ArticlePDF Available

Nexus between low-carbon energy and critical metals: Literature review and implications全球关键金属-低碳能源关联研究综述及其启示

Authors:
434202142021434669-681
Resources Science
Vol.43No.4Apr.2021
http://www.resci.cn
引用 格式 ,王翘楚,韩茹茹,.球关键金-低碳能源关联研究综述及其启示[J]. 资源 科学, 2021, 43(4): 669- 681.
[Wang P, Wang Q C, Han R R, et al. Nexus between low- carbon energy and critical metals: Literature review and implications[J].
Resources Science, 2021, 43(4): 669-681.] DOI: 10.18402/resci.2021.04.03
全球关键金属-低碳能源关联研究综述及其启示
1
王翘楚
1
韩茹茹
2
汤林彬
15
1
蔡闻佳
34
陈伟强
15
1. 中国科学院城市环境研究所,中科院城市环境与健康重点实验室,厦门 3610212. 北京科技大
学能源与环境工程学院,北京 1000833. 清华大学地球系统科学系,北京 1000844. 清华-力拓资源
能源与可持续发展研究中心,北京 1000845. 中国科学院大学,北京 100049
“碳中和”背景下,学术界日益清晰地认识到“关键金属”与低碳能源技术之间存在着紧密的相互依
赖关系。为提升国际社会对“关键金属-低碳能源”关联研究的认识,本文整理了该领域 20002020 年发表的 200
多篇文献资料,综述了该领域研究的发展历程与最新进展,阐述了主要的科学发现:能源低碳转型将驱动多种关
键金属的开采量和贸易量持续快速增长,加剧关键金属供应国的生态环境污染,加深世界各国对关键金属资源的
依赖和争夺;部分关键金属存在储量不足、贸易供应链脆弱、理分布不均、环境污染严重等风险,将对全球低
碳转型产生约束,进而重塑全球能源地缘政治格局;中国作为多种关键金属的生产、消费和贸易大国,为推动全
球能源低碳转型付出了巨大的资源和环境代价,且自身同样面临关键金属供应短缺的风险。建议在“碳达峰”
“碳中和”目标的背景下,中国应深化金属-能源关联研究,开展金属-能源协同管理,研判关键金属对中国发展低碳
技术的支撑和限制作用,警惕能源系统低碳转型带来的新型地缘政治风险。
关键词:低碳能源;关键矿产;金属-能源关联;环境影响;资源安全供应
DOI10.18402/resci.2021.04.03
1引言
为了应对气候变化这一重大而紧迫的全球性
挑战,中国、盟、日本韩国、加拿大等国家竞相公
“碳 和” 或规。其 低碳源生
产、构建适应高比例可再生能源发展的新型能源系
统是各国实现“碳中和”目标的关键举措[1]2020
922 日,中国国家主席习近平在联合国大会上宣
布,“中国将提高国家自主贡献力度,采取更加有力
政策 施,CO2排放力争于 2030 年前达到峰
值, 力争取 2060 年前实现碳中和”2020 12
12 日,习近平 主席在气候雄心峰会上宣布 2030
年, 国单位国内生产总值 CO2排放将比 2005 年下
65%以上非化石能源占一次能源消费比重将达
25%右,风电太阳能发电总装机容量将达到
12 亿kW 以上”2020 12 月,欧盟 27 个成员国达
2030 年气候 目标计 2030 年欧盟可
再生能源占比目标从此前计 划的 32%提高到 38%~
40%再生 能源量占 比提 65% [2]
2021 年,美国总统拜登签署总统行政令确提
要重返“巴 黎协定”实现 2030 年将海上风电
增加一倍”2035 年实现电力行业无碳化”“在 2050
年前达到碳净零排放”等目标[3]
“碳中和”目标的驱动下,全球能源系统向清
洁化、低碳化甚至无碳化发展已是大势所趋,以低
碳能源技术为核心的低碳产业将成为新的经济
长点。目前,世界各国大力发展低碳发电、高效储
收稿日期:2021-01-18修订日期:2021-03-10
基金项目:国家自然科学基金青年项目71904182福建省科技计划对外合作项目2020I0039清华力拓资源能源与可持续发展研究中心基
金项目。
作者简介:汪鹏,男,江西鹰潭人,助理研究员,主要从事关键金属与能源环境关联系统研究。E-mail: pwang@iue.ac.cn
通讯作者:陈伟强,男,福建漳州人,研究员,主要从事资源循环、城市代谢及生态环境大数据研究。E-mail: wqchen@iue.ac.cn
43 4
资源科学
http://www.resci.net
能、特高压电网、电动汽车、永磁电机等低碳技术
试图通过占领技术制高点,现对国际低碳产业的
掌控。在风力发电机太阳能电池板、解储氢、
力电池等低碳技术产品中,锂、钴、镓、稀土、
铂等金属发挥了关键作用,认为是支撑低碳产业
发展不可或缺的物质基础[4,5]这些金属物质因其对
新能源、新材料、通讯信息、航空航天防军工
新兴产业具有不可替代重大用途且其安全供应存
在高风险,被国内外研究称为关键金属Critical
Metals
[6]。值得一提的是,关键金属的种类和数
会因各国政府和研究者的关注点及技术等因素的
变化而改变,但其绝大部分都属于稀有金属、稀土
金属、稀散金属和稀贵金属。本文涉及的能源相关
潜在关键金属种类见表 12020 年,Akcil [7]Na-
ture 期刊上发表的论文指出,受新冠疫情影响,大多
数关键金属矿产的供应将面临中断风险,各国政府
对此应提高警惕Wake-up Call同年,Science
也发文指出,当前亟需通过增进全球合作,保障关
键金属矿产的供应安全,否则全球碳减排将面临巨
大风险[8]世界银行在 2017 年和 2020 年先后发布两
份报告,评估了全球能源低碳转型对关键金属矿产
供需结构的影响[9,10]2020 年,国际能源署发布报告,
“关键金属矿产能否支撑未来能源低碳转型”
为全球重大挑战[11]。发达国家高度重视关键金属对
能源产业的支撑作用。2021 2月,登签署的
一项行政令[12]续了特朗普 13953 行政令的做法,
要求对美国高容量电池、稀土等关键产业链进行审
查,意图降低对中国等国家的依赖,提升美国产业
供应链安全与国际竞争力。
随着全球能源低碳转型的推进国内外学者越
来越清晰地认识关键金属”“低碳能源
存在着类似“水-能源关联Water-energy Nexus
样的重要关联(下文简称“金-能源关联”Metal-
energy Nexus。金属能源关联研究目前已成为新
兴研究领域,主要内容包括:聚焦金属和能源两大
基础资源系统,研究“能源的生产/传输/消费”
属的开采/冶炼//循环”各环节之间的相互依存
及约束关系,探索多时空尺度下金属-能源关联系
统对外部环境变如经济活动、气候变化和政府
政策等的响应机制和管理策略。
1低碳能源技术及所需的关键金属
Table 1 Global major suppliers of critical metals and their applications
金属
稀土
符号
Ga
W
REE
Bi
Sb
Mg
Ge
V
Mo
In
Sn
Ag
Li
Nb
Be
Ni
Co
Cr
能源技术
太阳能发电
电力设备
核能、风力发电、电池、电动汽车
电池
电池
电池、电动汽车
太阳能发电
核能、风力发电、电池
核能、风力发电、太阳能发电
太阳能发电
核电、电池
核能、太阳能发电、电动汽车
电池、电动汽车
核能、风力发电、电池
核能
核能、风力发电、电池、电动汽车
核能、风力发电、电池、电动汽车
核能、风力发电
最大生产来源
中国大陆)
中国大陆)
中国大陆)
中国大陆)
中国大陆)
中国大陆)
中国大陆)
中国大陆)
中国大陆)
中国大陆)
中国大陆)
墨西哥
澳大利亚
巴西
美国
印度尼西亚
刚果金)
南非
产量全球占比/%
85
84
95
82
87
87
56
53
45
57
29
23
58
95
90
24
64
46
其他生产国括号中数字为占比/%
德国7哈萨克斯坦5
俄罗斯4
美国1.7俄罗斯1.3
墨西哥11日本7
越南11
俄罗斯7
美国16澳大利亚13
南非25俄罗斯20
智利20美国15
韩国15
印度尼西亚27
秘鲁16中国13
智利21
加拿大4
中国8
菲律宾15
中国5
土耳其13
资料来源:欧盟委员会[66]
670
20214
鹏等:全球关键金属-低碳能源关联研究综述及其启示
http://www.resci.cn
为提升对金属-能源关联的认识,首先,本文基
于文献计量分析梳理了金属-能源关联研究的发展
动态,概述了该领域的研究对象与方法;其次,阐述
了现有研究的重要发现再次,基于金属-能源关联
研究视角,分析了中国作为多种关键金属的生产、
消费和进出口大国在推动全球能源低碳转型进程
中的贡献代价和挑战;后,提出中国在能源低
关键
