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Abstract Visual control has an inXuence on postural sta-
bility. Whilst vestibular, somatosensoric and cerebellar
changes have already been frequency analytically parame-
terised with posturography, suYcient data regarding the
visual system are still missing. The aim of this study was to
evaluate the inXuence of pathologic and simulated visual
dysfunctions on the postural system by calculating the fre-
quency analytic representation of the visual system
throughout the frequency range F1 (0.03–0.1 Hz) of Fourier
analysis. The study was divided into two parts. In the Wrst
part, visually handicapped subjects and subjects with nor-
mal vision were investigated with posturography regarding
postural stability (stability eVect, Fourier spectrum of pos-
tural sway, etc.) with open and closed eyes. The visually
impaired and the normal group diVered signiWcantly in the
frequency range F1 (p = 0.002). SigniWcant diVerences of
the postural stability between both groups were found only
in the test position with open eyes (NO). The healthy group
showed a signiWcant loss of stability, whereas the impaired

group showed an increased stability due to suYcient
somatosensoric processes. Visually handicapped persons
can compensate the visual information deWcit through
improved peripheral–vestibular and somatosensoric per-
ception and cerebellar processing. In the second part, sub-
jects with normal vision were examined under simulated
visual conditions, e.g., hyperopia (3.0 D), reduced visual
acuity (VA = 20/200), yoke prisms (4 cm/m) and pursuits
(pendulum). Changes in postural parameters due to simula-
tions have been compared to a standard situation (open eyes
[NO], Wxation distance 3 m). Visual simulations showed
inXuence on frequency range F1. Compared to the standard
situation, signiWcant diVerences have been found in reduced
visual acuity, pursuits and yoke prisms. A loss of stability
was measured for simulated hyperopia, pendulum and yoke
prisms base down. Stability regulation can be understood as
a multi-sensoric process by the visual, vestibular, somato-
sensoric and cerebellar system. Reduced inXuence of a sin-
gle subsystem is compensated by the other subsystems.
Obviously the main part of reduced visual input is compen-
sated by the vestibular system. Moreover, the body sway,
represented by the stability indicator, increased in this
situation.

Keywords Postural stability · Frequency analysis · 
Visual control · Posturography

Introduction

The posture and balance regulation is the result of an inte-
gration of various multi-sensory processes. In a well-lit
environment with a Wrm base of support, healthy persons
rely on somatosensory (70%), vision (10%) and vestibular
(20%) information (Peterka 2002). However, when they
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306 Exp Brain Res (2008) 186:305–314
stand on an unstable surface, they increase sensory weight-
ing to vestibular and vision information as they decrease
their dependence on surface somatosensory inputs for pos-
tural orientation (Peterka 2002).

About 80% of our sensory perception is gathered by the
visual system. Our movements are mainly controlled and
coordinated by the eyes. Hence the visual system is not
only responsible for cognition of objects, it is also used to
give information to the brain about the position of our
body. The central vision is beneWted for seeing small
objects with an excellent visual acuity, for a good spatial
resolution, an optimal colour and contrast vision and a large
luminance diVerence sensibility. The peripheral vision is
responsible for identifying fast moving objects (better tem-
poral resolution) and for the spatial orientation (Rost 2001;
Jendrusch and Brach 2003). For gathering details from a
moving object, the fovea has to perform pursuits by coordi-
nated eye and head movements. Eye following movements
are used to register Xoating objects in the fovea with a
velocity up to 50–100°/s. If there is a higher velocity, a ret-
inal slip is inserted resulting in saccades (Jendrusch and
Brach 2003).

Vision is one of the three basic input channels control-
ling postural stability and regulation together with the ves-
tibular and the somatosensoric subsystems (Black et al.
1982; Hafstrom et al. 2002; AbdelhaWz and Austin 2003;
Stoll et al. 2004; Schwartz et al. 2005). The most important
sensory input for keeping balance is the vestibular cue, fol-
lowed by the somatosensory and the visual cues (Liu et al.
2007). The relative weights placed on each of these inputs
are depending on the goals of the movement task, the visual
tasks and the environmental context (Peterka 2002; Merg-
ner et al. 2005; Horak 2006; Poulain and Giraudet 2007).

