ArticlePDF Available

Chemical Constituents from Leaves of Crinum asiaticum var. sinicum and Their Anti-inflammatory Activities

Authors:

Abstract

This paper reported the chemical constituents and anti-inflammatory activities of leaves of Crinum asiaticum var. sinicum, an herb for treatment of rheumatoid arthritis in Xishuangbanna Dai medicine. Thirteen compounds were isolated and purified from C. asiaticum var. sinicum by using column chromatography and identified by chemical and spectral analyses. Their structures were elucidated as 7,4'-dihydroxyflavan (1), 7,4'-dihydroxy-8-methyl-flavan (2), farrerol (3), stigmast-4-ene-3β,6β-diol (4), byzantionoside B (5), daucosterol+stigmasterol-3-O-glucopyranoside (6), (6R,9R)-3-oxo-α-ionol-9-O-β-D-glucopyranoside (7),5-hydroxy-6,7-methylenedioxy-2-methylchromone (8), n-butyl-β-D-fructopyranoside (9), stigmasterol (10), which compounds 2-8 were obtained from this plant for the first time. Extracts from leaves of C. asiaticum var. sinicum showed significant NO inhibitory activities, i.e. anti-inflammatory activities, as well as compounds 7,4'-dihydroxy-8-methyl-flavan (2), farrerol (3), which enriched the study of C. asiaticum var. sinicum and will be conducive to the exploiting of its medicinal value.
天然产物研究与开发
Natural Product Research and Development
ISSN 1001-6880,CN 51-1335/Q
《天然产物研究与开发》网络首发论文
题目: 文殊兰叶子化学成分及抗炎活性研究
作者: 王昕,范青飞,周兰,毛鹏伟,张玉梅,宋启示
收稿日期: 2018-03-09
网络首发日期: 2018-06-03
引用格式: 王昕,范青飞,周兰,毛鹏伟,张玉梅,宋启示.文殊兰叶子化学成分及抗
炎活性研究.天然产物研究与开发.
http://kns.cnki.net/kcms/detail/51.1335.Q.20180531.1426.010.html
网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶
段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期
刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出
版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出
版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编
辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、
出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。
为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,
只可基于编辑规范进行少量文字的修改。
出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国
学术期刊(网络版)出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷
出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出
版广电总局批准的网络连续型出版物(ISSN 2096-4188CN 11-6037/Z,所以签约期刊的网络版上网络首
发论文视为正式出版。
文殊兰叶子化学成分及抗炎活性研究
王昕1, 2,范青飞 1,周兰 1, 2,毛鹏伟 3,张玉梅 1,宋启示 1*
1中国科学院西双版纳热带植物园 热带植物资源可持续利用重点实验室,昆明 650223
2中国科学院大学,
北京 100049,
3普洱学院,云南普洱 665000
要:本文对西双版纳傣药痹通剂的配方植物文殊兰的叶子进行了化学成分分离以及抗炎活性研究。通
过色谱柱分离纯化,从文殊兰叶子的甲醇提取物中分离得到 13 个化合物,并运用现代波谱学技术分别鉴定
为:7,4'-二羟基黄烷17,4'-二羟基-8-甲基黄烷2杜鹃素3stigmast-4-ene-3β,6β-diol4byzantionoside
B5daucosterol+stigmasterol-3-O-glucopyranoside66R,9R-3-oxo-α-ionol-9-O-β-D-glucopyranoside
75-hydroxy-6,7-methylenedioxy-2-methylchromone8、正丁基吡喃果糖苷(9、豆甾醇(10、豆甾
醇苷(11β-谷甾醇12、胡萝卜苷13,其中化合物 2~ 8 为首次从该植物中分离得到。文殊兰叶子提
取物具有显著的 NO 抑制活性,即显著的抗炎活性,本次实验分离得到的化合物 7,4'-二羟基-8-甲基黄烷2
和杜鹃素3具有一定的抗炎活性,在一定程度上丰富了傣药文殊兰的化学成分研究,有利于进一步开发
其药用价值。
关键词:文殊兰;化学成分;结构鉴定;抗炎活性
中图分类号:R932Q94 文献标识码:A
Chemical Constituents from Leaves of Crinum asiaticum
var. sinicum and Their Anti-inflammatory Activities
WAN G X in 1, 2, FAN Qingfei1, ZHOU Lan1, 2, MAO Pengwei3, ZHANG Yumei1,
SONG Qishi1*
1 Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden,
Chinese Academy of Sciences, Kunming 650223; 2University of Chinese Academy of Sciences, Beijing 100049,
China; 3 Puer University, Puer 665000, China
Abstract: This paper reported the chemical constituents and anti-inflammatory activities of leaves of Crinum
asiaticum var. sinicum, an herb for treatment of rheumatoid arthritis in Xishuangbanna Dai medicine. Thirteen
compounds were isolated and purified from C. asiaticum var. sinicum by using column chromatography and
identified by chemical and spectral analyses. Their structures were elucidated as 7,4'-dihydroxyflavan (1),
7,4'-dihydroxy-8-methyl-flavan (2), farrerol (3), stigmast-4-ene-3β,6β-diol (4), byzantionoside B (5),
daucosterol+stigmasterol-3-O-glucopyranoside (6), (6R,9R)-3-oxo-α-ionol-9-O-β-D-glucopyranoside (7),
网络首发时间:2018-06-03 13:49:55
网络首发地址:http://kns.cnki.net/kcms/detail/51.1335.Q.20180531.1426.010.html
5-hydroxy-6,7-methylenedioxy-2-methylchromone (8), n-butyl-β-D-fructopyranoside (9), stigmasterol (10),
stigmasterol-3-O-β-D- fructopyranoside (11), β-sitosterol (12), daucosterol (13), among which compounds 2-8
were obtained from this plant for the first time. Extracts from leaves of C. asiaticum var. sinicum showed
significant NO inhibitory activities, i.e. anti-inflammatory activities, as well as compounds
7,4'-dihydroxy-8-methyl-flavan (2), farrerol (3), which enriched the study of C. asiaticum var. sinicum and will be
conducive to the exploiting of its medicinal value.