建议。
2金属-能源关联研究概述
2.1 文献计量分析
本文基于 Web of Science 核心集,通过搜索
Metal/Material/MineralEnergy和“Nexus/Con-
straint/Supply/Demand 关键词(检索时间从 2000
11日至 2020 12 31 收集 227 “金
-能源关联研究的文献资料。分析发现,金属-
能源关联研究是重要的新兴研究领域,2010 年之前
发文量仅有 22 篇, 2011 年之后的发文量迅速
上升(图 1要发 表在 Applied EnergyJournal of
Industrial EcologyResource Conservation and Recy-
clingEnvironmental Science and Technology 等能源、
资源和环境领域的重要国际期刊。同时-
源关联研究属于交叉学科范畴,相关研究成果近年
续发 表于 ScienceNature 综合
刊。预计随着“碳中和”能源低碳转型的持续推
进,金属-能源关联研究的发文量将不断攀升。
从文献关键词来看,-能源关联研究领域
的高频词汇包括 3类:研究方法类,包括“物质
分析“情景分析研究对象类,包括“关键矿
产”“金属”“风能“能源”“可再生能源“电动汽车”
等;点词 类,中国 风险回收等。
分析发现,中国”频出现在金属-能源关联研
论文的题目、摘要和关键词中,成为该领域的热门
词汇,充分体现了中国作为关键金属供应大国在全
球能源低碳转型中的重要地位。
从研究团队和学者的角度来看美国耶鲁大学
Tom Graedel 教授和荷兰莱顿大学 Ester van der Voet
教授早在 2010 年就开始研究物质资源和能源的相
互依存关系[13]。此后,金属-能源关联研究逐步引起
国内外学者的关注。在国内,中国科学院地理科学
与资源研究所的沈镭与 Ayman Elshkaki 团队、
科学院城市环境研究所的陈伟强团队、东大学的
李佳硕团队从能源低碳转型、关键矿产等角度开展
了中国及世界金属-能源关联系统的研究;在国外,
美国劳伦斯伯克利国家实验室的周南团队、南丹麦
大学的刘刚团队、挪威科技大学/耶鲁大 学的 Edgar
Hertwich Niko Heeren 团队日本国立环境研究所
Keisuke Nansai 团队、以及荷兰莱顿大学的 Ester
van der Voet Rene Kleijn 团队也开展了大量的研
究。由图 2可知,国内外研究团队在金属-能源关联
研究领域的合作紧密中国科学院地理科学与资源
研究所的沈镭研究员和 Ayman Elshkaki 研究员发文
量最多,并且是中国、日本美国和欧洲研究团队合
作的关键节点。
2.2 研究对象
本文将研究文献关注的能源技术对象风力发
电机伏技术光太阳能技术、新能源汽车、
料电池和核能技术等)和金属的关联关系绘制如图
3总体表现为低碳能源依赖的关键金属种类具有
多样性和相似性特征:“一对多一种低碳技
的实现往往依赖多种关键金属的使用。如太阳
光伏和聚光太阳能技术的实现依赖锗、碲、
锰等元素作为能源转化的关键超导材料[14,15]风力
发电机依赖钕、镝、镨等稀土元素作为磁性原料[16]
新能源汽车和燃料电池均依赖镍等作为电
极材料,燃料电池还依赖铂作为储能材料[17]核能发
电依赖铀及钨、等高温材料作为动力来源和
保护性材料多对一种低碳技术可能同
1金属-能源关联研究论文发表数量的变化趋势
Figure 1 Trend of the number of published papers on
metal-energy nexus
671
43 4
资源科学
http://www.resci.net
3关键金属与低碳技术的关联及关键金属受关注度
Figure 3 Relationship between critical metals and low-carbon energy technologies, and the degree of attentions in studied publication
2 20002020 年金属-能源关联研究领域的重要学者及合作关系图谱
Figure 2 Map of key scholars and collaborative relationships in the field of metal-energy nexus, 2000-2020
672
20214
鹏等:全球关键金属-低碳能源关联研究综述及其启示
http://www.resci.cn
依赖一种关键金属。如稀土元素钐镨、镝、是风
力发电机、新能源汽车和燃料电池中的关键材料;
关键金属钒则同时是核能技术、风力
电技术及聚光太阳能技术实现的必备材料;钯、
银、镍则分别在风力发电机、光伏电池板和新能源
汽车起着重要作用。
3中金属元素的颜色代表了该金属在研究案
例中 现的 率。总体 言,Cu具有高导电
性,是电力基础设施的关键材料,几乎应用于所有
的低碳能源技术目前最受关注的关键金属;
稀土元素中,Nd和镝Dy广泛用于风机和新能
源汽车中,得到的关注也比其他稀土元素高;动力
电池技术是当前最有应用前景的低碳储能技术之
一,因此,国内外学者重点围绕锂LiNi等关
键金属的供需情况开展了广泛的研究;与光伏技
术相关的关键金属中,GeTeIn
Ga等由于其稀缺性较高而得到较多的关注;储氢
的逐 使得
Pt
PdOsIrRuRh备受关注;
FeAI等大宗金属虽然也广泛用于很多低
碳技术中但由于其供应风险较低相关金属-能源
关联研究并没有将它们作为重点研究对象。
2.3 金属-能源关系概述
迄今为止术界还没有金属-能源关联”
形成统一的定义。基于现有文献资料,文将这些
关联归纳为两类:金属作为“耗能资源”。金属
源的开采生产及回收过程需要消耗能源,因此,
源成为金属资源系统运转的重要支撑金属作
赋能资源”风能、阳能等能源的生产使
和储存依赖稀土、钴、铂族金属、和镍等关键金属
作为支撑材料,此,关键金属成为支撑能源系统
运转的物质基础。
20002010 年,多数有关金属-能源关联的
研究聚焦于分析金属“耗能资源”属性主要研
钢铁等金属生产过程的能源消耗及
节能潜力。美国麻省理工学院 Gutowski [18]
分析了全球 16 种金属生产过程能耗的变化趋势,
现虽然金属生产的能耗强度在不断下降,但是随着
金属矿产品位的降低和需求的提高,金属矿产行业
的能源消费量实际上是不断提升的;Vidal [19]关于
材料-能源关联Material-Energy Nexus的综述论文
指出,能源的可获性将成为金属资源可持续供应的
重要约束;Peng [20]采用投入产出分析方法研究了
中国金属-能源的关联性,发现中国所有部门金属
和能源的消耗是基于能源或者金属单一核算视角
1.05 1.22 倍。
20112020 年,金属-能源关联研究越来越多
地关注金属的“赋能资源”[21,22]研究对象转向
稀土等关键金属要研究这些关键金
属的供应风险及其对能源系统低碳转型的约束。
2010 Graedel [13]提出矿产-源关联的概念
后,Elshkaki [23- 25]先后分析了不同能源规划情景下
全球与中国关键金属未来需求的变化趋势;Wang
[26]结合需求预测模型和金属全生命周期流动量化
模型,核算了未来中国光伏和风电产业的稀土、
铟、锗等关键金属的需求量;Giurco [21] 基于矿产-
能源关联Mineral- Energy nexus
-风能、钢铁-煤炭、-核能 3种关联关系,指出关
键金属的可持续供应是实现能源低碳转型的重要
前提。
2.4 研究方法进展
为了分析金属-源的关联关系内外学者
开发了一系列量化模型与方法,对这些方法及其代
表性工作的总结如下:
1指标打分法。该类方法起源于美国国家研
究委员会的报告[27]通过收集“供应风险”“供应短
缺潜在影响”的各类评估指标对金属元素的“关
性”进行打分评级,初步分析关键金属生产、消费、
贸易的演变趋势,从诸多备选金属中筛选出关键金
[28]2009 年,美国物理学会American Physical So-
ciety和美国材料学Materials Research Society
成立了“能源关键材料”究委员会,基于专家判断
识别出与低碳能源 技术相关的 29 类关键金属,并于
2011 年发布首份研究报告[4]2010 年,美国能源部发
关键材料策略”报告[29]通过识“供应风险”
“对清洁能源技术的重要性”等相关评估指标,
打分 选出 原材 //属;2020
年,健柏等[30]基于 10 个评估指标对清洁能源技术
相关的 15 种关键金属的供应风险进行定量评估。
2模型预测法。该类方法是基于物质流分
析、景预测、投入产出分析等模型,量化分析不同
能源发展情景下各类“赋能”关键金属供需结构的
673
43 4
资源科学
http://www.resci.net
演变趋势主要分为基于技术驱动与基于经济结构
的两类核算方法:
首先,基于技术驱动的核算方法。该方法根据
低碳技术参数和关键金属行业数据的调研结果,
析低碳技术中关键金属的用量及其变化趋势,揭示
