ArticlePDF Available

Laser adaptive holographic hydrophone

Authors:

Abstract and Figures

A new type of a laser hydrophone based on dynamic holo-grams, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisa-tion of the interferometer operating point. This essentially simpli-fies the scheme of the laser hydrophone preserving its high sensitiv-ity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydro-phone implemented at present possesses the sensitivity at a level of 3.3 mV Pa–1 in the frequency range from 1 to 30 kHz.
Content may be subject to copyright.
Quantum Electronics46 (3)  277 – 280  (2016)  © 2016  Kvantovaya Elektronika and Turpion Ltd
Abstract.  A new type of a laser hydrophone based on dynamic holo-
grams, formed in a photorefractive crystal, is proposed and studied.
It is shown that the use of dynamic holograms makes it unnecessary
to use complex optical schemes and systems for electronic stabilisa-
tion of the interferometer operating point. This essentially simpli-
fies the scheme of the laser hydrophone preserving its high sensitiv-
ity, which offers the possibility to use it under a strong variation of
the environment parameters. The laser adaptive holographic hydro-
phone implemented at present possesses the sensitivity at a level of
3.3 mV Pa–1 in the frequency range from 1 to 30 kHz.
Keywords: laser hydrophone, adaptive interferometer, dynamic
hologram.
The development of systems for monitoring water areas and 
the World Ocean is inseparably linked with the design of tech-
nical means for the detection of hydroacoustic  signals. Until 
recently,  they  were  based  on  piezoelectric  transducers  [1]. 
Recently  optical  receivers  of  acoustic  signals  attracted  the 
attention  of  researchers,  since  they  possess  a  number  of 
advantages as  compared to their  electric analogues,  e.g., the 
insensitivity to electromagnetic noises and corrosion, low spe-
cific weight, small dimensions, etc. Among the optical sensors 
a specific class of instruments is presented by laser interferom-
eter  hydrophones,  which  are  potentially  able  to  measure 
extremely weak hydroacoustic perturbations with the acous-
tic pressure smaller than 1 Pa in the wide band of frequencies 
and smaller than 0.1 Pa in the narrow band [2 – 6]. The sensi-
tive  elements  in  such  hydrophones  are  usually  fibre-optical 
sensors  [2 – 8]  or  resonance  elements  in  the  form  of  elastic 
membranes [9 – 11]. However, in the course of exploitation of 
laser hydrophones under real conditions, random mechanical 
impacts, temperature drift, variations of the static pressure of 
the  environment  and  a  number  of  other  factors  lead  to  the 
drift  of  the  operating  point  of  the  interferometer  and,  as  a 
consequence, to the reduction of the signal-to-noise ratio and 
a decrease in the sensitivity of the measurement system. This 
makes it necessary to use special means of stabilising the oper-
ating point in  laser  hydrophones. As such  means  they often 
use additional compensation interferometers  [12], active  and 
passive  phase  control  methods  [9 – 11,  13,  14],  methods  of 
optical  feedback  by  intensity  [15]  or  laser  oscillation  fre-
quency [16, 17], methods based on  tunable  diffraction  grat-
ings  [18]  and  multi-wavelength  radiation  with  subsequent 
spectral analysis  [19], etc.  Unfortunately, the  use of  all these 
means  of  stabilising  the  interferometer  operating  point 
unavoidably  complicates  the  construction,  which  negatively 
affects their reliability and stability of operation of the entire 
measurement system.
As  shown  in  Ref.  [20],  the  use  of  dynamic  holographic 
gratings  formed  in  photorefractive  crystals  (PRCs)  allows 
sufficiently  simple  and  efficient  solution  of  the  problem  of 
operating point stabilisation  in  the measuring laser interfer-
ometers. The adaptivity to uncontrollable external perturba-
tions in such systems is based on the fact that the permanent 
rewriting of dynamic holograms in the PRC enables the inter-
ferometer to adapt automatically to the change in the external 
conditions, thus providing the stability of its characteristics. 
The aim of the present paper is to study the possibility of 
using  an  adaptive  holographic  interferometer  based  on 
dynamic holograms,  formed in  a photorefractive  crystal, for 
the  stabilisation  of  the  operating  characteristics  of  a  laser 
hydrophone.