The functional reduction is accordingly large when a
visual impairment and/or visual weakness is present (Sch-
wartz et al. 2005). It has been shown that visual deWcits are
associated with an increased fall risk, particularly in the
higher age (Paulus et al. 1984; Brooke-Wavell et al. 2002;
Eto 2005; Poulain and Giraudet 2007). The decreased
visual eYciency correlates with a loss of postural stability
(Manchester et al. 1989; Turano et al. 1994; Anand et al.
2003). In order to parameterize and specify the eVects of
sensomotoric interventions on the improvement of postural
stability and/or for the reduction of the fall risk, the devel-
opment of suitable assessments is necessary.

It was shown in numerous studies, using diVerent postu-
rographic procedures, that the postural Xuctuations are lim-
ited to a frequency spectrum of 0.01–4.0 cycles/s (Kapteyn
and de Witt 1972; Mauritz and Dietz 1980; Diener et al.
1984; Patat et al. 1985; Ferdjallah et al. 1997; Gagey and
Toupet 1998; Kollmitzer et al. 2000; Laughlin and Redfern
2001; Schwesig 2006). Whilst vestibular, somatosensoric
and cerebellar disturbances were already frequency analyti-

cally parameterized (de Witt 1972; Taguchi 1978; Oppen-
heim et al. 1999; Schwesig 2006), no evidence was found
regarding the visual system.

Up to now only few studies have examined the relation-
ship between the visual and the postural system. By analy-
sing the inXuence of eye movements on the postural
stability it was shown that slow eye movements cause an
increase in postural sway (StoVregen 1985; Guerraz et al.
2000; Strupp et al. 2003; Glasauer et al. 2005).

By measuring the sway intensity with posturography, the
results showed that the area of the centre of foot pressure
was decreased by presenting the visual stimulus in the
periphery (Berencsi et al. 2005). Thus it was shown that the
peripheral vision contributes to a stable posture.

To Wnd out how big the feedback from the visual system
on the postural system is, two investigations have been
made. In the Wrst study, the inXuence of pathologic visual
dysfunctions on the postural system were examined. The
primary goal of the Wrst posturographic investigation was
the validation of the frequency range F1 (0.03–0.1 cycles/s)
of the Fourier analysis as a possible indicator for the visual
system. It was furthermore examined, whether persons with
visual impairment regulate (compensatorily) their balance
via somatosensoric and/or vestibular processes.

In the second study, the inXuence of simulated visual
dysfunctions on the postural system was examined. It was
intended to Wnd out if the interactive balance system (IBS)
is useful to show the inXuence of diVerent simulated visual
dysfunctions on the postural system.

Methods

Experimental apparatus

Postural stability and regulation was examined using the
interactive balance system (IBS; Tetrax Inc., Ramat Gan,
Israel) in both sub-studies. In this method of posturography,
the vertical pressure Xuctuations on four independent force
plates, each supporting one heel or the toes of each leg, are
recorded. A comprehensive description of the system,
including the information regarding reliability and validity
of the system, is available elsewhere (Kohen-Raz 1991;
Schwesig 2006). Besides stability, it is possible to assess
weight distribution, synchronizations as well as the pattern
of sway intensities at diVerent frequency ranges, as shown
by the fast Fourier analysis of the postural sway waves.
Subjects were tested on eight positions as shown in Table 1.
In the test positions NO, NC, HR, HL, HB and HF, the sub-
jects were directly standing on the force plates (Fig. 1a). In
the test positions PO and PC, the subjects were standing on
elastic pillows, which were lying on the force plates (Fig.
1b). The pillows were deteriorating the stand stability and
123
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thus reducing the inXuence of the somatosensoric system.
The measuring period in each case was 32 s.

The main parameters used in this study were: the Fourier
spectrum of sway divided into eight frequency bands
(F1–F8) (Taguchi 1978; Oppenheim et al. 1999) and the
stability indicator (ST).

The ST represents the status of the general postural sta-
bility. It is the quotient of the sum of amplitudinal changes
(body sway) divided by body weight of the test person. The
instability of the test person is greater when the quotient is
higher. This value correlates strongly with the values “area
of sway”, “length of sway” or “amount of sway” of other
investigational systems (e.g. Chattecx Balance System,
EquiTest, Pro Balance Master, Smart Balance Master,
Good Balance, Biodex Stability System).