Key words: Crinum asiaticum var. sinicum; chemical constituents; structural identification; anti-inflammatory
activities
我国的天然药用植物资源丰富,生物活性多种多样,石蒜科植物富含具有抗炎作用的生
物碱等化合物[1]文殊兰Crinum asiaticum L.var.sinicum Baker为石蒜科Amaryllidaceae
文殊兰属(Crinum)多年生粗壮草本植物,原产于印度尼西亚、答门答腊等地,在中国主
要栽培在南方的热带和亚热带省份地区[2, 3]。目前对文殊兰的研究集中在鳞茎及全株,从中
分离得到的化学成分主要有生物碱类、黄酮类、酚类、脂肪酸类、酰胺类、甾醇类和多糖类,
对文殊兰的生物活性研究主要集中在抗肿瘤、抗菌、抗病毒以及心血管等方面[4, 5]
文殊兰作为一味治疗风湿的傣药,是傣药痹通剂的配方药物之一,因需求量较大所以
选取叶片部位,对其抗炎成分的研究可部分阐明傣药痹通剂的药效成分和药理,为其深度
开发利用提供科学依据。因此本研究以生长在中国云南省西双版纳傣族自治州勐腊县勐仑镇
的文殊兰为研究对象,对其化学成分及抗炎活性进行研究,分离鉴定了 13 个化合物。分别
7,4'-二羟基黄烷17,4'-二羟基-8-甲基黄烷2杜鹃素3stigmast-4-ene-3β,6β-diol
4byzantionoside B5daucosterol+stigmasterol-3-O-glucopyranoside6
(6R,9R)-3-oxo-α-ionol-9-O-β-D-glucopyranoside7
5-hydroxy-6,7-methylenedioxy-2-methylchromone8正丁基吡喃果糖苷9豆甾醇10
豆甾醇苷(11、谷甾醇(12β-胡萝卜苷(13。其中化合物 2-8 为首次从该植物中分离
得到。
1 仪器与试剂
核磁共振谱用 Bruker AV-400 DRX-500 Avance-600 超导核磁共振仪测定,TMS 为内
标;EI-MS Waters AutoSpecPremier P776 双聚焦三扇形磁质谱仪测定;柱层析硅胶80~100
目、200~300 目)及薄板层析硅胶(GF-254)均为青岛海洋化工厂生产;MCI gelMiddle
Chromatogram Isolation gel为日本三菱化学株式会社生产;凝胶材料使用 GE Healthcare
Sephadex LH-20所用有机试剂均为分析纯。小鼠单核巨噬细胞 RAW264.7 购自中科院上海
细胞库,DMEM 培养基和胎牛血清购自 BI 公司。Griess ReagentLPS 及对照药物 L-NMMA
L-甲基精氨酸)购自 Sigma 公司。
2 材料与方法
文殊兰(Crinum asiaticum L.var.sinicum Baker)叶子于 2016 9月采于云南省西双版
纳傣族自治州勐腊县勐仑镇中国科学院西双版纳热带植物园,并由中国科学院西双版纳热带
植物园宋启示研究员鉴定,标本存放于中国科学院西双版纳热带植物园民族药研究组实验室。
2.1 提取与分离
将文殊兰叶子晒干,粉碎,称重得 7 kg。用 90%甲醇于室温提取 3次( 3 d3 d3 d
合并提取液,减压浓缩,制成醇浸膏。醇浸膏用水搅拌溶解稀释后,依次用石油醚、乙酸乙
酯、正丁醇萃取,每种溶剂萃取三次,得到石油醚萃取物 62.46g,乙酸乙酯萃取物 88.49g
正丁醇萃取物 112.15g。石油醚部分经硅胶柱(200~300 目),以石油醚-丙酮(V石油醚/ V 丙酮
=20:110:15:13:11:10:1)梯度洗脱,得到 A1~A6 六个组分;A1 经反复硅胶柱层
析,MCI Sephadex LH-20 纯化,得到化合物 1020 mg1218 mgA2 经反复硅胶
柱层析,MCI Sephadex LH-20 纯化,得到化合物 34.4 mg117.2 mgA3 经反复
硅胶柱层析,MCI Sephadex LH-20 纯化,得到化合物 13.6 mg28 mg。乙酸乙酯
部分经硅胶柱(200~300 目)分离,以氯仿-甲醇(V氯仿/V 甲醇=100:050120:110:1
5:13:11:10:100)梯度洗脱,得到 B1~B8 八个组分;B2 经反复硅胶柱层析,MCI
Sephadex LH-20 纯化,得到化合物 1330 mgB3 经反复硅胶柱层析,MCI Sephadex LH-20
纯化,得到化合物 45.7 mg64.4 mg76.5 mg81.4 mg。正丁醇部分上大孔
树脂分段,分别以体积分数为 30%60%90%100%比例的甲醇/水溶液梯度洗脱得到四
个组分C1~C4C1 经反复硅胶柱层析,MCI Sephadex LH-20 纯化,得到化合物 57.3
mg98 mg
2.2 活性测试
RAW264.7 细胞接种至 96 孔板,用 1 μg/mL LPS 进行诱导刺激,同时加入待测化合
(终浓度 25 μM处理,设置不含药物组和 L-NMMA 阳性药物组(浓度 50 μM)做 对 照 。
细胞过夜培养后取培养基检测 NO 生成,在 570 nm 处测定吸光值[6]。在剩余培养基中加入
MTS 进行细胞存活率检测,排除化合物对细胞的毒性影响。
NO 生成抑制率%=(非药物处理组 OD570 nm- 样品组 OD570 nm/非药物处理组 OD570 nm ×
100%
IC5050 concentration of inhibition)按 ReedMuench 法计算。
3 结构鉴定
化合物 1 淡黄色粉末(Methanol-d4mp.315-323ESI-MS m/z:255.3 处给出
