DataPDF Available

Figures

Content may be subject to copyright.
Multi-objective optimisation of aircraft ight trajectories in the ATM
and avionics context
Alessandro Gardi, Roberto Sabatini
n
, Subramanian Ramasamy
RMIT University, Melbourne, Victoria 3001, Australia
a r t i c l e i n f o
Article history:
Received 9 September 2015
Received in revised form
23 November 2015
Accepted 23 November 2015
Available online 12 April 2016
Keywords:
4-Dimensional ight trajectory
Air trafc management
Aircraft emissions
Avionics
Environmental impacts
Flight planning
Multi-objective optimisation
Optimal control
Sustainable aviation
Trajectory optimisation
a b s t r a c t
The continuous increase of air transport demand worldwide and the push for a more economically viable
and environmentally sustainable aviation are driving signicant evolutions of aircraft, airspace and air-
port systems design and operations. Although extensive research has been performed on the optimi-
sation of aircraft trajectories and very efcient algorithms were widely adopted for the optimisation of
vertical ight proles, it is only in the last few years that higher levels of automation were proposed for
integrated ight planning and re-routing functionalities of innovative Communication Navigation and
Surveillance/Air Trafc Management (CNS/ATM) and Avionics (CNSþA) systems. In this context, the
implementation of additional environmental targets and of multiple operational constraints introduces
the need to efciently deal with multiple objectives as part of the trajectory optimisation algorithm. This
article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques
for transport aircraft ight operations, with a special focus on the recent advances introduced in the
CNSþA research context. In the rst section, a brief introduction is given, together with an overview of
the main international research initiatives where this topic has been studied, and the problem statement
is provided. The second section introduces the mathematical formulation and the third section reviews
the numerical solution techniques, including discretisation and optimisation methods for the specic
problem formulated. The fourth section summarises the strategies to articulate the preferences and to
select optimal trajectories when multiple conicting objectives are introduced. The fth section in-
troduces a number of models dening the optimality criteria and constraints typically adopted in MOTO
studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation
trails, airspace and airport operations. A brief overview of atmospheric and weather modelling is also
included. Key equations describing the optimality criteria are presented, with a focus on the latest ad-
vancements in the respective application areas. In the sixth section, a number of MOTO implementations
in the CNSþA systems context are mentioned with relevant simulation case studies addressing different
operational tasks. The nal section draws some conclusions and outlines guidelines for future research
on MOTO and associated CNSþA system implementations.
&2016 Elsevier Ltd. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. ATM and avionics modernisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Environmental sustainability of aviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. Early trajectory optimisation research in aviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4. Trajectory optimisation research in the context of avionics and CNS/ATM evolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1. Optimal control problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Dynamic constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Path constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Contents lists available at ScienceDirect
journ al h om epage: ww w. el sevie r. co m/locat e/ pa erosc i
Progress in Aerospace Sciences
http://dx.doi.org/10.1016/j.paerosci.2015.11.006
0376-0421/&2016 Elsevier Ltd. All rights reserved.
n
Corresponding author.
E-mail address: roberto.sabatini@rmit.edu.au (R. Sabatini).
Progress in Aerospace Sciences 83 (2016) 136
2.4. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5. Cost functions and performance indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6. Resulting mathematical formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3. Numerical solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1. Lagrangian relaxation and rst order optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2. Boundary-value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3. Iterative solution of unconstrained nonlinear programming problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4. Indirect methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.1. Indirect shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.2. Indirect multiple shooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3. Indirect collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.4. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5. Direct methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1. Direct shooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2. Multiple direct shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3. Local collocation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.4. Global collocation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.5. Heuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4. Multi-objective optimality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1. Pareto optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2. A priori articulation of preferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1. Weighted global criterion method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2. Weighted min-max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3. Weighted product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.4. Exponential weighted criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.5. Lexicographic and sequential goal programming methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.6. Physical programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3. A posteriori articulation of preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1. Physical programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2. Normal boundary intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.3. Normal constraint method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5. Optimality criteria and constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1. Flight dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.1. Rigid body models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2. Point-mass models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2. Turbofan and turboprop engine models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1. Pollutant emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3. Operational costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4. Atmosphere and weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5. Trajectory optimisation in the presence of wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.6. Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.7. Condensation trails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.8. Airspace and air trafc models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6. CNSþA concepts and implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1. Targeted operational timeframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2. System architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3. Optimisation of arrival and departure trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4. Trajectory optimisation in safety-critical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.5. MOTO algorithm verication and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1. Introduction
The continuous growth of civil air transport and the increasing
adoption of manned and unmanned aerial vehicles for new and
more traditional roles is posing signicant challenges to the
aviation community, as the current paradigms will not ensure the
desired levels of safety, efciency and environmental sustainability
in the future unless substantial evolutions are introduced. As a
consequence, several large-scale aviation renovation initiatives
were launched in the last two decades. These research and de-
velopment activities are investigating, in particular, the most
promising technological and operational improvements that
would enhance the levels of safety, capacity, efciency and
environmental sustainability associated with current and likely
future aviation business models in a holistic manner, hence by
specically improving the design, manufacturing, operation and
lifecycle management of aircraft. In the operational domain, sig-
nicant progresses in terms of safety, capacity and efciency of air
trafc are particularly expected from the implementation of novel
concepts and technologies in the Air Trafc Management (ATM)
and avionics domain, in line with the evolutions originally envi-
sioned by the Future Air Navigation Systems (FANS) special com-
mittee of the International Civil Aviation Organisation (ICAO) in
the 1980s [1]. The ATM relies on a large set of operational mea-
sures to full its mission of preventing collisions and promoting an
ordered and expedite ow of air trafc[2,3]. In the current cen-
tralised command and control-oriented ATM conguration, these
measures are typically based on amending the lateral, vertical and
longitudinal navigation of aircraft as necessary, and can be per-
formed at various operational timeframes. As depicted in Fig. 1,
A. Gardi et al. / Progress in Aerospace Sciences 83 (2016) 1362
addressing, in particular, the fusion of cooperative and non-co-
operative surveillance data for accurate detection, tracking and
safe steering. The reader is referred to the literature in the domain
for further detail.
6.5. MOTO algorithm verication and validation
All MOTO algorithms conceived for CNSþA integration require
extensive validation by simulation in realistic test scenarios.
Simulation cases shall cover all phases of ight and airspace con-
gurations. Particular emphasis is given to the TMA, as trajectories
of climbing and descending aircraft usually intersect, requiring
frequent tactical ATM interventions, and more generally the con-
strained airport capacity can lead the arrival trafc to stack, even
when disruptions are not present. While concepts such as 4DT
point-merge and Continuous Curved Descent Approaches (CCDA)
are currently experimented to reduce TMA congestion [216219],
practical implementation aspects are being investigated, especially
in the 4DT-TBO context. The Arrival Manager (AMAN) is re-
sponsible of the optimised sequencing and spacing of arrival trafc
towards a single nal approach segment. The AMAN scenario is
the most representative case study of online tactical TMA opera-
tions for ATM DSS implementations of MOTO-4D [205]. The
ground-based ATM system implementing MOTO-4D algorithms
identies the best arrival sequence among the available options in
terms of multiple and conicting objectives. Longitudinal separa-
tion is enforced at the merge-point in the form of path constraints
and boundary conditions to ensure sufcient separation upon
landing, and to prevent separation infringements in the approach
phase itself. Notwithstanding, the ATM DSS implementing MOTO-
4D shall be capable to perform point-merge at any metering point.
After the initial set of optimal intents has been stored in the ATM
DSS, the point-merge sequencing algorithm allocates the available
time slots according to suitable optimal scheduling decision-logics.
As a reference, assuming a minimum longitudinal separation of
4 nautical miles on the approach path for medium category air-
craft approaching at 140 knots, the allocated time slots are char-
acterized by a 90 160 seconds separation depending on the
wake-turbulence categories of two consecutive trafcs. Example
4D-AMAN simulation results of an ATM DSS implementing MOTO-
4D algorithms are depicted in Fig. 32.
Waypoints and lines depicted in magenta represent the yable
and concisely-described 4DT consisting of a limited number of y-
by and overy 4D waypoints, obtained through an operational 4DT
smoothing algorithm [146].Fig. 33 depicts the computed 4DT in
the AMAN schedule display format.
