Roslyn M Bill

Roslyn M Bill
Aston University · School of Life and Health Sciences

MA DPhil CChem FRSC SFHEA FRSB

About

191
Publications
64,366
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,182
Citations
Introduction
I am Professor of Biotechnology at Aston University, Birmingham, UK. My research team develops yeast to make membrane proteins for further study. As target proteins, I am particularly interested in aquaporin water channels, G protein-coupled receptors and hepatitis C virus receptor complex proteins. From the perspective of the yeast host cell, I am interested in how the regulation of translational processes impacts on recombinant protein yield.
Additional affiliations
October 2002 - present
Aston University
Position
  • Professor of Biotechnology
Education
October 1991 - October 1994
University of Oxford
Field of study
  • Chemistry
October 1986 - July 1990
University of Oxford
Field of study
  • Chemistry

Publications

Publications (191)
Article
Full-text available
The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surfac...
Article
Full-text available
Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests th...
Article
Full-text available
Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, i...
Article
Full-text available
The aquaporins (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary struc...
Article
Full-text available
Despite many high-profile successes, recombinant membrane protein production remains a technical challenge; it is still the case that many fewer membrane protein structures have been published than those of soluble proteins. However, progress is being made because empirical methods have been developed to produce the required quantity and quality of...
Article
Full-text available
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus l...
Article
Full-text available
The aquaporin‐4 (AQP4) water channel is abundantly expressed in the glial cells of the central nervous system and facilitates brain swelling following diverse insults, such as traumatic injury or stroke. Lack of specific and therapeutic AQP4 inhibitors highlights the need to explore alternative routes to control the water permeability of glial cell...
Article
Full-text available
Aquaporins and aquaglyceroporins are membrane channels that allow the permeation of water and certain other small solutes across the cell membrane, or in the case of AQP6, AQP11 and AQP12A, intracellular membranes, such as vesicles and the endoplasmic reticulum membrane [16]. Since the isolation and cloning of the first aquaporin (AQP1) [20], 12 ad...
Article
Water is essential for all life because it is required for the proper functioning of the cells and tissues of all organisms. It crosses biological membranes down osmotic gradients through the pores of aquaporin membrane channels at rates of up to 3 billion molecules per second. In the twenty years since Peter Agre was awarded the 2003 Nobel Prize i...
Article
Full-text available
Membrane proteins are challenging targets to functionally and structurally characterize. An enduring bottleneck in their study is the reliable production of sufficient yields of stable protein. Here, we evaluate all eukaryotic membrane protein production experiments that have supported the deposition of a high-resolution structure. We focused on th...
Chapter
Membrane proteins are an essential part of the machinery of life. They connect the interior and exterior of cells, play an important role in cell signaling and are responsible for the influx and efflux of nutrients and metabolites. For their structural and functional analysis high yields of correctly folded and modified protein are needed. Insect c...
Chapter
Over the decades, the bacterium Escherichia coli (E. coli) has become the cornerstone of recombinant protein production, used for heterologous synthesis of a variety of membrane proteins. Due to its rapid growth to high densities in cheap media, and its ease of manipulation and handling, E. coli is an excellent host cell for a range of membrane pro...
Article
Full-text available
Aquaporins (AQPs) are membrane-bound water channels that play crucial roles in maintaining the water homeostasis of the human body. Here, we present a protocol for high-yield recombinant expression of human AQPs in the methylotropic yeast Pichia pastoris and subsequent AQP purification. The protocol typically yields 1–5 mg AQP per g of yeast cell a...
Article
Full-text available
Aquaporins (AQPs) are water channels embedded in the cell membrane that are critical in maintaining water homeostasis. We describe a protocol for determining the water permeation capacity of AQPs reconstituted into proteoliposomes. Using a stopped-flow setup, AQP embedded in proteoliposomes are exposed to an osmogenic gradient that triggers water f...
Article
Full-text available
Aquaporin water channels (AQPs) are membrane proteins that maintain cellular water homeostasis. The interactions between human AQPs and other proteins play crucial roles in AQP regulation by both gating and trafficking. Here, we describe a protocol for characterizing the interaction between a human AQP and a soluble interaction partner using micros...
Article
Full-text available
Castane (2022): Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillusflavus isolated from the decaying seed of Cucumeropsismannii, Journal of Biomolecular Structure and Dynamics, ABSTRACT Lipases are enzymes of industrial importance responsible for the hydrolysis of ester bonds of triglycer-ides. A lipolytic fungus was...
Article
Full-text available
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed througho...
Chapter
