelopedviruses[89].
Molecules2021,26,29176of31
TMPRSS2isknownasakeygeneinprostatecancer[90].Thehepatocytegrowthfac
tor(HGF)/cMetcellisactivatedbyTMPRSS2,provokingthesurvivalpathwayofHGF/c
Metreceptortyrosinekinasesignalingandstimulatingaproinvasiveroleinprostatecan
cercells.TMPRSS2alsoinducesinflammationbyproteolyticallyactivatingtheprotease
activatedreceptor2(PAR2)intheprostate.Additionally,theupregulationofPAR2pro
motesmatrixmetalloproteinase2(MMP2)andMMP9,bothofwhichplayakeyrolein
themetastasisoftumorcells[89,91].
4.3.GlucoseRegulatedProtein78(GRP78)
Glucoseregulatedprotein78(GRP78),whichbelongstotheheatshockprotein70
family,isthemasterchaperoneproteinpresentinthelumenoftheER[92,93].Undercell
stress,overexpressedGRP78canescapeERretentionandtranslocatetothecellmembrane
[94].Oncelocalizedintheplasmamembrane,GRP78issusceptibletovirusrecognition,
therebyfacilitatingtheviralentrytothehostcells.IthasbeenreportedthatGRP78isa
targetreceptoroftheMERSCoVspikeproteinandbatcoronavirusHKU9(bCoVHKU9)
[95].Recently,theexistenceofaSARSCoV2spikeproteinGRP78bindingsitehasbeen
predictedusingthecomputationalmethod[96],thuspavingtheroutetodesignsuitable
inhibitorstopreventbindingandinfection.
4.4.TheClusterofDifferentiation147(CD147)
Theclusterofdifferentiation147(CD147),alsoknownasextracellularmatrixmetal
loproteinaseinducer,hasrecentlyemergedasanimportantreceptorforSARSCoV2[97].
CD147possessestheabilitytointeractwithvariousextracellularandintracellularpart
nerswhichplayakeyroleintheinfectionprocessofthehumanimmunodeficiencyvirus
(HIV),measles,andSARSCoV[98,99].IthasbeenreportedthatCD147canbindwith
multipleligands,includingcyclophilins,monocarboxylatetransporters,caveolin1,and
integrins[100].Asextracellularinteractivepartners,cyclophilinsAandBcanbindto
CD147andactivateit,therebyincreasingthechanceofinfectionofCD147expressingcells
[101].IthasbeenreportedthatcyclophilinsAandBcaninteractwithnsp1ofSARSCoV
[98];however,itisyetnotunderstoodwhethercyclophilinscanbindtoSARSCoV2.In
aninvitrostudy,Wangetal.[102]revealedthatmeplazumab,anantiCD147antibody,
significantlyhinderedtheinvasionofhostcellsbySARSCoV2.Surprisingly,thisreport
hasbeensupportedbyaclinicaltrialinwhichtheantiCD147antibodyinhibitedSARS
CoV2spikeproteinbindingandsubsequentlyfacilitatedaviralclearance[103].CD147
alsoparticipatedintheregulationofnuclearfactorkappaB(NF‐κB).Moreover,upregu
lationofCD147leadstotheactivationofNF‐κBwhich,inturn,involvesinflammation
andproliferativeresponses[104].Additionally,cyclophilin–CD147interactioncanrecruit
theimmunecellstothesitesofinflammationviachemokinelikeactivity[105].Cyclo
philin60isidentifiedasanimportantcontributorproteinintheexpressionandtranslo
cationofCD147tothecellsurface[106].SeveralotherproteinswhichbindtoCD147may
affectitslocalization.Forinstance,theinteractionofCD147withtheprotoncoupled
transportersofmonocarboxylate,includingMCT1andMCT4inthecellmembrane,is
highlydependentonglutamicacidresidue218intheCD147transmembranedomain.
However,themutationofthisglutamicacidpreventstheaccessofbothCD147andMCT
tothecellmembrane[107].Ithasbeenalsoreportedthatcaveolin1bindstoCD147ona
cellsurface,throughwhichitplaysakeyroleintheregulationofclusteringandactivity
ofCD147[108].AsaninteractingpartnerofCD147,integrinβ1interactswithCD147to
regulateintegrindependentsignalingandfocaladhesionkinase(FAK)activation,lead
ingtoignitionofthedownstreamsignalingRac/Ras/Raf/ERKandphosphoinositide3
kinases(PI3K)/Aktpathwaysandanincreaseinthemetastaticpotentialofhepatocellular
carcinoma[109].IthasbeendemonstratedthatCD147increasesMMPsexpression
throughseveralsignalingpathways,includingJanuskinase(JAK)/signaltransducerand
activatoroftranscription(STAT),RasMEK1MAPK,andPI3K/Aktsignalingpathway
[110].
Molecules2021,26,29177of31
4.5.DipeptidylPeptidase(DPP4)
Dipeptidylpeptidase(DPP4),alsoknownasCD26,wasconsideredasthemainentry
receptorforMERSCoV[111].TheSproteinofMERSCoVspecificallyinteractswithDPP4
receptors,therebyinducingproteolyticactivationofviralentranceandviralmembrane
fusionwiththecellmembrane[112].Thereisaboutan80%genomesequencesimilarity
betweenMERSCoVandSARSCoVwithSARSCoV2.Recentevidencehasshownthat
DPP4/CD26canalsobindtotheS1domainoftheSARSCoV2spikeglycoprotein,indi
catingthepotentialroleofDPP4/CD26inSARSCoV2adhesion/virulence[113].Thepo
tentialinteractionbetweenSARSCoV2spikeglycoproteinsandDPP4hasbeendemon
stratedbydockingstudiesandneedsindepthclarificationinexperimentalmodels[114].
Intriguingly,thereisalsoevidencesuggestingthatDPP4isimplicatedintheinductionof
cytokinestorm,oxidativestress,theimmunesystem,andapoptosis[115].DPP4hasbeen
widelystudiedbecauseofitsproteolyticactivityonvariouscytokinesandpeptidesthat
participateindifferentmedicalconditions[116].Inthecaseofproteolyticactivity,DPP4
reducesincretinssuchasglucagonlikepeptide1(GLP1)andglucosedependentinsu
linotropicpolypeptide(GIP),subsequentlyleadingtoadeclinedinsulinsecretionandab
normalglucoselevel[116].Additionally,DPP4proteolysisleadstopartialortotalaltera
tioninsignalingandfunctionalityofitssubstrates,includingpeptidetyrosinetyrosine
(PYY),neuropeptideY(NPY),andstromalderivedfactor1(e.g.,SDF1andCXCL12)
[117].Intriguingly,thereisalsoevidencesuggestingthatDPP4isimplicatedintheinduc
tionofcytokinestorm,activationofNF‐κBpathway,oxidativestress,theimmunesystem,
andapoptosis[115].IthasbeenrevealedthatCD26/DPP4possessestheabilitytodirectly
triggerTcellactivationthroughCARMA1mediatedNF‐κBactivationinTcellswhich,in
turn,leadstoTcellproliferationandproinflammatoryinterleukin(IL)2cytokinepro
duction[118].Peoplewithdiabetesareathigherriskofdevelopingtheseriousclinical
eventscausedbyCOVID19becausechronichyperglycemiaandinflammationcontribute
toanineffectiveimmuneresponse[119].Inthisline,DPP4inhibitorsand/orGLP1recep
toranalogsarewidelyusedforthecontrolofhyperglycemiaintype2diabetes[120].The
potentialroleofDPP4inhibitorsinCOVID19‐infectedpatientswithtype2diabetesis
notcompletelyclarified.However,DPP4mayillustrateapotentialtargetfordecreasing
theprogressionofthecomplicationsoftype2diabetesinthoseinfectedwithCOVID19
[119].Therefore,DPP4inhibitionmayhindertheinfectionand/ordevelopmentofthe
COVID19.
5.COVID19:Pathogenesis,DysregulatedPathwaysandBeyond
PatientsinfectedwithSARSCoV2exhibitedvariousclinicalmanifestationssuchas
fever,dyspnea,myalgia,andviralpneumonia[121].Incomplicatedpatients,ARDS,acute
kidneyinjury,cardiovascularcomplications,neurologicalsideeffects,andmultipleorgan
failurehavealsobeenshowntobeassociatedwithincreasedmortality[49,122,123].While
thepathobiologyofSARSCoV2andmolecularmechanismsbehindtheaforementioned
clinicalmanifestationsarenotyetentirelyknown,therolesofinflammation,oxidative
stress,apoptosis,andautophagyareundeniable.
5.1.RoleofInflammationinCOVID19
Aspreviouslymentioned,inflammatorypathwaysplayimportantrolesinthehighly
inflammatoryconditionsofpathogenesisinCOVID19[124].Assuch,inseverecasesof
COVID19,patientsshowedhigherserumlevelsofinflammatorycytokines,including
TNF‐α,IL2,IL6,IL7,IL10,IFN‐γ,IL1β,IL12,IL18,IL33,tumorgrowthfactor‐β
(TGF‐β),macrophageinflammatoryprotein1α(MIP1α),monocytechemoattractantpro
tein1(MCP1),granulocytecolonystimulatingfactor(GCSF),interferoninduciblepro
tein10(IP10),chemokines(e.g.,CXCL8,CXCL9,CXCL10,CCL2,CCL3,CCL5)[13,125–
128],andcreactiveprotein(CRP)[129–131]intheearlyphaseasmajorcausesofARDS
Molecules2021,26,29178of31
[132].Extensiveimmunologicalresponses,highlevelsofcirculatinginflammatorycyto
kines,substantiallymphopenia,andimmunecellinfiltrationarecloselycorrelatedtoim
munepathologicalchangesoftargetedorgans[133].
InCOVID19patients,increasedneutrophils/CRPanddecreasedlymphocyteswere
revealed;thiswasindirectcorrelationwithdiseaseseverity[13].Releasingtheaforemen
tionedinflammatoryfactorsisalsocalledacytokinestorm,which,inturn,leadstovarious
pathogeniccomplicationsinCOVID19[134–136].Theinnateimmunesystemalsoem
ploysIFNtypeI,IFN‐αandIFN‐β,andIFNstimulatedresponseelement(ISRE)asdown
streammediatorsinexertingacriticalresponseagainstviralinfection,whileareduced
IFNleadstorapidviralreplication[137,138].Consequently,IFN‐α/βsuppressesviraldis
semination/replicationintheearlystageofviralinfection.COVID19employsmultiple
waystowardinterferingwiththeaforementionedpathwaysoftypeIIFNproduction
[127,139],includingJAKSTAT/ISREpathwayphosphorylation[140].Followingthepro
ductionoftypeIIFN,COVID19isequippedtosuppresstheinflammatorypathways
[65,140,141],timedependently[127].Additionally,anydysregulationinthepathway
leadstoneutrophil/monocyte/macrophageactivationandlethalpneumoniaoracuteres
piratorydistresssyndrome[127].AdisturbanceintheregulationofIFNsgenerationof
proinflammatorycytokinesproducedbymacrophagescontributestotheapoptosisofT
cells,whichfurtherhampersviralelimination[142].Duringviralinfectionandactivation
oftheadaptiveimmuneresponse,theengagementoftheTcellreceptorprovokesintra
cellularcalciumoverloadwhich,inturn,inducescalmodulinbindingtocalcineurin.Cal
cineurinactivationparticipatesinthenuclearfactorofactivatedTcell(NFAT)
dephosphorylation[143].ThecalciumcalcineurinNFATpathwaybooststhegeneration
ofproinflammatorycytokines,therebymaintainingchronicinflammationconditions
[144].
Asotherinvolvedreceptors,TLR7andTLR3activatethedownstreamsignaling
cascade,includingNF‐κBandIFNregulatoryfactor3(IRF3)[140].Enhancedlevelsofpro
inflammatorycytokinesandthemigrationofinflammatorycellsintothelungtissuesare
thepostulatedmechanismsforacutelunginjury.Cytokinestormdisruptstissueintegrity
andsubsequentlyleadstopneumonitis[145].Activationofvariousinflammatorycyto
kinesinvolvedinthecytokinestormiscontrolledbytheintracellularsignalingpathway
JAK/STAT[146].Forinstance,IL6whichhasbeenprovenasapivotalinflammatorycy
tokine,employstheJAK/STATpathwaytoperformitsbiologicalfunctionssuchasim
muneresponse,inflammation,andoxidativestress.TheinhibitionoftheIL6/JAK/STAT
pathwayappearsapromisingtherapeuticoptionforthealleviationofCOVID19[147].
5.2.RoleofOxidativeStressinCOVID19
Oxidativestressisconsideredakeycontributortotheseverityandpathogenesisof
SARSCoV2.Overgenerationofreactiveoxygenspecies(ROS)andantioxidantdepletion
driveapivotalroleinviralreplicationandviralrelatedcomplications[148,149].Some
populationsofinnateimmunecells,suchasmacrophagesandneutrophils,wouldgener
ateROStoclearthepathogens[150,151].DespitethenecessityofROSproductionbymac
rophagesandmonocytesformodulatingimmuneresponsesandeliminatingviralinfec
tion,relatedoverproductioncontributestotheoxidationofcellularproteins/lipidsand
corruptsbothinfectedandnormalcells,therebyleadingtomultipleorgandysfunctions
[152].Moreover,compellingstudieshaveshownthatviralinfectionssuchaSARSCoV
arelinkedtotheinhibitionofNrf2andaugmentationofNF‐κBsignaling,leadingtoanti
oxidantdeprivationandinflammation[153].Nrf2,anditsdownstreamtargetantioxidant
enzymehemeoxygenase1(HO1),servesasacrucialsignalingpathwayforcytoprotec
tionagainstinflammationthroughinhibitingcriticalinflammatoryregulatorypathways
suchasNF‐κB[148].Interestingly,Nrf2keap1/HO1activationaccompaniedbyanin
creaseinenzymatic/non‐ enzymaticantioxidantactivities,includingsuperoxidedis
mutase(SOD),catalase(CAT),glutathioneperoxidase(GPx),glutathione(GSH),thiobar
bituricacidreductase(TBARS),NAD(P)H:quinoneoxidoreductase1(NQO1),which,in
Molecules2021,26,29179of31
turn,suppressoxidativemediatorsandlipidperoxidation,therebyalleviatingthehall
marksofviralinfection[154,155].Therefore,theNrf2pathwayisanauspicioustherapeu
tictargetforcombatingSARSCoVpathogenesis.
5.3.RoleofApoptosisinCOVID19
ApoptosisisadeterminerpathwayinvolvedinCOVID19complications.Asapath
ogenicpathway,apoptosisinductionininfectedcellscandirectlyleadtoviralpathogen
esis[156].InSARSCoVinfectedpatients,lymphopeniamayoccurduetoTcelldiminu
tionthroughtheactivationofapoptosis[157].Apoptosisactivationmediatedbyhuman
COVID19infectioncontributestothespreadofthevirus[158].Apoptosisactivationis
associatedwithnumerousabnormalitiesinvirallyinfectedorgans.Inthisline,SARS
CoV2infectionstimulatedapoptosisinlungepithelial/endothelialcells,whichcauses
vascularleakageandalveolaredema,aswellasacutelunginjury[29].Severalmecha
nismsareinvolvedinapoptosisactivationbyhumanCOVID19.Ithasbeenreportedthat
humanCOVID19stimulatesapoptosisviaER,caspasemediated,p38MAPK,andcJun
Nterminalkinase(JNK)dependentpathways,whichareneededforviralreplication
[159,160].Fromanotherpointofview,SARSCoVtriggersapoptosisthroughdecreasing
antiapoptoticBcelllymphoma2(Bcl)2members(e.g.,Bcl2andBclxL)andkeysurvival
signalingpathwayssuchasAkt.TheupregulationofAktinactivatedseveralproapop
toticmoleculessuchasglycogensynthasekinase3β(GSK3β),caspase9,Bad,andfork
headtranscriptionfactorFoxo1(FKHR),therebyhamperingapoptoticpathways[161].
Virusinfectioncantriggerpoly (ADPribose)polymerase(PARP)andultimatelyresultin
apoptosis.PARPdrivesanimportantroleinprogrammedcelldeathandcytokinerelease
[162,163].Therefore,PARPinhibitorscanbeservedassupportivetreatmentsforalleviat
ingthehallmarksofCOVID19.Besides,viralinfectionsdisruptmitochondrialmembrane
potentialandprovokeproapoptoticfactorssuchascytochromeC,caspase9,and
caspase3[164,165].Therefore,targetingparticularmediatorsandenzymesoftheapop
toticpathwayisanattractivestrategyforfightingaviralinfection.
5.4.RoleofAutophagyinCOVID19
AsanothercriticalpathwayforCOVID19,autophagyisanintracellularregulated
processthatplaysapivotalroleinthemaintenanceofcellularhomeostasis[166].Consid
eringmechanisticchangesinCOVID19,autophagyisafundamentalcellprocessinthe
pathogenicityofdisease.Thisprocessischaracterizedbytheformationofthedouble
membraneautophagosomesthatsubsequentlyfusewithacidiclysosomestoformautoly
sosomesthroughapHdependentmechanism.Theengulfedcomponentsarethende
gradedwithlysosomalenzymes[167].Thereisincreasingevidencethatdysregulatedau
tophagyseemstoplayanessentialroleinthepathogenesisofSARSCoV,aswellasits
arisingcomplications.Alteredautophagycausedbyviralinfectionisstronglyassociated
withseveretissuedamage.Ontheotherhand,autophagycouldbeconsideredadouble
edgedswordinthepathogenesisofSARSCoV.Theproviralorantiviralroleofautoph
agyremainsunclear[149].Thevirusthatentersthehostcellcaneitherbeeliminatedvia
autophagyorescapeautophagicdegradationandreplicateinthehostcell[168].Acentral
aspectoftheproviralroleofautophagyistoboostviralreplicationbytheformationof
doublemembranevesiclesinthehostcells.Infact,virusreplicationinthehostcellbegins
attheERGolgiintermediatecompartment,whichisconnectedtoautophagosomebio
genesis,wheretheviralgenomepossessesacriticalinteractionwiththeproteinsthatare
necessarytoassembleacompletevirus[169,170].Ithasbeenidentifiedthatviralnsp6
proteinwasfoundtocolocalizewiththeendogenousautophagymarker,LC3,suggesting
apossiblecollaborationbetweenautophagyandCOVID19replication[168].Therapeu
ticssuchaschloroquineandhydroxychloroquineelicitantiviraleffectsbyinhibitingthe
fusionofautophagosomesandlysosomes,andblocksthelaterstagesofautophagicflux
[171].Ontheotherhand,theinductionofautophagymaycombatviralinfectionbythe
degradationofviralcomponentsandtheaugmentationofinnateandadaptiveimmunity
Molecules2021,26,291710of31
[172].Inductionofautophagyandinflammatoryresponsesinducedbyviralinfectioncon
tributetolunginjury[173].IthasbeenreportedthattheinhibitionofSphasekinaseas
sociatedprotein2(SKP2),whichisresponsibleforproteasomaldegradationofBeclin1,
enhancedautophagy,andsubsequentlyattenuatedthereplicationofMERSCoV[174].A
novelanalysishasalsohighlightedtherelationbetweenautophagymechanismsandan
tiviral/inflammatoryresponsesinCOVID19.Inthissense,PI3K/Akt/mammaliantarget
ofrapamycin(mTOR)isakeycontrolsignalingpathwayforautophagythatregulates
variousautophagymediators,suchasBeclin,microtubleassociatedproteinlightchain3
(LC3),andautophagyrelated(Atg).HumanCOVID19infectedhepatocytescouldin
duceautophagythroughERK/MAPKandinhibitionofthePI3K/Akt/mTORpathway
[175].Additionally,JNK,AMPactivatedproteinkinase(AMPK),p38MAPKcontrolthe
balanceoftheautophagyresponsetoviralinfection[176–178].Consideringtheroleofthe
aforementionedmediatorsinautophagy,modulatingautophagicpathwayscouldpave
theroadforcombatingSARSCoV2infection[170].
Overall,theinhibitionofautophagyduringthefirstphaseofCOVID19couldpre
ventthereplicationofSARSCoV2andnegativelyregulatetheIFNresponse.Onthe
otherhand,autophagicpathwaysareinanearlinktoinflammationandimmunere
sponsesinCOVID19.Accordingly,dysregulationinautophagicpathwayscouldleadto
cytokinestormandimmunedysfunction.Consequently,autophagymodulationrestores
homeostasisintheimmuneresponseofCOVID19torepresentanimportantchallenge,
indicatingtheabilitytoimproveantiviralresponse,restrictinflammation,andprevent
othercomplications[179].Therefore,amechanistictargetingofautophagyshouldbecon
sideredanewstrategyincombatingSARSCoV2.
6.TherapeuticInterventionsforCOVID19
ShortlyaftertheidentificationofCOVID19inChina,manystudiesdemonstrated
theeffectivenessandadvantagesofdifferentclassesofdrugswhenhopingtofindasuit
ableagentwithpromisingeffectsintheprevention,control,recovery,andimprovement
ofrelatedpathologicalconditions.Ithasbeenwellestablishedthatinflammation,apop
tosis,oxidativestress,autophagy,andhostfactors,aswellasdestructivesignalingpath
ways,playacrucialroleinthepathogenesisofSARSCoV2.Therefore,modulationofthe
dysregulatedtherapeutictargetsandpathwaysisanattractivetherapeuticavenuefor
COVID19.