AMAN implementations of MOTO-4D such as the one pre-
sented above are actively researched and evolving to address in-
accurate trajectory predictions, air-ground trajectory synchroni-
sation issues, unforeseen perturbations and the dynamic handling
of multiple altitude/airspeed/path constraints in real-time.
7. Conclusion
Considerable research efforts have addressed the theoretical
developments and practical implementations of trajectory opti-
misation algorithms to improve the economic, operational and
environmental performances of air trafc. The progresses in op-
timal control and nonlinear programming have recently resulted
in very efcient numerical solution methods, enabling real-time
applications even when complex nonlinear models and multiple
constraints are introduced. A number of studies evidenced the
signicant gains that could be attained by optimising individual
manoeuvres, procedures, ight phases or entire ight routes. In
several works, the practical implementation of these promising
solutions in the civil aviation domain was associated with con-
siderable challenges, as the conventional and largely procedural
Air Trafc Management (ATM) operational paradigm would have
posed signicant restrictions. The adoption of continuously up-
dated 4-Dimensional Trajectory (4DT) descriptors with high na-
vigational accuracy and predictability, in conjunction with data-
link based 4DT negotiation and validation functionalities are pro-
viding an opportunity for the full exploitation of 4DT optimisation
methods into the next generation avionics and ATM systems.
Novel avionics and ATM Decision Support Systems (DSS) are cur-
rently being researched and developed to introduce the 4DT based
operations paradigms. These systems are designed to deploy ad-
vanced air-to-ground trajectory planning, negotiation and valida-
tion functionalities to enhance the safety, efciency and environ-
mental sustainability of air trafc operations. In view of the re-
cognised potential, this article reviewed the current theoretical
knowledge on the optimisation of aircraft ight trajectories with
emphasis on multiple and often conicting objectives. Guidelines
for the development of efcient Multi-Objective Trajectory Opti-
misation (MOTO) algorithms specically tailored for novel Com-
munication Navigation and Surveillance/ATM (CNS/ATM) and
Avionics (CNSþA) systems were presented and possible im-
plementations were discussed. MOTO algorithms have a clear
potential to enable real-time planning and re-planning of more
environmentally efcient and economically viable ight routes by
simultaneously addressing the dynamic nature of both weather
and air trafc conditions. It is therefore anticipated that a combi-
nation of MOTO and Dynamic Airspace Management (DAM)
techniques will effectively enable the next step in the CNS þA
driven evolutions of the global ATM network.
References
[1] J.N. Bradbury, ICAO and future air navigation systems, in: Automation and
Fig. 33. AMAN schedule plot of the optimised 4DT intents [146].
A. Gardi et al. / Progress in Aerospace Sciences 83 (2016) 13632
Systems Issues in Air Trafc Control, Springer, pp. 7999, 1991.
[2] Annex 11 to the Convention on International Civil Aviation Air Trafc
Services, International Civil Aviation Organization (ICAO), Montreal, QC, Ca-
nada, 2001.
[3] ICAO Doc. 4444 Procedures for Air Navigation Services Air Trafc Man-
agement, The International Civil Aviation Organization (ICAO), Montreal, QC,
Canada.
[4] H.G. Visser, A 4D Trajectory Optimization and Guidance Technique for
Terminal Area Trafc Management, Delft University of Technology, 1994.
[5] ATM Global Environment Efciency Goals for 2050, Civil Air Navigation
Services Organisation (CANSO), 2012.
[6] A Global Approach to Reducing Aviation Emissions First Stop: Carbon-
Neutral Growth by 2020, The International Air Transport Association (IATA),
2009.
[7] ICAO Doc. 9869 Manual on Required Communication Performance (RCP),
The International Civil Aviation Organization (ICAO), Montreal, QC, Canada,
2006.
[8] NextGen Implementation Plan, Federal Aviation Administration (FAA), Wa-
shington, DC, USA, 2013.
[9] C. Nickol, Environmentally Responsible Aviation (ERA) Project, 2011.
[10] P. Ky, B. Miaillier, SESAR: towards the new generation of air trafc man-
agement systems in Europe, J. Air Trafc Control 48 (2006).
[11] Clen Sky 2 Joint Technical Programme, European Commission, Brussels,
Belgium, 2014.
[12] Long-term Vision for the Future Air Trafc Systems Changes to Intelligent
Air Trafc Systems, Study Group for the Future Air Trafc Systems, Colla-
borative Actions for Renovation of Air Trafc Systems (CARATS), 2010.
[13] F. Collier, Overview of NASAs Environmentally Responsible Aviation (ERA)
Project, in: Proceedings of NASA Environmentally Responsible Aviation
Project Pre-Proposal Meeting, Washington, DC, 2010.
[14] J. Bronsvoort, G. McDonald, R. Potts, E. Gutt, Enhanced descent wind forecast
for aircraft, in: Proceedings of 9th USA/Europe Air Trafc Management Re-
search and Development Seminar (ATM 2011), Berlin, Germany, 2011.
[15] A. Australia, RNP Project Brisbane Green Stage One Report, 2008.
[16] European ATM Master Plan The Roadmap for Sustainable Air Trafc
Management, SESAR JU, Brussels, Belgium, 2012.
[17] R. Sabatini, A. Gardi, S. Ramasamy, T. Kistan, M. Marino, Novel ATM and
Avionic Systems for Environmentally Sustainable Aviation, in: Proceedings of
Practical Responses to Climate Change. Engineers Australia Convention 2014
(PRCC 2014), Melbourne, Australia, 2014, doi: 10.13140/2.1.1938.0808.
[18] R. Sabatini, A. Gardi, S. Ramasamy, T. Kistan, M. Marino, Next Generation
avionic and ATM systems for environmentally sustainable aviation, in: Pro-
ceedings of International Symposium on Sustainable Aviation (ISSA 2015),
Istanbul, Turkey, 2015.
[19] R. Sabatini, A. Gardi, S. Ramasamy, T. Kistan, M. Marino, Modern avionics and
ATM systems for green operations, in: R. Blockley, W. Shyy (Eds.), En-
cyclopedia of Aerospace Engineering, John Wiley & Sons, 2015 (ch. eae1064).
[20] JPDO Trajectory-Based Operations (TBO) Study Team Report, NextGen Joint
Planning and Development Ofce, 2011.
[21] ACARE, 2008 Addendum to the Strategic Research Agenda [Online]. Avail-
able: http://www.acare4europe.org/sites/acare4europe.org/les/document/
ACARE_2008_Addendum_1.pdf.
[22] Strategic Research & Innovation Agenda (SRIA), Advisory Council for Aviation
Research and Innovation in Europe (ACARE), 2012.
[23] SESAR and the Environment, SESAR Joint Undertaking European Com-
mission, Brussels, Belgium, 2010.
[24] J. Hupe, B. Ferrier, T. Thrasher, C. Mustapha, N. Dickson, T. Tanaka, et al., ICAO
Environmental Report 2013: Destination Green Aviation and Climate
Change, ICAO Environmental Branch, Montreal, Canada, 2013.
[25] A. Gardi, R. Sabatini, G. Wild, Unmanned aircraft bistatic lidar for CO2 colum
density determination, in: Proceedings of IEEE Metrology for Aerospace
(MetroAeroSpace 2014), Benevento, Italy, 2014, doi: 10.1109/
MetroAeroSpace.2014.6865892.
[26] A. Gardi, R. Sabatini, S. Ramasamy, Bistatic LIDAR system for the character-
isation of aviation-related pollutant column densities, Appl. Mech. Mater.
629 (2014) 257262, http://dx.doi.org/10.4028/www.scientic.net/
AMM.629.257.
[27] R. Sabatini, M.A. Richardson, A. Gardi, S. Ramasamy, Airborne laser sensors
and integrated systems, Prog. Aerosp. Sci. (2015), http://dx.doi.org/10.1016/j.
paerosci.2015.07.002.
[28] A. Mahashabde, P. Wolfe, A. Ashok, C. Dorbian, Q. He, A. Fan, et al., Assessing
the environmental impacts of aircraft noise and emissions, Prog. Aerosp. Sci.
47 (2011) 1552, http://dx.doi.org/10.1016/j.paerosci.2010.04.003.
