
A Hierarchical Approach for Content-Based
Echocardiogram Video Indexing and Retrieval

Aditi Roy
School of Information Technology
IIT, Kharagpur, West Bengal, India
aditi.roy@sit.iitkgp.ernet.in

Shamik Sural
School of Information Technology
IIT, Kharagpur, West Bengal, India
shamik@cse.iitkgp.ernet.in

Jayanta Mukherjee
Dept. of Computer Science & Engg.
IIT, Kharagpur, West Bengal, India

jay@cse.iitkgp.ernet.in

A. K. Majumdar
Dept. of Computer Science & Engg.
IIT, Kharagpur, West Bengal, India

akmj@cse.iitkgp.ernet.in

ABSTRACT
Content-based video retrieval is one of the most challenging
areas of research in information sciences. Here we present
a new method for efficient indexing, storage and retrieval
of echocardiogram video data. The architecture and imple-
mentation details of the system have been discussed. A hier-
archical state based indexing scheme has been used for faster
retrieval of information related to states of objects present
in echo video. In video segmentation phase, views as well
as states and sub-states of objects in a video are identified.
Accordingly, schemas are populated. An object-relational
database approach has been adopted to store object infor-
mation into a backend RDBMS. The proposed video query
language can be used to compose queries based on video con-
tents using annotations, states, events, spatial or temporal
relations. For ease of specifying query, a user friendly inter-
face has been provided. Retrieved segments can be played
back one at a time in a separate window.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis; I.4.9 [Image Processing and Computer Vi-
sion]: Applications.

General Terms
Algorithms.

Keywords
Echocardiogram video, Query language, Video retrieval.

1. INTRODUCTION
Cardiovascular disease is a frequent natural cause of death

throughout the world. Total number of deaths due to car-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCCS’11 February 12-14, 2011, Rourkela, Odisha, India
Copyright c© 2011 ACM 978-1-4503-0464-1/11/02 ...$10.00.

diovascular diseases reach 17.5 million a year according to
WHO report, “Preventing chronic diseases: a vital invest-
ment (2005)” (Source: WHO World Health Report 2004).
It shows the importance of echocardiogram video which is
mainly used for monitoring heart status. It is captured in
the form of a video. With the rapid progress of technology,
echocardiogram machines are now equipped with a number
of built-in tools for better visual analysis of echocardiogram
images. Several modern methodologies, such as estimation
of volumes of cavities, estimation of wall and valve move-
ments, delineation of cavities, measurement of blood flow,
etc., are supported by these machines. However, acquired
data are not preserved in digital format in the echocardio-
gram machines. The limitations associated with echocardio-
gram video storage are as follows [1].

• Searching a particular echo study of a patient from a
large archive of videotapes is time consuming. The
problem gets worse when several studies are stored on
a single videotape.

• A full echocardiography study of one patient, which
includes different modes and angle positions of trans-
ducer, could take up to one hour. Such a long time
may not be affordable by the doctor.

These data can be useful for analysis of other features
of echocardiogram data for better understanding of cardio-
vascular system, even though it may not be required for
a particular patient. There is also a need for automated
analysis of these videos. Medical researchers often need to
retrieve specific frame/ segment of a particular patient or
group of patients for analyzing various characteristics. This
motivated us to design a framework for managing echo video
based on their content. Our goal is to support an efficient
and easy way for users to index, store and retrieve video data
from database. Efficient storage and support for content-
based retrieval of the echo video data have numerous ap-
plications like Hospital management systems, Telemedicine,
Continuing medical education, Distance learning, etc.

The rest of the paper is organized as follows. In Section
2, we present a brief discussion about existing work and
the user requirements that led us to design this method.
Section 3 presents the system in detail. In Section 4, current
status of the system implementation is described. Section 5
concludes the paper.

253

2. BACKGROUND
For successful content-based video retrieval (CBVR), there

are two main factors. In the first stage, effective algorithms
need to be developed to segment a raw video into meaning-
ful components and to extract and index features describing
the content of the video segments. The second issue is de-
velopment of an effective and powerful query language for
retrieving specific segments.