The  schematic  of  the  laser  adaptive  holographic  hydro-
phone (LAHH) is presented in Fig. 1. The sensor part of the 
LAHH  has  a  robust  hermetic  case.  A  thin  (50  mm)  round 
(Æ40 mm) brass membrane, playing the role of a hydrophone 
sensitive element, is embedded in one of the walls. The optical 
part of the sensor is implemented as follows. The radiation 
from  the  Nd : YAG  laser  (l =  1.06  mm,  the  output  power 
0.5 W) passes through the beam splitter and is launched into 
the multimode optical  fibre  (the  core diameter 62.5 mm,  the 
numerical aperture NA = 0.22), from the output of which the 
light  is  incident  on  the  membrane.  The  separation  between 
the  output  face  of  the  optical  fibre  and  the  membrane  is 
0.5 mm.  The radiation reflected  from the  membrane returns 
back into the waveguide, forming a signal wave. The mechan-
ical vibrations of  the membrane caused  by the action  of  the 
acoustic  wave,  lead  to  the  phase  modulation  of  the  signal 
wave.  The  radiation  of  the  signal  wave,  diverted  by  the 
Y-coupler (intensity I =  0.8  mW  mm–2), is directed into  the 
PRC along its [001] crystallographic axis. The reference wave 
(I = 50 mW mm–2), elliptically polarised after passing through 
a quarter-wave plate,  enters  the crystal in  the  perpendicular 
direction  along  the  [100]  crystallographic  axis.  Due  to  the 
photorefractive effect, the interference of the signal wave with 
the reference one leads to the dynamic hologram recording in 
Laser adaptive holographic hydrophone
R.V. Romashko, Yu.N. Kulchin, M.N. Bezruk, S.A. Ermolaev
LASER HYDROPHONES DOI: 10.1070/QEL15976
R.V. Romashko, Yu.N. Kulchin Far-Eastern Federal University, 
ul. Sukhanova 8, 690091 Vladivostok, Russia; Institute of Automation 
and Control Processes, Far-Eastern Branch, Russian Academy of 
Sciences, ul. Radio 5, 690041 Vladivostok, Russia; 
e-mail: romashko@iacp.dvo.ru, kulchin@iacp.dvo.ru;
M.N. Bezruk, S.A. Ermolaev Institute of Automation and Control 
Processes, Far-Eastern Branch, Russian Academy of Sciences, 
ul. Radio 5, 690041 Vladivostok, Russia; 
e-mail: bezmisha@list.ru, nekker2@gmail.com 
Received 29 November 2015; revision received 1 February 2016 
Kvantovaya Elektronika46 (3) 277 – 280 (2016) 
Translated by V.L. Derbov 
R.V. Romashko, Yu.N. Kulchin, M.N. Bezruk, S.A. Ermolaev278
the crystal with the lattice vector directed along the [101] crys-
tallographic  axis.  The  vectorial  mixing  of  the  elliptically 
polarised reference wave with the depolarised (after the trans-
mission through the multimode fibre-optical  waveguide) sig-
nal wave in such orthogonal geometry in the PRC with cubic 
symmetry  provides  the  fulfilment  of  quadrature  conditions 
for  the  interferometer,  due  to  which  its  high  sensitivity  is 
achieved  [21,  22].  The  interaction  of  waves  at  the  dynamic 
hologram produced by them provides the precise conjugation 
of wave fronts and maximally efficient conversion of the sig-
nal wave phase  modulation, caused by the  vibrations  of the 
membrane,  into  the  variations  of  intensity,  recorded  by  the 
photodetector.
It is worth noting  that  the  optimal intensity ratio of the 
interfering beams is such that the contrast of the interference 
pattern does not exceed 0.5. For higher contrasts (e.g., when 
the intensities of the beams are equal) the holographic grating 
becomes distorted, and its profile becomes different from the 
sinusoidal one, which leads to the reduction of the beam inter-
action efficiency due to the diffraction of their radiation at the 
gratings  of  higher  spatial  order  [23].  As  the  contrast  of  the 
interference pattern decreases, the phase demodulation signal 
passes its maximum and smoothly decreases due to the reduc-
tion of the efficiency of the hologram recording [24, 25]. With 
the intensities used in the present  paper, the contrast of the 
interference pattern was 0.25. Despite a relatively low dif-
fraction  efficiency  of  the  dynamic  hologram  (smaller  than 
0.1 %), the adaptive interferometer provided a high sensitiv-
ity to the  detection  of phase modulation, as  will  be shown 
below. 
One  should  also  note  that  the  time  of  recording  the 
dynamic hologram  in  the crystal is  finite, as well  as the life-
time of the recorded hologram after switching off or changing 
the interference field [23]. When the change of the interference 
field is slow, e.g., when the drift of the environment parame-
ters causes it and its time is greater than the time of the holo-
gram recording, the hologram is completely rewritten, which 
determines the adaptive properties of the interferometer and, 
therefore, the hydrophone. In the CdTe crystal for the inten-
sity ~50 mW mm–2 the time of hologram recording amounted 
to  1.2  ms,  which  makes  the  LAHH  capable  of  automatic 
adaptation to all  noise perturbations with  characteristic fre-
quencies smaller than 800 Hz. 
