Patrick Seale

Patrick Seale
University of Pennsylvania | UP · Department of Cell and Developmental Biology

PhD

About

123
Publications
37,214
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
24,499
Citations
Additional affiliations
October 2009 - present
University of Pennsylvania
Position
  • Professor (Assistant)
September 2003 - September 2009
Dana-Farber Cancer Institute
Position
  • PostDoc Position
September 1997 - May 2003
McMaster University
Position
  • PhD Student

Publications

Publications (123)
Article
Full-text available
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that a...
Preprint
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process. We found that aging inc...
Article
The infrapatellar fat pad (IPFP) and synovium play essential roles in maintaining knee joint homeostasis and in the progression of osteoarthritis (OA). The cellular and transcriptional mechanisms regulating the function of these specialized tissues under healthy and diseased conditions are largely unknown. Here, single-cell and single-nuclei RNA se...
Article
Full-text available
Objective Glucagon-like peptide 1 (GLP-1) receptor agonists reduce food intake, producing remarkable weight loss in overweight and obese individuals. While much of this weight loss is fat mass, there is also a loss of lean mass, similar to other approaches that induce calorie deficit. Targeting signaling pathways that regulate skeletal muscle hyper...
Article
Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic prof...
Article
Background: IRF2BP2, a transcriptional co-factor, has emerged as a potential regulator of circulating lipid levels based on several coronary artery disease (CAD) genome-wide association studies (GWAS) studies. However, the role of IRF2BP2 in adipocytes, which regulate fat storage, energy expenditure, and fatty acid release, remains unexplored. Our...
Article
Full-text available
Sustained responses to transient environmental stimuli are important for survival. The mechanisms underlying long-term adaptations to temporary shifts in abiotic factors remain incompletely understood. Here, we find that transient cold exposure leads to sustained transcriptional and metabolic adaptations in brown adipose tissue, which improve therm...
Article
Brown adipose tissue (BAT) is a thermogenic organ that protects animals against hypothermia and obesity. BAT derives from the multipotent paraxial mesoderm; however, the identity of embryonic brown fat progenitor cells and regulators of adipogenic commitment are unclear. Here, we performed single-cell gene expression analyses of mesenchymal cells d...
Preprint
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process. We found that aging inc...
Preprint
Full-text available
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process. We found that aging inc...
Preprint
Full-text available
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process. We found that aging inc...
Article
Full-text available
Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis¹. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and β3-AR signalling induces the expression of thermogenic genes of the futile...
Article
Distinct metabolic programs regulate intestinal stem cell renewal and differentiation. However, the mechanisms that rewire metabolism during differentiation are poorly defined. Previously, we have shown that the transcription factor PRDM16 is a critical regulator of intestinal metabolism and differentiation. Acute deletion of Prdm16 in adult mice c...
Article
Full-text available
Radiation causes a collapse of bone marrow cells and elimination of microvasculature. To understand how bone marrow recovers after radiation, we focused on mesenchymal lineage cells that provide a supportive microenvironment for hematopoiesis and angiogenesis in bone. We recently discovered a nonproliferative subpopulation of marrow adipogenic line...
Article
Adipose tissue, colloquially known as “fat,” is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and im...
Preprint
Full-text available
Noradrenaline is the primary physiological regulator of adipocyte thermogenesis in response to decreased environmental temperature ¹ . However, the molecular factors and effector pathways that lie downstream of noradrenaline-stimulated thermogenesis are still not fully understood but are purportedly driven by cAMP downstream of β-adrenergic recepto...
Article
Full-text available
Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein–protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white...
Article
Full-text available
Objective The capacity to generate new adipocytes from precursor cells is critical for maintaining metabolic health. Adipocyte precursor cells (APCs) constitute a heterogenous collection of cell types. However, the contribution of these various cell types to adipose tissue expansion in vivo remains unknown. The aim of the current study is to invest...
Article
Sweat out the fat with TSLP! Thymic stromal lymphopoietin (TSLP) is a cytokine that can promote immune responses that characterize allergic diseases. Choa et al . found that mice engineered to produce elevated TSLP displayed selective white adipose tissue loss that protected them from obesity, insulin resistance, and steatohepatitis (see the Perspe...
Article
Full-text available
Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipos...
Article
Obesity is a serious public health concern. Emerging studies indicate that the immune system can regulate weight and energy homeostasis. Here we show that the cytokine Thymic Stromal Lymphopoietin (TSLP) stimulates T cells to induce selective white adipose loss, which protects against obesity, improves glucose metabolism, and mitigates nonalcoholic...
