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Solutions to hydrodynamically developing flow in circular and non-circular ducts are exam-
ined. It is shown that the apparent friction factor based upon the square root of the cross-
sectional area is a weak function of the shape of the geometry provided an appropriate aspect
ratio is defined. A general model which is valid for many duct configurations is developed by
combining the developing flow and fully developed flow asymptotes. The new model is simpler
than other general models and provides equal or better accuracy. Finally, it is shown that
the solution for the elliptic duct geometry may be used to compute accurately, results for 8
singly-connected ducts and 2 doubly-connected ducts, respectively, with an accuracy of +12

percent.
NOMENCLATURE Greek Symbols

A = flow area, m? € = aspect ratio, = b/a
a = major axis of ellipse or rectangle, m ¢ = dynamic viscosity, Ns/m?
b = minor axis of ellipse or rectangle, m v = kinematic viscosity, m?/s
C = empirical constant Eq. (15) p = fluid density, kg/m3
c = linear dimension, m iy = shape function
D = diameter of circular duct, m 7 = wall shear stress, N/m?
d* = dimensionless diameter ratio, = Dp /D02 )
Dr = hydraulic diameter, = 44/P Subscripts
E(") = complete elliptic integral of the second kind VA = based upon the square root of flow area
e = eccentricity, m app = apparent
e = dimensionless eccentricity, = e/(r, — r;) c = core
f = friction factor = 7/(}pw?) D;, = based upon the hydraulic diameter
g(e = shape function Eq. (24) e = entrance
K = incremental pressure drop factor fd = fully developed
m = area mismatch parameter, = A/Ap, i = inner, initial
N = number of sides of a polygon L = based upon the arbitrary length £
n = correlation parameter Egs. (21,22) 0 = outer
P = perimeter, m w = wall
p = pressure, N/m? z = local value
p* = dimensionless pressure, = p/(5p0>) oo = fully developed limit
T = radius, m Superscripts
r* = dimensionless radius ratio, = r;/r, + ) ] )
Rer = Reynolds number, = wWL/v = denotes d%menS}onless quantity
s = arc length, m * = denotes dimensionless quantity
v = velocity vector, m/s () = denotes average value of (-)
u,v,w = velocity components, m/s
w = average velocit)'r, m/s INTRODUCTION
z,¥y,z = cartesian coordinates, m
zF = dimensionless axial position for

developing fluid flow, = z/LRe,
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Predicting the pressure drop under developing flow
conditions (see Fig. 1) is quite important in many applica-
tions such as heat exchangers where flow passages are typ-
ically short in length and may be circular or non-circular.
In these applications it is often desirable to have simple
models in the early design stages to predict the pressure
drop characteristics. A review of the available literature
reveals that a few general models exist which are able to




predict pressure drop (or friction factor) in non-circular
ducts. However, the available models either require tab-
ulated coefficients or consist of several equations requir-
ing intermediate calculations to be performed. The main
objective of this paper is to develop a model which will
eliminate some of the problems present in the currently
available models. The proposed model is compared with
results available in the literature for many of the geometries
shown in Figs. 2-3.

GOVERNING EQUATIONS AND
DIMENSIONLESS GROUPS

Governing Equations

The governing equations and dimensionless groups for
hydrodynamically developing flow are presented below.
The continuity and momentum equations in vector form
are:

V-V=0 (1)

2

At the wall of the duct, the fluid is subject to the con-
dition

V-V)V = —%Vp+VV2V‘

Vw =0 3)
and at the duct inlet, a uniform inlet velocity

is usually prescribed.
Fully Developed Flow

For fully developed flow in a duct of arbitrary cross-
section, the Navier-Stokes equations reduce to the momen-
tum equation in the flow direction. The resulting equation
is the Poisson equation in one or two dimensions depending
upon the cross-sectional geometry. In this case, the source
term is the constant pressure gradient along the length of
the pipe.

In cartesian coordinates the governing equation for
fully developed laminar flow in a constant cross-sectional
area duct is

Fw  Pw
v ®

which represents a balance between the pressure and vis-
cous forces.

Solutions for many of the different duct geometries
shown in Figs. 2 and 3 have been obtained using vari-
ous analytical and numerical methods and are discussed in
Shah and London! and Shah and Bhatti?.