关键金属在各种低碳技术发展路径下的流量及存
量的演变规律,如需求量量、报废量等,具有
术细节详实据精度高的特点。2011 年,Graedel
[31]研究了全球能源系统低碳转型下的关键金属供
应约束问题;Kleijn [32,33]量化分析了未来可再生能
源产业的关键金属需求;2017 年,Olivetti [34] 探讨
了全球动力电池产业发展对关键金属供需结构的
影响,发现未来全球动力电池产业将面临锂、钴等
关键金属供应短缺的约束2020 年,Li [35]考虑到
区域风电发展目标和稀土资源禀赋的差异,运用物
质流分析方法量化分析了中国、北美、中东、欧等
国家和地区风电产业的稀土需求量,发现目前的稀
土资源储量与产能难以满足全球2050 年风电发展目
标的资源需求。
其次,基于经济结构的核算方法。该方法是以
投入产出表为基础,通过拓展金属资源消耗卫星账
户计算得到各能源部门的金属足迹,从而核算不同
能源发展情景下的金属需求。此核算方法可以
效关联能源相关上下游部门的金属需求,得到较为
全面的金属需求预测但对低碳技术的演变和金属
循环的分析能力较差2018 年,Koning [36]基于投
入产出分析方法量化分析了钢铁、
金属在不同低碳能源情景下的总体需求,发现金属
需求将快速上升,使得能源部门超越其他用途成为
大部分金属的主要消费部门;2019 年,Nansai [37]
用投入产出方法量化分析 20042013 年日本11
种金属的需求和 96 个可持续发展目标的关系;2019
年,Watari [38]量化分析了全球 15 种发电技术和 5
种交通技术发展的总体物质材料需求Total Materi-
al Requirement发现低碳能源转型将会驱动铜、
银、镍、锂、钴和钢铁的需求快速上涨。
3模拟仿真法。随着计算能力提升以及建模
理念和方法的进步,国内外学者开始基于模拟仿真
方法,量化分析金属系统和能源系统的关联关系,
模拟外部冲击对金属-能源关联系统的影响及动态
反馈。Ge [39]用动态可计算的一般均衡模型,
拟预测中国未来稀土需求变化趋势;Sun [40]Liu
[41]基于“新能源汽车技-锂”统动力学模型分
析了中国电动汽车产业发展对锂供应求、贸易
的影响。随着研究的深入,者们发现某些微观个
体行为会对宏观金属-能源关联系统产生影响,
上述方法无法模拟这些现象。为此Riddle [42]
于多主体建模方法开发了能源技术驱动下的关键
金属供需预测模型,模拟和预测风电产业对钕
等稀土元素需求的变化趋势。
3 -能源关联研究的主要科学
发现
基于金属-能源关联研究进展的梳理文从
供需结构贸易风险、环境危害、国际关系和地缘
局等角度,纳总结了金-能源关联研究领域的
主要科学发现。
3.1 能源低碳转型将激化关键金属的供需矛盾
全球能源低碳转型驱动关键金属需求迅速上
[43]但是相对有限的资源储量与生产能力导致部
分关键金属面临供应短缺的风险。预计到 2030 年,
全球能 源系统对镓、 钕的需 求将达到 2006
6.1 倍、3.3 3.8 [44]预计 2050 年,铂、
钴、铟的需求量将分别达到其全球储量的 4.4 倍、2.9
2.7 1.9 倍、1.7 (图 4美国
EIA
[45] 世界能源展望 2019 2018
2050 年全球可再生能源的消耗量将以年均 3%的速
长,碲和 求增 速最 6.9%
4 2050 年全球部分关键金属的需求总量与资源
储量的比值[46]
Figure 4 Ratios of the global demands to reserves of energy-related
critical metals, 2050[46]
674
20214
鹏等:全球关键金属-低碳能源关联研究综述及其启示
http://www.resci.cn
6.2%。此外,关键金属亦应用于建筑通讯、机械等
领域年约有 数百万 t关键金属用于城市化与工
业化基础设施的建设。如果将所有部门的关键
属需求计算在内,未来全球关键金属的供需缺口将
进一步扩大。
3.2 能源低碳转型将提升关键金属的贸易风险
由于关键金属矿产地理分布的不均衡性绝大
多数国家只能通过进口来满足本国的关键金属需
求。在全球经济一体化的趋势下关键金属贸易日
渐频繁,国家间错综复杂的贸易流动形成了一个巨
大的复杂网络[47]
5。各国间的贸易活动极大地
促进了关键金属的全球循环和再分配[48]但网络中
各国经济体之间相互依存的关系也可能给参与国
带来供应风险问题。首先,键金属这一以国际贸
易为主要供应方式的供应链具有脆弱性,极易受到
外部 球经衰退家贸易政 策)的扰
[49]。由于关键金属矿产具有稀缺性和战略性,
源出口国的贸易政策限制、球经济发展态势及技
术革新带来的资源需求转变都可能影响关键金属
贸易网络的稳定性,进而给参与国带来风险。其
次,关键金属贸易网络普遍呈现无标度的网络特
性,即极少数的国家掌握了绝大多数的贸易量。例
如,在铬贸易网络中,中国与南非间的铬贸易量约
占全球贸易总量的 23%在钨贸易网络中,超过 70%
的钨精矿贸易量发生在玻利维亚葡萄牙和法国等
国家与美国之间尽管中国钨的资源储量、开采量
和生产量均位居世界首位,国家对钨精矿实行出
口限制政策,因此中国在钨贸易网络中的地位并不
显著。这种不平衡的贸易关系意味着一旦网络中
的关键国家的贸易现状发生变化就可能产生连锁
效应并通过贸易网络快速传播,导致整个网络的级
联失效,进而影响网络中所有国家关键金属的供应
安全。同时,关键金属贸易网络中的关键国家的政
治秩序很大程度上影响了贸易网络的稳健性。
如, 球超过 60%的钴来自于国家政治局势稳定性
较差的刚因此全球钴贸易网络的稳定性相
对较低。此外,冠疫情对全球关键金属供应链的
冲击仍在持续,金属-能源关联系统在全球尺度上
的复杂性持续上升,极大地增加了关键金属的供应
风险。
数据来源:根据联合国商品贸易统计数据https://comtrade.un.org/统计制图,港澳台和中国大陆数据汇总作为中国数据。
5 2018 年关键金属钴、铬、锂、稀土、锑和钨的全球贸易网络图
Figure 5 Global trade networks of cobalt, chromium, lithium, rare earths, antimony, and tungsten, 2018
675
43 4
资源科学
http://www.resci.net
3.3 全球 源低碳转 将加剧区域性 生态环境
污染
低碳能源技术的规模化应用能够有效降低全
球碳排放并改善生态环境。然而关键金属矿产的
开采 炼、 和制会消大量能源 造成
“三废”排放甚至是放射性污染,严重危及当地生
系统及居民健康。Sovacool [7]的预测结果表明,
着关键金属需求的提高,全球关键金属矿产的开采
及冶炼产能将会进一步增长,这将导致更多的能耗
以及 CO2和其他污染物的排放,削减低碳能源技术
的碳减排潜力。例如太阳能多晶硅电池生产排放
的四氯化硅会对眼睛、皮肤与呼吸道产生巨大危
害,同时会对区域生态系统造成不可逆转的破坏[50]
薄膜太阳能电池使用的重金属镉是致癌物质,会对
生产工人的肾脏、肺与骨骼造成损伤[51]。与此同时,
发达国家也正在将关键金属生产过程中污染最为
严重的环节向发展中国家转移。以稀土为例澳大
利亚莱纳斯公司作为除中国以外最大的稀土供应
商,在马来西亚关丹建立稀土冶炼工厂,由此产生
的放射性废物排放引发当地民众多次游行抗议。
由于资源的开采与设备的制造大多分布在环境规
制较为薄弱的发展中国家或者偏远的矿区,全球能
源系统低碳转型将碳排放和其他潜在的生态环境
污染转移,并集聚到开采、冶炼资源和制造产品的
国家与区域,给当地生态环境系统和人体健康造成
巨大的危害。
3.4 全球能源低碳转型将加深各国之间关键金属的
依赖和竞争
尽管太阳能、能等可再生能源的资源潜力巨
大,但是支撑光伏、风电等低碳产业发展的关键金
属面临全球分布极度不均的现实挑战[52]
1。例
如,中国是光伏技术所需的镓、元素以
新能源汽车技术所需的稀土元素的主要供应国,
应量的 全球占比高 85%56%45%57%95%
刚果是动力电池技术所需的钴元素的储量大
国,应量全 球占比约为 64%非是全球铬元
的生产大国,约占 全球铬供应量的 46%铌元素主
要由巴西供应占全球供应量 95%锂元素主
要来自澳大利亚和 智利,分别 占全球供应量 58%
21%。低碳能源技术的发展需要多种关键金属
共同支撑地理分布的不均衡促使各国间形成关键
金属资源合作与竞争的双重关系。一方面,源、
产能、技术的相互合作将缓解各国关键金属的供需
缺口,实现共赢;另一方面,各国关键金属清单的重
叠也将引发国家之间的关键金属争夺与博弈。
国地质 调查局分析了中美两国 42 种非能源矿产
的依赖程度,发现中美均严重依赖进口的矿产高达
11 种之多,未来两国在南美、非洲等地将面临激烈
的资源争夺之战[53]
3.5 全球能源低碳转型将加快重塑世界能源/
的地缘政治格局
国际 再生 源署IRENA
[54] 际能
IEA
[55]的研究报告指出,虽然传统化石能源如石
油和天然气在全球能源未来的供给结构中仍然会
