Nathan Wyatt

Nathan Wyatt
North Dakota State University | NDSU · Genomics and Bioinformatics

About

31
Publications
4,369
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
315
Citations

Publications

Publications (31)
Article
Barley net form net blotch (NFNB) is a destructive foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the broadly effective chromosome 6H resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we ge...
Preprint
Full-text available
Laser scanning confocal microscopys ability to generate high-contrast 3D images has become essential to studying plant-fungal interactions. Techniques such as visualization of native fluorescence, fluorescent protein tagging of microbes, GFP/RFP-fusion proteins, and fluorescent labelling of plant and fungal proteins have been widely used to aid in...
Preprint
Full-text available
Fungal pathogens cause devastating disease in crops. Understanding the evolutionary origin of pathogens is essential to the prediction of future disease emergence and the potential of pathogens to disperse. The fungus Pyrenophora teres f. teres causes net form net blotch (NFNB), an economically significant disease of barley. In this study, we have...
Article
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres, is an important barley disease. The centromeric region of barley chromosome 6H has often been associated with resistance or susceptibility to NFNB, including the broadly effective dominant resistance gene Rpt5 derived from barley line CIho 5791. We characterized a population of Moroc...
Article
Full-text available
Single nucleotide polymorphisms (SNPs) have been widely used for gene identification. Allelic discrimination for an individual SNP with high reliability and flexibility is critical for the accurate detection of beneficial genes linked to specific SNP sites. Several SNP genotyping platforms have been developed but most exclusively rely on fluorescen...
Article
Agro-ecosystems provide environments that are conducive for rapid evolution and dispersal of plant pathogens. Previous studies have demonstrated that hybridization of crop pathogens can give rise to new lineages with altered virulence profiles. Currently, little is known about either the genetics of fungal pathogen hybridization or the mechanisms t...
Preprint
Full-text available
Barley net form net blotch (NFNB) is a foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the chromosome 6H broad spectrum resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we generated a P. te...
Article
Full-text available
Key message Pathogen and host genetics were used to uncover an inverse gene-for-gene interaction where virulence genes from the pathogen Pyrenophora teres f. maculata target barley susceptibility genes, resulting in disease. Abstract Although models have been proposed to broadly explain how plants and pathogens interact and coevolve, each interact...
Article
Full-text available
Parastagonospora nodorum is a fungal pathogen of wheat. As a necrotrophic specialist, it deploys effector proteins that target dominant host susceptibility genes to elicit programmed cell death (PCD). Here we identify and functionally validate the effector targeting the host susceptibility genes Snn2, Snn6 and Snn7. We utilized whole‐genome sequenc...
Article
Full-text available
Parastagonospora nodorum is an economically important necrotrophic fungal pathogen of wheat. Parastagonospora nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD). In this study, we cloned and functionally validated SnTox5 and characterized its role in pathogenesis. We used whole genom...
Article
Full-text available
Pyrenophora tritici-repentis is an ascomycete fungus that causes tan spot of wheat. The disease has a worldwide distribution and can cause significant yield and quality losses in wheat production. The fungal pathogen is homothallic in nature, which means it can undergo sexual reproduction by selfing to produce pseudothecia on wheat stubble for seas...
Preprint
Full-text available
Parastagonospora nodorum, causal agent of septoria nodorum blotch, is a destructive necrotrophic fungal pathogen of wheat. P. nodorum is known to secrete several necrotrophic effectors that target wheat susceptibility genes that trigger classical biotrophic resistance responses but resulting in susceptibility rather than resistance. SnTox5 targets...
Preprint
Full-text available
Parastagonospora nodorum is a fungal pathogen of wheat. As a necrotrophic specialist, it deploys a suite of effector proteins that target dominant host susceptibility genes to elicit programmed cell death (PCD). Nine effector-host susceptibility gene interactions have been reported in this pathosystem, presumed to be governed by unique pathogen eff...
Article
Pyrenophora teres is the causal agent of net blotch, the most devastating foliar disease of barley. In nature, net blotch is seen in two forms, net form net blotch, caused by P. teres f. teres, and spot form net blotch, caused by P. teres f. maculata. To date, 11 P. teres f. teres genomes have been sequenced and deposited in publicly available repo...
Article
Full-text available
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of b...
Article
Pyrenophora teres f. teres causes net form net blotch of barley and is an economically important pathogen throughout the world. However, P. teres f. teres is lacking in the genomic resources necessary to characterize the mechanisms of virulence. Recently a high-quality reference genome was generated for P. teres f. teres isolate 0-1. Here, we prese...
Preprint
Full-text available
Pyrenophora teres f. teres causes net form net blotch of barley and is an economically important pathogen throughout the world. However, P. teres f. teres is lacking in the genomic resources necessary to characterize the mechanisms of virulence. Recently a high quality reference genome was generated for P. teres f. teres isolate 0-1. Here, we prese...
Article
Full-text available
Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influenc...
Article
Full-text available
Parastagonospora nodorum, the causal agent of Septoria nodorum blotch of wheat, has emerged as a model necrotrophic fungal organism for the study of host-microbe interactions. To date, three necrotrophic effectors have been identified and characterized from this pathogen, including SnToxA, SnTox1, and SnTox3. Necrotrophic effector identification wa...
Article
Full-text available
Pyrenophora teres f. teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley growing regions throughout the world. Typical yield losses due to NFNB range from 10-40%, however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently,...
Article
Pyrenophora teres f. teres is the causal agent of net form net blotch (NFNB) of barley. In order to map the genetics of avirulence/virulence in P. teres f. teres, a fungal population was developed using P. teres f. teres isolates BB25 (Denmark) and FGOH04Ptt-21 (North Dakota, USA) due to these two isolates differing in virulence on several common b...
Article
Full-text available
Pyrenophora teres f. maculate is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculate- barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota, USA and the other from Western Australia. Progeny were...

Network

Cited By