Hydrodynamically Developing Flow

1dp
wdz

In cartesian coordinates the governing equations in the
entrance region of the duct are the continuity equation

Bu v  Ow
ay + B 0 (6)
and momentum equation
Ow Sw 6w _ ldp v  Jw
“or ey Ve T ;a*”(mwy) @

The pressure gradient term may be written as

ldp

pdz

dw,
=We o~ (8)

where w, = w.(z) is the velocity of the accelerating core.
Due to the non-linear terms in Eq. (7) solutions for hy-

drodynamically developing flows are generally more diffi-

cult to obtain than fully developed flows. Developing flows

" require simultaneous solution to both the continuity, Eq.

(6), and the momentum, Eq. (7), equations given above.
Despite this difficulty, analytic and approximate analytical
solutions for developing flows have been obtained for the
circular duct®, rectangular duct?®, elliptical duct®, paral-
lel plates® and circular annular duct’. Solutions for many
other geometries have also been obtained numerically and
are discussed in Shah and London! and Shah and BhattiZ.

Dimensionless Groups

Numerical and analytical results are often presented
in terms of the dimensionless friction factor. The Fanning
friction factor is defined as

Tw
3P0
which is usually written in terms. of the Reynolds number
as follows

f= (9)

FRep =2 wE (10)
LW

where L is a characteristic length scale of the duct cross-
section, usually chosen to be the hydraulic diameter Dy, =
4A/P.

A general form of the friction factor Reynolds group in’
terms of the solution for the velocity distribution is

PS5
I /A/wdA

represents the velocity gradient at the duct

fRe = e S Only (11)

on
wall with resspect to an inward directed normal.
If the flow is developing, an apparent friction factor
which accounts for the wall shear and increase in momen-
tum in the inviscid core can be defined as

where B_w ’

K(z%)
42+

_ Ap”

fappRec(z"') = fRe, + = T

(12)




where the incremental pressure drop K(z%) is defined as
the difference between the total pressure drop in the duct
and the pressure drop if the flow were fully developed at
every point along the duct, or

dp*

+) — Ap* — +

K(z")=Ap (dz+>fdz (13)
*_Pi‘pz + Z/[’

where Ap* = %pm"’ and z = Rep’

PRESENT MODELS

The apparent friction factor in a circular or non-
circular duct may be computed from the following
expressions®?

. \3/'—:;:1— 2+ <0001 (a) ”
appft€ =
fResq + 4%: 2t >005 (b)

where K, is the value of the incremental pressure drop
when the flow becomes fully developed. The solutions for
fappRe given above are only valid for very short ducts or
very long ducts. To establish the complete f,,, Re relation-
ship, knowledge of the incremental pressure drop K(z%) is
necessary. ;

Several models for predicting pressure drop for hydro-
dynamically developing flows in ducts of constant cross-
section are available in the literature. These models are
based upon the early work of Bender®. Bender® combined
the result of Shapiro et al.® Eq. (14a), with the result for
the “long” duct Eq. (14b), to provide a model which is
valid over the entire length of a circular duct. Shah!? later
extended the model of Bender® to predict results for the
equilateral triangle, the circular annulus, and the rectangu-
lar duct geometries. Shah!? achieved this by generalizing
the form of the model of Bender®, and tabulating coeffi-
cients for each special case. The model proposed by Shah!?
is given below.

3.44 + fRefq+ Koo /42T — 3.44/V 2+
N 14+ C/(2%)?

Recently, Yilmaz'! has proposed a more general model
of Shah!®. Rather than tabulating coefficients, Yilmaz!!
developed expressions for the fully developed friction factor
fRegq, incremental pressure drop Ko, and the constant
C which appear in the Shah'® extension of the Bender®
model. The model of Yilmaz!! takes the following form:

fapp}zeD;l = (15)

i Rep = 344 160+ K/4z* ~ 344/ V5
appit€Dn = e T 1 0.08 x 10-AK314/(z7)2

(16)

where

_ ("/)oo - 1)
V=t 10330 B m o 1) (17)
and
3 w2 *
"/)oo = gd (3 -d ) (18)

are shape factors relating the non-circular duct to a circular
duct.