[M+H]+峰,结合 1H -NMR 13C-NMR 谱推断化合物分子式为:C15H10O41H -NMR
Methanol-d4500MHzδ7.212HdJ=8.4 HzH-2'6'6.841HdJ=8.2 Hz
H-56.762HdJ=8.4 HzH-3'5'6.291HddJ=8.22.2 HzH-66.231H
dJ=2.2 HzH-84.861HsH-22.821HmH-4a2.641HmH-3b
2.091HmH-3a1.941HmH-3b13C-NMRMethanol-d4125MHzδ158.16
C-7157.58C-4'157.2C-8a134.25C-1'130.94C-5128.45C-2'6'
116.07C-3'5'114.27C-4a109.08C-6104.05C-879.03C-231.35C-3
25.51C-411.56C-CH3。其光谱数据与文献报道[7]基本一致,故确定化合物 17,4'-
二羟基黄烷。
化合物 2 淡黄色粉末(Methanol-d4mp.311-327ESI-MS m/z:257.3 处给出
[M+H]+峰,结合 1H -NMR 13C-NMR 谱推断化合物分子式为:C16H16O31H -NMR
Methanol-d4500MHzδ7.232HdJ=8.4 HzH-2'6'6.772HdJ=8.4 Hz
H-3'5'6.671HdJ=8.2 HzH-56.321HdJ=8.2 HzH-62.861Hm
H-4a2.661HmH-4b2.101HmH-3a1.911HmH-3b
13C-NMRMethanol-d4
125MHzδ157.93C-4'155.14C-7155.01C-8a134.73C-1'128.15C-2'
6'127.25C-5116.03C-3'5'114.0C-8112.69C-5108.27C-678.74
C-231.4C-325.86C-48.48C-CH3。其光谱数据与文献报道[7]基本一致,故
确定化合物 27,4'-二羟基-8-甲基黄烷。
化合物 3 白色粉末Methanol-d4mp.229-232ESI-MS m/z:299 处给出[M+H]
峰,结合 1H -NMR 13C-NMR 谱推断化合物分子式为:C17H16O5
1H -NMRMethanol-d4
500MHzδ7.332HdJ=8.4 HzH-2'6'6.822HdJ=8.4 HzH-3'5'5.32
1HddJ=12.82.4 HzH-23.061HddJ=16.812.8 HzH-3a2.731H
ddJ=17.22.8 HzH-3b2.003Hs6-CH31.993Hs8-CH3
13C-NMRMethanol-d4
125MHzδ198.44C-4164.14C-9160.3C-5159.34C-7158.87C-4'
131.51C-1'128.82C-2'6'116.30C-3'5'104.74C-6104.04C-10103.24
C-880.10C-244.13C-38.16-CH37.398-CH3。其光谱数据与文献报道
[8]基本一致,故确定化合物 3为杜鹃素。
化合物 4 无色针晶Pyridine-d5mp.306-307ESI-MS m/z:430 处给出[M+Na]+
峰,结合 1H -NMR 13C-NMR 谱推断化合物分子式为:C29H50O2
1H -NMRPyridine-d5
500MHzδ5.631Hbr sH-44.531Hbr sH-84.161Hbr sH-61.24
3HsH-190.893HdJ=6.7 HzH-270.833HdJ=6.7 HzH-260.80
3HtJ=6.9 HzH-290.693HsH-1813C-NMRPyridine-d5125MHzδ
147.17C-5129.92C-473.68C-367.50C-656.53C-1756.45C-14
55.05C-942.86C-1340.64C-1240.24C-737.73C-137.35C-1036.51
C-2034.26C-2230.97C-830.08C-229.51C-2528.62C-1626.44
C-2324.64C-1521.69C-1921.39C-1120.01C-2619.23C-2719.02
C-2112.21C-18。其光谱数据与文献报道[9]基本一致,故确定化合物 4
stigmast-4-ene-3β,6β-diol
化合物 5 无定型粉末(Methanol-d4mp.213-214ESI-MS m/z:395.2 处给出
[M+Na]+峰,结合 1H -NMR 13C-NMR 谱推断化合物分子式为:C19H32O71H -NMR
Methanol-d4600MHzδ1.001.08each 3HsH3-11H3-121.183HdJ=6.4
HzH3-101.481Hm1.662Hm1.962Hm1.981HdJ=17.6 Hz
H1-22.043HdJ=1.5 Hz2.451HdJ=17.6 Hz3.141HddJ=8.87.8 Hz
H-2'3.651HddJ=11.75.4 HzH-1-6'3.862HH-9H-1-6'4.341Hd
J=7.8 HzH-1'5.811Hbr sH-4
13C-NMRMethanol-d4150MHzδ202.87C-3
170.66C-5125.26C-4102.04C-1'78.05C-3'77.76C-5'75.73C-2'
75.07C-971.71C-4'62.79C-6'52.33C-647.99C-237.68C-837.27
