ArticlePDF Available

Abstract

Index Fungorum, Species Fungorum and MycoBank are the key fungal nomenclature and taxonomic databases that can be sourced to find taxonomic details concerning fungi, while DNA sequence data can be sourced from the NCBI, EBI and UNITE databases. Nomenclature and ecological data on freshwater fungi can be accessed on http://fungi.life.illinois.edu/, while http://www.marinespecies.org/provides a comprehensive list of names of marine organisms, including information on their synonymy. Previous websites however have little information on marine fungi and their ecology, beside articles that deal with marine fungi, especially those published in the nineteenth and early twentieth centuries may not be accessible to those working in third world countries. To address this problem, a new website www.marinefungi.org was set up and is introduced in this paper. This website provides a search facility to genera of marine fungi, full species descriptions, key to species and illustrations, an up to date classification of all recorded marine fungi which includes all fungal groups (Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota and fungus-like organisms e.g. Thraustochytriales), and listing recent publications. Currently, 1257 species are listed in the marine fungi website (www.marinefungi.org), in 539 genera, 74 orders, 168 families, 20 classes and five phyla, with new taxa continuing to be described. The website has curators with specialist mycological expertise who help to provide update data on the classification of marine fungi. This article also reviews knowledge of marine fungi covering a wide range of topics: their higher classification, ecology and world distribution, role in energy transfer in the oceans, origin and new chemical structures. An updated classification of marine fungi is also included. We would like to invite all mycologists to contribute to this innovative website.
An online resource for marine fungi
E. B. Gareth Jones
1,2
Ka-Lai Pang
3
Mohamed A. Abdel-Wahab
1,4
Bettina Scholz
5
Kevin D. Hyde
6
Teun Boekhout
7,8
Rainer Ebel
9
Mostafa E. Rateb
10
Linda Henderson
11
Jariya Sakayaroj
12
Satinee Suetrong
13
Monika C. Dayarathne
6
Vinit Kumar
6,17
Seshagiri Raghukumar
14
K. R. Sridhar
15
Ali H. A. Bahkali
1
Frank H. Gleason
16
Chada Norphanphoun
6
Received: 3 January 2019 / Accepted: 20 April 2019
ÓSchool of Science 2019
Abstract
Index Fungorum, Species Fungorum and MycoBank are the key fungal nomenclature and taxonomic databases that can be
sourced to find taxonomic details concerning fungi, while DNA sequence data can be sourced from the NCBI, EBI and
UNITE databases. Nomenclature and ecological data on freshwater fungi can be accessed on http://fungi.life.illinois.edu/,
while http://www.marinespecies.org/provides a comprehensive list of names of marine organisms, including information
on their synonymy. Previous websites however have little information on marine fungi and their ecology, beside articles
that deal with marine fungi, especially those published in the nineteenth and early twentieth centuries may not be accessible
to those working in third world countries. To address this problem, a new website www.marinefungi.org was set up and is
introduced in this paper. This website provides a search facility to genera of marine fungi, full species descriptions, key to
species and illustrations, an up to date classification of all recorded marine fungi which includes all fungal groups
(Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota and fungus-like organisms e.g.
Thraustochytriales), and listing recent publications. Currently, 1257 species are listed in the marine fungi website (www.
marinefungi.org), in 539 genera, 74 orders, 168 families, 20 classes and five phyla, with new taxa continuing to be
described. The website has curators with specialist mycological expertise who help to provide update data on the clas-
sification of marine fungi. This article also reviews knowledge of marine fungi covering a wide range of topics: their higher
classification, ecology and world distribution, role in energy transfer in the oceans, origin and new chemical structures. An
updated classification of marine fungi is also included. We would like to invite all mycologists to contribute to this
innovative website.
Keywords Fungal classification marine fungi website High-throughput sequencing techniques Fungal diversity
Origin of marine fungi
Introduction
Marine fungi have been studied since the first record of the
species Sphaeria posidoniae (= Halotthia posidoniae)on
the rhizome of the sea grass Posidonia oceanica in Algeria
by Durieu and Montagne (in Montagne 1856), but as yet
there has been no webpage to accommodate all of the
information on these organisms. This review introduces the
website, www.marinefungi.org which has been developed
to provide an up-to-date compendium on marine fungi.
There have been various definitions as to what a marine
fungus is, the generally quoted one is by Kohlmeyer and
Kohlmeyer (1979): ‘‘obligate marine fungi are those that
grow and sporulate exclusively in a marine or estuarine
habitat’’. Jones et al. (2015) broadened this as they were of
the opinion it was too narrow and they included marine
derived fungi, as many are taxa isolated during bio-
prospecting for new secondary metabolites (Fenical and
Jensen 1993; Fenical et al. 1998). Marine derived fungi are
&Mohamed A. Abdel-Wahab
mohamed.eisa@science.sohag.edu.eg
Rainer Ebel
r.ebel@abdn.ac.uk
Mostafa E. Rateb
Mostafa.Rateb@uws.ac.uk
Extended author information available on the last page of the article
123
Fungal Diversity
https://doi.org/10.1007/s13225-019-00426-5(0123456789().,-volV)(0123456789().,-volV)
generally asexual morphs, isolated from a wide range of
substrates, dominating off shore habitats (e.g. deep sea) and
are a good source of natural products. Various studies
around the globe recognise these as a core group of fungi
that are repeateadly isolated from various substrata in
marine habitats. The definition used in the present article is
that of Pang et al. (2016b) who reviewed the use of the
terms ‘‘marine fungi’ and ‘marine-derived fungi’. They
proposed the following definition for a marine fungus ‘any
fungus that is recovered repeatedly from marine habitats,
because: (1) it is able to grow and/or sporulate (on sub-
strata) in marine environments; (2) it forms symbiotic
relationships with other marine organisms; or (3) it is
shown to adapt and evolve at the genetic level or be
metabolically active in marine environments.
A recurring question that has often been posed is ‘‘how
many marine fungi are there?’’ (Jones 2011b). It has been
estimated that there are at least 1.5 million fungal species
on earth (Hawksworth 1991), while Blackwell (2011) puts
the figure as 5.1 million. Recently, Hawksworth and
Lucking (2017) have reviewed data on fungal diversity
based on new evidence on plant/fungus ratios, environ-
mental sequences studies and indicate the figure 1.5 mil-
lion was conservative. They suggest that the figure should
be in the range 2.2 to 3.8 million. However, only 120,000
to 143,273 fungi have been described so far (Hawksworth
and Lu
¨cking 2017; Wijayawardene et al. 2017b; Index
Fungorum 2018), most of which are terrestrial. Many
authors stress that marine fungi are poorly studied in
comparison to the number of other marine microorganisms
(Jones and Richards 2011; Raghukumar 2017). The docu-
mentation of circa 1200 species in 72 years of marine
mycological studies is great compared with some 120,000
terrestrial fungi that were described over 200 years of
study (Kirk et al. 2008). Tisthammer et al. (2016) also
opine that very little is known about the global distribution
and diversity of marine fungi, while Drake et al. (2017)
predict that much of the fungal diversity occurs in anaer-
obic deep sediments. These include ‘‘the dark fungi’’,
detected by next generation sequencing (NGS) techniques
and which have never been observed in culture. Hassett
et al. (2019), in exploring marine fungal diversity, dis-
covered that only half of the known marine fungal species
have a publicly available DNA locus, and hypothesized
that this is likely to hinder accurate high-throughput
sequencing taxonomic classification as the discipline
advances. Greater effort is required to sequence all known
marine fungi to enable the identification of unculturable
and cryptic taxa.
All agree that fungi play a pivotal role in the marine
ecosystem in the recycling of recalcitrant substrata,
essential to marine food webs (Hyde and Jones 1988;
O’Rorke et al. 2013), that they play a vital role as
symbionts of marine and mangrove plants (Hyde and Lee
1998; Yarden 2014), are a source of various vitamins and
sterols, and new bioactive compounds (Kagami et al. 2007;
Ebel 2012; Raghukumar 2017). Many of these topics will
be considered in greater detail later in this article. Marine
fungi are an ecological assemblage that includes all classes
of fungi from the zoosporic chytrids, ascomycetes (the
largest group) and basidiomycetes (Kohlmeyer and Kohl-
meyer 1979; Hyde et al. 1998; Pang and Jones 2012; Jones
et al. 2015; Pang et al. 2016b; Raghukumar 2017). Various
techniques are required to study such a diverse group of
fungi and this has led to a polarization of views on the
numbers of marine fungi (Vrijmoed 2000; Overy et al.
2019; also see below).
To establish an understanding of the marine occurring
mycota, a wide range of techniques has been used for their
documentation; collection of substrates at selected loca-
tions (Pang et al. 2016a; Overy et al. 2019), removal of
discs of wood from marine pilings (Petersen and Koch
1997), exposure of timber test blocks/panels (Meyers and
Reynolds 1960; Byrne and Jones 1974) and other materials
(Jones and Le Campion-Alsumard 1970), pre-inoculation
of fungi into wood blocks before their exposure in the sea
(Panebianco et al. 2002), isolation of fungi directly from
water or sediments (Damare and Raghukumar 2008) and
analysis of traces in sections of rocks and other solid
geological substrates from marine environments (Drake
et al. 2017). Recently developed molecular techniques,
such as high-throughput sequencing, have been developed
to identify species in environmental samples (Hongsanan
et al. 2018). No single method can give a total remit of the
worldwide distribution of marine fungi or of the interac-
tions between taxa. Panebianco et al. (2002) have shown
that interactions between fungi can affect the sequence of
fungi colonising wood in the sea. For example, four marine
fungi (Ceriosporopsis halima, Corollospora maritima,
Halosphaeriopsis mediosetigera,Marinospora calyptrata
were inoculated into balsa test blocks and submerged in the
sea for 2, 6, 9 and 15 months and their colonization by
native marine fungi recorded. Control balsa test blocks
were similarly submerged and were colonized by a suc-
cession of marine fungi. However, the pre-inoculated C.
maritima and H. mediosetigera blocks were not colonized
by native marine fungi until they had been in the sea for 6
and 9 months, respectively. In other words, the preincolu-
ated test blocks suppressed the development of native
species.
Various estimates of the number of marine fungi have
been made: Jones and Mitchell (1996) put the figure at
1500, but these included many species that were inade-
quately described, or facultative species or synonyms of
existing taxa. K. Schaumann (personal communication)
estimated there are some 6000 marine fungi, but this
Fungal Diversity
123
figure included taxa isolated from Arctic ice. Schmit and
Shearer (2003,2004) listed some 600 mangrove taxa, but
this figure also included facultative marine fungi and those
growing on the aerial parts of mangrove trees. Jones et al.
(2009) reported 530 marine taxa in 321 genera, which
included 424 Ascomycota (251 genera), 94 asexual morphs
(61 genera), and 12 Basidiomycota (9 genera). Currently,
1257 species are listed in the marine fungi website (www.
marinefungi.org), in 539 genera, 74 orders, 168 families,
20 classes and five phyla, with new taxa continuing to be
described. The above is an underestimate as the list
includes only fully identified fungi, as many taxa are
identified only to genus or even a higher-level taxonomical
rank (Supaphon et al. 2017) while ‘‘the dark fungi’’ remain
unaccounted.
Sequence data has enabled a more natural classification
of the fungi to be developed (Hyde et al. 2013; Jones et al.
2015; Maharachchikumbura et al. 2016; Abdel-Wahab
et al. 2017). The great leap in marine fungal numbers
between 2009 and 2019 is accounted for by the inclusion of
zoosporic fungi, marine yeasts, marine derived fungi and a
broader interpretation in defining what constitutes a marine
fungus (Jones et al. 2015; Pang et al. 2016b). Early esti-
mates included only obligate marine fungi as defined by
Kohlmeyer and Kohlmeyer (1979) which many marine
mycologists considered too restrictive.
Jones (2011b) estimated that the number of marine fungi
may be 10,000 to 12,500 species based on the substrates
and geographical locations to be sampled. Topics sug-
gested for indepth study include: 1. Unidentified species on
a range of substrates; 2. Marine derived fungi isolated from
soils, sand, and water; 3. Planktonic fungi; 4. Deep-sea
fungi; 5. Endobiota of marine algae; 6. Uncultured fungi;
and 7. Cryptic species. Kis-Papo (2005) reviewed the
number of marine fungi and based on the assumption that
only circa 5% of all fungi have been described, she pre-
dicted there are 10,000 marine fungi. All this data is based
on direct microscopical observations which limits knowl-
edge of unculturable taxa and the characterization and
identification of cryptic species (O’Brien et al. 2005). This
topic is considered in greater detail below.
Because of the limitations of microscopical studies
mentioned above, other avenues have to be explored to
determine total marine fungal biodiversity. Richards et al.
(2012,2015) identified 36 distinct and novel marine lin-
eages, the majority (24) of which branched with the chy-
trids. Such studies vary widely in the diversity they
document. Richards et al. (2012) concluded that fungi are
present in low diversity and in low abundance in many
marine environments, especially in the upper water col-
umn. However, such methods have their limitations in that
they identify groups of organisms, and at most to generic
level or species groups (Pang and Jones 2017).
Xu et al. (2017) in a culture-dependent and high-
throughput sequencing study at a deep-sea hydrothermal
vent site located at the Mid-Atlantic Ridge of the South
Atlantic Ocean showed that the fungal community was
dominated by members of the Ascomycota and the
Basidiomycota. Several new phylotypes (28 of 65 fungal
OTUs and 2 of 19 culturable fungal phylotypes) were
identified to species level. Some phylotypes showed 100%
similarity to taxa already reported from the marine envi-
ronment: e.g. Cladosporium sphaerospermum, Stachy-
botrys chartarum. In that study, no sequences of the
Chytridiomycota and the Mucoromycota were detected
(Xu et al. 2017). Poli et al. (2018) identified 36 basid-
iomycete species that belong to six classes from various
marine substrates from Mediterranean Sea using multi gene
phylogenetic analyses. Xu et al. (2018) in a culture-de-
pendent and high-throughput sequencing study of deep-sea
sediments of a hydrothermal vent system in the Southwest
Indian Ridge identified 14 fungal taxa, including 11
Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2
genera) based on internal transcribed spacers (ITS1, ITS2
and 5.8S) of rDNA. The Ascomycota dominated,
accounting for 96.96% of the fungal community in the
deep-sea hydrothermal area, while 36 OTUs belonged to
unknown fungi.
So, have these techniques greatly expanded our knowl-
edge of marine fungi and their distribution? Malassezia-
like organisms have been recorded as true marine residents
in environmental sequences recovered from habitats and
locations, from polar regions to deep-sea vents (Edgcomb
et al. 2011; Orsi et al. 2013; Amend 2014). Malassezia
species are generally associated with skin diseases, such as
dandruff and eczema and are generally difficult to culture
axenically (Theelen et al. 2018). Amend (2014) therefore
queried but accepted they were also true marine fungi. Bass
et al. (2007), in a study on fungal diversity in deep-sea
sediments of the Central Indian Basin at *5000 m depth,
concluded that most sequences clustered with known
sequences of existing taxa with only seven divergent taxa.
They noted the occurrence of Exobasidiomycetes and
Cystobasidiomycetes for the first time from the deep-sea.
Orsi et al. (2013), employing 18S rDNA amplicon
pyrosequencing technique of deep-sea sediment samples,
Fungal Diversity
123
noted that many of the fungi detected were of known
taxonomical groups but included many taxa not observed
by isolation/microscopical examination of marine sub-
strates. Massana et al. (2015) noted the prevalence of
Chytridiomycota in seawater, the group accounting for
60% of the diversity of the rDNA sequences sampled in six
near-shore sites in Europe, and in Arctic and sub-Artic
coastal sites. Many others reported that the Chytridiomy-
cota were the most common fungal group in marine habi-
tats (Mohamed and Martiny 2011; Guo et al. 2015;
Richards et al. 2015; Comeau et al. 2016; Hassett and
Grading 2016; Hassett et al. 2017; Picard 2017). This
differs from the observations of Tisthammer et al. (2016)
working on marine water and sediments, in that chytrids
were relatively rare in their study. It is surprising that
chytrids are so common in these studies as numerically
Jones et al. (2015) only list 21 species in 13 genera.
Comeau et al. (2016) note that the Ascomycota, Crypto-
mycota and Basidiomycota contribute only moderate-to-
minor diversity in their studies, while Tisthammer et al.
(2016) regarded the Ascomycota and Basidiomycota the
most abundant phyla in their sampling of marine water and
sediments, with the three most abundant classes in their
samples Pezizomycetes, Agaricomycetes and Euro-
tiomycetes. Poli et al. (2018) investigated the marine
mycobiota mainly in the Mediterranean Sea, confirming the
scarcity of Basidiomycota. At the subclass/ordinal level
Pezizales, Hymenomycetidae and Eurotiales were the three
most abundant. Of the marine Dikarya operational taxo-
nomic units (OTU) clusters reported by Richards et al.
(2015), most of the Ascomycota and Basidiomycota were
yeasts and no sequences matched those of the marine taxa
listed by Jones et al. (2015). Examination of fungi present
in seawater by filtration technique developed by Iqbal and
Webster (1973) for freshwater fungi, yielded few taxa
(Fazzani and Jones 1977; unpublished data). However,
sampling foam along the seashore yielded a variety of
species trapped in the air bubbles of foam: Corollospora
species dominate with many other species, Lindra mar-
inera, Asteromyces cruciatus, Nia vibrissa, Paradendry-
phiella arenaria and Torpedospora radiata (Kohlmeyer
and Kohlmeyer 1979; Tokura et al. 1982; Nakagiri 1989).
Of the 1257 taxa listed in the marine fungi website, none
have been recorded at a single location. These fungi have
been reported from a wide variety of substrates, habitats
and geographical locations, are pelagic in the open ocean,
occur as endobiotes or parasites of marine plants or were
recovered from the deep sea. A further question with
respect to the OTUs recovered from deep sea sediments
and seawater is whether they are biologically functioning
in that environment or present as dormant spores? So, in
high-throughput sequencing studies are we expecting too
much as most fungi require specific substrates to grow on.
The main purpose of this paper is to introduce the
website marinefungi.org, to promote further study of
marine fungi and document their worldwide distribution.
We also present updated information on the numbers of
marine fungi, their taxonomic groupings, recent techniques
for studying their occurrence and distribution, suggest
where further diversity might be encountered, their role in
marine habitats and discuss the origin of marine fungi.
Fungal websites
The internet has become a major source for obtaining
information worldwide. Over the last decades, fungal
research has extended its horizon yielding a vast amount of
data leading to the development of many websites dealing
with different aspects of mycology. An integrated database,
such as GenBank, provides us with a one stop solution
where we can find DNA, protein, and articles. Similarly,
there are some other websites which deal with specific
mycological topics, and a selection is listed here:
http://www.mycobank.org/.
http://www.indexfungorum.org/.
http://www.theyeasts.org.
http://fungalgenera.org/.
http://www.marinespecies.org/.
http://www.mycology.net/index.html.
http://www.mykoweb.com/index.html.
https://www.gbif.org/.
http://www.sp2000.org/.
http://mycology.cornell.edu/funinfo.html.
https://www.nature.com/omics/index.html.
https://www.sanger.ac.uk/resources/downloads/fungi/.
http://www.fgsc.net/.
http://www.facesoffungi.org/.
https://www.genome.jp/.
http://www.lias.net/.
http://www.fungi.com/.
Very few of these websites specifically deal with marine
fungi, while others are not open access portals such as
Marine Lit (http://pubs.rsc.org/marinlit/, got to May 2017)
and Dictionary of Natural Products (http://dnp.
Fungal Diversity
123
chemnetbase.com/faces/chemical/ChemicalSearch.xhtml).
The site ‘omics tools’ can be utilized as a beginning stage
to get to required databases (https://omictools.com/) and
can be a stepping stone in combining mass spectra data for
comprehensive networking studies. The database (http://
fungalgenera.org/) provides a classification and notes on all
genera of fungi, including marine fungi (Wijayawardene
et al. 2017b). However, all databases cited above are biased
towards terrestrial fungi and there is currently no database
exclusively for marine fungi. The database (http://fungi.
life.illinois.edu/) is exclusively devoted to freshwater
Ascomycota and provides general information, recorded
reports of freshwater species, and offers an illustrated
profile of selected fungi (Shearer and Raja 2007).
Another database is the Indian marine fungal database
(www.fungifromindia.com/), which lists 233 strains of
marine fungi found in India and is linked to MycoBank.
The World Register of Marine Species (WoRMS) (www.
marinespecies.org) plans to give a definitive and extensive
documentation of names of all marine life forms. A further
developed database ‘‘Faces of Fungi’’ (www.facesoffungi.
org/) provides data of fungi and fungi-like life forms and
includes fungal profiles, data on isolate status, chemistry,
connections to sequences and culture collections, mor-
phological and phylogenetic data, data of ecological and
human significance (Jayasiri et al. 2015). Unfortunately,
this database is still scantily populated, again with a pre-
disposition towards terrestrial fungi.
Keeping the above in mind, we are launching an
exclusive marine web portal ‘www.marinefungi.org‘‘ . T h i s
web portal will allow readers to access the classification of
all known marine and marine derived fungi, detailed
descriptions with illustrations, and their worldwide distri-
bution. These details will be updated on a regular basis as
data becomes available. The site also documents recently
published papers on marine fungi.
Need for a marine fungi website
Databases have a role in bringing together data scattered in
a range of journals and this is particularly so for marine
fungi where publications appear in journals in mycology,
microbiology, marine biology, biofouling, botany, drug
discovery and marine biomedicine and those on environ-
mental issues. This is because marine fungi are an eco-
logical assemblage and studies cover a broad spectrum of
activities: taxonomy, molecular phylogeny, biochemistry,
ecology, including biodegradation of recalcitrant com-
pounds and their role in the food web in marine environ-
ments. Therefore, the primary objective of this website is to
bring all this information together in a comprehensive
database.
The purpose of the marine fungi webpage is to (1)
provide data on the distribution of marine fungi, (2) supply
online information on classification, species description,
specimen types and distribution, with each species descri-
bed with illustrations where possible and (3) provide a
higher classification of all documented marine fungi. It also
includes a list of recent publications and a history of marine
mycology. In the last three decades, sequence-based phy-
logenetic studies have revolutionised the systematics of
fungi, leading to a more natural classification of fungi.
However, it has also caused a taxonomic revolution to a
number of fungal groups which were classified traditionally
based on morphology. This also applies to many marine
fungi and this website can provide up-to-date information
for their classification.
Fungal Diversity
123
Operation of the marine fungi website
The website marinefungi.org includes a number of
functions:
Home:
This provides a general introduction to the website, how to
search for particular species and lists all the species cur-
rently described in the database. Descriptions can be
accessed by typing in the generic name which brings up the
species name(s) associated with that genus and clicking
one of these leads to a detailed account of its classification,
description and illustration. A key is provided for a genus
with more than one marine species. This list is updated as
curators submit detailed descriptions of marine fungi.
Genus Species Author
Corollospora maritima Werderm., Notizblatt des Ko
¨nigl.
bot. Gartens u. Museum zu Berlin 8: 248
(1922)
Class Order Family
Sordariomycetes,
Subclass Hypocreomycetidae
Microascales Halosphaeriaceae
Synonymy:
Description
Corollospora Werderm., Notizbl. Bot. Gart. Berlin-
Dahlem 8: 248 (1922)
Fungal Diversity
123
Higher classification:
This is the central part of the website as it taxonomically
lists all currently known marine fungi. This is updated on a
regular basis and indicates species for which sequence data
is available. The higher classification of the fungi follows
currently accepted schemes (Wijayawardene et al.
2017b,2018).
The classification is divided into seven parts and com-
mences with an index to the major higher taxa and orders.
The reader is directed to parts that list species under those
higher order headings, for example part 1 is devoted to the
Chytridiomycota, part 2 to the Basidiomycota and some
orders of the Ascomycota while part 7 details marine yeasts
belonging to both Ascomycota and Basidiomycota. In all
cases individual species are listed under their families,
orders and higher order taxa. For example:
CHYTRIDIOMYCOTA
1. CHYTRIDIALES Cohn, Jber Schles Ges Vaterl
Kultur 57: 279 (1879), emend. MozleyStandridge et al.,
Mycol. Res. 113: 502 (2009)
Chytridiaceae Nowak., Akad Umiejetnosci Krakowie
Wydzı
´at mat Przyro
´d: 174: 191 (1878), emend. Ve
´lez
et al., Mycologia 103: 123 (2011)
Chytridium A. Braun, Betrach. Erschein. Verju
¨ng.
Natur.: 198 (1851)
1. Ch. codicola Zeller, Publ. Puget Sound Biol. Sta.
Univ. Wash. 2: 121 (1918)
Recent publications:
This section provides all recently published papers on
marine fungi abstracted from a wide range of mycological
journals, currently mostly taxonomical.
Curators:
The database is serviced by specialists in marine mycology
and is headed by Professor Gareth Jones aided by post-
graduate students Vinit Kumar and Mark Galabon, who are
responsible for updating the website. Others that contribute
are listed along with their expertise and experience of
working with marine fungi.
History of marine mycology:
This is planned in two sections, the origin of the Interna-
tional Marine Mycology Symposium (IMMS) which is
held approximately every two years (completed) and a
personal account of the history of marine mycology (work
in progress).
Fungal-like organisms:
This is an early draft listing marine fungal-like organisms
e.g. taxa in the Oomycota, once regarded as fungi. A
curator is required to update the information and run this
section of the website.
Contact:
This website handles a large amount of information and it
is prone to minor errors. You can leave a message here
reporting these so that we can revise the content of the
website. Any suggestions/comments are also welcomed.
Alternatively, you can send your comments to the e-mail
torperadgj@gmail.com.
Review of current information on marine
fungi
Traditional surveys of marine fungi
Marine fungi have been traditionally studied by collection,
incubation, and examination of a range of substrates, each
yielding its own characteristic group of fungi (Vrijmoed
2000; Sarma and Hyde 2001). Fungi are identified micro-
scopically and illustrated with line drawings or pho-
tographs. Most studies have attempted their isolation and
growth in culture, although this has not always been suc-
cessful as in early studies e.g. Orcadia ascophylli
(Sutherland 1915c), or more recently collected species, e.g.
the wood inhabiting cleistothecial ascomycetes Biflua
physasca and Marisolaris ansata (Koch and Jones 1989).
Many marine fungi have been studied at the ultrastructure
level in order to elicit morphological features that can be
used in their classification, namely scanning and trans-
mission electron micrographs of ascospores appendages
(Johnson et al. 1984,1987). Jones et al. (1983a) studied the
fine structure of ascospores in Corollospora species and
erected two new genera to accommodate two Corollospora
species that did not group in the genus, namely:
Kohlmeyeriella and Nereiospora and restored a third spe-
cies to its original generic name Arenariomyces. Studies of
the polar-unfurling appendages of Halosarpheia species
also led to the characterization of similar genera, Cucul-
losporella and Tirispora (Alias et al. 2001; Jones et al.
Fungal Diversity
123
1994). Each substrate generally tends to support different
fungal species which may also differ according to the
geographical location of the initial collection site: cold
water species (Pugh and Jones 1986), tropical taxa (Jones
and Pang 2012), or deep-water species (Dupont et al. 2009;
Dupont and Schwabe 2016; Raghukumar 2017). Different
substrates have also resulted in the adoption of various
techniques for their study: observational, isolation and
culture.
Observational studies
Driftwood, intertidal and trapped wood, timber sea defen-
ces, mangrove wood, leaves, seeds, fruits, decayed sea
grasses, and algae are collected from the intertidal and
sublittoral zones and returned to the laboratory for study.
Samples are placed in clean plastic bags and examined with
a dissecting microscope for marine fungi upon return to the
laboratory, incubated in sterile humid plastic boxes and
examined periodically for up to 2 months (Vrijmoed 2000;
Abdel-Wahab et al. 2010).
Isolation studies
Marine fungi from seawater, sediments, deep-sea, and
endobiotes have traditionally been discovered by the iso-
lation of sporulating structures or plating out of subsamples
of a substrate. A wide range of techniques have been used
to isolate, grow on and obtain fruiting bodies of marine
fungi (Vrijmoed 2000; Overy et al. 2019).
Lignicolous fungi
This group has been the most studied group of marine
fungi, initially occurring on driftwood, trapped wood and
test blocks/panels submerged in the sea (Meyers and
Reynolds 1958; Byrne and Jones 1974; Panebianco 1994;
Garzoli et al. 2015). Pilot studies were from temperate and
cold-water locations (Hughes and Chamut 1971; Pugh and
Jones 1986; Rama et al. 2014). Subsequently, a wealth of
fungi has been reported from mangrove wood (Kohlmeyer
1968a; Abdel-Wahab et al. 2014,2019; Devadatha et al.
2018a, b). Bugni and Ireland (2004) estimated that 10% of
all known marine fungi were lignicolous species, which is a
gross underestimate. Raghukumar (2017) stated that 190
marine fungi were recorded from driftwood and test panels
exposed in the sea and about 300 species from decom-
posing mangrove wood.
Algicolous marine fungi
Algal samples are collected in sterile containers to prevent
contamination and maintained cool as the thalli can quickly
begin to decompose. Thalli need to be washed under run-
ning tap water to remove sediments and incubated in sterile
containers. The first marine fungus from an alga was
Blodgettia bornetii found in the filamentous green alga
Cladophora caespitosa on the coasts of France and North
America (Montagne 1856; Wright 1881). Kohlmeyer and
Kohlmeyer (1979) listed 60 fungi from algal hosts that
included 32 pathogenic on marine algae (31 ascomycetes
and one asexual fungus) and 18 saprobic fungi (8 asco-
mycetes and 10 asexual fungi). Most recent accounts of
algicolous fungi have been by Jones et al. (2012) and
Raghukumar (2017). Algicolous marine fungi belong to
Ascomycota, Basidiomycota, Chytridiomycota,
Labyrinthulomycota and fungal-like taxa classified in
Straminopiles. Basidiomycetes on algae include Mycaurola
dilseae (initially described as an ascomycete) that infects
Dilsea carnosa (Binder et al. 2006), and several marine
yeasts e.g. Leucosporidium scottii occurred abundantly on
brown seaweeds (Phaeophyta) particularly in the cooler
months in southern British Columbia (Summerbell 1983).
Bugni and Ireland (2004) suggested that circa 9% of
marine fungi were isolated from marine algae. Zuccaro and
Mitchell (2005) list 79 fungi from the brown alga Fucus
serratus, while Jones (2011b) and Jones et al. (2012)
consider this an underestimate with a potential for far
greater diversity. Many of the taxa isolated from seaweeds
are identified to genus level and these are generally marine-
derived fungi. The application of sequence data has
enabled better identification of fungi isolated from algae as
the studies of Gnavi et al. (2017) and Garzoli et al. (2018)
have shown for taxa isolated from the green seaweed
Flabellia petiolata and the brown seaweed Padina
pavonica.
Deep sea marine fungi
Deep sea environment is an extreme habitat that has the
following characteristics: dark, high hydrostatic pressure,
low temperature (except hydrothermal vents) low oxygen
level, and low nutrient availability. The International
Geophysical Year 1958 initiated studies of deep waters,
with the German programme focusing on marine mycol-
ogy, with two cruises of the fishery research ship ‘‘Anton
Dohrn’’ to Greenland, Iceland and Ireland (Ho
¨hnk 1959).
Baiting bottom samples with pollen (Pinus montana),
seeds, and cellophane recovered ‘‘Phycomycetes’’ and
asexual morphs at depths of 3425 m (Ho
¨hnk 1961). Roth
et al. (1964) isolated fungi from water samples collected
from the surface to 4500 m deep from Atlantic Ocean.
Kohlmeyer (1968b,1977) described the first fungi from the
deep sea and Kohlmeyer and Kohlmeyer (1979) listed five
marine fungi recovered from the deep sea: Abyssomyces
hydrozoicus,Bathyascus vermisporus,Oceanitis scuticella,
Fungal Diversity
123
Allescheriella bathygena,Periconia abyssa.Abyssomyces
hydrozoicus was described from chitin of a hydrozoan at a
depth of 613 m deep while the other species grew on wood.
Gaertner (1982) reported the presence of thraustochytrids
from depths up to 3900 m in Atlantic waters.
During the last two decades, several studies have been
carried out to document fungi from deep sea environments
from all major oceans using both culture-based and
metagenomic methods and have resulted in the recognition
of deep-sea fungal communities (Damare and Raghukumar
2008; Raghukumar et al. 2010; Nagahama and Nagano
2012; Zhang et al. 2013a,b; Ruff et al. 2013; Takishita
2015). Raghukumar and Damare (2008) listed 38 fungal
taxa from various substrata (chitin of Hydrozoa, calcareous
shells, sediments, water and wood) collected from depths
that ranged between 600 m in Atlantic Ocean to 10,500 m
in Mariana Trench. Burgaud et al. (2009) obtained 97
fungal isolates (62 filamentous and 35 yeasts) from 210
hydrothermal samples. In a metagenomic study, Nagahama
et al. (2011) obtained 35 phylotypes from methane cold-
seep sites at 1080 m depth in Sagami Bay, Japan. Of the 35
phylotypes, 12 were early diverging fungi while the
remaining 23 phylotypes belonged to Dikarya. Nagahama
et al. (2006,2008) also isolated a number of new yeasts
from such environments e.g. Rhodotorula pacifica and
Dipodascus tetrasporeus from deep sea sediments. Deep
sea fungi showed abilities to produce antimicrobial com-
pounds (Zhang et al. 2013), secondary metabolites (Li et al.
2007) and antifouling chemical structures (Zhang et al.
2014).
Fungi in sea water and sediment
Marine sediments cover two-thirds of the earth’s surface
and represent a huge reservoir of microbes. Sparrow (1937)
in a pioneer study explored fungi from mud samples col-
lected offshore at the Woods Hole Oceanographic Institute,
Massachusetts. He collected samples from depths ranging
between 18 and 1127 m deep. Isolated fungi were similar
to those found in terrestrial habitats with Penicillium spe-
cies in abundance, while species of the genera Aspergillus,
Cephalosporium, Trichoderma, Chaetomium, Alternaria,
Cladosporium and Rhizopus were less abundant. Species of
obligate marine fungi, Lulworthia and Ceriosporopsis,
were also isolated from marine sediments (Johnson and
Sparrow 1961). Ho
¨hnk (1952,1955,1956) conducted
several studies on fungi in beach sand, eulittoral sediments,
and brackish muds, where he isolated several fungal-like
taxa (Straminopiles) belonging to the genera: Pythiomor-
pha, Pythiogeton, Pythium and Saprolegnia. Similar
experiments resulted in the isolation of hundreds of fungal
isolates that mostly resemble those isolated from terrestrial
habitats (Ho
¨hnk 1956,1959; Apinis and Chesters 1964;
Roth et al. 1964; Meyers et al. 1967; Schaumann 1974;
Moustafa 1975; Abdel-Fattah et al. 1977; Damare et al.
2006). A wide range of habitats have been investigated
including salt marshes (Pugh 1962), sand (Nicot 1958;
Steele 1967), mangrove soils (Swart 1963) and oil spills
(Bovio et al. 2016), leading to the discovery of new taxa:
Dendryphiella arenaria (= Paradendryphiella arenaria;
Nicot 1958) and Penicillium dimorphosporium (Swart
1970). Previous studies incubated sediment or water sam-
ples with baits or isolated fungi using plating method, but
such methods cannot determine whether the fungi were
active in degradation of organic matter present in sedi-
ments or water samples or present as dormant spores.
Fungi in sea foams
A unique group of fungi is found trapped in sea foam and
attached to sand grains. Kohlmeyer (1966) identified
twelve marine fungi namely: Alternaria sp., Arenariomyces
trifurcatus, Corollospora lacera, C. maritima (most com-
mon), C. ramulosa, Paradendryphiella arenaria, Lep-
tosphaeria australiensis, Lignincola laevis, Nereiospora
comata, Halobyssothecium (= Passeriniella)obiones,
Pestalotia sp., and Pleospora pelagica from foam samples
collected from sandy beaches of North Carolina, Canary
Islands and Georgia, USA. Extensive sampling of foam
samples has been carried out by Tokura et al. (1982) and
Nakagiri (1989).
Marine-derived fungi
Marine-derived fungi as defined by Pang et al. (2016b)
have been found on drift- and intertidal wood, sediments,
seawater, marine animals (especially sponges and nema-
todes), deep sea, saprobes and endobiotes of mangroves,
salt marshes plants and seaweeds (Janson et al. 2005).
Hundreds of species and isolates have been accumulated in
the literature and a considerable number of the isolated
fungi have been screened for natural products and proven
to yield new secondary metabolites.
Marine-derived fungi are mostly asexual morphs of
ascomycetes and common genera are: Aspergillus, Cla-
dosporium, Fusarium, Gliocladium, Microsphaeriopsis,
Paecilomyces, Penicillium, Phoma, Phomopsis, Tricho-
derma and Ulocladium (Bugni and Ireland 2004). Marine
derived fungi have been isolated from a variety of sources:
617 fungal isolates from coral reefs (Morrison-Gardiner
2002), 1000 isolates from sediments (Pivikin et al. 1999),
800 as endobiotes of mangroves (Pang et al. 2008) and
1743 as endobiotes and saprobes of mangroves and sea-
weeds (Schulz and Boyle 2005; Schulz et al. 2008). Many
of these strains did not sporulate, while others could only
be identified to genus. Marine derived fungi have also been
Fungal Diversity
123
isolated from anoxic environments. Jebaraj et al. (2010)
analysed fungal diversity in samples from the oxygen
minimum zone (OMZ) of the Arabian Sea and obtained 26
cultures that could be assigned to the Basidiomycota,
predominantly Pucciniomycotina (five cultures) and Pezi-
zomycotina of Ascomycota (21 cultures). Araujo and
Hagler (2011) documented yeasts found in sediments in 8
Brazilian mangroves, Kluyveromyves aestuarii was absent
at one site with heavy plastic bag pollution.
In the last update of the classification of marine fungi
(Jones et al. 2015), 214 species of marine-derived fungi
have been considered true marine fungi because they have
been isolated from marine hosts or substrates more than
once and their identity confirmed by molecular data. They
included: 3 basidiomycetes, 210 ascomycetes and one
mucoromycete. Specious genera represented by 5 species
or more were: Aspergillus (35 species), Penicillium (29),
Arthrobotrys (17), Trichoderma (9), Cladosporium (7),
Talaromyces (7), Acremonium (6), Fusarium (5),
Manacrosporium (5) and Phoma (5).
Sponges are a good source of marine-derived fungi.
Ho
¨ller et al. (2000) isolated 681 fungal isolates referred to
the Ascomycota (13 genera), Mucoromycota (2) and
asexual fungi (37) from 16 species of sponges collected
from temperate, subtropical, and tropical regions. Members
of the following genera Acremonium, Arthrinium, Conio-
thyrium, Fusarium, Mucor, Penicillium, Phoma, Tricho-
derma, and Verticillium were frequently isolated from
sponges, however, dominant genera are different from one
host or location to another (Jones 2011a). Morrison-Gar-
diner (2002) isolated 208 fungal isolates from 70 sponge
samples collected from Australian coral reefs with Al-
ternaria, Aspergillus, Cladosporium, Fusarium, and Peni-
cillium as the dominant genera. Bovio et al. (2018)
described two new species: Thelebolus balaustiformis and
T. spongiae from three Atlantic sponges, and reported great
fungal diversity. Each sponge hosted a specific fungal
community with more than half of the associated fungi
being exclusive of each invertebrate.
Endolithic fungi
Endolithic fungi are considered a special category of rock
transforming microorganisms and defined as those which
are capable of boring into solid inorganic substrates. They
include many species of Ascomycota, Basidiomycota,
Mucoromycota and Chytridiomycota, but only a few of
these species, such as Aspergillus sydowii, have been
properly identified (Gleason et al. 2017a,b). The endolithic
environment includes the pore spaces in shells and skele-
tons of living animals or of those buried in the sediments,
in rocks and in the pores between mineral grains and is
ubiquitous in all marine ecosystems (Golubic et al. 2005).
Hyphae of endolithic fungi can penetrate calcium carbon-
ate, silica and other inorganic solid substrates formed by
living organisms and by geological processes (Kohlmeyer
1969b). Endolithic fungi cause significant bioerosion of
many geological substrates over time and are involved in
diseases of a number of commercially and ecologically
important host animals in marine ecosystems, such as
corals and bivalve molluscs (Golubic et al. 2005; Gadd
2007; Gleason et al. 2017a,b). Endolithic fungi include
Aspergillus sydowii and Penicillium avellaneum in coral
skeletons (Kendrick et al. 1982; Gleason et al. 2017a,b)
and Fusarium solani reported from turtle egg shells (Sar-
miento-Ramirez et al. 2016).
Environmental sequencing surveys: high-
throughput sequencing techniques
High-throughput sequencing techniques have augmented
our capacity to assess microbial eukaryotic diversity and
related functions in microbial ecology (Pers
ˇoh 2015;
Jayawardena et al. 2018; Xu et al. 2018). The use of
molecular tools for identification of chytrid sequences
originating from environmental DNA by reference to
sequence databases (Hibbett et al. 2016) can overcome
many limitations of traditional microscopic and culturing
approaches. In this context, two key considerations are
(i) there does not appear to be a universal genetic marker
able to discriminate among distant taxa, and simultane-
ously provide adequate resolution to identify organisms at
the species level (Hongsanan et al. 2018), and (ii) the
current representation of Chytridiomycota, and especially
parasitic chytrids, in sequence databanks is limited (Fren-
ken et al. 2017). Although ITS rDNA regions are often
used to examine species and strain-level fungal diversity,
Vu et al. (2018) employed sequences of two nuclear ribo-
somal genetic markers, the Internal Transcribed Spacer and
5.8S gene (ITS) and the D1/D2 domain of the 26S Large
Subunit (LSU), to generate DNA barcode data for ca.
100,000 fungal strains (Summerbell et al. 2007; Schoch
et al. 2012; Jayawardena et al. 2018). However, 18S rDNA
sequences give greater clarity in many fungal analyses
(Freeman et al. 2009; Naff et al. 2013; Panzer et al. 2015;
Tisthammer et al. 2016; Hassett and Gradinger 2016;Xu
et al. 2016a,b; Hongsanan et al. 2018). Furthermore, it was
shown the moderately-sized (*440 bp) V4 amplicons are
able to resolve fungal sequences to at least the genus level,
confirmed by manual BLASTn of taxonomic identifications
(Comeau et al. 2016).
To extend the ecological coverage of chytrids, Comeau
et al. (2016) conducted an in-depth analysis of fungal
sequences within their collection of V4 18S rDNA
pyrosequences originating from 319 individual marine
(including sea-ice) libraries generated within diverse
Fungal Diversity
123
projects studying Arctic and temperate biomes in the past
decade. In this study, almost all sample types were domi-
nated by marine Chytridiomycota-like sequences, followed
by moderate to minor contributions of Ascomycota,
Cryptomycota and Basidiomycota. The species and/or
strain richness was found to be high, with many novel
sequences and high niche separation.
The high dominance of chytrids in Arctic sea-ice (93%)
agrees with a recent 18S V2–V3 Alaskan study showing
70–95% chytrids among fungal sequences from land-fast
ice and underlying marine sediments, identifying
Mesochytriales, Chytridiales, Rhizophydiales and the
Lobulomycetalesas the closest related taxonomic orders in
their BLAST queries and phylogenetic estimates of the five
most abundant operational taxonomic units (OTUs) from
each month in ice and sediment (Hassett and Gradinger
2016).
In contrast, a recent meta-analysis by Tisthammer et al.
(2016) focused on marine water and sediments and found
that Dikarya were dominant and chytrids were relatively
rare. However, their study was based upon only 56 samples
from 33 sites, identified less than half the number of fungal
sequences as the Comeau et al. (2016) study, and had a
limited coverage of polar regions. They also targeted the
small *65 bp V9 variable region of the 18S rRNA gene
and, consequently, greater than 50% of their 10,793
sequences remained unidentified. The V4 analysis with a
larger dataset over a broad range of aquatic environments,
with emphasis on planktonic and sea-ice systems, implies
that chytrids may be more abundant than previously sus-
pected and that aquatic fungi deserve renewed attention for
their role in algal succession and carbon cycling.