The experimental studies of the LAHH were carried out in 
the tank with sound-absorbing walls. To control the acoustic 
pressure  a  ZETLab  BC311  calibrated  etalon  piezoelectric 
hydrophone  was  placed  in  the  vicinity  of  the  LAHH  mem-
brane.  The  acoustic  pressure  in  the  tank  was  produced  by 
means  of  a  LUZ.837.9  piezoelectric  radiator  placed  at  the 
same depth as the laser hydrophone and the etalon one at the 
equal distance from them (20 cm). 
We  experimentally  measured  the  amplitude – frequency 
characteristic  of  the  LAHH.  For  this  aim,  an  electric  pulse 
with a duration 5 ms and an amplitude 2 V was applied to the 
acoustic radiator. Figure  2a  presents  the  shapes  of  acoustic 
pulses, recorded using the LAHH and the etalon hydrophone. 
The Fourier analysis of these signals with the sensitivity of the 
etalon hydrophone  (56 mV Pa–1)  taken into  account allowed 
us to determine the amplitude – frequency characteristic of the 
LAHH (Fig. 2b). One can see that the  LAHH  sensitivity  is 
uniform in a sufficiently wide range of frequencies (1 – 30 kHz). 
At higher  frequencies (0.1 – 1 MHz) the LAHH  sensitivity is 
reduced by an order of magnitude. Figure 3 presents the tran-
sient characteristic of the LAHH, measured at a frequency of 
10.5  kHz,  i.e.,  in  the  region  of  its  maximal  sensitivity.  The 
experimentally measured sensitivity of the LAHH at the lin-
ear  fragment  of  the  transient  characteristic  amounts  to 
3.3 mV Pa–1.
Note that the total sensitivity of the LAHH to the acous-
tic pressure (V Pa–1) is determined by the characteristics of all 
transforming  elements  and  can  be  presented  by  the  expres-
sion:
SS = S1 
S2 
S2,  (1)
Tank
Etalon
hydrophone
Radiator
Membrane
LAHH sensor
Alignment stage
Y-coupler
Signal beam
Reference
beam
Optical
fibre
[100]
[001]
Photodetector
Beam splitter
Laser
l/4
PRC
Figure 1. Schematic of the adaptive holographic hydrophone.
279Laser adaptive holographic hydrophone
where S1 (rad Pa–1) is the membrane sensitivity; S2 (W rad–1) 
is the sensitivity of the adaptive interferometer; and S3(V W–1) 
is the sensitivity of the photodetector. The sensitivity S3 of the 
Thorlabs PDA10CS  photodetector used  in the present work 
amounted to 5 ×105 V W–1. The sensitivity S2 of the adaptive 
interferometer was determined using the technique of Ref. [26] 
and amounted to 0.18 mW rad–1.
The  LAHH  calibrating  dependence  calculated  using 
expression (1) is shown in Fig. 3 by the dashed curve. It is seen 
that at a large acoustic pressure the transient characteristic of 
the  LAHH  has  a  nonlinear  fragment,  limiting  the  dynamic 
range.  With  the  data  presented  in  Fig.  3  and  the  level  of 
intrinsic noise of the measurement system taken into account, 
it was found that the LAHH provides the measurement of the 
acoustic pressure in the dynamic range of 36 dB, the minimal 
detected acoustic pressure being 130 Pa.
The acoustic  wave  receiving membrane is  the element of 
the  LAHH  design  of  primary  importance.  Since  the  mem-
brane is a primary acoustic receiver, it mainly determines the 
sensitivity  of  the  laser  hydrophone.  Using  Eqn  (1)  and  the 
transmission  characteristic  presented  in  Fig  3,  it  was  found 
that the sensitivity S1 of the membrane used in the LAHH is 
0.37 mrad Pa–1.
The  parameters  of  the  LAHH  developed  by  us  and  the 
existing analogues are presented in Table 1. It is seen that the 
sensitivity S1of the primary receiver of the LAHH – the mem-
brane – is not extremely high. It is possible to increase S1and, 
therefore, the sensitivity  of the entire  LAHH,  by the appro-
priate choice of the material, area and thickness of the mem-
brane that determine its hardness. An alternative way is to use 
a  primary  acoustic  receiver,  similar  to  that  presented  in 
Ref. [7]  providing  the  acoustic  sensitivity  at  the  level  of 
0.5 rad Pa–1.  The  total LAHH sensitivity  SS will amount to 
4.4 V Pa–1, which  is  much  higher  than  the  sensitivity  of the 
hydrophone proposed in Ref. [7], as well as that of most other 
analogues.  It  is  important  that,  in  contrast  to  other  hydro-
phones, the LAHH has a simple optical scheme that provides 
its operation including the adaptivity.  