6.1.TargetingAutophagyandApoptosis
Prevailingevidencehashighlightedthecrosstalkandthebalancedinterplaybe
tweenautophagyandapoptosis[180].Theoveraccumulationofautophagosomepro
motestheapoptoticpathwaythateventuallycausesapoptoticdeathofthevirallyinfected
cellsandrepressesthevirusreplicationcycle[181].Therefore,providingalternativether
apiesthatpotentiallyinterferewithSARSCoV2andleadtoautophagyregulationisof
greatimportance.Todate,therearenoproveneffectivetherapiestopreventorcure
COVID19.Anaccumulationoffindingssuggeststhatseveraldrugsunderclinicaltrials
forSARSCOV2areautophagy/apoptosismodulators.Forinstance,chloroquine/hy
droxychloroquine,emtricitabine/tenofovir,IFN‐α‐2b,lopinavir/ritonavir,andruxolitinib
contributetoautophagosomeaccumulationthroughinhibitingautolysosomeformation
andtherebydisruptthereplicationofSARSCoV2[182].Additionally,corticosteroids
suppressautophagybyinhibitingLC3recruitment[183].Besides,ruxolitinib,asaJAK
inhibitorcaninduceautophagythroughblockingmTORC[184].
Altogether,modulatingapoptosisandautophagyseemstobeahopefulstrategyin
combatingCOVID19.
Molecules2021,26,291711of31
6.2.TargetingOxidativeStress
Viralinfectionsprovokecytokinestorm,whichinturnleadstooxidativedamage.
Therefore,alleviationandmanagementofoxidativedamagescanbeachievedbyalarge
doseofantioxidants[185].VitaminCpossesseswellcharacterizedantioxidantproperties,
beingabletoscavengefreeradicalsandtherebypreventcellsandtissuesfromoxidative
damage[186].Apartfromitsantioxidantproperty,evidenceisaccumulatingthatvitamin
CexhibitsantiviralactivitybyaugmentingIFN‐αproduction,decreasinginflammation,
amelioratingendothelialdysfunction,andalsodirectvirucidalactivity[187].Arandom
izedplacebocontrolledtrialrevealedthatthehighdoseofintravenousvitaminCcanim
provepulmonaryfunctionanddecreasetheriskofARDSin308patientsdiagnosedwith
COVID19andtransferredintotheintensivecareunit[188].VitaminEisakeylipophilic
antioxidantthatmitigateslipidperoxidation[189].Thisvitaminalsoregulatesimmune
responseandstabilizesmembranecells.TheimportanteffectsofvitaminEmakeitapo
tentialcandidateforthealleviationofoxidativedamageandinflammationinducedby
SARSCOV2[190].Moreimportantly,astaxanthin,alipidsolublecarotenoidthatpos
sessesahigherantioxidanteffectthanvitaminEandvitaminC,canbeconsideredasa
potentialoptionincounteractingCOVID19complications[191].
6.3.TargetingSARSCoV2Invasion
TargetingthelifecyclestepsofSARSCoV2,includingvirusattachmentandendo
cytosis,viralreplication,andtranscription,aswellasvirusassemblyandrelease,provides
apromisingtherapeuticapproach.Theauspiciousdrugtargetsencompasshostfactors
(e.g.,ACE2,TMPRSS2,andCD147),andNSPs(e.g.,RNAdependentRNApolymerase,
and3chymotrypsinlikeprotease),alongwithstructuralproteins.Interestingly,serine
proteaseinhibitors,suchascamostat,wereidentifiedassuppressingTMPRSS2andeffec
tivelydecreasingmortalityfollowingSARSCoVinfection[11].Moreimportantly,Hoff
mannetal.revealedthatthisdrugpossessestheabilitytoabrogateSARSCoV2entry
intolungcellsbysuppressingACE2andTMPRSS2[192].Basedonpreclinicalinvestiga
tions,adoubleblindrandomizedcontrolledclinicalstudywasperformedwith114
COVID19infectedpatientstofindwhethercamostatmesylateatadoseof200mg/3times
adaycandiminishaSARSCOV2viralloadinearlyCOVID19disease(NCT04353284).
Inanopenlabelphase2clinicaltrial,meplazumab,anantiCD147antibody,inhibited
SARSCoV2spikeproteinbindingandcouldblocktheinfectionofSARSCoV2in20
COVID19patientswithpneumonia[103].
Ithasbeenreportedthatarbidolpossessesanattractivemechanismofactionthat
affectstheSprotein/ACE2interaction,haltingviralmembranefusion[193].Anonran
domizedstudyrevealedthattreatmentwitharbidolforninedaysdecreasedmortality
ratesandenhanceddischargeratesin67patientsinfectedwithCOVID19[194].Asanti
viralchances,combinedlopinavir/ritonavircombinationas3chymotrypsinlikeprotease
inhibitorsofantiretroviraldrugswassuggestedasaneffectivedrugagainstMERSCoV
andSARSCoV[195,196].Forthisreason,severalclinicaltrialshavebeenperformedto
investigateitseffectsonCOVID19.Theresultsofthosestudieswerenotsufficientand
didnotrecommendcombinationtherapyasasuitablemedication[1,197].Theadvantages
ofnewstudiesemphasizedthatarbidolmonotherapywasmoreimpressivethanlop
inavir/ritonavirinthetreatmentofpatientswithCOVID19.About14daysafterthetreat
ment,viralloadwasnotidentifiedinthearbidolgroup,andthedurationofthepositive
RNAtestwasshorterinthisgroup[198].
FavipiravirisabroadspectrumRNApolymeraseinhibitor,anantiviralcompound
thatshowedasuitableactivityversustheCrimeanCongohemorrhagicfever,rabies,osel
tamivirresistant,andwildtypeinfluenzaBvirusinmice[199–201].Forthisreason,an
openlabelcontrolstudywasperformedtoinvestigatetheadvantagesoffavipiraviron
COVID19,andresultsshowedimprovementinthechestimagingincomparisonwiththe
controlgroupandmightbeausefulagentinthetreatmentofCOVID19[202].Moreover,
Molecules2021,26,291712of31
remdesivirisanewnucleotideanalogandRNAdependentpolymeraseinhibitorthat
showedconsiderableinvitroactivityversusSARSCoV2[203].Anemergencyuseau
thorizationforremdesivirwasissuedtoadultsandchildrenhospitalizedwithCOVID19.
Wangetal.designedadoubleblind,randomizedtrialtoinvestigatetheeffectof
remdesivirin237patientswithsevereCOVID19.Comparedwithplacebo,remdesivir
couldnotsignificantlyreducethedurationofhospitalizedtimeinpatientswithCOVID
19[204].Besides,anotherRNAdependentpolymeraseinhibitor,ribavirin,whichisrou
tinelyusedincombinationwithIFNforhepatitisCvirusinfection,couldnotfindenough
evidencetotreatCOVID19[205].Darunavirisaproteaseinhibitorthathasshownbene
ficialeffectsintreatingHIV1infection.InFebruary2020,aclinicaltrialwasregisteredin
Chinatoperusetheadvantagesofthisdrugincombinationwithcobicistat,ahumancy
tochromeP4503Aenzymeinhibitor;thusfar,nodatasupporttheefficacyandsafetyof
thisagentinhumansdiagnosedwithCOVID19(NCT04252274).
Thereisinadequateandinsufficientinformationthusfartoknowwhetherchloro
quineorhydroxychloroquinehasaremarkableroleinthetreatmentofCOVID19.Both
hydroxychloroquineandchloroquinehavebeendocumentedtoinhibitSARSCoV2in
vitro;however,itseemsthattheantiviralpotentialofhydroxychloroquineismorethan
chloroquine.Theantiviralmechanismsofhydroxychloroquineandchloroquinearenot
fullyrealized,butinhibitingviralfusion,changingthepHatthecellmembranesurface,
inhibitingandsuppressingthereplicationofnucleicacid,preventingviralassemblyand
release,anddecreasingtheglycosylationofviralproteinsareamongsttheirimportant
possibleantiviralmechanism[203,206].Evenso,theobtainedclinicaldataoneitherofthe
twocompoundsarelimitedandhaveseriousmethodologicalproblems.Inanopenlabel
studyperformedinMarch2020,theadministrationof200mghydroxychloroquinethree
timesperdayfortendaysincreasedtherateofundetectableSARSCoV2RNAinsamples
obtainedfromnasopharyngealincomparisonwiththeplacebogroup[207].Significant
methodologicproblemsreducedthevalueofthosestudiesandmadetheresultsunrelia
ble[208].Anotherrandomizedtrialwithastatisticalpopulationof30adultswithCOVID
19wasperformedinShanghai.Theresultsofthosestudiesdidnotshowasignificant
differencebetweenthegroupreceivinghydroxychloroquineandthegroupreceiving
standardcare[209].Furthermore,adverseeffectsduetohighdosesofchloroquineand
increasedmortalitypreventedpatientsfromcontinuingthestudies[210].
6.4.TargetingInflammation
Fromaninflammatorypointofview,thecriticalroleofinflammatoryresponsesand
enhancedinflammatorycytokinesinCOVID19arethemostcriticalfactors.Inthisregard,
thelevelofIL6showedaconsiderablecorrelationwiththeseverityofCOVID19,andthe
measureofthiscytokinecanbeusedasanimportantfactorinpredictingdiseaseseverity
[211].TocilizumabisaselectiveantagonistoftheIL6receptor,whichpreventedcytokine
releasesyndromeandledtoimprovingtheconditionsofapatientwithsevereCOVID19
[212].Severalclinicalstudieshavebeenconductedinvariouscountries,includingthe
UnitedStates,Spain,Nepal,Malaysia,andBelgium,toinvestigatetheeffectsofthisdrug,
butthefullresultsofthesestudieshavenotyetbeenpublished(NCT04332094,
NCT04377659,NCT04331795,NCT04330638,NCT04317092,NCT04345445).Siltuximab
andsarilumabareotherreceptorantagonistsofIL6thatareintheearlystagesofclinical
research(NCT04329650,NCT04322188,NCT04341870,NCT04357808).Consistently,it
seemsthattheIFN‐βSubtypemaybeasuitableoptionforCOVID19treatment.IFN‐β
properlydecreasedtheMERSCoVinvitroandhashadpleasantoutcomesinananimal
modelofMERSCoVinfection,butnodataevaluatedtheadvantagesofIFN‐βonSARS
CoV2[195,213,214].
AstheimportanceofJAK/STATinthepathogenesisofCOVID19wasshownprevi
ously,baricitinibisaJAKinhibitorthatleadstotheinactivationofSTATsandadecrease
intheserumlevelsofIgG,IgA,IgM,andCRP.Thelimiteddatademonstratedthatthe
administrationofbaricitinibmaymodifycytokinereleasesyndromeduetoCOVID19.
Molecules2021,26,291713of31
TheresultssuggestedthisagentasausefuldrugfordamasceningtotheCOVID19ther
apyregimen[215];forthisreason,severalclinicaltrialsareinprogresstosifttheeffectof
baricitinibinCOVID19(NCT04340232,NCT04321993,NCT04362943).
Glucocorticoidsareofthemainclassesofdrugspossessingimmunosuppressive,
antiinflammatory,andantiproliferativeactivitiesthroughblockingIL1αandβ,NF‐κB,
TNF‐α,AP1,andincreasingthesynthesisof,IκB‐α.Theadministrationofglucocorticoids
inpatientswithinfluenzaledtoadelayinviralclearanceandenhancedriskformortality;
thiswassimilarinpatientswithaMERSCoVinfection[216,217].Furthermore,thead
ministrationofglucocorticoiddrugsonpatientswithCOVID19didnotprovideadequate
andacceptableresults[218].Nonsteroidalantiinflammatorydrugs(NSAIDs)havefora
longtimebeenconsideredeffectivetherapiesagainstinflammatorydiseases[219].Tode
terminetheefficacyofibuprofen,acommonlyprescribedNSAID,inCOVID19,aran
domizedphase4clinicalstudywasappliedin230severeCOVID19patientstotreatthem
withibuprofenatadailydoseof200mg(NCT04334629).Additionally,arandomized
phase3clinicaltrialwasregisteredtoassesstheeffectivenessofnaproxen(250mgtwice
aday)inpatients(n=584)infectedwithSARSCoV2(NCT04325633)[220].Preclinical
evidencehaspreviouslybeenpresentedontheuseofNSAIDsduringCOVID19[221].
6.5.MiscellaneousAgents
Inadditiontotheaforementionedagents,antibioticsareusedforpossibleeffective
nessincombatingCOVID19.Azithromycinisamacrolideantibioticwithconflictingin
formationaboutitsconcomitantusewithhydroxychloroquineforCOVID19treatment.
However,astudyconductedinMay2020inFranceshowedthattheuseofazithromycin
incombinationwithhydroxychloroquinebeforethebeginningofCOVID19complica
tionsmaybesafeandledtoaverylowfatalityrateinpatients[222].Thesignificantpo
tentialofbothdrugsforcorrectedQTintervalprolongation,aswellasthepossibilityfor
theexacerbationofthiscomplicationintheirsimultaneoususe,preventstheirconcomi
tantadministration,anditisnotrecommended[223,224].Asanotherantibiotic,
teicoplaninwasshowntobeeffectiveagainstformercoronavirusesanddemonstratedan
invitroactivityagainstthenovelcoronavirus,butenoughinformationandconvincing
evidencearenotavailablefromclinicaltrials[225].
Asanotherclassofdrugs,anantiparasiticdrug,ivermectin,showedasuitablein
vitroeffectonSARSCoV2[226].Forthisreason,theauthorsadvisedinvestigatingthe
possiblebenefitsofivermectininhumanswithCOVID19,andseveralclinicaltrialsbegan
inthehopeofachievingconvincingresults(NCT04360356,NCT04343092,and
NCT04374279).Fromanotherpointofview,oseltamivir,aneuraminidaseinhibitor,indi
catedforprophylaxisandtreatmentofinfluenza,didnotshowanysignificanteffectfor
treatmentorprophylaxisofCOVID19[205].FromotherdrugsusedagainstCOVID19,
theBacillusCalmette–Guérin(BCG)vaccinecouldbementionedforitsuseintheimmun
izationagainsttuberculosisandthepreventionofleprosy.TheBCGvaccineshowedin
vitroandinvivononspecificprotectiveactivitiesversusotherrespiratorytractinfections.
StatisticalanalysiswasconductedtoinvestigatetheeffectsofvaccineBCGincountries
withandwithoutnationalvaccinationprogramsinpreventingandreducingCOVID19’s
mortality.Theresultsshowedthat,incountrieswithvaccinationprograms,thepreva
lenceandmortalityratewasestimatedat38.4and4.28peoplepermillion,respectively.
Thedeathratewas40/millionincountrieswithoutBCGprograms[227].Therefore,itis
hypothesizedthatthevaccinemayreducetheincidenceandseverityofCOVID19in
healthcareworkers.Inthisregard,severalclinicaltrialsarebeingconductedtoinvestigate
theseeffects(NCT04348370,NCT04373291,NCT04327206,NCT04350931,NCT04328441).
IncreasingevidencehasshownthatvitaminDdeficiencyiscorrelatedwithCOVID19
associatedcoagulopathy,inflammation,immuneresponsedysfunction,andmortality
[228].Fromamechanisticangle,vitaminDdisplaysantiviralactivitythroughimmuno
Molecules2021,26,291714of31
modulationandinductionofautophagy[229].IthasbeenreportedthatvitaminDsup
plementationmitigatesliverdiseaseprogressionandaugmentsresponsestotherapyin
hepatitisCviruspatients[230].
Othermiscellaneouscompounds,antioxidation,immunemodulatory,andantiin
flammatoryactivityofmelatonin,asaneurohormone,madethiscompoundoneofthe
drugswiththepotentialtobeaddedtothetherapeuticregimenofpatientswithCOVID
19[231].Thereissomeotherinformationontheprotectiveeffectsofmelatonininviral
diseases,whichmaydisplaytheseadvantagesinpatientswithCOVID19[231].
7.ImportanceofPhytochemicalsinCombatingCOVID19
Phytochemicalsareaconsequentialsourceofactivechemicalsconstructedbyplants,
withpotentialeffectsagainstpathogens.Theyhavebeenintroducedasinfluentialre
sourcesfordrugdiscovery,possessingvarioushumanhealthbenefits.Besides,asubstan
tialspectrumofbiologicalactivitiesisreportedforphytochemicals,suchasanticancer,
antibacterial,neuroprotective,cardioprotective,immunemodulatory,antiinflammatory,
andantioxidanteffects[232,233].Severalstepsinviralreplicationandinfectioncanbe
alsosuppressedbynaturalproducts[50].Althoughmanyofthesecompoundshavebeen
showntohavebroadspectrumantiviraleffects,themechanismsbehindtheseeffectshave
notyetbeenfullyelucidated.Besidestheirpotentantioxidantactivities,inhibitingthe
synthesisofDNAandRNA,suitablescavengingcapacities,preventionofthevirusentry,
orreproductionofthevirusaresomeofthecriticalreportedantiviralmechanismsofthese
compounds[234].Theimmunemodulatoryeffectofnaturalproductsandthesignificant
potentialforsuppressingtheinflammatoryreaction,asoneofthemajorreasonsformor
talityandmorbidityofSARSCoV2infection,areotherpromisingmechanismsofphyto
chemicalsinthetreatmentofSARSCoV2[235].Wehavepreviouslyreportedthemodu
latoryrolesofnaturalproductsoninflammatory,apoptotic,andoxidativestresspath
waysinvolvedinthepathogenesisofCOVID19associatedlunginjury[35,236].Wehave
alsoshownthattheneuronalmanifestationsofCOVID19couldbepotentiallytargeted
byphytochemicals[35].Therefore,inthepresentstudy,wehavefocusedontheinflam
matory,apoptotic,oxidativestressandautophagicpathways,andviruslifecycle,aswell
asthephytochemicaleffects.Flavonoids,polyphenolics,alkaloids,terpenoids,coumarins,
andcarotenoidsaresomeoftheimportantgroupsofphytochemicalswithantiviral,anti
oxidant,andantiinflammatoryactivitiestowardsdevelopingasuitabletherapeuticop
tionforCOVID19[35].
Asagroupofmultitargetedagents,flavonoidsandpolyphenolsarealreadyrecog
nizedaspotentialtherapeuticagentsforthetreatmentofviralinfections.Numerousstud
ieshaveshownthatcurcumin(aphenoliccompound)possessesantiinflammatoryand
antioxidantroles,andinterruptstheviralinfectionprocessviaseveralmechanisms,in
cludinghinderingvirusentry,replication,andbudding,directlyinterferingwithviral
proteinsandrepressingthegeneexpressionofthevirus[237–240].Fromanotherpointof
view,curcuminreducedtheproinflammatorycytokinesandvirusinducedcytokine
storm,aswellasalleviatinglunginjury,therebyindicatingpotentialeffectsinthetreat
mentofCOVID19[237,241].Accordingtocomputationalmethods,curcuminoffersthe
abilitytoinhibitthespikeproteinofSARSCoV2anddisruptsviralentry[242].Another
insilicoapproachalsorevealedthatcurcuminandcatechinwereusedaspotentialantivi
ralpolyphenolsthroughthedualinhibitionofhostcellreceptorstothevirus(mediated
byACE2)andviralproteinentry(Sprotein).Itshouldbementionedthatthebindingaf
finityofcatechinwasmorethanthatofcurcumin[243].
Ithasbeenpreviouslydocumentedthatthebioactiveflavonoidbaicaleinblocksin
fluenzaAvirusH3N2throughsuppressingautophagymarkers,Atg5,Atg12,andLC3
II[244].BaicaleincouldeffectivelyabrogatethereplicationofSARSCoV2inVerocells
throughdiminishing3Clikeproteases(3CLpro)SARSCoV2[245].Inanotherstudy,bai
caleinmitigatedVeroE6celldamageinducedbySARSCoV2.Additionally,this
nutraceuticalagentalleviatedthelesionsoflungtissueandsuppressedreplicationof
Molecules2021,26,291715of31
SARSCoV2inmice.Furthermore,thiscompoundimprovedrespiratoryfunctionandre
ducedinflammation,corroboratedbydecreasingthelevelofIL1βandTNF‐αinlipopol
ysaccharide(LPS)inducedacutelunginjuryofmice[246].Dockingevidencerevealed
thatflavonoidsbiochaninAandsilymarinstronglyinteractwiththeactivesiteofSARS
CoV2spikeglycoproteinandACE2,respectively[247].
FurtherinvitrostudiesshouldbecarriedoutontheseflavonoidsagainstSARSCoV
2.Asabestdockedbioflavonoid,naringinexhibitedahighaffinitybindingatthebinding
siteofmainprotease(Mpro)andspikeglycoproteinofSARSCoV2[248,249].Ithasbeen
recentlyreportedthattwoporechannel2(TPC2)isakeyrequirementforSARSCoV2
entry[250].Surprisingly,naringeninexhibitedthecapacityofpotentantiviralactivity
againstSARSCoV2andcouldsuccessfullyabrogateTPC2invitro[251].Furtherinvivo
studiesareneededtoconfirmthebeneficialeffectofnaringenin.
Ithasbeenpreviouslydocumentedthatphytoactiveflavonoidtaxifolinameliorated
sepsisinducedpulmonarydamageandedemabyinhibitingtheNF‐κBpathway[252].
Accordingtothemoleculardockingapproach,taxifolinwasfoundapotentialinhibitor
againstMproSARSCoV2[253].AsaneffectivecandidateagainstSARSCoV2,theflavo
noidsilibinindeclinedimmuneresponseandinflammationbyinhibitingSTAT3,thereby
facilitatingeffectsontheearlystageSARSCoV2infection[254].Acomputationalstudy
proposedthatsilibininhindersthereplicationofSARSCoV2viaabrogatingRNAde
pendentRNApolymerase(RdRp)[255].Silibininoffersexcellentopportunitiesforfurther
investigationsinpreclinicalandclinicaltrialsasanantiSARSCoV2agent.Ithasbeen
reportedthattheflavonoidluteolincandisrupttheviralfusionandentryprocessandcan
alsomitigateSARSCoVinfectionwithEC50valuesof10.6μMinadosedependentman
ner[256].