One of the big challenges for the study of structure and function of membrane proteins is the need to extract them from the membrane. Traditionally this was achieved using detergents which disrupt the membrane and form a micelle around the protein, but this can cause issues with protein function and/or stability. In 2009 an alternative approach was...
Chapter
The first crystal structures of recombinant mammalian membrane proteins were solved using high-quality protein that had been produced in yeast cells. One of these, the rat Kv1.2 voltage-gated potassium channel, was synthesized in Pichia pastoris. Since then, this yeast species has remained a consistently popular choice of host for synthesizing euka...
Article
Full-text available
Aquaporins facilitate the passive transport of water, solutes, or ions across biological membranes. They are implicated in diverse pathologies including brain edema following stroke or trauma, epilepsy, cancer cell migration and tumor angiogenesis, metabolic disorders, and inflammation. Despite this, there is no aquaporin-targeted drug in the clini...
Article
Aquaporin 4 (AQP4) is a water transporting, transmembrane channel protein that has important regulatory roles in maintaining cellular water homeostasis. Several other AQP proteins exhibit calmodulin (CaM)-binding properties, and CaM has recently been implicated in the cell surface localization of AQP4. The objective of the present study was to asse...
Article
The aquaporins (AQPs) form a family of integral membrane proteins that facilitate the movement of water across biological membrane by osmosis, as well as facilitating the diffusion of small polar solutes. AQPs have been recognised as drug targets for a variety of disorders associated with disrupted water or solute transport, including brain oedema...
Article
Full-text available
Recent research in the aquaporin (AQP) field has identified a role for diverse AQPs in extracellular vesicles (EV). Though still in its infancy, there is a growing body of knowledge in the area; AQPs in EV have been suggested as biomarkers for disease, as drug targets and show potential as therapeutics. To advance further in this field, AQPs in EV...
Article
Full-text available
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targe...
Article
Full-text available
Aquaporin channels facilitate bidirectional water flow in all cells and tissues. AQP4 is highly expressed in astrocytes. In the CNS, it is enriched in astrocyte endfeet, at synapses, and at the glia limitans, where it mediates water exchange across the blood-spinal cord and blood-brain barriers (BSCB/BBB), and controls cell volume, extracellular sp...
Article
Full-text available
Aquaporins and aquaglyceroporins are membrane channels that allow the permeation of water and certain other small solutes across the cell membrane, or in the case of AQP6, AQP11 and AQP12A, intracellular membranes, such as vesicles and the endoplasmic reticulum membrane [16]. Since the isolation and cloning of the first aquaporin (AQP1) [20], 12 ad...
Article
Styrene maleic acid (SMA) polymers have proven to be very successful for the extraction of membrane proteins, forming SMA lipid particles (SMALPs), which maintain a lipid bilayer around the membrane protein. SMALP-encapsulated membrane proteins can be used for functional and structural studies. The SMALP approach allows retention of important prote...
Preprint
Full-text available
Aquaporin 4 (AQP4) is a water transporting, transmembrane channel protein that has important regulatory roles in maintaining cellular water homeostasis. Several other AQP proteins exhibit calmodulin (CaM)-binding properties, and CaM has recently been implicated in the cell surface localization of AQP4 that occurs in response to osmotically-driven c...
Article
Full-text available
In the twelve years since styrene maleic acid (SMA) was first used to extract and purify a membrane protein within a native lipid bilayer, this technological breakthrough has provided insight into the structural and functional details of protein–lipid interactions. Most recently, advances in cryo-EM have demonstrated that SMA-extracted membrane pro...
Article
Lignocellulosic biomass is the most abundant and sustainable feedstock available globally. As a source of the polysaccharides, cellulose and hemicellulose, it can be converted into biofuels and other platform chemicals. This article highlights some important aspects that needs to be focused upon for the commercial development of lignocellulosic bio...
Article
Full-text available
A triple mutant of NADP(H)-dependent malate dehydrogenase from thermotolerant Thermococcus kodakarensis has an altered cofactor preference for NAD+, as well as improved malate production compared to wildtype malate dehydrogenase. By combining mutant malate dehydrogenase with glucose dehydrogenase from Sulfolobus solfataricus and NAD+/NADH in a clos...
Article
Aquaporin water channels facilitate the bi-directional flow of water and small, neutral solutes down an osmotic gradient in all kingdoms of life. Over the last two decades, the availability of high-quality protein has underpinned progress in the structural and functional characterization of these water channels. In particular, recombinant protein t...
Article
Full-text available
Neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are incurable and affect millions of people worldwide. The development of treatments for this unmet clinical need is a major global research challenge. Computer-aided drug design (CADD) methods minimize the hu...
Article
Full-text available
Aquaporins (AQPs) are membrane channel proteins that facilitate the movement of water down osmotic gradients across biological membranes. This protocol allows measurements of AQP-mediated water transport across the plasma membrane of live mammalian cells. Calcein is a fluorescent dye that is quenched in a concentration-dependent manner. Therefore,...
Article
Full-text available