Article
The cytokine interleukin 4 (IL-4) can increase beige adipogenesis in adult rodents. However, neonatal animals use a distinct adipocyte precursor compartment for adipogenesis compared to adults. In this study, we address whether IL-4 can induce persistent effects on adipose tissue when administered subcutaneously in the interscapular region during t...
Article
Full-text available
Brown adipose tissue can expend large amounts of energy, and therefore increasing its size or activity is a promising therapeutic approach to combat metabolic disease. In humans, major deposits of brown fat cells are found intimately associated with large blood vessels, corresponding to perivascular adipose tissue (PVAT). However, the cellular orig...
Article
Bone marrow mesenchymal stromal cells are a highly heterogenic cell population containing mesenchymal stem cells as well as other cell types. With the advance of single cell transcriptome analysis, several recent reports identified a prominent subpopulation of mesenchymal stromal cells that specifically express adipocyte markers but do not contain...
Preprint
Full-text available
Brown adipose tissue can expend large amounts of energy and thus increasing its amount or activity is a promising therapeutic approach to combat metabolic disease. In humans, major deposits of brown fat cells are found intimately associated with large blood vessels, corresponding to perivascular adipose tissue (PVAT). However, the cellular origins...
Article
In this issue of Cell Stem Cell, Shook et al. (2020) reveal that dermal adipocytes regulate skin wound repair via release of fatty acids that promote macrophage recruitment and accelerated revascularization. Furthermore, mature dermal adipocytes dedifferentiate into migratory extracellularmatrix-producing myofibroblasts.
Article
Within the past 30 years, obesity and associated disorders such as Type II diabetes are rapidly becoming world-wide epidemics. Type II diabetes, caused by the loss of insulin sensitivity, accounts for $327 billion annually in the U.S. Recent studies have shown that the immune system plays a critical role in regulating the metabolic function of adip...
Article
Full-text available
Bone marrow mesenchymal lineage cells are a heterogeneous cell population involved in bone homeostasis and diseases such as osteoporosis. While it is long postulated that they originate from mesenchymal stem cells, the true identity of progenitors and their in vivo bifurcated differentiation routes into osteoblasts and adipocytes remain poorly unde...
Article
Full-text available
Bone marrow mesenchymal lineage cells are a heterogeneous cell population involved in bone homeostasis and diseases such as osteoporosis. While it is long postulated that they originate from mesenchymal stem cells, the true identity of progenitors and their in vivo bifurcated differentiation routes into osteoblasts and adipocytes remain poorly unde...
Article
Full-text available
Brown adipose tissue (BAT) activity protects animals against hypothermia and represents a potential therapeutic target to combat obesity. The transcription factor early B cell factor-2 (EBF2) promotes brown adipocyte differentiation, but its roles in maintaining brown adipocyte fate and in stimulating BAT recruitment during cold exposure were unkno...
Article
Full-text available
Brown adipose tissue (BAT) generates heat to maintain body temperature and suppress obesity. Agonists for nuclear receptors PPARα and PPARγ both affect brown adipocyte function, yet the interplay between these factors in BAT is uncertain. Here, we report that PPARα shares most genomic binding sites with PPARγ, and these common binding sites are mor...
Article
Metabolic pathways dynamically regulate tissue development and maintenance. However, the mechanisms that govern the metabolic adaptation of stem or progenitor cells to their local niche are poorly understood. Here, we define the transcription factor PRDM16 as a region-specific regulator of intestinal metabolism and epithelial renewal. PRDM16 is sel...
Article
The vasculature is an essential component of the circulatory system that plays a vital role in the development, homeostasis, and disease of various organs in the human body. The ability to emulate the architecture and transport function of blood vessels in the integrated context of their associated organs represents an important requirement for stu...
Article
The precursor cells for metabolically beneficial beige adipocytes can alternatively become fibrogenic and contribute to adipose fibrosis. We found that cold exposure or β3-adrenergic agonist treatment of mice decreased the fibrogenic profile of precursor cells and stimulated beige adipocyte differentiation. This fibrogenic-to-adipogenic transition...
Article
A singular focus on fat Fatty tissue can expand in two ways: through increases in the size of individual adipocytes or through increases in the number of adipocytes. The former process promotes metabolic disease, and the latter protects against it. Merrick et al. used single-cell RNA sequencing to define the hierarchy of mesenchymal progenitor cell...
Article
Adipose tissue, once viewed as an inert organ of energy storage, is now appreciated to be a central node for the dynamic regulation of systemic metabolism. There are three general types of adipose tissue: white, brown, and brown‐in‐white or “beige” fat. All three types of adipose tissue communicate extensively with other organs in the body, includi...