[29] D.S. Lee, G. Pitari, V. Grewe, K. Gierens, J.E. Penner, A. Petzold, et al., Trans-
port impacts on atmosphere and climate: aviation, Atmos. Environ. 44 (2010)
46784734, http://dx.doi.org/10.1016/j.atmosenv.2009.06.005.
[30] L. Sherry, Improving the accuracy of airport emissions inventories using
disparate datasets, IIE Trans. Inst. Ind. Eng. (2014), http://dx.doi.org/10.1080/
0740817X.2014.938845.
[31] I. Waitz, J. Townsend, J. Cutcher-Gershenfeld, E. Greitzer, J. Kerrebrock, Re-
port to the United States Congress Aviation and the Environment, A Na-
tional Vision Statement, Framework for Goals and Recommended Actions,
MIT, FAA, NASA and US Congress, Cambridge, MA, USA, 2004.
[32] J.E. Penner, et al., Aviation and the Global Atmosphere: A Special Report of
IPCC Working Groups I and III in Collaboration with the Scientic Assess-
ment Panel to the Montreal Protocol on Substances that Deplete the Ozone
Layer, Cambridge University Press, 1999.
[33] M. Janić, The Sustainability of air Transportation: A Quantitative Analysis and
Assessment, Ashgate Publishing, Ltd., 2007.
[34] G.J.J. Ruijgrok, D.M. van Paassen, Elements of Aircraft Pollution, 3rd ed.,
VSSD, Delft, Netherlands, 2012.
[35] D.G. Stechert, On the Use of the Calculus of Variations for Trajectory Opti-
misation Problems, 1963.
[36] H.J. Kelley, R.E. Kopp, H.G. Moyer, Successive Approximation Techniques for
Trajectory Optimization, report AD0268321, in: Proceedings of IAS Vehicle
Systems Optimization Symposium, Garden City, NY, USA, 1961.
[37] A.E.J. Bryson, W.F. Denham, Steepest-ascent method for solving optimum
programming problems, J. Appl. Mech. 29 (1962) 247257, http://dx.doi.org/
10.1115/1.3640537.
[38] H. Erzberger, J.D. McLean, J.F. Barman, Fixed-Range Optimum Trajectories for
Short-Haul Aircraft, National Aeronautics and Space Administration (NASA)
NASA TN D-8115, Ames Research Center, Moffett Field, CA, USA, 1975.
[39] J.F. Barman, H. Erzberger, Fixed-range optimum trajectories for short-haul
aircraft, J. Aircr. 13 (1976) 748754.
[40] H. Erzberger, H. Lee, Characteristics of Constrained Optimum Trajectories
with Specied Range, National Aeronautics and Space Administration
(NASA) NASA Technical Memorandum TM-78519, Ames Research Center,
Moffett Field, CA, USA, 1978.
[41] J.A. Sorensen, S.A. Morello, H. Erzberger, Application of trajectory optimiza-
tion principles to minimize aircraft operating costs, in: Proceedings of the
18th IEEE Conference on Decision and Control, vol. 1, 1979, pp. 415421.
[42] H.Q. Lee, H. Erzberger, Algorithm for Fixed-Range Optimal Trajectories, Na-
tional Aeronautics and Space Administration (NASA) NASA Technical Paper
TP-1565, Ames Research Center, Moffett Field, CA, USA, 1980.
[43] H. Erzberger, H. Lee, Constrained optimum trajectories with specied range,
J. Guid. Control. Dyn. 3 (1980) 7885.
[44] J.H. Bochem, D.C. Mossman, P.D. Lanier, Simulator evaluation of optimal
thrust management/fuel conservation strategies for airbus aircraft on short
haul routes, Sperry Flight Systems NASA-CR-151966, Phoenix, AZ, USA, 1977.
[45] C.E. Knox, D.G. Cannon, Development and test results of a ight management
algorithm for fuel-conservative descents in a time-based metered trafc
environment, NASA Langley and Boeing Co. NASA TP-1717, Hampton, VA,
USA, 1980.
[46] C.E. Knox, Development of simplied airborne computations for fuel con-
servative descents in a time-based metered air trafc environment, SAE
Technical Paper 810642, 1981. doi: 10.4271/810642.
[47] J.A. Sorensen, Concepts for Generating Optimum Vertical Flight Proles,
Analytical Mechanics Associates Inc.; NASA Langley Research Center NASA
Contract Report CR-159181, Hampton, VA, USA, 1979.
[48] J.A. Sorensen, M.H. Waters, Generation of Optimum Vertical Proles for an
Advanced Flight Management System, Analytical Mechanics Associates Inc.;
NASA Langley Research Center NASA Contract Report CR-165674, Hampton,
VA, USA, 1981.
[49] C.R. Tolle, A.A. Rodriguez, Aircraft Trajectory Optimization with Application
to a Lockheed L1011-100, in: Proceedings of the 31st Conference on Decision
and Control (CDC1992), Tucson, AZ, USA, 1992, pp. 530535.
[50] A. Miele, T. Wang, W.W. Melvin, Quasi-steady ight to quasi-steady ight
transition for abort landing in a windshear: trajectory optimization and
guidance, J. Optim. Theory Appl. 58 (1988) 165207, http://dx.doi.org/
10.1007/bf00939681.
[51] A. Miele, Optimal trajectories and guidance trajectories for aircraft ight
through windshears, in: Proceedings of 29th IEEE Conference on Decision
and Control, Piscataway, NJ/Honolulu, HI, USA, 1990, pp. 737746.
[52] J.T. Betts, Sparse Jacobian updates in the collocation method for optimal
control problems, J. Guid. Control. Dyn. 13 (1990) 409415.
[53] J.T. Betts, W.P. Huffman, Trajectory optimization on a parallel processor, J.
Guid. Control. Dyn. 14 (1991) 431439.
[54] J.T. Betts, W.P. Huffman, Application of sparse nonlinear programming to
trajectory optimization, J. Guid. Control. Dyn. 15 (1992) 198206.
[55] J.T. Betts, W.P. Huffman, Path-constrained trajectory optimization using
sparse sequential quadratic programming, J. Guid. Control. Dyn. 16 (1993)
5968.
[56] J.T. Betts, Using sparse nonlinear programming to compute low thrust orbit
transfers, J. Astronaut. Sci. 41 (1993) 349371.
[57] J.T. Betts, Optimal interplanetary orbit transfers by direct transcription, J.
Astronaut. Sci. 42 (1994) 247268.
[58] J.T. Betts, E.J. Cramer, Application of direct transcription to commercial air-
craft trajectory optimization, J. Guid. Control. Dyn. 18 (1995) 151159.
[59] D.G. Hull, Conversion of optimal control problems into parameter optimi-
zation problems, J. Guid. Control. Dyn. 20 (1997) 5760.
[60] J.T. Betts, W.P. Huffman, Mesh renement in direct transcription methods for
optimal control, Optim. Control. Appl. Methods 19 (1998) 121.
[61] J.T. Betts, Survey of numerical methods for trajectory optimization, J. Guid.
Control. Dyn. 21 (1998) 193207.
[62] P. Hagelauer, F. Mora-Camino, A soft dynamic programming approach for on-
line aircraft 4D-trajectory optimization, Eur. J. Oper. Res. 107 (1998) 8795,
http://dx.doi.org/10.1016/s0377-2217(97)00221-x.
[63] N. Yokoyama, S. Suzuki, Flight trajectory optimization using genetic algo-
rithm combined with gradient method, Inf. Technol. Econ. Manag. 1 (2001).
[64] M.R. Jardin, A.E.J. Bryson, Neighboring optimal aircraft guidance in winds, J.
Guid. Control. Dyn. 24 (2001) 710715, http://dx.doi.org/10.2514/2.4798.
[65] M.R. Jardin, Real-time conict-free trajectory optimization, in: Proceedings
A. Gardi et al. / Progress in Aerospace Sciences 83 (2016) 136 33
of 5th USA/Europe Air Trafc Management Research and Development
Seminar (ATM 2003), Budapest, Hungary, 2003.
[66] G.C. Bower, I.M. Kroo, Multi-objective aircraft optimization for minimum
cost and emissions over specic route networks, in: Proceedings of 26th
International Congress of the Aeronautical Sciences (ICAS2008), Anchorage,
AK, USA, 2008, doi: 10.2514/6.2008-8905.