占据重要地位,是随着全球能源需求重心从化石
能源转向低碳、洁能源石能源供应国的地缘
战略重要性将逐渐降低,相关化石能源出口国的全
球影响力将日渐削弱而低碳能源技术领导国将从
全球能源低碳转型中崛起并获得更多收益。同时,
部分关键资源如电力、生物燃料、氢等新兴能源或
锂、钴、稀土金属等关键金属的供应国可以通过切
断关键金属供应获得新的地缘政治筹码。因此,
全球能源低碳转型的驱动下,部分国家极有可能将
会凭借丰富的关键金属资源禀赋提升其在区域或
全球舞台的政治影响力[56]Manberger [57] 通过对
钴、镍和稀土 14 种金属或类金属矿产的全球分布
和地缘政治格局的分析发现,由于大部分关键金属
矿产的地理集中度高于石油,全球能源系统转型将
会带来更为严峻的地缘政治挑战。在全球低碳
型的大背景下,方面,再生能源技术替代品的
可获取性出口国的稳定供应和各国地缘政治战略
将成为各国能源转型成功的关键一方面,如何
掌握风能太阳能和其他可再生能源的关键技术以
及如何确保所需的金属的安全供给,将成为影响未
来全球能源地缘政治格局走向的决定性因素[58]
4中国关键金属与全球低碳能源关联
关系分析
中国既是全球关键金属的供应大国,也是主导
世界低碳产业的重要国家,清中国在全球能源低
碳转型中的角色作用对实现全球可持续发展至关
重要。本部分立足金属-能源关联视角,系统分析
了中国在全球能源低碳转型中的贡献、代价、挑战。
676
20214
鹏等:全球关键金属-低碳能源关联研究综述及其启示
http://www.resci.cn
4.1 全球低碳转型需要依赖中国的关键金属和低碳
技术
全球能源低碳转型依赖中国的关键金属及低
碳技术。美国地质 调查局报告指出,在近 25 种关键
金属矿产中,中国 供应量超过 40%的矿种近半
盖了大部分低碳能源技术所需的关键金属,中国分
别是美国 13 关键矿产、 21 种关键矿产、英国
23 种矿产的 大供国;稀土资源 量约
全球 总储量 1/3却承担了全球 90%以上的市场
[59] 20172018 间向 应了
94%镓、60%锗、40%铟、82%钨、65%的碲
55%的钒[56]。同时,中国凭借庞大的资源储备和
强大的冶炼加工能力逐渐成为全球低碳设备的制
造中心。美国国家可再生能源实验室NREL研究
数据显示,2017 年全球光伏装机量约为 92 GW
98%由亚 洲国家供应,而中 国占比高达 57%
前,国是全球最大的太阳能电池板、机、电池
电动汽车的生产国、出口国、存量国为推动全球低
碳化进程贡献了资源与技术,缓解了社会经济、
境等多方面压力。
4.2 中国 全球低碳 型付出了生态 境与经济
代价
全球能源低碳转型将持续增加中国关键金属
矿产的开采和出口,同时也使中国为此承担了巨大
的生态、环境、经济代价。以稀土为例,中国作为全
球最大的稀土生产与出口国,长期为世界各国提供
大量的稀土资源。然而,稀土矿产的开采炼与
生产过程引发了一系列的生态环境问题,如废水
含高浓度氨氮、氟、重金属等废气氟、
废渣钍和铀等放射性元素等污染物的排放,地表
水、地下水、大气及农田的严重污染,山体滑坡、
土流失、植被破坏等生态危害。20012013
国稀土资源开发的生态环 境成本高达 761.7 亿元。
其中,采选导致的生态破坏损失为 721.8 亿元,冶炼
导致的 环境治理成 本为 39.9 亿元[60]然而,由于缺
乏国际公认的关键金属生产过程的环境影响及其
成本评估数据,国为推动全球能源低碳转型付出
的代价至今未受到国际重视。
4.3 中国 源低碳转 也面临关键金 供应短缺
风险
为了保障中国能源供应、善生态环境和提升
国际竞争力,十九大报告强调“推进能源生产和消
费革命,构建清洁低碳、全、高效的能源体系”
时将新能源和新能源汽车作为战略性新兴产业重
点发展,并制定了一系列宏伟的战略目标。然而,
需要
撑。为了实现能源 转型目标,预计到 2050 年中国风
力发 电的金 属需求量将增 2000 年的 230~312
倍,光伏技术的 金属需求 量为 20~137 [26] 2030
年,中国新能源汽车对稀土的需求量将达到 31.5
t为当前中 国稀土年产量的 2~3 [61]。作为世界
低碳能源生产和消费中心,国将成为全球关键金
属的需求大国[62]。然而,中国实现能源低碳转型的
关键金属供需缺口 大。梁靓[63] 的研究结果表
明,中国约有 84%~99%的镍钴、锂及锰资源依赖进
口。另外由于技术、成本和其他条件的制约,
锂、铷、铍、铌和锰供应能力严重短缺。近年来,
钴和锂元素的价格在动力电池技术快速发展的驱
动下大幅攀升,极材料在动力电池中的价格占比
30%升至 50%。由于关键金属多以共生或伴生矿
形态开采[64]产能扩张缓慢[65]且部分分布于政局动
荡地区,因此,中国未来能源低碳转型所需的关键
金属的供需矛盾将日益凸显,这对中国低碳能源技
广
影响。
5结论及建议
5.1 结论
面对日益严峻的环境压力和不断增长的能源
需求,全球能源系统的低碳转型已是大势所趋。然
而,低碳能源技术的发展依赖大量的关键金属的稳
定供应。本文立足金属-能源关联视角,对金属-
源关联研究文献进行了计量分析,述了金-
源关联研究领域的研究起源进展及科学发现
示了中国在推动全球能源低碳转型进程中的贡献、
代价、挑战。本文有如下主要结论:
1金属-能源关联研究已成为新兴研究领域,
其研究热点从金属的“耗能资源”属性逐渐转向“赋
能资源”属性,研究对象从钢铁、铝等大宗金属逐渐
转向稀土锂、钴等关键金属,并综合运用指标打分
法、模型预测、模拟仿真法等研究方法模拟和分析
全球能源低碳转型下的关键金属供应约束等问题。
2分关键金属如铂、碲、的储量有限
677
43 4
资源科学
http://www.resci.net
以满足全球能源低碳转型的资源需求;钴、铬、铌等
关键金属主要由某些政局动荡的国家生产,并且全
球供应来源相对集中,加剧了关键金属的供应风
险;大多数关键金属的国际贸易网络呈现无标度特
性,极易受到外部环境变化的扰动,导致全球关键
金属供应链及其低碳能源技术产业链面临较大的
不确定性大多数关键金属采选冶过程严重破坏当
地生态环境,危及工人和居民的身体健康,带来局
部的生态、环境和健康风险。
3关键金属的战略意义重大,各国对关键金
属的争夺在所难免。在全球能源低碳转型的背景
下,石油和天然气作为外交政策工具的地缘战略重
要性逐渐降低,碳能源技术领导国和关键金属的
供应国将在全球能源低碳转型过程中获得地缘政
治筹码。由于大部分关键金属矿产的地理分布集
中度高于石油,界各国之间的争夺和博弈不可避
免,关键金属的国际战略形势可能会日益复杂和
紧张。
5.2 建议
中国的关键金属资源储量丰富但是长期以低
廉的价格大量出口,为全球能源低碳转型作出巨大
贡献的同时也为此承担了高昂的资源境、经济
代价。需要认识到,中国部分关键金属仍然极度短
缺,例如镍、钴、铂等资源的储量严重不足,高度依
赖进口。“碳达峰碳中和”目标背景下识别
中国关键金属的供应风险,立安全、定、持续
关键金属供应体系对保障中国关键金属资源安全
意义重大。未来国在金-源关联研究和协
同管理方面应重视如下 4点:
1充分认识关键金属在能源系统低碳转型中
的重要作用,建立关键金属供应风险的监测预测、
预警机制以及关键金属资源保障长效机制。结
中国可再生能源产业发展规划与矿产资源战略布
局,清关键金属需求量、国内储量、循环回收潜力
及全球生产贸易格局动态评估关键金属的供应风
险,全面提升中国对关键金属的管控能力,强化关
键金属供应与能源低碳转型的管理力度。
2时刻警惕能源系统低碳转型带来的新型地
缘政治风险,通过构建国际产业联盟、资源贸易协
议等方式,建立稳定的关键金属和能源供应机制,
积极参与并主导关键金属与可再生能源的国际治
理。充分利用中国的资源、术和产业优势,加强
能源与资源的区域合作和全球治理,带动国际社会
共同参与到可再生能源与关键金属的治理体系中。
3积极应对外部环境变化对关键金属供应的
冲击设关键资源战略储备体系。鼓励政府、
业等多方开展关键金属供应风险评估和供应模拟
平台建设,估疫情乱、国际争端治活动
外部环境条件变化对关键金属供应的潜在影响,
别贸易削减、中断的可能性,量化战略储备对象和
需求,提供特殊时期的应对方案及策略。
4建立关键金属的资源溯源、资源效率和可
持续发展能力监测平台。针对中国关键金属去
不明、共伴生矿产多、选冶难度大、环境影响严重等
问题,提升关键金属流动的监控能力,识别资源的
流失途径,提升关键金属的资源利用效率;加大资
金投 开展 键金的探 冶金洁生
产、循环回收、高效利用及减量化技术的研发和推
广;构建循环经济和清洁生产指标体系,开展关键
金属生产过程环境影响评估研究推广低碳技术产
品及工艺绿色标准认证,提升中国关键金属矿产的
可持续供应能力和产业影响力。
参考文献(References)
[ 1 ] Normile D. Chinas bold climate pledge earns praise-but is it fea⁃
sible?[J]. Science, 2020, 370(6512): 17-18.