ResveratrolisaphenoliccompoundthatappreciablyinhibitedMERSCoVinfection
andcouldenhancecellularsurvivalbehindvirusinfection.Itcouldnotablydecreasean
essentialproteinexpressionforMERSCoVreplication(nucleocapsidN),anddownregu
latedtheinvitroapoptosisinducedthroughMERSCoV[257].Ithasbeenalsoshownthat
resveratrolpotentiallysuppressedSARSCoV2infectioninvitro[258].Emodinisanother
chemicalcompoundthatbelongstotheanthraquinonecategory.Itwasshowntoblock
andsuppresstheSproteinandACE2interaction,leadingtobeneficialeffectsinthetreat
mentofSARSCoV[259].Hirsutenone,asabioactivediarylheptanoidpolyphenolisolated
fromAlnusjaponica(Thunb.)Steud.(Betulaceae),exertedstrongantiviralactivitythrough
diminishingpapainlikeprotease(PLpro)ofSARSCoV.Ithasbeenreportedthatcatechol
andα,βunsaturatedcarbonylmoietyplaycriticalrolesinproteaseblockingactivity[260].
Alkaloidsareanimportantclassofnaturalproductswithantiviralactivities,which
havebeenextensivelystudied[261,262].Moleculardockingevidenceprovedthepromis
ingpotentialofsuchalkaloidsintargetingSARSCoV2RdRp,including10–hy
droxyusambarensine,cryptospirolepine,andstrychnopentamine[263].Thebioactiveal
kaloidemetine,asaviralentryinhibitor,haspreviouslybeenshowntoblockMERSCoV
mediatedinfection[264].Interestingly,emetineinhibitsSARSCoV2replicationinvitro,
andasynergisticeffectbetweenthecombinationofremdesivirandemetinewasobserved
[265].Asanotheralkaloidcompound,lycorinewasstronglyabletodiminishthespread
andreplicationofhumancoronavirusOC43(HCoVOC43)inamousecentralnervous
system[264].Ithasalsobeenshownthattwoalkaloidslycorineandoxysophoridinepos
sesstheabilitytosuppressthereplicationofSARSCoV2invitro[266].Consequently,
tylophorine,anaturalalkaloid,hasshownpromisingbeneficialeffectsagainstcorona
virusporcinetransmissiblegastroenteritisvirus(TGEV)throughsuppressingJAK2me
diatedNF‐κBactivationrelatedtotheinflammatoryresponse.Italsoinhibitedviralrep
licationbyinterferingwiththeviralRNAcomplex[267].Asbroadspectrumantiviral
agents,tylophorinebasedderivativesalsoblockedSARSCoV2,withEC50valuesof2.5–
14nM[268].Suchresultsindicatedthepotentialoftylophorineasanoveltherapeutic
interventionforCOVID19infection.
Molecules2021,26,291716of31
Inadditiontophenoliccompoundsandalkaloids,terpenoidscouldalsocontainaus
piciousnaturalplantderivedsecondarymetabolitesforcombatingCOVID19[269].Asa
triterpenoidcompound,glycyrrhizinhasbeensuccessfullyappliedtomitigatevirusin
ducedinflammatorycascadesandviralreplication[270,271].Ithasbeenwellestablished
thathighmobilitygroupB1(HMGB1)proteinplaysakeyroleinviralinfectionandrep
lication[272,273].Interestingly,aninsilicostudyperformedbyBaillyetal.revealedthat
glycyrrhizinisapotentialbinderofHMGboxprotein,andcouldtherebybeapromising
candidatetobeevaluatedagainstCOVID19[274].Cumulativeevidencehasdemon
stratedthatnaturalcoumarincompoundspossessantioxidant,antiapoptosis,andanti
inflammatoryactivitiestowardantiviraleffects.Additionally,theseagentseffectivelydis
ruptvariousstagesinthevirusreplicationcycle,andcouldtherebybebeneficialagents
fortacklingSARSCoV2[275].Regardingcoumarins,arecentinsilicostudyrevealedthat
somenaturallyoccurringcoumarins,includingcorymbocoumarin,methylgalbanate,and
heraclenol,displayedpotentialantiviralactivitythroughinhibitingMpro[276].Molecular
dockingapproachesindicatedthatnaturalcoumarincompoundtoddacoumaquinone
possessesasignificantsuppressingabilityagainstMproofSARSCoV2,whichisnecessary
forviralreplication[277].Anotherinsilicostudyalsoillustratedthatthebioactivecou
marininophyllumAremarkablytargetsMpro[278].
Consequently,ofothernaturalproducts,carotenoidsseemtobeofpotentialinterest
intargetingvariousstepsofthevirallifecycleandhostproteins[279].Asoneofthemost
potent/efficientcarotenoids,astaxanthinhasbeenapromisingsourceofantioxidationand
antiinflammatoryagents,withpromisingpotentialtocombatviralinfectionsandrelated
complicationsthroughtargetingseveraldestructivesignalingmediators[191].
Altogether,severalfindingsrevealedthatphytochemicalspossesstheabilitytosup
pressSARSCoV2infection.Unfortunately,almostallofthecurrentevidencefocusedon
theefficacyofphytoactivecompoundsinsilicoandinvitromodelsofCOVID19,andthe
mainantiviralmechanismsremainelusive.Therefore,thebeneficialeffectsofphytochem
icalagainstCOVID19andmainmechanismsrequireindepthresearchtobeverifiedby
preclinicalandclinicalstudies.Toxicologicalaspects,pharmacokineticsandpharmacody
namicspropertiesandpossiblesideeffects,andstructure–activityrelationship(SAR)
analysesneedappropriateassessment.
Insilicostudiesindicatedlimonin[280],berberine[281],andfisetin[282]inhibited
ACE2andspikeprotein[280],boundtoACE2,andincreasedNrf2,HO1,andTGF‐β
[281];alsoledtothereductionofTNF‐α,IL6,IL1β [282].Othercompoundssuchas
tetrandrine,lycorine,kazinolA[283],andsinigrin[284]inhibitedtheearlystageinHCoV
OC43infection,andalsoinhibitedtheeffectsagainstdifferentspeciesofCoV[283],as
wellasinhibitedSARSCoV3CLproandPLpro[283,284].Theresultsofinsilicostudiesalso
demonstratedthatmethylrosmarinate,calceolariosideB,myricetin3ObetaDglucopy
ranoside,betulinicacid,cryptotanshinone,dihomo‐γ‐linolenicacid,kaempferol,querce
tin,sugiol,licoleafol,andamaranthinemayhavestrikingpotentialagainstCOVID19
[285,286].Basedoninsilicoevidence,differentflavonoids,likelytomentinAE[287],chry
sin[288],narcissin[289],cyaniding[290],andhesperetin[291],interactedwithACE2and
declineditsneurologicalmanifestationinCOVID19[288–291],andalsoinhibitedpapain
likeproteaseinCOVID19[287].Dockingevidenceindicatedthatbaicalinbindsto
TMPRSS2andleadstotheinhibitionofCOVID19[204].Aninvitrostudyalsoindicated
thatgeraniolhasinhibitoryeffectsagainstviralspikeproteinandisausefulagentfor
therapyagainstCOVID19[292].Additionally,othernaturalcompoundshaveimportant
rolesinmodulatingthosesignalingpathways,suchasmalvidin,whichleadstothere
ductionofBax/Bcl2,caspase3, IL‐β, andTNF‐α [50].Additionally,ostholealleviated
lunginjuryandinflammationthroughpreventingthedownregulationofACE2and
Ang1–7expression,therebypossessingantiinflammatoryeffects[293].Moreover,dai
dzeinreducedTLR4,MyD88,NF‐κB,MPO,IL6,andTNF‐α[294],thymolreducedthe
levelofNF‐κB,IL6,TNF‐α,andIL1β[295],hyperinreducedTNF‐α,IL6,IL1β,andNF
κB[296],andcannabidioldeclinedthelevelsofMPO,TNF‐α,andIL6[297].Thesenatural
Molecules2021,26,291717of31
productsdeclinedthelevelofimportantmediatorsinsignalingpathwaysofCOVID19,
and haveavitalfunctioninreducingthesymptomsofCOVID19 .Severalphytochemicals
withpromisingantiviraleffectsarepresentedinTable1.Figure1showstheproposed
targetsandrelatedtherapeuticcandidatesforSARSCoV2.
Table1.Candidatephytochemicalswithpromisingantiviraleffects.
Phytochemical CompoundStudyTypeMechanismofAntiviralActivityReferences
Alkaloid
10′‐hydroxyusambarensineInsilicoRdRp[263]
Berberine Invitro,Insilico
Antiviraleffect,ACE2,spikeproteinand
increasedNrf2,HO1
TGF‐β1,ROS
[281]
CryptospirolepineInsilicoRdRp[263]
Emetin Invitro
Viralentry
MERSCoVSmediatedinfection,SARS
CoV2replication
[264,265]
Lycorine
Invivo
Invitro
SpreadandreplicationofHCoVOC43,
SARSCoV2replication[264,266]
InvitroDifferentspeciesofCoV[283]
OxysophoridineInvitro SARSCoV2replication [266,298]
StrychnopentamineInsilicoRdRp[263]
TetrandrineInvitroHCoVOC43infected[283]
TylophorineInvitro JAK2,NF‐κB,inflammation,
replication [267,268]
AnthocyaninMalvidinInvitroBax/Bcl2,Caspase3, IL1
β
, TNF‐α [50]
CannabinoidCannabidiol InvitroMPO,TNF‐α,IL6[297]
Coumarin
InophyllumAInsilicoMpro,replication[278]
MethylgalbanateInsilicoMpro,replication[276]
Osthole InvitroIL6,TNF‐α,
ACE2andAng1–7[293]
ToddacoumaquinoneInsilicoMpro,replication[277]
DiarylheptanoidHirsutenoneInvitroPLpro,replication[260]
Flavonoid
BaicaleinInvitro
Invivo
3CLproVeroE6cellsdamage,lesionsof
lungtissue,replication,IL1β,TNF‐α,
inflammation
[245,246]
BiochaninAInsilicospikeglycoprotein[247]
KaempferolInvitro
Insilico3CLpro,replication[299]
LuteolinInvitro
Insilico
ViralentrySARSCoVinfection
TNF‐α,IL1β,IL6,IL18,NF‐κB[256,300]
Naringenin Invitro
Insilico
TPC2,viralinfection
TNF‐α,IL1β,IL6,IL18,NF‐κB [251,300]
NaringinInsilicoMpro,replication[249]
InsilicoSpikeglycoprotein[248]
SilibininInsilicoRdRp[255]
SilymarinInsilico
ACE2
IL6,IL1β,TNF‐α,p46p54,p42,p38,
p44,NF‐κB,andJNK.
[247]
TaxifolinInsilicoMpro[253]
Flavonoid
CyanidinInsilicoACE2andRdRp[290]
KazinolAInvitroSARSCoV3CLproandPLpro[283]
Narcissin InsilicoBindtoACE2  [289]
TomentinAE InsilicoPLproinCOVID19[287]
Molecules2021,26,291718of31
Flavone
Baicalin InsilicoTMPRSS2andleadtoinhibitionof
COVID19[204]
Chrysin InsilicoACE2anddeclineneurological
manifestationinCOVID19[288]
Flavonol
Fisetin Invitro,Insilico
ACE2,
TNF‐α,IL6,IL1β,
Nrf2,GPx,SOD
[282]
HesperetinInvitroACE2andreduceneurologicalsignin
COVID19[291]
HesperetinInvitroACE2andreduceneurologicalsignin
COVID19[291]
Hyperin InvitroTNF‐α,IL6,IL1β,NF‐κB[296]
Isoflavone Daidzein InvitroTLR4,MyD88,NF‐κB,MPO,IL6,TNF‐α [294]
Polyphenol
Catechin InsilicoSpikeprotein,viralentry,ACE2[243]
Curcumin Insilicospikeprotein,viralentry,ACE2
TNF‐α,IL1β,IL6,IL18,NF‐κB,COX2[242,243,301]
Ellagicacid InvitroMpro,replication[302]
Resveratrol Invitro SARSCoV2infection.[258,301]
SinigrinInvitroSARSCoV3CLpro[284]
Terpenoid
CarvacrolInsilicoSpikeprotein [292]
GeraniolInvitroSpikeprotein,
TNF‐α,IL1β,IL6,iNOS,COX2[292]
Limonin InsilicoACE2,3CLpro,PLpro,RdRpandspike
protein[280]
Thymol InvitroNF‐κB,IL6,TNF‐α,IL1β,
SOD[295]
ACE2:angiotensinconvertingenzyme2;Bcl2:Bcelllymphoma2;COX2:cycloox
ygenase;ERK:extracellularregulatedkinase;GPx:glutathioneperoxidase;HCoV:human
coronavirus;HO1:hemeoxygenase1;IL:interleukin;iNOS:induciblenitricoxidesyn
thase;JAK:Januskinase;JNK:cJunNterminalkinase;Mpro:mainprotease;MERSCoV:
MiddleEastrespiratorysyndromecoronavirus;MIP:macrophageinflammatoryprotein;
MPO:myeloperoxidase;NF‐κB:nuclearfactorkappaB;PLpro:papainlikeprotease;RdRp:
RNAdependentRNApolymerase;Nrf2:nuclearfactorerythroid2relatedfactor2;ROS:
reactiveoxygenspecies;SARSCoV2:severeacuterespiratorysyndromecoronavirus2;
SOD:superoxidedismutase;TGF‐β:tumorgrowsfactor‐β;TLRs:tolllikereceptors;TNF
α:tumornecrosisfactor‐α;TPC2:twoporechannel2.
Molecules2021,26,291719of31
Figure1.MultipledysregulatedpathwaysinCOVID19.ACE2:angiotensinconvertingenzyme2;Atg:autophagyrelated;
Bcl2:Bcelllymphoma2;CAT:catalase;COX:cyclooxygenase;GST:glutathioneStransferases;HO:hemeoxygenase;
IFN:interferon;IKKβ:IκBkinaseβ;IL:interleukin;JAK:Januskinase;LC3:lightchain3;NF‐κB:nuclearfactorkappaB;
RdRP:RNAdependentRNApolymerase;RTK:receptortyrosinekinase;STAT:signaltransducerandactivatoroftran
scription;TMPRSS2:transmembraneproteaseserine2;TNF‐α:tumornecrosisfactor‐α.
8.Discussion
DuetothecomplexpathologicalmechanismsbehindCOVID19,revealingitsprecise
signalingpathwaysmayopennewroadsforprovidingefficienttherapies.COVID19em
ploysvarioussignalingpathways/mediators,includinginflammation,oxidativestress,
apoptotic,andautophagy,toovercometheimmunesystem.Ithasalsobeenshownto
altertheexpressionofsomehostfactors,includingenzymes/mediatorsandcoreceptors
suchasACE2,aswellasILs,TNF‐α,IFN‐γ,Nrf2,Bax/caspases,andBeclin/LC3tofacili
tatecellularinfectionandsubsequentcomplications(Figure2).Despiteadvances,medic
inaltherapyagainstCOVID19remainschallenging.Besides,consideringthemultiple
mediatorsinvolvedinthepathogenesisofCOVID19,andprovidingmultitargetagents,
couldbeamoreserioussteptowardcontrollinganinfection.Wepreviouslyreportedthe
conventionaltherapeuticagentswhichpotentiallytargettheinflammatorysignaling
pathwaysinCOVID19[124].Thecurrentreviewintroducescandidatetherapeutictar
gets/treatmentinCOVID19,aswellastheevidenceofusingcandidatephytochemicals.
Inthisregard,phenoliccompounds,alkaloids,terpenoids,coumarins,andcarotenoids
Molecules2021,26,291720of31
showedpotentialantiSARSCoV2effectsbytargetingvirallifecycle,virusentry/repli
cation,spikeproteins,ACE2,RdRP,PLpro,andMpro.Itisworthmentioningthat,despite
preclinicalmechanisticstudiesontheeffectsofphytochemicalsonSARSCoV2,more
clinicalinvestigationsareneededtoconfirmtheresults.Morestudies/methodsarealso
neededtodesignanoveldrugdeliverysystemthatcounteractsthepharmacokineticlim
itationsofphytochemicalsinCOVID19.
FurtherareasofresearchonnovelpathophysiologicalsignalingpathwaysofCOVID
19,especiallyoninflammatory,oxidativestress,apoptotic,andautophagicpathways,will
showmorepotentialcandidatesinthemanagement,prevention,andtreatmentof
COVID19complications.Thatsaid,morereportsarestillneededtoconfirmthebenefits
oftargetingtheaforementionedpathwaysinCOVID19.
Figure2.TheproposedtargetsandrelatedtherapeuticcandidatesinSARSCoV2.Atg:autophagyrelated;CAT:catalase;
CQ:chloroquine;HCQ:hydroxylchloroquine;GST1α:glutathionestransferases1α;HO1:hemeoxygenase;IFN:inter
feron;IL:interleukin;JAK/STAT:Januskinase(JAK)/signaltransducerandactivatoroftranscription(STAT);LC3:light
chain3;NF‐κB:nuclearfactorkappaB;ROS:reactiveoxygenspecies;RTK:receptortyrosinekinase;SARSCoV2:severe
acuterespiratorysyndromecoronavirus2;SOD:superoxidedismutase;TNF‐α:tumornecrosisfactor‐α.
AuthorContributions:Conceptualization,S.F.,M.H.F.andJ.E.;draftingofthemanuscript,S.F.,
Z.N.,S.Z.M.andS.P.;software,S.F.,reviewingandeditingofthepaper:S.F.,Z.N.,E.K.A.,M.H.F.,
E.S.S.andJ.E.;Allauthorshaveread,revisedandagreedtothepublishedversionofthemanu
script.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:J.E.gratefullyacknowledgesfundingfromCONICYT(PAI/ACADEMIAN°79160109).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarethattheresearchwasconductedintheabsenceofany
commercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest.
References
1. Wang,D.;Hu,B.;Hu,C.;Zhu,F.;Liu,X.;Zhang,J.;Wang,B.;Xiang,H.;Cheng,Z.;Xiong,Y.Clinicalcharacteristicsof138
hospitalizedpatientswith2019novelcoronavirus–infectedpneumoniainWuhan,China.JAMA2020,323,1061–1069.
2. Wu,C.;Chen,X.;Cai,Y.;Zhou,X.;Xu,S.;Huang,H.;Zhang,L.;Zhou,X.;Du,C.;Zhang,Y.Riskfactorsassociatedwithacute
respiratorydistresssyndromeanddeathinpatientswithcoronavirusdisease2019pneumoniainWuhan,China.JAMAIntern.
Med.2020,180,934–943.
3. Ahmed,S.F.;Quadeer,A.A.;McKay,M.R.PreliminaryidentificationofpotentialvaccinetargetsfortheCOVID19coronavirus
(SARSCoV2)basedonSARSCoVimmunologicalstudies.Viruses2020,12,254.
Molecules2021,26,291721of31
4. Peeri,N.C.;Shrestha,N.;Rahman,M.S.;Zaki,R.;Tan,Z.;Bibi,S.;Baghbanzadeh,M.;Aghamohammadi,N.;Zhang,W.;Haque,
U.TheSARS,MERSandnovelcoronavirus(COVID19)epidemics,thenewestandbiggestglobalhealththreats:Whatlessons
havewelearned?Int.J.Epidemiol.2020,49,717–726.
5. Shen,K.;Yang,Y.;Wang,T.;Zhao,D.;Jiang,Y.;Jin,R.;Zheng,Y.;Xu,B.;Xie,Z.;Lin,L.Diagnosis,treatment,andprevention
of2019novelcoronavirusinfectioninchildren:experts’consensusstatement.WorldJ.Pediatrics2020,16,223–231.
6. Buchholz,U.;Kühne,A.;Blümel,B.StateofknowledgeanddatagapsofMiddleEastrespiratorysyndromecoronavirus(MERS
CoV)inhumans.PlosCurr.2013,5.
7. Lai,C.C.;Shih,T.P.;Ko,W.C.;Tang,H.J.;Hsueh,PR.Severeacuterespiratorysyndromecoronavirus2(SARSCoV2)and
coronavirusdisease2019(COVID19):Theepidemicandthechallenges.Int.J.Antimicrob.Agents2020,55,105924.
8. Abedi,F.;Rezaee,R.;Karimi,G.PlausibilityoftherapeuticeffectsofRhokinaseinhibitorsagainstSevereAcuteRespiratory
SyndromeCoronavirus2(COVID19).Pharmacol.Res.2020,156,104808.
9. Zhang,J.;Ma,K.;Li,H.;Liao,M.;Qi,W.Thecontinuousevolutionanddisseminationof2019novelhumancoronavirus.J.
Infect.2020,80,671–693.
10. Mehta,P.;McAuley,DF.;Brown,M.;Sanchez,E.;Tattersall,R.S.;Manson,J.COVID19:Considercytokinestormsyndromes
andimmunosuppression.Lancet2020,395,1033–1034.
11. Yang,N.;Shen,H.M.Targetingtheendocyticpathwayandautophagyprocessasanoveltherapeuticstrategyincovid19.Int.
J.Biol.Sci.2020,16,1724–1731.
12. Sriram,K.;Insel,P.A.AhypothesisforpathobiologyandtreatmentofCOVID19:ThecentralityofACE1/ACE2imbalance.Br.
J.Pharmacol.2020,177,4825–4844.
13. Huang,C.;Wang,Y.;Li,X.;Ren,L.;Zhao,J.;Hu,Y.;Zhang,L.;Fan,G.;Xu,J.;Gu,X.Clinicalfeaturesofpatientsinfectedwith
2019novelcoronavirusinWuhan,China.Lancet2020,395,497–506.
14. Cascella,M.;Rajnik,M.;Cuomo,A.;Dulebohn,S.C.;DiNapoli,R,Features,evaluationandtreatmentcoronavirus(COVID19).
InStatpearls[internet];StatPearlsPublishing:TreasureIsland,FL,USA,2020.
15. AminJafari,A.;Ghasemi,S.ThepossibleofimmunotherapyforCOVID19:Asystematicreview.Int.Immunopharmacol.2020,
83,106455.