ABCC1 and ABCC4 utilize energy from ATP hydrolysis to transport many different molecules, including drugs, out of the cell and, as such, have been implicated in causing drug resistance. However recently, because of their ability to transport signaling molecules and inflammatory mediators, it has been proposed that ABCC1 and ABCC4 may play a role in...
Article
Full-text available
Aquaporins and aquaglyceroporins are membrane channels that allow the permeation of water and certain other small solutes across the cell membrane, or in the case of AQP6, AQP11 and AQP12A, intracellular membranes, such as vesicles and the endoplasmic reticulum membrane [17]. Since the isolation and cloning of the first aquaporin (AQP1) [21], 12 ad...
Article
Full-text available
Tetraspanins exert a wide range of cellular functions of broad medical importance. Despite this, their biophysical characteristics are incompletely understood. Only two high-resolution structures of full-length tetraspanins have been solved. One is that of human CD81, which is involved in the infectivity of human pathogens including influenza, HIV,...
Article
Full-text available
Background: Platform chemicals are essential to industrial processes. Used as starting materials for the manufacture of diverse products, their cheap availability and efficient sourcing are an industrial requirement. Increasing concerns about the depletion of natural resources and growing environmental consciousness have led to a focus on the econ...
Article
The production of membrane proteins of high purity and in satisfactory yields is crucial for biomedical research. Due to their involvement in various cellular processes, membrane proteins have increasingly become some of the most important drug targets in modern times. Therefore, their structural and functional characterization is a high priority....
Article
Full-text available
Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and b...
Article
Full-text available
The adenosine 2A receptor (A2AR), a G-protein-coupled receptor (GPCR), was solubilised and purified encapsulated in styrene maleic acid lipid particles (SMALPs). The purified A2AR-SMALP was associated with phospholipids characteristic of the plasma membrane of Pichia pastoris, the host used for its expression, confirming that the A2AR-SMALP encapsu...
Article
Full-text available
Aquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative wa...
Article
Full-text available
Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and qua...
Article
Full-text available
To study the function and structure of membrane proteins, high quantities of pure and stable protein are needed. One of the first hurdles in accomplishing this is expression of the membrane protein at high levels and in a functional state. Membrane proteins are naturally expressed at low levels, so finding a suitable host for overexpression is impe...
Article
Full-text available
Membrane proteins (MPs) are important drug discovery targets for a wide range of diseases. However, elucidating the structure and function of native MP is notoriously challenging as their original structure has to be maintained once removed from the lipid bilayer. Conventionally, detergents have been used to solubilize MP with varying degrees of su...
Article
The environmentally-friendly, economically-viable production of ethanol from cellulosic biomass remains a major contemporary challenge. Much work has been done on the disruption of cellulosic biomass structure, the production of enzymes for the conversion of cellulose and hemicellulose into simple sugars that can be fermented by bacteria or yeast,...
Article
Full-text available
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to n...
Chapter
New mass spectrometry approaches enable antibody-independent tracking of protein production. Herein, we outline an antibody-independent mass spectrometry method for tracking recombinant protein production in the methylotrophic yeast Pichia pastoris system.
Article
Full-text available
After injury to the spinal cord, edema contributes to the underlying detrimental pathophysiological outcomes that lead to worsening of function. Several related membrane proteins called aquaporins (AQPs) regulate water movement in fluid transporting tissues including the spinal cord. Within the cord, AQP1, 4 and 9 contribute to spinal cord injury (...
Article
Full-text available
Aquaporins are membrane proteins that regulate cellular water flow. Recently, aquaporins have been proposed as mediators of cancer cell biology. A subset of aquaporins, referred to as aquaglyceroporins are known to facilitate the transport of glycerol. The present study describes the effect of gene knockdown of the aquaglyceroporin AQP3 on MDA-MB-2...
Article
Full-text available
Hypothermia is increasingly used as a therapeutic measure to treat brain injury. However, the cellular mechanisms underpinning its actions are complex and are not yet fully elucidated. Astrocytes are the most abundant cell type in the brain and are likely to play a critical role. In this study, transcriptional changes and the protein expression pro...
Article
Full-text available
Human aquaporin 4 (AQP4) is the primary water channel protein in brain astrocytes. Hypothermia is known to cause astrocyte swelling in culture, but the precise role of AQP4 in this process is unknown. Primary human cortical astrocytes were cultured under hypothermic (32°C) or normothermic (37°C) conditions. AQP4 transcript, total protein and surfac...
Article
Full-text available
Background: Tetraspanins are small transmembrane proteins, found in all higher eukaryotes, that compartmentalize cellular membranes through interactions with partner proteins. CD81 is a prototypical tetraspanin and contributes to numerous physiological and pathological processes, including acting as a critical entry receptor for hepatitis C virus (...