In  addition,  note  that  the  sensitivity  S2 of  the  adaptive 
interferometer that enters expression (2) is determined by the 
diffraction efficiency of the holographic grating, which is not 
maximal  in  the  orthogonal  geometry  of  the  interaction 
between the  reference  wave  and  the  signal  one  in  the  PRC. 
The maximal diffraction efficiency of the dynamic hologram 
will be achieved in the reflection geometry, i.e., in the case of 
counterpropagation of the interacting waves [21]. The use of 
the  reflection  geometry  will  allow  an  additional  increase  in 
the sensitivity of the adaptive interferometer and, as a conse-
quence, the total sensitivity of the LAHH by  2 times [28].
1.13
1.15
1.17
50 100 150
Time/ms
Frequency/Hz
Output signal/V
Output signal/mV
–4
–6
–2
0
2
10–5
10–4
10–3
103104105106
10–2
10–1
Sensitivity/V Pa –1
1
2
a
b
Figure 2. (a)  Acoustic  pulse  recorded  by  means  of  the  etalon  hydro-
phone ( 1 ) and LAHH ( 2 ) and (b) the amplitude – frequency character-
istic of the laser adaptive hydrophone.
Table 1. Parameters of hydrophones.
Hydrophones Sensitivity of the primary 
transducer S1/mrad Pa–1
Total sensitivity
SS /mV Pa–1
Minimal detected 
pressure/Pa
Frequency 
range/kHz
[5] 1.1 11.0 1.3 100 – 300
[6] 143 0.1 –  5 – 20
[7] 500  –  5 5 – 300
[8] 7.5 ×10–5 5.8 ×10–4 1.5 ×10420000
[9] 0.013 0.3
[27] 20 3 – 8
Piezoelectric 
ZETLab BC311 0.056 100 0.003 – 100
LAHH (present work) 0.37 3.3 130 1 – 30
LAHH (perspective) 500 4400 0.09 5 – 300
102103104
LAHH output signal/V
0.1
1.0
10
Pressure
/
Pa
Figure 3. Transient characteristic  of the laser  adaptive hydrophone  at 
the frequency 10.5 kHz (points  show the experiment, dashed line – cal-
culation).
R.V. Romashko, Yu.N. Kulchin, M.N. Bezruk, S.A. Ermolaev280
We also studied the stability of the operating characteris-
tics of the  LAHH  under the conditions  of  varying tempera-
ture, one of the most critical parameters for the systems based 
on interferometry schemes. With this aim during 24 hours we 
measured the amplitude of the LAHH output signal keeping 
the  acoustic  pressure  constant  at  a  room  temperature  with 
daily variation ±5 °С. The measurements have shown that the 
fluctuations of the amplitude of the LAHH output signal did 
not exceed 1 %.
As  shown  in  Refs  [24,  29 – 31],  photorefractive  media 
allow  efficient  multiplexing  of  dynamic  holograms  in  one 
crystal. It was found that the formation of up to 70 holograms 
leads to the reduction of the sensitivity by no more than 10 % 
[29]. In practice,  an  adaptive interferometric system with  26 
holographic  channels  was  implemented  [32].  Therefore,  the 
use  of  dynamic  holograms  in  the  scheme  of  a  laser  hydro-
phone can provide not only the stability of its characteristics 
and the high sensitivity, but also opens perspectives for creat-
ing a multichannel adaptive hydroacoustic complex.
Thus,  in  the  present  paper  a  new  type  of  a  laser  hydro-
phone  based  on  the  formation  of  dynamic  holograms  in  a 
photorefractive crystal is proposed  and  studied.  It  is  shown 
that  the  use  of  dynamic  holograms  in  the  interferometric 
hydrophones allows one to avoid the necessity of using com-
plex optical schemes and systems of electronic stabilisation of 
the operating point of the interferometer. This essentially sim-
plifies the scheme of the  laser  hydrophone,  keeping  high  its 
sensitivity, and makes it promising for the use under the con-
ditions of  strongly changing environmental  parameters. The 
LAHH implemented in the present work has the sensitivity at 
the level of 3.3 mV Pa–1 that provides the detection threshold 
of  the  acoustic  pressure  130  Pa  in  the  frequency  range 
1 – 30 kHz. The design  of the laser hydrophone based on the 
principles of adaptive holographic interferometry opens the 
possibilities of reducing the threshold of broadband detection 
to the level smaller than 0.1 Pa without modifying the optical 
scheme. Moreover, due to the multiplexing of many dynamic 
holograms in one photorefractive crystal one can build a mul-
tichannel  laser  high-sensitivity  hydroacoustic  complex  with 
the number of channels greater than 30.