All parameters used in the IBS are dimensionless values.
In the second study, the visual system was examined

with posturography (IBS) too, but now the inXuence of
diVerent visual parameters such as visual acuity, vergence
and version on postural stability and regulation was tested.

The eight test positions (NO, NC, PO, PC, HR, HL, HB,
HF; compare Table 1) were combined with eight visual
situations (A–H), like ametropia, reduced visual acuity or

eVect of yoke prisms. The visual situations are shown and
explained in Table 2.

In all situations, except F, a stable black cross
(7 £ 7 cm) was presented on a white board (Fig. 1b). In
situation F, a moving pendulum was used.

The Fourier spectrum of sway (F1–F8) and the ST were
used as parameters. Changes in postural parameters due to
simulations have been compared to a standard situation
(open eyes [NO], Wxation distance 3 m [A]).

Subjects

Study 1: visually handicapped vs. healthy subjects

In the Wrst study, 52 persons with visual impairment and 52
healthy persons were included in the case cohort study
(n = 104). Those groups were informed about study goals
and contents with an information sheet. A written consent
was obligatory for study participation. Persons with neuro-
logical, vestibular and orthopedic illnesses were excluded.

The study adhered to the tenets of the Declaration of
Helsinki.

The sample of the visually impaired (n = 52) were
recruited from the Vocational Service Institute Halle. The
gender distribution of the two groups did not diVer signiW-
cantly (�2 after Pearson 0.347; p = 0.556) (Table 3).

Study 2: visually simulated dysfunctions

The second study was a prospective study in which 27 sub-
jects (male n = 8, female n = 19) with normal vision were
included. The optometric and posturograWc data of these
subjects have been collected.

In this study healthy subjects (age range 20–45 years) were
included, with a corrected or uncorrected VA ¸ 16/20, inde-
pendent of the amount of ametropia and of the kind of correc-
tion (glasses or contact lenses) and regular stereopsis.

Table 1 Posturographic testing: test positions (NO–HF)

IdentiWcation Standing 
position

Head position Eye position

NO Without 
pillows

Head straight Eyes open

NC Eyes close

PO On elastic 
pillows

Eyes open

PC Eyes close 

HR Without 
pillows

Head rotate 45° to the right Eyes close 

HL Head rotate 45° to the left

HB Head up (dorso-Xexed)

HF Head down (ventro-Xexed)

Table 2 Visual situations (A–H) with the used measuring distances and optical corrections for the posturographic measurements

IdentiWcation 
letter

Visual situation Measuring 
distance (m)

Optical correction

A Standard situation with visual acuitycc 3 Full correction 

B Visual acuitycc with a longer measuring 
distance compared to the standard situation

6 Full correction

C Visual acuitycc with a smaller measuring 
distance compared to the standard situation

1 Full correction

D Visual acuityreduced 20/200 3 Full correction with occlusion 20/200

E Simulated hyperopia (accommodation) 3 Full Correction with –3.0 D

F Tracking eye movement with a pendulum 3 Full correction

G Yoke Prisms 4 cm/m basis up 3 Full correction with prisms

H Yoke prisms 4 cm/m basis down 3 Full correction with prisms
123
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During the posturograWc measurements, the subjects
have been wearing the existent correction if regularly worn.

Persons with known postural deformity, medication
(except contraceptives) and visual deviations (heterotropia)
were excluded.

Statistical analysis

Study 1: visually handicapped vs healthy subjects

Based on our special investigations which were carried out
in the course of the Wrst study and using the parameter total
score as point of reference, the calculations for the interven-
tion experiment were based on a sample size of n = 34 with
a power of 80%, � error of 0.05 and an eVect size of 0.497
(Schwesig 2006). The sample was n = 45, taking into con-
sideration a drop out rate of 30%.

The signiWcant group diVerence in the parameter body
weight was considered to an extent during the statistic eval-
uation, as this variable was used as co-variant in a general
linear model (GLM). Within this univariate, unifactorial
covariance analysis, the posturographic parameters (for

example stability indicator) acted as dependent variables
and the visual impairment (yes vs no was deWned) as “Wrm
factor”.

The used level of signiWcance � = 0.05 was submitted to
a Bonferroni correction depending on the number (k) of
tests (�/k).

