Ramona Zwamborn

Ramona Zwamborn
University Medical Center Utrecht | UMC Utrecht · Brain Center Rudolf Magnus

Master of Science
Studying ALS (epi)genetics

About

25
Publications
6,420
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
809
Citations

Publications

Publications (25)
Article
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including geneti...
Article
Full-text available
With the advent of gene therapies for amyotrophic lateral sclerosis, there is a surge in gene testing for ALS. Although there is ample experience with gene testing for C9orf72, SOD1, FUS and TARDBP in familial ALS, large studies exploring genetic variation in all ALS-associated genes in sporadic ALS (sALS) are still scarce. Gene testing in a diagno...
Article
Full-text available
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more...
Article
Full-text available
Background Expansions of short tandem repeats are the cause of many neurogenetic disorders including familial amyotrophic lateral sclerosis, Huntington disease, and many others. Multiple methods have been recently developed that can identify repeat expansions in whole genome or exome sequencing data. Despite the widely recognized need for visual as...
Preprint
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Selective vulnerability of energy-intensive motor neurons (MNs) has fostered speculation that mitochondrial function is a determinant of ALS. Previously, the position of mitochondrial function in the pathogenic cascade leading to neurotoxicity has been unclear. We separated u...
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide a...
Article
Full-text available
There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwi...
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 indi...
Preprint
Full-text available
Background Expansions of short tandem repeats are the cause of many neurogenetic disorders including familial amyotrophic lateral sclerosis, Huntington disease, and many others. Multiple methods have been recently developed that can identify repeat expansions in whole genome or exome sequencing data. Despite the widely-recognized need for visual as...
Article
Full-text available
Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We...
Article
Full-text available
Background People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and th...
Preprint
Full-text available
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability of around 50%. DNA methylation patterns can serve as biomarkers of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide ass...
Preprint
Full-text available
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a life-time risk of 1 in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry GWAS in ALS including 29,612 ALS patients and 122,656 controls which identified 15 risk loci in ALS. When combined with 8,953 whole-genome sequenced indivi...
Preprint
Full-text available
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a life-time risk of 1 in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry GWAS in ALS including 29,612 ALS patients and 122,656 controls which identified 15 risk loci in ALS. When combined with 8,953 whole-genome sequenced indivi...
Article
Full-text available
Objective The role of Survival of Motor Neuron gene (SMN) in Amyotrophic lateral sclerosis (ALS) is unclear, with several conflicting reports. A decisive result on this topic is needed, given that treatment options are available now for SMN deficiency. Methods In this largest multicentre case control study to evaluate the effect of SMN1 and SMN2 c...
Article
Full-text available
Illumina DNA methylation arrays are a widely used tool for performing genome-wide DNA methylation analyses. However, measurements obtained from these arrays may be affected by technical artefacts that result in spurious associations if left unchecked. Cross-reactivity represents one of the major challenges, meaning that probes may map to multiple r...
Article
Full-text available
Prenatal exposure to infectious and/or inflammatory insults is increasingly recognized to contribute to the etiology of psychiatric disorders with neurodevelopmental components. Recent research using animal models suggests that maternal immune activation (MIA) can induce transgenerational effects on brain and behavior, possibly through epigenetic m...
Preprint
Full-text available
Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. Here we describe results of DNA methylation-quantitative trait loci (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We presen...
Article
Full-text available
We conducted DNA methylation association analyses using Illumina 450K data from whole blood for an Australian amyotrophic lateral sclerosis (ALS) case–control cohort (782 cases and 613 controls). Analyses used mixed linear models as implemented in the OSCA software. We found a significantly higher proportion of neutrophils in cases compared to cont...
Chapter
The Wnt signaling pathway has been recognized as an important pathway, extending its function throughout the lifespan. Evidence suggests that dysfunctional Wnt signaling in the adult brain leads to aberrant neurogenesis, synaptogenesis, modulation of mature synapses and neurotransmitter release in the hippocampus. Due to the involvement of Wnt prot...
Article
Full-text available
High-fat diets (HFD) are thought to contribute to the development of metabolism-related diseases. The long-term impact of HFD may be mediated by epigenetic mechanisms, and indeed, HFD has been reported to induce DNA methylation changes in white adipose tissue (WAT) near metabolism related genes. However, previous studies were limited to a single WA...

Network

Cited By