One of the major constraints for the taxonomy of
Chytridiomycota is a general lack of sequence data, espe-
cially parasitic species (or those described as such). A
survey of key databases for fungal taxonomic assignment
reveals that Chytridiomycota represent between 0.1 and 4%
of the fungal sequences, while the number of parasitic
species may be fewer than a few dozen. The use of culture
independent molecular methods, e.g. single cell/colony/
spore PCR (Ishida et al. 2015), as well as sequencing of
bulk phytoplankton samples, will likely improve the rep-
resentation of chytrids in future sequence databases
(Frenken et al. 2017).
Clearly high-throughput sequencing and next generation
sequencing techniques bode well for the characterization of
marine fungal communities and the determination of their
role in deep water habitats (Xu et al. 2016a,b,2018;
Hassett et al. 2019).
Classification of marine fungi
Marine fungi, as with all fungi, have traditionally been
classified based on morphological features (Inui et al.
1965), however this does not lead to a natural scheme.
Johnson and Sparrow (1961), in a detailed treatise of
marine fungi, classified fungi in oceans and estuaries into
four classes, i.e. ‘Phycomycetes’, ‘Fungi Imperfecti’
(asexual morphs), ‘Ascomycetes’ (Ascomycota) and ‘Ba-
sidiomycetes’ (Basidiomycota). It is now known that
‘Phycomycetes’ and ‘Fungi Imperfecti’ are not natural
groups; ‘Phycomycetes’ included both fungi and fungus-
like organisms (Adl et al. 2012), while ‘Fungi Imperfecti’
are asexual morphs of the Ascomycota and the Basid-
iomycota. Johnson and Sparrow (1961) provided a higher-
level classification of the marine ‘Ascomycetes’ based on
characteristics of spores (shape and septation). Such phe-
notypic classifications are highly subjective, and do not say
much on the evolutionary significance of these characters.
For example, Barr (1983) considered that trabeculate
pseudoparaphyses to be important at the ordinal level in the
classification of the Melanommatales, yet Liew et al.
(2000) showed that they were not phylogenetically distin-
guishable from cellular pseudoparaphyses. Such classifi-
cations have over the past 30 years been replaced with
those based on SSU and LSU rDNA sequence data, which
has enabled construction of the evolutionary relationships
of fungi and identification of morphological characters that
are of evolutionary importance (Wijayawardene et al.
2017,b). Molecular based studies have also highlighted the
polyphyletic nature of many genera e.g. Halosarpheia
(Pang et al. 2003), Ceriosporopsis, and Remispora (Saka-
yaroj et al. 2011). Consequently, Jones et al. (2009,2015)
provided updated classifications of marine fungi based on
results from recent phylogenetic studies. Phylogenetic
analysis of SSU and LSU rDNA also enabled linking of
asexual morphs with their sexual states (Shenoy et al. 2006;
Abdel-Wahab et al. 2010; Seifert et al. 2011; Abdel-Wahab
and Bahkali 2012). Thus, this has revolutionised the tax-
onomic placements of asexual fungi as demonstrated for
the marine asexual genera Hydea, Matsusporium, Mole-
sporium, Moromyces, and Orbimyces in the Lulworthi-
aceae, Lulworthiales, genera with no known sexual morphs
(Abdel-Wahab et al. 2010). More recent studies have
included the sequencing of a wider range of genes e.g.
LSU, SSU, TEF1a, RPB2 and b-tubulin (Wanasinghe et al.
2017). Marine yeasts were included in the most recent
classification treatise of marine fungi (Jones et al. 2015)
and can be classified based on sequencing of the D1/D2
domain of the 28S rDNA. Morphological characters can
still be useful for higher-level taxa. The classification in
this paper follows Liu et al. (2015a,b,c), Wang et al.
Fungal Diversity
123
(2015,b) and Wijayawardene et al. (2017a,b) with some
updates.
Identification of species and genera based on sequence
data has also been questioned especially when dealing with
cryptic species. For yeasts, taxa are generally based on the
sequence of the D1/D2 domain of the LSU rRNA gene and
the nucleotide differences between closely related species.
Kurtzman and Ribnett (1998), in a phylogenetic analysis of
26S D1/D2 nucleotide sequences, demonstrated that 12
substitutions (2%) to 20 substitutions (3.3%) differentiated
between two closely related Candida species. Jeewon and
Hyde (2016) have addressed the issue of the identification
and demarcation of taxa and made a number (15) of rec-
ommendations, the key elements being: (1). Phylogenetic
relationships of a novel taxon should include a comparison
of at least ITS based phylogeny with a minimum of 4–5
closely related/similar taxa of the same genus, where
available; (2). Regions of the ITS sequence (including
5.8S) analysed should be of a minimum 450 base pairs
with \1% position ambiguities and 3). For practical pur-
poses, a minimum of [1.5% nucleotide differences in the
ITS regions may be indicative of a new species (for fast
evolving introns of protein coding genes, a higher per-
centage in nucleotide differences is warranted).
Higher classification
The transition from a morphology-based to a phylogeny-
based classification has advanced our knowledge on the
phylogenetic diversity of fungi (Wijayawardene et al.
2017a,b) and more recently evolution (Hongsanan et al.
2017; Hyde et al. 2017; Liu et al. 2017a,b). From four
phyla of fungi described in Alexopoulos et al. (1996), 18
are recognised by Tedersoo et al. (2018), of which at least 6
phyla have marine representatives (Ascomycota, Basid-
iomycota, Blastocladiomycota, Chytridiomycota, Glom-
eromycota, Mucoromycota) in the Kingdom Fungi based
on molecular phylogenomic analyses of genome data and
expressed sequence tags (Hyde et al. 2018; Tedersoo et al.
2018). In a more recent metabarcoding proteome analysis
using whole-genomic information, Cryptomycota was also
found to be related to the Kingdom Fungi (Choi and Kim
2017), but the phylogenetic positions of Neocalli-
mastigomycota and Microsporidia were not stable from
one study to another.
The major advance in the classification of the fungi was
by Hibbett et al. (2007) which set a framework for studies
into their taxonomy and lead to major taxonomical changes
over the next 10 years. Currently, the arrangement of
genera, families, orders and subclasses is progressing
towards a natural classification (Wijayawardene et al.
2017a,b). These are notable for taxa at the class level
Dothideomycetes (Hyde et al. 2013, Ariyawansa et al.
2014, Wijayawardene et al. 2014,2018), Sordariomycetes
(Maharachchikumbura et al. 2015,2016), Agaricostil-
bomycetes, Atractiellomycetes, Classiculomycetes, Cysto-
basidiomycetes, Microbotryomycetes, Mixiomycetes,
Pucciniomycetes Spiculogloeomycetes, Tremellomycetes,
and Tritirachiomycetes (Liu et al. 2015a,b,c; Wang et al.
2015a,b; Zhao et al. 2018) and the subclasses Dia-
porthomycetidae (Senanayake et al. 2016,2017,2018),
Savoryellomycetidae (Hongsanan et al. 2018), Lulwor-
thiomycetidae (Dayarathne et al. 2018), Pleosporomyceti-
dae (Schoch et al. 2006) and Xylariomycetidae
(Senanayake et al. 2015).
For marine fungi, Johnson and Sparrow (1961) classified
all zoosporic fungi and fungus-like organisms into ‘Phy-
comycetes’ and filamentous fungi mainly into ‘Fungi
Imperfecti’ (Sphaeropsidales, Melanoconiales, Moniliales
and ‘Ascomycetes’ (Plectomycetes, Pyrenomycetes, and
Discomycetes). ‘Ascomycetes’ was further divided into
Scolecosporae, Amerosporae, Didymosporae, Phragmo-
sporae and Dictyosporae based on spore morphology.
Increased efforts have been made in recent years for the
collection of a number of marine fungi with unknown/
problematic taxonomic positions and phylogenetic studies
have since resolved their higher-level classification. For
example, Manglicola guatamalensis was originally classi-
fied in the Pleosporaceae,Venturiaceae (Kohlmeyer and
Kohlmeyer 1971) or Hypsostromataceae (Huhndorf 1994).
A phylogenetic analysis of the 18S and 28S rDNA revealed
the species was related to the Jahnulales, an order previ-
ously known for the freshwater genus Jahnula (Pang et al.
2002). Recently, Jones et al. (2015) reorganised the clas-
sification of the known marine fungi (filamentous, zoos-
poric and yeasts) into Ascomycota, Basidiomycota,
Blastocladiomycota Chytridiomycota and Mucoromycota.
For the major marine groups, the Ascomycota was subdi-
vided into six classes (Dothideomycetes, Eurotiomycetes,
Leotiomycetes, Lichinomycetes, Orbiliomycetes, and Sor-
dariomycetes) with 943 species while the Basidiomycota
was referred to three classes (Agaricomycetes, Exobasid-
iomycetes, and Ustilaginomycetes) with a total of 96 spe-
cies (www.marinefungi.org). The most recent classification
of marine fungi is found in ‘‘List of marine fungi logged in
the marine fungi website’’ and ‘‘Marine yeasts Ascomycota
and Basidiomycota’’ in the Appendix section
Ascomycota
Jones et al. (2015) listed a total of 943 marine Ascomycota
(805 filamentous fungi in 352 genera), yeasts 138 species
(in 35 genera), a huge leap from 424 species in Jones et al.
(2009). This difference was mainly due to the inclusion of
a number of fungi which occur both in the terrestrial and
Fungal Diversity
123
marine environments, such as Aspergillus spp., Penicillium
spp. often listed as marine derived fungi, and yeasts.
Major lineages of marine Ascomycota include the orders
Microascales (the Halosphaeriaceae), Pleosporales, Euro-
tiales and Saccharomycetales, among which the latter two
orders constitute taxa mainly associated with seawater,
sand/sediment, plant substrates and animals (Jones et al.
2015). Marine fungi in the order Pleosporales mostly
belong to some well-known terrestrial genera, such as
Didymella,Leptosphaeria, Massarina and Phaeosphaeria,
while others are genera known only from marine habitats
and with few species, suggesting marine Dothideomycetes
may have evolved recently in the sea (Vijaykrishna et al.
2006; Jones et al. 2015; Liu et al. 2017a,b). This view is
supported by the fact that many marine occurring Doth-
ideomycetes maintain an active mechanism of spore dis-
persal, especially those occurring in mangrove
environments (Suetrong et al. 2009), and Vijaykrishna
et al. (2006) provide molecular clock evidence that marine
Dothideomycetes evolved from terrestrial species.
A different character scenario is observed in the marine
Sordariomycetes that also evolved from terrestrial ances-
tors (Vijaykrishna et al. 2006). An example is the family
Halosphaeriaceae which was inferred to have evolved
from a terrestrial environment (Spatafora et al. 1998) and is
predominantly marine with 166 species occurring in 63
genera (Jones et al. 2015,2017), many being mono-
phyletic. Taxa in Halosphaeriaceae generally have deli-
quescing asci and diverse spore/spore appendage
morphology and ontogeny, adaptations to dispersal/finding
growth substrates in the marine environment (Jones
1994,1995). Another order with exclusively marine taxa is
the Lulworthiales (Kohlmeyer et al. 2000). Species of this
order generally have filiform (filamentous) ascospores with
many species found obligately on macroalgae or corals
(Kohlmeyer et al. 2000, Campbell et al. 2005). Savoryel-
lales, an order of aquatic fungi, was established to include
Savoryella, Ascotaiwania and Ascothailandia (= Canal-
isporium) but only a few Savoryella species are marine
(Abdel-Wahab and Jones 2000; Boonyuen et al. 2011).
Other marine Sordariomycetes are either monotypic genera
or belong to known terrestrial genera.
Molecular data has yielded many new lineages of mar-
ine fungi. Marine Saccardoella species were examined
phylogenetically based on 18S, 28S rRNA and tef1 genes
and found to be unrelated to the Sordariomycetes but
formed a monophyletic clade close to the Dothideomycetes
(Pang et al. 2013). A new genus, Dyfrolomyces, was
introduced to accommodate the marine Saccardoella spe-
cies and a new species D. tiomanensis in a new family
Dyfrolomycetaceae (Pang et al. 2013) and a new order
Dyfrolomycetales (Hyde et al. 2013). Jones et al. (2015)
introduced the new order Torpedosporales
(Hypocreomycetidae) with three new marine families:
Juncigenaceae, Etheirophoraceae and, Torpedosporaceae,
all with marine genera based on a combined analysis of the
18S and 28S rDNA genes. The terrestrial asexual morph
genus Falcocladium formed the fourth family, Falcocla-
diaceae (Jones et al. 2014), and was not previously
assigned to any family or order (Crous et al. 1994;Som-
rithipol et al. 2007). Thus, the study of marine fungi at the
molecular level helped in broadening our ability to classify
taxa from other habitats. Tirisporella beccariana, a species
commonly found on fronds/rhizomes of the brackish water
palm Nypa fruticans, was found to represent a new lineage
with Thailandiomyces bisetulosis in the Diaporthales,
based on a phylogenetic analysis of the 18S and 28S rDNA
(Suetrong et al. 2015). A new family, Tirisporallaceae, was
established to accommodate these two genera (Suetrong
et al. 2015), and a third genus Bacusphaeria was subse-
quently included (Abdel-Wahab et al. 2017). Lanspora,an
exclusively marine genus previously thought to have close
phylogenetic relationship with the Ophiostomatales, was
recently placed in the new order Phomatosporales based on
analyses of the 18S, 28S and internal transcribed spacer
regions of the rDNA (Senanayake et al. 2016)(www.mar
inefungi.org).
Basidiomycota As reported earlier, basidiomycetes are
the least represented taxonomical group in marine
ecosystems (Kohlmeyer and Kohlmeyer 1979; Pang et al.
2011; Jones and Fell 2012; Sakayaroj et al. 2012; Hattori
et al. 2014; Poli et al. 2018). Jones et al. (2015) listed 21
filamentous marine basidiomycetes in 17 genera with 75
marine basidiomycete yeasts in 26 genera. These fig-
ures changed little 4 years later: 22 (17) and 80 (39) fila-
mentous and basidiomycete yeasts, respectively. The
greater number of yeast genera is due to a major phylo-
genetic revision of basidiomycetous yeasts by Liu et al.
(2015a,b,c) and Wang et al. (2015a,b). These revisions
resulted in the introduction of many new genera and fam-
ilies which also applied to marine yeasts, e.g. Saitozyma,
Solicoccozyma, Symmetrospora and Vishniacozyma (Liu
et al. 2015a,b; Wang et al. 2015a,b,c).
Generally, basidiomes of marine Basidiomycota are
small, rarely greater than 5 mm in diameter and this has
been attributed to the prevailing conditions in marine
habitats with strong wave action (Jones 1982,1988; Binder
and Hibbett 2001). However, basidiomycetes with larger
basidiomes, such as Grammothele fuligo, Hyphoderma
sambuci, and Schizophyllum commune, have been reported
from the petioles of brackish water palm Nypa fruticans
(Loilong et al. 2012). A study of butt rot attack of the
mangrove tree Xylocarpus granatum identified three new
species of the genus Fulvifomes (Hymenochaetaceae,
Hymenochaetales): Fulvifomes halophilus, F. siamensis, F.
Fungal Diversity
123
xylocarpicola as the causative agents. Fulvifomes species
have woody bracket basidiocarps with tubes, round pores,
circa 4–6 mm diameter (Hattori et al. 2014). These Fulv-
ifomes species cause extensive decay of the Xylocarpus
granatum trees (Sakayaroj et al. 2012) (Fig. 1) and like
other basidiomycetes possess lignolytic enzymes causing
brown rot decay (Pointing et al. 1998,1999; Bucher et al.
2004). While new marine Ascomycota are continuing to be
described, few new basidiomycetes have been documented
(www.marinefungi.org).
Blastocladiomycota and Chytridiomycota Jones et al.
(2015) list few marine chytrids (27 species in 13 genera)
and this is considered to be an underestimate bearing in
mind sequence data from marine sediments, the deep sea
and seawater (Hassett et al. 2017). In high throughput
sequencing studies, representatives of the Chytridiomycota
accounted for more than 60% of the rDNA sequences
sampled in six near-shore sites around Europe (Massana
et al. 2015; Richards et al. 2015). In Arctic and sub-Arctic
coastal habitats, Chytrids have been described as the most
abundant fungal group (Comeau et al. 2016; Hassett and
Gradinger 2016; Hassett et al. 2017). Given the relatively
high abundance of chytrid sequences recovered from the
marine environment in comparison with recent descriptions
of infections of marine diatoms by such parasites, there has
been only full taxonomical descriptions for three marine
representatives namely Rhizophydium littoreum,Thalas-
sochytrium gracilariopsis and Chytridium polysiphoniae
(= Algochytrops polysiphoniae) (Gleason et al. 2011;
Ohtsuka et al. 2016).
Recent taxonomic studies on chytrids based on molec-
ular phylogenies and zoospore ultrastructure were mainly
conducted using isolates of saprobic chytrids (Letcher et al.
2008; Simmons 2011; Seto et al. 2017) which can be cul-
tured on alternative substrates (e.g. pine pollen) instead of
the far more complicated method of co-culturing host and
parasites. Although there are a large number of described
species of parasitic chytrids (Jones et al. 2015), only a few
parasitic chytrid species have been sequenced and their
phylogenetic positions clarified (Ku
¨pper et al. 2006; Kar-
pov et al. 2010,2014;Ve
´lez et al. 2011; Lepelletier et al.
2014; Letcher et al. 2015; Seto et al. 2017).
There appears to be no new chytrids described since the
list published by Jones et al. (2015), however, the advent of
sequence data has enabled better resolution of their tax-
onomy. Three species previously classified in Phlyc-
tochytrium and Rhizophydium have now been assigned to
new genera: Halomyces (H. littoreus =Rhizophydium lit-
toreum), Paludomyces (P. mangrovei =Phlyctochytrium
mangrovei) and Ulkenomyces (U. aestuarii =Phlyc-
tochytrium aestuarii) (Letcher et al. 2015). These three
genera are assigned to a new family Halomycetaceae in
Rhizophydiales (Letcher et al. 2015). The taxonomic
assignment of Chytridium polysiphoniae has been in doubt
for many years (Jones et al. 2015) and Doweld (2014)
introduced a new genus Algochytrops to accommodate A.
polysiphoniae. Many marine Rhizophydium species require
isolation and sequencing to determine their taxonomic
assignment (www.marinefungi.org).
Fig. 1 Stem/butt rot of
Xylocarpus granatum trees with
multi-branching and hollow
trunks
Fungal Diversity
123
Asexual filamentous marine fungi The first three asexual
marine fungi were described from marine algae (Wright
1881; Cooke 1888). Sutherland (1916b) in a major article
described eight asexual fungi that are saprobic on decaying
fronds of the brown alga Laminaria growing along the
coasts of Dorset and Orkney and other sites in UK. The
new fungi were: Alternaria maritima, Diplodina laminar-
iae, Epicoccum maritimum, Fusidium maritimum,
Monosporium maritimum, Paradendryphiella salina
(= Cercospora salina), Sporotrichum maritimum, and
Macrosporium laminarianum. He carefully assigned them
to their respective genera so that seven of them still carry
their original names.
Barghoorn and Linder (1944) described two new genera
and seven new species of asexual marine fungi namely:
Botryophialophora marina, Dictyosporium pelagicum,
Diplodia orae-maris, Helicoma maritimum (synonymized
with Zalerion maritima), Orbimyces spectabilis, Phialo-
phorophoma litoralis, and Zalerion maritima. Nilsson
(1957) described Dinemasporium marinum from driftwood
in Denmark. Moore and Meyers (1959) described the
basidiomycete genus, Nia, as an asexual fungus. Meyers
and Moore (1960) also described three new genera and one
new species namely: Cirrenalia macrocephala, Cremaste-
ria cymatilis (a rejected species), Halosphaeriopsis
mediosetigera (= Trichocladium achrasporum) and Humi-
cola alopallonella (= Trichocladium alopallonella). John-
son and Sparrow (1961) listed 26 species in 24 genera of
asexual marine fungi. Kohlmeyer and Kohlmeyer (1979)
listed 53 asexual marine fungi in 40 genera and that
number increased to 60 species (40 genera) in the illus-
trated key to the filamentous higher marine fungi published
by Kohlmeyer and Volkmann-Kohlmeyer (1991).
Jones et al. (2009) in the updated classification of
marine fungi listed 94 asexual fungi in 61 genera. Abdel-
Wahab et al. (2010) in a major publication revised the
phylogeny of the genera Cirrenalia and Cumulospora
based on SSU and LSU rDNA and erected eight new
genera, four new species and made six new combinations.
Abdel-Wahab and Bahkali (2012) reviewed asexual fila-
mentous marine fungi and listed 117 asexual marine fungi
in 82 genera. Of the 116 listed species, 59 were sequenced
for one or more genes and their sequences are present in
GenBank. Forty sexual/asexual connections have been
established based on morphology, and 31 of those con-
nections are supported by molecular data. The listed 117
fungi belong to Dothideomycetes (33 species), Euro-
tiomycetes (1), Leotiomycetes (3), Orbiliomycetes (15),
Sordariomycetes (46), Pezizomycotina incertae sedis (18)
and one species, Allescheriella bathygena, belongs to
Basidiomycota. In the last update of the classification of
marine fungi, Jones et al. (2015) listed 300 marine asexual
filamentous taxa in 91 genera. They included the marine-
derived fungi that are repeatedly isolated from marine hosts
or substrates and identified to species level. The 300 spe-
cies belong to Dothideomycetes (63 species), Euro-
tiomycetes (93), Leotiomycetes (7), Orbiliomycetes (24)
and Sordariomycetes (72). The sexual morphs of the
remaining species are unknown. Genera represented by 5
species or more are: Acremonium (13 species), Arthro-
botrys (13), Aspergillus (47), Cladosporium (7), Curvu-
laria (5), Penicillium (39), Periconia (5), Phoma (11),
Stachybotrys (6), Stemphylium (5) and Trichoderma (12).
Several asexual fungi have been transferred to their
sexual morph genera with the application of the Interna-
tional Code of Nomenclature for algae, fungi, and plants
(ICN; McNeill et al. 2012). Two or more names for dif-
ferent morphs of the same species are no longer allowed
(one fungus = one name). Examples are species of the
genera Halosigmoidea, Sigmoidea, Varicosporina that
have been transferred to Corollospora;Moheitospora to
Juncigena and Glomerulispora to Torpedospora (Re
´blova
´
et al. 2016). The marine fungi website (www.marinefungi.
org) presently lists only 17 asexual morphs as there is no
sequence data available to link them to their sexual morph:
e.g. Asteromyces cruciatus, Pycnodallia dupla and Spor-
idesmium salinum. Many of these were described before
molecular data was used and they need to be recollected
and sequenced to determine their taxonomic placement.
Furthermore, type material is no longer available or in poor
condition, e.g. the marine fungi described by Barghoorn
and Linder (1944). Other asexual morph taxa mentioned
above are listed under their sexual morphs as sequence data
is available for them.
Marine yeasts Jones et al. (2015) listed 213 marine yeasts
in 61 genera, including taxa in the Basidiomycota and
Ascomycota. Currently we list 220 species in 74 genera
with representatives in 9 classes, 15 orders and 28 families.
Thus, the number of marine yeasts has not increased dra-
matically over the past 4 years, but sequence data has
fundamentally changed their taxonomic assignment. Liu
et al. (2015a,b,c) and Wang et al. (2015a,b) have
undertaken a major revision of the classification of basid-
iomycetous yeasts, especially the Agaricomycotina,
Tremellomycetes, Pucciniomycotina and Ustilaginomy-
cotina, previously based on physiological and biochemical
characteristics, resulting in many genera being poly-
phyletic. This revision was based on the analysis of
sequences of seven genes: three rRNA genes, namely the
small subunit of the ribosomal DNA (rDNA), D1/D2
domains of the large subunit rDNA, and the internal tran-
scribed spacer regions (ITS 1 and 2) of rDNA including
5.8S rDNA; and four protein-coding genes, namely the two
subunits of the RNA polymerase II (RPB1 and RPB2), the
translation elongation factor 1-a(TEF1) and the
Fungal Diversity
123
mitochondrial gene cytochrome b (CYTB). This study has
seen the introduction of a number of new families: Bul-
leribasidiaceae, Malasseziaceae [classes = Tremel-
lomycetes and Malasseziomycetes respectively],
Mrakiaceae, Piskurozymaceae, Sakakuchiaceae,Symmet-
rosporaceae, and Trimorphomycetaceae (all Basidiomy-
cota) and all with representative marine yeasts. New genera
containing marine yeasts are Bandonia, Cutaneotri-
chosporon, Hasegawazyma, Pseudohyphozyma, Saitozyma
[= reinstated], Solicoccozyma, Sampaiozyma, Symmetro-
spora, Tausonia [= reinstated], and Vishniacozyma. It
would appear that such a revision of ascomycetous yeasts,
i.e., Saccharomycotina, is warranted to address their phy-
logeny based on modern concepts. (www.marinefungi.org).
Ecological groups of marine fungi
Many marine fungi have been documented as the result of
ecological studies, e.g. endobiotes, salt marsh and man-
grove fungi (Jones and Pang 2012).
Marine fungal endobiotes
Endophytic fungi are defined as fungi that colonize host
plant tissues without causing any obvious symptoms of
disease (Schulz and Boyle 2005). They have been isolated
from a wide range of plant hosts, including temperate
conifers (Arnold 2007; Higgins et al. 2007), tropical trees
and plants (Oses et al. 2008; Tao et al. 2008), lichens (Li
et al. 2007a,b), terrestrial grasses (Sa
´nchez Ma
´rquez et al.
2008). Marine fungi can also be isolated from a wide range
of animals and plants, especially marine associated plants
from salt marshes, mangroves, seagrass species and marine
algae (Zuccaro et al. 2003,2008; Raghukumar 2008;
Sakayaroj et al. 2010,2012; Suryanarayanan et al. 2010;
Buatong et al. 2012; Jones et al. 2012; Supaphon et al.
2013,2014,2017; Hong et al. 2015; Doilom et al. 2017).
Researchers have been attracted to study fungal endo-
biotes due to their potential importance in ecology, which
includes an array of benefits to their hosts, such as toler-
ance to heavy metals, increased drought resistance, reduced
herbivory, defence against pathogens, enhanced growth
and competitive ability (Saikkonen et al. 1998). Addition-
ally, endophytic fungi, especially marine endobiotes, have
currently been recognized as the most promising sources of
novel natural products for their bioprospecting in medicine,
agriculture and industry (Debbab et al. 2013; Wang et al.
2013; Pang et al. 2016a). In the last decade, secondary
metabolites and, novel chemical structures, and a diverse
array of compounds from marine and mangrove endophytic
fungi have been discovered (Debbab et al. 2013; Wang
et al. 2013; Pang et al. 2016a).
Most of the research of marine fungal endobiotes has
been made in exploring their occurrence, diversity and
species richness. A review by Sakayaroj et al. (2012)
documented 52 species of mangrove plant hosts, marine
associated plants, salt-affected land plants, seagrasses, as
well as seaweeds, that have been investigated for the
presence of endophytic fungi. Most of the early studies
focused on the abundance and presence of fungi based on
morphological identification. The use of rDNA sequence
data has been helpful in comparing sequence divergence
and taxonomic identities within phylogenetically refer-
enced databases of recognized species (Arnold 2007).
Recently, there have been several studies undertaken using
rDNA sequences, especially the ribosomal rDNA regions,
to identify the phylogenetic diversity of endophytic fungi
from various marine and mangrove plant hosts (Alva et al.
2002; Sakayaroj et al. 2010; Xing et al. 2010; Xing and
Guo 2011; Sakayaroj et al. 2012; Li et al. 2016; Supaphon
et al. 2017).
So far circa 63 marine and mangrove plant species from
24 families have been investigated for fungal endobiotes
(Sakayaroj et al. 2012; Mata and Cebria
´n2013; Panno et al.
2013; Shoemaker and Wyllie-Echeverria 2013; Gnavi et al.
2014; Venkatachalam et al. 2015a,b; Li et al. 2016;
Vohnı
´k et al. 2016; Supaphon et al. 2017; Doilom et al.
2017). One of the largest mangrove plant family Rhi-
zophoraceae (Bruguiera cylindrica, B. gymnorrhiza, B.
parviflora, B. sexangula var. rhynchopetala, Rhizophora
apiculata, R. mucronata, R. stylosa) harbours a high
diversity of endophytic fungi. Up to 2700 fungal strains
have been documented from these hosts (Sakayaroj et al.
2012). Another large family of mangrove plants Sonnera-
tiaceae (Sonneratia alba, S. apetala, S. caseolaris, S.
griffithii, S. hainanensis, S. ovata, S. paracaseolaris) also
constitutes as many as 637 endophytic fungi (Sakayaroj
et al. 2012).
The number of studies of endophytic fungi from sea
grasses have dramatically increased over the past few
years. The occurrence and phylogenetic diversity of fungal
endobiotes associated with the four major seagrass families
(Cymodoceaceae, Hydrocharitaceae, Posidoniaceae,
Zosteraceae) have been undertaken. The families Hy-
drocharitaceae and Posidoniaceae harbour the greatest
number of fungi isolated, namely 258 and 286 strains,
respectively. While the families Cymodoceaceae and
Zosteraceae, yielded 141 and 119 strains, respectively
(Mata and Cebria
´n2013; Panno et al. 2013; Shoemaker and
Wyllie-Echeverria 2013; Supaphon et al. 2013; Gnavi et al.
2014; Supaphon et al. 2014; Kirichuk and Pivkin 2015;
Torta et al. 2015; Venkatachalam et al. 2015a,b; Subra-
maniyan et al. 2016; Vohnı
´k et al. 2016; Supaphon et al.
2017).
Fungal Diversity
123
Fungi from marine algae and endomycobiota in sea-
weeds have been reviewed by Jones et al. (2012) and
Suryanarayanan (2012). Fungi on algal hosts consist of
saprobic, parasitic, endophytic, lichens and mycophyco-
bionts (Kohlmeyer and Kohlmeyer 1979). Since seaweeds
cover large areas of the sea floor and oceans, they can be
expected to yield a wide variety of fungi (Jones 2011b).
Endophytic fungi from marine macroalgae have been
identified as a potential source of biologically active nat-
ural products and enzymes (Flewelling et al. 2013; Sarasan
et al. 2017). Based on the present literature survey by
Sarasan et al. (2017), the maximum proportion of bioactive
compounds produced are from fungi isolated from brown
algae, followed by red and green algae.
The identification of marine fungal endobiotes revealed
a highly diverse taxonomic community. Most belong to the
Ascomycota, and are dominated by the major classes:
Dothideomycetes, Sordariomycetes, Eurotiomycetes and
Leotiomycetes (Sakayaroj et al. 2012; Supaphon et al.
2017). Most endophytic fungi isolated are asexual morphs
and are typical terrestrial lineages including the orders
Capnodiales,Eurotiales,Hypocreales,Pleosporales,Tri-
chosphaeriales and Xylariales (Sakayaroj et al. 2012;
Supaphon et al. 2017). The predominant genera found as
marine endobiotes from a wide range of hosts include
Acremonium, Aspergillus, Cladosporium, Fusarium, Peni-
cillium, Pestalotiopsis, Phomopsis and Phyllosticta. They
have been mostly shown to dominate in terrestrial habitats
from a wide range of hosts as well as in other marine
sources, i.e. sediments, corals, sponges, sea fans (Zalar
et al. 2007; Li and Wang 2009). Only a few reports doc-
umented the fungal endobiotes that are truly marine lin-
eages. For example, Corollospora angusta, C. intermedia,
Dendryphiella salina (= Paradendryphiella salina),
Emericellopsis minima, Lindra obtusa and Sigmoidea
marina (= Corollospora marina) have been observed as
endobiotes of marine seaweeds (Zuccaro et al.
2003,2004,2008). Among these Acremonium fuci and
Corollospora (= Halosigmoidea =Sigmoidea)marina
were reported as new species. Moreover, Corollospora
angusta was the dominant species described from the
brown seaweed, Sargassum sp. (Hong et al. 2015). Mata
and Cebria
´n(2013) and Torta et al. (2015) also reported a
few marine species: Trichocladium alopallonellum,Hale-
nospora varia,Paradendryphiella arenaria, Lindra tha-
lassiae as endobiotes of the seagrasses Halodule wrightii
and Thalassia testudinum, while Lulwoana sp. was found
in the roots of Posidonia oceanica. Similarly, sequences of
unidentified lulworthialean and aigialean species were also
detected in roots of P. oceanica (Vohnı
´k et al. 2016).
In many cases, the endobiotes could be identified only at
the ordinal or genus level, due to the use of only mor-
phological identification as well as the lack of reference
DNA sequences in the GenBank database for comparison.
In three publications on mangrove fungal endobiotes an
average of 87% were identified at genus level, while only
of 41% were identified at species level (Xing et al. 2010;
Xing and Guo 2011; Li et al. 2016). For sea grass endo-
biotes, an average of 77% of isolates were identified at
generic level, while only 34% isolates were identified at
species level. In addition, for seaweeds an average of 91%
were identified at genus level, while only 32% isolates
identified to species level (Table 1). Sakayaroj et al. (2010)
and Supaphon et al. (2017) reported several unidentified
hypocrealean and pleosporalean taxa from sea grass spe-
cies that potentially may represent new taxa. This agrees
with Gnavi et al. (2014) in which several potential new
species belonging in the order Pleosporales were isolated
from Posidonia oceanica. Additionally, Vohnı
´k et al.
(2016) described a new monotypic lineage of pleospo-
ralean species within the Aigialaceae associated with P.
oceanica roots (www.marinefungi.org).
For a meaningful evaluation of their diversity in the
marine environment, identification of endophyte isolates to
ordinal or genus level is not sufficient. A greater effort is
required to generate sequence data to support their precise
identification, i.e. sequencing of their protein-encoding
genes and multigene sequence analysis. Moreover, the
culture-independent approaches, including the genome-
based techniques using metagenomics, next-generation
genome sequencing and phylogenomics approaches, will
help to evaluate the diversity of fungal communities and
the discovery of novel genes and metabolites.
The importance of culturomics is not disputed in this
article, and this technique has been used to study the
diversity of marine fungi. However, the fungal diversity
resulted from isolation does not necessary represent true
marine fungi, especially at the marine/terrestrial interface.
NGS also suffers from the same pitfalls but this technique
offers detection of minor populations, active populations
and interactions between different microorganisms, the
mentioned advantages of culturomics.
Marine pathogens
Most marine fungi are saprobes occurring on various
substrates, while some form symbiotic associations with
algae and some are pathogens of a wide range of organisms
(Bauch 1936; Sparks and Hibbits 1979; Hatai 2012).
Table 2lists some examples of marine fungi that are
regarded as parasites on various hosts, including seaweeds,
salt marsh plants, mangrove plants, rhizomes of Posidonia
oceanica and marine animals.
Fungal Diversity
123
Seaweed pathogens
Seaweeds represent the second largest source of marine
fungi (Bugni and Ireland 2004; Schulz et al. 2008; Loque
et al. 2010; Suryanarayanan et al. 2010; Godinho et al.
2013; see text on seaweed fungi above). Seaweed-associ-
ated fungi mostly include parasites, saprobes, or asymp-
tomatic fungi (Bugni and Ireland 2004; Zuccaro et al.
2008; Loque et al. 2010; Suryanarayanan et al. 2010; Jones
et al. 2012). The best documented seaweed parasites are
Spathulospora species on the red alga Ballia (Kohlmeyer
and Kohlmeyer 1979). The thallus of Spathulospora is
crustose surrounding the algal host cells, bearing sterile and
fertile hairs and trichogynes, the mycelium penetrating the
host cell. Sometimes a single ascoma is born externally on
a cell, the infecting mycelium confined to one algal cell. Of
the six Spathulospora spp., three occur in the Pacific
Ocean.
Phycomelaina laminaria is a member of the Sordari-
omycetes and parasitic on the kelps, Laminaria species and
Alaria esculenta, forming black spots on the stems. New
collections, isolation and sequencing is required to resolve
the taxonomic position of Phycomelaina within the Sor-
dariomycetes. Another genus found exclusively as para-
sites of algae is Haloguignardia (Lulworthiales) with five
species (Kohlmeyer and Kohlmeyer 1979). Host taxa
include the brown seaweeds Cystoseira, Halidrys, and
Sargassum spp. Similarly, Pontogenia (Koralionastales)
species (8 species) are all algal parasites occurring on a
wide spectrum of hosts Castagnea chordariaeformis,
Halopteris scoparia,Padina durvillaei (Phaeophyta),
Codium spp. and Valoniopsis pachynema (Chlorophyta).
The six Chadefaudia species (Halosphaeriaceae) are also
known pathogens of various marine algae, but are not as
host-specific as the other fungi mentioned above (Kohl-
meyer and Kohlmeyer 1979). A well-documented patho-
genic taxon is Mycaureola dilsea (Physalacriaceae,
Table 1 Numbers of marine fungal endobiotes that can be fully identified to genus and species level
Substratum Number of isolates fully identified to genus
level
Number of isolates fully identified to species
level
References
Mangrove plants
39/39 (100%) 17/39 (43.5%) Xing et al. (2010)
27/38 (71%) 12/38 (32%) Xing and Guo (2011)
33
#
/36
*
(91.7%) 17/36 (47.2%) Li et al. (2016)
Average = 87% Average = 41%
Seagrasses
14/16 (87.5%) 5/16 (31.2%) Mata and Cebria
´n(2013)
69/88 (78.4%) 58/88 (66%) Panno et al. (2013)
31/34 (91.2%) 7/38 (18.4%) Shoemaker and Wyllie-Echeverria
(2013)
14/21 (66.7%) 5/21 (23.8%) Gnavi et al. (2014)
26/42 (62%) 4/42 (9.5%) Sakayaroj et al. (2010)
35/47 (74.5%) 15/47 (32%) Supaphon et al. (2014)
28/29 (96.6%) 27/29 (93.1%) Kirichuk and Pivkin (2015)
40/44 (91%) 10/44 (2.3%) Venkatachalam et al. (2015a)
25/32 (78.1%) 3/32 (9.4%) Venkatachalam et al. (2015b)
15/42 (35.7%) 25/42 (59.5%) Subrmaniyan et al. (2016)
68/81 (84%) 23/81 (28.4%) Supaphon et al. (2017)
Average = 77% Average = 34%
Marine seaweeds
30/31 (96.8%) 7/31 (22.6%) Zuccaro et al. (2003)
41/42 (97.6%) 15/42 (35.7%) Zuccaro et al. (2008)
56/72 (77.8%) 7/72 (9.7%) Suryanarayanan et al. (2010)
44/50 (88%) 30/50 (60%) Hong et al. (2015)
68/73 (93.2%) 25/73 (34.2%) Venkatachalam et al. (2015a)
Average = 91% Average = 32%
#
Identified genus/species,* total species
Fungal Diversity
123
Table 2 Pathogenic marine fungi and their hosts
Taxa Host
Algochytrops polysiphoniae
b
Pylaiella littoralis
Anthostomella sp.
r
Rhizophora mangle
Atkinsiella panulirata
h
Spiny lobster
Cercospora sp.
o
Rhizophora spp.
Chadefaudia balliae
a
Ballia callitricha
Chadefaudia gymnogongri
l
Curdiea,Gigartina,Gymnogongrus,Laurencia,Microcladia,Ptilonia spp.
Chadefaudia marina
l
Rhodymenia palmata
Chadefaudia polyporolithi
l
Polyporplithon spp.
Cytospora rhizophorae
j
Rhizophora mangle
Cytospora lumnitzericola
p
Lumnitzera racemosa
Cytospora thailandica
p
Xylocarpus moluccensis
Cytospora xylocarpi
p
Xylocarpus granatum
Didymella fucicola
l
Fucus spiralis,F. vesiculosus,Pelvetia canaliculata
Didymella gloiopeltidia
l
Gloiopeltis furcata
Didymella magnei
l
Rhodymwnia palmata
Didymosphaeria danica
l
Chondrus crispus
Exophiala spp.
g
Pathogens of fish
Fulvifomes halophilus
s
Xylocarpus granatum
F. siamensis
s
F. xylocarpicola
s
Xylocarpus granatum
Flamingomyces ruppiae
a
Ruppia marina
Haliphthoros milfordensis
e
Juvenile stages of lobster
Haloguignardia decidue
l
Sargassum daemelii,Sargassum sp.
Haloguignardia irritans
l
Cystoseira osmundaceaI,Halidrys dioica
Haloguignardia oceanica
l
Sargassum fluitans,S. natans
Haloguignardia tumefaciens
l
Sargassum spp.
Halotthia posidoniae
n
Posidonia oceanica,Cymodoce nodosum
Koorchaloma galateae
m
Juncus roemerianus
Labyrinthuloides haliotidis
b
Juvenile abalone
Lagenidium callinectes
f
Larvae of mangrove crab
Leptosphaeria avicenniae
l
Avicennia spp.
Lindra thalassiae
l
Sargassum sp. (also in turtle grass, Thalassia testudinum)
Lulworthia fucicola
l
Fucus versiculosus
Lulworthia kniepii
l
Lithophyllum,Porplithon,Pseudolithophyllum spp.
Massarina cystophorae
l
Cystoseira osmundacea,C. subfarcinata
Mycosphaerella ascophyhlii Ascophyllum nodoasum,Pelvetia canaliculata
Mycaureola dilsea
q
Dilsea carnosa
Ochroconis humicola
g
Fish
Orcadia ascophylli
l
Ascophyllum,Fucus,Pelvetia spp.
Parvulago marina
a
Eleocharis parvula (Urocystidales)
Pestalotiopsis juncestris
n
Juncus roemerianus
Phycomelaina laminariae
l
Laminaria spp., Alaria esculenta
Plectosporium oratosquillae
d
Mantis shrimp
Pontogeneia calospora
k,l
Castagnea chordariaeformia
Pontogeneia codiicola
l
Codium fragile, C. simulans
Pontogeneia cubensis
l
Halopteria scoparia
Pontogeneia enormia
l
Halopteria scoparia
Pontogeneia padinae
l
Padina durvillaei
Fungal Diversity
123
Basidiomycota) on the red seaweed Dilsea carnosa (Porter
and Farnham 1986; Stanley 1992; Binder et al. 2006).
Originally described as an ascomycete, but later studies
confirmed it as a basidiomycete which can be found
sporulating on Dilsea in September to October in temperate
climates (Stanley 1992; Jones et al. 2012). Recent studies
of pathogenic marine fungi on algae are few apart and are
mainly taxonomic observations with only some being
supported by sequence data (Inderbitzin et al. 2004; Binder
et al. 2006; Gueidan et al. 2009;Pe
´rez-Ortega et al. 2010;
Taxopeus et al. 2011).
Zoosporic fungi and fungal-like organisms also cause
disease symptoms on marine algae, especially phyto-
plankton (Raghukumar 1987;Ku
¨pper and Mu
¨ller 1999;
Gleason et al. 2012; Doweld 2014; Scholz et al. 2014b;
Gutie
´rrez et al. 2016; also see section above on Blasto-
cladiomycota and Chytridiomycota). One species fre-
quently identified as parasitic on a broad spectrum of red
algae is Algochytrops polysiphoniae (= Chytridium
polysiphoniae)(Ku
¨pper and Mu
¨ller 1999; Gleason et al.
2012; Doweld 2014).
Pathogens of salt marsh plants
Salt marshes represent coastal marine ecosystems that
occur mainly in temperate and high-latitude estuaries
(Allen and Pye 1992; Simas et al. 2001), low hydrody-
namic and periodic tidal flooding conditions (Simas et al.
2001). A number of aquatic plants, such as Spartina spp.,
Juncus roemerianus,Phragmites australis and sea grass
species of Halodule, Thalassia and Zostera, grow in such
environments, and are the main sources of organic matter
for fungi (Teal 1962; Christian et al. 1990; Newell et al.