Study 2: visually simulated dysfunctions

Due to a non-normal distribution of data in the second
study, the general linear model was not suitable. For that
reason the Friedman test was applied. It is a non-parameter-
ized ANOVA. The medians of all results from the test posi-
tions (NO–HF) in the frequency ranges F1–F8 and for the
stability indicator were compared. It was evaluated whether
the medians of a test series (from A to H) were signiWcantly
diVerent, in general. The level of signiWcance was � = 0.05.
In the second step the Conover method was used to Wnd out
which speciWc visual situation (from B to H) showed statis-
tically signiWcant diVerence compared to the stand position
A (normal, eyes open). The method works by comparing
the sum of ranks to a critical diVerence.

Fig. 1 Measuring system: the 
subjects were standing on two 
force plates. They were facing a 
vertical white board on which a 
stable black cross was presented 
at eye level. During the measure-
ment the distribution of the forc-
es on the plates was measured 
and registered

Table 3 Subject characteristics Group Age (years) Height (cm) Weight (kg) BMI (kg/m2)

MV SD MV SD MV SD MV SD

Visually impaired 37.7 §7.9 174 §8.3 70.9 §14.2 23.3 §3.3

Healthy group 34.6 §12.0 174 §11.0 81.2 §20.0 26.7 §5.2

SigniWcance (p) 0.121 0.968 0.003 <0.001MV mean value, SD standard 
deviation
123
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Results

Study 1: visually handicapped vs healthy subjects

The visually impaired and the normal group diVered signiW-
cantly only in the frequency range F1 of the Fourier spec-
trum (p = 0.002, partial �2 = 0.091, Table 4).

SigniWcant diVerences of the postural stability
(p < 0.001) between both the groups were found exclu-
sively in the test positions without lids closed (NO and PO,
Fig. 2). The healthy group showed a signiWcant loss of sta-
bility in the test positions PO and HB, whereas the impaired
group showed an increased stability (Fig. 3) due to suY-
cient somatosensoric processes. The somatosensoric system
proved with an empirical variance of 82% (impaired) and
60% (healthy) to be the primary variant for the postural system (test position NO, criterion variable: stability indi-

cator [ST]).

Study 2: visually simulated dysfunctions

The Friedman test showed that diverse visual situations had
signiWcant inXuence on frequency bands F1–F8 and ST in
diVerent test positions (NO–HF), (Table 5). The only simu-
lated dysfunctions had an inXuence on the frequency range
F1 (representing the visual system) in the test position NO
(p = 0.005). This means that in this position with eyes open
in a normal stand pose, the result in the frequency analyses
showed signiWcantly reduced amplitudes for the frequency
range F1 (Fig. 4).

Compared to the standard situation (A) signiWcant diVer-
ences between the respective visual situations turned out,
proven by the Conover method (Figs. 4, 5).

Fig. 2 Postural stability (stability indicator) in the eight test positions.
*SigniWcant diVerence between both groups on the Bonferroni cor-
rected signiWcance level � (0.05/8 = 0.0026)
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Table 4 Body weight adjusted 
average values (MV) as well as 
signiWcance examination for all 
posturo-graphic parameters with 
GLM

Group MV 95% ConWdence interval SigniWcance*

Lower limit Upper limit

Dependent variable: F1 (0.03–0.1 Hz) (Part. �2: 0.091/F: 10.159)

Visually impaired 15.5 14.2 16.7 0.002

Healthy group 18.4 17.1 19.6

Dependent variable: F2–4 (0.1–0.5 Hz) (Part. �2: 0.000/F: 0.025)

Visually impaired 8.89 8.36 9.42 0.875

Healthy group 8.95 8.42 9.48

Dependent variable: F5–6 (0.5–1.0 Hz) (Part. �2: 0.018/F: 1.826)

Visually impaired 4.16 3.89 4.43 0.180

Healthy group 3.89 3.62 4.16

Dependent variable: F7–8 (>1.0 Hz) (Part. �2: 0.012/F: 1.240)

Visually impaired 0.89 0.83 0.94 0.268

Healthy group 0.84 0.79 0.90

Dependent variable: ST (Part. �2: 0.034/F: 3.511)

Visually impaired 24.9 23.4 26.4 0.064

Healthy group 22.8 21.3 24.3

df (101; 2; 1), the reported values 
are mean values of all positions

* SigniWcance level � was 
adjusted for multiple tests by 
means of Bonferroni correction 
(0.05/5 = 0.01)