Acknowledgements.  The  study  was  supported  by  the  Russian 
Science Foundation (Project No. 14-12-01122).
References
1. Sherman C.H., Butler J.L. Transducers and Arrays for Underwater
Sound (New York: Springer, 2007).
2. Bucaro J.A., Dardy H.D., Carome E.F. J. Acoust. Soc. Am., 62
(5), 1302 (1977).
3. El-Hawary F. The Ocean Engineering Handbook (New York,
London: CRC Press, 2000).
4. Lee H.B., Kim Y.H., Park K.S., Eom J.B., Kim M.J., Rho B.S.,
Choi H.Y. Sensors, 12, 2467 (2012).
5. Posada-Roman J., Garcia-Souto J.A., Rubio-Serrano J. Sensors,
12 (4), 4793 (2012).
6. Lim T.K., Zhou Y., Lin Y., Yip Y.M., Lam Y.L. Opt. Commun.,
159 (4), 301 (1999).
7. Macià-Sanahuja C., Lamela H., García-Souto J.A. J. Opt.
Technol., 74 (2), 122 (2007).
8. Morris P., Hurrell A., Shaw A., Zhang E., Beard P. J. Acoust. Soc.
Am., 125 (6), 3611 (2009).
9. Dolgikh G.I., Budrin S.S., Dolgikh S.G., Kovalev S.N.,
Plotnikov A.A., Chupin V.A., Yakovenko S.V. Podvod. Issled.
Robototekhn., (1), 40 (2007).
10. Dolgikh G.I., Plotnikov A.A., Shvets V.A. Prib. Tekh. Eksp., (1),
159 (2007).
11. Staudenraus J., Eisenmenger W. Ultrasonics,31 (4), 267 (1993).
12. Morris P., Hurrell A., Beard P. Proc. Instit. Acoustic, 28, 717
(2006).
13. Freschi A.A., Frejlich J. Opt. Lett., 20, 635 (1995).
14. Shi C.-H., Chen J.-P., Wu G.-L., Li X.-W., Zhou J.-H., Ou F. 
Opt. Express, 14 (12), 5098 (2006).
15. Yoshino T., Nara M., Mnatzakanian S., Lee B S., Strand T.C.
Appl. Opt., 26 (5), 892 (1987).
16. Liu J., Yamaguchi I. Appl. Opt., 39 (1), 104 (2000).
17. Herz M. Opt. Engng., 44 (9), 090505-090505-3 (2005).
18. Karhade O., Degertekin L., Kurfess T.Opt. Lett., 34 (19), 3044
(2009).
19. Schmidt M., Werther B., Fürstenau N., Matthias M., Melz T. 
Opt. Express, 8 (8), 475 (2001).
20. Kamshilin A.A., Petrov M.P. Opt. Commun., 53, 23 (1985).
21. Di Girolamo S., Kamshilin A.A., Romashko R.V., Kulchin Yu.N.,
Launay J.-C. Opt. Express, 15 (2), 545 (2007).
22. Romashko R.V., Di Girolamo S., Kulchin Y.N., Kamshilin A.A.
J. Opt. Soc. Am. B,27 (2), 311 (2010).
23. Petrov M.P., Stepanov S.I., Khomenko A.V. Fotorefraktivnye
kristally v kogerentnoy optike (Photorefractive Crystals in
Coherent Optics) (Saint-Petersburg: Nauka, 1992).
24. Di Girolamo S., Romashko R.V., Kulchin Yu.N., Launay J.-C.,
Kamshilin A.A. Opt. Express, 16 (22), 18040-9 (2008).
25. Kulchin Yu.N., Vitrik O.B., Kamshilin A.A., Romashko R.V.
Adaptivnye metody obrabotki spekl-modulirovannykh opticheskikh
polei (Adaptive Methods of Processing Speckle-Modulated
Optical Fields) (Moscow: Fizmatlit, 2009).
26. Romashko R.V., Bezruk M.N., Ermolayev S.A., Zavestovskaya I.N.
Kr. Soobshch. Fiz. FIAN, 41 (12), 348 (2014) [ Bull. Lebedev Phys.
Inst., 41 (12), 348 (2014)].
27. Efimov M.E., Plotnikov M.Yu., Kulikov A.V. Nauchn.-Tekhn.
Vestn. Inform. Tekhnol., Ser. Mekh. Opt., 93 (5), 158 (2014).
28. Di Girolamo S., Kulchin Y.N., Kamshilin A.A. Romashko R.V.
Opt. Commun., 283 (1), 128 (2010).