1996; Van Ryckegem et al. 2006; Al-Nasrawi and Hughes
2012). Labyrinthulomycetes are reported to cause wasting
diseases of Zostera marina and Halodule writghtii sea
grasses with heavy losses (Sullivan et al. 2013). Two
pathogenic basidiomycetes on maritime angiosperms are
Flamingomyces ruppiae on Ruppia marina, and Parvulago
marina on Eleocharis parvula (Urocystidales) (Bauer et al.
2007). Although a wide range of saprobic fungi occur on
salt marsh plants such as Spartina spp., Juncus roemeri-
anus, Phragmites australis, the parasitic fungi are known
only from aerial shoots (Kohlmeyer and Volkmann-Kohl-
meyer 2002). Kohlmeyer and Volkmann-Kohlmeyer
(2001c) described 43 new species belonging to 14 new
genera from the needle rush Juncus roemerianus, and all
are saprobes of senescent standing culms and leaves.
The sea grasses Posidonia oceanica and Cymodocea
nodosum support a number of ascomycetes that grow on
their living rhizomes: Halotthia posidoniae and Ponto-
poreia biturbinata (Kohlmeyer 1963b). Generally, they are
found commonly on washed up rhizomes along the
Mediterranean coast (Cuomo et al. 1985; Suetrong et al.
2009; Zhang et al. 2013a,b; Jones et al. 2015). Further
studies are required to determine the relationship between
these ascomycetes and their hosts.
Table 2 (continued)
Taxa Host
Pontogeneia valiniopsidis
l
Valoniopsis pachynema
Pontoporeia biturbinata
i
Posidonia oceanica,Cymodoce nodosum
Pseudocercospora avicenniae
t
Avicennia marina
Spathulospora adelpha
l
Ballia callitricha
Spathulospora antarctica
l
Ballia callitricha
Spathulospora calva
l
Ballia callitricha
Spathulospora lanata
l
Ballia hirsute,B. scoparia
Spathulospora phycophila
l
Ballia callitricha,B. scoparia
Tetranacriella papillata
n
Juncus roemerianus
Thalassoascus tregoubovii
l
Aglaozonia,Cystoseira,Zanardinia spp.
Trailia ascophylli
l
Ascophyllum nodosum,Fucus sp.
Trichomaris invadens
u
Tanner crab
Scytalidium sp.
g
Fish
Sphaeceloma cecidii
l
Cystoseira,Halidrys,Sargassum spp.
a
Bauer et al. (2007);
b
Bower (1987);
c
Doweld (2014);
d
Duc et al. (2010);
e
Fisher et al. (1975);
f
Hatai et al. (2000);
g
Hatai (2012);
h
Kitancharoen
et al. (1994);
i
Kohlmeyer (1963a);
j
Kohlmeyer (1969c);
k
Kohlmeyer (1975);
l
Kohlmeyer and Kohlmeyer (1979);
m
Kohlmeyer and Volkmann-
Kohlmeyer (2002);
n
Kohlmeyer and Volkmann-Kohlmeyer (2001a);
o
McMillan (1984);
p
Norphanphoun et al. (2018);
q
Porter and Farnham
(1986);
r
Stevens (1920);
s
Sakayaroj et al. (2012);
t
Shivas et al. (2009);
u
Sparks (1982)
Fungal Diversity
123
Mangrove plants
Many fungal pathogens of aerial parts of mangrove trees
are documented, but few are known from submerged parts
(Shivas et al. 2009; Norphanphoun et al. 2018). Butt rot of
roots and lower parts of the mangrove tree Xylocarpus
granatum have been shown to be caused by Fulvifomes
species and is widespread in Thai mangroves (Sakayaroj
et al. 2010; Hattori et al. 2014) (Fig. 1).
On animal hosts
Marine fungi also cause diseases of marine animals and
plants, but this is a topic requiring greater investigation
(Kohlmeyer and Volkmann-Kohlmeyer 2003; Gachon
et al. 2010; Gleason et al. 2011; Jones 2011a). Crustacean
species, fish and shell fish are the most frequently cited
hosts for pathogenic marine fungi (Hatai et al. 2000; Hatai
2012). The substrates of animal origin consist of cellulose,
chitin, keratin, and calcium carbonate with an organic
matrix (Kohlmeyer and Kohlmeyer 1979; Alderman and
Jones 1967; Jones 2011a). This is a well-researched topic
because of the economic impact on commercial marine
aquaculture facilities. Studies on zoosporic fungal-like
parasites have been documented in a series of papers by
Gleason et al. (2017a,b) and Collier et al. (2017), while
Scholz et al. (2017a,b) consider the chytrid infection
prevalence of marine diatoms. Le Campion-Alsumard et al.
(1995) showed fungal hyphae in coral skeletons and soft
coral tissue, while Porter and Lingle (1992) found thraus-
tochytrids bore into mollusc shells. Marine fungi invade
mollusc shells as endoliths (Golubic et al. 2005) and as
pathogens causing shell disease (Alderman and Jones
1971). Ostracoblabe implexa was implicated in the debil-
itating disease of oysters in the UK (Alderman and Jones
1971). A number of fungi belonging to the genera Al-
ternaria, Aspergillus, Cladosporium, Fusarium, Phoma,
and species Aureobasidium pullulans, Hormonema dema-
tioides, and Phialophora bubakii, have been isolated from
corals along the coast of Bay of Bengal and the Arabian
Sea (Raghukumar 2017), some of which have been impli-
cated in coral diseases. Some of these form a constant
association with living corals, pervading deep in coral
skeletons. Black mat syndrome of the carapace of the
tanner crab (Chionoecetes bairdi) has been attributed to
Paraphoma fimeti (= Phoma fimeti) for a long time. Sparks
and Hibbits (1979) investigated the invasive disease and
reported that the fungus was probably fatal and signifi-
cantly affected the crab population in Kodiak area of
Alaska. The bleaching of corals and the role of fungi in
colonizing such substrates warrants greater investigation.
Common fungi and fungal-like organisms that are
pathogens of various cultured fish and shellfish are
Haliphthoros milfordensis juvenile stages of lobster (Fisher
et al. 1975), Trichomaris invadens in tanner crab (Sparks
1982), Labyrinthuloides haliotidis of juvenile abalone
(Bower 1987,2000), Atkinsiella panulirata from spiny
lobster (Kitancharoen et al. 1994), Lagenidium callinectes
in larvae of mangrove crab (Hatai et al. 2000) and Plec-
tosporium oratosquillae in mantis shrimp (Duc et al. 2010),
to name but a few. Pathogens of fish include Ochroconis
humicola,Exophiala spp., and Scytalidium sp. (Hatai
2012).
Fungi on diatoms
Chytrid infections of marine microalgae and cyanobacteria,
and diatoms, have only been considered in recent years
(Scholz et al. 2014a,b,2016a,b; Gutie
´rrez et al. 2016). In
particular, marine planktonic diatoms such as Pseudo-
nitzschia pungens (Hanic et al. 2009), Chaetoceros, Tha-
lassiosira (Scholz 2015; Gutie
´rrez et al. 2016; Scholz et al.
2016a,b) and Cylindrotheca closterium (Elbra
¨chter and
Schnepf 1998; Scholz et al. 2014a,2016a,b) as well as
species of the genera Skeletonema (Gutie
´rrez et al. 2016),
Rhizosolenia, Bellerochea, and Leptocylindrus (e.g. Scholz
2015) were identified as common host species for chytrids.
Even in the marine microphytobenthos infections by chy-
trids were recently recorded, mainly affecting epipelic taxa
of the order Naviculales (Diploneis bombus, Navicula
digitoradiata and Achnanthales (Ach. brevipes), Thalas-
siophysales (Amphora ovalis) and Fragilariales (Fragi-
laria striatula) amongst others (Scholz 2015; Scholz et al.
2014a,2016a). Therefore, the potential for the discovery
and documentation of further marine chytrids in other hosts
is high and may provide a better estimate of their numbers
in the marine environment. Of the marine chytrid parasites
of dinoflagellates identified so far, only one, Dinomyces
arenysensis, is parasitic on the dinoflagellate Alexandrium
minutum (Lepelletier et al. 2014). In the ocean, even
though the presence of these parasitic fungi on planktonic
and microphytobenthic diatoms has been reported
(Elbra
¨chter and Schnepf 1998; Hanic et al. 2009; Scholz
et al. 2014a,b,2016a,b), their impacts on marine diatom
communities and in the food-web remain unclear (Wang
and Johnson 2009; Gleason et al. 2011).
Chytrids are often considered to be highly host-specific
parasites (Kagami et al. 2007). Our current knowledge of
host range and chytrid specificity is greatly biased by the
fact that morphological identification often does not pro-
vide enough resolution to identify chytrids (and sometimes
also hosts) at the species level (Frenken et al. 2017). Cross-
infection assays under laboratory conditions often expose
an even more complex picture, with some chytrids infect-
ing specific host strains only (e.g. Scholz et al. 2017a) and
others are capable of infecting different species, and within
Fungal Diversity
123
single host species both susceptible and resistant strains
occur as well (e.g. Lepelletier et al. 2014; Scholz et al.
2017a,b). In addition, laboratory test series with marine
host-diatom and chytrid isolates indicated the potential of
the diatoms to defend themselves against the infection by
chytrid zoospores (Scholz et al. 2017a) as well as demon-
strated a direct link between environmental stressors and
host-susceptibility (Scholz et al. 2017b).
Distribution of marine fungi
Although marine fungi are worldwide in distribution cer-
tain taxa may be restricted geographically to the tropics,
subtropics, temperate or polar waters (Hughes 1974,1986;
Hyde 1986; Hyde and Jones 1988; Schmit and Shearer
2003) (Fig. 2). Tropical marine fungi are known from the
Atlantic, Indian and Pacific Oceans, from a wide range of
substrates, with mangrove habitats supporting the greatest
diversity (Schmit and Shearer 2003; Alias and Jones 2010;
Pang et al. 2011). However, there is little overlap in fungal
species from tropical (Fig. 2b) and temperate (Fig. 2a)
regions (Jones and Pang 2012).
Substantial information is available on the distribution
of mangrove fungi with Schmit and Shearer (2003) listing
625 species, but this also included terrestrial species.
Currently, some 500 fungi are known from mangrove
habitats on 69 mangrove plants, sediments and seawater,
with data from 80 countries. Schmit and Shearer (2003)
indicate that the mangrove fungi in the Atlantic Ocean
(12–47: mean 25.6) are fewer in number in comparison to
those from the Indian (12–64: mean 42.9) and Pacific
(17–95: mean 44) Oceans (Schmidt and Shearer 2003;
Jones and Abdel-Wahab 2005). It had been suggested that
this is because the mangrove trees diversity is lower in the
Atlantic Ocean than in the Indian and Pacific Oceans.
Mangrove tree species in the Atlantic Ocean are few and
are often mangrove fringe communities, often Avicennia
species. For example, only three tree species are present in
the Florida locations studied by Jones and Puglisi (2006).
In contrast, only one mangrove tree species is found in Red
Sea mangroves, when extensive collections were made
(Abdel-Wahab 2005; Abdel-Wahab et al. 2014).
The greatest fungal diversity is in the Pacific Ocean and
this reflects the intensity of study at these locations (Alias
and Jones 2010; Pang et al. 2011). Kohlmeyer and Volk-
mann-Kohlmeyer (1989) opined that fungal diversity was
dependent on the maturity of the mangrove trees, the nature
of the host tissue, size of the mangrove forest and damage
to the trees and the frequency of sampling (Jones 2000).
Many tropical fungi are unique to mangrove substrates
(Table 3) or host-specific to the brackish water palm Nypa
fruticans, e.g. Aniptodera nypae, A. intermedia,
Anthostomella nypae, Fasciatispora nypae, Helicascus
nypae, Lignincola nypae, Linocarpon appendiculatum,
Oxydothis nypae, Tirisporella beccariana, and
Helicorhoidion nypicola, to list but a few (Loilong et al.
2012).
Whether we can integrate observational documentation
with high-throughput sequencing detection requires greater
collaboration and selection of sampling locations. In broad
terms there is a general agreement in the diversity to be
found; Ascomycota is the dominant taxonomic group,
while the Basidiomycota and chytrids are rare taxa (www.
marinefungi.org). Both approaches detect fungi not docu-
mented by the other, therefore give a greater insight into
the fungal diversity of the oceans.
Role of marine fungi in the web of the oceans
Energy fixed by primary photosynthetic producers in the
oceans is channelled to various trophic levels to sustain
biodiversity and ecosystem functioning. Microorganisms
play a key role in regulating this energy flow (Fig. 3).
Marine fungi are one of the major components in marine
food webs and occur as saprobes, endobiotes, parasites and
mutualists. Figure 4schematically represents such fungal
activities in the marine ecosystem. Firstly, as saprobes they
transform the detritus or organic matter that originated
from plants, algae and animals into valuable nutrients for
consumers. Such turnover of organic matter gears up
energy flow to the higher trophic levels. Ageing improves
the nutrient composition and digestibility of mangrove
leaves, compared to freshly fallen ones with fungi con-
tributing to this feed improvement (Raghukumar 2005).
By virtue of their ecological activities, marine fungi
have the potential to play a major role in regulation of
energy flow in marine ecosystems (Fig. 5). Fungi associ-
ated with living and dead organisms play various roles in
energy transfer. Indeed, there is now sufficient evidence to
show that fungi can affect energy flow in the oceans in
many ways. A few representative examples from a vast
amount of literature available are given in Table 4.
Symbionts
Mutualistic fungi ensure that the organisms they are asso-
ciated with achieve optimal productivity in terms of
energy. A highly diverse group of fungi distributed in
various genera and orders, mostly found in terrestrial
habitats, live as endobiotes in macrophytes and macroalgae
and as symbionts in lichens (Gueidan et al. 2009; Sakayaroj
et al. 2012, Table 4). However, their quantitative impor-
tance has been inadequately studied. Jones (2011b) is of the
opinion that 6000 species of endobiotes of marine plants,
seaweeds, and marine animals may occur.
Fungal Diversity
123
Parasites
As parasites of primary producers, fungi can cause leaching
of dissolved organic matter (DOM) and decimation of
populations of microalgae. This can seriously affect pro-
duction of grazers, which constitute secondary production.
Numerous examples of parasites in macroalgae and phy-
toplankton are now known (Raghukumar 2017; see section
on pathogenic marine fungi). The importance of chytrids in
phytoplankton, particularly in cold waters is now gradually
coming to light (Hassett and Gradinger 2016; Gutierrez
et al. 2016; Comeau et al. 2016).
Fig. 2 World distribution of marine fungi: atemperate species. bTropical species. cCosmopolitan species
Fungal Diversity
123
Saprobic fungi in detritus
Colonization of primary producers upon their death, caused
either by parasites or natural means, is another aspect of
energy flow. Saprobic growth of fungi in detritus is
believed to improve their nutritional value and sustains the
growth of detritivores. Some of the best evidence for the
role of fungi in this process comes from detritus produced
by coastal macrophytes, such as mangrove leaves and
wood, salt marsh grasses and macroalgae (Table 4; Lee
et al. 2017; Raghukumar 2017). A large part of dead
Spartina is converted into fungal biomass (Newell and
Porter 2000). Fungal biomass is also an important com-
ponent of mangrove leaf detritus (Newell and Fell 1992).
An energy budget study on mangroves from the mangrove
estuary in north Brazil by Koch and Wolff (2002) has
Fig. 2 continued
Table 3 Core mangrove fungi
Ascomycota: Savoryella lignicola E.B.G. Jones et R.A. Eaton
Antennospora quadricornuta (Cribb et J.W. Cribb) Massarina velatospora K.D. Hyde et Borse
Aigialus grandis Kohlm. et S. Schatz Verruculina enalia (Kohlm.) Kohlm. et Volkm.-Kohlm.
Dactylospora haliotrepha (Kohlm. et E. Kohlm.) Hafellner Asexual morphs:
Halorosellinia oceanica (S. Schatz) Whalley, E.B.G. Jones, K.D.
Hyde et Læssøe,
Bactrodesmium linderi J.L. Crane et Shearer) M.E. Palm et E.L. Stewart
Kallichroma tethys (Kohlm. et E. Kohlm.) Kohlm. et Volkm.-
Kohlm
Hydea pygmea (Kohlm.) K.L. Pang et E.B.G. Jones
Leptosphaeria australiensis (Cribb et J.W. Cribb) G.C. Hughes Periconia prolifica Anastasiou (= Okeanomyces cucullatus (Kohlm.) K.L.
Pang et E.B.G. Jones)
Natantispora retorquens (Shearer et J.L. Crane) J. Campb., J.L.
Anderson et Shearer
Basidiomycota:
Neptunella longirostris (Cribb et J.W. Cribb) K.L. Pang et E.B.G.
Jones
Calathella mangrovei E.B.G. Jones et Agerer
Saagaromyces ratnagiriensis (S.D. Patil et Borse) K.L. Pang et
E.B.G. Jones
Halocyphina villosa Kohlm. et E. Kohlm.
Sammeyersia grandispora (Meyers) S.Y. Guo, E.B.G. Jones et
K.L. Pang
Fungal Diversity
123
shown that the total leaf litter fall amounts to
13,700 kJ m
-2
year
-1
, corresponding to approximately
685 g of dry weight production m
-2
year
-1
. Nearly 75% of
this is consumed by the crab Ucides cordatus. Ageing
improves the nutrient composition and digestibility of
mangrove leaves, compared to freshly fallen ones with
fungi contributing to this feed improvement (Nordhansl
and Wolff 2007). Enzymatic degradation improves
digestibility and supplies essential nutrients to animal
feeders. Release of DOM by the saprobic activities of fungi
is important in channelling energy, as shown in the next
section.
Saprobic fungi in DOM
Both living and dead marine macrophytes leach substantial
amounts of dissolved organic matter (DOM) into sur-
rounding waters, which is then converted to varying extents
into microbial biomass. Conversion of DOM to microbial
particulate organic matter (POM) makes energy available
to detritivores and supports trophic levels of upper eche-
lons. DOM likely supports the considerable numbers of
yeasts in the water column (Fell 1967,2012). However,
their biomass and involvement in energy transfer is still
inadequately known and deserves attention. Better studied
are the biomass of Basidiomycota, Ascomycota and
Labyrinthulomycetes in the oceanic water column. All
these groups are now well known to rival bacteria in bio-
mass (Gutie
´rrez et al. 2011,2016; Raghukumar 2017).
Marine snow, formed by aggregation of dead phyto-
plankton and their exudates, dead zooplankton, empty
larvacean carcases, pteropod feeding webs, and faecal
pellets of marine invertebrates are important substrates for
bacteria and fungi. The importance of fungi in colonizing
marine aggregates, a long-neglected aspect, is now gaining
further attention. At least two studies have shown that fungi
are capable of densely colonizing marine snow and
Fig. 3 Interactions of fungi with organisms in the marine trophic
pyramid
Fig. 4 Schematic processes of
interaction of organic matter
and fungi in marine ecosystem
Fungal Diversity
123
attaining biomass levels equal to that of bacteria (Gutie
´rrez
et al. 2011; Wang et al. 2014a,b). The importance of
Labyrinthulomycetes in colonization of marine snow is
now well-established (Bai et al. 2018).
Fungi might be important in sinking of marine aggre-
gates, the biological pump that transports organic matter to
the deep-sea. Marine aggregates that sink to deeper waters
from the surface harbour fungi. Using hybridization signals
from CARD-FISH technique, Bochdansky et al. (2017)
have recently shown that fungi and Labyrinthulomycetes
accounted for *1/5 each of all eukaryotic microbes on
particles obtained from bathypelagic marine snow at depths
of 1000 to 3900 m in North Atlantic and Arctic waters.
Biomass of Labyrinthulomycetes was approximately equal
to that of prokaryote biomass, while the combined bio-
masses of fungi and Labyrinthulomycetes exceeded that of
prokaryotes. Bochdansky et al. (2017) opine that ‘eukary-
otic microbes can no longer be considered sideshows to
ecosystem processes of the deep sea’.
Fungi in animal nutrition
Fungi can mediate energy transfer to the trophic levels of
grazers and detritivores through their growth in marine
detritus. Salt marsh periwinkles can ingest 7% of naturally
decayed leaves of the salt marsh grass per day and are
capable of digesting 51% of the consumed detritus. Almost
their entire nitrogen comes from fungi (Newell and Ba
¨r-
locher 1993;Ba
¨rlocher and Newell 1994). Similar studies
for mangrove and macroalgal detritus, and also for the
oceanic water column are required. Very often, the biomass
or saprobic abilities of marine fungi may not be com-
mensurate with their importance in terms of energy transfer
to other animals. For instance, Kohlmeyer et al. (1995)
found that the actual decomposition of wood by marine
fungi is minimal compared with that of teredinid borers in
mangrove wood, because fungi are restricted to the outer
layers of the wood due to high oxygen requirements.
However, fungi, along with bacteria, are essential as
‘preconditioners’ of the wood surface and enable teredinid
larvae to settle and penetrate the substrate (Lee et al. 2017).
It is now evident that fungi can contribute to substantial
amounts of organic carbon at various levels of energy
transfer in the oceans. A comprehensive study linking
fungal biomass and productivity with various levels of
primary and secondary production in the ocean pelagic is
now needed to clarify their role in energy transfer mech-
anisms in the oceans. Such a study can draw inspiration of
similar studies that have been carried out extensively in the
Spartina alterniflora salt marsh grass ecosystem (Fell et al.
1984).
For a holistic understanding of the role of fungi in
energy transfer, their productivity and biomass at every
stage of energy transfer should be comprehensively stud-
ied. Gessner and Chauvet (1993) and Newell (2001) have
provided methods to study fungal productivity based on
ergosterol synthesis.
Fig. 5 Various mechanisms by which fungi influence energy transfer in the marine ecosystem
Fungal Diversity
123
Origin of marine fungi. When did they
migrate to the sea?
It is postulated that the majority of life forms evolved in the
sea, but this is unclear as far as fungi are concerned (Minic
2009). Fungi are presumed to have evolved in the Late
Proterozoic (900-570 million years ago (MYA)) (Remy
et al. 1994,1995; Taylor et al.
1992,1994,1995,1997,2004). However, according to
protein clock analyses by Heckman et al. (2001), fungi
emerged in oceans approximately 1 billion years ago dur-
ing the Proterozoic era of the Precambrian with deep
branches such as the Chytridiomycota (Le Calvez et al.
2009). It is thus possible that the emergence and initial
diversification of fungi occurred in the marine environment
(Le Calvez et al. 2009). The earliest possible date when
fungi became adapted to freshwater habitation is estimated
at 390 MYA (Vijaykrishna et al. 2006). In contrast to this,
most of the fungi described from the deep sea have rela-
tions to species reported in the terrestrial environment. This
indicates that their recent arrival in marine environments
might have occurred by either wind or terrestrial runoff
(Raghukumar et al. 2010). Alker et al. (2001) and Zuccaro
et al. (2004) have also isolated ‘‘so called terrestrial fungi’’
from marine habitats and suggested that they may have
evolved to live in marine habitats. Most fungal structures
Table 4 Representative examples of fungi and fungal-like organisms to show their role in various energy flow mechanisms
Energy flow
mechanism
Examples Potential role of fungi References
Through parasitic
infection of
primary producers
Diatoms Skeletonema,
Thalassiosira and
Chaetoceros
Chytrid sporangia contributed up to 4.2 mg C L
-1
;
zoospores contributed up to 10.1 mg C
-L
Gutie
´rrez et al. (2016)
Diatom Pseudo-nitzschia
pungens
Up to 15.9% of the bloom comprising 15 910
6
cells per
litre of potential production infected by a chytrid and
oomycete
Bates et al. (1998), Hanic
et al. (2009), and Scholz
(2015)
Diatom Coscinodiscus sp. Up to 500 cells L
-1
, with up to 51% cells infected by
Lagenisma coscinodiscii
Wetsteyn and Peperzak
(1991)
Filamentous brown alga
Pylaiella littoralis
70% of the population can be infected by Oomycetes and
chytrids
Marano et al. (2012)
Through biomass
build up in
detritus
Leaf detritus of Rhizophora
mangle leaves from Florida
Bay
0.17% of the dry weight biomass comprises fungi; roughly
121 dry kg of fungi in leaf detritus, presuming a
conservative 712 dry kg/ha of leaves
https://www.fws.gov/
verobeach/msrppdfs/
mangroves.pd
Newell and Fell (1992)
Detritus of Spartina
alterniflora
190 kg of fungi per hectare of salt marsh grass Spartina Newell and Porter (2000)
Through utilisation
of DOM and
POM
Oceanic waters across the
Pacific Warm Pool from
Hawaii to Australia
DNA quantity of Basidiomycota was occasionally 20 to
100% that of bacteria
Wang et al. (2014a,b)
Upwelling waters of the The
Humboldt Current System in
the South Pacific
Mycelial fungi contribute up to 40 lgCL
-1
, often
rivalling that of bacteria
Gutie
´rrez et al. (2011)
Coastal and oceanic water
column
Yeasts abundant and likely play an important role in DOM
utilisation
Fell (2012)
Subtropical coastal waters of
China
Thraustochytrid biomass ranged from 5.27 to 36.20 lg
carbon L
-1
, ofen equalling that of and bacterioplankton
that ranged and 3.38 to 28.65 lg carbon L
-1
Liu et al. (2017a,b)
Through growth on
marine snow
Arabian Sea Labyrinthulomycetes contribute up to 27.0 lg C and
1.51 lgNL
-1
Raghukumar (2017)
1000 to 3900 m in North
Atlantic and Arctic waters
Combined biomasses of yeasts, mycelia fungi and
Labyrinthulomycetes exceeded that of prokaryotes
Bochdansky et al. (2017)
As food for grazers
and detritivores
Salt marsh grass, Spartina
alterniflora along east coast
of USA
Almost the entire nitrogen in standing, decomposed
detritus may be present in the form of fungi and is
ingested by the shredder gastropod Littoraria irrorata
(salt marsh periwinkle)
Newell and Ba
¨rlocher
(1993) and Ba
¨rlocher
and Newell (1994)
Calanus sinicus during winter
in Tosa Bay of Japan
A maximum of up to 8% of the sequence compositions in
the gut comprised Aplanochytrium kerguelense
Hirai et al. (2018)
Fungal Diversity
123
have been poorly preserved as fossils. Fungal hyphae have
very few unique morphological features and this makes it
difficult to establish much of the fossil record for fungi
(Berbee and Taylor 1993,2010; Samarakoon et al. 2016).
Marine fungi can be either mycetaen fungi or straminipilan
organisms; hence, it is worth to consider the evolutionary
origin of the two groups when considering the origin of
marine fungi (Raghukumar 2017).
The Kingdom Fungi comprises the phyla Chytridiomy-
cota, Neocallimastigomycota, Blastocladiomycota, Glom-
eromycota, Ascomycota, Mucoromycota and
Basidiomycota and the subphyla Kickexellomycotina,
Zoopagomycotina Entomophthoromycotina, Mucoromy-
cotina (incertae sedis), which are osmoheterotrophic
(Hibbett et al. 2007). Data indicates that the Kingdom
Mycetae and the Kingdom Metazoa shared a common
ancestor (Baldauf 2003; Adl et al. 2012). The Kingdom
Mycetae and its closest relatives, the aphelids, the crypto-
mycota, and the microsporidia, which are collectively
called Holomycota (Lara et al. 2010), are most closely
related to nucleariids, a group of single-celled opisthokont
amoeboid protists. It represents the basal, earliest diverging
branches of Mycetae (Jones et al. 2011; Gleason et al.
2012; James et al. 2013; Karpov et al. 2014). Mycetaean
fungi probably evolved from a phagotrophic life style
around 760 MYA–1.06 BYA (Gingras et al. 2011; Beraldi-
Campesi 2013). Sparrow (1960) and Karling (1977) sug-
gested that early fungi may have moved onto ‘‘land’’ by
first living in slime of microbes, with mats of streptophyte
algae in soil near fresh-water habitats at the edges of rivers
or ponds, the current habitat of Rozella, the Chytridiomy-
cota, and Blastocladiomycota. It is believed that fungi with
flagellated cells (Chytridiomycota) are the sister group of
the remaining phyla of non-flagellated fungi (Mucoromy-
cota, Glomeromycota, Ascomycota and Basidiomycota),
indicating a single loss of the flagellum coincident with a
shift to land (James et al. 2006). Molecular studies of
chytrids are mostly of taxa from freshwater or terrestrial
origin (James et al. 2006). There is no thorough evidence
yet to show that ancestral chytrids were marine (James
et al. 2006). However, recently, Bass et al. (2007) have
recovered novel lineages of chytrids from environmental
DNA from marine ecosystems and further studies should
be conducted to find their phylogenetic relationships with
other chytrids.
Did bitunicate and unitunicate ascomycetes make the
transition to the marine environment about the same time
or at different geological times? It is reported that different
lineages of ascomycetes and basidiomycetes made inde-
pendent transitions from terrestrial and freshwater to the
marine ecosystem (Spatafora et al. 1998; Vijaykrishna
et al. 2006; Jones et al. 2009,2015; Pang 2012; Chang et al.
2015). Ascomycota were believed to have evolved from
marine red algae (Sachs 1874; Bessey 1950; Chang et al.
2015). Spathulospora was considered to be the earliest,
ancient fungus related to Laboulbeniomycetes and to rep-
resent the hypothetical ancestor of the ascomycetes
(Kohlmeyer 1973a,b). This ‘‘Floridean hypothesis’’ is no
longer accepted (Kohlmeyer and Kohlmeyer 1979; Kohl-
meyer 1986; Vijaykrishna et al. 2006; Jones et al. 2009)as
parasitism is usually considered reductive in evolution
because it simplifies the nutritional apparatus of organisms
(Demoulin 1974). Beimforde et al. (2014) and Pe
´rez-
Ortega et al. (2016) reported that ascomycetes diverged
from basidiomycetes between 512 and 588 MYA ago, with
a median value of 533 MYA, which is consistent with other
recent studies (Lu
¨cking et al. 2009; Berbee and Taylor
2010; Oberwinkler 2012; Hibbett et al. 2014; Hyde et al.
2017). The occurrence of marine ascomycetes as sister
clades to terrestrial or freshwater taxa and the number of
ascomycete genera containing both terrestrial and fresh-
water species, along with marine taxa provide evidence for
the migration of ascomycetes from land to the marine
environment (Vijaykrishna et al. 2006). It also indicates
that transition to the marine environment occurred many
times and was not a one-off occurrence. Many terrestrial
and freshwater genera have marine members, i.e., My-
cosphaerella, Passeriniella, Lophiostoma, Massarina,
Trematosphaeria, Phaeosphaeria, Leptosphaeria, and Sa-
voryella species (Pinruan et al. 2002,2007; Vijaykrishna
et al. 2006; Jones et al. 2009; Suetrong et al. 2015; Saka-
yaroj et al. 2011). Sakayaroj et al. (2011) documented that
bitunicate and unitunicate ascomycetes may have followed
different evolutionary pathways, the former preferably
adapting to mangrove environments and the unitunicate
forms to oceanic conditions. The transition may have
brought about morphological diversity and changes in
response to environmental conditions (Spatafora et al.
1998; Vijaykrishna et al. 2006).
Recent studies with molecular clock analyses provide
divergence time estimates of different marine lineages. The
crown node and the stem node age should be taken into
consideration when reviewing evidence from the molecular
clock. The crown node age is affected by the model
selection, species number used in the analysis and number
of base pair differences between species (Gueidan et al.
2011; Prieto and Wedin 2013; Beimforde et al. 2014;
Pe
´rez-Ortega et al. 2016; Samarakoon et al. 2016; Zhao
et al. 2016; Hongsanan et al. 2017; Hyde et al. 2017; Zhao
et al. 2016,2018). In addition, the use of a single fossil for
the calibration leads to unpredictable results (Hug and
Roger 2007). However, Hug and Roger (2007) suggested
that the taxon sampling of the data set is less important for
the age estimation.
The Sordariomycetes diverged circa 290–380 MYA
(Middle Devonian to Late Carboniferous), while
Fungal Diversity
123
Samarakoon et al. (2019), Beimforde et al. (2014) and
Pe
´rez-Ortega et al. (2016) place the crown group as in the
Permian (308, 256, 260 MYA, respectively). The sub-
classes Lulworthiomycetidae, Hypocreomycetidae,
Savoryellomycetidae and Xylariomycetidae evolved during
the Early Mesozoic (250–290 MYA), while Sordari-
omycetidae and Diaporthomycetidae originated in the
Middle Mesozoic (145–200 MYA) (Hyde et al. 2017;
Hongsanan et al. 2017; Dayarathne et al. 2018). Many
lineages of marine fungi: Koralionastetales,Lulworthiales
and Torpedosporales, comprise only marine taxa (Jones
et al. 2015). The orders Koralionastetales and Lulwor-
thiales co-evolved with a divergent age of 289 MYA
(Hongsanan et al. 2017) which represents the most basal
group.
Thirty-five genera (of 58) of the Halosphaeriaceae are
monotypic and found only in the marine environment e.g.
Kitesporella, Moana, and Ocostaspora (Jones et al. 2015).
Halosphaeriaceae species are well-adapted to an aquatic
existence with early deliquescing asci and passive release
of the ascospores, many of which have ascospore appen-
dages that may aide dispersal and attachment (Jones 1994).
The status of the Microascales (including the
Halosphaeriaceae) and the marine order Torpedosporales
is supported with a divergence time of 170–240 MYA
(Hongsanan et al. 2017). Vijaykrishna et al. (2006) showed
that Halosphaeriaceae evolved around 100 MYA and this
has been confirmed by Dayarathne et al. (2018) e.g. 45–130
MYA. The vast diversity of Halosphaeriaceae suggests a
recently evolved group with rapid speciation in response to
a new environment. For example, circa 25 Corollospora
species that are all marine oceanic species. Spatafora et al.
(1998), and Campbell et al. (2003) provided data that the
Halosphaeriales are secondary marine ascomycetes,
derived from terrestrial ancestors. When considering the
divergence of freshwater representatives, the
Halosphaeriaceae are therefore secondary aquatic asco-
mycetes (Vijaykrishna et al. 2006). The divergent time for
the marine Tirisporellales is put as 115 MYA with the
order closely related to the Pseudovalsaceae in the phy-
logenetic tree (Hongsanan et al. 2017). Another order with
marine, freshwater and terrestrial species is the Savoryel-
lales with a stem age of 140 MYA (Hongsanan et al. 2017;
Hyde et al. 2017). Within the Xylariomycetidae, the family
Oxydothiaceae has a number of marine/mangrove species
and appear to have a more recent divergent time of 115
MYA. No data is available for other marine lineages in the
Sordariomycetes. When considering the available diver-
gence time estimates, Koralionastetales and Lulworthiales
might be the earliest marine lineages among marine
ascomycetes.
Bitunicate, marine ascomycetes belonging to the class
Dothideomycetes have evolved several times from
terrestrial counterparts with many distinct lineages (Sue-
trong et al. 2009). Phylogenetic analyses of four nuclear
genes, namely, the large and small subunits of the nuclear
ribosomal RNA, transcription elongation factor 1-alpha,
and the second largest RNA polymerase II subunit, estab-
lished that the ecological group of marine bitunicate
ascomycetes has representatives in the orders Capnodiales,
Hysteriales,Jahnulales,Mytilinidiales, and Pleosporales
(Jones et al. 2009,2015; Suetrong et al. 2009). Eighteen
out of 28 clades of Dothideomycetes have marine repre-
sentatives, indicating that different lineages of these fungi
colonized the sea independently (Liu et al. 2017a,b). The
most common among these were the families Aigialaceae,
Morosphaeriaceae, Trematosphaeriaceae, and Halojulel-
laceae. Divergence times (crown age) for most orders of
Dothideomycetes (20 out of 32, or 63%) are between 100
and 220 MYA, while divergence for most families (39 out
of 55, or 71%) are between 20 and 100 MYA (Liu et al.
2017a,b).
Marine ascomycetous and basidiomycetous yeasts are
fewer in number than their terrestrial counterparts and
colonize a wide range of substrates: sea-grasses, seaweeds,
free floating in the sea, sediments, and deep-sea coral (Am-
In et al. 2008; Fell et al. 2011; Fell 2012). Divergence
times for yeasts such as species of Rhodotorula, Wallemia,
Malassezia and Ustilago, range from 250 to 500 MYA, all
containing species known from the marine environment
(Tedersoo et al. 2018). When they migrated/adapted to the
marine milieu remains to be determined (Tables 5,6).
Marine filamentous basidiomycetes occur on mangrove
wood or timbers submerged, trapped or floating in the sea
(boats, piling, sea defences), seaweeds, and maritime plants
(Jones and Fell 2012; Sakayaroj et al. 2012). One of the
changes that resulted from the migration from terrestrial to
marine aquatic habitats is the reduction in the size of the
basidiocarp, e.g. as in Halocyphina villosa and Nia vibrissa
(Binder and Hibbett 2001). The other is the production of
appendaged basidiospores, as in Nia vibrissa and Digi-
tatispora species (Binder et al. 2006; Jones and Choeyklin
2008). Transformations leading to the evolution of these
basidiomycetes probably involved a shift from terrestrial to
periodically immersed to fully submerged substrates, loss
of ballistospory, and evolution of appendaged spores and
an enclosed fruiting body (Binder and Hibbett 2001).
However, most of these studies have been conducted with
mostly terrestrial representatives rather than those of mar-
ine origin, hence, a thorough analysis with all the marine
representative fungal taxa is recommended.
Fungal Diversity
123
Prospecting for novel chemical structures
Endobiotes of marine plants and seaweeds have been a rich
source of novel natural products for bioprospecting in
medicine, agriculture and industry (Saikkonen et al. 1998;
Debbab et al. 2013; Wang et al. 2013; Pang et al. 2016a).
Marine fungi gained great interest for their natural
product productivity and structural diversity. Researchers
have found the same marine fungal species recovered from
different locations are able to produce different metabolite
profiles but the rate of re-isolation has recently increased.
Until 2002, there were 272 newly discovered marine fungal
natural products. This number has increased reaching 1120
by the end of 2010, roughly 100 new compounds being
discovered on a yearly basis. During 2011 till 2013, the
numbers of the new reported marine fungal compounds
increased to around 250–300 per year. After 2013, the
number of the new compounds increased dramatically to
between 420 and 490 in 2014 till 2016, and peaked to a
record 540 by the end of 2017 (Fig. 6). This statistical data
indicated that the total number of newly discovered marine
fungal natural products is approximately 4000 by the end
of 2017 and it is increasing again in 2018.
In terms of chemical diversity, marine fungi have a
proven track of producing metabolites belonging to diverse
structural classes of compounds, mainly polyketides,
prenylated polyketides, meroterpenoids, terpenoids, pep-
tides including diketopiperazines, alkaloids and other
nitrogen-containing metabolites, and few other classes
(Rateb and Ebel 2011). This vast diversity is hard to find in
nature if compared with other marine organisms, marine
bacteria, or plants. To date, the global marine pharma-
ceutical pipeline consists of seven approved pharmaceuti-
cals, four of which are anticancer drugs. Currently there are
about 21 marine natural products or natural product-
derived compounds in Phase I to Phase III clinical trials,
mainly in the area of cancer therapy (Marcel et al. 2016).
Despite the large number of new marine fungal-derived
metabolites with promising pharmacological activities,
only the broad-spectrum antibiotic cephalosporin C can be
tracked back as a marine fungal-derived drug which was
discovered from the fungus Acremonium chrysogenum
collected from the Sardinian coast (Abraham 1979).
Another important marine fungal molecule is the dike-
topiperazine halimide [1] which was initially discovered by
Fenical’s group in the 1990s as a tubulin depolymerising
agent (Fenical et al. 1998). This molecule served as a lead
structure for the closely related synthetic analogue
plinabulin (NPI-2358, [2]), Beyond Spring Pharmaceuti-
cals’ lead asset, which is currently in late-stage phase III
clinical development for the prevention of chemotherapy-
induced neutropenia (CIN) and as an anticancer therapy in
non-small cell lung cancer (NSCLC) (https://clinicaltrials.
gov/ct2/results?term=plinabulin&pg=1,https://www.
beyondspringpharma.com/en/pipeline/plinabulin/). The
minor input of fungi from marine habitats as a source of
new drug leads is likely attributed to the fact that the
chemical investigation of these micro-organisms for
bioactive metabolites production was almost neglected till
the end of the 1980s. Only 15 secondary metabolites were
reported from marine-derived fungi until 1992 (Bugni and
Ireland 2004). Herein we highlight a few biologically
potent fungal secondary metabolites derived from marine
habitats. In the following sections, a few examples of the
recently discovered marine fungal natural products that
exhibited strong or potent anti-infective or anticancer
activities will be discussed.
Antiviral marine fungal natural products
Chemical investigation of the marine-derived fungus
Eurotium rubrum led to the isolation of the prenylated
indole diketopiperazine alkaloid neoechinulin B [3] which
displayed a strong inhibitory effect against the H1N1 virus
Table 5 Divergent times for selected marine Sordariomycetes (after
Samarakoon et al. 2016; Hongsanan et al. 2017; Hyde et al. 2017,
Dayarathne et al. 2018)
Class/order/family Divergent time
(crown age, MYA)
Divergent time
(stem age, MYA)
Sordariomycetes 320 340 (290–380)
Halosphaeriaceae 50–130 170–240
Lulworthiales 100–125 290
Koralionastetales 200 290
Torpedosporales 170–240 165 (130–250)
Tirisporellales 110 190 (130–250)
Savoryellales 115 140 (130–250)
Table 6 Divergent times for selected marine Dothideomycetes (After
Liu et al. 2017a,b)
Family Divergent time
(crown age, MYA)
Divergent time
(stem age, MYA)
Acrocalymmaceae 25 (8–45) 115 (70–155)
Aigialaceae 25 (8–45) 115 (70–155
Halojulellaceae 20 (6–35) 150 (110–185)
Halottiaceae 55 (20–109) 185 (135–135)
Pleosporaceae 50 (25–70) 90 (65–120)
Morosphaeriaceae 95 (65–130) 145 (110–180)
Salsuginaceae 2 (0–2) 165 (85–180)
Testudinaceae 95 (55–140) 150 (100–200)
Trematosphaeriaceae 65 (35–90) 90 (60–120)
Fungal Diversity
123
in infected Madin Darby Kidney (MDCK) cells, and also
inhibited a panel of amantadine, oseltamivir and ribavirin
resistant influenza clinical isolates. The absence of cyto-
toxic effect in addition to the broad spectrum of action
against drug-resistant viral clinical isolates together with
the diminished induction of drug resistance indicated the
potential use of neoechinulin B to treat clinically resistant
viral infections (Chen et al. 2015). The cyclic tetrapeptide
asperterrestide A [4] isolated from the gorgonian coral-
derived fungus Aspergillus terreus SCSGAF0162 contains
a rare 3-OH-N-CH
3
-Phe residue and exhibited an inhibi-
tory effect against the M2-resistant influenza strain
A/WSN/33 H1N1 replication in MDCK cells. It also
exhibited cytotoxic effect on the human leukemic mono-
cyte lymphoma U937 and acute lymphoblastic leukaemia
MOLT-4 cell lines (He et al. 2013). Spiromastilactone D
[5] isolated from a deep-sea derived fungus Spiromastix sp.
was another potent inhibitor to a panel of amantadine and
oseltamivir-resistant influenza virus strains (Niu et al.
2016). The phenylspirodrimane stachybotrin D [6] isolated
from the marine sponge-associated fungus Stachybotrys
chartarum MXH-X73 inhibited HIV-1 replication through
the inhibition of reverse transcriptase without showing any
cytotoxicity. Additionally, its assessment indicated similar
inhibitory effects on HIV-1 replication of wild and several
NNRTI-resistant HIV-1 strains (Ma et al. 2013).
Antifungal marine fungal natural products
Chemical investigation of the marine-derived fungus
Stagonosporopsis cucurbitacearum led to the isolation of a
4-hydroxy-2-pyridone alkaloid didymellamide A [7] which
exhibited good antifungal activity against azole-resistant
and sensitive Candida albicans, C. glabrata, and
Cryptococcus neoformans (Haga et al. 2009). Sclerotide B
[8] is a novel cyclic hexapeptide isolated from the marine-
derived halotolerant Aspergillus sclerotiorum PT06-1 in a
nutrient-limited hypersaline medium. It showed strong
antifungal activity against C. albicans (Zheng et al. 2009)].