16. RevueltaHerrero,J.L.;ChamorrodeVega,E.;RodríguezGonzález,C.G.;Alonso,R.;HerranzAlonso,A.;SanjurjoSáez,M.
Effectiveness,safety,andcostsofatreatmentswitchtodolutegravirplusrilpivirinedualtherapyintreatmentexperiencedHIV
patients.Ann.Pharmacother.2018,52,11–18.
17. Laforge,M.;Elbim,C.;Frère,C.;madi,M.;Massaad,C.;Nuss,P.;Benoliel,J.J.;Becker,C.Tissuedamagefromneutrophil
inducedoxidativestressinCOVID19.Nat.Rev.Immunol.2020,20,515–516.
18. Reddy,K.;Rogers,A.J.;McAuley,D.F.DelvingbeneaththesurfaceofhyperinflammationinCOVID19.LancetRheumatol.2020,
2,e578–e579.
19. Jose,R.J.;Manuel,A.COVID19cytokinestorm:Theinterplaybetweeninflammationandcoagulation.LancetRespir.Med.2020.
20. Milne,S.;Yang,C.X.;Timens,W.;Bossé,Y.;Sin,D.D.SARSCoV2receptorACE2geneexpressionandRAASinhibitors.Lancet
Respir.Med.2020,8,e50–e51.
21. Helmy,Y.A.;Fawzy,M.;Elaswad,A.;Sobieh,A.;Kenney,S.P.;Shehata,A.A.TheCOVID19pandemic:Acomprehensivere
viewoftaxonomy,genetics,epidemiology,diagnosis,treatment,andcontrol.J.Clin.Med.2020,9,1225.
22. Jamwal,S.;Gautam,A.;Elsworth,J.;Kumar,M.;Chawla,R.;Kumar,P.Anupdatedinsightintothemolecularpathogenesis,
secondarycomplicationsandpotentialtherapeuticsofCOVID19pandemic.LifeSci.2020,257,118105.
23. Chan,J.F.W.;Kok,K.H.;Zhu,Z.;Chu,H.;To,K.K.W.;Yuan,S.;Yuen,K.Y.Genomiccharacterizationofthe2019novel
humanpathogeniccoronavirusisolatedfromapatientwithatypicalpneumoniaaftervisitingWuhan.Emerg.MicrobesInfect.
2020,9,221–236.
24. Wu,A.;Peng,Y.;Huang,B.;Ding,X.;Wang,X.;Niu,P.;Meng,J.;Zhu,Z.;Zhang,Z.;Wang,J.Genomecompositionanddiver
genceofthenovelcoronavirus(2019nCoV)originatinginChina.CellHostMicrobe2020,27.
25. Angeletti,S.;Benvenuto,D.;Bianchi,M.;Giovanetti,M.;Pascarella,S.;Ciccozzi,M.COVID2019:Theroleofthensp2andnsp3
initspathogenesis.J.Med.Virol.2020,92,584–588.
26. Krichel,B.;Falke,S.;Hilgenfeld,R.;Redecke,L.;Uetrecht,C.ProcessingoftheSARSCoVpp1a/abnsp7–10region.Biochem.J.
2020,477,1009–1019.
27. Ceraolo,C.;Giorgi,F.M.Genomicvarianceofthe2019nCoVcoronavirus.J.Med.Virol.2020,92,522–528.
28. Mirzaei,R.;Karampoor,S.;Sholeh,M.;Moradi,P.;Ranjbar,R.;Ghasemi,F.Acontemporaryreviewonpathogenesisandim
munityofCOVID19infection.Mol.Biol.Rep.2020,47,5365–5376.
29. Ye,Q.;Wang,B.;Mao,J.ThepathogenesisandtreatmentoftheCytokineStorm’inCOVID19.J.Infect.2020,80,607–613.
30. Xiang,P.;Xu,X.;Gao,L.;Wang,H.;Xiong,H.;Li,R.Firstcaseof2019novelcoronavirusdiseasewithEncephalitis.ChinaXiv
2020,2020,00015.
31. Giacomelli,A.;Pezzati,L.;Conti,F.;Bernacchia,D.;Siano,M.;Oreni,L.;Rusconi,S.;Gervasoni,C.;Ridolfo,A.L.;Rizzardini,G.
Selfreportedolfactoryandtastedisordersinpatientswithsevereacuterespiratorycoronavirus2infection:Acrosssectional
study.Clin.Infect.Dis.2020,71,889–890.
32. Ryan,W.ThereIsANewSymptomofCoronavirus,DoctorsSay:SuddenLossofSmellorTaste.2020.Availableonline:
https://www.usatoday.com/story/news/health/2020/03/24/coronavirussymptomslosssmelltaste/2897385001/(accessedon10
July2020).
Molecules2021,26,291722of31
33. Li,Y.C.;Bai,W.Z.;Hashikawa,T.TheneuroinvasivepotentialofSARSCoV2mayplayaroleintherespiratoryfailureof
COVID19patients.J.Med.Virol.2020,92,552–555.
34. Koyuncu,O.O.;Hogue,I.B.;Enquist,L.W.Virusinfectionsinthenervoussystem.CellHostMicrobe2013,13,379–393.
35. Fakhri,S.;Piri,S.;Majnooni,M.B.;Farzaei,M.H.;Echeverria,J.Targetingneurologicalmanifestationofcoronavirusesbycan
didatephytochemicals:Amechanisticapproach.Front.Pharmacol.2020,11,2291.
36. Abdennour,L.;Zeghal,C.;Deme,M.;Puybasset,L.Interactionbrainlungs.Ann.Fr.D’anesthesieetdeReanim.2012,e101–e107,
doi:10.1016/j.annfar.2012.04.013.
37. Poyiadji,N.;Shahin,G.;Noujaim,D.;Stone,M.;Patel,S.;Griffith,B.COVID19–associatedacutehemorrhagicnecrotizingen
cephalopathy:CTandMRIfeatures.Radiology2020,296,E119–E120.
38. Steardo,L.;Steardo,L.,Jr,Zorec,R.;Verkhratsky,A.Neuroinfectionmaycontributetopathophysiologyandclinicalmanifes
tationsofCOVID19.ActaPhysiol.2020,229,e13473.
39. Feng,G.;Zheng,K.I.;Yan,Q.Q.;Rios,R.S.;Targher,G.;Byrne,C.D.;VanPoucke,S.;Liu,W.Y.;Zheng,M.H.COVID19and
liverdysfunction:Currentinsightsandemergenttherapeuticstrategies.J.Clin.Transl.Hepatol.2020,8,18–24.
40. Miller,A.J.;Arnold,A.C.Therenin–angiotensinsystemincardiovascularautonomiccontrol:Recentdevelopmentsandclinical
implications.Clin.Auton.Res.2019,29,231–243.
41. Long,B.;Brady,WJ.;Koyfman,A.;Gottlieb,M.CardiovascularcomplicationsinCOVID19.Am.J.Emerg.Med.2020,38,1504–
1507.
42. Zhu,H.;Rhee,J.W.;Cheng,P.;Waliany,S.;Chang,A.;Witteles,R.M.;Maecker,H.;Davis,M.M.;Nguyen,P.K.;Wu,S.M.
CardiovascularComplicationsinPatientswithCOVID19:ConsequencesofViralToxicitiesandHostImmuneResponse.Curr.
Cardiol.Rep.2020,22,32.
43. Bandyopadhyay,D.;Akhtar,T.;Hajra,A.;Gupta,M.;Das,A.;Chakraborty,S.;Pal,I.;Patel,N.;Amgai,B.;Ghosh,R.K.COVID
19pandemic:Cardiovascularcomplicationsandfutureimplications.Am.J.Cardiovasc.Drugs2020,20,311–324.
44. Villapol,S.GastrointestinalsymptomsassociatedwithCOVID19:Impactonthegutmicrobiome.Transl.Res.2020,226,57–69.
45. Mackett,A.J.;Keevil,V.L.COVID19andGastrointestinalSymptoms—ACaseReport.Geriatrics2020,5,31.
46. Pan,X.W;DaXu,H.Z.;Zhou,W.;Wang,L.H.;Cui,X.G.Identificationofapotentialmechanismofacutekidneyinjuryduring
theCOVID19outbreak:Astudybasedonsinglecelltranscriptomeanalysis.IntensiveCareMed.2020,46,1114–1116.
47. Kissling,S.;Rotman,S.;Gerber,C.;Halfon,M.;Lamoth,F.;Comte,D.;Lhopitallier,L.;Sadallah,S.;Fakhouri,F.Collapsing
glomerulopathyinaCOVID19patient.KidneyInt.2020,98,228–231.
48. Durvasula,R.;Wellington,T.;McNamara,E.;Watnick,S.COVID19andKidneyFailureintheAcuteCareSetting:OurExperi
encefromSeattle.Am.J.KidneyDis.2020,76,4–6.
49. Fanelli,V.;Fiorentino,M.;Cantaluppi,V.;Gesualdo,L.;Stallone,G.;Ronco,C.;Castellano,G.AcutekidneyinjuryinSARS
CoV2infectedpatients.Crit.Care2020,24,155.
50. Pour,P.M.;Fakhri,S.;Asgary,S.;Farzaei,M.H.;Echeverria,J.Thesignalingpathways,andtherapeutictargetsofantiviral
agents:Focusingontheantiviralapproachesandclinicalperspectivesofanthocyaninsinthemanagementofviraldiseases.
Front.Pharmacol.2019,10,1207.
51. Galimberti,S.;Petrini,M.;Baratè,C.;Ricci,F.;Balducci,S.;Grassi,S.;Guerrini,F.;Ciabatti,E.;Mechelli,S.;DiPaolo,A.Tyrosine
kinaseinhibitorsplayanantiviralactioninpatientsaffectedbychronicmyeloidleukemia:Apossiblemodelsupportingtheir
useinthefightagainstSARSCoV2.Front.Oncol.2020,10,1428.
52. Miller,R.L.;Meng,T.C.;Tomai,M.A.TheantiviralactivityofTolllikereceptor7and7/8agonists.DrugNewsPerspect.2008,
21,69–87.
53. Koumbi,L.CurrentandfutureantiviraldrugtherapiesofhepatitisBchronicinfection.WorldJ.Hepatol.2015,7,1030–1040.
54. Khan,R.;Khan,A.;Ali,A.;Idrees,M.TheinterplaybetweenvirusesandTRIMfamilyproteins.Rev.Med.Virol.2019,29,e2028.
55. Hakim,MS.;Spaan,M.;Janssen,H.L.;Boonstra,A.InhibitoryreceptormoleculesinchronichepatitisBandCinfections:Novel
targetsforimmunotherapy?Rev.Med.Virol.2014,24,125–138.
56. Hoffmann,M.;KleineWeber,H.;Krüger,N.;Mueller,MA.;Drosten,C.;Pöhlmann,S.Thenovelcoronavirus2019(2019nCoV)
usestheSARScoronavirusreceptorACE2andthecellularproteaseTMPRSS2forentryintotargetcells.BioRxiv2020,
10.1101/2020.01.31.929042v1.
57. Badawi,S.;Ali,B.R.ACE2Nascence,trafficking,andSARSCoV2pathogenesis:Thesagacontinues.Hum.Genom.2021,15,1–
14.
58. Haga,S.;Yamamoto,N.;NakaiMurakami,C.;Osawa,Y.;Tokunaga,K.;Sata,T.;Yamamoto,N.;Sasazuki,T.;Ishizaka,Y.Mod
ulationofTNF‐α‐convertingenzymebythespikeproteinofSARSCoVandACE2inducesTNF‐αproductionandfacilitates
viralentry.Proc.Natl.Acad.Sci.USA2008,105,7809–7814.
59. Clarke,N.E.;Turner,A.J.Angiotensinconvertingenzyme2:Thefirstdecade.Int.J.Hypertens.2012,2012,
doi:10.1155/2012/307315.
60. Ni,W.;Yang,X.;Yang,D.;Bao,J.;Li,R.;Xiao,Y.;Hou,C.;Wang,H.;Liu,J.;Yang,D.Roleofangiotensinconvertingenzyme2
(ACE2)inCOVID19.Crit.Care2020,24,1–10.
61. Koka,V.;Huang,X.R.;Chung,A.C.;Wang,W.;Truong,L.D.;Lan,H.Y.AngiotensinIIupregulatesangiotensinIconverting
enzyme(ACE),butdownregulatesACE2viatheAT1ERK/p38MAPkinasepathway.Am.J.Pathol.2008,172,1174–1183.
Molecules2021,26,291723of31
62. Zhang,R.;Wu,Y.;Zhao,M.;Liu,C.;Zhou,L.;Shen,S.;Liao,S.;Yang,K.;Li,Q.;Wan,H.RoleofHIF1αintheregulationACE
andACE2expressioninhypoxichumanpulmonaryarterysmoothmusclecells.Am.J.Physiol.LungCell.Mol.Physiol.2009,297,
L631–L640.
63. Rivellese,F.;Prediletto,E.ACE2atthecentreofCOVID19frompaucisymptomaticinfectionstoseverepneumonia.Autoimmun.
Rev.2020,19,102536.
64. Zhu,N.;Zhang,D.;Wang,W.;Li,X.;Yang,B.;Song,J.;Zhao,X.;Huang,B.;Shi,W.;Lu,R.Anovelcoronavirusfrompatients
withpneumoniainChina,2019.NewEngl.J.Med.2020,382,727–733.
65. Dandekar,A.A.;Perlman,S.Immunopathogenesisofcoronavirusinfections:ImplicationsforSARS.Nat.Rev.Immunol.2005,5,
917–927.
66. Ziai,SA.;Rezaei,M.;Fakhrri,S.;Pouriran,R.ACE2:Itspotentialroleandregulationinsevereacuterespiratorysyndromeand
COVID19.J.Cell.Physiol.2021,236,2430–2442.
67. Li,Y.;Zhou,W.;Yang,L.;You,R.PhysiologicalandpathologicalregulationofACE2,theSARSCoV2receptor.Pharmacol.Res.
2020,157,104833.
68. Zhao,Y.;Zhao,Z.;Wang,Y.;Zhou,Y.;Ma,Y.;Zuo,W.SinglecellRNAexpressionprofilingofACE2,thereceptorofSARS
CoV2.Am.J.RespirCritCareMed.2020,202,756–759.
69. South,A.M.;Tomlinson,L.;Edmonston,D.;Hiremath,S.;Sparks,M.A.Controversiesofrenin–angiotensinsysteminhibition
duringtheCOVID19pandemic.Nat.Rev.Nephrol.2020,16,305–307.
70. Valdes,G.;Neves,L.;Anton,L.;Corthorn,J.;Chacon,C.;Germain,A.;Merrill,D.;Ferrario,C.;Sarao,R.;Penninger,J.Distribu
tionofangiotensin(1–7)andACE2inhumanplacentasofnormalandpathologicalpregnancies.Placenta2006,27,200–207.
71. Levy,A.;Yagil,Y.;Bursztyn,M.;Barkalifa,R.;Scharf,S.;Yagil,C.ACE2expressionandactivityareenhancedduringpregnancy.
Am.J.Physiol.Regul.Integr.Comp.Physiol.2008,295,R1953–R1961.
72. Rees,R.;Feigel,I.;Vickers,A.;Zollman,C.;McGurk,R.;Smith,C.Prevalenceofcomplementarytherapyusebywomenwith
breastcancer:Apopulationbasedsurvey.Eur.J.Cancer2000,36,1359–1364.
73. Guan,W.J;Ni,Z.Y;Hu,Y.;Liang,W.H;Ou,C.Q;He,J.X;Liu,L.;Shan,H.;Lei,C.L;Hui,D.S.Clinicalcharacteristicsof
coronavirusdisease2019inChina.NewEngl.J.Med.2020,382,1708–1720.
74. FernándezAtucha,A.;Izagirre,A.;FraileBermúdez,A.B.;Kortajarena,M.;Larrinaga,G.;MartinezLage,P.;Echevarría,E.;Gil,
J.Sexdifferencesintheagingpatternofrenin–angiotensinsystemserumpeptidases.Biol.Sex.Differ.2017,8,5.
75. Lavrentyev,E.N.;Malik,K.U.HighglucoseinducedNox1derivedsuperoxidesdownregulatePKC‐βII,whichsubsequently
decreasesACE2expressionandANG(1–7)formationinratVSMCs.Am.J.Physiol.HeartCirc.Physiol.2009,296,H106–H118.
76. Chen,K.;Bi,J.;Su,Y.;Chappell,M.C.;Rose,J.C.Sexspecificchangesinrenalangiotensinconvertingenzymeandangiotensin
convertingenzyme2geneexpressionandenzymeactivityatbirthandoverthefirstyearoflife.Reprod.Sci.2016,23,200–210.
77. Li,Q.;Guan,X.;Wu,P.;Wang,X.;Zhou,L.;Tong,Y.;Ren,R.;Leung,K.S.;Lau,E.H.;Wong,J.Y.Earlytransmissiondynamics
inWuhan,China,ofnovelcoronavirus–infectedpneumonia.NewEngl.J.Med.2020,382,1199–1207.
78. Oakes,J.M.;Fuchs,R.M.;Gardner,J.D.;Lazartigues,E.;Yue,X.Nicotineandthereninangiotensinsystem.Am.J.Physiol.Regul.
Integr.Comp.Physiol.2018,315,R895–R906.
79. Xudong,X.;Junzhu,C.;Xingxiang,W.;Furong,Z.;Yanrong,L.AgeandgenderrelateddifferenceofACE2expressioninrat
lung.LifeSci.2006,78,2166–2171.
80. Zhang,R.;Su,H.;Ma,X.;Xu,X.;Liang,L.;Ma,G.;Shi,L.MiRNAlet7bpromotesthedevelopmentofhypoxicpulmonary
hypertensionbytargetingACE2.Am.J.Physiol.‐LungCell.Mol.Physiol.2019,316,L547–L557.
81. Maruta,H.;He,H.PAK1blockers:PotentialTherapeuticsagainstCOVID19.Med.DrugDiscov.2020,6,100039.
82. Awad,KS.;Elinoff,JM.;Wang,S.;Gairhe,S.;Ferreyra,GA.;Cai,R.;Sun,J.;Solomon,M.A.;Danner,R.L.Raf/ERKdrivesthe
proliferativeandinvasivephenotypeofBMPR2silencedpulmonaryarteryendothelialcells.J.Am.J.Physiol.LungCell.2016,
310,L187–L201.
83. Maruta,H.HerbaltherapeuticsthatblocktheoncogenickinasePAK1:ApracticalapproachtowardsPAK1dependentdiseases
andlongevity.Phytother.Res.2014,28,656–672.
84. RicoMesa,J.S.;White,A.;Anderson,A.S.OutcomesinPatientswithCOVID19InfectionTakingACEI/ARB.Curr.Cardiol.Rep.
2020,22,31.
85. Kam,Y.W.;Okumura,Y.;Kido,H.;Ng,L.F.;Bruzzone,R.;Altmeyer,R.CleavageoftheSARScoronavirusspikeglycoprotein
byairwayproteasesenhancesvirusentryintohumanbronchialepithelialcellsinvitro.PLoSONE2009,4,e7870.
86. Bittmann,S.;Luchter,E.;Weissenstein,A.;Villalon,G.;MoschüringAlieva,E.TMPRSS2inhibitorsplayaroleincellentry
mechanismofCOVID19:Aninsightintocamostatandnafamostat.J.RegenBiolMed.2020,2,1–3.
87. Thunders,M.;Delahunt,B.Geneofthemonth:TMPRSS2(transmembraneserineprotease2).J.Clin.Pathol.2020,73,773–776.
88. Ragia,G.;Manolopoulos,V.G.InhibitionofSARSCoV2entrythroughtheACE2/TMPRSS2pathway:Apromisingapproach
foruncoveringearlyCOVID19drugtherapies.Eur.J.Clin.Pharmacol.2020,76,1623–1630.
89. Shen,L.W.;Mao,H.J.;Wu,Y.L.;Tanaka,Y.;Zhang,W.TMPRSS2:Apotentialtargetfortreatmentofinfluenzavirusandcoro
navirusinfections.Biochimie2017,142,1–10.
90. Hou,Y.;Zhao,J.;Martin,W.;Kallianpur,A.;Chung,M.K.;Jehi,L.;Sharifi,N.;Erzurum,S.;Eng,C.;Cheng,F.Newinsightsinto
geneticsusceptibilityofCOVID19:AnACE2andTMPRSS2polymorphismanalysis.BmcMed.2020,18,1–8.
91. Tanabe,L.M.;List,K.TheroleoftypeIItransmembraneserineproteasemediatedsignalingincancer.FEBSJ.2017,284,1421–
1436.
Molecules2021,26,291724of31
92. Hardy,B.;Raiter,A.PeptidebindingheatshockproteinGRP78protectscardiomyocytesfromhypoxiainducedapoptosis.J.
Mol.Med.2010,88,1157–1167.
93. Lee,A.S.TheERchaperoneandsignalingregulatorGRP78/BiPasamonitorofendoplasmicreticulumstress.Methods2005,35,
373–381.
94. Ibrahim,I.M.;Abdelmalek,D.H.;Elshahat,M.E.;Elfiky,A.A.COVID19spikehostcellreceptorGRP78bindingsiteprediction.
J.Infect.2020,80,554–562.
95. Chu,H.;Chan,C.M.;Zhang,X.;Wang,Y.;Yuan,S.;Zhou,J.;AuYeung,R.K.H.;Sze,K.H.;Yang,D.;Shuai,H.MiddleEast
respiratorysyndromecoronavirusandbatcoronavirusHKU9bothcanutilizeGRP78forattachmentontohostcells.J.Biol.
Chem.2018,293,11709–11726.
96. Balmeh,N.;Mahmoudi,S.;Mohammadi,N.;Karabedianhajiabadi,A.PredictedtherapeutictargetsforCOVID19diseaseby
inhibitingSARSCoV2anditsrelatedreceptors.Inform.Med.Unlocked2020,20,100407.