Data
Epilepsies are common disorders of the central nervous system (CNS), affecting up to 2% of the global population. Pharmaco-resistance is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients. Water homeostasis has been shown crucial for regulation of neuronal excitability. The control of water movement is achieved...
Article
Full-text available
Epilepsies are common disorders of the central nervous system (CNS), affecting up to 2% of the global population. Pharmaco-resistance is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients. Water homeostasis has been shown crucial for regulation of neuronal excitability. The control of water movement is achieved...
Article
Full-text available
Objective Patients with dual hepatitis B (HBV) and hepatitis D (HDV) virus infection are at an increased risk of progression to liver cirrhosis and hepatocellular carcinoma than patients with a single viral infection. Treatment of viral hepatitis due to dual HBV/HDV infection represents a challenge. Currently there is no vaccine against HDV. Recomb...
Article
Full-text available
Background We previously selected four strains of Saccharomyces cerevisiae for their ability to produce the aquaporin Fps1 in sufficient yield for further study. Yields from the yeast strains spt3Δ, srb5Δ, gcn5Δ and yTHCBMS1 (supplemented with 0.5 μg/mL doxycycline) that had been transformed with an expression plasmid containing 249 base pairs of 5...
Chapter
The first crystal structures of recombinant mammalian membrane proteins were solved in 2005 using protein that had been produced in yeast cells. One of these, the rabbit Ca2+-ATPase SERCA1a, was synthesized in Saccharomyces cerevisiae. All host systems have their specific advantages and disadvantages, but yeast has remained a consistently popular c...
Article
Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that dete...
Article
G-protein-coupled receptors (GPCRs) form the largest class of membrane proteins and are an important target for therapeutic drugs. These receptors are highly dynamic proteins sampling a range of conformational states in order to fulfil their complex signalling roles. In order to fully understand GPCR signalling mechanisms it is necessary to extract...
Article
Full-text available
The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the prese...
Article
Background: Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. Scope of review: AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Em...
Article
Full-text available
Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still...
Article
Full-text available
Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectivel...
Article
Objectives Recombinant protein subunit vaccines are formulated using protein antigens that have been synthesized in heterologous host cells. Several host cells are available for this purpose, ranging from Escherichia coli to mammalian cell lines. This article highlights the benefits of using yeast as the recombinant host.Key findingsThe yeast speci...
Article
Full-text available
G-protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents r...
Article
Full-text available
Background: Pichia pastoris is a widely-used host for recombinant protein production; expression is typically driven by methanol-inducible alcohol oxidase (AOX) promoters. Recently this system has become an important source of recombinant G protein-coupled receptors (GPCRs) for structural biology and drug discovery. The influence of diverse cultur...
Article
Full-text available
Several host systems are available for the production of recombinant proteins, ranging from Escherichia coli to mammalian cell-lines. This article highlights the benefits of using yeast, especially for more challenging targets such as membrane proteins. On account of the wide range of molecular, genetic, and microbiological tools available, use of...
Article
Full-text available
Emerging evidence supports the view that aquaporin water channels (AQPs) are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive cha...
Article
Full-text available
The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 asso...
Article
Full-text available
The dipeptide carnosine (beta-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opp...
Article
Full-text available
Abstract Water passes through cell membranes relatively slowly by diffusion. In order to maintain water homeostasis, the rapid and specific regulation of cellular water flow is mediated by the aquaporin (AQP) family of membrane protein water channels. The wide range of tissues that are known to express AQPs is reflected by their involvement in many...
Conference Paper
Full-text available
Background / Purpose: The calcitonin receptor-like receptor (CLR), which is a G protein-coupled receptor (GPCR), and the receptor activity modifying protein 1 (RAMP1), which has two isoforms (RAMP2 and RAMP3), form the receptor for calcitonin gene related peptide (CGRP) - a potent vasodilator. Here, these receptor proteins were produced in Pichia...
Article
Full-text available
The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were exami...

Questions

Question (1)
Question
Recombinant proteins are produced for many purposes, e.g. to address specific scientific questions, to be used as a tools in specific assays, for structural biology or as therapeutics (e.g. vaccines, antibodies and hormones at industrial scale). Most people use E. coli as their first host of choice and then turn to other systems such as yeast, insect cells, mammalian cells or in vitro translation. How are these decisions made? Why is E. coli still so popular even for eukaryotic protein targets? Why is yeast not used more widely since it is a eukaryotic microbe? What are your views?

Network

Cited By