[ 2 ] European Commission. Stepping up Europes 2030 Climate Ambi⁃
tion: Investing in a Climate Neutral Future for the Benefit of Our
People[R]. Brussels: European Commission, 2020.
[ 3 ] The White House. Executive Order on Tackling the Climate Crisis
at Home and Abroad[N/OL]. (2021-01-27) [2021-02-08]. https://
www.whitehouse.gov/briefing- room/presidential- actions/2021/01/
27/executive- order- on- tackling- the- climate- crisis- at- home-
and-abroad/.
[ 4 ] Materials Research Society, American Physical Society. Energy
Critical Elements: Securing Materials for Emerging Technologies
[R]. College Park: Materials Research Society, American Physical
Society, 2011.
[ 5 ] Eggert R G. Minerals go critical[J]. Nature Chemistry, 2011, 3(9):
688-691.
[ 6 ] 翟明国,吴福元,胡瑞忠,.战略性关键金属矿产资源:现状与
问题[J]. 中国科学基金, 2019, 33(2): 106-111. [Zhai M G, Wu F
Y, Hu R Z et al. Critical metal mineral resources: Current re⁃
search status and scientific issues[J]. Bulletin of National Natural
678
20214
鹏等:全球关键金属-低碳能源关联研究综述及其启示
http://www.resci.cn
Science Foundation of China, 2019, 33(2): 106-111.]
[ 7 ] Akcil A, Sun Z, Panda S. Setting the agenda in research: COVID-
19 disruptions to tech-metals supply are a wake-up call[J]. Na⁃
ture, 2020, 587(7834): 365-367.
[ 8 ] Sovacool B K, Ali S H, Bazilian M, et al. Sustainable minerals and
metals for a low-carbon future[J]. Science, 2020, 367(6473): 30-
33.
[ 9 ] The World Bank. The Growing Role of Minerals and Metals for a
Low Carbon Future[R]. Washington D C: The World Bank, 2017.
[10] The World Bank. Minerals for Climate Action: The Mineral Inten⁃
sity of the Clean Energy Transition[R]. Washington D C: The
World Bank, 2020.
[11] International Energy Agency. Clean Energy Progress after the Cov⁃
id-19 Crisis Will Need Reliable Supplies of Critical Minerals[R].
Paris: International Energy Agency, 2020.
[12] The White House. Executive Order on Americas Supply Chains
[N/OL]. (2021-02-24) [2021-04-20]. https://www.whitehouse.gov/
briefing- room/presidential- actions/2021/02/24/executive- order-
on-americas-supply-chains/.
[13] Graedel T E, Voet E. Linkages of Sustainability[R]. Cambridge:
MIT Press, 2010.
[14] Nassar N T, Wilburn D R, Goonan T G. Byproduct metal require⁃
ments for U.S. wind and solar photovoltaic electricity generation
up to the year 2040 under various Clean Power Plan scenarios[J].
Applied Energy, 2016, 183: 1209-1226.
[15] Zuser A, Rechberger H. Considerations of resource availability in
technology development strategies: The case study of photovoltaics
[J]. Resources, Conservation and Recycling, 2011, 56(1): 56-65.
[16] Habib K, Wenzel H. Exploring rare earths supply constraints for
the emerging clean energy technologies and the role of recycling
[J]. Journal of Cleaner Production, 2014, 84(1): 348-359.
[17] Baars J, Domenech T, Bleischwitz R, et al. Circular economy strat⁃
egies for electric vehicle batteries reduce reliance on raw materials
[J]. Nature Sustainability, 2021, 4(1): 71-79.
[18] Gutowski T G, Sahni S, Allwood J M, et al. The energy required to
produce materials: Constraints on energy-intensity improvements,
parameters of demand[J]. Philosophical Transactions of the Royal
Society A, 2013, DOI:10.1098/rsta.2012.0003.
[19] Vidal O, Rostom F, François C, et al. Global trends in metal con⁃
sumption and supply: The raw material- energy nexus[J]. Ele⁃
ments, 2017, 13(5): 319-324.
[20] Peng K, Zou Z Y, Wang S G, et al. Interdependence between ener⁃
gy and metals in China: Evidence from a nexus perspective[J].
Journal of Cleaner Production, 2019, 214: 345-355.
[21] Giurco D, McLellan B, Franks D M, et al. Responsible mineral
and energy futures: Views at the nexus[J]. Journal of Cleaner Pro⁃
duction, 2014, 84: 322-338.
[22] Bleischwitz R, Spataru C, VanDeveer S D, et al. Resource nexus
perspectives towards the United Nations Sustainable Development
Goals[J]. Nature Sustainability, 2018, 1(12): 737-743.
[23] Elshkaki A, Graedel T E. Dynamic analysis of the global metals
flows and stocks in electricity generation technologies[J]. Journal
of Cleaner Production, 2013, 59: 260-273.
[24] Elshkaki A, Shen L. Energy- material nexus: The impacts of na⁃
tional and international energy scenarios on critical metals use in
China up to 2050 and their global implications[J]. Energy, 2019,
180: 903-917.
[25] Elshkaki A, Graedel T E, Ciacci L, et al. Resource demand scenar
ios for the major metals[J]. Environmental Science and Technolo⁃
gy, 2018, 52(5): 2491-2497.
[26] Wang P, Chen L Y, Ge J P, et al. Incorporating critical material cy
cles into metal-energy nexus of Chinas 2050 renewable transition
[J]. Applied Energy, 2019, DOI:10.1016/j.apenergy.2019.113612.
[27] United States National Research Council. Minerals, Critical Miner
als, and the U. S. Economy[R]. Washington D C: United States Na⁃
tional Research Council, 2008.
[28] 葛建平,刘佳琦.关键矿产战略国际比较:历史演进与工具选择
[J]. 资源科, 2020, 42(8): 1464-1476. [Ge J P, Liu J Q. Interna⁃
tional comparison of critical mineral strategies: Historical evolu⁃
tion and tool selection[J]. Resources Science, 2020, 42(8): 1464-
1476.]
[29] United States Department of Energy. Critical Materials Strategy
[R]. Washington D C: United States Department of Energy, 2010.
[30] 黄健柏,,宋益.清洁能源技术关键金属供应风险评估[J].
资源 科学, 2020, 42(8): 1477- 1488. [Huang J B, Sun F, Song Y.
Supply risk assessment of critical metals in clean energy technolo⁃
gy[J]. Resources Science, 2020, 42(8): 1477-1488.]
[31] Graedel T E. On the future availability of the energy metals[J]. An⁃
nual Review of Materials Research, 2011, 41(1): 323-335.