97. Ulrich,H.;Pillat,M.M.CD147asatargetforCOVID19treatment:Suggestedeffectsofazithromycinandstemcellengagement.
StemCellRev.Rep.2020,16,434–440.
98. Radzikowska,U.;Ding,M.;Tan,G.;Zhakparov,D.;Peng,Y.;Wawrzyniak,P.;Wang,M.;Li,S.;Morita,H.;Altunbulakli,C.
DistributionofACE2,CD147,CD26andotherSARSCoV2associatedmoleculesintissuesandimmunecellsinhealthandin
asthma,COPD,obesity,hypertension,andCOVID19riskfactors.Allergy2020,75,2829–2845.
99. Watanabe,A.;Yoneda,M.;Ikeda,F.;TeraoMuto,Y.;Sato,H.;Kai,C.CD147/EMMPRINactsasafunctionalentryreceptorfor
measlesvirusonepithelialcells.J.Virol.2010,84,4183–4193.
100. Zhu,X.;Song,Z.;Zhang,S.;Nanda,A.;Li,G.CD147:Anovelmodulatorofinflammatoryandimmunedisorders.Curr.Med.
Chem.2014,21,2138–2145.
101. Tanaka,Y.;Sato,Y.;Sasaki,T.Suppressionofcoronavirusreplicationbycyclophilininhibitors.Viruses2013,5,1250–1260.
102. Wang,K.;Chen,W.;Zhou,Y.S.;Lian,J.Q.;Zhang,Z.;Du,P.;Gong,L.;Zhang,Y.;Cui,H.Y.;Geng,J.J.SARSCoV2invades
hostcellsviaanovelroute:CD147spikeprotein.BioRxiv2020,doi:10.1038/s4139202000426x.
103. Bian,H.;Zheng,Z.H.;Wei,D.;Zhang,Z.;Kang,W.Z.;Hao,C.Q.;Dong,K.;Kang,W.;Xia,J.L.;Miao,J.L.Meplazumabtreats
COVID19pneumonia:Anopenlabelled,concurrentcontrolledaddonclinicaltrial.MedRxiv2020,
doi:10.1101/2020.03.21.20040691.
104. Klawitter,J.;Klawitter,J.;Schmitz,V.;Brunner,N.;Crunk,A.;Corby,K.;BendrickPeart,J.;Leibfritz,D.;Edelstein,C.L.;Thur
man,JM.Lowsaltdietandcyclosporinenephrotoxicity:Changesinkidneycellmetabolism.J.ProteomeRes.2012,11,5135–
5144.
105. Heinzmann,D.;Noethel,M.;UngernSternberg,S.V.;Mitroulis,I.;Gawaz,M.;Chavakis,T.;May,AE.;Seizer,P.CD147isa
novelinteractionpartnerofintegrinαMβ2mediatingleukocyteandplateletadhesion.Biomolecules2020,10,541.
106. Pushkarsky,T.;Yurchenko,V.;Vanpouille,C.;Brichacek,B.;Vaisman,I.;Hatakeyama,S.;Nakayama,K.I.;Sherry,B.;Bukrin
sky,M.I.CellsurfaceexpressionofCD147/EMMPRINisregulatedbycyclophilin60.J.Biol.Chem.2005,280,27866–27871.
107. Yurchenko,V.;Constant,S.;Eisenmesser,E.;Bukrinsky,M.Cyclophilin–CD147interactions:Anewtargetforantiinflamma
torytherapeutics.Clin.Exp.Immunol.2010,160,305–317.
108. Tang,W.;Hemler,M.E.Caveolin1regulatesmatrixmetalloproteinases1inductionandCD147/EMMPRINcellsurfacecluster
ing.J.Biol.Chem.2004,279,11112–11118.
109. Cui,J.;Huang,W.;Wu,B.;Jin,J.;Jing,L.;Shi,W.P.;Liu,Z.Y.;Yuan,L.;Luo,D.;Li,L.NglycosylationbyNacetylglucosami
nyltransferaseVenhancestheinteractionofCD147/basiginwithintegrinβ1andpromotesHCCmetastasis.J.Pathol.2018,245,
41–52.
110. Yu,C.;Lixia,Y.;Ruiwei,G.;Yankun,S.;Jinshan,Y.TheRoleofFAKintheSecretionofMMP9afterCD147Stimulationin
Macrophages.Int.HeartJ.2018,59,394–398.
111. Fadini,G.P.;Morieri,M.L.;Longato,E.;Bonora,B.M.;Pinelli,S.;Selmin,E.;Voltan,G.;Falaguasta,D.;Tresso,S.;Costantini,G.
ExposuretoDPP4inhibitorsandCOVID19amongpeoplewithtype2diabetes.Acase–controlstudy.DiabetesObes.Metab.
2020,22,1946–1950.
112. Lu,G.;Hu,Y.;Wang,Q.;Qi,J.;Gao,F.;Li,Y.;Zhang,Y.;Zhang,W.;Yuan,Y.;Bao,J.Molecularbasisofbindingbetweennovel
humancoronavirusMERSCoVanditsreceptorCD26.Nature2013,500,227–231.
113. Solerte,SB.;DiSabatino,A.;Galli,M.;Fiorina,P.Dipeptidylpeptidase4(DPP4)inhibitioninCOVID19.ActaDiabetol.2020,
57,779–783.
114. Strollo,R.;Pozzilli,P.DPP4inhibition:PreventingSARSCoV2infectionand/orprogressionofCOVID19?Diabetes/Metab.Res.
Rev.2020,36,e3330.
115. AlKuraishy,H.M.;AlNiemi,M.S.;Hussain,N.R.;AlGareeb,A.I.;AlHarchan,N.A.;AlKurashi,A.H,ThePotentialRoleof
ReninAngiotensinSystem(RAS)andDipeptidylPeptidase4(DPP4)inCOVID19:NavigatingtheUncharted.InSelectedChap
tersfromtheReninAngiotensinSystem;IntechOpen:London,UK,2020.
116. Wagner,L.;Klemann,C.;Stephan,M.;VonHörsten,S.Unravellingtheimmunologicalrolesofdipeptidylpeptidase4(DPP4)
activityand/orstructurehomologue(DASH)proteins.Clin.Exp.Immunol.2016,184,265–283.
117. Zlotnik,A.;Yoshie,O.Chemokines:Anewclassificationsystemandtheirroleinimmunity.Immunity2000,12,121–127.
118. Klemann,C.;Wagner,L.;Stephan,M.;vonHörsten,S.Cuttothechase:AreviewofCD26/dipeptidylpeptidase4’s(DPP4)
entanglementintheimmunesystem.Clin.Exp.Immunol.2016,185,1–21.
Molecules2021,26,291725of31
119. Iacobellis,G.COVID19anddiabetes:CanDPP4inhibitionplayarole?DiabetesRes.Clin.Pract.2020,162,doi:10.1016/j.dia
bres.2020.108125.
120. Bloomgarden,Z.T.DiabetesandCOVID19.J.Diabetes2020,12,347–348.
121. Adhikari,S.P.;Meng,S.;Wu,Y.J.;Mao,Y.P.;Ye,R.X.;Wang,Q.Z.;Sun,C.;Sylvia,S.;Rozelle,S.;Raat,H.Epidemiology,
causes,clinicalmanifestationanddiagnosis,preventionandcontrolofcoronavirusdisease(COVID19)duringtheearlyout
breakperiod:Ascopingreview.Infect.Dis.Poverty2020,9,1–12.
122. Filatov,A.;Sharma,P.;Hindi,F.;Espinosa,P.S.Neurologicalcomplicationsofcoronavirusdisease(COVID19):Encephalopa
thy.Cureus2020,12,e7352.
123. Coyle,J.;Igbinomwanhia,E.;SanchezNadales,A.;Danciu,S.;Chu,C.;Shah,N.ARecoveredCaseofCOVID19Myocarditis
andARDSTreatedwithCorticosteroids,Tocilizumab,andExperimentalAT001.Jacc:CaseRep.2020,2,1331–1336.
124. Yarmohammadi,A.;Yarmohammadi,M.;Fakhri,S.;Khan,H.TargetingpivotalinflammatorypathwaysinCOVID19:Amech
anisticreview.Eur.J.Pharmacol.2020,890,173620.
125. Min,C.K.;Cheon,S.;Ha,N.Y.;Sohn,K.M.;Kim,Y.;Aigerim,A.;Shin,H.M.;Choi,J.Y.;Inn,K.S.;Kim,J.H.Comparative
andkineticanalysisofviralsheddingandimmunologicalresponsesinMERSpatientsrepresentingabroadspectrumofdisease
severity.Sci.Rep.2016,6,25359.
126. Williams,A.E.;Chambers,R.C.Themercurialnatureofneutrophils:StillanenigmainARDS?Am.J.Physiol.LungCell.Mol.
Physiol.2014,306,L217–L230.
127. Channappanavar,R.;Perlman,S.Pathogenichumancoronavirusinfections:Causesandconsequencesofcytokinestormand
immunopathology.InSeminarsinImmunopathology;Springer:Berlin/Heidelberg,Germany,2017;pp.529–539.
128. Cameron,M.J.;BermejoMartin,J.F.;Danesh,A.;Muller,M.P.;Kelvin,D.J.Humanimmunopathogenesisofsevereacuterespir
atorysyndrome(SARS).VirusRes.2008,133,13–19.
129. Colafrancesco,S.;Priori,R.;Alessandri,C.;Astorri,E.;Perricone,C.;Blank,M.;AgmonLevin,N.;Shoenfeld,Y.;Valesini,G.
sCD163inAOSD:Abiomarkerformacrophageactivationrelatedtohyperferritinemia.Immunol.Res.2014,60,177–183.
130. Rosário,C.;ZandmanGoddard,G.;MeyronHoltz,E.G.;D’Cruz,D.P.;Shoenfeld,Y.Thehyperferritinemicsyndrome:Macro
phageactivationsyndrome,Still’sdisease,septicshockandcatastrophicantiphospholipidsyndrome.BMCMed.2013,11,185.
131. Sharif,K.;VieiraBorba,V.;ZandmanGoddard,G.;Shoenfeld,Y.EppurSiMuove:Ferritinisessentialinmodulatinginflam
mation.Clin.Exp.Immunol.2018,191,149–150.
132. Tisoncik,J.R.;Korth,M.J.;Simmons,C.P.;Farrar,J.;Martin,T.R.;Katze,M.G.Intotheeyeofthecytokinestorm.Microbiol.Mol.
Biol.Rev.2012,76,16–32.
133. Merad,M.;Martin,J.C.PathologicalinflammationinpatientswithCOVID19:Akeyroleformonocytesandmacrophages.Nat.
Rev.Immunol.2020,20,355–362.
134. Mahallawi,W.H.;Khabour,O.F.;Zhang,Q.;Makhdoum,H.M.;Suliman,B.A.MERSCoVinfectioninhumansisassociated
withaproinflammatoryTh1andTh17cytokineprofile.Cytokine2018,104,8–13.
135. Wong,C.;Lam,C.;Wu,A.;Ip,W.;Lee,N.;Chan,I.;Lit,L.;Hui,D.;Chan,M.;Chung,S.Plasmainflammatorycytokinesand
chemokinesinsevereacuterespiratorysyndrome.Clin.Exp.Immunol.2004,136,95–103.
136. Nicholls,J.M.;Poon,L.L.;Lee,K.C.;Ng,W.F.;Lai,S.T.;Leung,C.Y.;Chu,C.M.;Hui,P.K.;Mak,K.L.;Lim,W.Lungpathology
offatalsevereacuterespiratorysyndrome.Lancet2003,361,1773–1778.
137. Channappanavar,R.;Fehr,A.R.;Vijay,R.;Mack,M.;Zhao,J.;Meyerholz,D.K.;Perlman,S.DysregulatedtypeIinterferonand
inflammatorymonocytemacrophageresponsescauselethalpneumoniainSARSCoVinfectedmice.CellHostMicrobe2016,19,
181–193.
138. Channappanavar,R.;Fehr,A.R.;Zheng,J.;WohlfordLenane,C.;Abrahante,J.E.;Mack,M.;Sompallae,R.;McCray,P.B.;Mey
erholz,D.K.;Perlman,S.IFNIresponsetimingrelativetovirusreplicationdeterminesMERScoronavirusinfectionoutcomes.
J.Clin.Investig.2019,129,3625–3639.
139. Kindler,E.;Thiel,V.;Weber,F,InteractionofSARSandMERScoronaviruseswiththeantiviralinterferonresponse.InAdvances
inVirusResearch,Elsevier:Amsterdam,TheNetherlands,2016;Volume96,pp219–243.
140. deWit,E.;vanDoremalen,N.;Falzarano,D.;Munster,V.J.SARSandMERS:Recentinsightsintoemergingcoronaviruses.Nat.
Rev.Microbiol.2016,14,523.
141. Zumla,A.;Hui,D.S.;Perlman,S.MiddleEastrespiratorysyndrome.Lancet2015,386,995–1007.
142. Högner,K.;Wolff,T.;Pleschka,S.;Plog,S.;Gruber,A.D.;Kalinke,U.;Walmrath,H.D.;Bodner,J.;Gattenlöhner,S.;Lewe
Schlosser,P.MacrophageexpressedIFN‐βcontributestoapoptoticalveolarepithelialcellinjuryinsevereinfluenzaviruspneu
monia.PlosPathog.2013,9,e1003188.
143. Bendickova,K.;Tidu,F.;Fric,J.Calcineurin–NFATsignallinginmyeloidleucocytes:Newprospectsandpitfallsinimmuno
suppressivetherapy.EmboMol.Med.2017,9,990–999.
144. Park,Y.J.;Yoo,S.A.;Kim,M.;Kim,W.U.TheRoleofCalcium–Calcineurin–NFATSignalingPathwayinHealthandAutoim
muneDiseases.Front.Immunol.2020,11,195.
145. Islam,A.B.;Khan,M.A.A.K.LungbiopsycellstranscriptionallandscapefromCOVID19patientstratifiedlunginjuryin
SARSCoV2infectionthroughimpairedpulmonarysurfactantmetabolism.Sci.Rep.2020,10,19395.
146. Luo,W.;Li,Y.X.;Jiang,L.J.;Chen,Q.;Wang,T.;Ye,D.W.TargetingJAKSTATSignalingtoControlCytokineReleaseSyn
dromeinCOVID19.TrendsPharmacol.Sci.2020,41,531–543.
Molecules2021,26,291726of31
147. Bagca,B.G.;Avci,C.B.ThepotentialofJAK/STATpathwayinhibitionbyruxolitinibinthetreatmentofCOVID19.Cytokine
GrowthFactorRev.2020,54,51–62.
148. DelgadoRoche,L.;Mesta,F.OxidativeStressasKeyPlayerinSevereAcuteRespiratorySyndromeCoronavirus(SARSCoV)
infection.Arch.Med.Res.2020,51,384–387.
149. Camini,F.C.;daSilva,T.F;daSilvaCaetano,C.C.;Almeida,L.T.;Ferraz,A.C.;Vitoreti,V.M.A.;deMelloSilva,B.;deQueiroz
Silva,S.;deMagalhães,J.C.;deBritoMagalhães,C.L.AntiviralactivityofsilymarinagainstMayarovirusandprotectiveeffect
invirusinducedoxidativestress.Antivir.Res.2018,158,8–12.
150. Tan,H.Y.;Wang,N.;Li,S.;Hong,M.;Wang,X.;Feng,Y.Thereactiveoxygenspeciesinmacrophagepolarization:Reflecting
itsdualroleinprogressionandtreatmentofhumandiseases.OxidativeMed.Cell.Longev.2016,2016,2795090.
151. Warnatsch,A.;Tsourouktsoglou,T.D.;Branzk,N.;Wang,Q.;Reincke,S.;Herbst,S.;Gutierrez,M.;Papayannopoulos,V.Reac
tiveoxygenspecieslocalizationprogramsinflammationtoclearmicrobesofdifferentsize.Immunity2017,46,421–432.
152. Wang,J.Z.;Zhang,R.Y.;Bai,J.AnantioxidativetherapyforamelioratingcardiacinjuriesofcriticallyillCOVID19infected
patients.Int.J.Cardiol.2020,312,137–138.
153. Komaravelli,N.;Casola,A.Respiratoryviralinfectionsandsubversionofcellularantioxidantdefenses.J.Pharm.Pharm.2014,
5,1000141.
154. Shukla,K.;Pal,P.B.;Sonowal,H.;Srivastava,S.K.;Ramana,K.V.Aldosereductaseinhibitorprotectsagainsthyperglycemic
stressbyactivatingNrf2dependentantioxidantproteins.J.DiabetesRes.2017,2017,6785852.
155. Hassan,S.;Jawad,J.;Ahjel,W.;Sing,B.;Sing,J.;Awad,M.;Hadi,R.TheNrf2Activator(DMF)andCovid19:IsthereaPossible
Role.Med.Arch.2020,74,134–138.
156. Mao,H.;Tu,W.;Qin,G.;Law,H.K.W.;Sia,S.F.;Chan,P.L.;Liu,Y.;Lam,K.T.;Zheng,J.;Peiris,M.Influenzavirusdirectly
infectshumannaturalkillercellsandinducescellapoptosis.J.Virol.2009,83,9215–9222.
157. Tan,Y.J.;Fielding,B.C.;Goh,P.Y.;Shen,S.;Tan,T.H.;Lim,S.G.;Hong,W.Overexpressionof7a,aproteinspecificallyencoded
bythesevereacuterespiratorysyndromecoronavirus,inducesapoptosisviaacaspasedependentpathway.J.Virol.2004,78,
14043–14047.
158. Kvansakul,M.Viralinfectionandapoptosis.Viruses2017,9,356.
159. Ye,Z.;Wong,C.K.;Li,P.;Xie,Y.ASARSCoVprotein,ORF6,inducescaspase3mediated,ERstressandJNKdependent
apoptosis.Biochim.EtBiophys.ActaGen.Subj.2008,1780,1383–1387.
160. Mizutani,T.;Fukushi,S.;Saijo,M.;Kurane,I.;Morikawa,S.Phosphorylationofp38MAPKanditsdownstreamtargetsinSARS
coronavirusinfectedcells.Biochem.Biophys.Res.Commun.2004,319,1228–1234.
161. Mizutani,T.;Fukushi,S.;Saijo,M.;Kurane,I.;Morikawa,S.ImportanceofAktsignalingpathwayforapoptosisinSARSCoV
infectedVeroE6cells.Virology2004,327,169–174.
162. Gharote,M.A.Roleofpoly(ADP)ribosepolymerase1inhibitionbynicotinamideasapossibleadditivetreatmenttomodulate
hostimmuneresponseandpreventionofcytokinestorminCOVID19.IndianJ.Med.Sci.2020,72,25–28.
163. Bian,H.;Zhou,Y.;Yu,B.;Shang,D.;Liu,F.;Li,B.;Qi,J.RhokinasesignalingpathwaypromotestheexpressionofPARPto
acceleratecardiomyocyteapoptosisinischemia/reperfusion.Mol.Med.Rep.2017,16,2002–2008.
164. Zan,J.;Liu,J.;Zhou,J.W.;Wang,H.L.;Mo,K.K.;Yan,Y.;Xu,Y.B.;Liao,M.;Su,S.;Hu,R.L.Rabiesvirusmatrixprotein
inducesapoptosisbytargetingmitochondria.Exp.CellRes.2016,347,83–94.
165. Chan,C.M.;Ma,C.W.;Chan,W.Y.;Chan,H.Y.E.TheSARSCoronavirusMembraneproteininducesapoptosisthroughmod
ulatingtheAktsurvivalpathway.Arch.Biochem.Biophys.2007,459,197–207.
166. Lim,H.;Lim,Y.M.;Kim,K.H.;Jeon,Y.E.;Park,K.;Kim,J.;Hwang,H.Y.;Lee,D.J.;Pagire,H.;Kwon,H.J.Anovelautophagy
enhancerasatherapeuticagentagainstmetabolicsyndromeanddiabetes.Nat.Commun.2018,9,1–14.
167. Klionsky,D.J.;Emr,S.D.Autophagyasaregulatedpathwayofcellulardegradation.Science2000,290,1717–1721.
168. Randhawa,P.K.;Scanlon,K.;Rappaport,J.;Gupta,M.K.ModulationofAutophagybySARSCoV2:APotentialThreatfor
CardiovascularSystem.Front.Physiol.2020,11,1560.
169. Gorshkov,K.;Chen,C.Z.;Bostwick,R.;Rasmussen,L.;Xu,M.;Pradhan,M.;Tran,B.N.;Zhu,W.;Shamim,K.;Huang,W.The
SARSCoV2cytopathiceffectisblockedwithautophagymodulators.Biorxiv2020,doi:10.1101/2020.05.16.091520.
170. Bonam,S.R.;Muller,S.;Bayry,J.;Klionsky,D.J.AutophagyasanemergingtargetforCOVID19:Lessonsfromanoldfriend,
chloroquine.Autophagy2020,1–7,doi:10.1080/15548627.2020.1779467.
171. Sharma,P.;McAlinden,K.D.;Ghavami,S.;Deshpande,D.A.Chloroquine:Autophagyinhibitor,antimalarial,bittertasterecep
toragonistinfightagainstCOVID19,arealitycheck?Eur.J.Pharmacol.2021,897,173928.
172. CarmonaGutierrez,D.;Bauer,M.A.;Zimmermann,A.;Kainz,K.;Hofer,S.J.;Kroemer,G.;Madeo,F.Digestingthecrisis:Au
tophagyandcoronaviruses.Microb.Cell2020,7,119–128.
173. Zhang,R.H.;Zhang,H.L.;Li,P.Y.;Gao,J.P.;Luo,Q.;Liang,T.;Wang,X.J.;Hao,Y.Q.;Xu,T.;Li,C.H.Autophagyisin
volvedintheacutelunginjuryinducedbyH9N2influenzavirus.Int.Immunopharmacol.2019,74,105737.