[67] M. Jacobsen, U.T. Ringertz, Airspace constraints in aircraft emission trajectory
optimization, J. Aircr. 47 (2010) 12561265, http://dx.doi.org/10.2514/
1.47109.
[68] A.J. Eele, A. Richards, Path-planning with avoidance using nonlinear branch-
and-bound optimization, J. Guid. Control. Dyn. 32 (2009) 384394, http://dx.
doi.org/10.2514/1.40034.
[69] M. Soler, A. Olivares, E. Staffetti, Hybrid optimal control approach to com-
mercial aircraft trajectory planning, J. Guid. Control. Dyn. 33 (2010) 985991,
http://dx.doi.org/10.2514/1.47458.
[70] M. Soler, A. Olivares, E. Staffetti, P. Bonami, En-route optimal ight planning
constrained to pass through waypoints using MINLP, in: Proceedings of 9th
USA/Europe Air Trafc Management R&D Seminar (ATM 2011), Berlin, Ger-
many, 2011.
[71] M. Soler, A. Olivares, E. Staffetti, Multiphase optimal control framework for
commercial aircraft four-dimensional ight-planning problems, J. Aircr. 52
(2015) 274286, http://dx.doi.org/10.2514/1.C032697.
[72] J.P.B. Clarke, L. Ren, E. McClain, D. Schleicher, S. Timar, A. Saraf, et al., Eval-
uating concepts for operations in metroplex terminal area airspace, J. Aircr.
49 (2012) 758773, http://dx.doi.org/10.2514/1.C031227.
[73] S.G. Park, J.P. Clarke, Feasible time range analysis of wide eet for continuous
descent arrival, in: Proceedings of 2013 Aviation Technology, Integration, and
Operations Conference, Los Angeles, CA, 2013.
[74] S.G. Park, J.P. Clarke, Trajectory generation for optimized prole descent
using hybrid optimal control, in: Proceedings of AIAA Guidance, Navigation,
and Control (GNC) Conference, Boston, MA, 2013.
[75] C. Tino, J.P. Clarke, Improving required time of arrival functionality in the
presence of uncertainty, in: Proceedings of 53rd Airline Group of the Inter-
national Federation of Operational Research Societies Annual Proceedings
Annual Symposium and Study Group Meeting, AGIFORS 2013, Amsterdam,
2013, pp. 494502.
[76] J.P. Clarke, J. Brooks, G. Nagle, A. Scacchioli, W. White, S.R. Liu, Optimized
prole descent arrivals at Los Angeles international airport, J. Aircr. 50 (2013)
360369, http://dx.doi.org/10.2514/1.C031529.
[77] S.G. Park, J.P. Clarke, Optimal control based vertical trajectory determination
for continuous descent arrival procedures, J. Aircr. 52 (2015) 14691480,
http://dx.doi.org/10.2514/1.C032967.
[78] D. Delahaye, S. Puechmorel, P. Tsiotras, E. Feron, Mathematical models for
aircraft trajectory design: a survey, in: Proceedings of the 3rd ENRI Inter-
national Workshop on ATM/CNS, EIWAC 2013, vol. 290 LNEE, Springer Ver-
lag, Tokyo, 2014, pp. 205247, doi: 10.1007/978-4-431-54475-3_12.
[79] J.Z. Ben-Asher, Optimal Control Theory with Aerospace Applications, Edu-
cation Series, American Institute of Aeronautics and Astronautics (AIAA),
Reston, VA, USA, 2010.
[80] A.V. Rao, Survey of numerical methods for optimal control, Adv. Astronaut.
Sci. 135 (2010) 497528.
[81] O. von Stryk, R. Bulirsch, Direct and indirect methods for trajectory optimi-
zation, Ann. Oper. Res. 37 (1992) 357373, http://dx.doi.org/10.1007/
BF02071065.
[82] K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, Prentice Hall,
Upper Saddle River, NJ, USA, 1996.
[83] F.L. Lewis, D. Vrabie, V.L. Syrmos, Optimal control, Technology & Engineering,
3rd ed., John Wiley & Sons, New York City, NY, USA, 2012.
[84] T.L. Friesz, Dynamic optimization and differential games, International Series
in Operations Research & Management Science, Springer Science, Heidel-
berg/Berlin, Germany, 2010.
[85] A.V. Rao, Trajectory Optimization, Encyclopedia of Aerospace Engineering,
John Wiley & Sons Ltd, 2010.
[86] O. Bolza, Lectures on the calculus of variations (orig.: Vorlesungen über
Variationsrechnung), B. G. Teubner, Leipzig, Germany, 1909.
[87] L.D. Berkovitz, Variational methods in problems of control and program-
ming, J. Math. Anal. Appl. 3 (1961) 145169.
[88] D.H. Hodges, R.R. Bless, Weak Hamiltonian nite element method for opti-
mal control problems, J. Guid. Control. Dyn. 14 (1991) 148156, http://dx.doi.
org/10.2514/3.20616.
[89] E.J. Haug, K. Choi, Methods of Engineering Mathematics, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1993.
[90] W.G. Kelley, A.C. Peterson, Difference Equations An introduction with ap-
plications, 2nd ed., Harcourt/Academic Press, San Diego, CA, USA, 2001.
[91] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, 37, Texts in Applied
Mathematics, 2nd ed., Springer Berlin Heidelberg, Heidelberg, Germany,
2007.
[92] I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Muehlig, Handbook of
Mathematics, 5th ed., Springer Verlag Berlin Heidelberg New-York, Heidel-
berg, Germany, 2007.
[93] A. Quarteroni, Numerical Models for Differential Problems, 8, Modelling,
Simulation and Applications, 2nd ed., Springer-Verlag Italia - Milano, Milan,
Italy, 2014.
[94] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods Fun-
damentals in Single Domains, Scientic Computation, Springer-Verlag Berlin
Heidelberg, Heidelberg, Germany, 2007.
[95] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods Evo-
lution to Complex Geometries and Applications to Fluid Dynamics, Scientic
Computation, Springer-Verlag Heidelberg, Heidelberg, Germany, 2007.
[96] A. Miele, Recent advances in gradient algorithms for optimal control pro-
blems, J. Optim. Theory Appl. 17 (1975) 361430, http://dx.doi.org/10.1007/
BF00932781.
[97] D.P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientic, Belmont,
MA, USA, 1999.
[98] J.T. Betts, Practical Methods for Optimal Control and Estimation Using Non-
linear Programming, 2nd ed., SIAM, 2010.
[99] D.G. Hull, Variational calculus and approximate solution of optimal control
problems, J. Optim. Theory Appl. 108 (2001) 483497, http://dx.doi.org/
10.1023/A:1017527222995.
[100] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, K.
N. Trirogoff, L.W. Neustadt, The mathematical theory of optimal processes,
Selected Works of L. S. Pontryagin, 3rd ed., Gordon and Breach Science Pub. S.
A., Montreux, Switzerland, 1986.
[101] F. Fahroo, I. M. Ross, Trajectory optimization by indirect spectral collocation
methods, in: Proceedings of Astrodynamics Specialist Conference, Denver,
CO, USA, 2000, doi: 10.2514/6.2000-4028.
[102] J.T. Betts, W.P. Huffman, Exploiting sparsity in the direct transcription
method for optimal control, Comput. Optim. Appl. 14 (1999) 179201, http:
//dx.doi.org/10.1023/A:1008739131724.
[103] J.T. Betts, N. Biehn, S.L. Campbell, W.P. Huffman, Compensating for order
variation in mesh renement for direct transcription methods, J. Comput.
Appl. Math. vol. 125 (2000) 147158, http://dx.doi.org/10.1016/S0377-0427
(00)00465-9.
[104] J.T. Betts, N. Biehn, S.L. Campbell, W.P. Huffman, Compensating for order
variation in mesh renement for direct transcription methods II: computa-
tional experience, J. Comput. Appl. Math. 143 (2002) 237261, http://dx.doi.
org/10.1016/S0377-0427(01)00509-X.
[105] J.T. Betts, W.P. Huffman, Large scale parameter estimation using sparse
nonlinear programming methods, SIAM J. Optim. 14 (2004) 223244, http:
//dx.doi.org/10.1137/S1052623401399216.