In recent past, advances have been made in content-based
retrieval of medical images. Researches on echo video sum-
marization, temporal segmentation for interpretation, stor-
age and content-based retrieval of echo video based on views
have been reported [2] [3]. But these methods are heavily
dependent on the available domain knowledge, like, spatial
structure of the echo video frames in terms of the ’Region of
Interest’ (ROI). Another approach for view classification is
presented in [4]. But this approach is applicable for classify-
ing apical two chamber and four chamber views only. On the
other hand, an approach towards semantic content-based re-
trieval of video data using object state transition model has
been put forward in [5]. In their work, echo videos are seg-
mented based on states of the heart object. Ebadollahi et
al. [6] have presented an approach for modeling the activ-
ity pattern of objects represented by a constellation of their
parts.

One of the earliest approaches towards development of
video database system is due to Oomoto and Tanaka [7].
They present an SQL-like query language called VideoSQL
for retrieval of video objects by specifying some of the at-
tribute values. Chu et al. [8] developed a medical multime-
dia distributed database system to support query by both
image as well as alphanumeric content. User can formulate
queries using conceptual and imprecise medical terms. But,
this system does not support video querying. In contrast
to this, in [9][10], a video query language is proposed that
allows modeling of semantic content of video data as well as
spatial properties of objects.

Chang et al. [11] introduced an object-oriented content-
based video search engine, called VideoQ. It provides two
methods for searching video clips. One is keyword-based
and the other is based on visual content. Kuo and Chen [12]
proposed a content-based video query language (CVQL) in
which objects appearing in video data, as well as tempo-
ral and spatial relationship among objects, can be specified.
But, it is not easy for user to specify queries relating events.
Petkovic and Jonker [13] proposed COBRA (Content-Based
RetrievAl) query language for bridging the gap between fea-
ture based model and semantic model. Hacid et al. [14]
developed a rule-based constraint query language for query-
ing both semantic and video image features like color, shape
and texture. A more generic rule based video query language
was proposed by Donderler et al. [15]. As specification of
spatial queries using text or visual interfaces is not easy for
novice users, this group has developed a natural language
based interface for querying video database [16]. However,
it is assumed that the video events, objects and the related
properties are all available, which may not be true in the
real world. Acharya et al. [17] proposed a video model for
representing dynamic behaviors of objects. They reported
an algebraic structure for query specification. Other video
models and query languages have been proposed in [18, 19].

Most of the languages described above provide a fixed set
of queries. Writing queries in database query language by

non- IT specialists like doctors and medical researchers of-
ten turns out to be difficult. Keeping these facts in mind,
we propose a video query language (VQL) suitable for re-
trieving video segments describing various states of the heart
from dynamic behavior of objects present in an echocardio-
gram video. The language has been developed on top of
an underlying state based video model [20]. A set of func-
tions for specifying temporal, spatial as well as state-based
queries is defined. In contrast to the work reported in [19],
these functions facilitate query specification by non-expert
users who may not be equipped to write queries in database
query language like SQL. Thus, the proposed language will
help doctors and medical research personnel to frame their
queries and retrieve useful information from echocardiogram
video database.

3. ARCHITECTURE AND DETAILED SYS-
TEM DESCRIPTION

The proposed system has an architecture that can be
subdivided into two functional units - the first one is for
database population and the second for database querying.
Video indexing is done in two ways. View based indexing
is done on the basis of the occurrence of objects and their
orientation. State based indexing is done on the basis of the
attribute of objects and their dynamic behavior. First, the
echo videos are split into view segments by a view detector.
The view detector basically segments the videos based on
the different views. Then for each view, the state extractor
identifies the states. Finally, sub-state extractor detects the
sub-states. Shot, state and sub-state information is stored
in a database hierarchically. When a query is put to the sys-
tem, the query processor module interprets it and retrieves
the video segments based on its semantic content. This tech-
nique leads to a simple and fast retrieval of the desired video
segments. In the next sub-sections we describe the details
of the system.