The sesquiterpene penicibilaene B [9] was isolated from
Penicillium bilaiae MA-267 derived from the rhizospheric
soil of a mangrove plant. It exhibited selective activity
against the plant pathogenic fungus Colletotrichum
gloeosporioides (Meng et al. 2014). The ergosteroid
(22R,23S)-epoxy-3b,11a,14b,16b-tetrahydroxyergosta-5,7-
dien-12-one [10] isolated from the halotolerant fungus
Aspergillus flocculosus PT05-1 obtained from a marine
sediment in Fujian Province of China and exhibited good
antifungal activity against Candida albicans (Zheng et al.
2013). Chemical investigation of the sponge-derived fun-
gus Penicillium adametzioides AS-53 led to the isolation of
the dithiodiketopiperazine derivative peniciadametizine A
[11] which exhibited selective antifungal activity against
the plant pathogenic fungus Aspergillus brassicae (Liu
et al. 2015a). YM-202204 [12] is an antifungal antibiotic
isolated from the culture broth of the sponge-derived fun-
gus Phoma sp. Q60596 which showed strong inhibitory
effect of the growth of Cryptococcus neoformans and
Saccharomyces cerevisiae (Nagai et al. 2002). The alkaloid
varioxepine A [13] isolated from the marine algal-derived
endophytic fungus Paecilomyces variotii, characterized by
a structurally unprecedented condensed 3,6,8-trioxabicy-
clo[3.2.1]octane motif and exhibited potent inhibitory
activity against the plant-pathogenic fungus Fusarium
graminearum (Zhang et al. 2014).
Fig. 6 Secondary metabolites of
fungi from marine habitats
Fungal Diversity
123
[1] Number in bracket refers in the text to the compound
listed above.
Antibacterial marine fungal natural products
Chemical investigation of the marine mangrove plant-
derived Penicillium brocae MA-231 led to the isolation of
polyoxygenated dihydropyrano[2,3-c]pyrrole-4,5-dione
derivative, pyranonigrin A [14] which possess strong
antimicrobial activity against a panel of Gram positive and
negative bacterial pathogens (Meng et al. 2015). Chemical
investigation of the marine sponge-derived fungus Peni-
cillium adametzioides AS-53 resulted in the isolation of the
bisthiodiketopiperazine derivative adametizine A [15]
which exhibited good inhibitory activity against Staphylo-
coccus aureus, Aeromonas hydrophilia, Vibrio spp., V.
harveyi and V. parahaemolyticus (Liu et al. 2015b).
Aspergillusene A [16] is a sesquiterpenoid isolated from
the sponge-associated fungus Aspergillus sydowii ZSDS1-
F6 and displayed antimicrobial activities against Klebsiella
pneumonia and Aeromonas hydrophila (Wang et al. 2014).
The dihydroisocoumarin derivative penicisimpin A [17]
isolated from the marine mangrove plant-derived fungus
Penicillium simplicissimum MA-332 and exhibited strong
activity against Escherichia coli, P. aeruginosa, Vibrio
parahaemolyticus, and V. harveyi (Xu et al. 2016a,b). The
pyridone trichodin A [18] was isolated from the marine
fungus Trichoderma sp. strain MR106 and possessed
moderate antibiotic activities against the Gram-positive B.
subtilis, S. epidermidis, and methicillin-resistant S. aureus
(MRSA) (Wu et al. 2014). Chromatographic analysis of the
marine sponge-derived fungus Aspergillus sp. yielded
unusual tryptophan-derived alkaloid, 3-((1-hydroxy-3-(2-
methylbut-3-en-2-yl)-2-oxoindolin-3-yl)methyl)-1-methyl-
3,4-dihydrobenzo[e][1,4]diazepine-2,5-dione [19] which
selectively inhibited a panel of Vibrio species (Zhou et al.
2014). Diaporthalasin [20], a pentacyclic cytochalasin
isolated from the marine-derived fungus Diaporthaceae sp.
PSU-SP2/4 and displayed significant antibacterial activity
against both S. aureus and MRSA (Khamthong et al. 2014).
Chromatographic fractionation of the EtOAc extract from
the culture of the white croaker (Genyonemus lineatus)-
derived Curvularia sp. IFB-Z10 gave a dinitrogenated
alkaloid curvulamine [21] which exhibited strong antibac-
terial against a panel of patients-derived pathogens (Han
et al. 2014). The aminolipopeptide trichoderin A [22]
Fungal Diversity
123
isolated from the marine sponge-derived Trichoderma sp.
exhibited potent anti-mycobacterial activity against M.
smegmatis, M. bovis BCG, and Mycobacterium tubercu-
losis H37Rv under standard aerobic growth conditions as
well as dormancy-inducing hypoxic conditions (Pruk-
sakorn et al. 2010).
A study by Soowannayan et al. (2019) demonstrated that
the cell-free culture broths of Thai obligate marine fungi
inhibited the growth and biofilm formation of Vibrio spe-
cies. The most potent marine fungal strain identified as
Oceanitis cincinnatula showed that it can protect shrimp
against acute hepatopancreatic necrosis disease (AHPND).
The results suggested that this obligate marine fungus may
contain a substance(s) that did not inhibit the growth of
pathogenic Vibrio bacteria and could potentially be used as
shrimp feed supplement to protect shrimp against AHPND,
possibly by inhibiting biofilm formation in the shrimp
stomach.
Anticancer marine fungal natural products
Bio-guided isolation of the deep-sea derived fungus
Acaromyces ingoldii FS121 led to the isolation of a new
naphtha-[2,3-b]pyrandione analogue acaromycin A [23]
which exhibited potent in vitro growth inhibitory activities
against four tumour cell lines (MCF-7, NCI-H460, SF-268
and HepG-2) comparable to the positive control cisplatin
(Gao et al. 2016b). Chemical investigation of the bioactive
extract of the marine sponge-derived fungus Stachylidium
sp. led to the isolation of phthalimidine derivative mariline
A1 [24] which was a potent inhibitor of human leukocyte
elastase (Almeida et al. 2012). Chloropreussomerin A [25]
obtained from the mangrove plant-derived endophyte La-
siodiplodia theobromae ZJ-HQ1 was the first chlorinated
metabolite in the preussomerins family and showed potent
in vitro cytotoxicity against a panel of human cancer cell
lines (Chen et al. 2016). Chemical investigation of the
marine-derived fungus Aspergillus ochraceus Jcma1F17
led to the isolation of 6b,9a-dihydroxy-14-p-nitroben-
zoylcinnamolide [26], a metabolite that belongs to the rare
nitrobenzoyl sesquiterpenoid class. It displayed significant
cytotoxicity against 10 cancer cell lines (Fang et al. 2014).
Genome mining of the fungus Mucor irregularis QEN-189
isolated from fresh inner tissue of a marine mangrove plant
resulted in the discovery of 20 structurally diverse complex
indole-diterpenes compounds. Among them, rhizovarin B
[27], showed good activity against the human A-549 and
HL-60 cancer cell lines (Gao et al. 2016a). A novel oxa-
phenalenone, penicimutalidine [28], was isolated from the
diethyl sulfate mutagenesis of the marine-derived Penicil-
lium purpurogenum G59. Its inhibitory effects were
stronger than that of the positive control 5-FU (5-Fuor-
ouracil) on the same HL-60 cancer cells (Li et al. 2016).
Pestalotioprolides E and F [29&30], are 14-membered
macrolides isolated from the mangrove-derived endophytic
fungus Pestalotiopsis microspora. Both compounds
showed significant cytotoxicity against the murine lym-
phoma cell line L5178Y while compound [29] showed
potent activity against the human ovarian cancer cell line
A2780 (Liu et al. 2016). The diketopiperazine brocazine G
[31] was characterized from the mangrove-derived Peni-
cillium brocae MA-231. It exhibited potent cytotoxicity
against both sensitive and cisplatin-resistant human ovarian
cancer cells A2780 and A2780, respectively, and showed
significantly stronger effect than that of the positive control
cisplatin on both cell lines (Meng et al. 2016). Chemical
analysis of a marine-derived fungus Chaunopycnis sp.
(CMB-MF028) yielded the pyridinone derivative chauno-
lidone A [32] which was a selective and potent inhibitor of
human non-small cell lung carcinoma cells (NCI-H460)
Fungal Diversity
123
(Shang et al. 2015). Cytochalasin K [33] isolated from the
marine sponge-derived fungus Arthrinium arundinis
ZSDS1-F3 exhibited strong cytotoxicity against a panel of
human cancer cell lines (Wang et al. 2015). The chromone
engyodontiumone H [34] was isolated from the deep-sea-
derived fungus Engyodontium album DFFSCS021 and
showed significant selective cytotoxicity against the human
histiocytic lymphoma U937 cell line (Yao et al. 2014).
Chromosulfine [35] is a novel cyclopentachromone sul-
phide isolated from a neomycin-resistant mutant of the
marine-derived fungus Penicillium purpurogenum G59 and
could not be traced in the original strain. It showed good
cytotoxic effect against a panel of cancer cell lines (Yi
et al. 2016).
Marine fungi are extremely versatile as studies on their
pharmaceutical applications have been demonstrated
above, and also their role in the decomposition of materials
in the sea and the food web of the oceans (Sridhar 2012).
However, they play a vital role in other biological fields,
such as bioremediation, production of biosurfactants for
different uses, industrial enzymes, pigments and dyes
(Velmurugan and Lee 2012; Pang et al. 2016a). Their
potential for industrial application has only recently been
addressed (Jones et al. 2015) or as Carter and Berman
(2016) opine ‘‘Has industry missed the boat’’. While mar-
ine Labyrinthulomycetes have been studied as a source of
omega-3-polyunstaurated fatty acids and potential use in
fish food (Jaritkhuan et al. 1998; Pang et al. 2016a,b). The
use of filamentous fungi and yeasts as animal feed has
largely gone unexplored. Currently the worlds concern
over plastic in our seas and oceans has attracted much
media attention. Do marine fungi have the potential in its
breakdown! Mycelial adhesion by marine fungi to surfaces
has been demonstrated by Hyde et al. (1986) while a
number have been shown to colonise and degrade poly-
urethane panels exposed off the French coast (Jones and Le
Campion-Alsumard 1970).
Conclusion
Marine mycology can be considered to have come of age
with over 150 years documenting the occurrence and dis-
tribution of marine fungi (Desmazieres 1849; Meyers 1996;
Jones 2011a). Although Sutherland (1915a,b,c,1916a,b)
made a significant contribution to marine fungi on sea-
weeds, it was the paper by Barghoorn and Linder (1944)
that probably influenced the development and study of this
ecological group of fungi. The period 1960–1990 was the
most intense time for the description of marine fungi,
especially those found on mangrove substrates (Kohlmeyer
1966; Hyde and Jones 1988). Documentation of marine
fungi has grown steadily from 100 species (circa 1960) to
1181 (2015) and new taxa continue to be introduced (1255
in 2018) (Jones et al. 2015;www.marinefungi.org). Over
the past century techniques for their study has changed
dramatically especially the introduction of sequencing
methods and the application of high-throughput sequencing
and next generation sequencing techniques. These have
enabled a more natural classification of marine fungi and
Fungal Diversity
123
the discovery of taxa whose morphology has yet to be
established. Progress has been made in determining their
ecological role in a number of habitats, their physiological
requirements, and interactions in the colonization of sub-
strates in the sea. Marine fungi have yielded an array of
interesting secondary metabolies, some in advance stage of
clearance. Some taxonomical groups require more intense
study especially the Chytridiomycota and their role in the
colonization of planktonic organisms. It is hoped that
greater interaction between their study by traditional means
and by high through put sequencing can be established to
enable a better understanding of the global diversity of
marine fungi.
Acknowledgements Gareth Jones is supported under the Distin-
guished Scientist Fellowship Program (DSFP), King Saud University,
Kingdom of Saudi Arabia. Ka-Lai Pang thanks the Ministry of Sci-
ence and Technology, Taiwan, for financial support (105-2621-B-019
-002-). Kevin D. Hyde, Monika C. Dayarathne, Vinit Kumar and
Chada Norphanphoun would like to thank the Thailand Research
Fund grant entitled ‘‘Biodiversity, Phylogeny and role of fungal
endobiotes on above parts of Rhizophora apiculata and Nypa fruti-
cans’ (grant no RSA5980068) and Mae Fah Luang University for the
grant ‘‘Diseases of mangrove trees and maintenance of good forestry
practice’’ (grant number: 60201000201) for support. Monika Day-
arathne would like to acknowledge Dr. Wasana de Silva for her help
in preparation of maps.
Appendix
List of marine fungi logged in the marine fungi
website
Taxa with the prefix * are asexual morphs whose sexual
stage is unknown; # indicates molecular data available for
these fungi.
Taxa in underline text are new taxa in press.
Phylum: BASIDIOMYCOTA
Subphylum: Ustilaginomycotina
Class: Ustilaginomycetes R. Bauer, Oberw. & Vnky, Can.
J. Bot. 75: 1311 (1997)
Subclass: Ustilaginomycetidae Jlich, Bibliotheca Myco-
logica 85: 54 (1981)
1. UROCYSTIDALES R. Bauer & Oberw., Can. J. Bot.
75 (8): 1311 (1997)
Urocystidaceae Begerow, R. Bauer & Oberw., Can. J. Bot.
75(12): 2052 (1998)
Flamingomyces R. Bauer, M. Lutz, Pia˛tek, Va
´nky &
Oberw., Mycol. Res. 111(10): 1202 (2007)
1. #F. ruppiae (Feldmann) R. Bauer, M. Lutz, Pitek, Vnky
& Oberw., Mycol. Res. 111(10): 1203 (2007)
2. USTILAGINALES G. Winter, Rab Kryptog-Flora,
Pilze - Schizomyceten, Saccharomyceten und Basid-
iomyceten 1(1): 73 (1880)
Ustilaginaceae Tul. & C. Tul., Annls Sci. Nat., Bot., sr. 3
7: 14 (1847)
Parvulago R. Bauer, M. Lutz, Pia˛tek, Vnky & Oberw.,
Mycol. Res. 111(10): 1203 (2007)
1. #P. marina (Durieu) R. Bauer, M. Lutz, Pia˛tek, Vnky &
Oberw., Mycol. Res. 111(10): 1203 (2007)
Class: Exobasidiomycetes Begerow, M. Stoll, R. Bauer,
Mycologia 98(6): 908 (2006)
Subclass: Exobasidiomycetidae Jlich, Bibliotheca Myco-
logica 85: 55 (1981)
1. EXOBASIDIALES Henn. (1900) Graphiolaceae Clem.
& Shear, The genera of Fungi: 156 (1931)
Family incertae sedis
Graphiola Poit., Ann Sci Nat (Paris) 3: 473 (1824)
1. G. cylindrica Kobayasi, Nagaoa 1: 36 (1952)
Exobasidiomycetidae incertae sedis
Tilletiopsis Derx, Bull Jardin Bot Buitenzorg 17: 471 (1948)
1. #T. albescens Gokhale, Nova Hedwigia 23: 801 (1972)
Subphylum: Pucciniomycotina
Class: Tritirachiomycetes incertae sedis
1. TRITIRACHIALES Aime & Schell, Mycologia 103
(6): 1339 (2011)
Tritirachiaceae Locq., Mycol Ge
´n Struct (Paris): 208
(1984)
Tritirachium Limber, Mycologia 32: 26 (1940)
1. T. candoliense Cathrine Sumathi Manohar, Teun
Boekhout & Thorsten Stoeck, Fung Biol 118(2): 143
(2014) (marine sediments, Manohar et al. 2014)
Subphylum: Agaricomycotina
Class: Agaricomycetes Doweld, Prosyllabus Tracheophy-
torum, Tentamen systematis plantarum vascularium
(Tracheophyta): LXXVII (2001)
Subclass: Agaricomycetidae Parmasto, Windahlia 16: 16
(1986)
1. AGARICALES Underw., Moulds, mildews and mush-
rooms: 97 (1899)
Niaceae Ju
¨lich, Bibliotheca Mycologica 85: 381 (1981)
Calathella D.A. Reid, Persoonia 3: 122 (1964)
1. #C. mangrovei E.B.G. Jones & Agerer, Bot. Mar. 35:
259 (1992)
Halocyphina Kohlm. & E. Kohlm., Nova Hedwigia 9: 100
(1965)
1. #H. villosa Kohlm. & E. Kohlm., Nova Hedwigia 9: 100
(1965)
Nia R.T. Moore & Meyers, Mycologia 51(6): 874 (1961)
1. N. epidermoidea M.A. Rosell & Descals, Mycol. Res.
97(1): 68 (1993)
2. N. globospora Barata & Basilio, Mycol. Res. 101(6):
687 (1997)
Fungal Diversity
123
3. #N. vibrissa R.T. Moore & Meyers, Mycologia 51(6):
874 (1961)
2. CANTHARELLALES Gum., Vergl. Morph. Biol. Pilze
(Leipzig): 495 (1926)
Botryobasidiaceae (Parmasto) Jlich, Biblthca Mycol. 85:
357 (1981)
*Allescheriella Henn., Hedwigia 36: 244 (1897)
1. A. bathygena Kohlm., Revue Mycol., Paris 41(2): 199
(1977)
Physalacriaceae Corner, Beihefte zur Nova Hedwigia 33:
10 (1970)
Physalacria Peck, Bull. Torrey Bot. Club 9: 2 (1882)
1. #P. maipoensis Inderb. & Desjardin, Mycologia 91(4):
666 (1999)
Mycaureola Maire & Chemin, C R Sanc. Acad. Sci., Paris
175: 321 (1922)
1. #M. dilseae Maire & Chemin., C R Sanc. Acad. Sci.,
Paris 175: 321 (1922)
Schizophyllaceae Qul, Fl. Mycol. France: 365 (1888)
Henningsomyces Kuntze, Revis. gen. pl. (Leipzig) 3(2):
483 (1898)
1. H. candidus cf (Pers.) Kuntze, Revis. gen. pl. (Leipzig)
3(2): 483 (1898)
Schizophyllum Fr., [as ‘Schizophyllus’], Observ. Mycol. 1:
103 (1815)
1. #S. commune Fr., Syst. Mycol. 1: 330 (1821)
3. POLYPORALES Gum., Vergl Morphol Pilze: 503
(1926)
Meruliaceae Rea, British Basidiomycertae: A handbook to
the larger British fungi: 620 (1922)
Hyphoderma Wallr., Fl. Crypt. Germ. 2: 576 (1833)
1. H. sambuci (Pers.) Jlich, Persoonia 8(1): 80 (1974)
Polyporaceae Corda, Icon Fung hucusques cognitoru 3: 49
(1839)
Grammothele Berk. & M.A. Curtis, J. Linn. Soc. Bot. 10:
327 (1869)
1. G. fuligo (Berk. & Broome) Ryvarden, Trans. Br. Mycol.
Soc. 73: 15 (1979)
Cerrena Gray, A natural arrangement of British plants 1:
649 (1821)
1. C. unicolor (Bull.) Murrill, J Mycol. 9(2): 91 (1903)
4. HYMENCHAETALES Oberw., Beitrge zur Biologie
der niederen Pflanzen: 89 (1977)
Hymenochaetaceae Donk, Bull. bot. Gdns Buitenz. 17(4):
474 (1948)
Fulvifomes Murrill, North Polyp (5): 49 (1914)
1. #F. halophilus T. Hatt., Sakay. & E.B.G. Jones, Myco-
science 55: 347 (2014)
2. #F. siamensis T. Hatt., Sakay. & E.B.G. Jones, Myco-
science 55: 346 (2014)
3. #F. xylocarpicola T. Hatt., Sakay. & E.B.G. Jones
(2014), Mycoscience 55: 345 (2014)
Agaricomycetes incertae sedis
1. RUSSULALES Kreisel ex P.M. Kirk, P.F. Cannon &
J.C. David, Ainsworth & Bisby’s Dictionary of the Fungi,
Edn 9 (Wallingford): xi (2001)
Digitatispora clade
Digitatispora Doguet, C. r. hebd. Sanc. Acad. Sci., Paris
254(25): 4338 (1962)
1. D. lignicola E.B.G. Jones, Mycotaxon 27: 155 (1986)
2. #D. marina Doguet, C. r. hebd. Sanc. Acad. Sci., Paris
254(25): 4338 (1962)
Peniophoraceae Lotsy, Vortr. Bot. Stammesgesch. 1: 687,
689 (1907)
Haloaleurodiscus N. Maek., Suhara & K. Kinjo, Mycol.
Res. 109(7): 826 (2005)
1. #H. mangrovei N. Maek., Suhara & K. Kinjo, Mycol.
Res. 109(7): 827 (2005)
Phylum: ASCOMYCOTA
Subphylum: Pezizomycotina
Class: Dothideomycetes E. Erikss. & Winka, Myconet 1: 5
(1997)
Subclass: Dothideomycetidae P.M. Kirk, P.F. Cannon,
J.C. David & Stalpers ex C.L. Schoch, Spatafora, Crous &
Shoemaker, Mycologia 98 (6): 1045 (2007)
1. CAPNODIALES Woron., Annales Mycologici 23: 177
(1925)
Cladosporiaceae Chalm. & R.G. Archibald, The Yearbook
of Tropical Medicine and Hygiene 1: 25 (1915)
*Cladosporium Link, MagGesell Naturf Freunde Berlin 7:
37 (1816)
1. #C. cladosporioides (Fresen.) G.A. de Vries, Contrib.
Knowledge of the Genus Cladosporium Link ex Fries: 57
(1952)
2. C. herbarum (Pers.) Link, in Willdenow, Mag. Gesell.
Naturf. Freunde, Berlin 8: 37 (1816)
3. C. macrocarpum Preuss, Deutschlands Flora, Abt. III.
Die Pilze Deutschlands 6-25/26: 27, t. 14 (1848)
4. #C. oxysporum Berk. & M.A. Curtis, Bot. J. Linn. Soc.
10: 362 (1869)
5. C. pseudocladosporioides Bensch, Crous & U. Braun,
Studies in Mycology 67: 71 (2010)
6. C. psoraleae M.B. Ellis, Mycol Pap 131: 16 (1972)
7. #C. sphaerospermum Penz., Michelia 2(8): 473 (1882)
8. #C. tenuissimum Cooke, Grevillea 6(40): 140 (1878)
9. #C. uredinicola Speg., Anal. Mus. Nac. Hist. Nat.
B. Aires 23: 122 (1912)
Fungal Diversity
123
Mycosphaerellaceae Lindau, in Engler & Prantl, Nat.
Pflanzenfam. Teil. 1 (Leipzig) 1: 421 (1897)
*Davidiella Crous & U. Braun, Mycol. Progr. 2 (1): 8 (2003)
1. #D. tassiana (De Not.) Crous & U. Braun, in Braun,
Crous, Dugan & de Hoog, Mycol. Progr. 2(1): 8 (2003)
Mycosphaerella Johanson, fvers. K. Svensk. Vetensk.-
Akad. Frhandl. 41: 163 (1884)
1. M. punctiformis (Pers.) Starba
¨ck, Bihang till Kungliga
svenska Vetenskaps-Akademiens Handlingar 15 (2): 9 (1889)
2. M. salicorniae (Rabenh.) Lindau, Hilfsb Sammeln
Ascomyc. 2: 103 (1903)
3. M. staticicola (Pat.) Dias, Mem. Soc. Brot.: 21 (1970)
4. M. suaedae-australis Hansf., Proc Linn Soc New South
Wales 79(3–4): 122 (1954)
5. M. tassiana (De Not.) Johanson, O
¨fvers. K. Vetensk.
Akad. Fo
¨rh. 41 (9): 167 (1884)
Pseudocercosporella Deighton, Mycological Papers 133:
38 (1973)
1. P. fraxini (Ellis & Kellerm.) U. Braun, Nova Hedwigia
58 (1–2): 212 (1994)
*Ramichloridium Stahel ex de Hoog, Stud. Mycol. 15: 59
(1977)
1. #R. apiculatum (J.H. Mill., Giddens & A.A. Foster) de
Hoog, Stud. Mycol. 15: 69 (1977)
Septoria Sacc., Sylloge Fungorum 3: 474 (1884)
1. S. arundinacea Sacc., Michelia 1 (2): 195 (1878)
Capnodiales, Mycosphaerellaceae,
2. S. ascophylli Melnik & J.E. Petrov, Novosti Sistematiki
Nizshikh Rastenii 3: 211 (1966)
Sphaerulina Sacc., Michelia 1(4): 399 (1878)
1. S. albispiculata Tubaki, Publs. Setomar. Biol. Lab.
15(5): 366 (1967)
2. S. orae-maris Linder, Farlowia 1(3): 413 (1944)
Pharcidia Krb., Parerga Lichenol. 5: 469 (1865)
1. P. balani (G. Winter) Bausch, Publ. Stn. Zool. Napoli
15: 379 ((1936)
2. P. laminariicola Kohlm., Bot. Mar. 16: 209 (1973)
3. P. rhachiana Kohlm., Bot. Mar. 16: 210 (1973)
*Rhabdospora (Durieu & Mont. ex Sacc.) Sacc., Syll.
Fung. 3: 578 (1884)
1. R. avicenniae Kohlm. & E. Kohlm., Mycologia 63(4):
851 (1971) 269 (2006)
Capnodiales incertae sedis
Stigmidium Trevis., Conspect. Verruc.: 17 (1860)
1. S. ascophylli (Cotton) Aptroot, CBS Diversity Ser.
(Utrecht) 5: 41 (2006)
2. S. apophlaeae (Kohlm.) Aptroot, CBS Diversity Ser.
(Utrecht) 5: 36 (2006)
Teratosphaeriaceae Crous & U. Braun, Studies in
Mycology 58: 8 (2007)
Acrodontium de Hoog, Studies in Mycology 1: 23 (1972)
1. A. hydnicola (Peck) de Hoog, Studies in Mycology 1: 31
(1972)
2. A. salmoneum de Hoog, Studies in Mycology 1: 29
(1972)
2. DOTHIDEALES Lindau, Natrl Pflanzenfam.: 373
(1897)
Dothideaceae Chevall., Fl. gn. env. Paris 1: 446 (1826)
Scirrhia Nitschke ex Fuckel, Jb Nassau Ver Naturk 23-24:
220 (1870)
1. S. annulata Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Can. J. Bot. 74(11): 1835 (1996)
Dothioraceae Theiss. & P. Syd., Annales Mycologici 15
(6): 444 (1918)
Aureobasidium Viala & G. Boyer, Revue Gn Bot 3: 371
(1891)
1. A. pullulans (de Bary & Lwen thal) G. Arnaud, Annals d’cole
Nat d’Agric. de Montpellier, Sr 2 16(1–4): 39 (1918) [1917]
3. BOTRYOSPHAERIALES C.L. Schoch, Crous &
Shoemaker, Mycologia 98(6): 1050 (2007)
Botryosphaeriaceae Theiss. & Syd., Annls Mycol 16:16
(1918)
Amarenomyces O.E. Erikss., Opera Bot. 60: 124 (1981)
1. A. ammophilae (Lasch) O.E. Erikss., Opera Bot. 60: 124
(1981)
*Diplodia Fr., in Montagne, Annls. Sci. Nat. Bot. 1: 302
(1834)
1. D. orae-maris Linder, Farlowia 1(3): 403 (1944)
2. D. thalassia N.J. Artemczuk, Mikol. Fitopatol.: 95 (1980)
*Lasiodiplodia Ellis & Everh., Bot. Gazette Crawfordsville
21: 92 (1896)
1. #L. theobromae (Pat.) Griffon & Maubl., Bull. Soc.
Mycol. Fr. 25: 57 (1909)
Phyllostictaceae Fr. [as ‘Phyllostictei’], Summa veg.
Scand. (Stockholm) 2: 420 (1849)
*Phyllosticta Pers., Trait sur les Champignons Comes-
tibles: 147 (1818)
1. Ph. spartinae Brunaud, J. Hist. Nat. Bordeaux sud-ouest:
4 (1888)
4. MICROTHYRIALES G. Arnaud, Annal. Sci. Nat.
Paris: 847 (1925)
Microthyriaceae Sacc., Syll. Fung. 2: 658 (1883)
Ellisiodothis Theiss., Annls. Mycol. 12(1): 73 (1914)
1. E. inquinans (Ellis & Everh.) Theiss., Annls Mycol
12(1): 73 (1914)
Subclass: Pleosporomycetidae C.L. Schoch, Spatafora,
Crous & Shoemaker, Mycologia 98 (6): 1048 (2007)
1. PLEOSPORALES Luttr. ex M.E. Barr, Prodromus to
class Loculoascomycetes: 67 (1987)
Fungal Diversity
123
Ascocylindricaceae Abdel-Wahab, Bahkali, E.B.G. Jones,
Ariyawansa & K.D. Hyde, Fungal Divers. 75: 19 (2015)
Ascocylindrica Abdel-Wahab, Bahkali & E.B.G. Jones,
Fungal Divers. 75: 45 (2015)
1. #A. marina Abdel-Wahab, Bahkali & E.B.G. Jones,
Fungal Divers. 75: 20 (2015)
Aigialaceae Suetrong, Sakay., E.B.G. Jones Kohlm.,
Volkm.-Kohlm. & C.L. Scoch, Stud. Mycol. 64: 166 (2009)
Aigialus Kohlm. & Schatz, Trans. Br. Mycol. Soc. 85: 699
(1985)
1. #A. grandis Kohlm. & S. Schatz, Trans. Br. Mycol. Soc.
85(4): 699 (1986)
2. #A. mangrovis Borse, Trans. Br. Mycol. Soc. 88: 424
(1987)
3. #A. parvus S. Schatz & Kohlm., Trans. Br. Mycol. Soc.
85(4): 704 (1986)
4. #A. rhizophorae Borse, Trans. Br. Mycol. Soc. 88: 425
(1987)
5. A. striatispora K.D. Hyde, Mycol. Res. 96: 1044 (1992)
Ascocratera Kohlm., Can. J. Bot. 64: 3036 (1986)
1. #A. manglicola Kohlm., Can. J. Bot. 64: 3036 (1986)
Rimora Kohlm., Volkm.-Kohlm., Suetrong, Sakay., E.B.G.
Jones, Stud. Mycol. 64: 166 (2009)
1. #R. mangrovei (Kohlm. & Vittal) Kohlm., Volkm.-
Kohlm., Suetrong, Sakay. & E.B.G. Jones, Stud. Mycol.
64: 166 (2009)
Amniculicolaceae Y. Zhang ter, C.L. Schoch, J. Fourn.,
Crous & K.D. Hyde, Stud. Mycol. 64: 95 (2009)
Neomassariosphaeria Y. Zhang, J. Fourn. & K.D. Hyde,
Stud. Mycol. 64: 96 (2009)
1. #N.typhicola (P. Karst.) Y. Zhang, J. Fourn. & K.D.
Hyde, Stud. Mycol. 64: 96 (2009)
Astrosphaeriellaceae Phook. & K.D. Hyde, Fungal
Diversity 74: 161 (2015)
Astrosphaeriella Syd. & P. Syd., Annls. Mycol. 11: 260
(1913)
1. A. asiana (K.D. Hyde) Aptroot & K.D. Hyde, Nova
Hedwigia 70(1–2): 145 (2000)
2. A. mangrovei (Kohlm. & Vittal) Aptroot & K.D. Hyde,
Nova Hedwigia 70(1–2): 154 (2000)
3. A. nypae K.D. Hyde, J. Linn. Soc. Bot. 110(2): 96 (1992)
*Pithomyces Berk. & Broome, Bot. J. Linn. Soc. 14: 100
(1873)
1. #P. atro-olivaceus (Cooke & Harkn.) M.B. Ellis, Mycol.
Pap. 76: 8 (1960)
Biatriosporaceae K.D. Hyde, Fungal Divers. 63: 50 (2013)
Biatriospora K.D. Hyde & Borse, Mycotaxon 26: 263
(1986)
1. #B. marina K.D. Hyde & Borse, Mycotaxon 26: 264 (1986)
Caryosporaceae Huang Zhang, K.D. Hyde & Ariyaw.,
Fungal Diversity 75: 54 (2015)
Caryospora De Not., Micromyc. Ital. Novi: 7 (1855)
1. C. australiensis Abdel-Wahab & E.B.G. Jones, Myco-
science 41(4): 379 (2000)
Coniothyriaceae W.B. Cooke, Revta Biol. Lisb. 12: 289
(1983)
*Coniothyrium Corda, Icon. Fung. hucusque cognitorum
4: 38 (1840)
1. C. cerealis E. Mll., in Zogg, Phytopath. Z. 18: 11 (1951)
2. C. obiones Jaap, Schr. Naturw. Ver. Schles.-Holst. 14(1):
29 (1907)
Cucurbitariaceae G. Winter, Rabenhorst’s Kryptogamen-
Flora, Pilze - Ascomyceten 1(2): 308 (1885)
Neocucurbitaria Wanas., E.B.G. Jones & K.D. Hyde,
Mycosphere 8 (4): 408 (2017)
1. #N.aquatica Valenz.-Lopez, Crous, Stchigel, Guarro &
J.F. Cano, Studies in Mycology 90: 45 (2017)
Cyclothyriellaceae Jaklitsch & Voglmayr, Studies in
Mycology 85: 39 (2016)
Massariosphaeria (E. Mll.) Crivelli, ber die heterogene
Ascomyceten gattung Pleospora Rabh.: 141 (1983)
1. M. erucacea Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Can. J. Bot. 74(11): 1835 (1996)
2. M. phaeospora (E. Mu
¨ll.) Crivelli, U
¨ber die heterogene
Ascomycetengattung Pleospora Rabh.: 141 (1983)
3. M. scirpina (G. Winter) Leuchtm., Sydowia 37: 174 (1984)
Quintaria Kohlm. & Volkm.-Kohlm., Bot. Mar. 34: 34
(1991)
1. #Q. lignatilis (Kohlm.) Kohlm. & Volkm.-Kohlm., Bot.
Mar. 34: 35 (1991)
Dictyosporiaceae Boonmee & K.D. Hyde, Fungal Diver-
sity 80: 462 (2016)
Dictyosporium Corda, Beitra
¨ge zur gesammten Natur- und
Heilwissenschaften: 87 (1836)
1. #D. oblongum (Fuckel) S. Hughes, Canadian Journal of
Botany 36 (6): 762 (1958)
2. D. pelagicum (Linder) G.C. Hughes ex T.W. Johnson &
F.K. Sparrow, 1961. Fungi in Oceans and Estuaries, Cra-
mer, p. 391.
Jalapriya D’souza, H.Y. Su, Z. Luo & K.D. Hyde, Fungal
Diversity 80: 476 (2016)
1. #J. inflata (Matsush.) D’souza, H.Y. Su, Z. Luo & K.D.
Hyde, Fungal Diversity 80: 478 (2016)
2. #J. toruloides (Corda) D’souza, H.Y. Su, Z. Luo & K.D.
Hyde, Fungal Diversity 80: 478 (2016)
Didymosphaeriaceae Munk, Dansk Bot. Ark. 15(2): 128
(1953)
Deniquelata Ariyawansa & K.D. Hyde, Phytotaxa 105 (1):
15 (2013)
1.#D. vittalii Devadatha, V.V Sarma, E.B.G Jones,
Mycosphere 9 (3): 570 (2018)
https://doi.org/10.5943/mycosphere/9/3/8
Didymocrea Kowalski, Mycologia 57(3): 405 (1965)
1. #D. sadasivanii (T.K.R. Reddy) Kowalski, Mycologia
57(3): 405 (1965
Fungal Diversity
123
Didymosphaeria Fuckel, Jahrb. Nassau. Ver. Naturkd. 35:
140 (1870)
1. D. lignomaris Strongman & J.D. Mill., Proc. Nova
Scotian Inst. Sci. 35(3–4): 102 (1986)
Paraconiothyrium Verkley, Studies in Mycology 50 (2):
327 (2004)
1. P. fuckelii (Sacc.) Verkley & Gruyter, Studies in
Mycology 75: 25 (2012)
Pseudopithomyces Ariyaw. & K.D. Hyde, Fungal Diver-
sity 75: 64 (2015)
1. #P. maydicus (Sacc.) J.F. Li, Ariyaw. & K.D. Hyde,
Fungal Diversity 75: 69 (2015)
Tremateia Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot.
Mar. 38(2): 165 (1995)
1. #T. halophila Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Bot. Mar. 38(2): 166 (1995)
Didymellaceae Gruyter, Aveskamp & Verkley, Mycol.
Res. 113(4): 516 (2009)
Ascochyta Lib., Pl Crypt: 8 (1830)
1. A. salicorniae Magnus, in Jaap, Schr. Naturw. Ver.
Schles.-Holst. 12: 30 (1902)
Boeremia Aveskamp, Gruyter & Verkley, Stud Mycol 65:
36 (2010)
1. B. exigua (Desm.) Aveskamp, Gruyter & Verkley, Stud
Mycol 65: 37 (2010)
Didymella Sacc., Michelia 2 (6): 57 (1880)
1. D. avicenniae S.D. Patil & Borse, Trans. Mycol. Soc.
Jpn. 26(3): 271 (1985)
2. D. fucicola (G.K. Sutherl.) Kohlm., Phytopath. Z. 63:
342 (1968)
3. D. gloiopeltidis (Miyabe & Tokida) Kohlm. & E. Kohlm.,
Marine Mycology, the Higher Fungi (London): 382 (1979)
4. D. magnei Feldmann, Rev. Gn. Bot. 65: 414 (1958)
Leptosphaerulina McAlpine, Fungus diseases of stone-
fruit trees in Australia: 103 (1902)
1. L. mangrovei Inderb. & E.B.G. Jones, in Inderbitzin,
Jones & Vrijmoed, Mycoscience 41(3): 233 (2000)
Halojulellaceae Ariyawansam, E.B.G. Jones, Suetrong,
Alias, Kang & K.D. Hyde, Phytotaxa 130: 18 (2013)
Halojulella Suetrong, K.D. Hyde & E.B.G. Jones, Phyto-
taxa 130: 18 (2013)
1. #H. avicenniae (Borse) Suetrong, K.D. Hyde & E.B.G.
Jones, Phytotaxa 130: 19 (2013)
Julella Fabre, Annales des Sciences Naturelles Botanique
9: 113 (1879)
1. J. herbatilis Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Bot. Mar. 40: 296 (1997)
Halotthiaceae Y. Zhang, J. Fourn. & K.D. Hyde,
Mycologia 105(3): 604 (2013)
Halotthia Kohlm., Nova Hedwigia 6: 9 (1963)
1. #H. posidoniae (Durieu & Mont.) Kohlm., Nova Hed-
wigia 6: 9 (1963)
Mauritiana Poonyth, K.D. Hyde, Aptroot & Peerally,
Fungal Divers. 4: 102 (2000)
1. #M. rhizophorae Poonyth, K.D. Hyde, Aptroot & Peer-
ally, Fungal Divers. 4: 102 (2000)
Pontoporeia Kohlm., Nova Hedwigia 6: 5 (1963)
1. #P. biturbinata (Durieu & Mont.) Kohlm., Nova Hed-
wigia 6: 5 (1963)
2. #P. mangrovei Devadatha, V.V Sarma, CREAM 8(2):
239 (2018).
Leptosphaeriaceae M.E. Barr, Mycotaxon 29: 503 (1987)
Leptosphaeria Ces. & De Not., Comment Soc Crittogam
Ital 1(4): 234 (1863)
1. L. australiensis (Cribb & J.W. Cribb) G.C. Hughes,
Syesis 2: 132 (1969)
2. L. avicenniae Kohlm. & E. Kohlm., Nova Hedwigia
9(1–4): 98 (1965)
3. L. maculans (Tul.) Ces. & De Not., Comm. Soc. Crittog.
Ital. 1(4): 235 (1863)
4. L. marina Ellis & Everh., J. Mycol. 1(3): 43 (1885)
5. L. nypicola K.D. Hyde & Alias, Mycol. Res. 103(11):
1414 (1999)
6. L. pelagica E.B.G. Jones, Trans. Br. Mycol. Soc. 45(1):
105 (1962)
7. L. peruviana Speg., Anal. Soc. Cient. Argent. 12(4): 179
(no. 168) (1881)
*Neosetophoma Gruyter, Aveskamp & Verkley, Mycolo-
gia 102(5): 1075 (2010)
1. #N. samararum (Desm.) Gruyter, Aveskamp & Verkley
[as ‘samarorum’], in de Gruyter et al., Mycologia 102(5):
1075 (2010)
Lentitheciaceae Yin. Zhang, C.L. Schoch, J. Fourn., Crous
& K.D. Hyde, in Zhang et al. Stud. Mycol. 64: 93 (2009)
Halobyssothecium Dayarathne, E.B.G. Jones & K.D.
Hyde, Mycol Prog 17:1161–1171 (2018)
1. #H. obiones (M.E. Barr) Dayarathne, E.B.G. Jones &
K.D. Hyde, Mycol Prog 17: 1166 (2018)
*Lentithecium K.D. Hyde, J. Fourn. & Yin. Zhang, Fungal
Divers 38: 234 (2009)
1. #L. rarum (Kohlm., Volkm.-Kohlm. & O.E. Erikss.)
Suetrong, Sakay., E.B.G. Jones, Kohlm. & Volkm.-
Kohlm., Stud. Mycol. 64: 145-154 (2010)
2. #L. voraginesporum Abdel-Wahab, Bahkali & EBG
Jones, Fungal Diversity 80: 53–55 (2016)
Poaceascoma Phook. & K.D. Hyde, Cryptogamie,
Mycologie 36 (2): 231 (2015)
1. #P. halophila Dayar. & K.D. Hyde, Fungal Diversity 87:
46 (2017)
Towyspora Wanasinghe, E.B.G. Jones & K.D. Hyde,
Fungal Divers. 78(2): 32 (2016)
1. #T. aestuari Wanasinghe, E.B.G. Jones & K.D. Hyde,
Fungal Divers. 78: 35 (2016)
Lindgomycetaceae K. Hirayama, Kaz. Tanaka & Shearer,
Mycologia 102(3): 733 (2010)
Fungal Diversity
123
Arundellina Wanasinghe, E.B.G. Jones & K.D. Hyde,
Fungal Divers. 81: 59–61 (2016)
1. # A.typhae Wanasinghe, E.B.G. Jones & K.D. Hyde,
Fungal Diversity 81: 59–61 (2016)
Lophiostomataceae Sacc., Syll. Fung. 2: 672 (1883)
Decaisnella Fabre, Annls. Sci. Nat. Bot. 9: 112 (1879)
1. D. formosa Abdel-Wahab & E.B.G. Jones, Can. J. Bot.
81(6): 598 (2003)
*Floricola Kohlm. & Volkm.-Kohlm., Bot. Mar. 43(4):
385 (2000)
1. #F.striata Kohlm. & Volkm.-Kohlm., Bot. Mar. 43(4):
385 (2000
(Alternative classification: Teichospora Fuckel, Jahrbcher
des Nassauischen Vereins fr Naturkunde 23-24: 160
(1870); #T. striata (Kohlmeyer & Volkmann-Kohlmeyer)
Jaklitsch & Voglmayr, Mycol. Prog. 15 (3/31): 14 (2016))
Herpotrichia Fuckel, Fungi Rhenani Suppl. Exsic. No.
2171 (1868)
1. H. nypicola K.D. Hyde & Alias, Mycol. Res. 103(11):
1412 (1999)
Lophiostoma Ces. & De Not., Comment Soc. Crittogam
Ital. 1(4): 219 (1863)
1. L. acrostichi (K.D. Hyde) Aptroot & K.D. Hyde, Fungal
Divers. Res. Ser. 7: 106 (2002)
2. #L. corticola (Fuckel) E.C.Y. Liew, Aptroot & K.D.