174. Gassen,N.C.;Niemeyer,D.;Muth,D.;Corman,V.M.;Martinelli,S.;Gassen,A.;Hafner,K.;Papies,J.;Mösbauer,K.;Zellner,A.
SKP2attenuatesautophagythroughBeclin1ubiquitinationanditsinhibitionreducesMERSCoronavirusinfection.Nat.Com
mun.2019,10,1–16.
175. Kindrachuk,J.;Ork,B.;Hart,BJ.;Mazur,S.;Holbrook,M.R.;Frieman,M.B.;Traynor,D.;Johnson,R.F.;Dyall,J.;Kuhn,J.H.
AntiviralpotentialofERK/MAPKandPI3K/AKT/mTORsignalingmodulationforMiddleEastrespiratorysyndromecorona
virusinfectionasidentifiedbytemporalkinomeanalysis.Antimicrob.AgentsChemother.2015,59,1088–1099.
Molecules2021,26,291727of31
176. Granato,M.;Romeo,M.A.;Tiano,M.S.;Santarelli,R.;Gonnella,R.;Montani,M.S.G.;Faggioni,A.;Cirone,M.Bortezomibpro
motesKHSVandEBVlyticcyclebyactivatingJNKandautophagy.Sci.Rep.2017,7,13052.
177. Xie,N.;Yuan,K.;Zhou,L.;Wang,K.;Chen,H.N.;Lei,Y.;Lan,J.;Pu,Q.;Gao,W.;Zhang,L.PRKAA/AMPKrestrictsHBV
replicationthroughpromotionofautophagicdegradation.Autophagy2016,12,1507–1520.
178. Zhu,J.;Yu,W.;Liu,B.;Wang,Y.;Wang,J.;Xia,K.;Liang,C.;Fang,W.;Zhou,C.;Tao,H.Escininducescaspasedependent
apoptosisandautophagythroughtheROS/p38MAPKsignallingpathwayinhumanosteosarcomacellsinvitroandinvivo.
CellDeathDiffer.2017,8,e3113–e3113.
179. GarcíaPérez,B.E.;GonzálezRojas,J.A.;Salazar,M.I.;TorresTorres,C.;CastrejónJiménez,N.S.TamingtheAutophagyasa
StrategyforTreatingCOVID19.Cells2020,9,2679.
180. EisenbergLerner,A.;Bialik,S.;Simon,H.U.;Kimchi,A.Lifeanddeathpartners:Apoptosis,autophagyandthecrosstalk
betweenthem.CellDeathDiffer.2009,16,966–975.
181. Shojaei,S.;Koleini,N.;Samiei,E.;Aghaei,M.;Cole,L.K.;Alizadeh,J.;Islam,M.I.;Vosoughi,A.R.;Albokashy,M.;Butterfield,
Y.Simvastatinincreasestemozolomideinducedcelldeathbytargetingthefusionofautophagosomesandlysosomes.FEBSJ.
2020,287,1005–1034.
182. Shojaei,S.;Suresh,M.;Klionsky,D.J.;Labouta,H.I.;Ghavami,S.AutophagyandSARSCoV2infection:Apossiblesmarttar
getingoftheautophagypathway.Virulence2020,11,805–810.
183. Kyrmizi,I.;Gresnigt,M.S.;Akoumianaki,T.;Samonis,G.;Sidiropoulos,P.;Boumpas,D.;Netea,M.G.;VanDeVeerdonk,F.L.;
Kontoyiannis,D.P.;Chamilos,G.CorticosteroidsblockautophagyproteinrecruitmentinAspergillusfumigatusphagosomes
viatargetingdectin1/Sykkinasesignaling.J.Immunol.2013,191,1287–1299.
184. Ishida,S.;Akiyama,H.;Umezawa,Y.;Okada,K.;Nogami,A.;Oshikawa,G.;Nagao,T.;Miura,O.Mechanismsformtorc1
activationandsynergisticinductionofapoptosisbyruxolitinibandbh3mimeticsorautophagyinhibitorsinjak2v617fexpress
ingleukemiccellsincludingnewlyestablishedpvtl2.Oncotarget2018,9,26834–26851.
185. Wagener,F.A.;Pickkers,P.;Peterson,S.J.;Immenschuh,S.;Abraham,N.G.Targetingthehemehemeoxygenasesystemtopre
ventseverecomplicationsfollowingCOVID19infections.Antioxidants2020,9,540.
186. Feyaerts,A.F.;Luyten,W.VitaminCasprophylaxisandadjunctivemedicaltreatmentforCOVID19?Nutrition2020,79–80,
110948.
187. ColungaBiancatelli,R.M.L.;Berrill,M.;Catravas,J.D.;Marik,P.E.QuercetinandvitaminC:Anexperimental,synergisticther
apyforthepreventionandtreatmentofSARSCoV2relateddisease(COVID19).Front.Immunol.2020,11,1451.
188. Liu,F.;Zhu,Y.;Zhang,J.;Li,Y.;Peng,Z.IntravenoushighdosevitaminCforthetreatmentofsevereCOVID19:Studyprotocol
foramulticentrerandomisedcontrolledtrial.BMJOpen2020,10,e039519.
189. Richard,C.;Lemonnier,F.;Thibault,M.;Couturier,M.;Auzepy,P.VitaminEdeficiencyandlipoperoxidationduringadult
respiratorydistresssyndrome.Crit.CareMed.1990,18,4–9.
190. Soto,M.E.;GuarnerLans,V.;SoriaCastro,E.;ManzanoPech,L.;PérezTorres,I.IsAntioxidantTherapyaUsefulComplemen
taryMeasureforCovid19Treatment?AnAlgorithmforItsApplication.Medicina2020,56,386.
191. Fakhri,S.;Nouri,Z.;Moradi,S.Z.;Farzaei,M.H.;Astaxanthin,COVID19andimmuneresponse:Focusonoxidativestress,
apoptosisandautophagy.Phytother.Res.2020,34,2790–2792.
192. Hoffmann,M.;KleineWeber,H.;Schroeder,S.;Krüger,N.;Herrler,T.;Erichsen,S.;Schiergens,T.S.;Herrler,G.;Wu,N.H.;
Nitsche,A.SARSCoV2cellentrydependsonACE2andTMPRSS2andisblockedbyaclinicallyprovenproteaseinhibitor.
Cell2020,181,271–280.e8.
193. Sanders,J.M.;Monogue,M.L.;Jodlowski,T.Z.;Cutrell,J.B.Pharmacologictreatmentsforcoronavirusdisease2019(COVID19):
Areview.JAMA2020,323,1824–1836.
194. Wang,Z.;Yang,B.;Li,Q.;Wen,L.;Zhang,R.Clinicalfeaturesof69caseswithcoronavirusdisease2019inWuhan,China.Clin.
Infect.Dis.2020,71,769–777.
195. Chan,J.F.;Yao,Y.;Yeung,M.L.;Deng,W.;Bao,L.;Jia,L.;Li,F.;Xiao,C.;Gao,H.;Yu,P.;Cai,J.P.;Chu,H.;Zhou,J.;etal.
TreatmentWithLopinavir/RitonavirorInterferonbeta1bImprovesOutcomeofMERSCoVInfectioninaNonhumanPrimate
ModelofCommonMarmoset.J.Infect.Dis.2015,212,1904–1913.
196. Groneberg,D.A.;Poutanen,S.M.;Low,D.E.;Lode,H.;Welte,T.;Zabel,P.Treatmentandvaccinesforsevereacuterespiratory
syndrome.LancetInfect.Dis.2005,5,147–155.
197. Cao,B.;Wang,Y.;Wen,D.;Liu,W.;Wang,J.;Fan,G.;Ruan,L.;Song,B.;Cai,Y.;Wei,M.Atrialoflopinavir–ritonavirinadults
hospitalizedwithsevereCovid19.NewEngl.J.Med.2020,382,1787–1799.
198. Zhu,Z.;Lu,Z.;Xu,T.;Chen,C.;Yang,G.;Zha,T.;Lu,J.;Xue,Y.Arbidolmonotherapyissuperiortolopinavir/ritonavirin
treatingCOVID19.J.Infect.2020,81,e21–e23.
199. Hawman,D.W.;Haddock,E.;MeadeWhite,K.;Williamson,B.;Hanley,P.W.;Rosenke,K.;Komeno,T.;Furuta,Y.;Gowen,
B.B.;Feldmann,H.Favipiravir(T705)butnotribaviriniseffectiveagainsttwodistinctstrainsofCrimeanCongohemorrhagic
fevervirusinmice.Antivir.Res.2018,157,18–26.
200. Yamada,K.;Noguchi,K.;Kimitsuki,K.;Kaimori,R.;Saito,N.;Komeno,T.;Nakajima,N.;Furuta,Y.;Nishizono,A.Reevaluation
oftheefficacyoffavipiraviragainstrabiesvirususinginvivoimaginganalysis.Antivir.Res.2019,172,104641.
201. Fang,Q.Q.;Huang,W.J.;Li,X.Y.;Cheng,Y.H.;Tan,M.J.;Liu,J.;Wei,H.J.;Meng,Y.;Wang,D.Y.Effectivenessoffavipiravir
(T705)againstwildtypeandoseltamivirresistantinfluenzaBvirusinmice.Virology2020,545,1–9.
Molecules2021,26,291728of31
202. Cai,Q.;Yang,M.;Liu,D.;Chen,J.;Shu,D.;Xia,J.;Liao,X.;Gu,Y.;Cai,Q.;Yang,Y.;etal.ExperimentalTreatmentwithFavipi
ravirforCOVID19:AnOpenLabelControlStudy.Engineering2020,6,1192–1198.
203. Wang,M.;Cao,R.;Zhang,L.;Yang,X.;Liu,J.;Xu,M.;Shi,Z.;Hu,Z.;Zhong,W.;Xiao,G.Remdesivirandchloroquineeffectively
inhibittherecentlyemergednovelcoronavirus(2019nCoV)invitro.CellRes.2020,30,269–271.
204. Wang,Y.;Zhang,D.;Du,G.;Du,R.;Zhao,J.;Jin,Y.;Fu,S.;Gao,L.;Cheng,Z.;Lu,Q.RemdesivirinadultswithsevereCOVID
19:Arandomised,doubleblind,placebocontrolled,multicentretrial.Lancet2020,395,1569–1578.
205. Ziaie,S.;Koucheck,M.;Miri,M.;Salarian,S.;Shojaei,S.;Haghighi,M.;Sistanizad,M.Reviewoftherapeuticagentsforthe
treatmentofCOVID19.J.Cell.Mol.Anesth.2020,5,32–36.
206. Yao,X.;Ye,F.;Zhang,M.;Cui,C.;Huang,B.;Niu,P.;Liu,X.;Zhao,L.;Dong,E.;Song,C.Invitroantiviralactivityandprojection
ofoptimizeddosingdesignofhydroxychloroquineforthetreatmentofsevereacuterespiratorysyndromecoronavirus2(SARS
CoV2).Clin.Infect.Dis.2020,71,732–739.
207. Gautret,P.;Lagier,J.C.;Parola,P.;Hoang,V.T.;Meddeb,L.;Mailhe,M.;Doudier,B.;Courjon,J.;Giordanengo,V.;Vieira,V.E.;
Dupont,H.T.;Honore,S.;Colson,P.;Chabriere,E.;etal.HydroxychloroquineandazithromycinasatreatmentofCOVID19:
Resultsofanopenlabelnonrandomizedclinicaltrial.Int.J.Antimicrob.Agents2020,56,105949.
208. Cragg,G.M.;Kingston,D.G.;Newman,D.J.AnticancerAgentsfromNaturalProducts;CRCPress:BocaRaton,FL,USA,2011.
209. Chen,J.;Liu,D.;Liu,L.;Liu,P.;Xu,Q.;Xia,L.;Ling,Y.;Huang,D.;Song,S.;Zhang,D.Apilotstudyofhydroxychloroquinein
treatmentofpatientswithcommoncoronavirusdisease19(COVID19).J.ZhejiangUniv.Med.Sci.2020,49,215–219.
210. Borba,M.G.S.;Val,F.F.A.;Sampaio,V.S.;Alexandre,M.A.A.;Melo,G.C.;Brito,M.;Mourao,M.P.G.;BritoSousa,J.D.;Baiada
Silva,D.;Guerra,M.V.F.;etal.EffectofHighvsLowDosesofChloroquineDiphosphateasAdjunctiveTherapyforPatients
HospitalizedWithSevereAcuteRespiratorySyndromeCoronavirus2(SARSCoV2)Infection:ARandomizedClinicalTrial.
JAMANetw.Open2020,3,e208857.
211. Liu,F.;Li,L.;Xu,M.;Wu,J.;Luo,D.;Zhu,Y.;Li,B.;Song,X.;Zhou,X.Prognosticvalueofinterleukin6,Creactiveprotein,and
procalcitonininpatientswithCOVID19.J.Clin.Virol.2020,127,104370.
212. Michot,J.M.;Albiges,L.;Chaput,N.;Saada,V.;Pommeret,F.;Griscelli,F.;Balleyguier,C.;Besse,B.;Marabelle,A.;Netzer,F.;
etal.Tocilizumab,anantiIL6receptorantibody,totreatCovid19relatedrespiratoryfailure:Acasereport.Ann.Oncol.2020,
31,961–964.
213. Hart,B.J.;Dyall,J.;Postnikova,E.;Zhou,H.;Kindrachuk,J.;Johnson,R.F.;Olinger,G.G.;Frieman,M.B.;Holbrook,M.R.;Jahr
ling,P.B.;Hensley,L.InterferonbetaandmycophenolicacidarepotentinhibitorsofMiddleEastrespiratorysyndromecoro
navirusincellbasedassays.J.Gen.Virol.2014,95,571–577.
214. Sallard,E.;Lescure,F.X.;Yazdanpanah,Y.;Mentre,F.;PeifferSmadja,N.Type1interferonsasapotentialtreatmentagainst
COVID19.Antivir.Res.2020,178,104791.
215. Cantini,F.;Niccoli,L.;Matarrese,D.;Nicastri,E.;Stobbione,P.;Goletti,D.BaricitinibtherapyinCOVID19:Apilotstudyon
safetyandclinicalimpact.J.Infect.2020,81,318–356.
216. Arabi,Y.M.;Mandourah,Y.;AlHameed,F.;Sindi,A.A.;Almekhlafi,G.A.;Hussein,M.A.;Jose,J.;Pinto,R.;AlOmari,A.;
Kharaba,A.CorticosteroidtherapyforcriticallyillpatientswithMiddleEastrespiratorysyndrome.Am.J.Respir.Crit.Care
Med.2018,197,757–767.
217. Ni,Y.N.;Chen,G.;Sun,J.;Liang,B.M.;Liang,Z.A.Theeffectofcorticosteroidsonmortalityofpatientswithinfluenzapneu
monia:Asystematicreviewandmetaanalysis.Crit.Care2019,23,1–9.
218. Russell,C.D.;Millar,J.E.;Baillie,J.K.Clinicalevidencedoesnotsupportcorticosteroidtreatmentfor2019nCoVlunginjury.
Lancet2020,395,473–475.
219. Wong,R.S.Diseasemodifyingeffectsoflongtermandcontinuoususeofnonsteroidalantiinflammatorydrugs(NSAIDs)in
spondyloarthritis.Adv.Pharmacol.Sci.2019,2019,doi:10.1155/2019/5324170.
220. Yousefifard,M.;Zali,A.;Zarghi,A.;MadaniNeishaboori,A.;Hosseini,M.;Safari,S.Nonsteroidalantiinflammatorydrugsin
managementofCOVID19;asystematicreviewoncurrentevidence.Int.J.Clin.Pr.2020,74,e13557.
221. Russell,B.;Moss,C.;George,G.;Santaolalla,A.;Cope,A.;Papa,S.;VanHemelrijck,M.Associationsbetweenimmunesuppres
siveandstimulatingdrugsandnovelCOVID19—Asystematicreviewofcurrentevidence.Ecancermedicalscience2020,14.
222. Million,M.;Lagier,J.C.;Gautret,P.;Colson,P.;Fournier,P.E.;Amrane,S.;Hocquart,M.;Mailhe,M.;EstevesVieira,V.;Dou
dier,B.;etal.EarlytreatmentofCOVID19patientswithhydroxychloroquineandazithromycin:Aretrospectiveanalysisof
1061casesinMarseille,France.TravelMed.Infect.Dis.2020,35,101738.
223. Vouri,S.M.;Thai,T.N.;Winterstein,A.G.Anevaluationofcouseofchloroquineorhydroxychloroquineplusazithromycinon
cardiacoutcomes:ApharmacoepidemiologicalstudytoinformuseduringtheCOVID19pandemic.Res.Soc.Adm.Pharm.2021,
17,2012–2017.
224. Sarayani,A.;Cicali,B.;Henriksen,C.H.;Brown,J.D.SafetysignalsforQTprolongationorTorsadesdePointesassociatedwith
azithromycinwithorwithoutchloroquineorhydroxychloroquine.Res.Soc.Adm.Pharm.2021,17,483–486.
225. Baron,S.A.;Devaux,C.;Colson,P.;Raoult,D.;Rolain,J.M.Teicoplanin:AnalternativedrugforthetreatmentofCOVID19?
Int.J.Antimicrob.Agents2020,55,105944.
226. Caly,L.;Druce,J.D.;Catton,M.G.;Jans,D.A.;Wagstaff,K.M.TheFDAapproveddrugivermectininhibitsthereplicationof
SARSCoV2invitro.Antivir.Res.2020,178,104787.
227. Hegarty,P.K.;Kamat,A.M.;Zafirakis,H.;Dinardo,A.BCGvaccinationmaybeprotectiveagainstCovid19.Preprint2020,
doi:10.13140/RG.2.2.35948.10880.
Molecules2021,26,291729of31
228. Vyas,N.;Kurian,S.J.;Bagchi,D.;Manu,M.K.;Saravu,K.;Unnikrishnan,M.K.;Mukhopadhyay,C.;Rao,M.;Miraj,S.S.Vitamin
DinpreventionandtreatmentofCOVID19:Currentperspectiveandfutureprospects.J.Am.Coll.Nutr.2020,1–14.
229. Martineau,A.R.;Forouhi,N.G.VitaminDforCOVID19:Acasetoanswer?LancetDiabetesEndocrinol.2020,8,735–736.
230. Rahman,A.H.;Branch,A.D.VitaminDforyourpatientswithchronichepatitisC?J.Hepatol.2013,58,184–189.
231. Zhang,R.;Wang,X.;Ni,L.;Di,X.;Ma,B.;Niu,S.;Liu,C.;Reiter,R.J.COVID19:Melatoninasapotentialadjuvanttreatment.
LifeSci.2020,250,117583.
232. Moradi,S.Z.;Momtaz,S.;Bayrami,Z.;Farzaei,M.H.;Abdollahi,M.NanoformulationsofHerbalExtractsinTreatmentofNeu
rodegenerativeDisorders.Front.BioengBiotechnol.2020,8,238–238.
233. Fakhri,S.;Moradi,S.Z.;Farzaei,M.H.;Bishayee,A.Modulationofdysregulatedcancermetabolismbyplantsecondarymetab
olites:Amechanisticreview.Semin.CancerBiol.2020,doi:10.1016/j.semcancer.2020.02.007.
234. Naithani,R.;Huma,L.C.;Holland,L.E.;Shukla,D.;McCormick,D.L.;Mehta,R.G.;Moriarty,R.M.Antiviralactivityofphyto
chemicals:Acomprehensivereview.MiniRev.Med.Chem.2008,8,1106–1133.
235. McKee,D.L.;Sternberg,A.;Stange,U.;Laufer,S.;Naujokat,C.CandidatedrugsagainstSARSCoV2andCOVID19.Pharmacol.
Res.2020,157,104859.
236. Majnooni,M.B.;Fakhri,S.;Shokoohinia,Y.;Mohammadi,P.;Gravand,M.M.;Farzaei,M.H.;Echeverria,J.Phytochemicals:
Potentialtherapeuticinterventionsagainstcoronavirusesassociatedlunginjury.Front.Pharmacol.2020,11,1744.
237. Liu,Z.;Ying,Y.Theinhibitoryeffectofcurcuminonvirusinducedcytokinestormanditspotentialuseintheassociatedsevere
pneumonia.Front.CellDev.Biol.2020,8,479.
238. Du,T.;Shi,Y.;Xiao,S.;Li,N.;Zhao,Q.;Zhang,A.;Nan,Y.;Mu,Y.;Sun,Y.;Wu,C.Curcuminisapromisinginhibitorof
genotype2porcinereproductiveandrespiratorysyndromevirusinfection.BmcVet.Res.2017,13,298.
239. Praditya,D.;Kirchhoff,L.;Brüning,J.;Rachmawati,H.;Steinmann,J.;Steinmann,E.Antiinfectivepropertiesofthegolden
spicecurcumin.Front.Microbiol.2019,10,912.
240. Kannan,S.;Kolandaivel,P.Antiviralpotentialofnaturalcompoundsagainstinfluenzavirushemagglutinin.Comput.Biol.Chem.
2017,71,207–218.
241. Zahedipour,F.;Hosseini,S.A.;Sathyapalan,T.;Majeed,M.;Jamialahmadi,T.;AlRasadi,K.;Banach,M.;Sahebkar,A.Potential
effectsofcurcumininthetreatmentofCOVID19infection.Phytother.Res.2020,34,2911–2920.
242. Patel,A.;Rajendran,M.;Shah,A.;Patel,H.;Pakala,S.B.;Karyala,P.Virtualscreeningofcurcuminanditsanalogsagainstthe
spikesurfaceglycoproteinofSARSCoV2andSARSCoV.J.Biomol.Struct.Dyn.2020,doi:10.1080/07391102.2020.1868338.
243. Jena,AB.;Kanungo,N.;Nayak,V.;Chainy,G.;Dandapat,J.CatechinandCurcumininteractwithcorona(2019nCoV/SARS
CoV2)viralSproteinandACE2ofhumancellmembrane:InsightsfromComputationalstudyandimplicationforintervention.