3.1 Uploading an Echocardiogram Video

 �

 �
 �

(a) (b)

Figure 1: Interface for (a) uploading an echo video
(b) patient information corresponding to the up-
loaded video

For uploading an echo video, user has to select the option
“Upload Video” in the graphical interface shown in Figure
1(a). Then, a new selection wizard appears where he has to
browse the location of echo video to be stored in the echo
video database. After the selection is over, user has to put
the information of the patient corresponding to that video

254

Figure 2: Interface for displaying the result of view
boundary detection and modification

in the text fields shown in Figure 1(b). When saving this
information in the database, the system assigns a unique
video ID to each echo video.

3.2 Echocardiogram Video Data Loading
Video segmentation is the most time consuming step of

video database creation. Once an echo video is uploaded,
the next step is to segment it into different views. More
than one echo video can be recorded for the same patient at
different times. User has to specify the video file he wants
to segment.

3.2.1 View-based Segmentation
After selecting the echo video, a new window appears for

view detection. Here user needs to choose the shot detec-
tion procedure for starting view boundary detection After
detecting views, a novel technique is applied for automatic
view classification using some of the echocardiogram signal
properties and their statistical variations. The fact that,
for each view, different sets of cardiac chambers are visible,
is used. The number of chambers present, their orientation
and the presence of heart muscles in each view, give different
patterns of histogram. Views are identified based on their
unique histogram patterns. At first, some of the frames from
the video are selected randomly. Then we extract the ROI
(Region of Interest) from those frames to minimize the effect
of noise. Next, normalized gray scale histograms are gener-
ated using 64 bins from the ROI image segment. This is
treated as the 64-element input vector of a neural network.
The neural network used here has one input layer (having
64 units), one hidden layer (having 80 units) and one output
layer (having 4 units, one for each view). Once view detec-
tion and identification are done, the result is displayed in a
different window (see Figure 2). User can play the video
segments by selecting them one by one. Thus, he can verify
if the boundaries are detected correctly or not. User has
option to annotate the views manually from a drop-down
list showing the valid views in an echo video (if the clas-
sification done by the classifier is not correct). Text fields
are provided to redefine the view boundaries if they are not
properly segmented.

3.2.2 State-based Segmentation
Once the video file has been selected, the next step is

to detect the state segments for each of the views present in

that specified video. Object states are detected with the help
of synthetic M-mode images. In contrast to traditional single
M-mode, a novel approach named as ‘Sweep M-mode’ is used
for state detection. For this, a graphical interface as shown
in Figure 3(a) will appear. User can play the video file for
obtaining primary information about how the states change
in the echo video. Then, he has to enter any chosen frame
number. Figure 3(b) shows a window displaying the selected
frame that appears after entering the frame number. Next,
user has to identify the cavity border freehand and draw one
single straight line as shown in Figure 3(b). The system
automatically generates a number of lines perpendicular to
the user drawn line. The sweep M-modes will be generated
along these horizontal broken straight lines. To compute
M-mode image, this line is scanned for each frame of the
video. The intensity value along the straight line is taken as
ordinate and frame number is taken as abscissa.

Most echocardiograms have a relatively high noise level
because of intrinsic limitation in the measurement device.
Substantial noise reduction with minimal information loss is
achieved by smoothing the image. First, LSMV filter is used
to remove noise from M-mode images and then Sobel oper-
ator is applied for edge detection. Next, the cardiac borders
are extracted from the M-modes by searching for optimal
path along the time axis. For extracting state information
from each M-mode, first the distance between the two en-
docardium borders is computed. This distance information
is used to classify the echo video frames into two classes,
namely, systole and diastole.