[32] Kleijn R, Van Der Voet E, Kramer G J, et al. Metal requirements
of low- carbon power generation[J]. Energy, 2011, 36(9): 5640-
5648.
[33] Kleijn R, Van Der Voet E. Resource constraints in a hydrogen
economy based on renewable energy sources: An exploration[J].
Renewable and Sustainable Energy Reviews, 2010, 14(9): 2784-
2795.
[34] Olivetti E A, Ceder G, Gaustad G G, et al. Lithium- ion battery
supply chain considerations: Analysis of potential bottlenecks in
critical metals[J]. Joule, 2017, 1(2): 229-243.
[35] Li J S, Peng K, Wang P, et al. Critical rare- earth elements mis⁃
match global wind- power ambitions[J]. One Earth, 2020, 3(1):
116-125.
[36] Koning A de, Kleijn R, Huppes G, et al. Metal supply constraints
for a low-carbon economy?[J]. Resources, Conservation and Recy⁃
cling, 2018, 129: 202-208.
[37] Nansai K, Kondo Y, Giurco D, et al. Nexus between economy-
wide metal inputs and the deterioration of sustainable develop⁃
ment goals[J]. Resources, Conservation and Recycling, 2019, 149:
679
43 4
资源科学
http://www.resci.net
12-19.
[38] Watari T, McLellan B C, Giurco D, et al. Total material require⁃
ment for the global energy transition to 2050: A focus on transport
and electricity[J]. Resources, Conservation and Recycling, 2019,
148: 91-103.
[39] Ge J P, Lei Y L, Zhao L R. Chinas rare earths supply forecast in
2025: A dynamic computable general equilibrium analysis[J]. Min⁃
erals, 2016, 6(3): 95-95.
[40] Sun X, Hao H, Zhao F Q, et al. The dynamic equilibrium mecha⁃
nism of regional lithium flow for transportation electrification[J].
Environmental Science and Technology, 2019, 53(2): 743-751.
[41] Liu D H, Gao X Y, An H Z, et al. Supply and demand response
trends of lithium resources driven by the demand of emerging re⁃
newable energy technologies in China[J]. Resources, Conservation
and Recycling, 2019, 145: 311-321.
[42] Riddle M, Macal C M, Conzelmann G, et al. Global critical materi⁃
als markets: An agent-based modeling approach[J]. Resources Pol⁃
icy, 2015, 45: 307-321.
[43] 董雪松,黄健柏,钟美瑞,.技术进步对关键金属矿产需求影
响的 研究 综述 [J]. 资源科学, 2020, 42(8): 1592-1603. [Dong X
S, Huang J B, Zhong M R, et al. A review on the impact of techno⁃
logical progress on critical metal mineral demand[J]. Resources
Science, 2020, 42(8): 1592-1603.]
[44] Angerer G, Marscheider-Weidemann F. Raw Materials for Emerg⁃
ing Technologies[R]. Karlsruhe: Fraunhofer Institute for Futures
Studies and Technology Assessment, 2009.
[45] United States International Energy Agency. International Energy
Outlook 2019[R]. Washington D C: United States Energy Informa⁃
tion Administration, 2019.
[46] Grandell L, Lehtilä A, Kivinen M, et al. Role of critical metals in
the future markets of clean energy technologies[J]. Renewable En⁃
ergy, 2016, 95: 53-62.
[47] 朱学红,彭婷,谌金宇.战略性关键金属贸易网络特征及其对产
业结构升 级的影响[J]. 资源科学, 2020, 42(8): 1489-1503. [Zhu
X H, Peng T, Chen J Y. Impact of strategic and critical metals
trade network characteristics on the upgrading of industrial struc⁃
tures[J]. Resources Science, 2020, 42(8): 1489-1503.]
[48] Nansai K, Nakajima K, Kagawa S, et al. Global flows of critical
metals necessary for low- carbon technologies: The case of neo⁃
dymium, cobalt, and platinum[J]. Environmental Science and
Technology, 2014, 48(3): 1391-1400.
[49] Buldyrev S V, Parshani R, Paul G, et al. Catastrophic cascade of
failures in interdependent networks[J]. Nature, 2010, 464(7291):
1025-1028.
[50] 卢兰兰,毕冬勤,刘壮,.光伏太阳能电池生产过程中的污染
问题[J]. 中国科学:化学, 2013, 43(6): 687-703. [Lu L L, Bi D Q,
Liu Z, et al. Pollution problems in the production process of solar
cells[J]. Scientia Sinica Chimica, 2013, 43(6): 687-703.]
[51] Bergesen J D, Heath G A, Gibon T, et al. Thin-film photovoltaic
power generation offers decreasing greenhouse gas emissions and
increasing environmental co-benefits in the long term[J]. Environ⁃
mental Science & Technology, 2014, 48(16): 9834-9843.
[52] 邵留国,蓝婷婷.伴生性关键矿产资源安全研究综述与展望[J].
资源科学, 2020, 42(8): 1452-1463. [Shao L G, Lan T T. Review
of the by-product critical minerals resource security research and
prospects[J]. Resources Science, 2020, 42(8): 1452-1463.]
[53] Gulley A L, Nassar N T, Xun S. China, the United States, and com
petition for resources that enable emerging technologies[J]. Pro⁃
ceedings of the National Academy of Sciences of the United States
of America, 2018, 115(16): 4111-4115.
[54] International Renewable Energy Agency. A New World: The Geo⁃
politics of the Energy Transformation[R]. Abu Dhabi: International
Renewable Energy Agency, 2019.
[55] International Energy Agency. Outlook for Producer Economies:
What Do Changing Energy Dynamics Mean for Major Oil and Gas
Exporters?[R]. Paris: International Energy Agency, 2018.
[56] Habib K, Hamelin L, Wenzel H. A dynamic perspective of the geo
political supply risk of metals[J]. Journal of Cleaner Production,
2016, DOI: 10.1016/j.esr.2019.100394.
[57] Månberger A, Johansson B. The geopolitics of metals and metal⁃
loids used for the renewable energy transition[J]. Energy Strategy
Reviews, 2019, 26: 100394.
[58] 吴巧生,周娜,成金华.战略性关键矿产资源供给安全研究综述
与展望[J]. 资源科学, 2020, 42(8): 1439-1451. [Wu Q S, Zhou N,
Cheng J H. A review and prospects of the supply security of strate⁃
gic key minerals[J]. Resources Science, 2020, 42(8): 1439-1451.]
[59] 国务院新闻办公室.《中国的稀土状况与政策白皮书[R].
:国务院新闻办公室, 2012. [Information Office of the State
Council of the Peoples Republic of China. Situation and Policies
of Chinas Rare Earth Industry[R]. Beijing: Information Office of
the State Council of the Peoples Republic of China, 2012.]
[60] 马国霞,朱文泉,王晓,. 2001-2013 年我国稀土资源开发
生态环境成本评估[J]. 自然资源学报, 2017, 32(7): 1087-1099.
[Ma G X, Zhu W Q, Wang X J, et al. Evaluation of ecological and
environmental cost of rare earth resource exploitation in China
from 2001 to 2013[J]. Journal of Natural Resources, 2017, 32(7):
1087-1099.]
[61] Li X Y, Ge J P, Chen W Q, et al. Scenarios of rare earth elements
demand driven by automotive electrification in China: 2018-2030
[J]. Resources, Conservation and Recycling, 2019, 145: 322-331.
[62] 王安建,高芯蕊.中国能源与重要矿产资源需求展望[J]. 中国
学院 , 2020, 35(3): 338-344. [Wang A J, Gao X R. Chi⁃
nas energy and important mineral resources demand perspective
[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(3): 338-
344.]
[63] 梁靓,代涛,王高尚.基于供需视角的中国矿产资源国际贸易格
局分析[J]. 中国矿业, 2017, 26(9): 53-60. [Liang L, Dai T, Wang
G S. Analysis of Chinas international trade pattern of mineral re⁃
680
20214
鹏等:全球关键金属-低碳能源关联研究综述及其启示
http://www.resci.cn
sources based on the perspective of supply and demand[J]. China
Mining Magazine, 2017, 26(9): 53-60.]
[64] Peiró L T, Méndez G V, Ayres R U. Material flow analysis of
scarce metals: Sources, functions, end-uses and aspects for future
supply[J]. Environmental Science and Technology, 2013, 47(6):
2939-2947.
[65] Ali S H, Giurco D, Arndt N, et al. Mineral supply for sustainable
development requires resource governance[J]. Nature, 2017, 543
(7645): 367-372.
[66] European Commission. Study on the Review of the List of Critical
Raw Materials Critical Raw Materials Factsheets[R]. Brussels: Eu⁃
ropean Commission, 2017.