29. Romashko R.V., Bezruk M.N., Kamshilin A.A., Kulchin Yu.N.
Kvantovaya Elektron., 42 (6), 551 (2012) [ Quantum Electron., 42
(6), 551 (2012)].
30. Romashko R.V., Kulchin Y.N., Kamshilin A.A.J. Rus. Laser
Res., 31 (1), 55 (2010).
31. Fomitchov P., Murray T.W., Krishnaswamy S. Appl. Opt., 41 (7),
1262 (2002).
32. Romashko R.V., Bezruk M.N., Kamshilin A.A., Kulchin Y.N.
Pacific Sci. Rev., 15 (1), 104 (2013).
... The adaptive interferometer based on a dynamic hologram recorded in a photorefractive crystal (PhRC) is known as an effective tool for high-accuracy measurements of ultrasmall physical quantities [1][2][3]. Adaptive interferometers form the basis for the development of a wide class of measurement methods for detecting weak acoustic and hydroacoustic signals [4][5][6][7][8]; for measuring ultrasmall masses [9]; for observing small strains, oscillations, and displacements [10][11][12][13][14]; for a nondestructive control of materials [15][16][17][18][19], biological visualization [20][21][22][23][24], and so on. A dynamic hologram, which is permanently rewritten inside the PhRC, stabilizes the working point of the interferometer, which makes it possible to preserve it high sensitivity for a high noise immunity. ...
... The forced vibration amplitude was determined in an area 600 μm in diameter at the membrane center as a mean deviation of all points of this area. The diameter of the chosen area is defined by the size of the laser beam from a fiber light guide which can be used for detecting vibrations in membrane acoustic receivers [4,5]. The obtained amplitude-frequency characteristic is shown in Fig. 1b. ...
... Such technique allows to successfully apply the adaptive interferometers for measuring weak signals under the conditions of influence of external noise factors such as random mechanical impacts, industrial noisy sound and vibrations, temperature or pressure drift, etc [12][13][14][15][16][17][18]. Adaptive interferometers were being already applied for acoustic and hydroacoustic measurements [19][20][21][22][23], including use of scalar-vector methods for detection of an acoustic signal [24,25]. In the paper [25], the adaptive laser scalar-vector hydroacoustic measuring system which provides determination of full vector of acoustic intensity is proposed. ...
Article
Full-text available
A mobile scalar–vector acoustic receiver is proposed, experimentally implemented and investigated. The key components of the receiver are (a) the six-channel fiber-optic coil-type sensor configured as to detect three projections of acoustic intensity vector, (b) the six-channel optical phase demodulator based on six-channel adaptive holographic interferometer configured with use of dynamic holograms multiplexed in a photorefractive crystal of cadmium telluride and (c) the signals recording ADC-based system combined with software package for data processing. Field tests of the developed receiver applied for obtaining scalar and vector parameters of acoustic waves generated by a stationary and moving acoustic source in open air and water area are carried out. Experimental results show perceptiveness of use of the fiber-optical adaptive interferometry system for bearing of weak acoustic sources in real conditions.
... 5) [19], а также для фиксации сигналов акустической эмиссии, возникающих в полимерном композитном материале при его деформациях [9]. На основе адаптивного голографического интерферометра нами также были разработаны уникальные регистраторы акустических колебаний, такие как лазерный микрофон с возможностью детектирования акустического давления менее 1 мПа в динамическом диапазоне до 55 дБ [20], семейство лазерных гидрофонов, включая векторно-фазового типа, способных в условиях реальной морской акватории, в присутствии значительных портовых шумов и при неблагоприятных погодных условиях (ветер, волнение), устойчиво регистрировать слабые гидроакустические сигналы амплитудой от 0,1 Па [21,22,24]. Кроме того, разработан адаптивный сейсмограф [2], способный в течение длительного времени обеспечивать режим ожидания сейсмического сигнала, стабильно поддерживая максимальную чувствительность. ...
Article
Full-text available
The paper provides a review of a series of studies aimed at the development of adaptive interferometry methods based on the use of dynamic holograms formed in photorefractive crystals. The results obtained in the course of the study made it possible to achieve significant progress in increasing the efficiency of adaptive interferometry methods, increasing their sensitivity, stability and noise immunity. The proposed new schemes of two-, three- and multi-wave interactions on dynamic holograms became the basis for constructing polarization- and non-volatile, as well as multichannel adaptive laser measuring systems, which opened up prospects for their application in solving practical problems in the field of engineering and technical diagnostics, non-destructive testing, biosensorics, nanometry and acoustic measurements.
... The distance between the fibre output and the membrane was 0.2-0.5 mm. Adaptive holographic interferometer based on dynamic holograms formed in a photorefractive crystal was used to stabilise the operating characteristics of a laser acoustic sensor [13,14]. The radiation reflected from the membrane returns back into the fiber and form a signal wave of interferometer. ...