(a) (b)

Figure 3: (a) Interface for state detection (b) In-
terface for drawing lines to generate M-modes on a
chosen frame of echo video

3.2.3 Sub-state based segmentation
Sub-states are extracted from radial color M-modes. Here,

user draws one single straight line. Then, a number of
straight lines are generated with the same origin but dif-
ferent slopes as shown in Figure 4(a). Color M-modes pro-
duced from radial M-mode contain red and blue color bars
(see Figure 4(b)). The width of red color bar represents
diastole state and the width of blue color bar represents sys-
tole state of the left ventricle. Color transition from red to
blue bar indicates end of diastole and start of systole. Simi-
larly, end of diastole and start of systole is indicated by color
transition from blue to red. When blood flows from one side
to another in the left ventricular cavity, there is a delay in
color transition as we move from the aortic valve tip to mi-
tral valve tip. This observation is used to identify sub-states

255

(a) (b)

Figure 4: (a) User drawn straight line on a chosen
frame of video, (b) Corresponding color M-mode im-
age

from the normal echocardiogram video. In absence of clear
color transition, as expected in abnormal case, our method
will not detect any state transitions. Thus, this method
can also be used to identify the echo videos portraying an
abnormal heart, such as mitral valve regurgitation.

3.3 Database Querying using Video Query Lan-
guage

For successful content-based video retrieval, a query lan-
guage that can formalize different kinds of queries based on
users’ need is important. We propose a new video query lan-
guage (VQL) which is similar to SQL in structure. User can
specify queries based on video contents such as annotations,
structures, events, states, spatial relations, and temporal re-
lations using this video query language.

The syntax of the proposed video query language is as
follows.

select < V ideoSegmentV ariable >, [V ariable]
from < V ideoDatabaseName >
where < Condition >
The select clause specifies the result that user wants to

retrieve. A query returns video segments (Video Segment
Variable Name) with or without values of variables (Vari-
able). Aggregate functions (sum, count, average) operating
on video segments can also be used in the select clause. The
database name on which user wants to execute the query
is specified in the from clause. The where clause is used
to specify query conditions. Conditions can consist of at-
tribute / value pairs, comparison operators, video or aggre-
gate functions. The video frame number also can be used in
the conditions.

Operators: Our video query language supports a set of
logical operators, namely ‘and’, ‘or’ and ‘not’. For assign-
ment and comparison, “=”, “ < ”, “ > ”, “ ≤ ”, “ ≥ ” and
“!=” are used.

Video Functions: The functions that are supported can
be classified into three categories, namely positional, tem-
poral and state-based.

1. Spatial/ Positional Functions: The positional func-
tions are Left, Right, Above, Below, LeftAbove, Left-
Below, RightAbove and RightBelow. These functions
take two object variables as arguments and examine
the relative position of the objects present in a video
segment. For example, Left(o1, o2) describes whether
o2 stays on the left of o1 in a video segment.

2. Temporal Functions: The temporal functions are as
follows:

• Follows(k1, k2): It returns the video segments
(k1) which follow video segment k2. k1 follows
k2 if k1.StartFrame >= k2.EndFrame. The com-
plementary function FollowedBy(k1, k2) is also
similarly defined.

• Contains(k1, k2): It returns a video segment k2
for which k1.StartFrame <= k2.StartFrame <=
k2.EndFrame <= k1.EndFrame. ContainedIn(k1,
k2) function is defined as the complementary func-
tion of Contains(k1, k2).

3. State-based Functions: For convenience of specify-
ing complex queries, a number of state-based functions
are developed. They can be used to evaluate some
frequently needed guard conditions that can also be
formed using general language syntax. Thus, complex
queries can be expressed in simpler forms and non-
expert users can use this language easily to express
queries. The functions are discussed below.

• Occurs(o.s, k): examines whether the object ‘o’
in state/ sub-state ‘s’ is present in video segment
‘k’.

• OccursAfter(o.s, k, n): determines the occur-
rence of the state/ sub-state ‘s’ of the object ‘o’
in the video segment ‘k’ after the nth frame of the
video segment. OccursBefore(o.s, k, n) function
is developed similarly as complement of Occur-
sAfter.

• OccursFirst(o.s, k, n): returns the first occur-
rence of the state/ sub-state ‘s’ of object ‘o’ in
video segment ‘k’ after nth frame of the segment.

• ithOccurrenceOf(o.s, k, n): returns the video
segment which is the ith occurrence of state/ sub-
state ‘s’ of an object ‘o’ within the video segment
‘k’.

• Until(o.s, k, n): returns all the frames that oc-
cur in a video segment before the nth occurrence
of the state/ sub-state ‘s’ of object ‘o’.