Fig. 3 Comparison of the test positions PO and HB. *SigniWcant
diVerence on the signiWcance level (� = 0.05)
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The main inXuence of visual simulations (B–H) was
found on the frequency range F1 and on ST. In test position
with eyes open (NO), visual situations diVered signiWcantly
(p = 0.005) from the standard situation A concerning fre-
quency range F1. Situations C (smaller measuring dis-
tance), D (VA = 20/200), F (pendulum), G (yoke prisms
base down) and H (yoke prisms base up) showed signiWcant
diVerences compared to situation A (Fig. 4). The inXuence
of the visual on the postural system is reduced, compared to
the standard situation with normal vision.

In test position with open eyes (NO), the stability indica-
tor showed signiWcant variance (p < 0.001). A loss of sta-
bility was signiWcant in situations E (simulated hyperopia),
F (pendulum) and G (yoke prisms base down) compared to
situation A (Fig. 5).

Decreased visual input due to reduced visual acuity (20/
200) scales down the proportion of frequency band F1. In
contrast, the proportion of frequency bands F2–F4
(p = 0.006) and F7–F8 (p = 0.003) increased signiWcantly
(Fig. 6).

Table 5 SigniWcant posturographic parameters with the Friedmann
test in the diVerent frequency bands F1–F8 and the stability indicator
in test position NO (normal/eyes open)

The reported values are medians. The normal situation without simu-
lated dysfunction (A) is tested versus all situations with visual simu-
lated dysfunctions (from B to H). The level of signiWcance was
� = 0.05

Visual situation Median SigniWcance (p)

Frequency band F 1 (0.03–0.1 Hz)

A 18.09 0.005

B, C, D, E, F, G, H Range 12.84–18.26

Frequency bands F2–F4 (0.1–0.5 Hz)

A 5.86 0.006

B, C, D, E, F, G, H Range 5.67–7.70

Frequency bands F7–F8 (>1.0 Hz)

A 0.57 0.003

B, C, D, E, F, G, H Range 0.59–0.65

ST

A 14.59 <0.001

B, C, D, E, F, G, H Range 14.84–18.09

Fig. 4 Comparison of the power proportion (relative units) for the fre-
quency band F1 in the diVerent visual situations (A–H) in the test po-
sition with eyes open (NO). Constituted are the medians, the inter-
quartile ranges and ranges. *SigniWcant results for diVerent visual sit-
uations
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Fig. 5 Comparison of the power proportion (relative units) of the ST
in the diVerent visual situations (A–H) in the test position with eyes
open (NO). Constituted are the medians, the inter-quartile ranges and
ranges. *SigniWcant results for diVerent visual situations
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Fig. 6 SigniWcant results for the diVerent frequency bands F1–F8 in
the test positions with open eyes (NO) between the visual situations A
and D. Constituted are the medians and the standard deviation. The
signiWcant diVerences per series of measurement are marked by the
p-value
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Discussion

So far, numerous posturographic investigations were
described, spotting on the vestibular, the somatosensoric
and the cerebellar subsystems (Schwesig 2006). However,
investigations on the inXuence of the visual system were
rarely performed. Schwartz et al. (2005) found an increase
of postural stability after cataract-operations. Brannan et al.
(2003) reported a reduction of the fall frequency of about
80% (p < 0.001) after cataract-operations.

The Blue Mountains Eye study showed increased risk of
falls with decreased visual acuity, however, there was no
linear correlation (Ivers et al. 1998). Other studies have
demonstrated that postural stability is caused by contrast
sensitivity rather than by visual resolution (Turano et al.
1994; Elliott et al. 1995; Lord and Menz 2000).

The most important result of this investigation is the ver-
iWcation of the frequency range F1 (0.03–0.1 cycles/s) as
indicator for the visual system. This can be interpreted from
the results of the frequency analysis (Table 4), which
showed a signiWcant diVerence (p = 0.002, Part. �2 = 0.091)
between healthy and visually impaired subjects. The alloca-
tion of the frequency range F1 to the visual system is fur-
thermore conWrmed by the diVerentiated frequency-analytic
assessment of the individual test positions. It is remarkable
that signiWcant diVerences in the parameters F2–F4, F5–F6
and F7–F8 were found exclusively in the positions without
eyes closed (NO and PO). Obviously the visually impaired
group compensated its visual deWcits with a stronger activa-
tion of the other postural subsystems. This success is reX-
ected in the position-speciWc analysis of the stability
indicator (Fig. 2). In this analysis a signiWcant increase of
postural instability turned out in the impaired group, only in
the positions NO and PO. This can be explained with the
dominance of the visual system and the respective advan-
tage of the healthy group. On the other hand the visually
impaired group could not use its relevant advantage of
compensation of the reduced visual information due to the
decreased somatosensoric input in the test conditions of this
study (foam mattress).