The incremental pressure drop for the arbitrary geom-
etry is

1.33
K=17 (1.33/ Koo — 1)/[1 + 0.74d*2/(m — 1)] (19)
where
12 o [9/3-a 1
Koo = 5 (3 -4 [7 (7——3d*) "5 —-2d*] (20)

with m = A/Ap,, d* = Dp/Dpmas, where Ap, is the area
based upon the hydraulic diameter, Ap, = wD%/4, and
D az is the diameter of the maximum inscribed circle.

This model is more general than that of Shah!® but
quite complex. Despite its complexity, the model of
Yilmaz!! is accurate over the entire range of the entrance
and fully developed regions. The primary drawback of the
simple model proposed by Shah!® is the requirement of
tabulated coefficients and parameters for each geometry,
i.e. fRefq, Koo, and C, thus limiting interpolation for ge-
ometries such as the rectangular duct whose solution varies
with aspect ratio. In the case of the model developed by
Yilmaz!!, interpolation is no longer a problem, however
this is achieved at the cost of simplicity. Although the
model of Yilmaz!! is only a function of two geometry spe-
cific parameters, m and d*, there is some difficulty in de-
termining D, for many geometries. The proposed model
is only a function of one geometric parameter, the aspect -
ratio of the duct, and allows for accurate prediction of the
apparent friction factor for many geometries given in Shah
and London! and Shah and Bhatti2.

MODELING

The proposed model for hydrodynamically developing
flows takes the form of

y(z¥) = [¥ 0 ¥ Lo )" (21)-

where y,+_,¢ and y,+_,o are asymptotic solutions for small
and large values of the independent variable 2+ and n is
the fitting parameter. The method of superposition of
asymptotic solutions is discussed in detail by Churchill and
Usagil?. ,

For the particular case of predicting the apparent fric-
tion factor in a duct, this would involve combining the de-
veloping flow, Eq. (14a), and fully developed flow, fRegq,
asymptotes in the following form:




3.44\" I R
e ={(22) 4 sm} " )
The authors have determined that the optimal value
for the parameter n is n ~ 2. The above model accurately
predicts the data for all of the geometries examined in this
study. The proposed model is considerably simpler than
that of Shah!® and Yilmaz!! and does not contain the in-
cremental pressure drop factor K. The proposed model
does require knowledge of the fully developed friction factor
Reynolds number product fRezq. It would be beneficial to
develop a means to predict the fully developed results for
many geometries as done by Yilmaz!!, to further simplify
the model.

Entrance Region

In the entrance region where the boundary layer thick-
ness is small, the results are similar for all ducts regardless
of geometry. An analytical result for the apparent friction
factor in the entrance region of the circular duct was de-
rived by Shapiro et al.® using several methods. The leading
term in the solution for any characteristic length £ is given
by

3.44

which is valid for 2+ = z/(Re, L) < 0.001. This solution is
independent of the duct shape and is analogous to the short
time solution in conduction heat transfer. In Yovanovich et
al.13, the authors developed a simple model for computing
transient heat flow from arbitrarily shaped convex isother-
mal bodies into infinite domains, by combining the short
time and steady state asymptotes in a similar manner.

foppRec = (23)

Fully Developed Region

In the fully developed region of the duct, many solu-
tions have been obtained. However, the solutions are not
independent of duct geometry as is the case in the entrance
region. It is desirable to have a solution in the fully devel-
oped region which is a weak function of the shape of the
duct. This may be achieved by selecting a more appro-
priate characteristic length which will collapse most of the
results for non-circular ducts onto a single curve.

In the heat transfer and fluid flow literature, the con-
ventional selection is the hydraulic diameter, Dy =4A4/P.
This characteristic length arises from a simple control vol-
ume force balance performed on an arbitrary slug of fluid
in a duct of arbitrary shape.l* For a circular duct Dy = D,
where D is the diameter of the duct. The hydraulic di-
ameter concept is much more accurate in turbulent flow
theory”, however, since this paper is concerned with lami-
nar flow problems, an alternative to the hydraulic diameter
which will collapse the results of many non-circular ducts
onto a single curve.

One notable drawback of the hydraulic diameter con-
cept is the fact that the area computed from the hydraulic
diameter is not the same as the true area of the duct in

question. This “mismatch” in areas is often assumed to be
the cause of the mismatch between the results for the cir-
cular duct geometry and non-circular geometries.!4=1¢ In
the model developed by Yilmaz!! a mismatch parameter
which is defined as the ratio of the true duct cross-sectional
area to the area computed from the hydraulic diameter is
proposed in the development of the model.