Article
Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 heal...
Article
Brown adipose tissue is a key metabolic organ that oxidizes fatty acids and glucose to generate heat. Through epigenomic analyses of multiple adipose depots, the transcription factor nuclear factor I-A (NFIA) is now shown to drive the brown fat genetic program through binding to lineage-specific cis-regulatory elements.
Article
Full-text available
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3)...
Article
Full-text available
The transcription factor early B-cell factor 2 (EBF2) is an essential mediator of brown adipocyte commitment and terminal differentiation. However, the mechanisms by which EBF2 regulates chromatin to activate brown fat-specific genes in adipocytes were unknown. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by deep sequencing) analyses in...
Article
Brown adipose has the potential to counteract obesity, and thus, identifying signaling pathways that regulate the activity of this tissue is of great clinical interest. PRDM16 is a transcription factor that activates brown fat-specific genes while repressing white fat and muscle-specific genes in adipocytes. Whether PRDM16 also controls other gene...
Article
Full-text available
Noncanonical mechanistic target of rapamycin (mTOR) pathways remain poorly understood. Mutations in the tumor suppressor folliculin (FLCN) cause Birt-Hogg-Dubé syndrome, a hamartomatous disease marked by mitochondria-rich kidney tumors. FLCN functionally interacts with mTOR and is expressed in most tissues, but its role in fat has not been explored...
Article
Activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) present potential new therapies for obesity and type 2 diabetes. Here, we examined the effects of β3-adrenergic stimulation on tissue-specific uptake and storage of free fatty acids (FFA) and its implications for whole-body FFA metabolism in diet-induced obese rats...
Article
Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli — notably,...
Article
Brown and beige adipose tissues have been identified as potential therapeutic targets for combating diet-induced obesity and metabolic disease. Here, we present transcriptional and developmental regulation of brown and beige adipose tissue, as well as critical physiological and pharmaceutical activators of thermogenesis in both tissues.
Article
Full-text available
Objective: Adipose depot mass is tightly regulated to maintain energy homeostasis. AKT is a critical kinase in the insulin-signaling cascade that is required for the process of adipogenesis in vitro. However, the role of AKT in the maintenance and/or function of mature adipocytes in vivo had not been examined. Methods: To study this, we deleted...
Article
The transcriptional regulators Ebf2 and Prdm16 establish and maintain the brown and/or beige fat cell identity. However, the mechanisms operating in white adipocytes to suppress the thermogenic gene program and maintain an energy-storing phenotype are less understood. Here, we report that the transcriptional regulator Zfp423 is critical for maintai...
Article
Rapamycin extends lifespan in mice, yet paradoxically causes lipid dysregulation and glucose intolerance through mechanisms that remain incompletely understood. Whole body energy balance can be influenced by beige/brite adipocytes, which are inducible by cold and other stimuli via β-adrenergic signaling in white adipose depots. Induction of beige a...
Article
Full-text available
Objective: The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell...
Article
Full-text available
Since brown adipose tissue (BAT) dissipates energy through UCP1, BAT has garnered attention as a therapeutic intervention for obesity and metabolic diseases including type 2 diabetes. As we better understand the physiological roles of classical brown and beige adipocytes, it is becoming clear that BAT is not simply a heat-generating organ. Increase...
Article
Full-text available
Brown adipocytes (BAs) are specialized for adaptive thermogenesis and, upon sympathetic stimulation, activate mitochondrial uncoupling protein (UCP)-1 and oxidize fatty acids to generate heat. The capacity for brown adipose tissue (BAT) to protect against obesity and metabolic disease is recognized, yet information about which signals activate BA,...
Article
Full-text available
Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptom...
Article
Full-text available
Brown and beige adipose tissue is specialized for heat production and can be activated to reduce obesity and metabolic dysfunction in animals. Recent studies also have indicated that human brown fat activity levels correlate with leanness. This has revitalized interest in brown fat biology and has driven the discovery of many new regulators of brow...
Article
Inhibition of adipocyte lipolysis by insulin is important for whole-body energy homeostasis; its disruption has been implicated as contributing to the development of insulin resistance and type 2 diabetes mellitus. The main target of insulin's antilipolytic action is believed to be phosphodiesterase 3B (PDE3B), whose phosphorylation by Akt leads to...