Hyde [as ‘corticolum’], Mycologia 94(5): 812 (2002)
3. L. rhizophorae (Poonyth, K.D. Hyde, Aptroot & Peer-
ally) Aptroot & K.D. Hyde, Fungal Divers. Res. Ser. 7: 108
(2002)
Pseudoplatystomum Thambug. & K.D. Hyde, Fungal
Diversity 74: 237 (2015)
1. #P. scabridisporum (Abdel-Wahab & E.B.G. Jones)
Thambug. & K.D. Hyde, Fungal Diversity 74: 238 (2015)
Vaginatispora K.D. Hyde, Nova Hedwigia 61 (1–2): 234
(1995)
1. #V. armatispora (K.D. Hyde, Vrijmoed, Chinnaraj &
E.B.G. Jones) Wanasinghe, E.B.G. Jones & K.D. Hyde,
Index Fungorum 324: 1 (2017)
Massarinaceae Munk, Friesia 5: 305 (1956)
Massarina Sacc., Syll. Fung. 2: 153 (1883)
1. M. beaurivagea Poonyth, K.D. Hyde, Aptroot & Peer-
ally, Fungal Divers. 3: 139 (1999)
2. M. cystophorae (Cribb & J.W. Herb.) Kohlm. & E.
Kohlm., Marine Mycology, the Higher Fungi (London):
427 (1979)
3. M. lacertensis Kohlm. & Volkm.-Kohlm., Aust. J. Mar.
Freshwat. Res. 42(1): 92 (1991)
4. M. mauritiana Poonyth, K.D. Hyde, Aptroot & Peerally,
Fungal Divers. 3: 141 (1999)
5. M.phragmiticola Poon & K.D. Hyde, Bot. Mar. 41(2):
145 (1998
6. M. ricifera Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Mycologia 87(4): 537 (1995)
Neocamarosporiaceae, Wanas., Wijayaw., Crous & K.D.
Hyde, Studies in Mycology 87: 245 (2017)
Neocamarosporium Crous & M.J. Wingf., Persoonia 32:
273 (2014)
1. #N. obiones (Jaap) Wanas. & K.D. Hyde, Studies in
Mycology 87: 249 (2017)
2. #N. salicorniicola Dayarathne, E.B.G. Jones & K.D.
Hyde, Studies in Mycology 87: 250 (2017)
3. #N. chersinae Crous, IMA Fungus 8 (1): 146 (2017)
(Found in sediments in saline lakes)
4. N. jorjanensis Papizadeh, Wijayaw., Amoozegar,
Shahzadeh Fazeli, & K.D. Hyde, Mycol. Progress https://
doi.org/10.1007/s11557-017-1341-x
5. N. persepolisi Papizadeh, Wijayaw., Amoozegar, Shah-
zadeh Fazeli, & K.D. Hyde, Mycol. Progress https://doi.
org/10.1007/s11557-017-1341-x
6. N. sollicola Papizadeh, Wijayaw.Amoozegar, Shahzadeh
Fazeli & K.D. Hyde, Mycol. Progress https://doi.org/10.
1007/s11557-017-1341-x
Melanommataceae G. Winter [as ‘Melanommeae’],
Rabenh. Krypt.-Fl. 1(2): 220 (1885)
Bicrouania Kohlm. & Volkm.-Kohlm., Mycol. Res. 94:
685 (1990)
1. B. maritima (P. Crouan & H. Crouan) Kohlm. &
Volkm.-Kohlm., Mycol. Res. 94(5): 685 (1990)
Caryosporella Kohlm., Proc. Indian Acad. Sci., Pl. Sci. 94:
355 (1985)
1. C. rhizophorae Kohlm., Proc. Indian Acad. Sci., Pl. Sci.
94(2–3): 356 (1985)
*Pleurophomopsis Petr., Annls. Mycol. 22 (1–2): 156 (1924)
1. P. nypae K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 213
(1992)
Microsphaeropsidaceae Q. Chen, L. Cai & Crous, Studies
in Mycology 82: 213 (2015)
Microsphaeropsis Hhn., Hedwigia 59: 267 (1917)
1. #M. arundinis (S. Ahmad) B. Sutton, The Coelomycetes.
Fungi imperfecti with pycnidia, acervuli and stromata: 423
(1980)
Morosphaeriaceae Suetrong, Sakay., E.B.G. Jones & C.L.
Schoch, Stud. Mycol. 64: 161 (2009)
*Aegeanispora E.B.G. Jones et Abdel-Wahab, Botanica
Marina 60: 470 (2017)
1. #A. elani E.B.G. Jones et Abdel-Wahab, Botanica
Marine 60: 470 (2017)
Morosphaeria Suetrong, Sakay., E.B.G. Jones & C.L.
Scoch, Stud. Mycol. 64: 161 (2009)
1. #M. ramunculicola (K.D. Hyde) Suetrong, Sakay.,
E.B.G. Jones & C.L. Schoch, Stud Mycol 64: 162 (2009)
2. #M. velatispora (K.D. Hyde & Borse) Suetrong, Sakay.,
E.B.G. Jones & C.L. Schoch, Stud Mycol 64: 161 (2009)
3. #M. muthupetensis B. Devadatha, V. V. Sarma. et E.B.G
Jones, Botanica Marina 61(4): 401 (2018)
Helicascus Kohlm., Can. J. Bot. 47: 1471 (1969)
Fungal Diversity
123
1. #H. kanaloanus Kohlm., Can. J. Bot. 47: 1471 (1969)
2. #H. mangrovei Preedanon, Suetrong & Sakay., Myco-
science 58 (3): 176 (2017)
3. #H. nypae K.D. Hyde, Bot. Mar. 34(4): 314 (1991)
4. #H. satunensis sp. nov.(in press)
Periconiaceae (Sacc.) Nann., Repertorio sistematico dei
miceti dell’ uomo e degli animali 4: 482 (1934)
*Periconia Tode, Fungi Mecklenburgenses Selecti 2: 2
(1791)
1. P. byssoides Pers., Syn. meth. Fung. 686 (1801)
2. P. cookei E.W. Mason & M.B. Ellis, Mycol. Pap. 56: 72
(1953)
3. P. digitata (Cooke) Sacc., Syll Fung 4: 274 (1886)
4. P. echinochloae (Bat.) M.B. Ellis, Dematiaceous
Hyphomycetes: 347 (1971)
5. P. minutissima Corda, Icon. Fung. hucusque cognitorum
1: 19, t. 5: 259 (1837)
Pseudoastrosphaeriellaceae Phook. & K.D. Hyde, Fungal
Diversity 74: 181 (2015)
Carinispora K.D. Hyde, J. Linn. Soc. Bot. 110: 97 (1992)
1. C. nypae K.D. Hyde, J. Linn. Soc. Bot. 110: 99 (1992)
2. C. velatispora K.D. Hyde, Sydowia 46(2): 259 (1994)
Phaeosphaeriaceae M.E. Bar, Mycologia 71: 948 (1979)
*#Amarenographium E. Erikss., Mycotaxon 15: 199 (1982)
1. A. metableticum (Trail) O.E. Erikss., Mycotaxon 15: 199
(1982)
2. #A. solium Abdel-Wahab, Hodhod, Bahkali & K.D.
Hyde, Cryptog. Mycol. 33(3): 289 (2012)
Amarenomyces O.E. Erikss., Opera Bot. 60: 124 (1981)
1. A. ammophilae (Lasch) O.E. Erikss., Opera Bot. 60: 124
(1981
Lautitia S. Schatz, Can. J. Bot. 62(1): 31 (1984)
1. L. danica (Berl.) S. Schatz, Can J Bot 62(1): 31 (1984)
Loratospora Kohlm. & Volkm.-Kohlm., Syst. Ascom. 12:
10 (1993)
1. #L. aestuarii Kohlm. & Volkm.-Kohlm., Syst. Ascom.
12: 10 (1993)
*#Neosetophoma Gruyter, Aveskamp & Verkley,
Mycologia 102(5): 1075 (2010)
1. #N. samararum (Desm.) Gruyter, Aveskamp & Verkley
[as ‘samarorum’], in de Gruyter et al., Mycologia 102(5):
1075 (2010)
Phaeosphaeria I. Miyake, Bot. Mag., Tokyo 23: 93 (1909)
1. Ph. anchiala Kohlm., Volkm.-Kohlm. & K.M. Tsui, Bot.
Mar. 48(4): 308 (2005)
2. Ph. capensis Steinke & K.D. Hyde, Mycoscience 38(2):
101 (1997)
3. Ph. gessneri Shoemaker & C.E. Babc., Can. J. Bot.
67(5): 1567 (1989)
4. Ph. halima (T.W. Johnson) Shoemaker & C.E. Babc.,
Can. J. Bot. 67(5): 1514 (1989)
5. Ph. herpotrichoides (De Not.) L. Holm, Sym. Bot.
Upsal. 14(3): 115 (1957)
6. Ph. macrosporidium (E.B.G. Jones) Shoemaker & C.E.
Babc., Can. J. Bot. 67(5): 1532 (1989)
7. Ph. neomaritima (R.V. Gessner & Kohlm.) Shoemaker
& C.E. Babc., Can. J. Bot. 67(5): 1572 (1989)
8. Ph. nodorum (E. Mu
¨ll.) Hedjar., Sydowia 22(1–4): 79
(1969)
9. Ph. olivacea Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Bot. Mar. 40(4): 299 (1997)
10. Ph. orae-maris (Linder) Khashn. & Shearer, Mycol.
Res. 100(10): 1351 (1996)
11. Ph. roemeriani Kohlm., Volkm.-Kohlm. & O.E.
Erikss., Can. J. Bot. 76(3): 470 (1998)
12. Ph. spartinae (Ellis & Everh.) Shoemaker & C.E.
Babc., Can. J. Bot. 67(5): 1573 (1989)
13. Ph. spartinicola Leuchtm., in Leuchtmann & Newell,
Mycotaxon 41(1): 2 (1991)
14. Ph. typharum (Desm.) L. Holm, Symb. Bot. Upsal.
14(3): 126 (1957)
*Stagonospora (Sacc.) Sacc., Syll. Fung. 3: 445 (1884)
1. S. abundata Kohlm. & Volkm.-Kohlm., Bot. Mar. 43(4):
390 (2000)
2. S. cylindrica Gunnell, Trans. Br. Mycol. Soc. 40(4): 451
(1957)
3. S. elegans (Berk.) Sacc., Syll. Fung. 3: 436 (1884)
4. S. haliclysta Kohlm., Bot. Mar. 16(4): 213 (1973)
Phaeotrichaceae Cain, Canadian Journal of Botany 34 (4):
676 (1956)
Trichodelitschia Munk, Dansk bot. Arkiv. 15(2): 109
(1953)
1. T. bisporula (P. Crouan & H. Crouan) Munk, Dansk bot.
Arkiv. 15(2): 109 (1953)
Pleosporaceae Nitschke, Verh. naturh. Ver. preuss. Rheinl.
26: 74 (1869)
*Alternaria Nees, System der Pilze und Schwa
¨mme: 72
(1817)
1. #A. alternata (Fr.) Keissl., Beihefte Bot. Zentralblatt 29:
433 (1912)
2. A. alternariae (Cooke) Woudenberg & Crous, Stud.
Mycol. 75: 206 (2013)
3. A. botrytis (Preuss) Woudenberg & Crous, Stud. Mycol.
75(1): 206 (2013)
4. A. maritima G.K. Sutherl., New Phytol. 15: 46 (1916)
5. A. raphani J.W. Groves & Skolko, Can. J. Res. 22: 227
(1944)
6. A. tenuissima (Nees) Wiltshire, Trans Br Mycol Soc 18
(2): 157 (1933)
*Cochliobolus Drechsler, Phytopath. 24: 973 (1934)
1. C. tuberculatus Sivan., Trans. Br. Mycol. Soc. 84: 548
(1985)
*Curvularia Boedijn, Bull Jardin Bot Buitenzorg 13(1):
123 (1933)
1. C. borreriae (Vie
´gas) M.B. Ellis, in Viegas, Mycol. Pap.
106: 6 (1966)
Fungal Diversity
123
2. C. hawaiiensis (Bugnic. ex M.B. Ellis) Manamgoda, L.
Cai & K.D. Hyde, in Manamgoda, Cai, McKenzie, Crous,
Madrid, Chukeatirote, Shivas, Tan & Hyde, Fungal
Diversity 56(1): 141 (2012)
3. C. intermedia Boedijn, Bull. Jard. Bot. Buitenz, 3 Se
´r.
13(1): 126 (1933)
4. C. lunata (Wakker) Boedijn, Bull. Jard. Bot. Buitenz, 3
Se
´r. 13(1): 127 (1933)
5. C. protuberata R.R. Nelson & Hodges, Mycologia 57(5):
823 (1965)
6. C. tuberculata B.L. Jain, Trans. Br. Mycol. Soc. 45(4):
539 (1962)
Bipolaris Shoemaker, Can. J. Bot. 37 (5): 882 (1959)
1. B. papendorfii (Aa) Alcorn, Mycotaxon 17: 68 (1983)
Decorospora Inderb., Kohlm. & Volkm.-Kohlm.,
Mycologia 94(4): 657 (2002)
1. #D. gaudefroyi (Pat.) Inderb., Kohlm. & Volkm.-
Kohlm., Mycologia 94(4): 657 (2002)
Drechslera S. Ito, Proc. Imp. Acad. Japan 6(8): 355 (1930)
1. D. dematioidea (Buba
´k & Wro
´bl.) Scharif, Studies on
Graminicolous Species of Helminthosporium (Tehran): 81
(1963)
Epicoccum Link, Magazin der Gesellschaft Natur-
forschenden Freunde Berlin 8: 32 (1815)
1. E. nigrum Link, Magazin der Gesellschaft Natur-
forschenden Freunde Berlin 8: 32 (1816)
*Paradendryphiella Woudenberg & Crous, Stud. Mycol.
75: 207 (2013)
1. #P. arenariae (Nicot) Woudenberg & Crous, Stud.
Mycol. 75: 208 (2013)
2. #P. salina (G.K. Sutherl.) Woudenberg & Crous, Stud.
Mycol. 75: 207 (2013)
Pleospora Rabenh. ex Ces. & De Not., Comm. Soc. Crit-
tog. Ital. 1(4): 217 (1863)
Under the one fungus one name Pleospora is
synonymized under Stemphylium Wallr.
(Wijayawardene et al. 2014)
1. P. gracilariae E.G. Simmons & S. Schatz, in Simmons,
Mem. N. Y. Bot. Gdn. 49: 305 (1989)
2. P. pelagica T.W. Johnson, Mycologia 48(4): 504 (1956)
3. P. pelvetiae G.K. Sutherl., New Phytol. 14: 38 (1915)
4. P. spartinae (J. Webster & M.T. Lucas) Apinis &
Chesters, Trans. Br. Mycol. Soc. 47(3): 432 (1964)
5. P. triglochinicola J. Webster, Trans. Br. Mycol. Soc.
53(3): 481 (1969)
*Prathoda Subram., J. Indian bot. Soc. 35(1): 73 (1956)
1. P. longissima (Deighton & MacGarvie) E.G. Simmons,
CBS Diversity Ser. (Utrecht) 6: 672 (2007)
Pseudopithomyces Ariyaw. & K.D. Hyde, Fungal Diver-
sity 75: 64 (2015)
1. #P. maydicus (Sacc.) J.F. Li, Ariyaw. & K.D. Hyde,
Fungal Diversity 75: 69 (2015)
*Stemphylium Wallr., Fl. Crypt. Germ. 2: 300 (1833)
1. S. gracilariae E.G. Simmons, Mem N. Y. Bot. Gdn. 49:
305 (1989)
2. S. lycopersici (Enjoji) W. Yamam., Trans. Mycol. Soc.
Jpn. 2: 93 (1960)
3. S. maritimum T.W. Johnson, Mycologia 48(6): 844
(1957)
4. S. triglochinicola B. Sutton & Piroz., Trans. Br. Mycol.
Soc. 46(4): 519 (1963)
5. S. vesicarium (Wallr.) E.G. Simmons, Mycologia 61(1):
9 (1969)
*Setosphaeria K.J. Leonard & Suggs, Mycologia 66: 294
(1974)
1. S. rostrata K.J. Leonard, Mycologia 68: 409 (1976)
Ulocladium Preuss, Linnaea 24: 111 (1851)
Following species transferred to Alternaria under the one
fungus one name
1. U. chartarum (Preuss) E.G. Simmons, Mycologia 59 (1):
88 (1967)
2. U. consortiale (Thu
¨m.) E.G. Simmons, Mycologia 59
(1): 84 (1967)
Pyrenochaetopsidaceae Valenz.-Lopez, Crous, J.F. Cano,
Guarro & Stchigel, Studies in Mycology 90: 56 (2017)
Neopyrenochaeta Valenz.-Lopez, Crous, Stchigel, Guarro
& J.F. Cano, Studies in Mycology 90: 54 (2017
1. N. inflorescentiae (Crous, Marinc. & M.J. Wingf.)
Valenz.-Lopez, Crous, Stchigel, Guarro & J.F. Cano,
Studies in Mycology 90: 55 (2017)
Roussoellaceae J.K. Liu et al., Phytotaxa 181(1):7 (2014)
Roussoella Sacc., Atti dell
´Istituto Veneto Scienze 6: 410
(1888)
1. R. mangrovei Phukhamsakda & K.D. Hyde, Mycosphere
9 (2): 339 (2018)
Salsugineaceae K.D. Hyde & S. Tibpromma, Fungal
Divers. 63: 227 (2013)
Acrocordiopsis Borse & K.D. Hyde, Mycotaxon 34(2): 535
(1989)
1. #A. patilii Borse & K.D. Hyde, Mycotaxon 34(2): 536
(1989)
2. A. sphaerica Alias & E.B.G. Jones, Fungal Divers. 2: 39
(1999)
Salsuginea K.D. Hyde, Bot. Mar. 34(4): 315 (1991)
1. #S. ramicola K.D. Hyde, Bot. Mar. 34(4): 316 (1991)
Sporormiaceae Munk, Dansk Bot. Ark. 17(1): 450 (1957)
*Amorosia Mantle & D. Hawksw., Mycol. Res. 110(12):
1373 (2006)
1. #A. littoralis Mantle & D. Hawksw., Mycol. Res.
110(12): 1373 (2006)
Fungal Diversity
123
Sporormiella Ellis & Everh., North American Pyreno-
mycetes: 136 (1892)
1. Sp. intermedia (Auersw.) S.I. Ahmed & Cain ex
Kobayasi, Bull. Tokyo Sci. Mus.: 339 (1969)
Westerdykella Stolk, Transactions of the British Myco-
logical Society 38 (4): 422 (1955)
1. W. dispersa (Clum) Cejp & Milko, Ceska
´Mykologie 18
(2): 83 (1964)
Striatiguttulaceae S.N. Zhang, K.D. Hyde & J.K. Liu,
Mycokeys, 49: 110 (2019)
Striatiguttula S.N. Zhang, K.D. Hyde & J.K. Liu, Myco-
keys, 49: 111 (2019)
1. *#S. nypae S.N. Zhang, K.D. Hyde & J.K. Liu, Myco-
keys, 49: 112 (2019)
2. #S. phoenicis S.N. Zhang, K.D. Hyde & J.K. Liu,
Mycokeys 49: 115 (2019)
Longicorpus S.N. Zhang, K.D. Hyde & J.K. Liu, Myco-
keys, 49: 117 (2019)
1. #L. striataspora (K.D. Hyde) S.N. Zhang, K.D. Hyde &
J.K. Liu, Mycokeys, 49: 118 (2019)
Testudinaceae Arx, Persoonia 6(3): 366 (1971)
Verruculina Kohlm. & Volkm.-Kohlm., Mycol. Res.
94(5): 689 (1990)
1. #V. enalia (Kohlm.) Kohlm. & Volkm.-Kohlm., Mycol.
Res. 94(5): 689 (1990)
Trematosphaeriaceae K.D. Hyde, Y. Zhang ter, Suetrong
& E.B.G. Jones: 347 (2011)
Falciformispora K.D. Hyde, Mycol. Res. 96(1): 26 (1992)
1. #F. lignatilis K.D. Hyde, Mycol. Res. 96(1): 27 (1992)
Halomassarina Suetrong, Sakay., E.B.G. Jones, Kohlm.,
Volkm.-Kohlm. & C.L. Schoch, Stud. Mycol. 64: 161
(2009)
1. #H. thalassiae (Kohlm. & Volkm.-Kohlm.) Suetrong,
Sakay., E.B.G. Jones, Kohlm., Volkm.-Kohlm. & C.L.
Schoch, Stud. Mycol. 64: 161 (2009)
Trematosphaeria Fuckel, Jb. Nassau. Ver. Naturk. 23-24:
161 (1870)
1. T. lineolatispora K.D. Hyde, Mycol. Res. 96(1): 28
(1992)
2. T. malaysiana Alias, T.A. McKeown, S.T. Moss &
E.B.G. Jones, Mycol. Res. 105(5): 616 (2001)
3. T. mangrovis Kohlm., Mycopath. Mycol. Appl. 34: 1
(1968)
Zopfiaceae G. Arnaud ex D. Hawksw., Syst. Ascom. 11:
77 (1992)
Coronopapilla Kohlm. & Volkm.-Kohlm., Mycol. Res. 94:
686 (1990)
1. C. avellina Kohlm. & Volkm.-Kohlm., Mycol. Res. 94:
687 (1990)
2. C. mangrovei (K.D. Hyde) Kohlm. & Volkm.-Kohlm.,
Bot. Mar. 34: 19 (1991)
Pleosporales incertae sedis
Acuminatispora S.N. Zhang., K.D. Hyde & J.K. Liu, 17:
1179 (2018)
1. #A. palmarum S.N. Zhang, K.D. Hyde & J.K. Liu, 17:
1181 (2018)
*Amarenographium E. Erikss., Mycotaxon 15: 199 (1982)
1. A. metableticum (Trail) O.E. Erikss., Mycotaxon 15: 199
(1982)
2. #A. solium Abdel-Wahab, Hodhod, Bahkali & K.D.
Hyde, Cryptog. Mycol. 33(3): 289 (2012)
*Bactrodesmium Cooke, Grevillea 12(61): 35 (1883)
1. B. linderi (J.L. Crane & Shearer) M.E. Palm & E.L.
Stewart, Mycotaxon 15: 319 (1982)
Farasanispora Abdel-Wahab, Bahkali & E.B.G. Jones,
Fungal Divers. 78: 63 (2016)
1. # F. avicenniae Abdel-Wahab, Bahkali & E.B.G. Jones,
78: 65 (2016)
Heleiosa Kohlm., Volkm.-Kohlm. & O.E. Erikss., Can.
J. Bot. 74(11): 1830 (1996)
1. H. barbatula Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Can. J. Bot. 74(11): 1830 (1996)
*Paraphoma Morgan-Jones & J.F. White, Mycotaxon
18(1): 58 (1983)
1. #P. fimeti (Brunaud) Gruyter, Aveskamp & Verkley,
Mycologia 102(5): 1076 (2010)
Phoma Sacc., Michelia 2 (6): 4 (1880)
1. #P.glomerata (Corda) Wollenw. & Hochapfel, Z. Par-
asitKde 3(5): 592 (1936)
2. #P.herbarum Westend., Bull l’Acad Royale Sci Bel-
gique Classe des Sciences 19: 118 (1852)
3. #P.putamina Holls, Nvnyt Kzlem 6 (1907)
No sequence data
1. P.capitulum Panwar, P.N. Mathur & Thirum., Trans. Br.
Mycol. Soc. 50(2): 261 (1967)
2. P.hibernica Grimes, M. O’Connor & Cummins, Trans.
Br. Mycol. Soc. 17(1–2): 100 (1932)
3. P.laminariae Cooke & Massee, Grevillea 18(87): 53
(1890)
4. P.leveillei Boerema & G.J. Bollen, Persoonia (2): 115
(1975)
5. P.multispora V.H. Pawar, P.N. Mathur & Thirum.,
Trans. Br. Mycol. Soc. 50(2): 260 (1967)
6. P.nebulosa (Pers.) Mont., in Berkeley, Outl. Brit. Fung.
(London): 314 (1860)
7. P.navium Woron., Arbeit Biol. Wolga-Station 8(1–3):
61 (1925)
8. P.ostiolata V.H. Pawar, P.N. Mathur & Thirum., Trans.
Br. Mycol. Soc. 50(2): 262 (1967)
9. P.suaedae Jaap, Schr. Naturw. Ver. Schles.-Holst.
14(1): 27 (1907)
Paraliomyces Kohlm., Nova Hedwigia 1: 81 (1959)
1.#P. lentifer Kohlm., Nova Hedwigia 1: 81 (1959)
*Stagonosporopsis Died., Annls Mycol 10(2): 142 (1912)
Fungal Diversity
123
1. St. cucurbitacearum (Fr.) Aveskamp, Gruyter & Verk-
ley, Stud. Mycol. 65: 45 (2010)
2. KIRSCHSTEINIOTHELIALES Hern.-Restr., R.F.
Castan
˜eda, Gene
´& Crous, Studies in Mycology 86: 72
(2017)
Kirschsteiniotheliaceae Boonmee & K.D. Hyde,
Mycologia 104 (3): 705 (2012)
Kirschsteiniothelia D. Hawksw., Botanical Journal of the
Linnean Society 91: 182 (1985)
1. K. phoenicis S.N. Zhang & K.D. Hyde, Mycosphere
9(2): 357 (2018)
3. MYTILINIDIALES E.W.A. Boehm, C.L. Schoch &
Spatafora, Mycol. Res. 113(4): 468 (2009)
Mytilinidiaceae Kirschst., [as ‘Mytilidiaceae’], Verh. Bot.
Ver. Prov. Brandenb 66: 28 (1924)
Halokirschsteiniothelia S. Boonmee & K.D. Hyde,
Mycologia 104(3): 705 (2012)
1. #H. maritima (Linder) Boonmee & K.D. Hyde,
Mycologia 104(3): 705 (2012)
*Pseudorobillarda Morelet, Bull. Soc. Sci. Nat. Arch.
Toulon et du Var 175: 5 (1968)
1. #P. phragmitis (Cunnell) M. Morelet, Bull. Soc. Sci.
Nat. Arch. Toulon et du Var 175: 6 (1968)
4. HYSTERIALES Lindau, Natu
¨rl Pflanzenfam: 265 (1896)
Hysteriaceae Chevall., Flore Ge
´ne
´rale des Environs de
Paris 1: 432 (1826)
Gloniella Sacc., Syll. Fung. 2: 765 (1883)
1. G. clavatispora Steinke & K.D. Hyde, Mycoscience
38(1): 7 (1997)
Hysterium Pers., Tentamen dispositionis methodicae Fun-
gorum: 4, V-VI (1797)
1. #H. rhizophorae Dayarathne & K. D. Hyde, in Fungal
Diversity 87:42 (2017)
Dothideomycetes genera incertae sedis
Belizeana Kohlm. & Volkm.-Kohlm., Bot. Mar. 30: 195
(1987)
1. B. tuberculata Kohlm. & Volkm.-Kohlm., Bot. Mar. 30:
196 (1987)
Capillataspora K.D. Hyde, Can. J. Bot. 67(8): 2522 (1989)
1. C. corticola K.D. Hyde, Can. J. Bot. 67(8): 2522 (1989)
Lineolata Kohlm. & Volkm.-Kohlm., Mycol. Res. 94: 687
(1990)
1. #L. rhizophorae (Kohlm. & E. Kohlm.) Kohlm. &
Volkm.-Kohlm., Mycol. Res. 94(5): 688 (1990)
Passeriniella Berl., Icon. Fung. 1(1): 51 (1890)
1. P. mangrovei G.L. Maria & K.R. Sridhar, Indian Journal
of Forestry 25: 319 (2002)
2. P. savoryellopsis K.D. Hyde & Mouzouras, Transactions
of the British Mycological Society 91 (1): 179 (1988)
*Rhabdospora (Durieu & Mont. ex Sacc.) Sacc., Syll.
Fung. 3: 578 (1884)
1. R. avicenniae Kohlm. & E. Kohlm., Mycologia 63(4):
851 (1971)
Thalassoascus Ollivier, C. r. hebd. Sanc. Acad. Sci. Paris
182: 1348 (1926)
1. T. cystoseirae (Ollivier) Kohlm., Mycologia 73: 837
(1981)
2. T. lessoniae Kohlm., Mycologia 73: 837 (1981)
3. T. tregoubovii Ollivier, C. R. Hebd. Sanc. Acad. Sci
Paris 182: 1348
5. PATELLARIALES D. Hawksw. & O.E. Erikss., Syst.
Ascomyc. 5: 181 (1986)
Patellariaceae Corda, Icon. Fung. 2: 37 (1838)
Banhegyia L. Zeller & To
´th, Sydowia 14: 326 (1960)
1. B. setispora L. Zeller & To
´th, Sydowia 14: 327 (1960)
Patellaria Fr., Syst. Mycol. (Lindae) 2(1): 158 (1822)
1. #P. atrata (Hedw.) Fr., Syst. Mycol. (Lundae) 2(1): 158
(1822)
6. JAHNULALES K.L. Pang, Abdel-Wahab, El-Shar.,
E.B.G. Jones & Sivichai, Mycol. Res. 106(9): 1033 (2002)
Aliquandostipitaceae Inderb., Am. J. Bot. 88(1): 54
(2001)
*Xylomyces Goos, R.D. Brooks & Lamore, Mycologia 69:
282 (1977)
1. #X. chlamydosporus Goos, R.D. Brooks & Lamore,
Mycologia 69(2): 282 (1977)
Manglicolaceae Suetrong & E.B.G. Jones, Fungal Divers.
51: 183 (2011)
Manglicola Kohlm. & E. Kohlm., Mycologia 63(4): 840
(1971)
1. #M.guatemalensis Kohlm. & E. Kohlm., Mycologia
63(4): 841 (1971)
7. VENTURIALES Yin. Zhang & K.D. Hyde, Fungal
Diversity 51: 249–277 (2011)
Sympoventuriaceae Yin. Zhang, C.L. Schoch & K.D.
Hyde, Fungal Diversity 51: 251 (2011)
*Ochroconis de Hoog & Arx, Kavaka 1: 57 (1973)
1. O. constricta (E.V. Abbott) de Hoog & Arx, Kavaka 1:
57 (1973)
1. O. humicola (G.L. Barron & Lv. Busch) de Hoog & Arx,
Kavaka 1: 57 (1973)
Dothideomycetes incertae sedis
Aquamarina Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Mycol. Res. 100(4): 393 (1996)
Fungal Diversity
123
1. A. speciosa Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Mycol. Res. 100(4): 393 (1996)
8. DYFROLOMYCETALES K.L. Pang, K.D. Hyde &
E.B.G. Jones, Fungal Divers. 63: 7 (2013)
Dyfrolomycetaceae K.D. Hyde, K.L. Pang, Alias, Sue-
trong & E.B.G. Jones, Cryptog. Mycol. 34: 227 (2013)
Dyfrolomyces K.D. Hyde, K.L. Pang, Alias, Suetrong &
E.B.G. Jones, Cryptog. Mycol. 34: 227 (2013)
1. #D. mangrovei (K.D. Hyde) K.D. Hyde, K.L. Pang, Alias,
Suetrong & E.B.G. Jones, Cryptog. Mycol. 34(3): 228 (2013)
2. #D. marinospora (K.D. Hyde) K.D. Hyde, K.L. Pang,
Alias, Suetrong & E.B.G. Jones, Cryptog. Mycol. 34(3):
228 (2013)
3. #D. rhizophorae (K.D. Hyde) K.D. Hyde, K.L. Pang, Alias,
Suetrong & E.B.G. Jones, Cryptog. Mycol. 34(3): 228 (2013)
4. #D. tiomanensis K.L. Pang, S.A. Alias, K.D. Hyde, Sue-
trong & E.B.G. Jones, Cryptog. Mycol. 34(3): 228 (2013)
*Helicorhoidion S. Hughes, Can. J. Bot. 36(6): 773 (1958)
1. H. nypicola K.D. Hyde & Goh, Mycol. Res. 103(11):
1420 (1999)
Class: Eurotiomycetes O.E. Erikss. & Winka, Myconet 1:
6 (1997)
Subclass: Eurotiomycetidae Doweld, Prosyllabus
Tracheophytorum, Tentamen systematis plantarum vascu-
larium (Tracheophyta): LXXVIII (2001)
1. ONYGENALES Cif. ex Benny & Kimbr., Mycotaxon
12(1): 8 (1980)
Gymnoascaceae Baran., Bot. Ztg. 30: 158 (1872)
Arachniotus J. Schro
¨t., Kryptogamen-Flora von Schlesien
3-2(8): 210 (1893)
1. A. littoralis (G.F. Orr) Arx, Persoonia 9(3): 397 (1977)
Gymnascella Peck, Annual Report on the New York State
Museum of Natural History 35: 143 (1884)
1. G. dankaliensis (Castell.) Currah, Mycotaxon 24: 77 (1985)
Myxotrichaceae Locq. ex Currah, Mycotaxon 24: 103
(1985)
*Oidiodendron Robak, Nytt Magazin for Naturviden-
skapene 71: 245 (1932)
1. O. griseum Robak, in Melin & Nannfeldt, Svensk
Skogsva
˚rdsfo
¨rening Tidskr. 3-4: 440 (1934)
Onygyneaceae Berk., Introduction to Crypt. Bot.: 272
(1857)
Chrysosporium Corda, Deutschlands Flora, Abt. III. Die
Pilze Deutschlands 3-13: 85 (1833)
1. C. merdarium (Link) J.W. Carmich., Can. J. Bot. 40 (8):
1160 (1962)
2. EUROTIALES G.W. Martin ex Benny & Kimbr.,
Mycotaxon 12(1): 23 (1980)
Monascaceae J. Schro
¨t., Nat. Pflanzenfamilien: 148 (1894)
Cephalotrichum Link, Magazin der Gesellschaft Natur-
forschenden Freunde Berlin 3 (1): 20 (1809)
*1. C. stemonitis (Pers.) Nees, Magazin der Gesellschaft
Naturforschenden Freunde Berlin 3 (1): 20 (1809)
*Xeromyces L.R. Fraser, Proc. Linn. Soc. N. S. W. 78: 245
(1953)
1. #X. bisporus L.R. Fraser, Proc. Linn. Soc. N. S. W. 78:
245 (1954)
Aspergillaceae Link, Abh. dt. Akad. Wiss. Berlin: 165
(1826)
*Aspergillus P. Micheli ex Haller, Hist Stirp Helv 3: 113
(1768)
1. #A. aculeatus Iizuka, J. Agric. Chem. Soc. Japan: 807
(1953)
2. A. amstelodami Thom & Church, The Genus Aspergil-
lus: 113 (1926)
3. A.awamori Nakaz., Rep. Gov. Res. Inst. Formosa: 1 (1907)
4. #A. candidus Link, Mag. Gesell. Naturf. Freunde, Berlin
3(1–2): 16 (1809)
5. A. carbonarius (Bainier) Thom, in Thom & Currie, J.
Agric. Res. 7: 12 (1916)
6. #A. carneus Blochwitz, Annls. Mycol. 31(1/2): 81 (1933)
7. A. clavatus Desm., Annales des Sciences Naturelles
Botanique 2: 71 (1834)
8. A. cervinus Massee, Bull. Misc. Inf., Kew 1914: 158 (1914)
9. A. chevalieri Thom & Church, The Genus Aspergillus:
111 (1926)
10. A. cristatus Raper & Fennell, The Genus Aspergillus:
169 (1965)
11. A. ficuum (Reichardt) Thom & Currie, J. Agric. Res. 7:
12 (1916)
12. A. fischeri Wehmer, Zentbl. Bakt. ParasitKde, Abt. II
18: 390 (1907)
13. A. flavipes (Bainier & R. Sartory) Thom & Church,
Manual of the Aspergilli: 179 (1926)
14. #A. flavus Link, Mag. Gesell. Naturf. Freunde Berlin 3:
16 (1809)
15. #A. foetidus Thom & Raper, Manual of the Aspergilli:
219 (1945)
16. #A.fumigatus Fresen., Beitr. Mykol. 3: 81 (1863)
17. A. glaucus (L.) Link, Mag. Gesell. Naturf. Freunde
Berlin 3(1–2): 82 (1809)
18. #A. gracilis Bainier, Bull. Soc. Mycol. Fr. 23(2): 92 (1907
19. A. kanagawaensis Nehira, J. Jap. Bot.: 109 (1951)
20. A. melleus Yukawa, J. Coll. Agric. Imp. Univ. Tokyo:
358 (1911)
21. A. nidulans (Eidam) G. Winter, Rabenhorst’s Kryp-
togamen-Flora, Pilze - Ascomyceten 1(2): 62 (1884)
22. #A. niger Tiegh., Annal. Sci. Natur. Bot. 8: 240 (1867)
23. #A. nomius Kurtzman, B.W. Horn & Hesselt., Antonie
van Leeuwenhoek 53(3): 151 (1987)
Fungal Diversity
123
24. A. nutans McLennan & Ducker, Aust. J. Bot. 2(3): 355
(1954)
25. #A. ochraceus K. Wilh., Beit Kenntni Pilzgattung
Aspergillus: 66 (1877)
26. #A. ochraceopetaliformis Bat. & Maia, Anais Soc. Biol.
Pernambuco 15(1): 213 (1957)
27. A. ostianus Wehmer, Bot. Zbl.: 461 (1897)
28. #A. penicillioides Speg., Revta. Fac. Agron. Vet. Univ.
Na.c La Plata 2: 245 (1896)
29. A. protuberus Munt.-Cvetk., Mikrobiologiya 5: 119
(1968)
30. A. pseudodeflectus Samson & Mouch., Antonie van
Leeuwenhoek 41(3): 345 (1975)
31. A. pulverulentus (McAlpine) Wehmer, Bot. Zentralbl.:
394 (1907)
32. A. repens (Corda) Sacc., Michelia 2(8): 577 (1882)
33. #A. restrictus G. Sm., J. Textile Res. Inst.: 115 (1931)
34. #A. ruber Thom & Church, The Aspergilli: 112 (1926)
35. #A. sclerotiorum G.A. Huber, Phytopathology 23: 306
(1933)
36. A. subsessilis Raper & Fennell, The Genus Aspergillus:
530 (1965)
37. #A. sydowii (Bainier & Sartory) Thom & Church, The
Aspergilli: 147 (1926)
38. A. taichungensis Yaguchi, Someya & Udagawa,
Mycoscience 36(4): 421 (1995)
39. #A. tamarii Kita, Centralbl. Bakteriol., Abt. 2: 433
(1913)
40. #A. terreus Thom, Am. J. Bot. 5 (2): 85 (1918)
41. A. terricola E
´.J. Marchal, Rev. Mycol. (Toulouse): 101
(1893)
42. #A. tubingensis Mosseray, La Cellule 43: 245 (1934)
43. #A. unguis (Weill & L. Gaudin) Dodge, Medical
mycology. Fungous diseases of men and other mammals:
637 (1935)
44. #A. ustus (Bainier) Thom & Church, The Aspergilli:
152 (1926)
45. #A. versicolor (Vuill.) Tirab., Ann. Bot.: 9 (1908)
46. A. wentii Wehmer, Centralbl. Bakteriol.: 150 (1896)
47. A. westerdijkiae Frisvad & Samson, Stud. Mycol.
50(1): 30 (2004)
*Dichotomomyces Saito ex D.B. Scott, Trans. Br. Mycol.
Soc. 55(2): 313 (1970)
1. D. cejpii (Milko) D.B. Scott, Trans. Br. Mycol. Soc.
55(2): 314 (1970)
Eupenicillium F. Ludw., Lehrbuch der Niederen Kryp-
togamen: 256, 257, 263 (1892)
1. E. limosum S. Ueda, Mycoscience 36(4): 451 (1995)
Eurotium Link, Magazin der Gesellschaft Naturforschen-
den Freunde Berlin 3 (1): 31, t. 2 :44 (1809)
1. E. herbariorum (F.H. Wigg.) Link, Magazin der
Gesellschaft Naturforschenden Freunde Berlin 3 (1): 31
(1809)
2. E. rubrum Jos. Ko
¨nig et al., Z. Untersuch. Nahrungs-
Gen.smittel: 726 (1901)
*Emericella Berk., Intr. Crypt. Bot. (London): 340 (1857)
1. E. nidulans (Eidam) Vuill., C. r. hebd. Sanc. Acad. Sci.,
Paris 184: 137 (1927)
2. E. variecolor Berk. & Broome, Intr. Crypt. Bot. (Lon-
don): 340 (1857)
*Neosartorya Malloch & Cain, Can. J. Bot. 50(12): 2620
(1973)
1. N. laciniosa S.B. Hong, Frisvad & Samson, Int. J. Syst.
Evol. Microbiol. 56(2): 484 (2006)
2. N. paulistensis Y. Horie, Miyaji & Nishim., in Horie
et al., Mycoscience 36(2): 163 (1995)
3. N. tsunodae Yaguchi, Abliz & Y. Horie, Mycoscience
51(4): 261 (2010)
*Paecilomyces Bainier, Bull. Soc. Mycol. Fr. 23(1): 27
(1907)
1. #P. variotii Bainier, Bull. Soc. Mycol. Fr. 23(1): 27
(1907)
*Penicillium Link, Magazin der Gesellschaft Natur-
forschenden Freunde Berlin 3: 16 (1809)
1. P. asperosporum G. Sm., Trans. Br. mycol. Soc. 48 (2):
275 (1965)
2. #P. atrosanguineum B.X. Dong, Cesk Mykol. 27(3): 174
(1973)
3. P. atramentosum Thom, U.S.D.A. Bu Animal Ind Bull
118: 65 (1910)
4. P. attenuatum Kirichuk & Pivkin, in Kirichuk, Pivkin &
Matveeva, Mycol. Progr. 16(1): 21 (2017)
5. P. aurantiogriseum Dierckx, Ann. Soc. Sci. Bruxelles
25: 88 (1901)
6. P. bilaiae Chalab., Notul. Syst. Sect. Cryptog. Inst. bot.
Acad. Sci. U.S.S.R: 161-165 (1950)
7. #P. brevicompactum Dierckx, Ann. Soc. Sci. Bruxelles
25: 88 (1901)
8. P. camemberti Thom, Bull. U. S. Dep. Agric., Bur.
Animal Ind. 82: 50 (1906)
9. P. canesens Sopp, Monograph of Penicillium 11: 181
(1912)
10. P. chermesinum Biourge, La Cellule 33: 284-288
(1923)
11. #P. chrysogenum Thom, Bull. U. S. Dep. Agric., Bur.
Animal Ind. 118: 58 (1910)
12. #P. citrinum Thom, Bull. U. S. Dep. Agric., Bur.
Animal Ind. 118: 61 (1910)
13. #P. citreonigrum Dierckx, Ann. Soc. Sci. Bruxelles 25:
86 (1901)
14. #P. commune Thom, Bull. U. S. Dep. Agric., Bur.