C-129.01C-1227.47C-1126.76C-725.02C-1319.79C-10。其光
谱数据与文献报道[10]基本一致,故确定化合物 5byzantionoside B
化合物 6 白色颗粒状固体(Pyridine-d51H -NMRPyridine-d5500MHzδ5.34
br sH-65.05dJ=7.6 HzH-1'4.29-4.58H-3 及葡萄糖上其他质子)13C-NMR
Pyr125MHzδ37.53C-130.31C-278.69C-339.39C-4140.95C-5
121.99C-632.23C-732.10C-850.38C-936.98C-1021.3321.53C-11
40.8639.99C-1242.5342.39C-1356.2856.10C-1424.56C-1528.6
29.39C-1656.8756.96C-1712.21C-1819.25C-1936.4540.86C-20
19.0621.33C-2134.25138.90C-2223.43129.50C-2346.0851.48C-24
29.4925.77C-2520.0419.25C-2612.0321.53C-2729.4925.77C-28
19.4812.59C-29102.63C-1'75.42C-2'
78.59C-3'71.74C-4'78.12C-5'
62.89C-6'其光谱数据与文献报道[11]基本一致,故确定化合物 6为胡萝卜苷和豆甾醇-3-O-
葡萄糖苷约 21的混合物(daucosterol+stigmasterol-3-O-glucopyranoside
化合物 7 白色粉末Methanol-d4mp.201-203ESI-MS m/z:409 处给出[M+Na]+
峰,结合 1H -NMR 13C-NMR 谱推断化合物分子式为 C19H30O8
1
H -NMRMethanol-d4
800MHzδ5.87br sH-45.75ddJ=15.36.0 HzH-85.62ddJ=15.58.4 Hz
H-74.39-4.45mH-94.34dJ=7.6 HzH-1'3.81ddJ=11.72.0 HzH-6'α
3.64ddJ=11.74.9 HzH-6'β2.68dJ=8.4 HzH-62.41dJ=16.7 HzH-2β
2.03dJ=16.7 HzH-2α1.93dJ=1.1 HzH-131.29dJ=6.3 HzH-101.02
sH-111.00sH-1213C-NMRMethanol-d4200MHzδ202.0C-3165.76
C-5138.23C-8128.85C-7126.13C-4102.46C-1'78.10C-3'77.99
C-5'76.99C-975.27C-2'71.51C-4'62.69C-6'56.78C-637.07C-1
28.05C-1227.60C-1123.77C-1321.03C-10。其光谱数据与文献报道[12]
本一致,故确定化合物 7 (6R,9R)-3-oxo-α-ionol-9-O-β-D-glucopyranoside
化合物 8 无色针晶(CDCl3mp.172-176ESI-MS m/z:251 处给出[M+Na]+峰,
结合 1H -NMR 13C-NMR 谱推断化合物化学式为:C12H12O5
1H -NMRCDCl3500MHz
δ12.88sH-OH-5b6.55sH-86.02sH-OCH2O6.02sH-32.38s
H-CH3-213C-NMRCDCl3125MHzδ183.40C-4166.69C-2152.94C-7
151.45C-8a149.61C-5130.47C-6108.14C-3105.23C-4a101.75C-OCH2O
75.60C-820.55C-CH3-2。其光谱数据与文献报道[13]基本一致,故确定化合物 8
5-hydroxy-6,7-methylenedioxy-2-methylchromone
化合物 9 白色针晶Methanol-d4mp.150-152ESI-MS m/z:235 处给出[MH]
峰,结合 1H -NMR 13C-NMR 谱推断化合物化学式为:C10H20O6
1H -NMRMethanol-d4
500MHzδ3.881HdJ= 9.8 HzH-3'3.811HmH-5'3.752HddJ=1.7
11.4 HzH-4'6'3.702HtJ=11.0 HzH-1'3.611HddJ=1.711.4 HzH-6'
3.312HmH-11.552HmH-21.432HmH-30.913HtJ=7.3 Hz
H-413C-NMRMethanol-d4125MHzδ109.83C-2'84.18C-4'83.45C-5'
62.98C-6'62.01C-1'61.91C-133.58C-220.62C-3。其光谱数据与文献
报道[14]基本一致,故确定化合物 9为正丁基吡喃果糖苷。
化合物 10 白色片状结晶(氯仿)mp.169~170,分子式为 C29H48O。用两种不同的
溶剂系统展开,与豆甾醇对照品色谱相应的位置上,显相同的紫红色斑点10%硫酸加热显
色),且与标准品混合熔点不下降,因此确定化合物 10 为豆甾醇(stigmasterol
化合物 11 白色粉末状固体(Pyridine-d5mp.161~170ESI-MS m/z:574 处给
[M+Na]+峰,结合 1H -NMR 13C-NMR 谱推断化合物分子式为:C35H58O61H -NMR
Pyridine-d5500MHzδ5.411HtJ=2.5 HzH-65.241HddJ=8.815.0 Hz
H-225.101HddJ=8.815.0 HzH-235.011HdJ=8.0 Hz4.02-4.576H