Nexus between low-carbon energy and critical metals:
Literature review and implications
WANG Peng1, WANG Qiaochu1, HAN Ruru2, TANG Linbin1, 5, LIU Yu1,
CAI Wenjia3, 4, CHEN Weiqiang1, 5
(1. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, CAS, Xiamen 361021, China; 2. School
of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3. Department
of Earth System Science, Tsinghua University, Beijing 100084, China; 4. Tsinghua-Rio Tinto Joint Research Center for
Resources, Energy and Sustainable Development, Beijing 100084, China; 5. University of Chinese Academy of Sciences,
Beijing 100049, China)
Abstract: There is a close interdependence between critical metals and low- carbon energy
technologies. To improve the understanding of this relationship, this study made a comprehensive
literature review (including about 200 papers published since 2000) to explore the objects,
methods, and progress related to the research of the metal- energy nexus. The main findings are
summarized as follows: (1) The low- carbon energy transition has driven the rapid growth of the
production and trade of critical metals, and led to serious environmental pollution and the
intensified competitions globally; (2) The global low-carbon energy transition could be constrained
by the potential supply risks of critical metals caused by insufficient reserves, fragile trade
networks, unequal geographical distribution, and high environmental pollution; (3) China, as a
major producer and consumer of various critical metals, has borne the huge resource and
environmental costs to support the global low- carbon energy transition, and its supply risks of
critical metals are also high to support domestic needs. Under the target ofcarbon peakand
carbon neutrality, we highlight that higher attentions are needed from researchers and
policymakers in China on the research of the metals- energy nexus, coordinated management of
critical metals and low-carbon energy, assessment of the potential critical metals constraint on low-
carbon energy transition, and the emerging geopolitical risks concerning critical metals.
Key words: low-carbon energy; critical minerals; metal-energy nexus; environmental impact; sup-
ply security of resources
681
... To cope with climate change and the energy crisis and eventually achieve carbon neutrality, the development of renewable energy has received growing attention (Sun et al., 2022). With the advancement of renewable energy technologies, lithium, as a promising material, will play an essential part in reducing carbon to decrease global warming (Liu et al., 2019;Wang et al., 2021b). There is evidence that renewable energy consumption can increase the demand for key minerals, such as lithium (Månberger and Stenqvist, 2018;Moreau et al., 2019). ...
Article
Drawing on international panel data from 2000 to 2019, we examine the structural characteristics of the global lithium trade network and investigate the impact of renewable energy consumption on lithium trade patterns from an industrial chain perspective. The findings indicate that different countries play different roles and hold different central positions in the international lithium network. Compared to lithium raw materials, the trade network in lithium products has stronger connectivity and constitutes the bulk of the lithium trade. Regression results reveal that renewable energy consumption significantly affects lithium trade patterns. For lithium raw materials, renewable energy consumption can increase the weighted degree. For lithium products, renewable energy consumption significantly and positively affects the degree centrality and weighted degree. In addition, the effects vary across countries with different income levels. Renewable energy consumption has a greater positive impact on degree centrality in low-and middle-income economies than in high-income economies.
Article
Geopolitics of energy transition has increasingly become the frontier and hot research area of world energy geography and global political science. Different historical periods are characterised by obvious differences in energy connotations, attributes, and geopolitical characteristics. In the new energy era, energy geopolitics becomes more diversified, complex, and comprehensive. In this paper, we compare the geopolitical characteristics of energy in the fossil fuel and renewable energy periods, and provide an overview of current study trends in new energy geopolitics. Recent research shows that the global energy transition will intensify the reconstruction of geopolitical patterns, change the relationship between geopolitical security and conflict dominated by traditional energy security, alter the role of different countries in global energy geopolitical games, reshape national energy relationships formed in the traditional oil and gas era. In addition, geopolitics will be affected by new energy technologies, availability of key rare materials, and energy cybersecurity measures. Despite considerable attention to this research topic, the likely geopolitical impact of energy transition remains uncertain, and there is still room for the development and improvement of the theoretical framework, technical methods, and research perspective. Looking forward to the future, the research into geopolitics of energy transition urgently needs to strengthen its theoretical basis and rely on the scientific and quantitative methods. The practical conclusions of the research into geopolitics of energy transition should strengthen major national energy security decisions, explore the geographical effect of energy transition, and determine the impact of energy transition on energy security. Research into geopolitics of energy transition should be carried out taking into account international academic frontiers such as climate change, “carbon peak” and “carbon neutral” goals, and global energy governance, to enrich the research perspective of world energy geography.
Article
Full-text available
Energy storage technology as a key support technology for China’s new energy development, the demand for critical metal minerals such as lithium, cobalt, and nickel is growing rapidly. However, these minerals have high external dependence and concentrated import sources, increasing the supply risk caused by geopolitics. It is necessary to evaluate the supply risks of critical metal minerals caused by geopolitics to provide a basis for the high-quality development of energy storage technology in China. Based on geopolitical data of eight countries from 2012 to 2020, the evaluation indicators such as geopolitical stability, supply concentration, bilateral institutional relationship, and country risk index were selected to analyze the supply risk of three critical metal minerals, and TOPSIS was applied to construct an evaluation model for the supply risk of critical metal minerals of lithium, cobalt, and nickel in China. The results show that from 2012 to 2017, the security index of cobalt and lithium resources is between .6 and .8, which is in a relatively safe state, while the security index of nickel resources is .2–.4, which is in an unsafe state. From 2017 to 2020, lithium resources remain relatively safe, and the security index of nickel has also risen to between .6 and .7, which is generally in a relatively safe state. However, the security index of cobalt has dropped to .2, which is in an unsafe or extremely unsafe state. Therefore, China needs to pay attention to the safe supply of cobalt resources and formulate relevant strategies to support the large-scale development of energy storage technology.
Article
Critical minerals are considered to be indispensable raw materials for renewable energy development. Different countries have different capacities to access and provide critical mineral resources in trade pattern, and this difference in role and status have important impacts on renewable energy development. Therefore, based on a complex network approach, we construct global critical mineral trade networks from 2000 to 2019 to quantitatively analyse their topological characteristics. Then the dynamic econometric model is used to analyse the effect of critical mineral trade pattern on renewable energy development and the mediating role of renewable energy technological progress. We find that critical mineral trade networks have obvious “small world” characteristics. As an important critical mineral trading country, China has strong trade strength and central influence. A country's trade strength and central influence is beneficial for renewable energy development, especially for high-income economies, and this gaining effect has been enhanced after the passage of Paris Agreement. More importantly, trade strength and central influence can contribute to renewable energy development through renewable energy technological progress. Our findings have important implications for leveraging mineral trade to facilitate the global clean energy transition.
Article
By combining the traditional Diebold–Yilmaz (2012, 2014) spillover index with the quantile method, we study the extreme spillovers among fossil energy, clean energy, and metals markets from June 25, 2009, to December 31, 2020. We estimate the average connectedness between markets to be about 45% under mean/median conditions, but about 76% according to left- and right-tail estimates. The results show that the mean-based connectedness model has many limitations because when considering extreme positive or negative events, the spillover effect between the three markets is stronger than that under the mean and normal market conditions. Also, dynamic spillovers between markets under various conditions have time-varying characteristics but are less volatile according to the tail estimates. However, the spillover effects between the three markets are asymmetric due to certain differences in spillover effects under extremely positive and negative event conditions. Regarding the net spillover effects under mean/median conditions, clean energy changes from a spillover receiver to an exporter after the signing of the Paris Agreement.
Article
Heavy rare earth (HRE) has become a necessary metal material in the field of high-tech and new energy. China is rich in rare earth, but years of mining resulted in over-exploitation of HRE. And HRE's resource advantage position has been weakened gradually. Therefore, with the increasing demand for HRE, it is of great significance to understand the flow of HRE in sectors in China. In this article, the research model combines the input-output model and complex network model. From the perspective of sector supply chain, the network structure of embodied HRE flow network is analyzed, and the key sectors are identified. Subsequently, the impact of sectors' network roles on the consumption of embodied HRE is quantified based on panel regression model. Furthermore, structural path analysis is used to identify the critical path of the embodied HRE consumption. The main results are as follow: firstly, policy implication and supply-side disruption can cause fluctuation in embodied HRE consumption. But due to the rapid development of new energy industry, demand-side driving effect will be more and more prominent. Secondly, each sector plays a different role in the trading of embodied HRE. For example, metal mining and smelting processing is an important supply and consume sector and the consumption of HRE is largely affected by the sectors' network roles. Finally, the critical path of embodied HRE consumption shows that the main supply path is non-ferrous metal ore mining→ non-ferrous metal smelting and processing→ related electric machinery and metalworking machinery manufacturing/cultural, athletic and arts products manufacturing. However, with the development of new energy, the key supply chain may change. Therefore, we should pay attention to the role of the above key sectors and guide HRE to flow to key sectors of high-end applications. It is important to continuously improve the technology innovation of high-end application fields of HRE, promote resource utilization, and ensure the safety of key supply chains.