[106] I. Gherman, V. Schulz, J.T. Betts, Optimal ight trajectories for the validation
of aerodynamic models, Optim. Methods Softw. 21 (2006) 889900, http:
//dx.doi.org/10.1080/10556780600872281.
[107] A. Engelsone, S.L. Campbell, J.T. Betts, Direct transcription solution of higher-
index optimal control problems and the virtual index, Appl. Numer. Math. 57
(2007) 281296, http://dx.doi.org/10.1016/j.apnum.2006.03.012.
[108] J.T. Betts, S.L. Campbell, A. Engelsone, Direct transcription solution of optimal
control problems with higher order state constraints: theory vs practice,
Optim. Eng. 8 (2007) 119, http://dx.doi.org/10.1007/s11081-007-9000-8.
[109] D.A. Benson, G.T. Huntington, T.P. Thorvaldsen, A.V. Rao, Direct trajectory
optimization and costate estimation via an orthogonal collocation method, J.
Guid. Control. Dyn. 29 (2006) 14351440, http://dx.doi.org/10.2514/1.20478.
[110] G.T. Huntington, A.V. Rao, Comparison of global and local collocation meth-
ods for optimal control, J. Guid. Control. Dyn. 31 (2008) 432436, http://dx.
doi.org/10.2514/1.30915.
[111] D. Garg, M. Patterson, W.W. Hager, A.V. Rao, D.A. Benson, G.T. Huntington, A
unied framework for the numerical solution of optimal control problems
using pseudospectral methods, Automatica 46 (2010) 18431851, http://dx.
doi.org/10.1016/j.automatica.2010.06.048.
[112] A.V. Rao, D.A. Benson, C. Darby, M.A. Patterson, C. Francolin, I. Sanders, et al.,
Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase op-
timal control problems using the gauss pseudospectral method, ACM Trans.
Math. Softw. (2010), http://dx.doi.org/10.1145/1731022.1731032.
[113] C.L. Darby, W.W. Hager, A.V. Rao, An hp-adaptive pseudospectral method for
solving optimal control problems, Optim. Control. Appl. Methods 32 (2011)
476502, http://dx.doi.org/10.1002/oca.957.
[114] C.L. Darby, W.W. Hager, A.V. Rao, Direct trajectory optimization using a
variable low-order adaptive pseudospectral method, J. Spacecr. Rocket. 48
(2011) 433445, http://dx.doi.org/10.2514/1.52136.
[115] D. Garg, W.W. Hager, A.V. Rao, Pseudospectral methods for solving innite-
horizon optimal control problems, Automatica 47 (2011) 829837, http://dx.
doi.org/10.1016/j.automatica.2011.01.085.
[116] M.A. Patterson, A.V. Rao, Exploiting sparsity in direct collocation pseudos-
pectral methods for solving optimal control problems, J. Spacecr. Rocket. 49
(2012) 364377, http://dx.doi.org/10.2514/1.A32071.
[117] J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Dover publica-
tions, Mineola, NY, USA, 2000.
[118] D. Funaro, Polynomial Approximation of Differential Equations, M 8, Lecture
Notes in Physics, Springer-Verlag, Berlin, Germany, 1992.
[119] K. Bousson, P. Machado, 4D Flight trajectory optimization based on pseu-
dospectral methods, Engineering and Technology, vol. 70, World Academy of
Science (2010), pp. 551557.
[120] G. Basset, Y. Xu, O.A. Yakimenko, Computing short-time aircraft maneuvers
using direct methods, J. Comput. Syst. Sci. Int. 49 (2010) 481513, http://dx.
doi.org/10.1134/S1064230710030159.
[121] K. Brix, C. Canuto, W. Dahmen, LegendreGaussLobatto grids and associated
nested dyadic grids, Aachen Inst. Adv. Study Comput. Eng. Sci. (2013)
(arXiv:1311.0028).
[122] K. Chircop, M. Xuereb, D. Zammit-Mangion, E. Cachia, A generic framework
for multi-parameter optimization of ight trajectories, in: Proceedings of
27th International Congress of the Aeronautical Sciences (ICAS 2010), Nice,
France, 2010, pp. 51185127.
A. Gardi et al. / Progress in Aerospace Sciences 83 (2016) 13634
[123] H. Pervier, D. Nalianda, R. Espi, V. Sethi, P. Pilidis, D. Zammit-Mangion, et al.,
Application of genetic algorithm for preliminary trajectory optimization, SAE
Int. J. Aerosp. 4 (2011) 973987, http://dx.doi.org/10.4271/2011-01-2594.
[124] M. Sammut, D. Zammit-Mangion, R. Sabatini, Optimization of fuel con-
sumption in climb trajectories using genetic algorithm techniques, in: Pro-
ceedings of AIAA Guidance, Navigation, and Control Conference (GNC 2012),
Minneapolis, MN, USA, 2012.
[125] W. Gu, R. Navaratne, D. Quaglia, Y. Yu, I. Madani, V. Sethi, et al., Towards the
development of a multi-disciplinary ight trajectory optimization tool
GATAC, in: Proceedings of ASME Turbo Expo 2012: Turbine Technical Con-
ference and Exposition (GT 2012), Copenhagen, Denmark, 2012, pp. 415424,
doi: 10.1115/GT2012-69862.
[126] W. Camilleri, K. Chircop, D. Zammit-Mangion, R. Sabatini, V. Sethi, Design and
validation of a detailed aircraft performance model for trajectory optimiza-
tion, in: Proceedings of AIAA Modeling and Simulation Technologies Con-
ference 2012 (MST 2012), Minneapolis, MN, USA, 2012, doi: 10.2514/6.2012-
4566.
[127] R. Navaratne, M. Tessaro, W. Gu, V. Sethi, P. Pilidis, R. Sabatini, et al., Generic
framework for multi-disciplinary trajectory optimization of aircraft and
power plant integrated systems, J. Aeronaut. Aerosp. Eng. 2 (2012) 114,
http://dx.doi.org/10.4172/2168-9792.1000103.
[128] M. Xuereb, K. Chircop, D. Zammit-Mangion, GATAC A generic framework
for multi-parameter optimization of ight trajectories, in: Proceedings of
AIAA Modeling and Simulation Technologies Conference 2012 (MST 2012),
Minneapolis, MN, USA, 2012, doi: 10.2514/6.2012-4798.
[129] D. Pisani, D. Zammit-Mangion, R. Sabatini, City-pair trajectory optimization
in the presence of winds using the GATAC framework, in: Proceedings of
AIAA Guidance, Navigation, and Control Conference (GNC 2013), Boston, MA,
USA, 2013, doi: 10.2514/6.2013-4970.
[130] M. Xuereb, D. Zammit Mangion, M. Sammut, K. Chircop, GATAC Version 3 of
the generic framework for multi-parameter optimization of ight trajec-
tories, in: Proceedings of AIAA Modeling and Simulation Technologies con-
ference 2013 (MST 2013), Boston, MA, USA, 2013, doi: 10.2514/6.2013-5159.
[131] C. Celis, V. Sethi, D. Zammit-Mangion, R. Singh, P. Pilidis, Theoretical optimal
trajectories for reducing the environmental impact of commercial aircraft
operations, J. Aerosp. Technol. Manag. 6 (2014) 2942, http://dx.doi.org/
10.5028/jatm.v6i1.288.
[132] C. Tsotskas, T. Kipouros, A. M. Savill, The design and implementation of a
GPUenabled multi-objective Tabu-search intended for real world and high-
dimensional applications, in: Proceedings of 14th Annual International
Conference on Computational Science, ICCS 2014, Cairns, QLD, 2014, pp.
21522161, doi: 10.1016/j.procs.2014.05.200.
[133] C. Tsotskas, T. Kipouros, M. Savill, Biobjective optimisation of preliminary
aircraft trajectories, in: Proceedings of 7th International Conference on
Evolutionary Multi-Criterion Optimization, EMO 2013 vol. 7811 LNCS, pp.
741-755, Shefeld, 2013, doi: 10.1007/978-3-642-37140-0_55.
[134] R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for
engineering, Struct. Multidiscip. Optim. 26 (2004) 369395, http://dx.doi.
org/10.1007/s00158-003-0368-6.