H-2'3'4'5'6'3.891HmH-31.083HdJ=6.54 HzH-210.903H
sH-190.863HdJ=6.4 HzH-280.813HtJ=8.0 HzH-270.803Hd
J=7.0 HzH-290.703HsH-1813C-NMRPyridine-d5125MHzδ141.13C-5
138.77C-22129.56C-23121.14C-679.55C-357.0C-1455.91C-17
51.61C-2450.43C-943.17C-1340.82C-2039.76C-1239.54C-4
37.53C-136.88C-1032.14C-831.91C-72531.18C-228.93C-16
24.60C-1521.73C-112121.28C-2819.99C-1919.19C-2618.78C-29
12.43C-1812.29C-273-O-β-D-Glu103.37C-179.13C-378.87C-5
76.03C-272.65C-463.76C-6。其光谱数据与文献报道[15]基本一致,故确定化合
11 为豆甾醇-3-O-β-D-吡喃葡萄糖苷。
化合物 12 无色针晶(氯仿)mp.136~140分子式为 C29H50O。其 1H -NMR 13C-
NMR 图谱与谷甾醇的标准图谱完全一致。同时用两种不同的溶剂系统展开,在与对照品色
谱相应的位置上,显相同的紫红色斑点10%硫酸加热显色)因此确定化合物 12 为谷甾醇。
化合物 13 白色粉末(氯仿)mp.283~284,分子式为 C35H60O6。其 1H- NMR
13C-NMR 图谱与 β-胡萝卜苷的标准图谱完全一致,TLC 上的斑点位置及显色与 β-胡萝卜苷
标准品的相同,且与标准品混合熔点不下降,所以确定化合物 13 β-胡萝卜苷。
4 抗炎活性实验结果
甲醇总提取物及其石油醚、乙酸乙酯和正丁醇萃取物都表现出显著的 NO 生成抑制效果
(图 1。石油醚萃取物为小级性化合物,乙酸乙酯萃取物为中等极性化合物,正丁醇萃取
物为大极性化合物。在浓度 5μg/ml,石油醚萃取物未表现出显著的 NO 抑制活性,而乙酸
乙酯和正丁醇萃取物均有显著 NO 抑制活性;在浓度 10-80μg/ml石油醚、乙酸乙酯和正丁
醇萃取物都表现出显著的 NO 抑制活性。结果表明文殊兰叶提取物中,大、中、小极性化合
物都有 NO 抑制活性,其中小极性化合物的活性稍弱。石油醚萃取物和乙酸乙酯萃取物对
NO 的生成有极其显著的抑制效果,在 5-40 μg/ml 的浓度梯度下 NO 的生成抑制活性具有剂
量依赖性(***P < 0.001,图 1AC。正丁醇萃取物(图 1B)在浓度 5-20 μg/ml 范围内呈
现出比阳性对照显著的 NO 抑制效果,表现了极其显著的 NO 生成抑制活性。甲醇总提取物
(图 1D)在 5-80 μg/ml 浓度范围内抑制 NO 生成的作用显著。
8个分离得到的单体化合物的 NO 生成抑制率见表 1。检测的 8个单体化合物中化合物
7,4'-二羟基-8-甲基黄烷和杜鹃素对 NO 的生成有一定的抑制效果。
1 LPS 刺激 RAW264.7 细胞下文殊兰提取物对 NO 产生的抑制效果
Fig.1 The inhibitory effect of Crinum asiaticum var. sinicum extracts under RAW264.7 cells stimulated by LPS
注:A:石油醚萃取物 B:正丁醇萃取物 C:乙酸乙酯萃取物 D:甲醇总提取物 LPS: 脂多糖 L-NMMA浓度:50μM
Note: A: petroleum ether extract B: n-butyl alcohol extract C: ethyl acetate extract D: methanol extract LPS: Lipopolysaccharides
L-NMMA: 50μM
1 文殊兰单体化合物的 NO 生成抑制率
Table 1 Inhibitory ratio on NO production of compounds from Crinum asiaticum var. sinicum
单体化合物
Compounds
浓度(μM
Concn. (μM)
NO生成抑制率(%
Inhibitory ratio on NO production
L-NMMA 50 53.31±1.73
7,4'-二羟基黄烷 7,4'-dihydroxyflavan 25 -1.03±2.38
7,4'-二羟基-8-甲基黄烷 7,4'-dihydroxy-8-methyl-flavan 25 4.79±1.93
杜鹃素 farrerol 25 12.99±0.97
stigmast-4-ene-3β,6β-diol 25 -2.32±1.04
byzantionoside B 25 -1.89±1.62
daucosterol+stigmasterol-3-O-glucopyranoside 25 -8.95±0.57
(6R,9R)-3-oxo-α-ionol-9-O-β-D-glucopyranoside
5-hydroxy-6,7-methylenedioxy-2-methylchromone
25
25
-3.99±0.58
-2.97±1.19
注:阳性药物对照和各化合物在测试浓度下均无细胞毒性
Note: Positive control and all compounds showed no cytotoxicity at test concertrations
5 结论
目前针对文殊兰的叶子部位的化学成分研究非常少,本研究从文殊兰叶子的甲醇提取物