The inverted results in the comparison of the test posi-
tions PO and HB (Fig. 3) are remarkable. Whilst the
healthy group exhibited a signiWcant stability loss in the
comparison of the test positions PO and HB, the visually
impaired group showed an increased stability resulting in a
higher stability level in the test position HB than the
healthy group. These results can be interpreted as a more
eYcient integration of somatosensoric information in the
central nervous system in the visually impaired group.

It is considered a multisensory reweighting deWcit in that
there is a failure to “switch” from inaccurate visual
information to accurate somatosensory and vestibular
information, i.e., to down-weight vision and up-weight

somatosensation and vestibular inputs (Allison et al. 2006).
Otherwise, Peterka (2002) found that subjects with known
bilateral vestibular loss weight vision and proprioceptive
cues more highly than do individuals with intact vestibular
function. When one sensory channel is downweighted (e.g.
vision), it is often thought that other channels (e.g. proprio-
ception, vestibular) may be weighted more heavily (i.e.,
intermodality reweighting (Ravaioli et al. 2005).

All subjects of the Wrst study had visual impairments.
This means that their postural system had months or even
years to adopt to this situation. It is questionable, if a short-
term simulated visual dysfunction also has an inXuence on
the postural stability in terms of intermodality reweighting?
To investigate this relation the IBS was used in a second
study to examine healthy subjects with simulated visual
dysfunctions. In common with previous investigations
(Turano et al. 1994; Elliott et al. 1995; Ivers et al. 1998;
Lord and Menz 2000; Brooke-Wavell et al. 2002; Eto 2005;
Poulain and Giraudet 2007) it was shown that visual dys-
functions like reduced contrast sensitivity or poor visual
conditions like darkness reduce the postural stability and
inXuence the interaction of the visual and the vestibular
system (Deshpande and Patla 2007; Liu et al. 2007).

The second study with simulated visual dysfunctions
also showed some remarkable results. In test situation D,
the visual acuity (VA) was reduced to 20/200 by occlusion.
Because of a reduced value of F1 in that situation, it seems
that a simulated ametropia has an important inXuence on
the postural control. In diVerent investigations it was found
out that the visual system is an important source of infor-
mation to control postural regulation and stand stability
(Previc and Mullen 1990; Bronstein and Buckwell 1997;
Kuno et al. 1999; Fushiki et al. 2005; Glasauer et al. 2005).
Peripheral vision captures spatial orientation and is co-
responsible for the regulation of a stable stand (Gautier
et al. 2007; Santangelo and Spenec 2007; Sally and Gurn-
sey 2007). Former studies indicate that the body sway is
more reduced by the stimulation of the peripheral instead of
the central visual Weld (Kawakita et al. 2000; Jendrusch and
Brach 2003; Berencsi et al. 2005). In this investigation the
central and peripheral vision was reduced by an occlusion
(situation D). The decreased amount of F1 showed that the
occlusion had an inXuence on the visual system. As the fre-
quency band F1 is standing for the visual system in general,
no determination between the central and peripheral vision
is possible. This study could not decide if the deterioration
of central or peripheral vision is responsible for the reduc-
tion of F1. Discussing the results under the aspect of Ber-
encsi's Wndings (Berencsi et al. 2005), the peripheral
deterioration of vision could have caused the reduction of
the visual input to the postural system.

If the central vision would control the main part of the
postural regulation, micro movements of the eyes would
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have a negative eVect on the visual input for the postural
stability. This should be mapped in smaller amplitudes for
F1 and was measured like that in this study (situation D).
Saccadic suppression is an argument against the inXuence
of micro movements. During a saccade there is no percep-
tion. If the central vision would have an inXuence on the
postural stability, this should result in a higher postural
sway (stability indicator). In this study it was not the case
(Fig. 5). Thus the theory “the peripheral vision is responsi-
ble for spatial orientation and the stability of mass” is sup-
ported. The results of situation C are also hints for that. In
that situation a shorter measurement distance was used. A
signiWcantly decreased amplitude was shown. It can be
assumed that the relatively large white board with the Wxa-
tion target in short distance to the subject blocked periphe-
ral vision and hindered spatial orientation.