[135] D.G. Hull, Fundamentals of Airplane Flight Mechanics, Springer-Verlag, Ber-
lin/Heidelberg, Germany, 2010.
[136] P.H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, 2nd ed., American Institute of Aeronautics and Astronautics
Inc. (AIAA), Reston, VA, USA, 2007.
[137] B.N. Pamadi, Performance, Stability, Dynamics and Control of Airplanes, AIAA
Education Series, 2nd ed., American Institute of Aeronautics and Astronautics
Inc. (AIAA), Blacksburg, VA, USA, 2004.
[138] B.L. Stevens, F.L. Lewis, Aircraft Control and Simulation, 2nd ed., John Wiley &
Sons Inc, Hoboken, NJ, USA, 2003.
[139] W.F. Phillips, Mechanics of Flight, 2nd ed., John Wiley and Sons, Hoboken, NJ,
USA, 2010.
[140] F. Imado, Y. Heike, T. Kinoshita, Research on a new aircraft point-mass model,
J. Aircr. 48 (2011) 11211130, http://dx.doi.org/10.2514/1.C000200.
[141] User Manual for the Base of Aircraft Data (BADA) Revision 3.11, Eurocontrol
Experimental Centre (EEC) Technical/Scientic Report No. 13/04/16-01, Bré-
tigny-sur-Orge, France, 2013.
[142] M. Battipede, G. Sirigu, M. Cassaro, P. Gili, Analysis of the Impact of perfor-
mance model accuracy on 4D trajectory optimization, in: Proceedings of
AIAA Modeling and Simulation Technoogies conference 2015 (MST 2015),
Orlando, FL, USA, 2015, doi: 10.2514/6.2015-0145.
[143] ICAO. ICAO Aircraft Engine Emissions Databank [Online]. Available: http://
easa.europa.eu/node/15672.
[144] ICAO, Annex 16 to the Convention on International Civil Aviation En-
vironmental Protection Volume II: Aircraft Engine Emissions, The Inter-
national Civil Aviation Organization (ICAO), Montreal, QC, Canada, 2008.
[145] A. Wulff, J. Hourmouziadis, Technology review of aeroengine pollutant
emissions, Aerosp. Sci. Technol. 1 (1997) 557572.
[146] A. Gardi, R. Sabatini, T. Kistan, Y. Lim, S. Ramasamy, 4-Dimensional trajectory
functionalities for air trafc management systems, in: Proceedings of In-
tegrated Communication, Navigation and Surveillance Conference (ICNS
2015), Herndon, VA, USA, 2015, doi: 10.1109/ICNSURV.2015.7121246.
[147] R.L. Martin, al, Appendix D. Boeing Method 2 Fuel Flow Methodology De-
scription Presentation to CAEP Working Group III Certication Subgroup,
in: S.L. Baughcum, T.G. Tritz, S.C. Henderson, D.C. Pickett (Eds.), Scheduled
Civil Aircraft Emission Inventories for 1992: Database Development and
Analysis NASA Contractor Report 4700, NASA Langley Research Center,
Hampton, VA, USA, 1996.
[148] D. Dubois, G.C. Paynter, Fuel ow method 2for estimating aircraft emis-
sions, SAE Technical Paper 2006-01-1987, 2006, doi: 10.4271/2006-01-1987.
[149] S. Troxel, T. Reynolds, Use of numerical weather prediction models for
NextGen ATC wind impact studies, in: Proceedings of 7th AIAA Atmospheric
and Space Environment conference, Dallas, TX, USA, 2015, doi: 10.2514/
6.2015-2890.
[150] E. Zermelo, On navigation in the air as a problem in the calculus of variations
(orig. Über die Navigation in der Luft als Problem der Variationsrechnung),
Jahresber. Dtsch. Math.-Ver. 39 (1930) 4448.
[151] E. Zermelo, On the navigation problem for a calm or variable wind dis-
tribution (orig. Über das Navigationsproblem bei ruhender oder ver-
änderlicher Windverteilung), Z. Angew. Math. Mech. 11 (1931) 114124, http:
//dx.doi.org/10.1002/zamm.19310110205.
[152] H.M. De Jong, Optimal track selection and 3-dimensional ight planning -
Theory and practice of the optimization problem in air navigation under
space-time varying meteorological conditions, Royal Netherlands Meteor-
ological Institute (K.N.M.I.), De Bilt, Netherlands, 1974.
[153] S.J. Bijlsma, Optimal aircraft routing in general wind elds, J. Guid. Control.
Dyn. 32 (2009) 10251028, http://dx.doi.org/10.2514/1.42425.
[154] B. Girardet, L. Lapasset, D. Delahaye, C. Rabut, Wind-optimal path planning:
application to aircraft trajectories, in: Proceedings of 2014 13th International
Conference on Control Automation Robotics and Vision, ICARCV 2014, 2014,
pp. 1403-1408, doi: 10.1109/ICARCV.2014.7064521.
[155] O. Rodionova, M. Sbihi, D. Delahaye, M. Mongeau, North atlantic aircraft
trajectory optimization, IEEE Trans. Intell. Transp. Syst. 15 (2014) 22022212,
http://dx.doi.org/10.1109/TITS.2014.2312315.
[156] O. Rodionova, D. Delahaye, M. Sbihi, M. Mongeau, Trajectory prediction in
North Atlantic oceanic airspace by wind networking, in: Proceedings of 33rd
Digital Avionics Systems Conference, DASC 2014, 2014, pp. 7A317A315, doi:
10.1109/DASC.2014.6979511.
[157] O. Zaporozhets, V. Tokarev, K. Attenborough, Aircraft Noise: Assessment,
Prediction and Control, CRC Press, 2011.
[158] Doc. 9501 Environmental Technical Manual Volume I: Procedures for the
Noise Certication of Aircraft, The International Civil Aviation Organization
(ICAO), Montreal, QC, Canada, 2012.
[159] ECAC.CEAC Doc 29 Report on Standard Method of Computing Noise Con-
tours around Civil Airports, E. C. A. C. (ECAC), 2005.
[160] E.R. Boeker, E. Dinges, B. He, G. Fleming, C.J. Roof, P.J. Gerbi, et al., Integrated
Noise Model Technical Manual v. 7.0, 2008.
[161] H. Visser, R. Wijnen, Optimization of noise abatement arrival trajectories, in:
Proceedings of AIAA Guidance, Navigation and Control Conference 2001
(GNC 2001), Montreal, Canada, 2001, doi: 10.2514/6.2001-4222.
[162] H.G. Visser, Generic and site-specic criteria in the optimization of noise
abatement trajectories, Transp. Res. Part D: Transp. Environ. 10 (2005)
405419, http://dx.doi.org/10.1016/j.trd.2005.05.001.
[163] L. Ren, Modeling and Managing Separation for Noise Abatement Arrival
Procedures, ScD, Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, 2007.
[164] S. Hartjes, H.G. Visser, S.J. Hebly, Optimization of RNAV noise and emission
abatement departure procedures, in: Proceedings of AIAA Aviation Technol-
ogy, Integration, and Operations conference 2009 (ATIO 2009), Hilton Head,
SC, USA, 2009, doi: 10.2514/6.2009-6953.
[165] X. Prats, V. Puig, J. Quevedo, F. Nejjari, Multi-objective optimisation for air-
craft departure trajectories minimising noise annoyance, Transp. Res. Part C:
Emerg. Technol. 18 (2010) 975989, http://dx.doi.org/10.1016/j.
trc.2010.03.001.
[166] X. Prats, V. Puig, J. Quevedo, A multi-objective optimization strategy for de-
signing aircraft noise abatement procedures. Case study at Girona airport,
Transp. Res. Part D: Transp. Environ. 16 (2011) 3141, http://dx.doi.org/
10.1016/j.trd.2010.07.007.
[167] S. Khardi, L. Abdallah, Optimization approaches of aircraft ight path redu-
cing noise: comparison of modeling methods, Appl. Acoust. 73 (2012)
291301, http://dx.doi.org/10.1016/j.apacoust.2011.06.012.
[168] G.J.J. Ruijgrok, Elements of Aviation Acoustics, 2nd ed., VSSD, Delft, Nether-
lands, 2007.