Animal Ind. 118: 56–57 (1910)
15. P. corylophilum Dierckx, Annales de la Socit Scien-
tifique de Bruxelles 25 (1): 86 (1901)
16. P. crustosum Thom, The Penicillia: 399 (1930)
Fungal Diversity
123
17. P. decumbens Thom, Bull. U. S. Dep. Agric., Bur.
Animal Ind. 181: 71 (1910)
18. P. decaturense S.W. Peterson, E.M. Bayer & Wicklow,
Mycologia 96 (6): 1290 (2005)
18. P. dimorphosporum H.J. Swart, Trans. Br. Mycol. Soc.
55(2): 310 (1970)
19. P. dierckxii Biourge, La Cellule 33: 313 (1923)
20. P. dodgei Pitt, The genus Penicillium and its teleo-
morph states Eupenicillium and Talaromyces (London):
117 (1980)
21. #P. dravuni Janso, Mycologia 97(2): 445 (2005)
22. P. echinulatum Raper & Thom ex Fassat., Acta
Universitatis Carolinae Biologica 12: 326 (1977)
23. P. expansum Link, Mag. Gesell. Naturf. Freunde,
Berlin 3(1–2): 54 (1809)
24. P. glabrum (Wehmer) Westling, Ark. Bot. 11(1): 131
(1911)
25. P. granulatum Bainier, Bull. Soc. Mycol. Fr. 21: 127
(1905)
26. P. griseofulvum Dierckx, Ann. Soc. Sci. Bruxelles 25:
88 (1901)
27. P. implicatum Biourge, La Cellule 33(1): 278 (1923)
28. P. hirsutum Sartory & Bainier, Bull. Soc. mycol. Fr.:
373 (1913)
29. P. janczewskii K.M. Zalessky, Bull. Acad. Polon. Sci.,
Math. Nat., Sr. B: 488 (1927)
30. P. jejuense M.S. Park & Y.W. Lim, Mycologia 107 (1):
212 (2015)
31. P. lanosum Westling, Ark. Bot. 11: 97 (1911)
32. P. italicum Wehmer, Hedwigia 33: 211 (1894)
33. P. lividum Westling, Ark. Bot. 11: 136 (1911)
34. P. jensenii K.M. Zalessky, Bulletin International de
l’Academie Polonaise des Sciences et des Lettres Srie B
1927: 494 (1927)
35. P. madriti G. Sm., Transactions of the British Myco-
logical Society 44 (1): 42–50 (1961)
36. P. melinii Thom, The Penicillia: 273 (1930)
37. P. miczynskii K.M. Zalessky, Bull. Acad. Polon. Sci.,
Math. Nat., Sr. B: 482 (1927)
38. #P. minioluteum Dierckx, Ann. Soc. Sci. Bruxelles 25:
87 (1901)
39. P. montanense M. Chr. & Backus, Mycologia 54(5):
574 (1963)
40. P. multicolor Grig.-Man. & Porad., Arch. des Sciences
Biol. Leningrad: 120 (1915)
41. P. nalgiovense Laxa, Zentralblatt fr Bakteriologie und
Parasitenkunde Abteilung 2 86 (5–7): 160 (1932)
42. P. notatum Westling, Ark. Bot. 11: 95 (1911)
43. #P. ochotense Kirichuk & Pivkin, in Kirichuk, Pivkin
& Matveeva, Mycol. Progr. 16(1): 21 (2017
44. #P. oxalicum Currie & Thom, J. Biol. Chem. 22(2): 289
(1915)
45. P. palitans Westling, Arkiv fr Botanik 11 (1): 83 (1911)
46. P. paneum Frisvad, in Boysen, Skouboe, Frisvad &
Rossen, Microbiol., Reading 142(3): 546 (1996)
47. #P. paxilli Bainier, Bull. Soc. Mycol. Fr. 23: 95 (1907)
48. #P. piltuense Kirichuk & Pivkin, in Kirichuk, Pivkin &
Matveeva, Mycol. Progr. 16(1): 19 (2017)
49. P. purpurascens (Sopp) Biourge, La Cellule 33: 105
(1923)
50. P. purpureogenum Stoll: 235–237 (1923)
51. P. raistrickii G. Sm., Trans. Br. Mycol. Soc. 18(1): 90
(1933)
52. #P. restrictum J.C. Gilman & E.V. Abbott, J. Iowa
State College, Sci. 1: 297 (1927)
53. P. roseopurpureum Dierckx, Annales de la Socit Sci-
entifique de Bruxelles 25 (1): 86 (1901)
54. P. sacculum E. Dale, Annls. Mycol. 24(1/2): 137
(1926)
55. P. sclerotiorum J.F.H. Beyma, Zentralblatt fr Bakteri-
ologie und Parasitenkunde Abteilung 2 96: 416 (1937)
56. #P. simplicissimum (Oudem.) Thom, The Penicillia:
335 (1930)
57. P. solitum Westling, Ark. Bot. 11: 52 (1911)
58. P. spinulosum Thom, Bull. U. S. Dep. Agric., Bur.
Animal Ind. 118: 76 (1910)
59. P. steckii K.M. Zalessky, Bulletin International de
l’Academie Polonaise des Sciences et des Lettres Srie B
1927: 469 (1927)
60. P. thomii Maire, Bull. Soc. Hist. Nat. Afr. N. 8:
189–192 (1917)
61. #P. toxicarium I. Miyake, in Miyake, Naito & Sumida,
Manual and Atlas of the Penicillia (Amsterdam): 125
(1940)
62. P. velutinum J.F.H. Beyma, Zentralblatt fr Bakteriolo-
gie und Parasitenkunde Abteilung 2 91: 352 (1935)
63. P. vinaceum J.C. Gilman & E.V. Abbott, Iowa State
College Journal of Science 1 (3): 299 (1927)
64. #P. virgatum Nirenberg & Kwana, Mycol. Res. 109(9):
977 (2005)
65. P. vulpinum (Cooke & Massee) Seifert & Samson,
Advances in Penicillium and Aspergillus Systematics: 144
(1985)
66. P. waksmanii K.M. Zalessky, Bull. Acad. Polon. Sci.,
Math. et Nat., Sr. B: 468 (1927)
*Purpureocillium Luangsa-ard, Hywel-Jones, Houbraken
& Samson, in Luangsa-ard, Houbraken, Doorn, Hong,
Borman, Hywel-Jones & Samson, FEMS Microbiol. Lett.
321(2): 144 (2011)
1. #P. lilacinum (Thom) Luangsa-ard, Houbraken, Hywel-
Jones & Samson, in Luangsa-ard, Houbraken, Doorn,
Hong, Borman, Hywel-Jones & Samson, FEMS Microbiol.
Lett. 321(2): 144 (2011)
Talaromyces C.R. Benj., Mycologia 47: 681 (1955)
1. T. flavus (Klcker) Stolk & Samson, Stud. Mycol. 2: 10
(1972)
Fungal Diversity
123
2. T. helicus C.R. Benj., Mycologia 47(5): 684 (1955)
3. T. minioluteus (Dierckx) Samson, N. Yilmaz, Frisvad &
Seifert, in Samson, Yilmaz, Houbraken, Spierenburg, Sei-
fert, Peterson, Varga & Frisvad, Stud Mycol 70: 176 (2011)
4. #T. pinophilus (Hedgc.) Samson, N. Yilmaz, Frisvad &
Seifert, in Samson et al., Stud. Mycol. 70: 176 (2011)
5. #T. purpureogenus Samson et al., in Samson et al., Stud.
Mycol. 70: 177 (2011)
6. #T. radicus (A.D. Hocking & Whitelaw) Samson, Yil-
maz, Frisvad & Seifert, Stud. Mycol. 70: 177 (2011)
7. T. rugulosus (Thom) Samson, N. Yilmaz, Frisvad &
Seifert, in Samson, Yilmaz, Houbraken, Spierenburg, Sei-
fert, Peterson, Varga & Frisvad, Stud Mycol 70: 177 (2011)
8. T. variabilis Sopp, Skrifter udgivne af Videnskabs-Sel-
skabet i Christiania. Mathematisk-Naturvidenskabelig
Klasse 11: 169 (1912)
9. #T. verruculosus (Peyronel) Samson, Yilmaz, Frisvad &
Seifert, Stud. Mycol. 70: 177 (2011)
Nectriaceae Tul. & C. Tul., Selecta Fungorum Carpologia:
Nectriei- Phacidiei- Pezizei 3: 3 (1865)
*Tubercularia Tode, Fung. Mecklenb. Sel. 1: 18 (1790)
1. T. pulverulenta Speg., Anal. Soc. Cient. Argent. 12(1):
32 (1881)
Trichocomaceae E. Fisch., Nat. Pflanzenfamilien: 310
(1897)
Hemicarpenteles A.K. Sarbhoy & Elphick, Transactions of
the British Mycological Society 51 (1): 155 (1968)
1. H. ornata (Raper, Fennell & Tresner) Arx, The genera of
fungi sporulating in pure culture: 94 (1974)
Cordycipitaceae Kreisel, Grundz. Natrl. Syst. Pilze: 112
(1969)
*Beauveria Vuill., Bull. Soc. Bot. Fr. 59: 40 (1912)
1. B. bassiana (Bals.-Criv.) Vuill., Bull. Soc. Bot. Fr. 12:
40 (1912)
Cordyceps Fr., Handbuch zur Erkennung der nutzbarsten
und am ha
¨ufigsten vorkommenden Gewa
¨chse: 346 (1833)
1. C. polyarthra Mo
¨ller, Bot Mitt Trop 9: 213 (1901)
Subclass: Chaetothyriomycetidae Doweld, Prosyllabus
Tracheophytorum, Tentamen systematis plantarum vascu-
larium (Tracheophyta): LXXVIII (2001)
1. CHAETOTHYRIALES M.E. Barr, Mycotaxon 29: 502
(1987)
Herpotrichiellaceae Munk, Dansk bot. Ark. 15(2): 131
(1953)
Capronia Sacc., Syll. Fung. 2: 288 (1883)
1. C. ciliomaris (Kohlm.) E. Mll., Petrini, P.J. Fisher,
Samuels & Rossman, Trans. Br. Mycol. Soc. 88(1): 73
(1987)
2. C. coronata Samuels, Trans. Br. Mycol. Soc. 88(1): 65
(1987)
*Coniosporium Link, Mag. Gesell. naturf. Freunde, Berlin
3(1–2): 8 (1809)
1. C. perforans Sterfl., in Sterflinger et al., Antonie van
Leeuwenhoek 72(4): 352 (1997)
Exophiala J.W. Carmich., Sabouraudia 5(1): 122 (1966)
1. E. dermatitidis (Kano) de Hoog, Stud. Mycol. 15: 118
(1977)
2. E. pisciphila McGinnis & Ajello, Mycologia 66(3): 518
(1974)
3. E. salmonis J.W. Carmich., Sabouraudia 5(1): 122
(1966)
4. E. xenobiotica de Hoog et al., Anton. van Leeuw. 90(3):
264 (2006
*Metulocladosporiella Crous, Schroers, Groenewald, U.
Braun & Schubert, Mycol. Res. 110(3): 269 (2006)
1. #M. musae (E.W. Mason) Crous, Schroers, J.Z. Groe-
new., U. Braun & K. Schub., Mycol. Res. 110(3): 269
(2006)
*Phialophora Medlar, Mycologia 7(4): 202 (1915)
1. Ph. bubakii (Laxa) Schol-Schwarz, Persoonia 6(1): 66
(1970)
2. Ph. cinerescens (Wollenw.) J.F.H. Beyma, Antonie van
Leeuwenhoek 6: 38 (1940)
3. Ph. fastigiata (Lagerb. & Melin) Conant, Mycologia 29
(5): 597 (1937)
2. PYRENULALES Fink ex D. Hawksw. & O.E. Erikss.,
Syst. Ascomyc. 5: 182(1986)
Requienellaceae Boise, Mycologia 78: 37 (1986)
Pyrenographa Aptroot, Biblioth. Lichenol. 44: 103 (1991)
1. P. xylographoides Aptroot, Biblioth. Lichenol. 44: 103
(1991)
Pyrenulales incertae sedis
Xenus Kohlm. & Volkm.-Kohlm., Cryptog. Bot. 2: 367
(1992)
1. X. lithophylli Kohlm. & Volkm.-Kohlm., Cryptog. Bot.
2(4): 368 (1992)
3. COLLEMOPSIDIALES Pere-Otega, Gardo-Benavert
& Grube, Fungal Diversity 80: 296 (2016)
Xanthopyreniaceae Zahlbr., Syst. Lich.: 91 (1926)
Collemopsidium Nyl., Flora (Regensburg) 64: 6 (1881)
1. #C. halodytes (Nyl.) Grube & B.D. Ryan, Lichen Flora
of the Greater Sonoran Desert Region (Tempe) 1: 163
(2002)
2. #C. elegans (R. Sant.) Grube & B.D. Ryan, Lichen Flora
of the Greater Sonoran Desert Region (Tempe) 1: 163
(2002)
3. #C. foveolatum (A.L. Sm.) F. Mohr,.Mycol. Res. 108(5):
529 (2004)
4. #C. ostrearum (Vain.) F. Mhor, Mycol. Res. 108 (5): 530
(2004)
5. C. pelvetiae (G.K. Sutherl.) Kohlm., D. Hawksw. &
Volkm.-Kohlm., Mycol. Progr. 3 (1): 54 (2004)
Fungal Diversity
123
6. C. pneumatophorae (Kohlm.) Aptroot, Mycosphaerella
and its anamorphs: 2. Conspectus of Mycosphaerella: 160
(2006)
7. #C. sublitorale (Leight.) Grube & B.D. Ryan, Lichen
Flora of the Greater Sonoran Desert Region (Tempe) 1:
163 (2002)
4. VERRUCARIALES Mattick ex D. Hawksw. & O.E.
Erikss., Syst. Ascomyc. 5: 183 (1986)
Verrucariaceae Zenker, Pharmaceutische Waarenkunde 1:
123 (1827)
Hydropunctaria Gerw. Keller, Gueidan & Ths, Taxon
58(1): 193 (2009)
1. H. adriatica (Zahlbr.) C. Keller & Gueidan, Taxon
58(1): 194 (2009)
2. H. amphibia (Clemente ex Ach.) Cl. Roux, in Roux,
Masson, Bricaud, Coste & Poumarat, Bull. Soc. linn.
Provence, num. spc. 14: 108 (2011)
3. H. aractina (Wahlenb.) Orange, Lichenologist 44(3):
305 (2012)
4. H. orae Orange, Lichenologist 44(3): 314 (2012)
5. H. oceanica Orange, Lichenologist 44(3): 312 (2012)
6. H. maura (Wahlenb.) C. Keller, Gueidan & Ths, Taxon
58(1): 194 (2009)
Mastodia Hook. f. & Harv.: 499 (1847)
1. M. tessellata (Hook. f. & Harv.) Hook. f. & Harv., Bot.
Antarc. Voy.: 499 (1847)
Verrucaria Schrad., Spicilegium Florae Germanicae: 108
(1794)
1. V. adguttata Zahlbr. Denkschr. Kaiserl. Akad. Wiss.
Wien, Math.-Naturwiss. Kl. 104: 250 (1941)
2. V. allantoidea H. Harada, Nova Hedwigia 60(1–2): 75
(1995)
3. V. ceuthocarpa Wahlenb., in Acharius, Method Lich.: 22
(1803)
4. V.corallensis P.M. McCarthy, Australas. Lichenol. 63:
17 (2008)
5. V. ditmarsica Erichs., Schr. Naturw. Ver. Schles.-Holst.
22: 90 (1937)
6. V. erichsenii Zschacke, Verh. Bot. Ver. Prov. Brandenb.
70: 192 (1928)
7. V. halizoa Leight., Lich.-Fl. Great Brit.: 436 (1871)
8. V. halochlora H. Harada, Nova Hedwigia 60(1–2): 74
(1995)
9. V. microsporoides Nyl., Bull. Soc. Bot. Fr. 8: 759 (1863)
[1861]
10. V. paulula Sandst., Helgolander Wiss. Meeresunters.
16: 5 (1925)
11. V. psychrophila I.M. Lamb, Discovery Repts. 25: 18
(1948)
12. V. sandstedei B. de Lesd., Bull. Soc. Bot. Fr. 58(8): 662
(1912)
13. V. serpuloides I.M. Lamb, Discovery Repts. 25: 20 (1948)
14. V. sessilis P.M. McCarthy, N. Z. Jl Bot. 29(3): 285
(1991)
15. V. subdiscreta P.M. McCarthy, Muelleria 7(3): 327 (1991)
16. V. thalassina (Zahlbr.) Zschacke, Rabenh. Krypt.-Fl.,
Edn 2 (Leipzig) 9.1(1): 132 (1933)
Gueid
Wahlenbergiella Gueidan & Thu
¨s, Taxon 58(1): 199
(2009)
1. W. mucosa (Wahlenb.) Gueidan & Ths, Taxon 58(1):
200 (2009)
2. W. striatula (Wahlenb.) Gueidan & Ths, Taxon 58(1):
200 (2009)
3. W. tavaresiae (R.L. Moe) Gueidan, Ths & Prez-Ort.,
Bryologist 114(3): 567 (2011)
Class: Laboulbeniomycetes Engl., Natrl. Pflanzenfam.: vi
(1897)
1. LABOUBENIALES Lindau, Natrl Pflanzenfam: 491
(1897)
Laboulbeniaceae G. Winter, Rabenh. Krypt.-Fl.: 918
(1886)
Laboulbenia Mont. & C.P. Robin, Histoire naturelle des
vgtaux parasites qui croissent sur l’homme et sur les ani-
maux vivants: 622 (1853)
1. L. marina F. Picard, C. R. Soc. Biol., Paris 65: 484
(1908)
Eurotiomycetes incertae sedis
Dactylosporaceae Bellem. & Hafellner, Cryptog. Mycol.
3: 79 (1982)
Dactylospora Krb., Syst. Lich. Germ.: 271 (1855)
1. D. canariensis Kohlm. & Volkm.-Kohlm., Mycotaxon
67: 248 (1998)
2. #D. haliotrepha (Kohlm. & E. Kohlm.) Hafellner, Beih.
Nova Hedwigia 62: 111 (1979)
3. D. mangrovei E.B.G. Jones, Alias, Abdel-Wahab & S.Y.
Hsieh, Mycoscience 40(4): 317 (1999)
4. #D. vrijmoediae K.L. Pang, S.Y. Guo, Alias, Hafellner
& E.B.G. Jones, Bot. Mar. 57(4): 317 (2014)
Class: Leotiomycetes O.E. Erikss. & Winka, Myconet 1: 7
(1997)
Subclass: Leotiomycetidae
1. HELOTIALES Nannf. ex Korf & Lizon, Mycotaxon
75: 501 (2000)
Helotiaceae Rehm, Rabenhorst’s Kryptogamen-Flora,
Pilze - Ascomyceten 1(3): 647 (1886)
Amylocarpus Curr., Proc. R. Soc. Lond., B Biol. Sci. 9:
122 (1859)
1. #A. encephaloides Curr., Proc. R. Soc. Lond., B Biol.
Sci. 9: 119 (1859)
Fungal Diversity
123
Dactylaria Sacc., Michelia 2 (6): 20 (1880)
1. D. humicola G.C. Bhatt & W.B. Kendr., Canadian
Journal of Botany 46 (10): 1256 (1968)
Leotiaceae Corda, Icones fungorum hucusque cognitorum
5: 37 (1842)
Calycina Nees ex Gray, A natural arrangement of British
plants 1: 669 (1821)
1. #C. marina (W. Phillips ex Boyd) T. Rm, Baral, O.E.
Eriks., Bot. Mar. [In Press]
*Halenospora E.B.G. Jones, Fungal Divers. 35: 154
(2009)
1. #H. varia (Anastasiou) E.B.G. Jones, Fungal Divers. 35:
154 (2009)
*Pezoloma Clem., The genera of Fungi: 86, 175 (1909)
1. #P. ericae (D.J. Read) Baral, in Baral & Krieglsteiner,
Acta Mycologica, Warszawa 41(1): 16 (2006)
Leptodontidiaceae Hern.-Restr., Crous & Gene
´, Studies in
Mycology 86: 81 (2017)
Leptodontidium de Hoog, Taxon 28: 347 (1979)
1. L. orchidicola Sigler & Currah, Canadian Journal of
Botany 65 (12): 2476 (1987)
Myxotrichaceae Locq. ex Currah, Mycotaxon 24: 103
(1985)
*Pseudogymnoascus Raillo, Zentbl. Bakt. ParasitKde, Abt.
II 78: 520 (192
1. #P. pannorum (Link) Minnis & D.L. Lindner, Fungal
Biol. 117(9): 646 (2013)
Sclerotiniaceae Whetzel, Mycologia 37(6): 652 (1945)
Botrytis P. Micheli ex Haller, Historia stirpium indige-
narum Helvetiae inchoata: 111 (1768)
1. B. cinerea Pers., Neues Magazin fr die Botanik. 1: 126, t.
3:9 (1794)
*Botryophialophora Linder, Farlowia 1(3): 403 (1944)
1. B. marina Linder, Farlowia 1(3): 404 (1944)
Vibrisseaceae Korf, Mycosystema 3: 23 (1990)
Vibrissea Fr., Syst. Mycol. 2: 31 (1822)
1. V. nypicola K.D. Hyde & Alias, Mycol. Res. 103(11):
1419 (1999)
Dermateaceae Fr., [as ‘Dermatei’], Summa veg. Scand. 2:
345 (1849)
Belonium Sacc., Bot. Central. 18: 219 (1884)
1. B. heteromorphum (Ellis & Everh.) Seaver, The North
American Cup-fungi (Inoperculates) (3): 174 (1951)
Hyaloscyphaceae Nannf., Nova Acta R. Soc. Scient.
Upsal. 8(2): 258 (1932)
Brunnipila Baral, Beih. Z. Mykol. 6: 49 (1985)
1. B. palearum (Desm.) Baral, Beih. Z. Mykol. 6: 51 (1985)
Lachnum Retz., Fl scand prodr., Edn altera: 329 (1795)
1. L. spartinae S.A. Cantrell, Mycotaxon 57: 482 (1996)
2. THELEBOLALES P.F. Cannon, Dictionary of the
fungi: XI (2001)
Thelebolaceae (Brumm.) Eckblad, Nytt Mag. Bot.
15(1–2): 22 (1968)
Antarctomyces Stchigel & Guarro, Mycol. Res. 105(3):
378 (2001)
1. A. psychrotrophicus Stchigel & Guarro, Mycol. Res.
105(3): 378 (2001)
Thelebolus Tode, Fungi Mecklenburgenses Selecti 1: 41
(1790)
1.#Th. balaustiformis E. Bovio, L. Garzoli, A. Poli, V.
Prigione, G.C. Varese, Fungal Systematics and Evolution
1: 154 (2018)
2. #Th. microsporus (Berk. & Broome) Kimbr., Annual
Report of the Institute for Fermentation Osaka 3: 50 (1967)
3. #Th. spongiae E. Bovio, L. Garzoli, A. Poli, V. Prigione,
G.C. Varese, Fungal Systematics and Evolution 1: 158
(2018)
Helotiales incertae sedis
Cadophora Lagerb. & Melin, Svenska Skogsvrdsfrenin-
gens Tidskr 2(2–4): 263 (1928)
1. C. malorum (Kidd & Beaumont) W. Gams, Stud. Mycol.
45: 188 (2000)
Gloeotinia M. Wilson, Noble & E.G. Gray, Trans. Br.
Mycol. Soc. 37(1): 31 (1954)
1. #G. granigena (Qul.) T. Schumach., Mycotaxon 8(1):
125 (1979)
2. G. juncorum (Velen.) Baral, Beih. Z. Mykol. 6: 17 (1985)
3. G. tremulenta (Prill. & Delacr.) M. Wilson, Noble &
E.G. Gray, Trans. Br. Mycol. Soc. 37(1): 29 (1954)
*Scytalidium Pesante, Annali della Sperimentazione
Agaria 11 (suppl.): 264 (1957)
1. S. infestans Iwatsu, Udagawa & Hatai, Trans. Mycol.
Soc. Jpn. 31(3): 391 (1990)
*Tiarosporella Hhn. in Weese, in Weese, Ber. dt. bot. Ges.
37: 159 (1919)
1. T.halmyra Kohlm. & Volkm.-Kohlm., Mycotaxon 59:
79 (1996)
Leotiomycetes incertae sedis
*Geomyces Traaen, Nytt. Mag. Natur. 52: 28 (1914)
1. G. pannorum (Link) Sigler & J.W. Carmich., Mycotaxon
4(2): 377 (1976)
Pseudogymnoascus Raillo, Zentralblatt fr Bakteriologie
und Parasitenkunde Abteilung 2 78: 520 (1929)
1. P. roseus Raillo, Zentralblatt fr Bakteriologie und Par-
asitenkunde Abteilung 2 78: 520 (1929)
Class: Lichinomycetes Reeb, Lutzoni & Cl. Roux, Mol.
Phylogenet. Evol. 32: 1055 (2004)
Subclass: Lichinomycetidae
1. LICHINALES Henssen & Bdel, Syst. Ascomyc. 5: 138
(1986)
Lichinaceae Nyl., Mm. Soc. Sci. Nat. Cherbourg 2: 8
(1854)
Fungal Diversity
123
Lichina C. Agardh, Syn. Alg. Scand.: xii, 9 (1817)
1. L. confinis (O.F. Mll.) C. Agardh, Spec. Alg. 1: 105
(1821)
2. L. pygmaea (Lightf.) C. Agardh, Syn. Alg. Scand.: xii, 9
(1817)
Subclass: Arthonomycetidae
Family incertae sedis
Melaspileaceae Walt. Watson, New Phytol. 28: 94 (1929)
Melaspilea Nyl., Act. Soc. Linn. Bordeaux 21: 416 (1857)
1. M. mangrovei Vrijmoed, K.D. Hyde & E.B.G. Jones,
Mycol. Res. 100(3): 293 (1996)
1. ARTHONIALES Henssen ex D. Hawksw. & O.E.
Erikss., Syst. Ascomyc. 5: 177 (1986)
Roccellaceae Chevall., [as ‘Rocellaceae’], Fl. Gn. Env.
Paris 1: 604 (1826)
Halographis Kohlm. & Volkm.-Kohlm., Can. J. Bot.
66(6): 1138 (1988)
1. H. runica Kohlm. & Volkm.-Kohlm., Can. J. Bot. 66(6):
1138 (1988)
Class: Orbiliomycetes O.E. Erikss. & Baral, Myconet 9:
96 (2003)
Subclass: Orbiliomycetidae
1. ORBILIALES Baral, O.E. Erikss., G. Marson & E.
Weber, Myconet 9: 96 (2003)
Orbiliaceae Nannf., Nova Acta R. Soc. Scient. Upsal. 8(2):
250 (1932)
*Arthrobotrys Corda, Pracht.-Fl. Eu.r Schimmelbild.: 43
(1839)
1. A. arthrobotryoides (Berl.) Lindau, Rabenh. Krypt.-Fl.,
Edn 2 (Leipzig) 1.8: 371 (1906) [1907]
2. A. brochopaga (Drechsler) S. Schenck, W.B. Kendr. &
Pramer, Can. J. Bot. 55(8): 982 (1977)
3. A. cladodes var. cladodes Drechsler, Mycologia 29(4):
463 (1937)
4. A. conoides Drechsler, Mycologia 29(4): 476 (1937)
5. A. dactyloides Drechsler, Mycologia 29(4): 486 (1937)
6. A. eudermata (Drechsler) M. Scholler, Hagedorn & A.
Rubner, Sydowia 51(1): 102 (1999)
7. A. javanica (Rifai & R.C. Cooke) Jarow., Acta Myco-
logica, Warszawa 6(2): 373 (1970)
8. A. mangrovispora Swe, Jeewon, Pointing & K.D. Hyde,
Bot. Mar. 51(4): 332 (2008)
9. A. musiformis Drechsler, Mycologia 29(4): 481 (1937)
10. A. oligospora Fresen., Beitr. Mykol. 1: 18 (1850)
11. A. polycephala (Drechsler) Rifai, Reinwardtia 7(4): 371
(1968)
12. A. pyriformis (Juniper) Schenk, W.B. Kendr. & Pramer,
Can. J. Bot. 55(8): 984 (1977)
13. A. superba Corda, Pracht.-Fl. Eur. Schimmelbild.: 43
(1839)
14. A. thaumasius (Drechsler) S. Schenck, W.B. Kendr. &
Pramer [as ‘thaumasia’], Can. J. Bot. 55(8): 984 (1977)
15. A. vermicola (R.C. Cooke & Satchuth.) Rifai, Rein-
wardtia 7(4): 371 (1968)
*Dactylellina M. Morelet, Bull. Soc. Sci. Nat. Arch.
Toulon et du Var 178: 6 (1968)
1. #D. ellipsospora (Preuss) M. Scholler, Hagedorn & A.
Rubner, Sydowia 51(1): 110 (1999)
2. #D. haptotyla (Drechsler) M. Scholler, Hagedorn & A.
Rubner, Sydowia 51(1): 110 (1999)
3. D. huisuniana (J.L. Chen, T.L. Huang & Tzean) M.
Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 111 (1999)
4. #D. lysipaga (Drechsler) M. Scholler, Hagedorn & A.
Rubner, Sydowia 51(1): 111 (1999)
*Drechslerella Subram., J. Ind. Bot. Soc. 42: 299 (1963)
1. D. aphrobrocha (Drechsler) M. Scholler, Hagedorn & A.
Rubner, Sydowia 51(1): 99 (1999)
*Dactylella Grove, J. Bot. Br. Foreign 22: 199 (1884)
1. D. beijingensis Xing Z. Liu, C.Y. Shen & W.F. Chiu,
Mycosystema 5: 113 (1992)
2. D. aquatica (Ingold) Ranzoni, Farlowia 4: 360 (1953)
Dactylaria Sacc., Michelia 2 (6): 20 (1880)
1. D. purpurella (Sacc.) Sacc., Michelia 2(no. 6): 20 (1880)
*Gamsylella M. Scholler, Hagedorn & A. Rubner, Sydo-
wia 51(1): 108 (1999)
1. G. gephyropaga (Drechsler) M. Scholler, Hagedorn & A.
Rubner, Sydowia 51(1): 108 (1999)
*Geniculifera Rifai, Mycotaxon 2(2): 214 (1975)
1. G. bogoriensis (Rifai) Rifai, Mycotaxon 2(2): 216 (1975)
*Monacrosporium Oudem., Ned. Kruidk. Arch. 4: 250
(1885)
1. #M. cionopagum (Drechsler) Subram., J. Indian Bot.
Soc. 42: 293 (1964)
2. #M. drechsleri (Tarjan) R.C. Cooke & C.H. Dickinson,
Trans. Br. Mycol. Soc. 48(4): 623 (1965)
3. #M. ellipsosporum (Preuss) R.C. Cooke & C.H. Dick-
inson, Trans. Br. Mycol. Soc. 48(4): 622 (1965)
4. #M. thaumasium (Drechsler) de Hoog & Oorschot, Stud.
Mycol. 26: 120 (1985)
Class: Sordariomycetes O.E. Erikss. & Winka, Myconet
1: 10 (1997)
Subclass: Hypocreomycetidae O.E. Erikss. & Winka,
Myconet 1(1): 6 (1997)
1. HYPOCREALES Lindau, Natrl. Pflanzenfam.: 343
(1897)
Bionectriaceae Samuels & Rossman, Stud. Mycol. 42: 15
(1999)
Bionectria Speg., Boln Acad. Nac. Cienc. Crdoba 579: 563
(1919)
Fungal Diversity
123
1. #B. ochroleuca (Schwein.) Schroers & Samuels, Z.
Mykol. 63(2): 151 (1997)
Halonectria E.B.G. Jones, Trans. Br. Mycol. Soc. 48(2):
287 (1965)
1. H. milfordensis E.B.G. Jones, Trans. Br. Mycol. Soc.
48(2): 287 (1965)
Heleococcum C.A. Jrg., Botanisk Tidsskrift 37(5): 417
(1922)
1. H. japonense Tubaki, Trans. Mycol. Soc. Jpn. 8(1): 5
(1967)
*Hydropisphaera Dumort., Comment. bot.: 89 (1822)
1. H. erubescens (Roberge ex Desm.) Rossman & Samuels,
Stud. Mycol. 42: 30 (1999)
Kallichroma Kohlm. & Volkm.-Kohlm., Mycol. Res. 97:
759 (1993)
1. #K. asperum Abdel-Wahab, Bahkali & E.B.G. Jones,
Phytotaxa 260: 69 (2016)
2. # K. ellipsoideum Abdel-Wahab, Bahkali & E.B.G.
Jones, Phytotaxa 260: 70 (2016
3. K. glabrum (Kohlm.) Kohlm. & Volkm.-Kohlm., Mycol.
Res. 97(6): 759 (1993)
4. #K. tethys (Kohlm. & E. Kohlm.) Kohlm. & Volkm.-
Kohlm., Mycol. Res. 97(6): 759 (1993)
Pronectria Clem., The genera of Fungi: 78: 282 (1931)
1. P. laminariae (O.E. Erikss.) Lowen, Mycotaxon 39: 461
(1990)
Sesquicillium W. Gams, Acta Botanica Neerlandica 17:
455 (1968)
1. S. microsporum (Jaap) Veenb.-Rijks & W. Gams,
Cephalosporium-artige Schimmelpilze: 226 (1971)
Hypocreaceae De Not., G. Bot. Ital. 2: 48 (1844)
*Acrostalagmus Corda, Icon. fung. 2: 15 (1838)
1. A. luteoalbus (Link) Zare, W. Gams & Schroers [as
‘luteo-albus’], Mycol. Res. 108(5): 581 (2004)
*Gliocladium Corda, Icon. fung. 4: 30 (1840)
1. G. roseum Bainier, Bull. Soc. Mycol. Fr. 23: 111 (1907)
Hypocrea Fr., Syst. Orb. Veg. 1: 104 (1825)
1. #H. lixii Pat., Revue Mycol. Toulouse 13(51): 138
(1891)
2. H. vinosa Cooke, Grevillea 8(46): 65 (1879)
*Trichoderma Pers., Neues Mag. Bot. 1: 92 (1794)
1. #T. asperellum Samuels, Lieckf. & Nirenberg, Sydowia
51(1): 81 (1999)
2. #T. atroviride P. Karst., Bidr. K nn. Finl. Nat. Folk 51:
363 (1892)
3. T. aureoviride Rifai, Mycol. Pap. 116: 34 (1969)
4. T. citrinoviride Bissett, Can. J. Bot. 62(5): 926 (1984)
5. T. citrinum (Pers.: Fr.) Jaklitsch, W. Gams & Voglmayr,
Mycotaxon 126: 147 (2014)
6. T. deliquescens (Sopp) Jaklitsch, Fungal Divers. 48: 176
(2011)
7. T. hamatum (Bonord.) Bainier, Bull. Soc. Mycol. Fr. 22:
131 (1906)
8. #T. harzianum Rifai, Mycol. Pap. 116: 38 (1969)
9. T. polysporum (Link) Rifai, Mycological Papers 116: 18
(1969)
10. #T. stilbohypoxyli Samuels & Schroers, in Samuels
et al., Stud. Mycol. 56: 128 (2006)
11. #T. koningii Oudem., Arch. N erl. 7: 291 (1902)
12. T. longibrachiatum Rifai, Mycol. Pap. 116: 42 (1969)
13. T. pseudokoningii Rifai, Mycol. Pap. 116: 45 (1969)
14. #T. virens (J.H. Mill., Giddens & A.A. Foster) Arx,
Beih Nova Hedwigia 87: 288 (1987)
15. #T. viride Pers., Neues Mag Bot 1: 92 (1794)
Stachybotryaceae L. Lombard & Crous, Persoonia 32: 283
(2014)
*Stachybotrys Corda, Icon. Fung. 1: 21 (1837)
1. S. atra Corda, Icon. Fung. (Prague) 1: 21 (1837)
2. #S. chartarum (Ehrenb.) S. Hughes, Can. J. Bot. 36(6):
812 (1958)
3. #S. chlorohalonata B. Andersen & Thrane, Mycologia
95(6): 1228 (2004)
4. S. kampalensis Hansf., Proc. Linn. Soc. Lond. 155: 45
(1943)
5. S. mangiferae P.C. Misra & S.K. Srivast., Trans. Br.
Mycol. Soc. 78(3): 556 (1982)
6. S. nephrospora Hansf., Proc. Linn. Soc. Lond. 155: 45
(1943)
Nectriaceae Tul. & C. Tul., Selecta Fungorum Carpologia:
Nectriei- Phacidiei- Pezizei 3: 3 (1865)
Cosmospora Rabenh., Hedwigia: 59 (1862)
1. C. butyri (J.F.H. Beyma) Gr fenhan, Seifert & Schroers,
Stud. Mycol. 68: 96 (2011)
Cylindrocarpon Wollenw., Phytopathology 1: 225 (1913)
1. C. cylindroides Wollenw., Phytopath. 1: 212, 225 (1913)
Fusicolla Bonord., Handbuch der allgemeinen Mykologie:
150 (1851)
1. F. aquaeductuum (Radlk. & Rabenh.) Gr fenhan, Seifert
& Schroers, Stud. Mycol. 68: 100 (2011)
*Fusarium Link, Mag Gesell Natur Freunde Berlin 3: 10
(1809)
1. #F. chlamydosporum Wollenw. & Reinking, Phytopath.
15 (3): 156 (1925)
2. F. heterosporum Nees & T. Nees, Nova Acta Acad.
Caes. Leop.-Carol. Nat. Cur. 9: 235 (1818)
3. F. incarnatum (Roberge) Sacc., Sylloge Fungorum 4:
712 (1886)
4. F. oxysporum Schltdl., Flora Berolinensis Parsecunda:
Cryptogamia: 106 (1824)
5. #F. proliferatum (Matsush.) Nirenberg ex Gerlach &
Nirenberg, Mitt. Biol. Bund. Aust. Land.-U. Forstw. 169:
38 (1982)
6. F. solani (Mart.) Sacc., Michelia 2 (no. 7): 296 (1881)
Gibberella Sacc., Michelia 1 (1): 43 (1877)
1. #G. fujikuroi (Sawada) Wollenw., Z. ParasitKde 3: 514
(1931)
Fungal Diversity
123
2. G. gordonii C. Booth, The genus Fusarium: 177 (1971)
3. G. tricincta El-Gholl, McRitchie, Schoult. & Ridings,
Can. J. Bot. 56(18): 2206 (1978)
Haematonectria Samuels & Nirenberg, Stud. Mycol. 42:
134 (1999)
1. #H. haematococca (Berk. & Broome) Samuels &
Rossman, in Rossman, Samuels, Rogerson & Lowen, Stud.
Mycol. 42: 135 (1999)
*Mariannaea G. Arnaud ex Samson, Stud. Mycol. 6: 74
(1974)
1. M. elegans (Corda) Samson, Stud. Mycol. 6: 75 (1974)
Nectria (Fr.) Fr., Summa vegetabilium Scandinaviae 2: 387
(1849)
1. N. pulverulenta Dingley, Transactions and Proceedings
of the Royal Society of New Zealand 83 (4): 657 (1956)
Neocosmospora E.F. Sm., U.S.D.A. Div. Veg. Pathol. Bull.
17: 45 (1899)
1. N.tenuicristata S. Ueda & Udagawa, Mycotaxon 16(2):
387 (1983)
Payosphaeria W.F. Leong, Bot. Mar. 33: 511 (1990)
1. P. minuta W.F. Leung, in Leong, Tan, Hyde & Jones,
Bot. Mar. 33: 511 (1990)
Ophiocordycipitaceae G.H. Sung, J.M. Sung, Hywel-
Jones & Spatafora, Stud. Mycol. 57: 35 (2007)
Elaphocordyceps G.H. Sung & Spatafora, Stud. Mycol. 57:
36 (2007)
1. #E. subsessilis (Petch) G.H. Sung, J.M. Sung & Spata-
fora, in Sung et al., Stud. Mycol. 57: 37 (2007)
Tolypocladium W. Gams, Persoonia 6 (2): 185 (1971)
1. T. cylindrosporum W. Gams, Persoonia 6 (2): 187 (1971)
2. T. geodes W. Gams, Persoonia 6 (2): 187 (1971)
3. T. inflatum W. Gams, Persoonia 6 (2): 185 (1971)
HYPOCREALES incertae sedis
*Acremonium Link, Mag. Gesell. Naturf. Freunde, Berlin
3(1–2): 15 (1809)
1. A. alternatum Link, Mag. Gesell. Naturf. Freunde, Berlin
3(1–2): 15 (1809)
2. A. cereale (P. Karst.) W. Gams, Cephalosporium-artige
Schimmelpilze: 88 (1971)
3. #A. charticola (Lindau) W. Gams, Cephalosporium-ar-
tige Schimmelpilze: 46 (1971)
4. A. chrysogenum (Thirum. & Sukapure) W. Gams,
Cephalosporium-artige Schimmelpilze: 109 (1971)
5. #A. fuci Summerb., Zuccaro & W. Gams, Stud. Mycol.
50(1): 288 (2004)
6. A. fusidioides (Nicot) W. Gams, Cephalosporium-artige
Schimmelpilze (Stuttgart): 70 (1971)
7. A. furcatum (Moreau & V. Moreau) ex W. Gams, Nova
Hedwigia 18: 3 (1969)
8. A. implicatum (J.C. Gilman & E.V. Abbott) W. Gams,
Trans. Br. Mycol. Soc. 64(3): 394 (1975)
9. A. luzulae (Fuckel) W. Gams, Cephalosporium-artige
Schimmelpilze: 92 (1971)
10. A. neocaledoniae Roquebert & J. Dupont, in Dupont,
Bettucci, Pietra, Laurent & Roquebert, Mycotaxon 75: 355
(2000)
11. A. persicinum (Nicot) W. Gams, Cephalosporium-ar-
tige Schimmelpilze (Stuttgart): 75 (1971)
12. #A. polychromum (J.F.H. Beyma) W. Gams,
Cephalosporium-artige Schimmelpilze (Stuttgart): 81
(1971)
13. A. potronii Vuill., Bull. S anc. Soc. Sci. Nancy, S r. 3
11: 147 (1910)
14. A. rutilum W. Gams, Cephalosporium-artige Schim-
melpilze: 105 (1971)
15. A. striatisporum (Onions & G.L. Barron) W. Gams,
Cephalosporium-artige Schimmelpilze (Stuttgart): 97
(1971)
16. A. tubakii W. Gams, Cephalosporium-artige Schim-
melpilze : 55 (1971)
Emericellopsis J.F.H. Beyma, Anton. van Leeuw. 6: 264
(1940)
1. E. humicola (Cain) Cain ex Grosklags & Swift,
Mycologia 49: 306 (1957)
2. E. maritima Beliakova, Mikol. Fitopatol. 4(6): 530
(1970)
3. E. microspora Backus & Orpurt, Mycologia 53: 67
(1961)
4. E. minima Stolk, Trans. Br. Mycol. Soc. 38(4): 419
(1955)
5. E. pallida Beliakova, Mikol. Fitopatol. 8: 386 (1974)
6. E. stolkiae D.E. Davidson & M. Chr., Trans. Br. Mycol.
Soc. 57(3): 385 (1971)
*Gliomastix Gueg., Bulletin de la Soci t Mycologique de
France 21: 240 (1905)
1. G. murorum (Corda) S. Hughes, Can. J. Bot. 36(6): 769
(1958)
*Myrothecium Tode, Fung. mecklenb. sel. (L neburg) 1:
25 (1790)
1. #M. inundatum Tode, Fung. mecklenb. sel. (L neburg) 1:
25 (1790)
2. M. roridum Tode, Fung. mecklenb. sel. (L neburg) 1: 25
(1790)
3. M. verrucaria (Alb. & Schwein.) Ditmar, in Sturm,
Deutschl. Fl., 3 Abt. (Pilze Deutschl.) 1(1): 7 (1813)
*Sarocladium W. Gams & D. Hawksw., Kavaka 3: 57
(1976)
1. S. strictum (W. Gams) Summerb., in Summerbell et al.,
Stud. Mycol. 68(1): 158 (2011)
2. S. kiliense (Gr tz) Summerbell, Studies in Mycology 68:
158 (2011)
Sedecimiella K.L. Pang, Alias & E.B.G. Jones, Bot. Mar.
53(6): 495 (2010)
Fungal Diversity
123
1. S. taiwanensis K.L. Pang, Alias & E.B.G. Jones, Bot.
Mar. 53(6): 495 (2010)
*Stachylidium Link, Mag. Gesell. Naturf. Freunde Berlin
3: 15 (1809)
1. S. bicolor Link, Mag. Gesell. Naturf. Freunde, Berlin
3(1–2): 15 (1809)
Stilbella Lindau, in Engler & Prantl, Nat. Pflanzenfam.,
Teil. I (Leipzig): I. Tl., 1. Abt.: Fungi (Eumycetes): 489
(1900)
1. S. aciculosa (Ellis & Everh.) Seifert, Stud. Mycol. 27: 44
(1985)
*Trichothecium Link, Neues J. Bot. 3(1–2): 18 (1809)
1. T. sympodiale Summerb., Seifert & Schroers, in Sum-
merbell et al., Stud. Mycol. 68: 160 (2011)
2. CORONOPHORALES Nannf., Nova Acta R. Soc.
Scient. Upsal. 8(2): 54 (1932)
Nitschkiaceae (Fitzp.) Nannf., Nova Acta R. Soc. Scient.
Upsal. 8(2): 56 (1932)
Groenhiella J rg. Koch, E.B.G. Jones & S.T. Moss, Bot.