The appropriate characteristic length should minimize
the differences between solutions for different geometries
when the results are non-dimensionalized. Three obvious
choices for a characteristic length are the perimeter £ = P,
the hydraulic diameter £ = 44/P, and the square root of
the flow area £ = v/A. In a recent paper!? the authors
showed by means of dimensional analysis that the square
root of the cross-sectional flow area is a more appropriate
characteristic length for presenting friction factors of non-
circular ducts than the hydraulic diameter. It was shown

" that most numerical and analytical results for the fully de-

veloped friction factor-Reynolds number product are pre-
dicted to within £10 percent by the closed form solution for
the elliptic duct when the characteristic length is £ = V4.
The square root of the cross-sectional area as a character-
istic length is essentially the same as defining an equivalent
diameter which preserves the cross-sectional flow area.

Table 1
Definitions of Aspect Ratio

Geometry Aspect Ratio
Regular Polygons e=1
Singly-Connected? Ce= b

a
Trapezoid €= 2b
atc
Annular Sector 1-r
€= ———
(1+7r*)®
Circular Annulus €= M
(1l +r*)
Eccentric Annulus € = A+en-r)
m(1+71*)

Al except annular sector and trapezoid.

The results of Yovanovich and Muzychkal? for many
geometries are presented in Figs. 4-5. The numeric results
are accurately predicted by ’

_ T (1+€%)
e =05 (3§ ez

where E(-) is the complete elliptic integral of the second
kind, and € is an appropriate aspect ratio of the duct.

To eliminate the problem of evaluating the elliptic in-
tegral, an approximate expression was developed for the
shape function g(e) defined as

(24)




(= 1+¢€2
1= (7zv=m) )
such that
fRe sz = 8/mg(e) (26)

The shape function g(e) may be accurately computed
from the following expression:
g(e) = [1.0869571"‘(\/2 —€%/%) +e] ' (27)
Equation (27) is valid over the range 0.05 < e < 1
with an RMS error of 0.70 percent and a maximum error
less than +2 percent. Definitions of the appropriate aspect
ratio for all of the geometries are summarized in Table 1.
The aspect ratio € is defined as the ratio of the maximum
width and height of each geometry with the constraint that
0 < € < 1. If the duct is doubly connected such as the an-
nulus or eccentric annulus, the aspect ratio is taken to be
the ratio of the maximum duct spacing and the average
duct perimeter.

Full Model

A model which is valid over the entire duct length for
many different geometries may be obtained by combining
the results given above in the form of Eq (21). Using the
Churchill-Usagi'? asymptotic correlation method, the new
model is obtained as

34417
fa,,pRe\/zz [{7;-:} + (28)
(1+¢€?) 22

where the characteristic length for f,ppRe, fRe, and z7 is
now £ = v/A rather than the hydraulic diameter.

The correlation parameter n may be chosen such that
the RMS differences between the predicted results and the
numerical or analytical results is minimized. Table 2 com-
pares the percent difference and the RMS difference of the
proposed model with the models of Shah!? and Yilmaz!!
for a number of geometries. Also presented in Table 2
is the optimal value of the parameter n which minimizes
the RMS difference for each geometry. It is apparent that
choosing a single value of n = 2 does not introduce large
errors and simplifies the model considerably.

One notable feature of the new model is that it does
not contain the incremental pressure drop term K, which
appears in the models of Bender®, Shah!?, and Yilmaz!!.
Since the solution of Shapiro et al.? for the entrance re-
gion accounts for both the wall shear and the increase in
momentum due to the accelerating core, there is no need
to introduce the term K. Thus the proposed model is
now only a function of duct length 2zt and aspect ratio e,

whereas the models of Shah!® and Yilmaz!! are functions
of many more parameters.

RESULTS

Comparisons between numerical data and the new
model for the geometries in Table 2 are presented in Figs.
6-11 for a range of z*. With the exception of the eccentric
annular duct at large values of r* and e*, the proposed
model predicts all of the developing flow data available
in the literature to within 12 percent. The proposed
model provides equal or better accuracy than the model
of Yilmaz!! and is also much simpler. A comparison of the
model with the data for the parallel plate channel is also
provided. For this geometry v A — oo, however, this ge-
ometry may be accurately modeled as a rectangular duct
with € = 0.01 or a circular annular duct with r* = 0.05.
Good agreement is obtained with the current model when
the parallel plate channel is modeled as a finite area duct
with small aspect ratio.