[169] U. Schumann, Formation, properties and climatic effects of contrails, C. R.
Phys. 6 (2005) 549565, http://dx.doi.org/10.1016/j.crhy.2005.05.002.
[170] G. Penin, Formation of Contrails, TU Delft, Delft, Netherlands, 2012.
[171] M. Ponater, S. Marquart, R. Sausen, Contrails in a comprehensive global cli-
mate model: Parameterization and radiative forcing results, J. Geophys. Res.
(2002), http://dx.doi.org/10.1029/2001jd000429 (pp. ACL 2-1 to 15).
[172] A.G. Detwiler, A. Jackson, Contrail formation and propulsion efciency, J.
Aircr. 39 (2002) 638644.
[173] M.L. Schrader, Calculations of aircraft contrail formation critical tempera-
tures, J. Appl. Meteorol. 36 (1997) 17251728.
[174] C. Fichter, S. Marquart, R. Sausen, D.S. Lee, The impact of cruise altitude on
contrails and related radiative forcing, Meteorol. Z. 14 (2005) 563572, http:
//dx.doi.org/10.1127/0941-2948/2005/0048.
[175] H. Zolata, C. Celis, V. Sethi, R. Singh, and D. Zammit-Mangion, A multi-criteria
simulation framework for civil aircraft trajectory optimisation, in: Proceed-
ings of ASME International Mechanical Engineering Congress and Exposition
2010 (IMECE 2010), Vancouver, BC, Canada, 2010, pp. 95105, doi: 10.1115/
IMECE2010-38237.
[176] B. Sridhar, H. Ng, N. Chen, Aircraft trajectory optimization and contrails
avoidance in the presence of winds, J. Guid. Control. Dyn. 34 (2011)
A. Gardi et al. / Progress in Aerospace Sciences 83 (2016) 136 35
15771584, http://dx.doi.org/10.2514/1.53378.
[177] N.Y. Chen, B. Sridhar, H.K. Ng, Contrail reduction strategies using different
weather resources, in: Proceedings of AIAA Guidance, Navigation, and Con-
trol Conference 2011 (GNC 2011), Portland, OR, USA, 2011, doi: 10.2514/
6.2011-6360.
[178] O. Deuber, M. Sigrun, S. Robert, P. Michael, L. Ling, A physical metric-based
framework for evaluating the climate trade-off between CO
2
and contrails
the case of lowering aircraft ight trajectories, Environ. Sci. Policy 25 (2013)
176185, http://dx.doi.org/10.1016/j.envsci.2012.10.004.
[179] Y. Lim, A. Gardi, R. Sabatini, Modelling and evaluation of aircraft contrails for
4-dimensional trajectory optimisation, SAE Int. J. Aerosp. (2015), http://dx.
doi.org/10.4271/2015-01-2538 (pp. Technical Paper 2015-01-2538).
[180] Y. Lim, A. Gardi, M. Marino, R. Sabatini, Modelling and evaluation of persis-
tent contrail formation regions for ofine and online strategic ight trajec-
tory planning, in: Proceedings of International Symposium on Sustainable
Aviation (ISSA 2015), Istanbul, Turkey, 2015.
[181] M. Janic, V. Tosic, Terminal airspace capacity model, Transp. Res. Part A: Gen.
16 (1982) 253260, http://dx.doi.org/10.1016/0191-2607(82)90052-8.
[182] E.E. Velazco, Air trafc management: high-low trafc intensity analysis, Eur. J.
Oper. Res. 80 (1995) 4558, http://dx.doi.org/10.1016/0377-2217(93)E0045-Y.
[183] D. Bertsimas, S.S. Patterson, The air trafcow management problem with
enroute capacities, Oper. Res. 46 (1998) 406422, http://dx.doi.org/10.1287/
opre.46.3.406.
[184] A. Majumdar, W.Y. Ochieng, J. Bentham, M. Richards, En-route sector capacity
estimation methodologies: an international survey, J. Air Transp. Manag. 11
(2005) 375387, http://dx.doi.org/10.1016/j.jairtraman.2005.05.002.
[185] A.M. Churchill, D. J. Lovell, and M. O. Ball, Evaluating a new formulation for
large-scale trafcow management, in: Proceedings of 8th USA/Europe Air
Trafc Seminar (ATM'09), Napa, California, USA, 2009.
[186] E. P. Gilbo, S.B. Smith, New method for probabilistic trafc demand predic-
tions for en route sectors based on uncertain predictions of individual ight
events, in: Proceedings of 9th USA/Europe Air Trafc Management Research
and Development Seminar (ATM2011), Berlin, Germany, 2011.
[187] P.U. Lee, C. Brasil, J.R. Homola, T. Prevot, Benets and feasibility of the exible
airspace management concept: a human-in-the-loop evaluation of roles,
procedures, and tools, in: Proceedings of 9th USA/Europe Air Trafc Man-
agement Research and Development Seminar (ATM2011), Berlin, Germany,
2011.
[188] D. Bertsimas, G. Lulli, A. Odoni, The air trafcow management problem: an
integer optimization approach, in: Proceedings of 13th International Con-
ference on Integer Programming and Combinatorial Optimization, IPCO
2008, vol. 5035 LNCS, Bertinoro, 2008, pp. 3446, doi: 10.1007/978-3-540-
68891-4_3.
[189] T. Kistan, M.J. Philippe, L.S. Takalani, S. Maphanga, A practical, route-based
approach to airspace capacity management, in: Proceedings of 28th Inter-
national Congress of the Aeronautical Sciences (ICAS 2012), Brisbane, Aus-
tralia, 2012.
[190] H.D. Sherali, J.M. Hill, Conguration of airspace sectors for balancing air
trafc controller workload, Ann. Oper. Res. 203 (2011) 331, http://dx.doi.
org/10.1007/s10479-011-0837-z.
[191] J. Tang, S. Alam, C. Lokan, H.A. Abbass, A multi-objective approach for dy-
namic airspace sectorization using agent based and geometric models,
Transp. Res. Part C: Emerg. Technol. 21 (2012) 89121, http://dx.doi.org/
10.1016/j.trc.2011.08.008.
[192] W. Hall, A. Churchill, P. Lucic, I. Hwang, Dynamic terminal airspace cong-
uration, in: Proceedings of 2013 Aviation Technology, Integration, and Op-
erations Conference, Los Angeles, CA, 2013.
[193] M.R. Cramer, A. Herndon, D. Steinbach, R.H. Mayer, Modern aircraft ight
management systems, Encycl. Aerosp. Eng. (2010).
[194] R. Sabatini, S. Ramasamy, A. Gardi, R. Salazar, Low-cost sensors data fusion
for small size unmanned aerial vehicles navigation and guidance, Int. J. Un-
manned Syst. Eng. 1 (2013) 1647.
[195] P. Brooker, A 4D ATM trajectory concept integrating GNSS and FMS? J. Navig.
67 (2014) 617631, http://dx.doi.org/10.1017/S0373463314000101.
[196] S. Chaimatanan, D. Delahaye, M. Mongeau, A hybrid metaheuristic optimi-
zation algorithm for strategic planning of 4D aircraft trajectories at the
continental scale, IEEE Comput. Intell. Mag. 9 (2014) 4661, http://dx.doi.org/
10.1109/MCI.2014.2350951.
[197] D. Bertsimas, G. Lulli, A. Odoni, An integer optimization approach to large-
scale air trafcow management, Oper. Res. 59 (2011) 211227, http://dx.
doi.org/10.1287/opre.1100.0899.
[198] G. Andreatta, P. Dell'Olmo, G. Lulli, An aggregate stochastic programming
model for air trafcow management, Eur. J. Oper. Res. 215 (2011) 697704,
http://dx.doi.org/10.1016/j.ejor.2011.06.028.
[199] G. Lulli, A. Odoni, The European air trafcow management problem, Transp.
Sci. 41 (2007) 431443, http://dx.doi.org/10.1287/trsc.1070.0214.
[200] G. Lulli, A. Odoni, The European air trafcow management problem, in:
Proceedings of 11th IFAC Symposium on Control in Transportation Systems
(CTS 2006), Delft, Netherlands, 2006, pp. 96100.