Sci.Rep.2021,11,2043.
244. Zhu,H.y;Han,L.;Shi,Xl;Wang,Bl;Huang,H.;Wang,X.;Chen,Df;Ju,Dw;Feng,Mq.Baicalininhibitsautophagyinduced
byinfluenzaAvirusH3N2.Antivir.Res.2015,113,62–70.
245. Liu,H.;Ye,F.;Sun,Q.;Liang,H.;Li,C.;Lu,R.;Huang,B.;Tan,W.;Lai,L.Scutellariabaicalensisextractandbaicaleininhibit
replicationofSARSCoV2andits3Clikeproteaseinvitro.J.Enzym.InhibMed.Chem.2021,36,497–503.
246. Song,J.;Zhang,L.;Xu,Y.;Yang,D.;Yang,S.;Zhang,W.;Wang,J.;Tian,S.;Yang,S.;Yuan,T.Thecomprehensivestudyonthe
therapeuticeffectsofbaicaleinforthetreatmentofCOVID19invivoandinvitro.Biochem.Pharmacol.2021,183,114302.
247. Gorla,U.S.;Rao,G.K.;Kulandaivelu,U.S.;Alavala,R.R.;Panda,S.P.LeadFindingfromSelectedFlavonoidswithAntiviral
(SARSCoV2)PotentialsagainstCOVID19:AninsilicoEvaluation.Comb.Chem.High.ThroughputScreen.2020,
doi:10.2174/1386207323999200818162706.
248. Jain,A.S.;Sushma,P.;Dharmashekar,C.;Beelagi,M.S.;Prasad,S.K.;Shivamallu,C.;Prasad,A.;Syed,A.;Marraiki,N.;Prasad,
K.S.InsilicoevaluationofflavonoidsaseffectiveantiviralagentsonthespikeglycoproteinofSARSCoV2.SaudiJ.Biol.Sci.
2021,28,1040–1051.
249. Huseen,N.H.A.DockingStudyofNaringinBindingwithCOVID19MainProteaseEnzyme.IraqiJ.Pharm.Sci.2020,29,231–
238.
250. Ou,X.;Liu,Y.;Lei,X.;Li,P.;Mi,D.;Ren,L.;Guo,L.;Guo,R.;Chen,T.;Hu,J.CharacterizationofspikeglycoproteinofSARS
CoV2onvirusentryanditsimmunecrossreactivitywithSARSCoV.Nat.Commun.2020,11,1620.
251. Clementi,N.;Scagnolari,C.;D’Amore,A.;Palombi,F.;Criscuolo,E.;Frasca,F.;Pierangeli,A.;Mancini,N.;Antonelli,G.;Clem
enti,M.NaringeninisapowerfulinhibitorofSARSCoV2infectioninvitro.Pharmacol.Res.2020,163,105255.
252. Chen,W.;Deng,W.;Chen,S.InactivationofNfkbPathwaybyTaxifolinAttenuatesSepsisInducedAcuteLungInjury.Curr.
Top.NutraceuticalRes.2020,18,176–182.
253. Gogoi,N.;Chowdhury,P.;Goswami,A.K.;Das,A.;Chetia,D.;Gogoi,B.Computationalguidedidentificationofacitrusflavo
noidaspotentialinhibitorofSARSCoV2mainprotease.Mol.Divers.2020,1–15,doi:10.1007/s1103002010150x.
254. Verdura,S.;Cuyàs,E.;LlorachParés,L.;PérezSánchez,A.;Micol,V.;NonellCanals,A.;Joven,J.;Valiente,M.;SánchezMar
tínez,M.;BoschBarrera,J.SilibininisadirectinhibitorofSTAT3.FoodChem.Toxicol.2018,116,161–172.
255. BoschBarrera,J.;MartinCastillo,B.;Buxó,M.;Brunet,J.;Encinar,J.A.;Menendez,J.A.SilibininandSARSCoV2:Dualtarget
ingofhostcytokinestormandvirusreplicationmachineryforclinicalmanagementofCOVID19patients.J.Clin.Med.2020,9,
1770.
256. Yi,L.;Li,Z.;Yuan,K.;Qu,X.;Chen,J.;Wang,G.;Zhang,H.;Luo,H.;Zhu,L.;Jiang,P.Smallmoleculesblockingtheentryof
severeacuterespiratorysyndromecoronavirusintohostcells.J.Virol.2004,78,11334–11339.
Molecules2021,26,291730of31
257. Lin,S.C.;Ho,C.T.;Chuo,W.H.;Li,S.;Wang,T.T.;Lin,C.C.EffectiveinhibitionofMERSCoVinfectionbyresveratrol.BMC
Infect.Dis.2017,17,144.
258. Yang,M.;Wei,J.;Huang,T.;Lei,L.;Shen,C.;Lai,J.;Yang,M.;Liu,L.;Yang,Y.;Liu,G.Resveratrolinhibitsthereplicationof
severeacuterespiratorysyndromecoronavirus2(SARSCoV2)inculturedVerocells.Phytother.Res.2020,10.1002/ptr.6916.
259. Ho,T.Y.;Wu,S.L.;Chen,J.C.;Li,C.C.;Hsiang,CY.EmodinblockstheSARScoronavirusspikeproteinandangiotensin
convertingenzyme2interaction.Antivir.Res.2007,74,92–101.
260. Park,J.Y.;Jeong,H.J.;Kim,J.H.;Kim,Y.M.;Park,S.J.;Kim,D.;Park,K.H.;Lee,W.S.;Ryu,Y.B.DiarylheptanoidsfromAlnus
japonicainhibitpapainlikeproteaseofsevereacuterespiratorysyndromecoronavirus.Biol.Pharm.Bull.2012,35,2036–2042.
261. Qing,Z.X.;Yang,P.;Tang,Q.;Cheng,P.;Liu,X.B.;Zheng,Y.J.;Liu,Y.S.;Zeng,J.G.Isoquinolinealkaloidsandtheirantiviral,
antibacterial,andantifungalactivitiesandstructureactivityrelationship.Curr.Org.Chem.2017,21,1920–1934.
262. Moradi,M.T.;Karimi,A.;RafieianKopaei,M.;Fotouhi,F.InvitroantiviraleffectsofPeganumharmalaseedextractandits
totalalkaloidsagainstInfluenzavirus.Microb.Pathog.2017,110,42–49.
263. Ogunyemi,O.M.;Gyebi,G.A.;Elfiky,A.A.;Afolabi,S.O.;Ogunro,O.B.;Adegunloye,A.P.;Ibrahim,I.M.Alkaloidsandflavo
noidsfromAfricanphytochemicalsaspotentialinhibitorsofSARSCov2RNAdependentRNApolymerase:Aninsilicoper
spective.Antivir.Chem.Chemother.2020,28,2040206620984076.
264. Shen,L.;Niu,J.;Wang,C.;Huang,B.;Wang,W.;Zhu,N.;Deng,Y.;Wang,H.;Ye,F.;Cen,S.Highthroughputscreeningand
identificationofpotentbroadspectruminhibitorsofcoronaviruses.J.Virol.2019,93,e00023–e19.
265. Choy,K.T.;Wong,A.Y.L.;Kaewpreedee,P.;Sia,S.F.;Chen,D.;Hui,K.P.Y.;Chu,D.K.W.;Chan,M.C.W.;Cheung,P.P.H.;
Huang,X.Remdesivir,lopinavir,emetine,andhomoharringtonineinhibitSARSCoV2replicationinvitro.Antivir.Res.2020,
178,104786.
266. Zhang,Y.N.;Zhang,Q.Y.;Li,X.D.;Xiong,J.;Xiao,S.Q.;Wang,Z.;Zhang,Z.R.;Deng,C.L.;Yang,X.L.;Wei,H.P.Gem
citabine,lycorineandoxysophoridineinhibitnovelcoronavirus(SARSCoV2)incellculture.Emerg.MicrobesInfect.2020,9,
1170–1173.
267. Yang,C.W.;Lee,Y.Z.;Hsu,H.Y.;Shih,C.;Chao,Y.S.;Chang,H.Y.;Lee,S.J.Targetingcoronaviralreplicationandcellular
JAK2mediateddominantNF‐κBactivationforcomprehensiveandultimateinhibitionofcoronaviralactivity.Sci.Rep.2017,7,
4105.
268. Yang,C.W.;Lee,Y.Z.;Hsu,H.Y.;Jan,J.T.;Lin,Y.L.;Chang,S.Y.;Peng,T.T.;Yang,R.B.;Liang,J.J.;Liao,CC.Inhibition
ofSARSCoV2byhighlypotentbroadspectrumanticoronaviraltylophorinebasedderivatives.Front.Pharmacol.2020,11,
2056.
269. Kalhori,M.R.;Saadatpour,F.;Arefian,E.;Soleimani,M.;Farzaei,M.H.;Aneva,I.Y.;Echeverría,J.ThePotentialTherapeutic
EffectofRNAInterferenceandNaturalProductsonCOVID19:AReviewoftheCoronavirusesInfection.Front.Pharmacol.
2021,12,616993.
270. Michaelis,M.;Geiler,J.;Naczk,P.;Sithisarn,P.;Leutz,A.;Doerr,H.W.;Cinatl,J.,Jr.Glycyrrhizinexertsantioxidativeeffectsin
H5N1influenzaAvirusinfectedcellsandinhibitsvirusreplicationandproinflammatorygeneexpression.PLoSONE2011,6,
e19705.
271. Murck,H.Symptomaticprotectiveactionofglycyrrhizin(Licorice)inCovid19infection?Front.Immunol.2020,11,1239.
272. Sprague,L.;Lee,J.M.;Hutzen,B.J.;Wang,P.Y.;Chen,C.Y.;Conner,J.;Braidwood,L.;Cassady,K.A.;Cripe,T.P.Highmobility
groupbox1influencesHSV1716spreadandactsasanadjuvanttochemotherapy.Viruses2018,10,132.
273. Trøseid,M.;Sönnerborg,A.;Nowak,P.Highmobilitygroupboxprotein1inHIV1infection.Curr.HIVRes.2011,9,6–10.
274. Bailly,C.;Vergoten,G.Glycyrrhizin:AnalternativedrugforthetreatmentofCOVID19infectionandtheassociatedrespiratory
syndrome?Pharmacol.Ther.2020,214,107618.
275. Hassan,MZ.;Osman,H.;Ali,MA.;Ahsan,MJ.Therapeuticpotentialofcoumarinsasantiviralagents.Eur.J.Med.Chem.2016,
123,236–255.
276. Lyndem,S.;Sarmah,S.;Das,S.;Roy,A.S.Insilicoscreeningofnaturallyoccurringcoumarinderivativesfortheinhibitionof
themainproteaseofSARSCoV2.ChemRxiv.Prepr.2020,doi:10.26434/chemrxiv.12234728.v1.
277. Chidambaram,S.K.;Ali,D.;Alarifi,S.;Radhakrishnan,S.;Akbar,I.Insilicomoleculardocking:Evaluationofcoumarinbased
derivativesagainstSARSCoV2.J.Infect.PublicHealth2020,13,1671–1677.
278. Chidambaram,S.;ElSheikh,M.A.;Alfarhan,A.H.;Radhakrishnan,S.;Akbar,I.Synthesisofnovelcoumarinanalogues:Inves
tigationofmoleculardockinginteractionofSARSCoV2proteinswithnaturalandsyntheticcoumarinanaloguesandtheir
pharmacokineticsstudies.SaudiJ.Biol.Sci.2021,28,1100–1108.
279. Santoyo,S.;Jaime,L.;Plaza,M.;Herrero,M.;RodriguezMeizoso,I.;Ibañez,E.;Reglero,G.Antiviralcompoundsobtainedfrom
microalgaecommonlyusedascarotenoidsources.J.Appl.Phycol.2012,24,731–741.
280. Vardhan,S.;Sahoo,S.K.InsilicoADMETandmoleculardockingstudyonsearchingpotentialinhibitorsfromlimonoidsand
triterpenoidsforCOVID19.Comput.Biol.Med.2020,124,103936.
281. Yan,Y.Q.;Fu,Y.J.;Wu,S.;Qin,H.Q.;Zhen,X.;Song,B.M.;Weng,Y.S.;Wang,P.C.;Chen,X.Y.;Jiang,Z.Y.Antiinfluenzaactivity
ofberberineimprovesprognosisbyreducingviralreplicationinmice.Phytother.Res.2018,32,2560–2567.
282. Hussain,T.;AlAttas,O.S.;Alamery,S.;Ahmed,M.;Odeibat,H.A.;Alrokayan,S.Theplantflavonoid,fisetinalleviatescigarette
smokeinducedoxidativestress,andinflammationinWistarratlungs.J.FoodBiochem.2019,43,e12962.
283. Islam,M.T.;Sarkar,C.;ElKersh,D.M.;Jamaddar,S.;Uddin,S.J.;Shilpi,J.A.;Mubarak,M.S.Naturalproductsandtheirderiv
ativesagainstcoronavirus:Areviewofthenonclinicalandpreclinicaldata.Phytother.Res.2020,34,2471–2492.
Molecules2021,26,291731of31
284. Lin,L.T.;Hsu,W.C.;Lin,C.C.Antiviralnaturalproductsandherbalmedicines.J.Tradit.ComplementaryMed.2014,4,24–35.
285. ulQamar,M.T.;Alqahtani,S.M.;Alamri,M.A.;Chen,L.L.StructuralbasisofSARSCoV23CLproandantiCOVID19drug
discoveryfrommedicinalplants†.J.Pharm.Anal.2020,10,313–319.
286. Zhang,D.H.;Wu,K.L.;Zhang,X.;Deng,S.Q.;Peng,B.InsilicoscreeningofChineseherbalmedicineswiththepotentialto
directlyinhibit2019novelcoronavirus.J.Integr.Med.2020,18,152–158.
287. Cho,J.K.;CurtisLong,M.J.;Lee,K.H.;Kim,D.W.;Ryu,H.W.;Yuk,H.J.;Park,K.H.GeranylatedflavonoidsdisplayingSARS
CoVpapainlikeproteaseinhibitionfromthefruitsofPaulowniatomentosa.BioorganicMed.Chem.2013,21,3051–3057.
288. Basu,A.;Sarkar,A.;Maulik,U.MoleculardockingstudyofpotentialphytochemicalsandtheireffectsonthecomplexofSARS
CoV2spikeproteinandhumanACE2.Sci.Rep.2020,10,17699.
289. Owis,A.I.;ElHawary,M.S.;ElAmir,D.;Aly,O.M.;Abdelmohsen,U.R.;Kamel,M.S.Moleculardockingrevealsthepotential
ofSalvadorapersicaflavonoidstoinhibitCOVID19virusmainprotease.RSCAdv.2020,10,19570–19575.
290. Rameshkumar,M.R.;Indu,P.;Arunagirinathan,N.;Venkatadri,B.;ElSerehy,H.A.;Ahmad,A.Computationalselectionof
flavonoidcompoundsasinhibitorsagainstSARSCoV2mainprotease,RNAdependentRNApolymeraseandspikeproteins:
Amoleculardockingstudy.SaudiJ.Biol.Sci.2021,28,448–458.
291. Cheng,L.;Zheng,W.;Li,M.;Huang,J.;Bao,S.;Xu,Q.;Ma,Z.Citrusfruitsarerichinflavonoidsforimmunoregulationand
potentialtargetingACE2.Preprints2020,2020020313,doi:10.20944/preprints202002.0313.v1.
292. Maurya,V.K.;Kumar,S.;Prasad,A.K.;Bhatt,M.L.;Saxena,S.K.Structurebaseddrugdesigningforpotentialantiviralactivity
ofselectednaturalproductsfromAyurvedaagainstSARSCoV2spikeglycoproteinanditscellularreceptor.VirusDisease2020,
31,179–193.
293. Shi,Y.;Zhang,B.;Chen,X.J.;Xu,D.Q.;Wang,Y.X.;Dong,H.Y.;Ma,S.R.;Sun,R.H.;Hui,Y.P.;Li,Z.C.Ostholeprotects
lipopolysaccharideinducedacutelunginjuryinmicebypreventingdownregulationofangiotensinconvertingenzyme2.Eur.
J.Pharm.Sci.2013,48,819–824.
294. Seo,D.J.;Jeon,S.B.;Oh,H.;Lee,B.H.;Lee,S.Y.;Oh,S.H.;Jung,J.Y.;Choi,C.Comparisonoftheantiviralactivityofflavonoids
againstmurinenorovirusandfelinecalicivirus.FoodControl.2016,60,25–30.
295. Wan,L.;Meng,D.;Wang,H.;Wan,S.;Jiang,S.;Huang,S.;Wei,L.;Yu,P.Preventiveandtherapeuticeffectsofthymolina
lipopolysaccharideinducedacutelunginjurymicemodel.Inflammation2018,41,183–192.
296. Hu,X.;Li,H.;Fu,L.;Liu,F.;Wang,H.;Li,M.;Jiang,C.;Yin,B.TheprotectiveeffectofhyperinonLPSinducedacutelung
injuryinmice.Microb.Pathog.2019,127,116–120.
297. Lowe,H.I.;Toyang,N.J.;McLaughlin,W.Potentialofcannabidiolforthetreatmentofviralhepatitis.Pharmacogn.Res.2017,9,
116–118.
298. Gani,M.A.;Nurhan,A.D.;Maulana,S.;Siswodihardjo,S.;Shinta,D.W.;Khotib,J.Structurebasedvirtualscreeningofbioactive
compoundsfromIndonesianmedicalplantsagainstsevereacuterespiratorysyndromecoronavirus2.J.Adv.Pharm.Technol.
Res.2021,12,120.
299. Khan,A.;Heng,W.;Wang,Y.;Qiu,J.;Wei,X.;Peng,S.;Saleem,S.;Khan,M.;Ali,S.S.;Wei,D.Q.Insilicoandinvitroevaluation
ofkaempferolasapotentialinhibitoroftheSARSCoV2mainprotease(3CLpro).Phytother.Res2021,doi:10.1002/ptr.6998.
300. Laksmiani,N.P.L.;Larasanty,L.P.F.;Santika,A.A.G.J.;Prayoga,P.A.A.;Dewi,A.A.I.K.;Dewi,N.P.A.K.ActiveCompounds
ActivityfromtheMedicinalPlantsagainstSARSCoV2usinginSilicoAssay.Biomed.Pharmacol.J.2020,13,873–881.
301. Milenkovic,D.;Ruskovska,T.;RodriguezMateos,A.;Heiss,C.PolyphenolscouldpreventSARSCoV2infectionbymodulat
ingtheexpressionofmiRNAsinthehostcells.AgingDis.2021,doi:10.14336/AD.2021.0223.
302. Pandey,A.K.;Verma,S.AninsilicoevaluationofdietarycomponentsforstructuralinhibitionofSARSCov2mainprotease.
J.Biomol.Struct.Dyn.2020,1–7,doi:10.1080/07391102.2020.1809522
... Moreover, it has been revealed that intracellular signaling pathways, such as MAPK/ERK, SAPK/JNK, PI3K/Akt, NFκ-B/IκB, and JAK/STAT3, are activated in host cells infected with SARS-CoV-2, resulting in the overexpression and excessive production of pro-in ammatory cytokines, such IL-6, in host cells [4][5][6][7][8]. ...
... Recently, it has been reported that the MEK1/2 inhibitor ATR-002 alleviates SARS-CoV-2-induced expression of pro-in ammatory cytokines and chemokines [8], indicating that the inhibition of MAPK/ERK pathway may be useful in the treatment of cytokine storm. In addition, the PI3K/Akt, NF-κB/IκB, and JAK-STAT3 pathways were also reported to be important in the development of cytokine storm [4,5,7]. Taken together, use of isofraxidin alone or in combination with other agents that inhibit signaling pathways other than MAPK/ERK, may represent a more effective treatment of cytokine storm. ...
Preprint
Full-text available
Interleukin-6 (IL-6) is a pleiotropic cytokine that has many biological activities, including inflammation, hematopoiesis, bone metabolism, embryonic development, and other fundamental processes. Recently, IL-6 has been widely recognized as an important pro-inflammatory cytokine involved in cytokine storm pathogenesis during severe inflammatory diseases, such as coronavirus disease 2019 (COVID-19). Therefore, IL-6 is considered to be a therapeutic target for inhibiting cytokine storm. In the present study, we investigated the suppressive effect of isofraxidin, a major coumarin compound of Acanthopanax senticosus, on the overexpression of IL-6 and its molecular mechanism. When human hepatocellular carcinoma cell lines, HuH-7 and HepG2, were treated with 12-O-tetradecanoylphorbol 13-acetate (TPA), a marked induction of IL-6 mRNA expression was observed in HuH-7 cells compared with HepG2 cells. Isofraxidin significantly suppressed TPA-induced IL-6 mRNA expression in HuH-7 cells in a dose-dependent manner. Furthermore, isofraxidin inhibited TPA-induced phosphorylation of ERK1/2 in a dose dependent manner. Similarly, the MAPK/ERK inhibitor U0126 suppressed TPA-induced IL-6 mRNA expression. However, isofraxidin had no effects on TPA-induced phosphorylation of SAPK/JNK, Akt (Ser473), and STAT3 (Tyr705), nuclear translocation of NF-κB p65, and degradation of IκB. Taken together, isofraxidin suppresses TPA-induced overexpression of IL-6 mRNA by selectively inhibiting the activation of the MAPK/ERK pathway in HuH-7 cells, indicating that isofraxidin may be an effective anti-inflammatory agent for treating cytokine storm.
... Despite above mentioned, there is still an urgently need to look for speci c antiviral drugs and additional clinical trials are needed to investigate their inhibitory mechanisms, e cacy, and safety in the treatment of coronavirus infection. [19][20][21]. ...
... Although su cient data is not documented about the mortality of the virus but due several mutations and very high transmission rate has been reported [57]. No speci c known drugs are available for SARS-CoV-2, there is still an urgently need to look for speci c antiviral drugs and the global attention focused on the scienti c community for a possible solution [21,37,44]. ...