• Since(o.s, k, n): returns all the frames that ap-
pear after the nth occurrence of state/ sub-state
‘s’ of object ‘o’.

• Reachable(o1.s1, o2.s2): examines whether the
video segment containing state ‘s2’ of the object
‘o2’ is reachable from the video segment contain-
ing state ‘s1’ of the object ‘o1’ as a result of any
number of valid transitions.

• Projection(k1, k2): represents the projection
operation on video segments. K2 is projected
from k1 if k1.VideoID = k2.VideoID and
k2.StartFrame >= k1.Startframe and k2.EndFrame
<=k1.EndFrame.

• SegmentOccurence(O.s, k1, k2): determines
that there is a video segment k2 in video k1 and
there is an occurrence of the state s of an object O
in the video segment k2. Similarly, FirstSegmen-
tOccurence(O.s, k1, k2), NthSegmentOccurence
(O.s, k1, k2, n) is also developed.

256

Aggregate Functions: Our video query language sup-
ports three types of aggregate functions, namely, count, sum
and average. These functions take a set of segments (inter-
vals) as input. Count returns the total number of occur-
rence of the specified segments. Sum gives the total number
of frames of all the video segments. Average computes the
average number of frame count of all video segments taken
as input. These functions are useful in getting statistical
data about any patient in an echocardiogram video retrieval
application.

(a) (b)

Figure 5: (a) Query Results (b) Interface for dis-
playing the retrieved video segment

3.3.1 Types of Queries Supported by the System
Here some basic query types are presented along with ex-

amples that the language supports. These queries can be
combined to construct complex queries, which makes our
language quite flexible, easy to use and powerful in express-
ing queries.

Object Query: This type of queries can be used to
retrieve video segments containing specified objects. The
query “Find the video segments where the object ‘LeftVen-
tricle’ is present” can be expressed in VQL as follows.

select k1 from vdb where o1 in k1 and o1.ObjectName =
LeftVentricle

Segment Query: In a segments query, conditions about
segments are provided as predicates. Suppose the query is
“Find the video segments which are in ‘LongAxisView’”. The
VQL query is as follows.

select k1 from vdb where k1.ViewType = LongAxisView
State Query: This type of query can be used to re-

trieve state/ sub-state information about objects in video.
Query like “Find the video segments where ‘LeftVentricle’ is
in ‘Systole’ state” is expressed as follows.

select k1 from vdb where o1 in k1 and o1.ObjectName =
LeftVentricle and o1.StateName = Systole

Event Query: Event query is specified using EventName
as predicate. We can express the query “Find the video seg-
ments which start after frame number 52 and where ‘Left-
Ventricle’ is ‘Contracting’” as follows.

select k1 from vdb where o1 in k1 and o1.ObjectName =
LeftVentricle and o1.StateEvent = Contracting and
k1.StartFrame > 52

Spatial/ Positional Query: This type of query is used
to retrieve positional information about objects in video. A
query such as“Find the video segments where ‘LeftVentricle’
is on the left of the ‘RightVentricle’” is expressed as follows.

select k1 from vdb where o1, o2 in k1 and o1.ObjectName
= LeftVentricle and o2.ObjectName = RightVentricle and

Left(o1, o2)
Aggregate Query: In this type of query the above-

mentioned aggregate functions can be used to retrieve statis-
tical data about objects and states in Echocardiogram video.
Suppose user wants to“Count the number of video segments
which starts before frame number 100 and where the object
‘LeftVentricle’ is in ‘Diastole’ state”. This can be expressed
in VQL as follows.

select k1, Count(k1) from vdb where o1 in k1 and
o1.ObjectName = LeftVentricle and OccursBefore(o1.Diastole,
k1, 100)

User can specify a compound query using any combination
of the above types of conditions in this video query language.

3.3.2 Query Processing
The main job of query processing module is to convert the

queries composed in the proposed video query language into
the query language provided by commercial database sys-
tems. The query processing is carried out in three phases,
namely, query specification, query translation and query ex-
ecution.