的石油醚、乙酸乙酯和正丁醇部位中共分离得到了 13 个单体化合物。与前人的研究相比,
化合物 2-8 为首次从该植物中分离得到。抗炎活性实验结果显示文殊兰叶子甲醇总提取物及
其石油醚、乙酸乙酯和正丁醇萃取物有显著的 NO 抑制活性,即显著的抗炎活性。单体化合
7,4'-二羟基-8-甲基黄烷和化合物杜鹃素都对 NO 有一定的抑制效果,即具有一定的抗炎
效果。7,4'-二羟基-8-甲基黄烷和杜鹃素的 NO 抑制活性比提取物弱,表明本次实验还未分离
到文殊兰的主要抗炎化合物,如生物碱类物质,仍需开展进一步的化学分离工作。
为了进一步开发和利用作为傣药痹通剂配方植物之一的文殊兰,建议有必要进一步对
其化学成分和活性进行更系统深入的研究,为文殊兰资源的药用开发提供进一步的实验依据。
致谢:以上实验由中国科学院战略性先导科技专项 AXDA12050302)和中国科学院
一三五专项(XTBG-F02)支持,所有光谱数据均由中国科学院昆明植物研究所植物化学
与西部植物资源持续利用国家重点实验室分析测试中心测定。
参考文献
1 Wen Q ( 温倩).Chemical constituents from Crinum latifalium L[J].J Pharm Pract(药学实践杂
),2010,28:225-227.
2 Wang H(王欢),Wang YH(王跃虎),Chen LJ(陈丽娟),et al.Research progress on alkaloid constituents of
Lycoris[J].Nat Prod Res Dev(天然产物研究与开发),2012,24:691-697.
3 Song DF(宋德芳),Shi ZQ(石子琪),Xin GZ(辛贵忠),et al.Research advances in pharmacological effects of
Amaryllidaceae alkaloids[J].Chin J New Drugs(中国新药杂志),2013,22:1519-1524.
4 Zhang J(张洁).Chemical constituents extraction and separation and pharmacological activities of genus
Crinum[J].J Harbin Commerce Univ(哈尔滨商业大学学报),2014,30(1):25-28.
5 Zhang X,Huang H,Liang X,et al.Analysis of Amaryllidaceae alkaloids from Crinum by high-performance
liquid chromatography coupled with electrospray ionization tandem mass spectrometry[J].Rapid
Commun.Mass Spectrom,2009,23:2903-2916.
6 Guo SS( 郭珊珊).Anti-inflammatory effects and associated molecular mechanisms of
polymethoxyflavones[D].Qingdao:Ocean University of China(中国海洋大学),2012.
7 Liu X(刘星),Wang B(王蓓),Gao Y( 高嫄),et al.Separation and UV spectral characteristics of different
phenolic constituents of Draco dracon[J].Nat Prod Res Dev(天然产物研究与开发),2013,25:1060-1066.
8 Yang K,XU S H,ZENG X C,et al.Isolation and crystal Structure of stigmast-4-ene-3β,6β-diol[J].Chinese
J.Struct.Chem,2004,6:531~534.
9 Yoshio Takeda,Zhang H J,Toshiya Masuda,et al.Megastigmane glucosides from Stachys
byzantine[J].Pyhtochemistry,1997,7:1335-1337.
10 Su YF(苏艳芳),Zhang XX( 张新鑫),Yang J(杨静),et al.Chemical constituents from Indigofera carlesii
Craib[J].Chin Tradit Herbal Drugs(中草药),2004,6:608-611.
11 Aiko Ito,Keiko Yasumoto,Ryoji Kasai,et al.A sterol with a usual side chain from Anoectochilus
koshunensis[J].Pyhtochemistry,1994,6:1465-1467.
12 Wu M C,Peng C F,Chen I S,et al.Antitubercular chromones and flavonoids from Pisonia aculeate[J].J Nat
Prod,2011,74:976-982.
13 Wang SJ(王素娟),Pei JH(裴月湖),et al.Research on chemical constituents from Betula alba leaves[J].J
Shenyang Pharm Univ(沈阳药科大学学报),2000,17:256-257.