Article
Full-text available
The PR-domain containing 16 (Prdm16) protein is a powerful inducer of the thermogenic phenotype in fat cells. In both developmental (brown) and induced (beige) thermogenic adipose tissue, Prdm16 has a critical role in maintaining proper tissue structure and function. It has roles throughout the course of differentiation, beginning with lineage dete...
Article
Full-text available
PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is...
Article
Full-text available
Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity and eosinophil and alternati...
Article
Full-text available
Heat-producing beige/brite (brown-in-white) adipocytes in white adipose tissue have the potential to suppress metabolic disease in mice and hold great promise for the treatment of obesity and type 2 diabetes in humans. Here, we demonstrate that human adipose-derived stromal/progenitor cells (hASCs) from sc white adipose tissue can be efficiently co...
Article
Full-text available
Significance High levels of brown/beige fat activity protects animals against metabolic disease, but there has been little known about the precursor cells that mediate the expansion of brown or beige fat. We discovered that early B-cell factor 2 (Ebf2), a transcription factor, is selectively expressed in brown and beige fat cell precursors. Through...
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that causes death of motor neurons. ALS patients and mouse models of familial ALS display organismal level metabolic dysfunction, which includes increased energy expenditure despite decreased lean mass. The pathophysiological relevance of abnormal energy homeostasis to motor...
Article
Thermogenic (beige and brown) adipocytes protect animals against obesity and metabolic disease. However, little is known about the mechanisms that commit stem cells toward different adipocyte lineages. We show here that p107 is a master regulator of adipocyte lineage fates, its suppression required for commitment of stem cells to the brown-type fat...
Article
Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was...
Article
Brown adipocytes in dedicated depots of brown adipose tissue (BAT) arise from cellular precursors that also give rise to skeletal muscle cells. We found that early B cell factor-2 (Ebf2) expression in the mesoderm of mouse embryos marks brown fat precursors that are destined to activate Pparγ expression and differentiate into Ucp1+ brown adipocytes...
Article
A clear relationship exists between visceral obesity and type 2 diabetes, whereas subcutaneous obesity is comparatively benign. Here, we show that adipocyte-specific deletion of the coregulatory protein PRDM16 caused minimal effects on classical brown fat but markedly inhibited beige adipocyte function in subcutaneous fat following cold exposure or...
Article
Full-text available
Circadian oscillation of body temperature is a basic, evolutionarily conserved feature of mammalian biology. In addition, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges...
Data
Supplementary Figure 3: a, Rev-erbβ, b, Bmal1, and, c, Pgc-1α mRNA levels in BAT during a cold exposure time course (n=3 for mRNA and each lane of the western blot represents pooled biological duplicates). d, BAT gene expression following moderate (20°C) or acute (4°C) cold challenges (n=3). e, BAT protein levels following 3 h NE administration (1...
Data
Supplementary Figure 4: a, BAT mRNA and, b, protein from WT and Rev-erbα KO mice exposed to cold for 6 h as described in Fig. 3a-b. c, mRNA levels in preadipocytes isolated from WT mice, differentiated in culture and harvested at the indicated times following synchronization by serum shock (n=4). ** p<0.01, *** p <0.001 as determined by one-way ANO...
Data
Supplementary Figure 6: Rev-erbα controls the circadian rhythm of body temperature through direct suppression of thermogenesis and BAT activity. Cold exposure during the light phase rapidly overrides Rev-erbα-dependent repression to induce thermogenic programs.
Data
Supplementary Figure 1: a, Rev-erbα protein levels in BAT of WT and Rev-erbα KO mice (n=2; each lane of the western blot represents pooled biological duplicates). b, BAT mRNA from WT and Rev-erbα KO mice harvested at the indicated times over a 24 h time course (n=3).
Data
Supplementary Figure 2: a, Food intake from cold-challenged Rev-erbα KO mice and control littermates in Fig. 1f. b, Root mean squared (RMS) derivation of EMG measurement from Fig. 1g. c, Oxygen consumption rates of Rev-erbα KO mice and control littermates following NE administration (1 mg/kg s.c.) (n=6). d-e, RMS derivation of EMG measurements perf...
Data
Supplementary Figure 5: a, Infrared images from the thermographic surface temperature analysis performed in Fig. 4c. b, Genotypic differences between BAT and core temperatures from WT and Rev-erbα KO mice acclimated to thermoneutrality (n=6). c, 18-fluorodeoxyglucose (18FDG) imaging (n=4) of Rev-erbα KO mice and WT littermates during the light and...
Article
Full-text available
Adipose tissue, best known for its role in fat storage, can also suppress weight gain and metabolic disease through the action of specialized, heat-producing adipocytes. Brown adipocytes are located in dedicated depots and express constitutively high levels of thermogenic genes, whereas inducible 'brown-like' adipocytes, also known as beige cells,...