Query Specification:
Suppose the query is “Find all the video segments in ‘lon-

gAxisView’ which start after frame number 50 and end be-
fore frame number 150 and where ‘LeftVentricle’ is contract-
ing”. The corresponding VQL query is

select k1 from vdb where o1 in k1 and o1.ObjectName =
LeftVentricle and o1.StateEvent = Contracting
and k1.StartFrame > 50 and k1.EndFrame < 150 and
k1.ViewType = LongAxisView

Query Translation: Once a query is submitted to the
system, a lexer partitions the query into tokens and passes
them to the parser. The latter then parses the VQL query
and creates its parse tree. In the next phase, the parse tree is
traversed for converting it into SQL query to be presented
to the backend video database. The lexical analyzer and
parser were implemented in JACK, a Java parser generator
that works under Windows operating system. The above
query is translated into SQL for a given database schema as
follows.

select * from EchoState where ObjectName = ‘LeftVen-
tricle’ and StateName in (select StateName from Object-
State where ObjectName = ‘LeftVentricle’ and StateEvent =
‘Contracting’) and ViewType = ‘longAxisView’ and Start-
Frame > 50 and Endframe < 150

Query Execution: The query interface is connected
to the backend database using Open Database Connection
(ODBC) layer. Retrieved datasets are presented on the in-
terface that can be displayed when selected. Figure 5(a)
shows a typical set of video segments retrieved as a result
of the above query. These segments can be played one after
another as shown in Figure 5(b).

4. IMPLEMENTATION DETAILS
We captured the test video data from the Quadra Diag-

nostic Center located in Kolkata, India. Videos were cap-
tured using GE VIVID4 ultrasound system with TruScan
architecture. The ‘5S’ probe was used with an operating
frequency range of 2-5 MHz and multiple focal control tech-
nology. The audio/ video output from the machine was cap-
tured by a Dazzle Digital Video Converter 150 (DVC 150)
card from Pinnacle Systems with frame rate of 30 frames
per second.

257

The system was evaluated with the help of a cardiolo-
gist and a physician. The video processing routines were
tested on twenty test videos. The echo videos were played
at a reduced speed on a workstation to the experts for ease
of identification. Experts evaluated the frames as a whole
based on the content and annotated the frames with cor-
responding view, state and sub-state. The annotation was
done independently by the two experts and cross-checked.
This was used as the ground truth while computing the ac-
curacy of our system. The view boundary detection and
classification technique gives 97.19% accuracy. Misclassifi-
cation error of the state detection routine is less than 13%.

5. CONCLUSIONS
We have proposed a method that comprises of several nov-

elties as summarized here. Firstly, an efficient algorithm
is used for automated detection and classification of view
boundaries in an echo video. Secondly, novel state and sub-
state based segmentation technique is used to index echo
videos. It is the first approach in extracting sub-states from
echo video to the best of our knowledge. This approach
uses M-modes (color) for its high temporal resolution. This
method can be used indirectly to detect the abnormalities
of heart from the absence of proper color bars in the color
M-mode. However, sub-state detection is done only from
color flow doppler 2-D echocardiogram video. The work
may be extended for detecting sub-states from general echo
video. Thirdly, a new SQL like video query language has
been proposed for retrieving video segments depending on
users’ query. This language is flexible enough in forming
queries by any non-expert user.

All the analysis and modeling of echo video in current
work (also in existing literature) involved extraction of visual
features only. However, the audio associated with echocar-
diogram video also provides important information about
patient status. So, audio may be used to extract informa-
tion about dynamics of heart. Finding relationships between
audio and video features is a promising avenue for research.
We plan to include it in our future implementation.

6. ACKNOWLEDGEMENTS
The authors would like to thank Dr. P. P. Bhattacharya,

Dr. D. Dasgupta and Dr. D. Goswami for helping us in
capturing and annotating the echocardiogram videos. This
work is supported by the project grant 1(23)/2006- ME and
TMD, Dt. 07/03/2007 sponsored by the Ministry of Com-
munication and Information Technology, Govt. of India.