14 Lu JH(陆江海),Zhao YY(赵玉英),Qiao L(乔梁),et al.Studies on chemical constituents from Buddleja
lindleyana Fert[J].China J Chin Mater Med(中国中药杂志),2001,26(1):41-43.
15 Chen C C,Wang J K.P38 but not P44/42 mitogen-activated protein kinase is required for nitric oxide synthase
induction mediated by lipopolysaccharide in RAW 264.7 macrophages[J].Molecular
Pharmacology,1999,55:481-488.
16 Li XF(李雪峰),Jin HZ(金慧子),Chen G(陈刚),et al.Flavonoids in Rhododendron primulaeflorum[J].Nat
Prod Res Dev(天然产物研究与开发),2009,21:612-615.
17 Li H Y,Ma G E,Xu Y,et al.Alkaloids of Lycoris guangxiensis[J].Planta Med,1987,53:259-261.
18 Kihara M,Konishi K,Xu L,et al.Alkaloidal constituents of the flowers of Lycoris radiata
HERB.(Amaryllidaceae)[J].Chem Pharm Bull,1991,39:1849-1853.
19 Tram N T N,Titorenkova T V,Bankova V S,et al.Crinum
L.(Amaryllidaceae)[J].Fitoterapia,2002,73:183-208.
20 Cedron J C,Gutierrez D,Flores N,et al.Synthesis and antiplasmodial activity of lycorine derivatives[J].Bioorg
Med Chem,2010,18:4694-4701.
收日2018-03-09
基金项目:中国科学院战略性先导科技专项 A(XDA12050302);中国科学院一三五专项
XTBG-F02
*通信作者:E-mail: songqs@xtbg.ac.cn
... (Zhan et al., 2016), 4′,7-dimethoxy-3′-hydroxyflavan (6) from Hippeastrum vittatum Herb. (Wessjohann et al., 2010), farrerol (7) from Crinum asiaticum var sinicum Baker (Wang et al., 2018), pancratistatin (12) from Habranthus brachyandrus Sealy (Jitsuno et al., 2009), and narciprimine (15) from Galanthus rizehensis Stern (Sarikaya et al., 2012). All these plants belong to the Amaryllidaceae, confirming the homogeneity in terms of metabolites production in plants of this family. ...
Article
Full-text available
The ethyl acetate extract from the whole plant of Crinum biflorum Rottb. Showed a moderate activity against Enterococcus faecalis. Its phytochemical investigation led to the isolation of a new flavan-3-ol derivative namely (2R,3R)-3-hydroxy-7-methoxy-3′,4′-methylenedioxyflavan, together with (2S)-7-hydroxy-3′,4′-methylenedioxyflavan, (2R,3R)-7-methoxy-flavan-3-ol, (2S)-7-hydroxy-3′,4′-dimethoxyflavan, 3′,7-dihydroxy-4′-methoxyflavan, 4′,7-dimethoxy-3′-hydroxyflavan, farrerol, β-sitosterol, β-sitosterol-3-O-β-D-glucopyranoside, oleanolic acid, kaempferol, pancratistatin, lupeol, aurantiamide acetate, Narciprimine and 2,3-dihydroxypropyl palmitate. Their structures were elucidated mainly by extensive spectroscopic analysis and comparison with published data. The absolute configuration of the new metabolite was determined by electronic circular dichroism (ECD) analysis and comparison of optical rotation. Some of the isolated compounds were tested for their antimicrobial activity but no inhibition was observed
Article
The title compound (C29H50O2, M r = 430.69) was isolated from the algae Halimeda xishaensis collected from the South China Sea. Its crystal structure was determined by single-crystal X-ray diffraction for the first time. The crystal belongs to orthorhombic, space group P212121 with a = 8.1560(13), b = 10.7861(18), c = 29.973(5) Å, V = 2636.8(8) Å3, Z = 4, Dc = 1.085 g/cm3, F(000) = 960, μ(Mo-Kα) = 4.533 mm-1, λ = 0.71073 Å, S = 1.061, (Δρ)max = 0.382 and (Δρ)min = -0.244 e/Å3. The structure was refined to R = 0.0561 and wR = 0.1553 for 2711 observed reflections with I > 2σ(I). X-ray diffraction analysis reveals that the title compound has two β-OH groups, and the side chain is saturated. There exist two intermolecular hydrogen bonds between three molecules.
Article
From the aerial parts of Stachys byzantina, two new megastigmane glucosides, byzantionosides A and B, were isolated, together with the known glycosides, icariside B2, blumeol C glucoside, (6R, 9R)- and (6R, 9S)-3-oxo-α-ionol glucosides and verbascoside. The structures of the new compounds have been elucidated by spectroscopic means.
Article
Three new chromones, pisonins A (1), B (2), and D (4), two new flavonoids, pisonivanone [(2S)-5,7,2'-trihydroxy-8-methylflavanone] (7) and pisonivanol [(2R,3R)-3,7-dihydroxy-5,6-dimethoxyflavanone] (8), one new isoflavonoid, pisonianone (5,7,2'-trihydroxy-6-methoxy-8-methylisoflavone) (9), and five compounds first isolated from nature, namely, pisonins C (3), E (5), and F (6), pisoniamide (10), and pisonolic acid (11), together with 18 known compounds have been isolated from the methanol extract of the combined stem and root of Pisonia aculeata. Among these isolates, 2, 7, 14, 16, and 19 exhibited antitubercular activities (MICs≤50.0 μg/mL) against Mycobacterium tuberculosis H37Rv in vitro.