SUMMARY

A simple model was developed for predicting the ap-
parent friction factor Reynolds number product in non-
circular ducts for developing laminar flow. The new model
only requires two parameters, the aspect ratio of the duct
and the dimensionless duct length. Whereas the model
of Shah!® requires tabulated values of three parameters,
and the model of Yilmaz!! consists of several equations.
The new model predicts most of the developing flow data
within + 12 percent for 8 singly connected ducts and 2
doubly connected ducts. The new model may also be used
to predict results for ducts which no solutions or tabulated
data exist. It was also shown that the square root of the
cross-sectional flow area was a more effective characteristic
length scale than the hydraulic diameter for collapsing the
numerical results of geometries having similar shape and .
aspect ratio.
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Table 2

Comparison of RMS and Percent Differences* in Developing Flow Models

Shah Yilmaz Proposed Model
Ref. Geometry (1978) (1990) (n=2)

min/max min/max min/max RMS nt RMS

24 Circle =19 -0.3/2.7  -2.73/1.05 120 2.01 1.71
24  Circular Annulus r;/r, = 0.05 + 20 -17.0/1.2  -2.61/1.18 127 2.18 2.51
24 Circular Annulus r;/r, = 0.10 +19 -17.4/1.9 -1.97/1.09 0.77 2.14 1.73
24  Circular Annulus r;/r, = 0.50 + 2.2 -10.2/0.9 -1.13/6.96 1.87 2.07 1.99
24 Circular Annulus r;/r, = 0.75 + 2.1 -5.4/1.3  -1.44/7.17 212 2.04 2.16
25 Square b/a =1 + 2.3 -2.4/16  -1.48/2.27 141 195 1.61
25  Rectangle b/a = 0.5 +19 -2.1/6.7  -1.48/2.27 1.14 1.98 1.16
25 Rectangle b/a = 0.2 * 1.7 -1.5/5.0 -1.11/1.89 110 2.15 2.04
26  Parallel Plates b/a — 0 +24  -16/18 -1.22/0.86 060 232  3.33
27  Isosceles Triangle 2¢ = 30° - -1.1/09 -1.30/441 175 1.71 4.91
28  Isosceles Triangle 2¢ = 60° + 24 -0.6/1.1  -0.63/597 235 1.70 5.16
28 Isosceles Triangle 2¢ = 90° - 1.6/5.2 -7.28/0.85 2.04 2.03 2.08
29  Eccentric Annulus e* = 0.5, 7* = 0.5 - -5.5/3.0 -2.06/1.97 1.71 1.50 8.72
29 Eccentric Annulus e* = 0.5, r* = 0.1 - -9.1/16 -2.22/2.29 166 1.66 5.08
29  Eccentric Annulus e* = 0.7, 7* = 0.3 - -10.3/3.1 -10.89/8.39 7.56 1.86 7.72
29  Eccentric Annulus e* =0.9, r* = 0.1 - -11.4/0.2 -13.96/5.87 594 2.38 7.30
29  Eccentric Annulus e* = 0.9, 7* = 0.5 - -9.9/-3.5 -35.13/9.44 13.34 3.61 18.14
Ellipse b/a =1 - - -2.97/3.75 253 196 2.56
Ellipse b/a = 0.5 - - -2.98/5.77 377 197 3.85
Ellipse b/a = 0.2 - - -5.75/7.59 5.62 1.69 7.01

30  Circular Sector 2¢ = 11.25° - - -9.42/3.03 3.67 2.01 3.68
30  Circular Sector 2¢ = 22.5° - - -1.70/5.10  1.57 1.73 4.22
30  Circular Sector 2¢ = 45° - - -1.14/12.1  3.73 1.62 6.69
30  Circular Sector 2¢ = 90° - - -1.60/16.72 4.63 1.75 5.69
31 Pentagon - - -3.46/12.75 579 1.76 6.41
31 Trapezoid ¢ = 72, b/a = 1.123 - - -496/11.35 6.05 1.55 8.68

* %diff= (Analytical — Predicted)/( Analytical) x 100
T Optimal value
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