Mar. 26: 265 (1983)
1. G. bivestia J rg. Koch, E.B.G. Jones & S.T. Moss, Bot.
Mar. 26(6): 265 (1983)
3. MICROASCALES Luttr. ex Benny & Kimbr., Myco-
taxon 12(1): 40 (1980)
Halosphaeriaceae E. Mull. & Arx ex Kohlm., Can. J. Bot.
50(9): 1951 (1972)
Alisea J. Dupont & E.B.G. Jones, Mycol. Res. 113(12):
1358 (2009)
1. #A. longicolla J. Dupont & E.B.G. Jones, Mycol. Res.
113(12): 1358 (2009)
Amphitrite S. Tibell, Svensk Mykologisk Tidskrift 37 (2):
45 (2016)
1. A. annulata S. Tibell, Svensk Mykologisk Tidskrift 37:
45 (2016)
Aniptodera Shearer & M.A. Mill., Mycologia 69(5): 893
(1977)
1. A. aquadulcis (S.Y. Hsieh, H.S. Chang & E.B.G. Jones)
J. Campb., J.L. Anderson & Shearer, Mycologia 95(3): 549
(2003)
2. #A. aquibella J. Yang & K.G. Hyde, Fungal Diversity
78: 94 (2016)
3. #A. chesapeakensis Shearer & M.A. Mill., Mycologia
69(5): 894 (1977)
4. A. haispora Vrijmoed, K.D. Hyde & E.B.G. Jones,
Mycol. Res. 98(6): 701 (1994)
5. A. intermedia K.D. Hyde & Alias, Mycol. Res. 103(11):
1409 (1999)
6. A. juncicola Volkm.-Kohlm. & Kohlm., Bot. Mar. 37(2):
109 (1994)
7. A. limnetica Shearer, Mycologia 81(1): 140 (1989)
8. A. mangrovei K.D. Hyde, Can. J. Bot. 64(12): 2989 (1986)
9. A. nypae K.D. Hyde, Sydowia 46(2): 257 (1994)
10. A. salsuginosa Nakagiri & Tad. Ito, Mycol. Res. 98(8):
931 (1994)
Anisostagma K.R.L. Petersen & J rg. Koch, Mycol. Res.
100: 209 (1996)
1. A. rotundatum K.R.L. Petersen & J rg. Koch, Mycol.
Res. 100(2): 211 (1996)
Antennospora Meyers, Mycologia 49: 501 (1957)
1. #A. quadricornuta (Cribb & J.W. Cribb) T.W. Johnson,
J. Elisha Mitchell Scient. Soc. 74: 46 (1958)
Aniptosporopsis K.L. Pang, C.L. Lu, W.T. Ju et E.B.G.
Jones, Botanica Marina 60: 459 (2017)
1. #A. lignatilis (K.D. Hyde) K.L. Pang, C.L. Lu, W.T. Ju
et E.B.G. Jones, Botanica Marina 60: 459 (2017)
Appendichordella R.G. Johnson, E.B.G. Jones & S.T.
Moss, Can. J. Bot. 65(5): 941 (1987)
1. A. amicta (Kohlm.) R.G. Johnson, E.B.G. Jones & S.T.
Moss, Can. J. Bot. 65(5): 941 (1987)
Arenariomyces Ho
¨hnk, Veroff. Inst. Meeresf. Bremer-
haven 3: 28 (1954)
1. A. majusculus Kohlm. & Volkm.-Kohlm., Mycol. Res.
92(4): 411 (1989)
2. A. parvulus J rg. Koch, Nordic J. Bot. 6(4): 497 (1986)
3. #A. trifurcatus Ho
¨hnk, Veroff. Inst. Meeresf. Bremer-
haven 3: 30 (1954)
4. A. triseptatus Kohlm., Marine Ecology, [Publicazioni
della Stazione Zoologica Napoli I] 5(4): 333 (1984)
5. A. truncatellus J rg. Koch, Mycotaxon 124: 70 (2013)
Bathyascus Kohlm., Revue Mycol. 41(2): 190 (1977)
1. B. avicenniae Kohlm., Bot. Mar. 23(8): 530 (1980)
2. B. grandisporus K.D. Hyde, Bot. Mar. 30(5): 413 (1987)
3. B. mangrovei Ravik. & Vittal, Mycol. Res. 95(3): 370
(1991)
4. B. tropicalis Kohlm., Bot. Mar. 23(8): 532 (1980)
5. B. vermisporus Kohlm., Revue Mycol., Paris 41(2): 191
(1977)
Carbosphaerella I. Schmidt, Feddes Repert. 80(2–3): 108
(1969)
1. #C. leptosphaerioides I. Schmidt, Natur Naturschutz
Mecklenberg 7: 9 (1969)
2. C. pleosporoides I. Schmidt, Feddes Repert. 80: 108 (1969)
Ceriosporopsis Linder, Farlowia 1: 408 (1944)
1. C. caduca E.B.G. Jones & Zainal, Mycotaxon 32: 238
(1988)
2. C. cambrensis I.M. Wilson, Trans. Br. Mycol. Soc.
37(3): 276 (1954)
3. C. capillacea Kohlm., Can. J. Bot. 59(7): 1314 (1981)
4. #C. halima Linder, Farlowia 1(3): 409 (1944)
5. #C. intricata (Jorg. Koch & E.B.G. Jones) Sakay., K.L.
Pang & E.B.G. Jones, Fungal Divers. 46: 99 (2011)
6. C. minuta Abdel-Wahab, Nagahama et E.B.G. Jones,
Botanica Marina 60: 475 (2017)
Fungal Diversity
123
7. C. sundica J rg. Koch & E.B.G. Jones, Nordic J. Bot.
6(3): 339 (1986)
Chadefaudia Feldm.-Maz., Revue Generale de Botanique
64: 150 (1957)
1. C. balliae Kohlm., Mycologia 65(1): 244 (1973)
2. C. corallinarum (P. Crouan & H. Crouan) E. M ll. &
Arx, The Fungi (London) 4A: 116 (1973)
3. C. gymnogongri (Feldmann) Kohlm., Bot. Mar. 16(4):
202 (1973)
4. C. marina Feldm.-Maz., Rev. Gen. Bot. 64: 150 (1957)
5. C. polyporolithi (Bonar) Kohlm., Bot. Mar. 16(4): 205
(1973)
6. C. schizymeniae Stegenga & Kemperman, Bot. Mar.
27(9): 443 (1984)
Corallicola Volkm.-Kohlm. & Kohlm., Mycotaxon 44(2):
418 (1992)
1. C. nana Volkm.-Kohlm. & Kohlm., Mycotaxon 44(2):
418 (1992)
Corollospora Werderm., Notizbl. Bot. Gart. Berlin-Dah-
lem: 248 (1922)
1. #C. anglusa Abdel-Wahab & Nagah., Mycoscience
50(3): 149 (2009)
2. #C. angusta Nakagiri & Tokura, Trans. Mycol. Soc. Jpn.
28(4): 417 (1988)
3. C. armoricana Kohlm. & Volkm.-Kohlm., Can. J. Bot.
67(5): 1281 (1989
4. #C. baravispora Steinke & E.B.G. Jones, Fungal Divers.
35: 88 (2009)
5. C. besarispora Sundari, Mycol. Res. 100(10): 1259
(1996)
6, C. borealis S. Tibell, Svensk Mykologisk Tidskrift 37
(2): 47 (2016)
7. C.californica Kohlm. & Volkm.-Kohlm., Bot. Mar.
40(3): 225 (1997)
8. C. cinnamomea J rg. Koch, Nordic J. Bot. 6(4): 498
(1986)
9. C. colossa Nakagiri & Tokura, Trans. Mycol. Soc. Jpn.
28(4): 418 (1988)
10. #C. filiformis Nakagiri, Trans. Mycol. Soc. Jpn. 28(4):
422 (1988)
11. C. fusca Nakagiri & Tokura, Trans. Mycol. Soc. Jpn.
28(4): 424 (1988)
12. C. gracilis Nakagiri & Tokura, Trans. Mycol. Soc. Jpn.
28(4): 426 (1988)
13. C. indica Prasann., Ananda & K.R. Sridhar, J. Environ.
Biol. 21: 235 (2000)
14. #C. intermedia I. Schmidt, Natur Naturschutz Meck-
lenberg 7: 6 (1970)
15. #C. lacera (Linder) Kohlm., Ber. Deut. Bot. Ges. 75:
126 (1962)
16. C. luteola Nakagiri & Tubaki, Trans. Mycol. Soc. Jpn.
23(2): 102 (1982)
17. #C. marina (Haythorn & E.B.G. Jones) E.B.G. Jones,
K.L. Pang & Abdel-Wahab, IMA Fungus 7:137 (2016)
18. #C. maritima Werderm., Notizbl. Knigl. Bot. Gart.
Museum Berlin 8: 248 (1922)
19. C. mesopotamica Al-Saadoon, Marsh Bulletin 2: 135
(2006)
20. C. novofusca Kohlm. & Volkm.-Kohlm., Bot. Mar.
34(1): 34 (1991)
21. #C. parvula (Zuccaro, J.I. Mitchell & Nakagiri) E.B.G.
Jones, K.L.Pang & Abdel-Wahab, IMA Fungus 7:137
(2016)
22. #C. portsaidica Abdel-Wahab & Nagah., Mycoscience
50(3): 152 (2009)
23. C. pseudopulchella Nakagiri & Tokura, Trans. Mycol.
Soc. Jpn. 28(4): 428 (1988)
24. #C. pulchella Kohlm., I. Schmidt & N.B. Nair, Ber.
Deut. Bot. Ges. 80: 98 (1967)
25. #C. ramulosa (Meyers & Kohlm.) Abdel-Wahab, IMA
fungus7:137 (2016)
26. #C. quinqueseptata Nakagiri, Trans. Mycol. Soc. Jpn.
28(4): 430 (1988)
Cucullosporella K.D. Hyde & E.B.G. Jones, Mycotaxon
37: 200 (1990)
1. #C. mangrovei (K.D. Hyde & E.B.G. Jones) K.D. Hyde
& E.B.G. Jones, Mycotaxon 37: 200 (1990)
Ebullia K.L. Pang, Mycoscience 56: 40 (2015)
1. #E. octonae (Kohlm.) K.L. Pang, Mycoscience 56: 40
(2015)
Gesasha Abdel-Wahab & Nagahama, Nova Hedwigia
92(3–4): 501 (2011)
1. #G. mangrovei Abdel-Wahab & Nagah., Nova Hedwigia
92(3–4): 507 (2011)
2. #G. peditatus Abdel-Wahab & Nagah., Nova Hedwigia
92(3–4): 502 (2011)
3. #G. unicellularis Abdel-Wahab & Nagah., Nova Hed-
wigia 92(3–4): 505 (2011)
Haligena Kohlm., Nova Hedwigia 3: 87 (1961)
1. #H. elaterophora Kohlm., Nova Hedwigia 3: 87 (1961)
Haiyanga K.L. Pang & E.B.G. Jones, Raffles Bull. Zool.,
Suppl. 19: 8 (2008)
1. #H. salina (Meyers) K.L. Pang & E.B.G. Jones, Raffles
Bull. Zool., Suppl. 19: 8 (2008)
Halosarpheia sensu stricto Kohlm. & E. Kohlm., Trans.
Br. Mycol. Soc. 68(2): 208 (1977)
1. #H. fibrosa Kohlm. & E. Kohlm., Trans. Br. Mycol. Soc.
68(2): 208 (1977)
2. #H. japonica Abdel-Wahab & Nagah., Mycol. Progr.
11(1): 89 (2013)
3. #H. trullifera (Kohlm.) E.B.G. Jones, S.T. Moss &
Cuomo, Trans. Br. Mycol. Soc. 80(2): 200 (1983)
4. #H. unicellularis Abdel-Wahab & E.B.G. Jones, in
Abdel-Wahab, Pang, El-Sharouny & Jones, Mycoscience
42(3): 255 (2001)
Fungal Diversity
123
Halosarpheia sensu lato
1. H. bentotensis Jorg. Koch, Nordic J. Bot. 2(2): 165
(1982)
2. H. culmiperda Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Mycologia 87(4): 532 (1995)
3. #H. marina (Cribb & J.W. Cribb) Kohlm., Marine
Ecology, [Pubblicazioni della Stazione Zoologica Napoli I]
5(4): 345 (1984)
4. H. minuta W.F. Leong, Can. J. Bot. 69(4): 883 (1991)
5. H. phragmiticola Poon & K.D. Hyde, Bot. Mar. 41(2):
143 (1998)
Halosphaeria Linder, Farlowia 1(3): 412 (1944)
1. #H. appendiculata Linder, Farlowia 1(3): 412 (1944)
Halosphaeriopsis T.W. Johnson, J. Elisha Mitchell Scient.
Soc. 74: 44 (1958)
1. #H. mediosetigera (Cribb & J.W. Cribb) T.W. Johnson,
J. Elisha Mitchell Scient. Soc. 74: 44 (1958)
Havispora K.L. Pang & Vrijmoed, Mycologia 100(2): 293
(2008)
1. #H. longyearbyenensis K.L. Pang & Vrijmoed,
Mycologia 100(2): 293 (2008)
Iwilsoniella E.B.G. Jones, Syst. Ascomyc. 10(1): 8 (1991)
1. I. rotunda E.B.G. Jones, Syst. Ascomyc., 10(1): 8 (1991)
Kitesporella Jheng & K.L. Pang, Bot. Mar. 55: 462 (2012)
1. K. keelungensis J.S. Jheng & K.L. Pang, Bot. Mar. 55(5):
462 (2012)
Kochiella Sakay., K.L. Pang & E.B.G. Jones, Fungal
Divers. 46: 96 (2011)
1. #K. crispa (Kohlm.) Sakay., K.L. Pang & E.B.G. Jones,
Fungal Divers. 46: 96 (2011)
Lautisporopsis E.B.G. Jones, Yusoff & S.T. Moss,
Mycotaxon 67: 1 (1998)
1. L. circumvestita (Kohlm.) E.B.G. Jones, Yusoff & S.T.
Moss, Can. J. Bot. 72(10): 1558 (1994)
Lignincola Ho
¨hnk, Veroff. Inst. Meeresf. Bremerhaven 3:
216 (1955)
1. L. conchicola J.K. Liu, E.B.G. Jones & K.D. Hyde,
Mycotaxon 117: 344 (2011)
2. #L. laevis Ho
¨hnk, Ver ff. Inst. Meeresf. Bremerhaven 3:
216 (1955)
3. L. nypae K.D. Hyde & Alias, in Hyde, Goh, Lu & Alias,
Mycol. Res. 103(11): 1417 (1999)
4. #L. tropica Kohlm., Marine Ecology [Pubblicazioni
della Stazione Zoologica Napoli I] 5(4): 355 (1984)
Limacospora Jo
¨rg. Koch & E.B.G. Jones, Can. J. Bot.
73(7): 1011 (1995)
1. L. sundica (Jo
¨rg. Koch & E.B.G. Jones) Jo
¨rg. Koch &
E.B.G. Jones, Can. J. Bot. 73(7): 1013 (1995)
Luttrellia Shearer, Mycologia 70(3): 692 (1978)
1. L. estuarina Shearer, Mycologia 70(3): 693 (1978)
Magnisphaera J. Campbell, J.L. Anderson & Shearer,
Mycologia 95(3): 546 (2003)
1. #M. spartinae (E.B.G. Jones) J. Campb., J.L. Anderson
& Shearer, Mycologia 95(3): 547 (2003)
Marinospora A.R. Caval., Nova Hedwigia 11: 548 (1966)
1. M. calyptrata (Kohlm.) A.R. Caval., Nova Hedwigia 11:
548 (1966)
2. #M. longissima (Kohlm.) A.R. Caval., Nova Hedwigia
11: 548 (1966)
Moana Kohlm. & Volkm.-Kohlm., Mycol. Res. 92 (4): 418
(1989)
1. M. turbinulata Kohlm. & Volkm.-Kohlm., Mycol. Res.
92(4): 418 (1989)
Morakotiella Sakay., Mycologia 97(4): 806 (2005)
1. #M. salina (C.A. Farrant & E.B.G. Jones) Sakay.,
Mycologia 97(4): 806 (2005)
Nais Kohlm., Nova Hedwigia 4: 409 (1962)
1. #N. inornata Kohlm., Nova Hedwigia 4: 409 (1962)
Natantispora J. Campbell, J.L. Anderson & Shearer,
Mycologia 95(3): 543 (2003)
1. #N. lotica (Shearer) J. Campb., J.L. Anderson & Shearer,
Mycologia 95(3): 543 (2003)
2. #N. retorquens (Shearer & J.L. Crane) J. Campb., J.L.
Anderson & Shearer, Mycologia 95(3): 543 (2003)
3. #N. unipolarae K.L. Pang, S.Y. Guo & E.B.G. Jones, In
Liu et al. Fungal Divers. 72:19 (2015)
Nautosphaeria E.B.G. Jones, Trans. Br. Mycol. Soc. 47(1):
97 (1964)
1. #N. cristaminuta E.B.G. Jones, Trans. Br. Mycol. Soc.
47(1): 97 (1964)
Neptunella K.L. Pang & E.B.G. Jones, Mycol. Progr. 2(1):
35 (2003)
1. #N. longirostris (Cribb & J.W. Cribb) K.L. Pang &
E.B.G. Jones, Mycol. Progr. 2(1): 35 (2003)
Nereiospora E.B.G. Jones, R.G. Johnson & S.T. Moss, J.
Linn. Soc. Bot. 87(2): 204 (1983)
1. #N. comata (Kohlm.) E.B.G. Jones, R.G. Johnson & S.T.
Moss, J. Linn. Soc. Bot. 87(2): 206 (1983)
2. #N. cristata (Kohlm.) E.B.G. Jones, R.G. Johnson & S.T.
Moss, J. Linn. Soc. Bot. 87(2): 206 (1983)
Nimbospora J. Koch, Nordic J. Bot. 2(2): 166 (1982)
1. N. bipolaris K.D. Hyde & E.B.G. Jones, Can. J. Bot.
63(3): 611 (1985)
2. #N. effusa Jrg. Koch, Nordic J. Bot. 2(2): 166 (1982)
Nohea Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 10: 121
(1991)
1. #N. umiumi Kohlm. & Volkm.-Kohlm., Syst. Ascomyc.
10: 122 (1991)
2. N. delmarensis (Kohlm. & Volkm.-Kohlm.) Abdel-
Wahab, Mycotaxon 115: 448 (2011)
3. #N. spinibarbata (Jrg. Koch) Abdel-Wahab, Mycotaxon
115: 448 (2011)
Oceanitis Kohlm., Revue Mycol. 41(2): 193 (1977)
1. #O. cincinnatula (Shearer & J.L. Crane) J. Dupont &
E.B.G. Jones, Mycol. Res. 113(12): 1357 (2009)
Fungal Diversity
123
2. #O. scuticella Kohlm., Revue Mycol., Paris 41(2): 194
(1977)
3. #O. unicaudata (E.B.G. Jones & Camp.-Als.) J. Dupont
& E.B.G. Jones, Mycol. Res. 113(12): 1357 (2009
4. #O. viscidula (Kohlm. & E. Kohlm.) J. Dupont & E.B.G.
Jones, Mycol. Res. 113(12): 1358 (2009)
Ocostaspora E.B.G. Jones, R.G. Johnson & S.T Moss, Bot.
Mar. 26: 353 (1983)
1. #O. apilongissima E.B.G. Jones, R.G. Johnson & S.T.
Moss, Bot. Mar. 26(7): 354 (1983)
Okeanomyces K.L. Pang & E.B.G. Jones, J. Linn. Soc.
Bot. 146(2): 228 (2004)
1. #O. cucullatus (Kohlm.) K.L. Pang & E.B.G. Jones, J.
Linn. Soc. Bot. 146(2): 228 (2004)
Ondiniella E.B.G. Jones, R.G. Johnson & S.T. Moss, Bot.
Mar. 27: 136 (1984)
1. #O. torquata (Kohlm.) E.B.G. Jones, R.G. Johnson &
S.T. Moss, Bot. Mar. 27(3): 136 (1984)
Ophiodeira Kohlm. & Volkm.-Kohlm., Can. J. Bot. 66
(10): 2062 (1988)
1. #O. monosemeia Kohlm. & Volkm.-Kohlm., Can. J. Bot.
66(10): 2062 (1988)
Paraaniptodera K.L. Pang, C.L. Lu, W.T. Ju et E.B.G.
Jones, Botanica Marina 60: 460 (2017)
1. P. longispora (K.D. Hyde) K.L. Pang, C.L. Lu, W.T. Ju
et E.B.G. Jones, Botanica Marina 60: 460 (2017)
Praelongicaulis E.B.G. Jones, Abdel-Wahab, & K.L.
Pang, gen. nov. Fungal Divers. 73: 54 (2015)
1. #P. kandeliae (Abdel-Wahab & E.B.G. Jones) E.B.G.
Jones, Abdel-Wahab, & K.L. Pang, comb. nov. Fungal
Divers. 73: 54 (2015)
Panorbis J. Campbell, J.L. Anderson & Shearer, Mycolo-
gia 95(3): 544 (2003)
1. #P. viscosus (I. Schmidt) J. Campb., J.L. Anderson &
Shearer, Mycologia 95(3): 544 (2003)
Pileomyces K.L. Pang & Jheng, Bot. Stud. 53: 536 (2012)
1. #P. formosanus K.L. Pang & J.S. Jheng, Bot. Stud. 53:
536 (2012)
Pseudolignincola Chatmala & E.B.G. Jones, Nova Hed-
wigia 83(1–2): 225 (2006)
1. #P. siamensis Chatmala & E.B.G. Jones, in Jones,
Chatmala & Pang, Nova Hedwigia 83(1–2): 226 (2006)
Remispora Linder, Farlowia 1(3): 409 (1944)
1. #R.maritima Linder, Farlowia 1: 410 (1944)
2. R. minuta E.B.G. Jones, K.L. Pang & Vrijmoed, Can.
J. Bot. 82(4): 486 (2004)
3. #R. pileata Kohlm. Nova Hedwigia 6(3–4): 319 (1963)
4. #R. spitsbergensis K.L. Pang & Vrijmoed, Mycologia
101(4): 533 (2009)
5. #R. stellata Kohlm., Nova Hedwigia 2: 334 (1960)
6. #R. quadri-remis (Ho
¨hnk) Kohlm., Nova Hedwigia 2:
332 (1960)
Saagaromyces K.L. Pang & E.B.G. Jones, Mycol. Progr.
2(1): 35 (2003)
1. #S. abonnis (Kohlm.) K.L. Pang & E.B.G. Jones, Mycol
Progr 2(1): 35 (2003)
2. #S. glitra (J.L. Crane & Shearer) K.L. Pang & E.B.G.
Jones, Mycol. Progr. 2(1): 35 (2003)
3. #S. mangrovei Abdel-Wahab, Bahkali & E.B.G. Jones,
In: Liu et al. Fungal Divers. 72:32 (2015)
4. #S. ratnagiriensis (S.D. Patil & Borse) K.L. Pang &
E.B.G. Jones, in Pang, Vrijmoed, Kong & Jones, Mycol.
Progr. 2(1): 35 (2003)
Sablecola E.B.G. Jones & K.L. Pang & Vrijmoed, Can.
J. Bot. 82(4): 486 (2004)
1. #S. chinensis E.B.G. Jones, K.L. Pang & Vrijmoed, Can.
J. Bot. 82(4): 486 (2004)
Thalassogena Kohlm. & Volkm.-Kohlm., Syst. Ascomyc.
6: 223 (1987)
1. Th. sphaerica Kohlm. & Volkm.-Kohlm., Syst. Asco-
myc. 6(2): 225 (1987)
Thalespora Chatmala & E.B.G. Jones, Nova Hedwigia
83(1–2): 228 (2006)
1. #T. appendiculata Chatmala & E.B.G. Jones, in Jones,
Chatmala & Pang, Nova Hedwigia 83(1–2): 229 (2006)
Tinhaudeus K.L. Pang, S.Y. Guo & E.B.G. Jones, Fungal
Divers. 75: 160 (2015)
1. #T. formosanus K.L. Pang, S.Y. Guo &E.B.G. Jones,
Fungal Divers. 75: 164 (2015)
Tirispora E.B.G. Jones & Vrijmoed, Can. J. Bot. 72(9):
1373 (1994)
1. T. mandoviana V.V. Sarma & K.D. Hyde, Australas.
Mycol. 19(2): 52 (2000)
2. #T. unicaudata E.B.G. Jones & Vrijmoed, in Jones,
Vrijmoed, Read & Moss, Can. J. Bot. 72(9): 1373 (1994)
Toriella Sakay., K.L. Pang & E.B.G. Jones, Fungal Divers.
46(1): 99 (2011)
1. T. tubulifera (Kohlm.) Sakay., K.L. Pang & E.B.G.
Jones, Fungal Divers. 46(1): 100 (2011)
Trailia G.K. Sutherl., Trans. Br. Mycol. Soc. 5: 149 (1915)
1. T. ascophylli G.K. Sutherl., Trans. Br. Mycol. Soc. 5(1):
149 (1915)
Trichomaris Hibbits, G.C. Hughes & Sparks, Can. J. Bot.
59(11): 2123 (1981)
1. T. invadens Hibbits, G.C. Hughes & Sparks, Can. J. Bot.
59(11): 2123 (1981)
Tubakiella Sakay., K.L. Pang & E.B.G. Jones, Fungal
Divers. 46: 97 (2011)
1. #T. galerita (Tubaki) Sakay., K.L. Pang & E.B.G. Jones,
Fungal Divers. 46: 99 (2011)
Tunicatispora K.D. Hyde, Aust. Syst. Bot. 3: 712 (1990)
1. T. australiensis K.D. Hyde, Aust. Syst. Bot. 3(4): 712
(1990)
Microascaceae Luttr. ex Malloch, Mycologia 62: 734
(1970)
Fungal Diversity
123
Acaulium Sopp, Skrifter udgivne af Videnskabs-Selskabet
i Christiania. Mathematisk-Naturvidenskabelig Klasse 11:
42 (1912)
1. A. acremonium (Delacr.) Sandoval-Denis, Guarro &
Gen, Studies in Mycology 83: 199 (2016)
Cephalotrichum Link, Magazin der Gesellschaft Natur-
forschenden Freunde Berlin 3 (1): 20 (1809)
1. C. stemonitis (Pers.) Nees, Magazin der Gesellschaft
Naturforschenden Freunde Berlin 3 (1): 20 (1809)
Microascus Zukal, Verhandlungen der Zoologisch-
Botanischen Gesellschaft Wien 35: 342 (1885)
1. #M. brevicaulis S.P. Abbott, in Abbott, Sigler & Currah,
Mycologia 90(2): 298 (1998)
2. M. paisii (Pollacci) Sandoval-Denis, Gen & Guarro,
Persoonia 36: 21 (2016)
3. M. trigonosporus C.W. Emmons & B.O. Dodge,
Mycologia 23(5): 317 (1931)
Petriella Curzi, Bolletino della Stazione di Patologia
Vegetale Roma 10: 384 (1930)
1. P. sordida (Zukal) G.L. Barron & J.C. Gilman, Can.
J. Bot. 39: 839 (1961)
Pseudallescheria Negr. & I. Fisch., Revista Inst. Bacteriol.
‘Dr. Carlos G. Malbrn’ 12(201): 5–9 (1944)
1. Ph. boydii (Shear) McGinnis, A.A. Padhye & Ajello,
Mycotaxon 14(1): 97 (1982)
*Scopulariopsis Bainier, Bull. Soc. Mycol. Fr. 23: 98
(1907)
1. S. brumptii Salv.-Duval, The
`se Fac Pharm Paris 23: 58
(1935)
2. S. candida Vuill., Bull. Soc. Mycol. Fr. 27(2): 143
(1911)
3. S. halophilica Tubaki, Trans. Mycol. Soc. Jpn. 14(4):
367 (1973)
4. S. hibernica A. Mangan, Trans. Br. Mycol. Soc. 48 (3):
617 (1965)
Wardomyces F.T. Brooks & Hansf., Transactions of the
British Mycological Society 8 (3): 137 (1923)
1. W. anomalus F.T. Brooks & Hansf., Trans. Br. Mycol.
Soc. 8 (3): 137 (1923)
4. GLOMERELLALES Chadef. ex Rblov, W. Gams &
Seifert, Stud. Mycol. 68: 170 (2011)
Plectosphaerellaceae W. Gams, Summerbell & Zare,
Nova Hedwigia 85(3–4): 476 (2007)
Plectosphaerella Kleb., Phytopath. Z. 1: 43 (1930)
1. #P. oratosquillae (P.M. Duc, Yaguchi & Udagawa)
A.J.L. Phillips, A. Carlucci & M.L. Raimondo, Persoonia
28: 43 (2012)
2. P. cucumerina (Lindf.) W. Gams, Persoonia 5 (2): 179
(1968)
Verticillium Nees, System der Pilze und Schwmme: 56
(1817)
1. V. dahliae Kleb., Mycologisches Centralblatt 3: 66 (1913)
5. PLEUROTHECIALES Re
´blova
´& Seifert, Persoonia
37: 63 (2016)
Pleurotheciaceae Re
´blova
´& Seifert, Persoonia 37: 63
(2016)
*Phaeoisaria Hhn., Sitzungsberichte der Kaiserlichen
Akademie der Wissenschaften Math.-naturw. Klasse Abt. I
118: 330 (1909)
1. #Ph. sedimenticola X.L. Cheng & Wei Li, Mycologia
127: 20 (2014)
6. TORPEDOSPORALES E.B.G. Jones. Abdel-Wahab &
K.L. Pang, Fungal Divers. (2015) Fungal Diversity 73: 43
(2015)
Juncigenaceae E.B.G. Jones, Abdel-Wahab & K.L. Pang,
Cryptog. Mycol. 35(2): 133 (2014)
Khaleijomyces Abdel-Wahab, Phytotaxa 340 (3): 289
(2018)
1. # Kh. marinus Abdel-Wahab, Phytotaxa 340 (3): 289
(2018)
Juncigena Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot.
Mar. 40: 291 (1997)
1. #J. adarca Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot.
Mar. 40(4): 291 (1997)
2. #J. fruticosae (Abdel-Wahab, Abdel-Aziz & Nagah.)
A.N. Mill. & Shearer, in Re
´blova
´et al., IMA Fungus 7(1):
139 (2016)
Fulvocentrum E.B.G. Jones & Abdel-Wahab, Cryptog.
Mycol. 35(1): 131 (2014)
1. #F. aegyptiaca (Abdel-Wahab, El-Sharouney & E.B.G.
Jones) E.B.G. Jones & Abdel-Wahab, Cryptog. Mycol.
35(1): 1321 (2014)
2. #F. clavatisporium (Abdel-Wahab, El-Sharouney &
E.B.G. Jones) E.B.G. Jones & Abdel-Wahab, Cryptog.
Mycol. 35(1): 132 (2014)
3. #F.rubrum Abdel-Wahab & E.B.G. Jones Nov. Hed-
wigia (in press)
Marinokulati E.B.G. Jones & K.L. Pang, Cryptog. Mycol.
35(1): 132 (2014)
1. #M. chaetosa (Kohlm.) E.B.G. Jones & K.L. Pang,
Cryptog. Mycol. 35(1): 132 (2014)
Etheirophoraceae Rungjindamai, Somrithipol & Sue-
trong, Cryptog. Mycol. 35(2): 134 (2014)
Etheirophora Kohlm. & Volkm.-Kohlm., Mycol. Res.
92(4): 414 (1989)
1. E. bijubata Kohlm. & Volkm.-Kohlm., Mycol. Res.
92(4): 414 (1989)
2. E. blepharospora (Kohlm. & E. Kohlm.) Kohlm. &
Volkm.-Kohlm., Mycol. Res. 92(4): 415 (1989)
3. E. unijubata Kohlm. & Volkm.-Kohlm., Mycol. Res.
92(4): 415 (1989)
Fungal Diversity
123
Swampomyces Kohlm. & Volkm.-Kohlm., Bot. Mar. 30:
198 (1987)
1. #S. armeniacus Kohlm. & Volkm.-Kohlm., Bot. Mar.
30(3): 200 (1987)
2. #S. triseptatus K.D. Hyde & Nakagiri, Sydowia 44(2):
122 (1992)
Torpedosporaceae E.B.G. Jones & K.L. Pang, Cryptog.
Mycol. 35(2): 135 (2014)
Torpedospora Meyers, Mycologia 49: 496 (1957)
1. #T. ambispinosa Kohlm., Nova Hedwigia 2: 336 (1960
2. #T. radiata Meyers, Mycologia 49: 496 (1957)
3. # T. mangrovei (Abdel-Wahab & Nagah.) E.B.G. Jones
& Abdel-Wahab, in Re
´blova
´et al., IMA Fungus 7(1): 139
(2016)
Subclass: Savoryellomycetidae Hongsanan, K.D. Hyde &
Maharachch., Fungal Diversity 84: 35 (2017)
1. SAVORYELLALES Boonyuen, Suetrong, S. Sivichai,
K.L. Pang & E.B.G. Jones, Mycologia 103(6): 1368 (2011)
Savoryellaceae Jaklitsch & Rblov, in Jaklitsch & Rblov,
Index Fungorum 209 (2015)
Savoryella E.B.G. Jones & R.A. Eaton, Trans. Br. Mycol.
Soc. 52(1):161 (1969)
1. #S. appendiculata K.D. Hyde & E.B.G. Jones, Bot. Mar.
35(2): 89 (1992)
2. #S. lignicola E.B.G. Jones & R.A. Eaton, Trans. Br.
Mycol. Soc. 52(1): 161 (1969)
3. #S. longispora E.B.G. Jones & K.D. Hyde, Bot. Mar.
35(2): 84 (1992)
4. S. melanospora Abdel-Wahab & E.B.G. Jones, Myco-
science 41(4): 387 (2000)
5. S. paucispora (Cribb & J.W. Cribb) J. Koch, Nordic J.
Bot. 2(2): 169 (1982)
Subclass: Diaporthiomycetidae I.C. Senanayake, Mahar-
achch., K.D. Hyde, Fungal Divers. 72: 10 (2015)
1. DIAPORTHALES Nannf., Nova Acta R. Soc. Scient.
upsal., 8(2): 53 (1932)
Valsaceae Tul. & C. Tul., Selecta Fungorum Carpologia 1:
180 (1861)
*Cytospora Ehrenb., Sylvae mycologicae Berolinenses: 28
(1818)
1. C. rhizophorae Kohlm. & E. Kohlm., Mycologia 63(4):
847 (1971)
Valsa Fr., Summa vegetabilium Scandinaviae 2: 410 (1849)
1. V. abietis Fr., Summa veg Scand, Section Post. (Stock-
holm): 412 (1849)
Diaporthaceae Ho
¨hn. ex Wehm., American Journal of
Botany 13: 638 (1926)
Diaporthe Nitschke, Pyrenomycetes Germanici 2: 240
(1870)
1. D. salsuginosa Vrijmoed, K.D. Hyde & E.B.G. Jones,
Mycol. Res. 98(6): 699 (1994)
*Phomopsis (Sacc.) Sacc., Annls Mycol. 3(6): 166 (1905)
1. P. mangrovei K.D. Hyde, Mycol. Res. 95(9): 1149 (1991)
2. P. pittospori (Cooke & Harkn.) Grove, Bulletin of
Miscellaneous Informations of the Royal Botanical Gar-
dens Kew 1919 (4): 181 (1919)
Gnomoniaceae G. Winter, Rabenhorst’s Kryptogamen-
Flora, Pilze - Ascomyceten 1(2): 570 (1886)
*Gloeosporidina Petr., Annls Mycol. 19(3–4): 214 (1921)
1. G. cecidii (Kohlm.) B. Sutton, The Coelomycetes (Kew):
517 (1980)
Hypophloeda K.D. Hyde & E.B.G. Jones, Trans. Mycol.
Soc. Jpn. 30(1): 61 (1989)
1. H. rhizospora K.D. Hyde & E.B.G. Jones, Trans. Mycol.
Soc. Jpn. 30(1): 62 (1989
Lautosporaceae Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Bot. Mar. 38: 169 (1995)
Lautospora K.D. Hyde & E.B.G. Jones, Bot. Mar. 32: 479
(1989)
1. L. gigantea K.D. Hyde & E.B.G. Jones, Bot. Mar. 32(3):
479 (1989)
2. #L. simillima Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Bot. Mar. 38(2): 169 (1995)
2. OPHIOSTOMATALES Benny & Kimbr., Mycotaxon
12 (1): 48 (1980)
Ophiostomataceae Nannf., Nova Acta Regiae Societatis
Scientiarum Upsaliensis 8 (2): 30 (1932)
Ophiostoma Syd. & P. Syd., Annales Mycologici 17 (1):
43 (1919)
1. O. ulmi (Buisman) Melin & Nannf., Svenska
Skogsva
˚rdsfo
¨reningens Tidskrift 32: 408 (1934)
3. PHOMATOSPORALES Senan., Maharachch. & K.D.
Hyde, Mycosphere 7 (5): 631 (2016)
Phomatosporaceae Senan. & K.D. Hyde, Mycosphere 7
(5): 633 (2016)
Lanspora K.D. Hyde & E.B.G. Jones, Can. J. Bot. 64(8):
1581 (1986)
1. #L. coronata K.D. Hyde & E.B.G. Jones, Can. J. Bot.
64(8): 1581 (1986)
Phomatospora Sacc., Grevillea 4(29): 22 (1875)
1. P. acrostichi K.D. Hyde, Trans. Br. Mycol. Soc. 90(1):
135 (1988)
2. #P. bellaminuta Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Bot. Mar. 38(2): 181 (1995)
3. P. dinemasporium J. Webster, Trans. Br. Mycol. Soc. 38:
364 (1955)
4. P. kandeliae K.D. Hyde, Trans. Mycol. Soc. Jpn. 33(3):
315 (1992)
5. P. nypae K.D. Hyde, Sydowia 45(2): 200 (1993)
Fungal Diversity
123
6. P. nypicola K.D. Hyde & Alias, Mycol. Res. 103(11):
1417 (1999)
7. P. phragmiticola Poon & K.D. Hyde, Bot. Mar. 41(2):
148 (1998)
4. TIRISPORELLALES Suetrong, K.L. Pang & E.B.G.
Jones, Fungal Divers. (2015)
Tirisporellaceae Suetrong, K.L. Pang & E.B.G. Jones,
Cryptog. Mycol. [In Press]
Bacusphaeria Norlailatul, Alias & S. Suetrong, Bot Mar
60: 479 (2017)
1. #B. nypenthi Norlailatul, Alias & S. Sueterong, In
Abdel-Wahab et al., Bot mar 60: 479 (2017)
Tirisporella (Ces.) E.B.G. Jones, K.D. Hyde & Alias, Can.
J. Bot. 74(9): 1490 (1996)
1. #T. beccariana (Ces.) E.B.G. Jones, K.D. Hyde & Alias,
Can. J. Bot. 74(9): 1490 (1996)
Subclass: Sordariomycetidae O.E. Erikss. & Winka,
Myconet 1(1): 10 (1997)
1. BOLINIALES P.F. Cannon, Dictionary of the fungi: X
(2001)
Boliniaceae Rick, Brotria Sr. Bot. 25(2): 65 (1931)
Lentomitella Ho
¨hn., Annal. Mycol. 3(6): 552 (1906)
1. #L. cirrhosa (Pers.) R blov, Mycologia 98(1): 82 (2006)
2. CALOSPHAERIALES M.E. Barr, Mycologia 75: 11
(1983)
Calosphaeriaceae Munk, Dansk botanisk Arkiv 17 (1):
278 (1957)
Jattaea Berl., Icones Fungorum. Pyrenomycetes. Sphaeri-
aceae. Allantosporae 3: 6 (1900)
1. J. mucronata Dayarathne & K.D. Hyde, Botanica Mar-
ina 60: 479 (2017)
3. CHAETOSPHAERIALES
Chaetosphaeriaceae Re
´blova
´, M.E. Barr & Samuels,
Sydowia 51: 56 (1999)
Chaetosphaeria Re
´blova
´, M.E. Barr & Samuels, Sydowia
51: 56 (1999)
1. Ch. mangrovei Dayarathne, E.B.G. Jones & K.D. Hyde,
Mycosphere 9: 395 (2018)
4. MAGNAPORTHALES Thongk., Vijaykr. & K.D.
Hyde, Fungal Divers. 34: 166 (2009)
Magnaporthaceae P.F. Cannon, Syst. Ascomyc. 13(1): 26
(1994)
Buergenerula Syd., Annls Mycol. 34(4–5): 392 (1936)
1. #B. spartinae Kohlm. & R.V. Gessner, Can. J. Bot.
54(15): 1764 (1976)
Kohlmeyeriopsis S. Klaubauf, M.H. Lebrun & P.W. Crous,
Stud. Mycol. 79: 101 (2014)
1. #K. medullaris (Kohlmeyer, Volkmann-Kohlmeyer &
O.E. Eriksson) S. Klaubauf, M.H. Lebrun & P.W. Crous,
Studies in Mycology 79: 101 (2014)
Pseudohalonectriaceae Hongsanan & K.D. Hyde, Fungal
Diversity 84: 33 (2017)
Pseudohalonectria Minoura & T. Muroi, Trans. Mycol.
Soc. Jpn. 19: 132 (1978)
1. P. falcata Shearer, Can. J. Bot. 67(7): 1945 (1989)
2. P. halophila Kohlm. & Volkm.-Kohlm., Bot. Mar. 48(4):
310 (2005)
5. SORDARIALES Chadef. ex D. Hawksw. & O.E.
Erikss., Syst. Ascomyc. 5: 182 (1986)
Lasiosphaeriaceae Nannf., Nova Acta R. Soc. Scient.
upsal. 8(2): 50 (1932)
Biconiosporella Schaumann, Ver ff. Inst. Meeresf. Bre-
merhaven: 14: 24 (1972)
1B. corniculata Schaumann, Ver ff. Inst. Meeresf. Bre-
merhaven 14(1): 24 (1972)
Zopfiella G. Winter, Rabenhorst’s Kryptogamen-Flora,
Pilze - Ascomyceten 1(2): 56 (1884)
1. Z. latipes (N. Lundq.) Malloch & Cain, Can. J. Bot. 49:
876 (1971)
2. Z. marina Furuya & Udagawa, J. Jap. Bot. 50(8): 249 (1975)
Chaetomiaceae G. Winter, Rabenh Krypt-Fl: 153 (1885)
Chaetomium Kunze, Mykologische Hefte 1: 15 (1817)
1. Ch. crispatum (Fuckel) Fuckel, Jb. nassau. Ver. Naturk.
23–24: 90 (1870)
2. Ch. erectum Skolko & J.W. Groves, Can. J. Res., Sec-
tion C 26: 277 (1948)
3. Ch. funicola Cooke, Grevillea 1(11): 176 (1873)
4. Ch. globosum Kunze, in Kunze & Schmidt, Mykolo-
gische Hefte (Leipzig) 1: 16 (1817)
5. Ch. heteropilum N.J. Artemczuk, Mikol. Fitopatol.
14(2): 93 (1980)
6. Ch. ramipilosum Schaumann, Arch. Mikrobiol. 91(2): 98
(1973)
7. Ch. thermophilum La Touche, Trans. Br. Mycol. Soc.
33(1–2): 95 (1950)
Sordariales incertae sedis
Abyssomyces Kohlm., Ber. Deut. Bot. Ges. 83(9–10): 505
(1970)
1. A. hydrozoicus Kohlm., Ber. Deut. Bot. Ges. 83(9–10):
505 (1970)
*Koorchaloma Subram., J. Indian Bot. Soc. 32: 124 (1953)
1. K. galateae Kohlm. & Volkm.-Kohlm., Bot. Mar. 44(2):
147 (2001)
2. K. spartinicola V.V. Sarma, S.Y. Newell & K.D. Hyde,
Bot. Mar. 44(4): 321 (2001)
Fungal Diversity
123
6. PHYLLACHORALES M.E. Barr, Mycologia 75: 11
(1983)
Phyllachoraceae Theiss. & P. Syd., Annls Mycol. 13(3–4):
168 (1915)
Phyllachora Nitschke ex Fuckel, Jb. Nassau. Ver. Naturk.