7. REFERENCES
[1] S. Ebadollahi, S. F. Chang, H. Wu, and S. Takoma.

Echocardiogram video summarization. In SPIE MI
4325, pages 492–501, 2001.

[2] S. Ebadollahi, S. F. Chang, and H. Wu.
Echocardiogram videos: summarization, temporal
segmentation and browsing. In IEEE Int. Conf. on
Image Process., 1:613-616, 2002.

[3] S. Ebadollahi, S. F. Chang, and H. Wu. Automatic
view recognition in echocardiogram videos using
parts-based representation. In IEEE Comp. Society
Conf. on Comp. Vision and Pattern Recog., 2:2-9, 2004.

[4] S. Kevin, J. H. Park, B. Georgescu, C. Simopoulos,
J. Otsuki, and D. Comaniciu. Image-based multiclass

boosting and echocardiographic view classification. In
IEEE Comp. Soci. Conf. on Comp. Vision and Pattern
Recog., 2:1559-1565, 2006.

[5] B. Acharya, J. Mukherjee, and A. K. Majumdar.
Modeling dynamic objects in databases: a logic based
approach. LNCS 2224, Springer Verlag, pages 449-512,
2001.

[6] S. Ebadollahi, S. F. Chang, and H. Wu. Modeling the
Activity Pattern of the Constellation of Cardiac
Chambers in Echocardiogram Videos. In Comp. Vision
Appr.s to Med. Imag. Anal., (LNCS 4241, Springer
Verlag, pages 202-213, 2006.

[7] E. Oomoto and K. Tanaka. OVID: Design and
implementation of a video-object database system.
IEEE Trans. on Knowledge and Data Engg.,
5(4):629-643, 1993.

[8] W. W. Chu, A. F. Cárdenas, and R. K. Taira. KMeD:
A knowledge-based multimedia medical distributed
database system. Information Science, 80(2):75-96,
1995.

[9] E. Hwang and V. Subrahmanian. Querying video
libraries. Journal of Visual Communication and Image
Representation, 7(1):44-60, 1996.

[10] M. Koprulu, N. K. Cicekli, and A. Yazici.
Spatio-temporal querying in video databases.
Information Science, 160(1-4):131-152, 2004.

[11] S. F. Chang, W. Chen, H. J. Meng, H. Sundaram, and
D. Zhong. VideoQ: An automated content based video
search system using visual cues. In ACM Multimedia,
pages 313-324, 1997.

[12] T. Kuo and A. Chen. A Content-based query language
for video databases. In IEEE Int. Conf. on Multimedia
Computing and Systems, pages 209-214, 1996.

[13] M. Petkovic and W. Jonker. Content-based video
retrieval: A database perspective. Kluwer Academic
Publishers, 2003.

[14] M. S. Hacid, C. Decleir, and V. Kouloumdjian. A
database approach for modeling and querying video
data. IEEE Trans. on Knowledge and Data Engg.,
12(5):729-750, 2000.

[15] M. O. Donderler, O. Ulusoy, and U. Gudukbay.
Rule-based spatiotemporal query processing for video
databases. Int. Journal on Very Large Data Bases,
13(1):86-103, 2004.

[16] O. Kucuktunc, U. Gudukbay, and O. Ulusoy. A
natural language-based interface for querying a video
database. IEEE Multimedia, 14(1):83-89,2007.

[17] B. Acharya, A. K. Majumdar, and J. Mukherjee.
Video model for dynamic objects. Inf. Science,
176(17):2567-2602, 2006.

[18] S. Shermann, M. Chan, L. Qing, Z. Wu, and
Z. Zhuang. Accommodating hybrid retrieval in a
comprehensive video database management system.
IEEE Trans. on Multimedia, 4(2):146-159, 2002.

[19] C. G. M. Snoek and M. Worring. Multimedia event
based video indexing using time intervals. IEEE Trans.
on Multimedia, 7(4):638-647, 2005.

[20] A. Roy, S. Sural, J. Mukherjee, and A. K. Majumdar.
State based modeling and object extraction from
echocardiogram video. IEEE Trans. on IT in
Biomedicine, 12(3):366-376, 2008.

258