Article
The master transcription factor Pparγ regulates the general differentiation program of both brown and white adipocytes. However, it has been unclear whether Pparγ also controls fat lineage-specific characteristics. Here, we show that early B cell factor-2 (Ebf2) regulates Pparγ binding activity to determine brown versus white adipocyte identity. Th...
Article
Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered unifor...
Article
Mice lacking the Jak tyrosine kinase member Tyk2 become progressively obese due to aberrant development of Myf5+ brown adipose tissue (BAT). Tyk2 RNA levels in BAT and skeletal muscle, which shares a common progenitor with BAT, are dramatically decreased in mice placed on a high-fat diet and in obese humans. Expression of Tyk2 or the constitutively...
Article
Full-text available
Fibroblastic preadipocyte cells are recruited to differentiate into new adipocytes during the formation and hyperplastic growth of white adipose tissue. Peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, is expressed at low levels in preadipocytes, and its levels increase dramatically and rapidly during the...
Article
Brown adipocytes burn chemical energy to produce heat for protection against hypothermia and obesity. Sellayah et al. now reveal that a secreted neuropeptide, Orexin, functions a key driver of brown adipocyte differentiation through direct actions on brown adipose precursors.
Article
Full-text available
The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of...
Article
Full-text available
Brown adipose tissue (BAT) is a specialized endothermic tissue in eutherian mammals that protects against hypothermia. Heat production by BAT may also be stimulated by overfeeding as an apparent counter regulatory mechanism to prevent excessive adipose accumulation. Genetic studies in rodents have overwhelmingly demonstrated an antiobesity effect f...
Article
Full-text available
How can we decrease the body's energy efficiency? The answer to this could be used to fight the exploding obesity crisis. Our ability to accumulate and retain energy reserves once provided a survival advantage. However, these ingrained energy-conservation pathways are now driving unprecedented weight gain in modern societies where calorie-dense foo...
Article
Full-text available
In contrast to white adipose tissue (WAT), which is specialized for the storage of excess energy, brown adipose tissue (BAT) dissipates chemical energy to produce heat as a defense against cold. Interest in the development and regulation of BAT has exploded in the last few years because of a confluence of discoveries in the biology and physiology o...
Article
Full-text available
The worldwide epidemic of obesity has increased the urgency to develop a deeper understanding of physiological systems related to energy balance and energy storage, including the mechanisms controlling the development of fat cells (adipocytes). The differentiation of committed preadipocytes to adipocytes is controlled by PPARgamma and several other...
Article
Full-text available
The looming pandemic of obesity and overweight, driven by ready access to high-calorie food and an increasingly sedentary way of life, poses a severe threat to global public health. The pathological accumulation of excess dysfunctional adipose tissue that characterizes obesity is a major risk factor for many other diseases, including type 2 diabete...
Article
Full-text available
Brown adipose cells are specialized to dissipate chemical energy in the form of heat, as a physiological defence against cold and obesity. PRDM16 (PR domain containing 16) is a 140 kDa zinc finger protein that robustly induces brown fat determination and differentiation. Recent data suggests that brown fat cells arise in vivo from a Myf5-positive,...
Article
Full-text available
The last several years have seen an explosion of information relating to the transcriptional control of brown fat cell development. At the same time, new data have emerged that clearly demonstrate that adult humans do indeed have substantial amounts of functioning brown adipose tissue (BAT). Together, these advances are stimulating a reassessment o...
Article
Full-text available
Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcri...
Article
Full-text available
Brown fat is a specialized tissue that can dissipate energy and counteract obesity through a pattern of gene expression that greatly increases mitochondrial content and uncoupled respiration. PRDM16 is a zinc-finger protein that controls brown fat determination by stimulating brown fat-selective gene expression, while suppressing the expression of...
Article
Full-text available
We identify here the multiple epidermal growth factor repeat transmembrane protein Megf10 as a quiescent satellite cell marker that is also expressed in skeletal myoblasts but not in differentiated myofibers. Retroviral expression of Megf10 in myoblasts results in enhanced proliferation and inhibited differentiation. Infected myoblasts that fail to...
Article
Full-text available
Brown fat cells are specialized to dissipate energy and can counteract obesity; however, the transcriptional basis of their determination is largely unknown. We show here that the zinc-finger protein PRDM16 is highly enriched in brown fat cells compared to white fat cells. When expressed in white fat cell progenitors, PRDM16 activates a robust brow...

Network

Cited By