Article
Full-text available
The pandemic has temporarily closed mines, factories and borders and destabilized flows of cobalt, lithium and more — metals that are crucial for batteries, wind turbines and solar panels.
Article
Full-text available
The wide adoption of lithium-ion batteries used in electric vehicles will require increased natural resources for the automotive industry. The expected rapid increase in batteries could result in new resource challenges and supply-chain risks. To strengthen the resilience and sustainability of automotive supply chains and reduce primary resource requirements, circular economy strategies are needed. Here we illustrate how these strategies can reduce the extraction of primary raw materials, that is, cobalt supplies. Material flow analysis is applied to understand current and future flows of cobalt embedded in electric vehicle batteries across the European Union. A reference scenario is presented and compared with four strategies: technology-driven substitution and technology-driven reduction of cobalt, new business models to stimulate battery reuse/recycling and policy-driven strategy to increase recycling. We find that new technologies provide the most promising strategies to reduce the reliance on cobalt substantially but could result in burden shifting such as an increase in nickel demand. To avoid the latter, technological developments should be combined with an efficient recycling system. We conclude that more-ambitious circular economy strategies, at both government and business levels, are urgently needed to address current and future resource challenges across the supply chain successfully.
Article
Full-text available
Wind power needs to be expanded rapidly across the world to stabilize our climate. However, there are increasing concerns about conflicts between the supply of rare-earth elements (REs) (mainly neodymium, praseodymium, and dysprosium) and the global expansion of wind power. Here, we provide a dynamic, technology-rich, and regional-specific approach to exploring such conflicts among ten world regions through 2050 under four widely recognized climate scenarios. We find that the significant increase in RE demand driven by the ambitious 2050 global wind-power targets cannot be achieved without 11- to 26-fold expansion in the RE production. Material recycling and efficiency, production expansion, and technical innovation are promising for alleviating RE supply shortages in the long term. However, the existing global RE supply structure, along with the intensifying geopolitical and environmental constraints, could inhibit the rapid expansion of wind power, which calls for global cooperation to foster a sustainable and responsible RE supply chain.
Article
Full-text available
This study examines the geopolitical role of 14 metals and metalloids needed for renewable energy technologies. The analysis focuses on three factors with potential geopolitical importance: the geographic concentration of resources, potential revenues of resources rich countries and the size of total global markets. The geographic concentration of most of the fourteen studied metals and metalloids will be higher than for oil. The only exceptions are tellurium, copper and silicon. The economic revenues as fraction of total economic throughput will be rather low for most of the countries studied. This will reduce the risk for a resource curse to emerge. The exceptions are the Democratic republic of Congo, Chile, Cuba, Madagascar and Zambia. The total economic value of the studied metals and metalloids will also be much smaller than the current oil market.
Article
Full-text available
Global energy transitions could fundamentally change flows of both minerals and energy resources over time. It is, therefore, increasingly important to holistically and dynamically capture the impacts of large-scale energy transitions on resource flows including hidden flows such as mine waste, as well as direct flows. Here we demonstrate a systematic model that can quantify resource flows of both minerals and energy resources under the energy transition by using stock-flow dynamics and the concept of Total Material Requirement (TMR). The proposed model was applied to the International Energy Agency’s scenarios up to 2050, targeting 15 electricity generation and 5 transport technologies. Results indicate that the global energy transition could increase TMR flows associated with mineral production by around 200–900% in the electricity sector and 350–700% in the transport sector respectively from 2015 to 2050, depending on the scenarios. Such a drastic increase in TMR flows is largely associated with an increased demand for copper, silver, nickel, lithium and cobalt, as well as steel. Our results highlight that the decarbonization of the electricity sector can reduce energy resource flows and support the hypothesis that the expansion of low-carbon technologies could reduce total resource flows expressed as TMR. In the transport sector, on the other hand, the dissemination of Electric Vehicles could cause a sharp increase in TMR flows associated with mineral production, which could offset a decrease in energy resource flows. Findings in this study emphasize that a sustainable transition would be unachievable without designing resource cycles with a nexus approach.
Article
Full-text available
This study investigates, at the country level, the adverse effects of changes in metal inputs on the achievement of sustainable development goals (SDGs). It also highlights the relationships between metals use and various socioeconomic consequences that urgently require decoupling in order to achieve the SDGs. We performed panel data analysis to evaluate, on a national scale and over a ten-year period (2004-2013), the impact of changes in the material flows of 11 metals on 96 SDG indicators corresponding to the 17 SDGs defined by the UN. On average, an increase in the material flow of the targeted metals was found to be correlated with a deterioration in approximately 10% of the 96 indicators. Among the affected SDGs, the adverse impact of metals on SDG 3 (Health), SDG 8 (Economic Growth), and SDG 16 (Peace, Justice, and Strong Institutions) was particularly noteworthy. More SDGs were negatively impacted in metal-mining countries than in metal-importing countries.
Article
Renewables rely heavily on critical materials. Such material (metal)-energy nexus thinking is critical to guarantee global renewable transition. As the largest energy consumer, China aims to promote the unprecedented installation of renewables to significantly decarbonize energy system till 2050. However, the material constraints to those renewable targets have been widely neglected by current stakeholders in China. In this paper, a quantitative framework is proposed to identify and quantify the corresponding material constraints on energy transition from a material cycle perspective. Accordingly, the required critical material demand for China’s 2050 renewable transition and its flow, loss, and stock along the life cycle are quantified. It is found that the critical materials (i.e. Cadmium, Tellurium, Indium, Gallium, Selenium, and Germanium) required by solar power in China are all under high shortage and supply risk. Their cumulative demand from 2015 to 2050 will exceeded the present national reserve by 1.4–123-fold. Approximately 804–1056 thousand tons (kt) of Neodymium and 66–85 kt of Dysprosium are required to support the growth of wind power, which account for around 10% with the current reserve in China. Nevertheless, the limited scalability of rare earth production in China may still constrain wind power development. Hence, China should adjust its renewable pathways (e.g. more wind, less solar) based on the critical mineral endowment. Furthermore, recycling is preferred but has limited impact on material criticality mitigation before 2030, and it is then suggested more actions should be made on the international trade and material efficiency improvement along the life cycle to support future renewable needs.
Article
China is accelerating automotive electrification to address the pressing oil shortage and environmental pollution issues. Automotive electrification can be achieved through four different major technology pathways: hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles and fuel cell electric vehicles. These pathways all heavily rely on the use of critical mineral resources, such as rare earth elements (REEs). This study establishes different scenarios of the future technology mix and growth in automotive electrification in China by 2030 to predict the future demand of REEs associated with such scenarios. The widely applied Bass model is chosen to predict the future growth of these four technology pathways for electric vehicles under pessimistic, neutral and optimistic demand scenarios. Given the potential for technological advances, the effects of changes in the material intensity and component substitution are considered to effectively reflect future demand changes. Accordingly, the REE demand associated with the four technology pathways from 2018 to 2030 is estimated. The highest demand for REEs in automotive electrification will reach 315 thousand tons, accounting for 22% of global production during the prediction period. Specifically, the demands for Nd, Dy, Ce, Pr, and La will account for 51%, 20%, 12%, 9.5%, and 7.7% of the total demand, respectively. Moreover, the contrast between the supply and demand of Dy and Pr will be extremely large, and these elements will require more attention than others. For the successful development of automotive electrification in China, related policies and plans regarding the supplies of different types and quantities of REEs should be urgently established.
Article
The supply and demand response trends of lithium resources in China are investigated under the obvious changes caused by the rapid development of emerging renewable energy technologies (ERETs), such as electric energy storage (EES) and new energy vehicles (NEVs). A system dynamics model for renewable energy technology–lithium supply and demand is developed based on the industrial chain of lithium resources. Then, we analyze how the trends in the lithium market price, the supply and demand gap, the import volume, and the composition of lithium consumption will change with the rising demand of EES and NEVs. The model is simulated under three different demand level scenarios. The results show that the lithium market price will experience 2 processes in which the market price first gradually increases and is followed by a rapid decline, which is due to the incentive for upstream industries to increase production, resulting in oversupply. There are relatively large gaps between supply and demand, especially in later periods under a high NEV demand scenario. The import volume of lithium resources increases significantly after period 20 due to the rapid development of EES and NEVs. The import volume is much greater under the high scenario in later periods. The EES will play a significant role in the market, which tends to be ignored in the literature. Lithium recycling and extraction technologies, especially for brine, require a breakthrough to increase domestic production to cope with various challenges, including supply shortages and import risks.