[201] C. Barnhart, P. Belobaba, A.R. Odoni, Applications of operations research in
the air transport industry, Transp. Sci. 37 (2003) 368391, http://dx.doi.org/
10.1287/trsc.37.4.368.23276.
[202] O. Richetta, A.R. Odoni, Solving optimally the static ground-holding policy
problem in air trafc control, Transp. Sci. 27 (1993) 228238.
[203] M. Terrab, A.R. Odoni, Strategic ow management for air trafc control, Oper.
Res. 41 (1993) 138152.
[204] L. Bianco, M. Bielli, Air trafc management. Optimization models and algo-
rithms, J. Adv. Transp. 26 (1992) 131167.
[205] A. Gardi, R. Sabatini, S. Ramasamy, T. Kistan, Real-time trajectory optimisa-
tion models for next generation air trafc management systems, Appl. Mech.
Mater. 629 (2014) 327332, http://dx.doi.org/10.4028/www.scientic.net/
AMM.629.327.
[206] S. Ramasamy, R. Sabatini, A. Gardi, Avionics sensor fusion for small size
unmanned aircraft sense-and-avoid, in: Proceedings of Metrology for Aero-
space (MetroAeroSpace), 2014 IEEE, 2014, pp. 271276.
[207] R. Sabatini, A. Gardi, S. Ramasamy, M.A. Richardson, A laser obstacle warning
and avoidance system for manned and unmanned aircraft, in: Proceedings of
Metrology for Aerospace (MetroAeroSpace), 2014 IEEE, 2014, pp. 616621.
[208] R. Sabatini, T. Moore, C. Hill, A new avionics-based GNSS integrity augmen-
tation system: Part 1 fundamentals, J. Navig. 66 (2013) 363384.
[209] R. Sabatini, T. Moore, C. Hill, Avionics-based integrity augmentation system
for mission- and safety-critical GNSS applications, in: Proceedings of 25th
International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS 2012), Nashville, TN, 2012, pp. 743763.
[210] R. Sabatini, Craneld University in Clean Sky: Avionics and CNS/ATM Re-
search Focus, Presented at the Clean Sky 2 Academia and Clusters, Brussels,
Belgium, 2013.
[211] R. Sabatini, A. Gardi, M.A. Richardson, LIDAR obstacle warning and avoidance
system for unmanned aircraft, Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 8
(2014) 6273.
[212] R. Sabatini, A. Gardi, S. Ramasamy, A laser obstacle warning and avoidance
system for unmanned aircraft sense-and-avoid, Appl. Mech. Mater. 629
(2014) 355360, http://dx.doi.org/10.4028/www.scientic.net/AMM.629.355.
[213] R. Sabatini, A. Gardi, S. Ramasamy, M.A. Richardson, A laser obstacle warning
and avoidance system for manned and unmanned aircraft, in: Proceedings of
IEEE Metrology for Aerospace (MetroAeroSpace 2014), Benevento, Italy, 2014,
pp. 616621, doi: 10.1109/MetroAeroSpace.2014.6865998.
[214] S. Ramasamy, A. Gardi, J. Liu, R. Sabatini, A laser obstacle detection and
avoidance system for manned and unmanned aircraft applications, in: Pro-
ceedings of 2015 International Conference on Unmanned Aircraft Systems
(ICUAS '15), Denver, CO, USA, 2015.
[215] R. Sabatini, T. Moore, C. Hill, S. Ramasamy, Assessing avionics-based GNSS
integrity augmentation performance in UAS mission- and safety-critical
tasks, in: Proceedings of 2015 International Conference on Unmanned Air-
craft Systems (ICUAS '15), Denver, CO, USA, 2015.
[216] R.J. de Muynck, T. Bos, A. Kuenz, S. Toerner, Implementing time based CDA
operations in a medium-high density ATM environment, in: Proceedings of
28th International Congress of the Aeronautical Sciences (ICAS 2012), Bris-
bane, Australia, 2012.
[217] N. Takeichi, T. Hatano, Y. Fukuda, Continuous descent trajectory with opti-
mum arrival time controllability, in: Proceedings of 28th International Con-
gress of the Aeronautical Sciences (ICAS 2012), Brisbane, Australia, 2012.
[218] S.J. Zelinski, Benets of precision scheduling and spacing for arrival opera-
tions, J. Aircr. 50 (2013) 19231932, http://dx.doi.org/10.2514/1.c032352.
[219] M. Xue, S.J. Zelinski, Optimal integration of departures and arrivals in term-
inal airspace, J. Guid. Control. Dyn. 37 (2014) 207213, http://dx.doi.org/
10.2514/1.60489.
A. Gardi et al. / Progress in Aerospace Sciences 83 (2016) 13636
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Contrails and aircraft-induced cirrus clouds are amongst the largest contributing factors to aviation-induced global warming, potentially even greater than carbon dioxide (CO2) exhaust emissions for aircraft flying at high altitudes. This article presents a contrail modeling algorithm specifically developed for integration into a multi-objective flight trajectory optimization software tool. The purpose of the algorithm is to supply the optimizer with a measure of the estimated environmental impacts associated with the contrails generated by flying a specific trajectory. For this purpose, the proposed algorithm exploits the Schmidt-Appleman criterion and ice-supersaturation models. Additional parameters such as the solar zenith angle, contrail lifetime and spread are also modelled. The integration of the contrail prediction algorithm within the aircraft trajectory optimization software allows the selective minimization of adverse environmental impacts, and particularly the ones associated with the longest contrail persistence, or positive radiative forcing. The algorithm quantifies the radiative forcing associated with 4-Dimensional (4D) trajectories in a 4D weather field considering the time-of-day by exploiting state-of-the-art models to determine the contrail lifetime and other key physical properties. Some algorithm verification activities are presented including simulation case studies of fanjet aircraft flying over Europe and North America.
Article
Full-text available
The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the development of such requirements, useful guidelines are provided for test and evaluation of airborne laser systems including laboratory, ground and flight test activities.
Conference Paper
The protection of the environment against pollutants produced by aviation is of great concern in the 21st century. Among the multiplicity of proposed solutions, modifying flight profiles for existing aircraft is a promising approach. The aim is to deliver and understand the trade-off between environmental impact and operating costs. This work will illustrate the optimisation process of aircraft trajectories by minimising fuel consumption and flight time for the climb phase of an aircraft that belongs to A320 category. To achieve this purpose a new variant of a multi-objective Tabu Search optimiser was evolved and integrated within a computational framework, called GATAC, that simulates flight profiles based on altitude and speed.
Article
The arrival time controllability of a continuous descent operation (CDO) trajectory is discussed. The arrival time controllability is defined as a potentially achievable arrival time difference. It is uniquely determined by the aircraft speed, altitude, and the distance from runway. It is not only possible to extend the arrival time but reduce it with maintaining the minimum thrust. The CDO trajectory that has the optimum arrival time controllability is numerically analyzed, and it is demonstrated that it is possible to compose many CDO trajectories equally having the optimum arrival time controllability. Such CDO trajectory composition enables the traffic control with the flight time reduction. A set of numerical traffic simulation has proven the effectiveness of the proposed traffic control strategy. It is noteworthy that a slower trajectory for a larger arrival time controllability can achieve a faster arrival time than the one using the fastest trajectory with no arrival time controllability. It is concluded that the CDO using the proposed traffic control strategy is able to achieve a delay free air traffic with enhanced arrival time predictability.
Conference Paper
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary "P3T3" method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as "Fuel Flow Method 2". While not as rigorous as the P3T3 method used for emissions certification, fuel flow methods can give reasonable approximations of emissions on the order of ± 10 to 15% for NOx as compared to the P3T3 method. In depth studies of variation for HC and CO have not been undertaken, though a limited examination of the data indicates a much broader spread, with a range on the low end similar to NOx, while up to almost a factor of two on the high end, depending on engine and thrust rating.
Article
In this paper, an algorithm to plan a continuous wind-optimal path is proposed, and simulations are made for aircraft trajectories. We consider a mobile which can move in a two dimensional space. The mobile is controlled only by the heading direction, the speed of the mobile is assumed to be constant. The objective is to plan the optimal path avoiding obstacles and taking into account wind currents. The algorithm is based on Ordered Upwind Method which gives an optimality proof for the solution. The algorithm is then extended to spherical coordinates in order to be able to handle long paths.