In situation F, controversial to all other situations a mov-
ing Wxation object was presented. The amplitude of F1 in
that situation was the least of all. To Wxate the moving
object, following eye movements are necessary. It could be
assumed that a stable perceived object is important for sta-
bilisation of the centre of gravity. This is not the case with
the pendulum (situation F). For the fovea, the Wxated pen-
dulum remains still, while the peripherally perceived envi-
ronment is moving. When interpreting the Wndings showed
in situation F, it seems that the always-changing shaky pic-
tures of the environment cannot be used meaningfully for
the postural stability. Moving objects instead of unmoving
objects cause a reduced visual feedback for a stable stand.
The frequency of the moving object seems to be important.
The Wndings of this investigation correspond with the
results of other authors (Ravaioli et al. 2005; Jeka et al.
2006; Bobrova et al. 2007) that a moving object with a fre-
quency of more than 0.1 Hz causes stronger movements in
the frontal plane of the body.

No statistical diVerence was shown for situation E (simu-
lated hyperopia) compared to the standard situation, where
the subjects had to accommodate to see the Wxation object
clearly. Obviously the subjects were able to accommodate
suYciently to see the blurred object clearly while the mea-
surement period is 32 s. It cannot be predicted that all sub-
jects really had a clear perception through the whole
measuring time. A change between “clear” and “unclear”
could have been possible. Nevertheless no negative inXuence
on the information coming from the visual system to the pos-
tural regulation was found (no change in F1 compared to sit-
uation A). Surprisingly, with accommodation, a higher sway
resulted. Obviously accommodation is increasing the insta-
bility (higher value of the stability indicator) (Fig. 5).

Applying yoke prisms changes the perception. These
prisms (2–4 cm/m) with equal base were introduced to have
an inXuence on the head and body posture (Padula et al. 1994;
Kaplan and Carmody 1997; Weissberg et al. 2000; Kapoor

and CiuVreda 2002). The results of this study support this
statement. The habitual perception obviously was changed by
yoke prisms shown by reduced amplitudes for F1.

Discussing postural regulation, not only the frequency
range F1 is of interest. There are also changes in other fre-
quency bands. In this study, decreased amplitude of F1
(visual system) and increased amplitudes in the other fre-
quency bands (F2–F8) were found in the situation with a
simulated, reduced visual acuity (Fig. 6). Simulated visual
dysfunctions not only have an inXuence on the visual input
of the postural system. They also inXuence the other sub-
systems of postural control (vestibular, somatosensory and
cerelellar). There is probably a nonlinear correlation
between the diVerent subsystems depending on diVerent
tasks, vision and movement conditions (Ravaioli et al.
2005; Horak 2006; Liu et al. 2007).

Conclusion

The visual system can be validly illustrated in the fre-
quency range F1 (0.03–0.1 Hz) of the Fourier analysis. So
it seems to be a measure for quality of visual feedback in
the postural system.

Visually impaired subjects can compensate their visual
information deWcit by an improved peripheral–vestibular
and somatosensoric perception as well as cerebellar pro-
cessing. This investigation conWrms the conclusion, accord-
ing to which an adequate postural control is considerably
depending on the integration of visual, vestibular and
somatosensoric information. In case of failure or reduction
of a postural subsystem, compensation mechanisms imme-
diately become eVective which are posturographically (fre-
quency-analytically) parameterizable and quantiWable.

Stability regulation can be understood as a multi sensoric
process by the visual, vestibular, somatosensoric and cerebel-
lar system. Reduced inXuence of the visual system is compen-
sated by the other subsystems. Moreover, the body sway
increased in this situation, represented by the stability indica-
tor. Obviously the main part of reduced visual input is bal-
anced by the vestibular system. Simulated visual dysfunctions
reduce the amplitudes of F1 and diminish stand stability.

The IBS is a valid, reliable and practicable assessment
tool for speciWcation of sensomotoric intervention eVects.
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