Robert Schulze

Robert Schulze
Technische Universität Dresden | TUD · Institut für theoretische Physik

PhD

About

17
Publications
787
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
197
Citations

Publications

Publications (17)
Article
Full-text available
In January 2016, the Basel Committee on Banking Supervision published its new requirements for the calculation of market risk within the banking sector. These requirements go under the name of the Fundamental Review of the Trading Book. The default risk model is one part of these requirements that is subject to material changes: recovery rates must...
Article
Full-text available
We survey some prospects of identifying further in-medium modifications of hadrons in a strongly interacting medium with respect to ongoing experiment series of the HADES Collaboration and planned experiments of the CBM Collaboration at FAIR. Di-electrons, strange and charm mesons are considered and their potential for signaling imprints of chiral...
Article
Full-text available
Open charm mesons (pseudo-scalar and scalar as well as axial-vector and vector) propagating or resting in nuclear matter display an enhanced sensitivity to the chiral condensate. This offers new prospects to seek for signals of chiral restoration, in particular in p-A and p-bar-A reactions as envisaged in first-round experiments by the CBM and PAND...
Article
Full-text available
Based on a quasiparticle model for \beta stable and electrically neutral deconfined matter we address the mass-radius relation of pure quark stars. The model is adjusted to recent hot lattice QCD results for 2 + 1 flavors with almost physical quark masses. We find rather small radii and masses of equilibrium configurations composed of cold deconfin...
Article
Within a phenomenological quasiparticle model, the quark mass and temperature dependence of the QCD equation of state is discussed and compared with lattice QCD results. Different approximations for the quasiparticle dispersion relations are employed, scaling properties of the equation of state with quark mass and deconfinement temperature are inve...
Article
A phenomenological QCD quasiparticle model provides a means to map lattice QCD results to regions relevant for a variety of heavy-ion collision experiments at larger baryon density. We report on effects of collectives modes and damping on the equation of state.
Article
Full-text available
The equation of state (EOS) is of utmost importance for the description of the hydrodynamic phase of strongly interacting matter in relativistic heavy-ion collisions. Lattice QCD can provide useful information on the EOS, mainly for small net baryon densities. The QCD quasiparticle model provides a means to map lattice QCD results into regions rele...
Article
Full-text available
A phenomenological quasiparticle model is surveyed for 2+1 quark flavors and compared with recent lattice QCD results. Emphasis is devoted to the effects of plasmons, plasminos and Landau damping. It is shown that thermodynamic bulk quantities, known at zero chemical potential, can uniquely be mapped towards nonzero chemical potential by means of a...
Article
Full-text available
A quasi-particle model is employed to derive from available lattice QCD calculations an equation of state useable in hydrodynamical simulations of the expansion stage of strongly interacting matter created in ultra-relativistic heavy-ion collisions. Various lattice results give an astonishing agreement of the pressure as a function of energy densit...
Article
Full-text available
We construct a family of equations of state within a quasiparticle model by relating pressure, energy density, baryon density and susceptibilities adjusted to first-principles lattice QCD calculations. The relation between pressure and energy density from lattice QCD is surprisingly insensitive to details of the simulations. Effects from different...
Article
We propose a procedure for determining the equation of state of strongly interacting matter needed in a hydrodynamical description of relativistic heavy-ion collisions.
Article
Full-text available
We confront our quasi-particle model for the equation of state of strongly interacting matter with recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain of approximations starting from the...
Article
Full-text available
We examine the isentropic QCD equation of state within a quasi-particle model being adjusted to first principle QCD calculations of two quark flavours. In particular, we compare with Taylor expansion coefficients of energy and entropy densities and with the isentropic trajectories describing the hydrodynamical expansion of a heavy-ion collision fir...
Article
We compare our quasi-particle model with recent lattice QCD results for the equation of state at finite temperature and baryo-chemical potential. The inclusion of the QCD critical end point into models is discussed. We propose a family of equations of state to be employed in hydrodynamical calculations of particle spectra at RHIC energies and compa...

Network

Cited By