Article
A high-performance liquid chromatography/electrospray ionization multi-stage tandem mass spectrometry (HPLC/ESI-MS(n)) method was developed to analyze two structurally related groups of Amaryllidaceae alkaloids (AmAs), crinane- and tazettine-type alkaloids, in the species Crinum latifolium and C. asiaticum, as well as different organs of C. latifolium. In ESI-MS(n) spectra of the two types of alkaloids, characteristic fragmentation reactions were observed that allowed us to determine and differentiate them. Based on the fragmentation rules of reference standards, crinane-type alkaloids displayed concurrent neutral loss of C(2)H(5)N (43 u) and C(2)H(6)N (44 u) as well as characteristic ions of m/z 213 and 211, whereas tazettine-type alkaloids exhibited neutral loss of C(3)H(7)N (57 u) [or C(2)H(5)N (43 u), C(3)H(7)NO (73 u)] from the [M+H](+) and [M+H-H(2)O](+) ions. These were supported by quadrupole time-of-flight (Q-Tof)-MS/MS analysis. The chemical complexity of the mixture was resolved by profiling. The compositions of the main crinane- and tazettine-type alkaloids in the above-mentioned species and organs were also compared. Overall, 28 AmAs comprising 14 crinane-type and 14 tazettine-type alkaloids were identified and studied by MS. Among them, 14 AmAs were tentatively characterized from the two species for the first time. This method allowed a rapid analysis of alkaloid distribution and composition of Crinum species, and may also be used for quality control and screening of extracts designated for pharmaceutical application.
Article
A new sterol with a non-conventional side chain has been isolated from the whole plant of Anoectochilus koshunensis, together with four known sterols, a megastigmane glucoside and 2'-deoxyadenosine. The structure of the new sterol was elucidated as 26-methylstigmasta-5,22,25, (27)-trien-3 beta-ol based on chemical and detailed spectroscopic evidence.
Article
Protein kinase C (PKC)-alpha, -betaI, and -delta are known to be involved in the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. The role of mitogen-activated protein kinases (MAPK) p44/42 and p38 in the LPS effect was studied further. LPS-mediated NO release and the inducible form of NO synthase expression were inhibited by the p38 inhibitor, SB 203580, but not by the MAPK kinase inhibitor, PD 98059. Ten-minute treatment of cells with LPS resulted in the activation of p44/42 MAPK, p38, and c-Jun NH2-terminal kinase. Marked or slight activation, respectively, of p44/42 MAPK or p38 was also seen after 10-min treatment with 12-O-tetradecanoylphorbol-13-acetate, but c-Jun NH2-terminal kinase activation did not occur. Tyrosine kinase inhibitor, genestein, attenuated the LPS-induced activation of both p44/42 MAPK and p38, whereas the PKC inhibitors, Ro 31-8220 and calphostin C, or long-term treatment with 12-O-tetradecanoylphorbol-13-acetate resulted in inhibition of p44/42 MAPK activation, but had only a slight effect on p38 activation, indicating that LPS-mediated PKC activation resulted in the activation of p44/42 MAPK. Nuclear factor-kappaB (NF-kappaB)-specific DNA-protein-binding activity in the nuclear extracts was enhanced by 10-min, 1-h, or 24-h treatment with LPS. Analysis of the proteins involved in NF-kappaB binding showed translocation of p65 from the cytosol to the nucleus after 10-min treatment with LPS. The onset of NF-kappaB activation correlated with the cytosolic degradation of both inhibitory proteins of NF-kappaB, IkappaB-alpha and IkappaB-beta. IkappaB-alpha was resynthesized rapidly after loss (1-h LPS treatment), whereas IkappaB-beta levels were not restored until after 24-h treatment. SB 203580 but not PD 98059 inhibited the LPS-induced stimulation of NF-kappaB DNA-protein binding. Thus, activation of p38 but not p44/42 MAPK by LPS resulted in the stimulation of NF-kappaB-specific DNA-protein binding and the subsequent expression of inducible form of NO synthase and NO release in RAW 264.7 macrophages.
Article
To study the chemical constituents of Buddleja lindleyana. Separation by chromatographic methods and identification by spectral analysis. Seven compounds vanillic acid, daidzein octacosanoic acid, beta-sitosterol-3-O-beta-D-glucopyranoside, stigmasterol-3-O-beta-D-glucopyranoside, alpha-spinasterol-3-O-beta-D-glucopyranoside, betulin acid were isolated. All the compounds were obtained from this plant for the first time.
Anti-inflammatory effects and associated molecular mechanisms of polymethoxyflavones
  • S S Guo
Guo SS( ).Anti-inflammatory effects and associated molecular mechanisms of polymethoxyflavones[D].Qingdao:Ocean University of China( ),2012.
Gao Y( ),et al.Separation and UV spectral characteristics of different phenolic constituents of Draco dracon
  • X Liu
Liu X( ),Wang B( ),Gao Y( ),et al.Separation and UV spectral characteristics of different phenolic constituents of Draco dracon[J].