Article
Full-text available
This paper presents the results of modeling and fabrication of silicon membranes for acoustic sensors with resonant frequency from 2 kHz to 60 kHz and pressures from 0.1 to 14 Pa. An analysis of the constructive and mechanical parameters of monocrystalline silicon membranes is performed. The range of membrane edge length (6-20 mm) at a fixed thickness of 50 μm determined. The etching process of a silicon wafer by anisotropic wet etching was studied. A process flow for manufacturing silicon membranes is proposed. The results of experimental studies of amplitude-frequency characteristic of membranes are obtained.
Article
Full-text available
This paper presents a study of the use of silicon Si for element base manufacture of micro- and nanoelectronics by using combined methods of focused ion beams and atomic layer plasma chemical etching. This technology makes it possible to modify surface of Si substrates in the required topology and geometry, followed by removal of atoms to obtain nanoscale elements. The influence of parameters of method of focused ion beams and plasma chemical etching on parameters of the formed structures is analyzed. So, for example, for formation of structures with maximum roughness, it is necessary to increase values of parameters responsible for reactive ion etching, these are such parameters as: the power of capacitive plasma source, the mixing voltage, and the flow rate of an inert gas (argon).
Article
This paper presents a comprehensive review of hydrophones, their design considerations, physical aspects, and structures by reviewing many publications that have been published over the last two decades. The investigation of the fundamental aspects and essential considerations of hydrophones in the literature are distributed in different papers and have not been brought together in a conclusive manner. This paper has collected and classified all the information about hydrophones including the parameters that affect their performance as well as their features. We have categorized the hydrophones according to their mechanism of operation, structure design, frequency response, and application. The literature has been summarized in a way that enables the readers' easy referral to appropriate designs for their desired application scenarios.
Article
Full-text available
We have developed and experimentally implemented an adaptive laser vector-phase hydroacoustic measuring system, which allows one to determine the total acoustic intensity vector. A receiving element of the measuring system comprises six spatially separated fibre-optic coil-type sensors. Signals from the sensors are phase demodulated by using a six-channel adaptive holographic interferometer based on dynamic holograms multiplexed in a photorefractive CdTe crystal. Performance of the developed measuring system has been experimentally tested by determining the bearing and localisation of a source of a weak hydroacoustic field.
Article
Full-text available
In this paper, we review photonic methods and technologies that are promising for monitoring the ocean and atmosphere and have been implemented mainly in recent years at the Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences. We present results of lidar studies that have made it possible to understand key features of ocean – atmosphere interaction processes under continent – ocean transition conditions, which determine specific features of the atmospheric aerosol distribution, small gaseous components of the atmosphere and its optical characteristics. We consider methods and tools for combined optical and laser fluorescence monitoring of the ocean surface. Particular attention is paid to results of research on remote methods and tools for real-time laser-induced and laser fluorescence environmental monitoring of the ocean, including specialised fibre-optic probes and mobile underwater robotic systems. We present results of the development and investigation of highly sensitive, noise-proof fibre-optic hydro- and seismic/acoustic sensors for remote monitoring of the ocean and robotic systems for underwater laser protection of marine vessels, hydraulic structures and oceanographic instruments against the negative impact of biofouling.
Article
Full-text available
A new type of a vector hydrophone, a laser adaptive hydroacoustic intensimeter, is investigated. Two identical, spatially separated coil-type sensors are used as a primary receiver of the acoustic signal. The signals received at the sensor output are phase demodulated in a two-channel adaptive holographic interferometer based on two dynamic holograms multiplexed in a CdTe photorefractive crystal. Using a laser intensimeter, the acoustic field formed in a limited volume is studied. The performance characteristics of the intensimeter are determined experimentally; its threshold sensitivity, according to the acoustic field intensity, constitutes 0.1 x 10^–13 W m^–2.
Article
Full-text available
We analyze vectorial wave mixing in a photorefractive crystal of cubic symmetry in different geometries of beam interactions—reflection, transmission, and orthogonal. It is shown that orthogonal geometry in contrast with others supports an efficient phase demodulation of a depolarized object wave in linear mode without using any polarization-filtering elements. As a result adaptive interferometers based on the orthogonal geometry can provide a higher signal-to-noise ratio due to lower noise and lower optical losses.
Article
Full-text available
A new technique is presented for a continuous reconstruction of volume holograms in cubic photorefractive crystals of the sillenite family using the effect of anisotropic diffraction. In the scheme suggested, only two waves (the reference and object beams) are needed for simultaneous recording and reconstruction of holograms. The major advantage of the technique is an automatic self-adjustment of the Bragg diffraction at the volume hologram. This simple and efficient scheme can be used for producing holographic interferograms of objects of arbitrary shapes in real time. The experimental results are presented both for Bi12SiO20 and Bi12TiO20 crystals.