Preprint
Full-text available
Coronavirus disease-2019 (COVID-19), a global pandemic has currently infected more than 247 million people around the world. Nowadays, several receptors of COVID-19 have been reported, and few of them are explored for drug discovery. New mutant strains of COVID-19 are emerging since the first outbreak of disease and causing significant morbidity and mortality across the world. Although, few of drugs were approved for an emergency uses, however, promising drug with well proven clinical efficacy is yet to be discovered. Hence, researchers are continuously attempting for search of potential drug candidates targeting the well-established enzymatic targets of the virus. The present study is aiming to discover the antiviral compounds as potential inhibitors against the five targets in various stages of the SARS-CoV-2 life cycle, i.e., virus attachments (ACE2 and TMPRSS2), viral replication and transcription (M pro , PL pro and RdRp), using the most reliable molecular docking and molecular dynamics method. The ADMET study was then carried out to determine the pharmacokinetics and toxicity of several compounds with the best docking results. To provide a more effective mechanism for demonstrating protein-ligand interactions, molecular docking data were subjected to a molecular dynamic (MD) simulation at 300K for 100 ns. In terms of structural stability, structure compactness, solvent accessible surface area, residue flexibility, and hydrogen bond interactions, the dynamic features of complexes have been compared.
... Quercetin (Fig. 1), a widely distributed plant flavonoid, has shown various biological activities, including anticancer, antiviral, antioxidant, immunoprotective, neuroprotective, and anti-inflammatory effects [213,215,[218][219][220][221][222][223][224]. Synthesis of diverse formulations of quercetin lead to increased anticarcinoma potential against in vitro and in vivo models of breast cancer, including CAL51, CRL-2539, MDA-MB-231, and MCF-7 via promoting apoptosis, inducing cell cycle arrest, diminishing EGFR/PI3K/Akt and EGFR/VEGFR-2 signaling pathway [162][163][164]. ...
Article
Full-text available
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
... The generation of high levels of ROS and reactive nitrogen species (RNS) can lead to several damaging effects, such as lipid peroxidation in variant organs [58]. Production of ROS and free radicals exert a considerable role in the progression of variant disorders, including variant types of cancer, cardiovascular, AD, PD, and other NDDs [25][26][27][28][29][30][31][62][63][64][65]. Suppression of free radical's generation is essential for enhancing the viability of cells. ...
Article
Full-text available
Abstract: Spinal cord injury (SCI) possesses a complicated etiology. There is no FDA-approved treatment for SCI, and the majority of current interventions focus on reducing symptoms. During SCI, inflammation, oxidative stress, apoptosis, and autophagy are behind the secondary phase of SCI and cause serious consequences. It urges the need for providing multi-targeting agents, that possess lower side effects and higher efficacy. The plant secondary metabolites are multi-targeting agents and seem to provide new roads in combating diseases. Flavonoids are phytochemicals of continual interest to scientists in combating neurodegenerative diseases (NDDs). Flavonoids are being studied for their biological and pharmacological effects, particularly as antioxidants, anti-inflammatory agents, anti-apoptotic, and autophagy regulators. Quercetin is one of the most well-known flavonols known for its preventative and therapeutic properties. It is a naturally occurring bioactive flavonoid that has recently received a lot of attention for its beneficial effects on NDDs. Several preclinical evidence demonstrated its neuroprotective effects. In this systematic review, we aimed at providing the biological activities of quercetin and related derivatives against SCI. Detailed neuroprotective mechanisms of quercetin derivatives are also highlighted in combating SCI.
... Nature is one of the main sources of active therapeutic agents, chemical compounds, and drugs with a wide variety of pharmacological effects, including antitumor, cardioprotective, antiviral, neuroprotective, anti-inflammatory, and antibacterial activities [60][61][62][63][64][65][66][67][68][69][70][71]. In recent decades, various mitochondrial-targeted components with significant anticarcinoma potential have been identified and obtained from natural compounds. ...
Article
Full-text available
The marine environment is important yet generally underexplored. It contains new sources of functional constituents that can affect various pathways in food processing, storage, and fortification. Bioactive secondary metabolites produced by marine microorganisms may have significant potential applications for humans. Various components isolated from disparate marine microorganisms , including fungi, microalgae, bacteria, and myxomycetes, showed considerable biological effects, such as anticancer, antioxidant, antiviral, antibacterial, and neuroprotective activities. Growing studies are revealing that potential anticancer effects of marine agents could be achieved through the modulation of several organelles. Mitochondria are known organelles that influence growth, differentiation, and death of cells via influencing the biosynthetic, bioenergetic, and various signaling pathways related to oxidative stress and cellular metabolism. Consequently, mitochon-dria play an essential role in tumorigenesis and cancer treatments by adapting to alterations in environmental and cellular conditions. The growing interest in marine-derived anticancer agents, combined with the development and progression of novel technology in the extraction and cultures of marine life, led to revelations of new compounds with meaningful pharmacological applications. This is the first critical review on marine-derived anticancer agents that have the potential for targeting mitochondrial function during tumorigenesis. This study aims to provide promising strategies in cancer prevention and treatment.
... In the beginning of November, two new antiviral drugs (molnupiravir and paxlovid) were reported to reduce death as well as hospitalization numbers among patients who were treated early after their initial infection in clinical studies [9]. Despite above mentioned, there is still an urgent need to look for specific antiviral drugs and additional clinical trials are needed to investigate their inhibitory mechanisms, efficacy, and safety in the treatment of coronavirus infection [10][11][12][13]. Many researchers have focused on some targets in order to discover and develop potential antivirals by blocking major steps in the life cycle of COVID-19 [14]. ...
Article
Full-text available
Coronavirus disease-2019 (COVID-19), a global pandemic, has currently infected more than 247 million people around the world. Nowadays, several receptors of COVID-19 have been reported, and few of them are explored for drug discovery. New mutant strains of COVID-19 are emerging since the first outbreak of disease and causing significant morbidity and mortality across the world. Although, few drugs were approved for emergency uses, however, promising drug with well-proven clinical efficacy is yet to be discovered. Hence, researchers are continuously attempting to search for potential drug candidates targeting the well-established enzymatic targets of the virus. The present study aims to discover the antiviral compounds as potential inhibitors against the five targets in various stages of the SARS-CoV-2 life cycle, i.e., virus attachments (ACE2 and TMPRSS2), viral replication, and transcription (Mpro, PLpro and RdRp), using the most reliable molecular docking and molecular dynamics method. The ADMET study was then carried out to determine the pharmacokinetics and toxicity of several compounds with the best docking results. To provide a more effective mechanism for demonstrating protein–ligand interactions, molecular docking data were subjected to a molecular dynamic (MD) simulation at 300 K for 100 ns. In terms of structural stability, structure compactness, solvent accessible surface area, residue flexibility, and hydrogen bond interactions, the dynamic features of complexes have been compared.
... prophylaxis of COVID-19 (Fakhri et al., 2021). They attracted special attention due to their involvement in various steps of the viral life cycle and host proteins (Santoyo et al., 2011). ...
Article
Full-text available
The current COVID‐19 pandemic is severely threatening public healthcare systems around the globe. Some supporting therapies such as remdesivir, favipiravir, and ivermectin are still under the process of a clinical trial, it is thus urgent to find alternative treatment and prevention options for SARS‐CoV‐2. In this regard, although many natural products have been tested and/or suggested for the treatment and prophylaxis of COVID‐19, carotenoids as an important class of natural products were underexplored. The dietary supplementation of some carotenoids was already suggested to be potentially effective in the treatment of COVID‐19 due to their strong antioxidant properties. In this study, we performed an in silico screening of common food‐derived carotenoids against druggable target proteins of SARS‐CoV‐2 including main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP‐ribose phosphatase. Molecular docking results revealed that some of the carotenoids had low binding energies toward multiple receptors. Particularly, crocin had the strongest binding affinity (−10.5 kcal/mol) toward the replication complex of SARS‐CoV‐2 and indeed possessed quite low binding energy scores for other targets as well. The stability of crocin in the corresponding receptors was confirmed by molecular dynamics simulations. Our study, therefore, suggests that carotenoids, especially crocin, can be considered an effective alternative therapeutics and a dietary supplement candidate for the prophylaxis and treatment of SARS‐CoV‐2. Practical applications In this study, food‐derived carotenoids as dietary supplements have the potential to be used for the prophylaxis and/or treatment of SARS‐CoV‐2. Using in silico techniques, we aimed at discovering food‐derived carotenoids with inhibitory effects against multiple druggable sites of SARS‐CoV‐2. Molecular docking experiments against main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP‐ribose phosphatase resulted in a few carotenoids with multitarget inhibitory effects. Particularly, crocin as one of the main components of saffron exhibited strong binding affinities to the multiple drug targets including main protease, helicase, replication complex, mutant spike protein of lineage B.1.351, and ADP‐ribose phosphatase. The stability of the crocin complexed with these drug targets was further confirmed through molecular dynamics simulations. Overall, our study provides the preliminary data for the potential use of food‐derived carotenoids, particularly crocin, as dietary supplements in the prevention and treatment of COVID‐19.
... Another determinant of virus entry into the cell is the host serine protease (TMPRSS2), which stimulates the S protein to interact with the receptor. Studies show that pharmacological inhibition of TMPRSS2 prevents viral infection in animal models [68]. The S protein bridges the gap between the viral and host membrane cells by connecting them, resulting in the release of viral genomic RNA directly into the cytoplasm [67]. ...
Article
Full-text available
In the beginning of the third year of the fight against COVID-19, the virus remains at least still one step ahead in the pandemic “war”. The key reasons are evolving lineages and mutations, resulting in an increase of transmissibility and ability to evade immune system. However, from the immunologic point of view, the cytokine storm (CS) remains a poorly understood and difficult to combat culprit of the extended number of in-hospital admissions and deaths. It is not fully clear whether the cytokine release is a harmful result of suppression of the immune system or a positive reaction necessary to clear the virus. To develop methods of appropriate treatment and therefore decrease the mortality of the so-called COVID-19-CS, we need to look deeply inside its pathogenesis, which is the purpose of this review.
... The considerable volume of reported data proposed that diets rich in phenolic compounds could decrease the incidence of several cancers. Curcumin ( Figure 4) is a well-known phytochemical with several important biological activities, including anticarcinogenic, neuroprotective, anti-inflammatory, and anti-SARS-CoV-2 effects (6,13,(80)(81)(82)(83)(84)(85). Curcumin suppressed the proliferation of MHCC97H liver cancer cells in vitro by promoting the formation of intracellular ROS, increasing apoptosis, and activating caspase-3, caspase-8, and TLR4/MyD-88 signaling (86). ...
Article
Full-text available
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Article
Full-text available
The Coronavirus Disease (COVID-19) has recently emerged as a human pathogen caused by SARS-CoV-2 virus was first reported from Wuhan, China, on 31 December 2019. Upon study, it has been used molecular docking to binding affinity between COVID-19 protease enzyme and flavonoids with evaluations based on docking scores calculated by AutoDock Vina. Results showed that naringin suppressed COVID-19 protease, as it has the highest binding value than other flavonoids including quercetin, hesperetin, garcina and naringenin. An important finding in this study is that naringin with neighboring poly hydroxyl groups can serve as inhibitors of COVID-19 protease bind to the S pocket of protein, it is shown that residues His163, Glu166, Asn142, His41and PHe181 participate in the hydrogen bonding and pi-pi interactions, the same as happened with decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors.In other hand, some of the known protease inhibitors and anti-influenza drugs docked with COVID-19 protease, it has low binding value than naringin
Article
Full-text available
Poly ADP ribose polymerase 1 (PARP-1) inhibitors are approved for post-chemotherapy maintenance in BRCA mutated ovarian carcinoma. Various PARP-1 inhibitors such as olaparib, rucaparib, niraparib, and veliparib are approved for this indication. These PARP-1 inhibitors are costly as well as having toxic potential, anemia, and neutropenia is the major side effects. Most of the middle-aged women in Indian subcontinent are anemic and prescription of PARP-1 inhibitors is tricky in such conditions, besides their cost is at times unaffordable as maintenance chemotherapy. Hence, we need an affordable yet lesser toxic PARP-1 inhibitor to solve this problem. Nicotinamide, a vitamin B3 amide can be re-purposed as PARP-1 inhibitor. Nicotinamide, albeit at a higher dose, can be efficacious as well as economical in its use as maintenance chemotherapy. It has toxic potential but the toxicity is both rare and manageable. We need a clinical trial for this purpose. Following perspective is on the current evidence on high dose nicotinamide and it is re-purposing as PARP-1 inhibitor.
Article
Full-text available
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a virus that causes the infectious disease coronavirus disease-2019. Currently, there is no effective drug for the prevention and treatment of this virus. This study aimed to identify secondary metabolites that potentially inhibit the key proteins of SARS-CoV-2. This was an in silico molecular docking study of several secondary metabolites of Indonesian herbal plant compounds and other metabolites with antiviral testing history. Virtual screening using AutoDock Vina of 216 Lipinski rule-compliant plant metabolites was performed on 3C-like protease (3CL pro), RNA-dependent RNA polymerase (RdRp), and spike glycoprotein. Ligand preparation was performed using JChem and Schrödinger's software, and virtual protein elucidation was performed using AutoDockTools version 1.5.6. Virtual screening identified several RdRp, spike, and 3CL pro inhibitors. Justicidin D had binding affinities of −8.7, −8.1, and −7.6 kcal mol −1 on RdRp, 3CL pro , and spike, respectively. 10-methoxycamptothecin had binding affinities of −8.5 and −8.2 kcal mol −1 on RdRp and spike, respectively. Inoxanthone had binding affinities of −8.3 and −8.1 kcal mol −1 on RdRp and spike, respectively, while binding affinities of caribine were −9.0 and −7.5 mol −1 on 3CL pro and spike, respectively. Secondary metabolites of compounds from several plants were identified as potential agents for SARS-CoV-2 therapy.
Article
Full-text available
Coronaviruses (CoVs) are single-stranded RNA viruses which following virus attachment and entry into the host cell, particularly type 2 pneumocytes but also endothelial cells, release RNA into cytosol where it serves as a matrix for the host translation machinery to produce viral proteins. The viral RNA in cytoplasm can interact with host cell microRNAs which can degrade viral RNA and/or prevent viral replication. As such host cellular miRNAs represent key cellular mediators of antiviral defense. Polyphenols, plant food bioactives, exert antiviral properties, which is partially due to their capacity to modulate the expression of miRNAs. The objective of this work was to assess if polyphenols can play a role in prevention of SARS-CoV-2 associated complications by modulating the expression of host miRNAs. To test this hypothesis, we performed literature search to identify miRNAs that could bind SARS-CoV-2 RNA as well as miRNAs which expression can be modulated by polyphenols in lung, type 2 pneumocytes or endothelial cells. We identified over 600 miRNAs that have capacity to bind viral RNA and 125 miRNAs which expression can be modulated by polyphenols in the cells of interest. We identified that there are 17 miRNAs with both the capacity to bind viral RNA and which expression can be modulated by polyphenols. Some of these miRNAs have been identified as having antiviral properties or can target genes involved in regulation of processes of viral replication, apoptosis or viral infection. Taken together this analysis suggests that polyphenols could modulate expression of miRNAs in alveolar and endothelial cells and exert antiviral capacity.
Article
Full-text available
The SARS-CoV-2 virus was reported for the first time in Wuhan, Hubei Province, China, and causes respiratory infection. This pandemic pneumonia killed about 1,437,835 people out of 61,308,161cases up to November 27, 2020. The disease’s main clinical complications include fever, recurrent coughing, shortness of breath, acute respiratory syndrome, and failure of vital organs that could lead to death. It has been shown that natural compounds with antioxidant, anticancer, and antiviral activities and RNA interference agents could play an essential role in preventing or treating coronavirus infection by inhibiting the expression of crucial virus genes. This study aims to introduce a summary of coronavirus’s genetic and morphological structure and determine the role of miRNAs, siRNAs, chemical drugs, and natural compounds in stimulating the immune system or inhibiting the virus’s structural and non-structural genes that are essential for replication and infection of SARS-CoV-2.
Article
Full-text available
With the emergence of the novel coronavirus SARS-CoV-2 since December 2019, more than 65 million cases have been reported worldwide. This virus has shown high infectivity and severe symptoms in some cases, leading to over 1.5 million deaths globally. Despite the collaborative and concerted research efforts that have been made, no effective medication for COVID-19 (coronavirus disease-2019) is currently available. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) as an initial mediator for viral attachment and host cell invasion. ACE2 is widely distributed in the human tissues including the cell surface of lung cells which represent the primary site of the infection. Inhibiting or reducing cell surface availability of ACE2 represents a promising therapy for tackling COVID-19. In this context, most ACE2–based therapeutic strategies have aimed to tackle the virus through the use of angiotensin-converting enzyme (ACE) inhibitors or neutralizing the virus by exogenous administration of ACE2, which does not directly aim to reduce its membrane availability. However, through this review, we present a different perspective focusing on the subcellular localization and trafficking of ACE2. Membrane targeting of ACE2, and shedding and cellular trafficking pathways including the internalization are not well elucidated in literature. Therefore, we hereby present an overview of the fate of newly synthesized ACE2, its post translational modifications, and what is known of its trafficking pathways. In addition, we highlight the possibility that some of the identified ACE2 missense variants might affect its trafficking efficiency and localization and hence may explain some of the observed variable severity of SARS-CoV-2 infections. Moreover, an extensive understanding of these processes is necessarily required to evaluate the potential use of ACE2 as a credible therapeutic target.
Article
Full-text available
COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50’s of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50’s of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.
Article
Full-text available
The recent outbreak of the coronavirus (SARS-CoV2) is an unprecedented threat to human health and society across the globe. In this context, development of suitable interventions is the need of the hour. The viral spike protein (S Protein) and the cognate host cell receptor ACE2 can be considered as effective and appropriate targets for interventions. It is evident from the present computational study, that catechin and curcumin, not only exhibit strong binding affinity to viral S Protein and host receptor ACE2 but also to their complex (receptor-binding domain (RBD) of the spike protein of SARSCoV2 and ACE2; RBD/ACE2-complex). The binding affinity values of catechin and curcumin for the S protein, ACE2 and RBD/ACE2-complex are − 10.5 and − 7.9 kcal/mol; − 8.9 and − 7.8 kcal/mol; and − 9.1 and − 7.6 kcal/mol, respectively. Curcumin directly binds to the receptor binding domain (RBD) of viral S Protein. Molecular simulation study over a period of 100 ns further substantiates that such interaction within RBD site of S Protein occurs during 40–100 ns out of 100 ns simulation trajectory. Contrary to this, catechin binds with amino acid residues present near the RBD site of S Protein and causes fluctuation in the amino acid residues of the RBD and its near proximity. Both catechin and curcumin bind the interface of ‘RBD/ACE2-complex’ and intervene in causing fluctuation of the alpha helices and beta-strands of the protein complex. Protein–protein interaction studies in presence of curcumin or catechin also corroborate the above findings suggesting the efficacy of these two polyphenols in hindering the formation of S Protein-ACE2 complex. In conclusion, this computational study for the first time predicts the possibility of above two polyphenols for therapeutic strategy against SARS-CoV2.
Article
Full-text available
The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a wide range of manifestations. In this regard, growing evidence is focusing on COVID-19 neurological associations; however, there is a lack of established pathophysiological mechanisms and related treatments. Accordingly, a comprehensive review was conducted, using electronic databases, including PubMed, Scopus, Web of Science, and Cochrane, along with the author’s expertize in COVID-19 associated neuronal signaling pathways. Besides, potential phytochemicals have been provided against neurological signs of COVID-19. Considering a high homology among SARS-CoV, Middle East Respiratory Syndrome and SARS-CoV-2, revealing their precise pathophysiological mechanisms seems to pave the road for the treatment of COVID-19 neural manifestations. There is a complex pathophysiological mechanism behind central manifestations of COVID-19, including pain, hypo/anosmia, delirium, impaired consciousness, pyramidal signs, and ischemic stroke. Among those dysregulated neuronal mechanisms, neuroinflammation, angiotensin-converting enzyme 2 (ACE2)/spike proteins, RNA-dependent RNA polymerase and protease are of special attention. So, employing multi-target therapeutic agents with considerable safety and efficacy seems to show a bright future in fighting COVID-19 neurological manifestations. Nowadays, natural secondary metabolites are highlighted as potential multi-target phytochemicals in combating several complications of COVID-19. In this review, central pathophysiological mechanisms and therapeutic targets of SARS-CoV-2 has been provided. Besides, in terms of pharmacological mechanisms, phytochemicals have been introduced as potential multi-target agents in combating COVID-19 central nervous system complications.
Article
The recent SARS-CoV-2 pandemic poses one of the greatest challenges to modern medicine. Therefore, identification of new therapeutic strategies seems essential either based on novel vaccines or drugs or simply repurposing existing drugs. Notably, due to their known safety profile, repurposing of existing drugs is the fastest and highly efficient approach to bring a therapeutic to a clinic for any new indication. One such drug that has been used extensively for decades is chloroquine (CQ, with its derivatives) either for malaria, lupus and rheumatoid arthritis. Accumulating body of evidence from experimental pharmacology suggests that CQ and related analogues also activate certain pathways that can potentially be exploited for therapeutic gain. For example, in the airways, this has opened an attractive avenue for developing novel bitter taste ligands as a new class of bronchodilators for asthma. While CQ and its derivatives have been proposed as a therapy in COVID-19, it remains to be seen whether it really work in the clinic? To this end, our perspective aims to provide a timely yet brief insights on the existing literature on CQ and the controversies surrounding its use in COVID-19. Further, we also highlight some of cell-based mechanism(s) that CQ and its derivatives affect in mediating variety of physiological responses in the cell. We believe, data emanating from the clinical studies and continual understanding of the fundamental mechanisms may potentially help in designing effective therapeutic strategies that meets both efficacy and safety criteria for COVID-19.