Book
Compiled with the help of an internationally acclaimed panel of experts, the Ocean Engineering Handbook is the most complete reference available for professionals. It offers you comprehensive coverage of important areas of the theory and practice of oceanic/coastal engineering and technology. This well organized text includes five major sections: Marine Hydro Dynamics and Vehicles Control, Modeling Considerations, Position Control Systems for Offshore Vessels, Applications of Computational Intelligence in the Ocean’s Environment, and Fiber Optics in Oceanographic Applications. Designed to be used as a traditional handbook, it thoroughly covers position control theory and implementations and offers a close look at the present state of ocean engineering. With 200 tables and over 100 figures, the Ocean Engineering Handbook will give you a head start in many aspects of oceanic engineering.
Article
We report on the development of a fiber optic acoustic hydrophone which consists of a sensing Mach–Zehnder (MZ) interferometer and a compensating MZ interferometer for optical path length compensation. This double-interferometer configuration has the following advantages: the hydrophone is a true heterodyne device; a laser source with a short coherence length can be used; the sensing interferometer is completely passive; the compensating interferometer can be located near the signal processing electronics, far away from the sensing interferometer; a conventional modulation analyzer can be used to demodulate the optical phase shift, which greatly simplifies the demodulation electronics. The performance of the hydrophone is evaluated experimentally by immersing the sensing interferometer in a water tank to detect underwater acoustic signals generated by an acoustic wave projector. Experimental results show that over the frequency range of 5 to 20 kHz, the hydrophone has an almost flat response with an average normalized phase sensitivity of −322.3 dB re 1/μPa and an average pressure sensitivity of −153.7 dB re rad/μPa. These performance figures are better than those obtained from a commercial piezoelectric hydrophone. Furthermore, we have also demonstrated that with improved signal processing techniques, the normalized phase sensitivity of the hydrophone increases to −313 dB re 1/μPa, and the pressure sensitivity increases to −136.9 dB re rad/μPa. These results indicate that the present design offers equal or better performance in terms of sensitivity over its counterparts employing conventional Mach–Zehner configurations.
Article
Aimed at lithotripter acoustic output measurements, a new fibre-optic probe hydrophone overcomes most of the problems involved with the use of piezoelectric hydrophone technology in non-linear ultrasonic and shock-wave fields. The fibre-optic principle allows for extremely wide bandwidth (larger than 1 GHz) and superior electromagnetic shielding. Contrary to hitherto existing hydrophones a high cavitation threshold at the water-silica interface provides undistorted detection of strong rarefractional pulse pressures. Considering pure compression there is good agreement between maximum pulse pressure derived from fibre-optic hydrophone theory and the corresponding amplitudes obtained from acoustically calibrated PVDF membrane and needle hydrophones.
Article
We report an optoelectronic feedback loop that permits the active stabilization of an interferometric setup for any chosen value of the phase between the interfering beams. This method is based on phase modulation and homodyne detection techniques. The phase can be stabilized with a precision of better than 1 deg for our experimental conditions.
Article
An active control method is proposed and demonstrated to improve grating-based laser interferometry to achieve low-noise (subpicometer resolution) and multiwavelength unambiguous range of operation simultaneously. The method modifies a recurrent calibration-based path stabilization algorithm to extract high-resolution and low-resolution data in parallel. This extended range recurrent calibration method is experimentally verified by implementing it on the micromachined scanning grating interferometer (microSGI).
Article
This book is concerned with the theory, development and design of electroacoustic transducers for underwater applications, and is more comprehensive than any existing book in this field. It includes the basics of the six major types of electroacoustic transducers, with emphasis on the piezoelectric ceramic transducers that are currently most widely used. It presents the basic acoustics, as well as specific acoustic data, needed in transducer design and includes analysis of nonlinear effects in transducers. A large number of specific transducer designs, including both projectors and hydrophones, are described in detail as well as methods of modeling, evaluation and measurement. Analysis of transducer arrays, including the effects of mutual radiation impedance, as well as numerical models for transducers and arrays are also covered. The book contains an extensive Appendix of useful current information, including data on the latest transduction materials, and numerous diagrams that will facilitate its use by students and practicing engineers and scientists. © 2007 Springer Science+Business Media, LLC. All rights reserved.
  • J A Bucaro
  • H D Dardy
  • E F Carome
Bucaro J.A., Dardy H.D., Carome E.F. J. Acoust. Soc. Am., 62 (5), 1302 (1977).