23–24: 216 (1870)
1. Ph. paludicola Kohlm. & Volkm.-Kohlm., Mycologia
95(1): 120 (2003)
Polystigmataceae Ho
¨hn. ex Nannf., Nova Acta Regiae
Societatis Scientiarum Upsaliensis 8 (2): 51 (1932)
Polystigma DC., Fl Fran 6: 164 (1815)
1. P. apophlaeae Kohlm., in Kohlmeyer & Demoulin, Bot.
Mar. 24(1): 13 (1981)
Phyllachorales incertae sedis
Marinosphaera K.D. Hyde, Can. J. Bot. 67(10): 3080 (1989)
1. #M. mangrovei K.D. Hyde, Can. J. Bot. 67(10): 3080 (1989)
Phycomelaina Kohlm., Phytopath. Z. 63(4): 350 (1968)
1. P. laminariae(Rostr.) Kohlm., Phytopath. Z. 63: 350(1968)
7. TRICHOSPHAERIALES M.E. Barr, Mycologia 75:
11 (1983)
Trichosphaeriaceae G. Winter, Rabenh. Krypt.- Fl.:
191(1885)
*Brachysporium (Sacc.) Sacc., Syll. Fung. 4: 423 (1886)
1. B. helgolandicum Schaumann, Helgolander wiss,
Meeresunters. 25(1): 26–34 (1973)
Trichosphaeriales insertae sedis
Khuskia H.J. Huds., Trans. Br. Mycol. Soc. 46(3): 358 (1963)
1. #K. oryzae H.J. Huds., Trans. Br. Mycol. Soc. 46(3): 358
(1963)
Nigrospora Zimm., Centralblatt fu
¨r Bakteriologie und
Parasitenkunde 8: 220 (1902)
1. N. oryzae (Berk. & Broome) Petch, J. Indian bot. Soc.: 24
(1924)
Sordariomycetes incertae sedis
*Myrmecridium Arzanlou, W. Gams & Crous, Stud.
Mycol. 58: 84 (2007)
1. #M. schulzeri (Sacc.) Arzanlou, W. Gams & Crous, in
Arzanlou et al., Stud. Mycol. 58: 84 (2007)
*Radulidium Arzanlou, W. Gams & Crous, Studies in
Mycology 58: 89 (2007)
1. R. epichloe¨s (Ellis & Dearn.) Arzanlou, W. Gams &
Crous, Studies in Mycology 58: 89 (2007)
Subclass: Xylariomycetidae O.E. Erikss. & Winka, Myc-
onet 1(1): 12 (1997)
XYLARIALES Nannf., Nova Acta R. Soc. Scient. upsal.
8(2): 66 (1932)
Amphisphaeriaceae G. Winter, Rabenhorst’s Kryptoga-
men-Flora, Pilze - Ascomyceten 1(2): 259 (1885)
Amphisphaeria Ces. & De Not., Comm. Soc. crittog. Ital.
1(4): 223 (1863)
1. A. culmicola Sacc., Nuovo Giornale Bot. It. 5: 283 (1873)
Apiosporaceae K. D. Hyde, J. Fr hl., Joanne E. Taylor &
M.E. Barr, Sydowia 50(1): 23 (1998)
Apiospora Sacc., Atti della Societ Veneziana-Trentina-Is-
triana di Scienze Naturali 4: 85 (1875)
1. #A. montagnei Sacc., Nuovo G. Bot. Ital. 7: 306 (1875)
*Arthrinium Kunze, Mykologische Hefte 1: 9 (1817)
1. A. algicola (N.J. Artemczuk) E.B.G. Jones, Sakay., Sue-
trong, Somrith. & K.L. Pang, Fungal Divers.: 150 (2010)
Bartaliniaceae Wijayaw., Maharachch. & K.D. Hyde,
Fungal Diversity 73: 85 (2015)
Broomella Sacc., Sylloge Fungorum 2: 557 (1883)
1. B. acuta Shoemaker & E. Mll., Can. J. Bot. 41 (8): 1239
(1963)
Cainiaceae J.C. Krug, Sydowia 30(1–6): 123 (1978)
Arecophila K.D. Hyde, Nova Hedwigia 63: 82 (1996)
1. A. nypae K.D. Hyde, Nova Hedwigia 63: 95 (1996)
Atrotorquata Kohlm. & Volkm.-Kohlm., Syst. Ascomyc.
12(1–2): 8 (1993)
1. A. lineata Kohlm. & Volkm.-Kohlm., Syst. Ascomyc.
12(1–2): 8 (1993)
Monographella Petr., Annls. Mycol. 22(1–2): 144 (1924)
1. M. nivalis (Schaffnit) E. Mll., Revue Mycol., Paris
41(1): 132 (1977)
*Pestalotiopsis Steyaert, Bull. Jard. bot. tat Brux. 19(3):
300 (1949)
1. #P. guepinii (Desm.) Steyaert [as ‘guepini’], Bull. Jard.
bot. tat Brux. 19(3): 312 (1949)
2. P. juncestris Kohlm. & Volkm.-Kohlm., Bot. Mar.
44(2): 149 (2001)
Clypeosphaeriaceae G. Winter, Rabenh Krypt-Fl 1(2):
554 (1886)
Apioclypea K.D. Hyde, J. Linn. Soc. Bot. 116: 316 (1994)
1. A. nypicola K.D. Hyde, J. Frhl. & Joanne E. Taylor,
Sydowia 50(1): 36 (1998)
Ommatomyces Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Mycologia 87(4): 538 (1995)
1. O. coronatus Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Mycologia 87(4): 538 (1995)
Diatrypaceae Nitschke, Verh. naturh. Ver. preuss. Rheinl.:
73 (1869)
Cryptosphaeria Grev., Scott. crypt. fl. (Edinburgh) 1: pl. 13
(1822)
1. #Cryp. avicenniae Devadatha & V.V. Sarma, sp. nov. in
press
2. Cryp. bathurstensis (K.D. Hyde & Rappaz) Dayarathne
& K.D. Hyde, comb. nov., in press
3. Cryp. eunomia (Fr.) Fuckel, Jb. Nassau. Ver. Naturk.
23–24: 212 (1870)
Fungal Diversity
123
4. #Cryp. halophila Dayarathne & K.D. Hyde, sp. nov., in
press
Cryptovalsa Ces. & De Not. ex Fuckel, Jahrbcher des
Nassauischen Vereins fr Naturkunde 23–24: 212 (1870)
1. C. halosarceiicola K.D. Hyde, Mycol.Res 97(7): 799 (1993)
2. #C. mangrovei Abdel-Wahab & Inderb., in Inderbitzin,
Abdel-Wahab, Jones & Vrijmoed, Mycol. Res. 103(12):
1628 (1999)
3. C. suaedicola Spooner, Trans. Br. mycol. Soc. 76(2):
269 (1981)
Diatrype Fr., Summa veg. Scand., Sectio Post. (Stock-
holm): 384 (1849)
1. #D. mangrovei Dayarathne & K.D. Hyde sp. nov.
Diatrypasimilis J.J. Zhou & Kohlm., Mycologia 102(2):
432 (2010)
1. #D. australiensis J.J. Zhou & Kohlm., Mycologia
102(2): 432 (2010)
Eutypa Tul. & C. Tul., Select. Fung. Carpol. 2: 52 (1863)
1. Eutypa bathurstensis K.D. Hyde & Rappaz, Mycol. Res.
97(7): 861 (1993)
Eutypella (Nitschke) Sacc., Atti Soc. Veneto-Trent. Sci.
Nat. 4: 80 (1875)
1.# E. naqsii K.D. Hyde, Mycol. Res. 99(12): 1462 (1995)
Halocryptovalsa Dayarathne & K.D. Hyde gen nov.
1. #H. avicenniae (Abdel-Wahab, Bahkali & E.B.G. Jones)
Dayarathne & K.D. Hyde comb. nov.
2. #H. salicorniae Dayarathne & K.D. Hyde sp. nov.
Halodiatrype Dayarathne & K.D. Hyde, Mycosphere 7 (5):
617 (2016)
1. #H. avicenniae Dayarathne & K.D. Hyde, Mycosphere 7
(5): 618 (2016)
2. #H. salinicola Dayarathne & K.D. Hyde, Mycosphere 7
(5): 617 (2016)
3. #H. mangrovei (K.D. Hyde) Dayarathne & K.D. Hyde,
Mycosphere 7 (5): 619 (2016)
Pedumispora K.D. Hyde & E.B.G. Jones, Mycol. Res. 96:
78 (1992)
1. #P. rhizophorae K.D. Hyde & E.B.G. Jones, Mycol. Res.
96(1): 78 (1992)
Peroneutypa Berl., Icon. Fung.: 80 (1902)
1. P. scoparia (Schwein.) Carmara
´n & A.I. Romero, in
Carmara
´n, Romero & Giussani, Fungal Diversity 23: 84
(2006)
Hyponectriaceae Petr., Annls. Mycol. 21(3–4): 305 (1923)
Frondicola K.D. Hyde, J. Linn. Soc. Bot. 110: 100 (1992)
1. F. tunitricuspis K.D. Hyde, J. Linn. Soc. Bot. 110(2):
102 (1992)
Phragmitensis K.M. Wong, Poon & K.D. Hyde, Bot. Mar.
41(4): 379 (1998)
1. P. marina M.K.M. Wong, Poon & K.D. Hyde, Bot. Mar.
41(4): 379 (1998)
Physalospora Niessl, Verh. nat. Ver. Brnn 14: 170 (1876)
1. Ph. citogerminans Kohlm., Volkm.-Kohlm. & O.E.
Erikss., Bot. Mar. 38: 183 (1995)
Xylariaceae Tul. & C. Tul., Select. Fung. Carpol.: 3 (1863)
Ascotricha Berk., Annals and Magazine of Natural History
1: 257 (1838)
1. A. chartarum Berk., Ann Nat Hist, Mag Zool Bot Geol 1:
257 (1838)
2. # A. longipila X.L. Chen & W. Li, Mycologia 107: 492
(2015)
3. # A. parvispora X.L. Chen & W. Li, Mycologia 107 (2):
494 (2015)
4. # A. sinuosa (W. Li & X.L. Cheng) X.L. Chen & W. Li,
Mycologia 107 (2): 494 (2015)
Anthostomella Sacc., Atti Soc. Veneto-Trent. Sci. Nat.,
Padova, Sr 44: 84 (1875)
1. A. atroalba Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Can. J. Bot. 76(3): 467 (1998)
2. A. nypae K.D. Hyde, B.S. Lu & Alias, Mycol. Res.
103(11): 1409 (1999)
3. A. nypensis K.D. Hyde, Alias & B.S. Lu, Mycol. Res.
103(11): 1410 (1999)
4. A. nypicola K.D. Hyde, Alias & B.S. Lu, Mycol. Res.
103(11): 1411 (1999)
5. A. poecila Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot.
Mar. 38(2): 175 (1995)
6. A. punctulata (Roberge ex Desm.) Sacc., Syll. Fung. 1:
278 (1882)
7. A. semitecta Kohlm., Volkm.-Kohlm. & O.E. Erikss.,
Bot. Mar. 38: 177 (1995)
8. A. spissitecta Kohlm. & Volkm.-Kohlm., Mycol. Res.
106(3): 369 (2002)
9. A. torosa Kohlm. & Volkm.-Kohlm., Mycol. Res.
106(3): 365 (2002)
Astrocystis Berk. & Broome, J. Linn. Soc. Bot. 14(74): 123
(1873)
1. A. nypae G.J.D. Sm. & K.D. Hyde, Fungal Divers. 7: 93
(2001)
2. A. selangorensis G.J.D. Sm. & K.D. Hyde, Fungal
Divers. 7: 104 (2001)
*Dicyma Boulanger, Rev. gn. Bot. 9: 18 (1897)
1. D. ovalispora (S. Hughes) Arx, Gen. Fungi Sporul. Cult.,
Edn. 3 (Vaduz): 316 (1981)
Fasciatispora K.D. Hyde, Trans. Mycol. Soc. Jpn. 32: 265
(1991)
1. F. lignicola Alias, E.B.G. Jones & Kuthub., Mycotaxon
52(1): 78 (1994)
2. F. nypae K.D. Hyde, Trans. Mycol. Soc. Jpn. 32(2): 267
(1991)
Halorosellinia Whalley, E.B.G. Jones, K.D. Hyde &
Laessoe, Mycol. Res. 104(3): 368 (2000)
1. #H. oceanica (S. Schatz) Whalley, E.B.G. Jones, K.D.
Hyde & Lsse, Mycol. Res. 104(3): 370 (2000)
Fungal Diversity
123
2. # H. rhizophorae Dayarathne, E.B.G. Jones K.D. Hyde,
Fungal Divers. 78: 117 (2016)
Hypoxylon Bull., Histoire des champignons de la France. I:
168 (1791)
1. H. croceum J.H. Mill., Mycologia 25(4): 323 (1933)
Nemania Gray, A natural arrangement of British plants 1:
516 (1821)
1. N. maritima Y.M. Ju & J.D. Rogers, Nova Hedwigia
74(1–2): 102 (2002)
Nipicola K.D. Hyde, Cryptog. Bot. 2: 330 (1992)
1. N. carbospora K.D. Hyde, Cryptog. Bot. 2(4): 330 (1992)
2. N. selangorensis K.D. Hyde, Sydowia 46(2): 262 (1994)
Xylaria Hill ex Schrank, Baierische Flora 1: 200 (1789)
1. #X. hypoxylon (L.) Grev., Fl. Edin.: 355 (1824)
2. X. psidii J.D. Rogers & Hemmes, Mycologia 84(2): 167
(1992)
Oxydothidaceae Konta & K.D. Hyde, Fungal Diversity
84: 36 (2017)
Oxydothis Penz. & Sacc., Malpighia 11: 505 (1897)
1. O. nypae K.D. Hyde & Nakagiri, Trans. Mycol. Soc.
Jpn. 30(1): 70 (1989)
2. O. nypicola K.D. Hyde, Sydowia 46(2): 298 (1994)
Xylariales incertae sedis
Adomia S. Schatz, Trans. Br. Mycol. Soc. 84: 555 (1985)
1. A. avicenniae S. Schatz, Trans. Br. Mycol. Soc. 84(3):
555 (1985)
*Dinemasporium Lv., Annls Sci. Nat. Bot. 5: 274 (1846)
1. D. marinum Sv. Nilsson, Bot. Notiser 110: 321 (1957)
Lanceispora Nakagiri, Okane, Tad. Ito & Katum., Myco-
science 38(2): 208 (1997)
1. L. amphibia Nakagiri, Okane, Tad. Ito & Katum.,
Mycoscience 38(2): 208 (1997)
Subclass: Lulworthiomycetidae Dayarathne, E.B.G.
Jones, & K.D. Hyde, Fungal Divers. 72: 10 (2015)
1. LULWORTHIALES Kohlm., Spatafora & Volkm.-
Kohlm., Mycologia 92(3): 456 (2000)
Lulworthiaceae Kohlm., Spatafora & Volkm.-Kohlm.,
Mycologia 92(3): 456 (2000)
*Cumulospora I. Schmidt, Mycotaxon 24: 420 (1985)
1. #C. marina I. Schmidt, Mycotaxon 24: 421 (1985)
*Halazoon Abdel-Aziz, Abdel-Wahab & Nagahama,
Mycol Progr 9(4): 545 (2010)
1. #H. fuscus (I. Schmidt) Abdel-Wahab, K.L. Pang,
Nagah., Abdel-Aziz & E.B.G. Jones, Mycol. Progr. 9(4):
547 (2010)
2. #H. melhae Abdel-Aziz, Abdel-Wahab & Nagah.,
Mycol. Progr. 9(4): 546 (2010)
*Hydea K.L. Pang & E.B.G. Jones, Mycol. Progr. 9(4):
549 (2010)
1. #H. pygmea (Kohlm.) K.L. Pang & E.B.G. Jones, Mycol.
Progr. 9(4): 549 (2010)
Kohlmeyeriella E.B.G. Jones, R.G. Johnson & S.T. Moss,
J. Linn. Soc. Bot. 87: 208 (1983)
1. #K. crassa (Nakagiri) Kohlm., Volkm.-Kohlm., J. Campb.,
Spatafora & Grfenhan, Mycol. Res. 109(5): 564 (2005)
2. #K. tubulata (Kohlm.) E.B.G. Jones, R.G. Johnson &
S.T. Moss, J. Linn. Soc. Bot. 87(2): 210 (1983)
Lindra I.M. Wilson, Trans. Br. Mycol. Soc. 39(4): 411
(1956)
1. L. crassa (Kohlm.) Kohlm. & Volkm.-Kohlm., Bot. Mar.
34(1): 23 (1991)
2. L. hawaiiensis Kohlm. & Volkm.-Kohlm., Can. J. Bot.
65(3): 574 (1987)
3. L. inflata I.M. Wilson, Trans. Br. Mycol. Soc. 39(4): 411
(1956)
4. #L. obtusa Nakagiri & Tubaki, Mycologia 75(3): 488
(1983)
5. #L. thalassiae Orpurt et al., Bull. Mar. Sci. Gulf Caribb.
14: 406 (1964)
Lulwoana Kohlm., Volkm.-Kohlm., J. Campb., Spatafora
& Grfenhan, Mycol. Res. 109(5): 562 (2005)
1. #L. uniseptata (Nakagiri) Kohlm., Volkm.-Kohlm., J.
Campb., Spatafora & Grfenhan, Myco l Res 109(5): 562 (2005)
Lulwoidea Kohlm., Volkm.-Kohlm., J. Campb., Spatafora
& Grfenhan, Mycol. Res. 109 (5): 564 (2005)
1. #L. lignoarenaria (Jrg. Koch & E.B.G. Jones) Kohlm.,
Volkm.-Kohlm., J. Campb., Spatafora & Grfenhan, Mycol.
Res. 109(5): 564 (2005)
Lulworthia G.K. Sutherl., Trans. Br. Mycol. Soc. 5: 261
(1915) sensu stricto
1. #L. atlantica E. Azevedo, Caeiro & Barata, Mycologia,
109: 2, 292 (2017)
2. #L. fucicola G.K. Sutherl., Trans. Br. Mycol. Soc. 5(2):
259 (1916)
Lulworthia sensu lato
1. L. bulgariae Parg.-Leduc, Annls Sci. Nat. Bot. Biol. Vg.
sr .12(8): 193 (1967)
2. L. calcicola Kohlm. & Volkm.-Kohlm., Mycologia
81(2): 289 (1989)
3. L. curalii (Kohlm.) Kohlm. & Volkm.-Kohlm., Bot.
Mar. 34(1): 24 (1991)
4. #L. floridana Meyers, Mycologia 49: 515 (1957)
5. L. halima (Diehl & Mounce) Cribb & J.W. Cribb, Pap.
Dept. Bot. Univ. Qd. 3(10): 80 (1955)
6. L. kniepii (Ade & Bauch) Petr., Sydowia 10(1–6): 297
(1957)
7. L. lindroidea Kohlm., Bot. Mar. 23(8): 537 (1980)
8. L. longirostris (Linder) Cribb & J.W. Cribb, Pap. Dept.
Bot. Univ. Qd. 3: 80 (1955)
9. #L. medusa (Ellis & Everh.) Cribb & J.W. Cribb, Pap.
Dept. Bot. Univ. Qd. 3: 80 (1955)
Fungal Diversity
123
10. #L. purpurea (I.M. Wilson) T.W. Johnson, Mycologia
50(2): 154 (1958)
*Matsusporium K.L. Pang & E.B.G. Jones, Mycol. Progr.
9(4): 550 (2010)
1. #M. tropicale (Kohlm.) E.B.G. Jones & K.L. Pang,
Mycol. Progr. 9(4): 550 (2010)
*Moleospora Abdel-Aziz, Abdel-Wahab & Nagahama,
Mycol. Progr. 9(4): 547 (2010)
1. #M. maritima Abdel-Wahab, Abdel-Aziz & Nagah.,
Mycol. Progr. 9(4): 548 (2010)
*Moromyces Abdel-Wahab, K.L. Pang, Nagah., Abdel-
Aziz & E.B.G. Jones, Mycol. Progr. 9(4): 555 (2010)
1. #M. varius (Chatmala & Somrith.) Abdel-Wahab, K.L.
Pang, Nagah., Abdel-Aziz & E.B.G. Jones, Mycol. Progr.
9(4): 555 (2010)
*Orbimyces Linder, Farlowia 1(3): 404 (1944)
1. #O. spectabilis Linder, Farlowia 1: 404 (1944)
Rostrupiella Jrg. Koch, K.L. Pang & E.B.G. Jones, Bot.
Mar. 50(5–6): 295 (2007)
1. #R. danica Jrg. Koch, K.L. Pang & E.B.G. Jones, Bot.
Mar. 50(5/6): 295 (2007)
Haloguignardia Cribb & J.W. Cribb, Pap. Dept. Bot. Univ.
Qd. 3(12): 97 (1956)
1. H. cystoseirae Kohlm. & Demoulin, Bot. Mar. 24(1): 9
(1981)
2. H. decidua Cribb & J.W. Cribb, Pap. Dept. Bot. Univ.
Qd. 3: 97 (1956)
3. #H. irritans (Setch. & Estee) Cribb & J.W. Cribb, Pap.
Dept. Bot. Univ. Qd. 3: 98 (1956)
4. H. oceanica (Ferd. & Winge) Kohlm., Mar. Biol. 8: 344
(1971)
5. H. tumefaciens (Cribb & J.W. Cribb) Cribb & J.W.
Cribb, Pap. Dept. Bot. Univ. Qd. 3: 98 (1956)
Sammeyersia S.Y. Guo, E.B.G. Jones et K.L. Pang,
Botanica Marina 60: 483 (2017)
1. #S. grandispora (Meyers) S.Y. Guo, E.B.G. Jones et
K.L. Pang, Botanica Marina 60: 483 (2017)
Spathulosporaceae Kohlm., Mycologia 65: 615 (1973)
Spathulospora A.R. Caval. & T.W. Johnson, Mycologia
57: 927 (1965)
1. #S. adelpha Kohlm., Mycologia 65(3): 615 (1973)
2. #S. antarctica Kohlm., Mycologia 65(3): 619 (1973)
3. S. calva Kohlm., Mycologia 65(3): 622 (1973)
4. S. lanata Kohlm., Mycologia 65(3): 625 (1973)
5. S. phycophila A.R. Caval. & T.W. Johnson, Mycologia
57(6): 927 (1965)
2. KORALIONSTETALES Kohlm., Volkm.-Kohlm., J.
Campb. & Inderb., Mycol. Res. 113(3): 377 (2009)
Koralionastetaceae Kohlm. & Volkm.-Kohlm., Mycolo-
gia 79: 764 (1987)
Koralionastes Kohlm. & Volkm.-Kohlm., Mycologia 79:
765 (1987)
1. K. angustus Kohlm. & Volkm.-Kohlm., Mycologia
79(5): 768 (1987)
2. K. ellipticus Kohlm. & Volkm.-Kohlm., Mycologia
79(5): 765 (1987)
3. K. giganteus Kohlm. & Volkm.-Kohlm., Can. J. Bot.
68(7): 1554 (1990)
4. K. ovalis Kohlm. & Volkm.-Kohlm., Mycologia 79(5):
765 (1987)
5. K. violaceus Kohlm. & Volkm.-Kohlm., Can. J. Bot.
68(7): 1556 (1990)
Pontogeneia Kohlm., Bot. Jb. 96(1–4): 200 (1975)
1. P. calospora (Pat.) Kohlm., Bot. Jb. 96(1–4): 205 (1975)
2. P. codiicola (Dowson) Kohlm. & E. Kohlm., Marine
Mycology, the Higher Fungi (London): 350 (1979)
3. P. cubensis (Har. & Pat.) Kohlm., Bot. Jb. 96(1–4): 207
(1975)
4. P. enormis (Pat. & Har.) Kohlm., Botanische Jahrbcher
fr Systematik Pflanzengeschichte und Pflanzengeographie
96(1–4): 208 (1975)
5. P. erikae Kohlm., Bot. Mar. 24(1): 16 (1981)
6. P. microdictyi Kohlm. & Volkm.-Kohlm., Mycol. Res.
113(3): 378 (2009)
7. P. padinae Kohlm., Bot. Jb. 96(1–4): 201 (1975)
8. P. valoniopsidis (Cribb & J.W. Cribb) Kohlm., Bot. Jb.
96(1–4): 209 (1975)
Unitunicate Ascomycota family/genera incertae sedis
Argentinomyces N.I. Pea & Aramb., Mycotaxon 65: 333
(1997)
1. A. naviculisporus N.I. Pea & Aramb., Mycotaxon 65:
333 (1997)
Aropsiclus Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 13:
24 (1994)
1. A. junci (Kohlm. & Volkm.-Kohlm.) Kohlm. & Volkm.-
Kohlm., Syst. Ascomyc. 13(1): 24 (1994
Biflua Jorg. Koch & E.B.G. Jones, Can. J. Bot. 67(4): 1187
(1989)
1. B. physasca Jørg. Koch & E.B.G. Jones, Can. J. Bot.
67(4): 1187 (1989)
Crinigera I. Schmidt, Mycotaxon 24: 420 (1985)
1. C. maritima I. Schmidt, Nat. Naturs. Mecklenburg. 7: 11
(1969)
Dryosphaera Jørg. Koch & E.B.G. Jones, Can. J. Bot.
67(4): 1184 (1989)
1. D. navigans Jørg. Koch & E.B.G. Jones, Can. J. Bot.
67(4): 1185 (1989)
2. D. tenuis Andrienko, Ukr. Bot. Zh. 58: 244 (2001)
3. D. tropicalis Kohlm. & Volkm.-Kohlm., Can. J. Bot.
71(7): 992 (1993)
Eiona Kohlm., Ber. Deut. Bot. Ges. 81: 58 (1968)
Fungal Diversity
123
1. E. tunicata Kohlm., Ber. Deut. Bot. Ges. 81: 58 (1968)
Fusariella Sacc., Atti dell
´Istituto Veneto Scienze 2: 463
(1884)
1. F. obstipa (Pollack) S. Hughes, Mycol Pap 28: 9 (1949)
Hansfordia S. Hughes, Mycological Papers 43: 15 (1951)
1. H. pulvinata (Berk. & M.A. Curtis) S. Hughes, Can J Bot
36: 771 (1958)
Hapsidascus Kohlm. & Volkm.-Kohlm., Syst. Ascomyc.
10: 113 (1991)
1. H. hadrus Kohlm. & Volkm.-Kohlm., Syst. Ascomyc.
10(2): 115 (1991)
*Hymenopsis Sacc., Syll. Fung. 4: 744 (1886)
1. H. chlorothrix Kohlm. & Volkm.-Kohlm., Mycol. Res.
105(4): 504 (2001)
Mangrovispora K.D. Hyde & Nakagiri, Syst. Ascomyc.
10(1): 19 (1991)
1. M. pemphii K.D. Hyde & Nakagiri, Syst. Ascomyc.
10(1): 20 (1991)
Marisolaris Jørg. Koch & E.B.G. Jones, Can. J. Bot. 67(4):
1190 (1989)
1. M. ansata Jørg. Koch & E.B.G. Jones, Can. J. Bot. 67(4):
1193 (1989)
Orcadia G.K. Sutherl., Trans. Br. Mycol. Soc. 5(1): 151
(1915)
1. O. ascophylli G.K. Sutherl., Trans. Br. Mycol. Soc. 5(1):
151 (1915)
Rhizophila K.D. Hyde & E.B.G. Jones, Mycotaxon 34(2):
527 (1989)
1. R. marina K.D. Hyde & E.B.G. Jones, Mycotaxon 34(2):
528 (1989)
*Tetranacriella Kohlm. & Volkm-Kohlm, Bot. Mar. 44(2):
152 (2001)
1. T. papillata Kohlm. & Volkm.-Kohlm., Bot. Mar. 44(2):
152 (2001)
Asexual marine fungi not assigned to any higher order
Some of the marine species listed in this section may not
have been sequenced thus confirmation of their taxonomic
position is required, although terrestrial species may have
been assigned to a higher taxon. For most species listed
there are no cultures or sequences to our knowledge.
*Asteromyces Moreau & M. Moreau ex Hennebert, Can.
J. Bot. 40(9): 1211 (1962)
1. A. cruciatus Moreau & F. Moreau ex Hennebert, Can.
J. Bot. 40(9): 1213 (1962)
*Cytoplacosphaeria Petr., Annls Mycol. 17(2–6): 79 (1919)
1. C. phragmiticola Poon & K.D. Hyde, Bot. Mar. 41(2):
148 (1998)
*Heliscella Marvanov, Trans. Br. Mycol. Soc. 75(2): 224
(1980)
1. H. stellatacula (P.W. Kirk ex Marvanov & Sv. Nilsson)
Marvanov, Trans. Br. Mycol. Soc. 75(2): 224 (1980)
*Hyphopolynema Nag Raj, Can. J. Bot. 55(7): 760 (1977)
1. H. juncatile Kohlm. & Volkm.-Kohlm., Mycotaxon 70:
489 (1999)
*Nypaella K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 210
(1992)
1. N. frondicola K.D. Hyde & B. Sutton, Mycol. Res.
96(3): 210 (1992)
*Mycoenterolobium Goos, Mycologia 62(1): 172 (1970)
1. M. platysporum Goos, Mycologia 62(1): 172 (1970)
*Octopodotus Kohlm. & Volkm.-Kohlm., Mycologia
95(1): 117 (2003)
1. O. stupendus Kohlm. & Volkm.-Kohlm., Mycologia
95(1): 117 (2003)
*Phragmospathula Subram. & N.G. Nair, Anton. van
Leeuw. 32(4): 384 (1966)
1. P. phoenicis Subram. & N.G. Nair, Anton. van Leeuw.
32(4): 384 (1966)
*Plectophomella Moesz, Magy. Bot. Lapok 21: 13 (1922)
1. P. nypae K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 211
(1992)
*Pycnodallia Kohlm. & Volkm.-Kohlm., Mycol. Res.
105(4): 500 (2001)
1. P. dupla Kohlm. & Volkm.-Kohlm., Mycol. Res. 105(4):
500 (2001)
*Sporidesmium Link, Mag. Gesell. Naturf. Freunde, Berlin
3(1–2): 41 (1809)
1. S. salinum E.B.G. Jones, Trans. Br. Mycol. Soc. 46(1):
135 (1963)
*Trichocladium Harz, Bull. Soc. Imp. Nat. Moscou 44(1):
125 (1871)
(Polyphyletic genus with six marine species, but these have
not been sequenced)
1. T. alopallonellum (Meyers & R.T. Moore) Kohlm. &
Volkm.-Kohlm., Mycotaxon 53: 352 (1995)
2. T. constrictum I. Schmidt, Natur Naturschutz Mecklen-
berg 12: 114 (1974)
3. T. lignicola I. Schmidt [as ‘lignincola’], Natur Nat-
urschutz Mecklenberg 12: 116 (1974)
4. T. melhae E.B.G. Jones, Abdel-Wahab & Vrijmoed,
Fungal Divers. 7: 50 (2001)
5. T. nypae K.D. Hyde & Goh, in Hyde, Goh, Lu & Alias,
Mycol. Res. 103(11): 1420 (1999)
*Cytoplacosphaeria Petr., Annls Mycol. 17(2–6): 79
(1919)
1. C. rimosa Petr., Annls Mycol. 17(2/6): 79 (1919)
*Phialophorophoma Linder, Farlowia 1(3): 402 (1944)
1. P. litoralis Linder, Farlowia 1: 403 (1944)
*Phragmostilbe Subram., Mycopath. Mycol. Appl. 10(4):
351 (1959)
1. Ph. linderi Subram., Mycopath. Mycol. Appl. 10(4): 352
(1959)
*Pleurophomopsis Petr., Annls Mycol. 22(1–2): 156
(1924)
Fungal Diversity
123
1. P. nypae K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 213
(1992)
Zygosporium Mont., Annales des Sciences Naturelles
Botanique 17: 152 (1842)
1. Z. masonii S. Hughes, Mycol. Pap. 44: 15 (1951)
Phylum: MUCOROMYCOTA
MUCORALES Fr., Systema Mycologicum 3: 296 (1832)
Mucoraceae Dumort., Commentationes botanicae: 69: 81
(1822)
Absidia Tiegh., Annales des Sciences Naturelles Botanique
4 (4): 350 (1878)
1. A. glauca Hagem, Skrifter udgivne af Videnskabs-Sel-
skabet i Christiania. Mathematisk-Naturvidenskabelig
Klasse 7: 43 (1908)
Mucor Fresen., Beitrge zur Mykologie 1: 7 (1850)
1. M. hiemalis Wehmer, Annales Mycologici 1(1): 39 (1903)
2. M. racemosus Bull., Hist. Champ. Fr. (Paris) 1: 104 (1791)
3. M. racemosus f. sphaerosporus (Hagem) Schipper,
Studies in Mycology 36 (4): 480 (1970)
Rhizopus Ehrenb., Nova Acta Academiae Caesareae Leo-
poldino-CarolinaeGermanicae Naturae Curiosorum 10: 198
(1820
1. #Rh. microsporus var. rhizopodiformis (Cohn) Schipper
& Stalpers, Stud. Mycol. 25: 30 (1984)
2. Rh. stolonifer (Ehrenb.) Vuill., Revue Mycol., Toulouse
24: 54 (1902)
Phylum CHYTRIDIOMYCOTA
1. CHYTRIDIALES Cohn, Jber Schles Ges Vaterl Kultur
57: 279 (1879), emend. MozleyStandridge et al., Mycol.
Res. 113: 502 (2009)
Chytridiaceae Nowak., Akad Umiejetnosci Krakowie
Wydzı
´at mat Przyro
´d: 174: 191 (1878), emend. Ve
´lez
et al., Mycologia 103: 123 (2011)
Chytridium A. Braun, Betrach. Erschein. Verju
¨ng. Natur.:
198 (1851)
1. Ch. codicola Zeller, Publ. Puget Sound Biol. Sta. Univ.
Wash. 2: 121 (1918)
2. Ch. lagenaria Schenk, Verhandlungen Physikalisch-
Medizinische Gesellschaft Wu
¨rzburg 8: 241 (1858)
3. Ch. lagenaria var. japonense Kobayasi & M. O
ˆkubo,
Bull. Natn. Sci. Mus., Tokyo 33: 56 (1953)
4. Ch. megastomum Sparrow, Dansk botanisk Arkiv 8 (6):
21 (1933)?
5. Ch. proliferum Karling, Sydowia 20: 122 (1968)
6. Ch. turbinatum Kobayasi & M. O
ˆkubo, Bull. Natn. Sci.
Mus., Tokyo, B 1: 69 (1954)
Phlyctochytrium J. Schro
¨t., Nat. Pflanzenfamilien: 78
(1892)
1. Ph. bryopsidis Kobayasi & M. O
ˆkubo, Bull. Natn. Sci.
Mus., Tokyo 1(2 (35)): 66 (1954)
2. Ph. cladophorae Kobayasi & M. O
ˆkubo, Bull. Natn. Sci.
Mus., Tokyo, B 1: 64 (1954)
3. Ph. japonicum (Kobayasi & M. O
ˆkubo) Sparrow,
Aquatic Phycomycetes. Second Ed (1960)
4. Ph. marinum Kobayasi & M. O
ˆkubo, Bull. Natn. Sci.
Mus., Tokyo, B 33: 55 (1953)
Rhizidium A. Braun, Monatsber. Ko
¨nigl. Preuss. Akad.
Wiss. Berlin 1856: 591 (1856)
1. Rh. braunii Zopf, Nova Acta Acad. Caes. Leop.-Carol.
German. Nat. Cur. 52: 349 (1888)
2. Rh. tomiyamanum Konno; J. Jap. Bot., 44: 315–317 (1969)
Tylochytrium Karling, Mycologia 31: 287 (1939)
1. T. pollinis-pini (A. Braun) Doweld Index Fungorum 101:
1 (2014)
Chytriomycetaceae Letcher, Mycologia 103: 127 (2011)
Rhizoclosmatium H.E. Petersen, J. Bot. Paris 17: 216 (1903)
1. Rhi. marinum Kobayasi & M. O
ˆkubo, Bull. Natn. Sci.
Mus., Tokyo, N.S. 1(2 (35)): 68 (1954)
2. CLADOCHYTRIALES S. E. Mozley Standridge,
Mycol. Res. 113: 502 (2009)
Endochytriaceae Sparrow ex D.J.S. Barr, Canadian Jour-
nal of Botany 58 (22): 2390 (1980)
Catenochytridium Berdan, Am. J. Bot. 26(7): 460 (1939)
1. C. carolinianum f. marinum Kobayasi & M. O
ˆkubo,
Bull. Natn. Sci. Mus., Tokyo, B 33: 57 (1953)
3. LOBULOMYCETACETALES D. R. Simmons,
Mycol. Res. 113: 453 (2009)
Family incertae sedis
Algochytrops Doweld, Index Fungorum, 123: 1 (2014)
1. #Al. polysiphoniae (Cohn) Doweld, Index Fungorum,
123: 1 (2014)
4. RHIZOPHYDIALES Letcher, Mycol. Res. 110: 908
(2006)
Dinomycetaceae Karpov and Guillou, Protist 165: 240
(2014)
Dinomyces Karpov and Guillou, Protist 165: 241 (2014)
1. #D. arenysensis S.A. Karpov & L. Guillou, Protist
165(2): 230–244 (2014)
Halomycetaceae Letcher and M.J. Powell, Mycologia,
107(4): 819 (2015)
Halomyces Letcher and M.J. Powell, Mycologia, 107(4):
819 (2015)
1. #H. littoreus (Amon) Letcher & M.J. Powell, Mycologia,
107(4): 819 (2015)
Paludomyces Letcher & M.J. Powell, Mycologia, 107(4):
819 (2015)
1. #P. mangrovei (Ulken) Letcher & M.J. Powell,
Mycologia, 107(4): 820 (2015)
Fungal Diversity
123
Ulkenomyces Letcher & M.J. Powell, Mycologia 107(4):
821 (2015)
1. #Ul. aestuarii (Ulken) Letcher & M.J. Powell,
Mycologia 107(4): 821 (2015)
Rhizophydiaceae Letcher, Mycological Research 110 (8):
909 (2006)
Rhizophydium Schenk, Verhandlungen Physikalisch-
Medizinische Gesellschaft Wu
¨rzburg 8: 245 (1858)
1. Rh. globosum (A. Braun) Rabenh., Flora Europaea
algarum aquae dulcis et submarinae 3: 280 (1868)
Following species need verification: Rhizophhydiales in-
certae sedis
1. Rh. cladophorae (Kobayasi & M. O
ˆkubo) Sparrow,
Aquatic Phycomycetes, Edn 2 (Ann Arbor): 266 (1960)
2. Rh. codicola Zeller, Publ. Puget Sound Biol. Sta. Univ.
Wash. 2: 122 (1918)
3. Rh. halophilum Uebelm., ex Letcher, in Letcher &
Powell, Publication of the Zoosporic Research Institute 1:
26 (2012)
4. Rh. keratinophilum Karling, Am. J. Bot. 33(9): 753 (1946)
5. Rh. subglobosum Kobayasi & M. O
ˆkubo, Bull. Natn.
Sci. Mus., Tokyo, N.S. 1(2 (35)): 63 (1954)
Ubelmesseromycetaceae M.J. Powell & Letcher,
Mycologia 107:423 (2015)
Ubelmesseromyces M.J. Powell & Letcher, Mycologia
107:423 (2015
1. #U. harderi M.J. Powell & Letcher, Mycologia 107:423
(2015)
Chytridiomycota incertae sedis
Blyttiomyces A.F. Bartsch, Mycologia 31: 559 (1939)
1. Bl. verrucosus Dogma, Kalikasan 8(3): 238 (1980)
Thalassochytrium Nyvall, M. Pederse
´n & Longcore, J.
Phycol. 35: 176 (1999)
1. Th. gracilarriopsis Nyvall, M. Pederse
´n & Longcore, J.
Phycol. 35(1): 182 (1999)
Fungi incertae sedis
Olpidiaceae J. Schro
¨t., Krypt.-Fl. Schlesien: 180 (1886)
Olpidium (A. Braun) J. Schro
¨t., Krypt.-Fl- Schlesien 31(2):
180 (1886)
1. O. rostriferum Ivimey Cook, Trans. Sapporo Nat. Hist.
Soc. 13(2–3): 80 (1934)
? Valid taxon
Coenomyces Deckenb., Flora (Regensburg) 92: 265 (1903)
1. C. consuens K.N. Deckenb., Flora (Regensburg) 92: 265
(1903)
Phylum: BLASTOCLADIOMYCOTA
BLASTOCLADIOMYCETES
1. BLASTOCLADIALES H.E. Peterson, Bot. Tidsskr. 29:
357 (1909)
Catenariaceae Couch, Mycologia 37: 187 (1945)
Catenaria Sorokin, Revue Mycol. Toulouse 11: 139 (1889)
1. C. anguillulae Sorokin, Annls Sci. Nat., Bot., se
´r. 6: 67
(1876)
Marine yeasts Ascomycota and Basidiomycota
Updated 31 December 2018
All species listed have been reported from marine habitats,
even if they are facultative!
Phylum: BASIDIOMYCOTA
Subphyllum: Agaricomycotina
Class: Tremellomycetes Doweld, Prosyllabus Tracheo-
phytorum, Tentamen Systematis
Plantarum Vascularium (Tracheophyta): LXXVII (2001)
1. CYSTOFILOBASIDIALES Fell, Roeijmans &
Boekhout, Int. J. Syst. Bacteriol. 49: 911 (1999)
Cystofilobasidiaceae K. Wells & Bandoni, The Mycota, A
Comprehensive Treatise on Fungi as Experimental Systems
for Basic and Applied Research (Berlin) 7(B): 113 (2001)
Cystofilobasidium Oberw. & Bandoni, in Oberwinkler,
Bandoni, Blanz & Kisimova-Horovitz, Syst. Appl. Micro-
biol. 4(1): 116 (1983)
1. C. capitatum (Fell, I.L. Hunter & Tallman) Oberw. &
Bandoni, in Oberwinkler, Bandoni, Blanz & Kisimova-
Horovitz, Syst. Appl. Microbiol. 4(1): 116 (1983)
2. C. bisporidii (Fell, I.L. Hunter & Tallman) Oberw. &
Bandoni [as ‘bisporidiis’], in Oberwinkler, Bandoni, Blanz
& Kisimova-Horovitz, Syst. Appl. Microbiol. 4(1): 118
(1983)
3. C. infirmominiatum (Fell, I.L. Hunter & Tallman)
Hamam., Sugiy. & Komag., J. gen. appl. Microbiol., Tokyo
34(3): 276 (1988)
4. C. macerans Samp., in Libkind, Gadanho, Broock &
Sampaio, Int. J. Syst. Evol. Microbiol. 59(3): 627 (2009)
Mrakiaceae X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout,
Studies Mycology 81: 29 (2016)
Mrakia Y. Yamada & Komag., J. Gen. Appl. Microbiol.,
Tokyo 33(5): 456 (1987)
1. M. frigida (Fell, Statzell, I.L. Hunter & Phaff) Y.
Yamada & Komag., J. gen. appl. Microbiol., Tokyo 33(5):
457 (1987)
Tausonia Babeva, Mikrobiologiya 67: 231. 1998. emend.
X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout.Studies
Mycology 81: 32 (2016)
1. T. pullulans (Lindner) X.Z. Liu, F.Y. Bai, M. Groenew.
& Boekhout, Studies Mycology 81: 32 (2015)
2. TREMELLALES Fr., Syst. Mycol. (Lundae) 1: 2
(1821)
Fungal Diversity
123
Bulleribasidiaceae X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 122 (2015)
Dioszegia Zsolt, Bot. Ko
¨zl. 47(1–2): 64 (1957)
1. D. hungarica Zsolt, Bot. Ko
¨zl. 47(1–2): 64 (1957)
Hannaella F.Y. Bai & Q.M. Wang, FEMS Yeast Res 8(5):
805 (2008)
1. H. luteola (Saito) F.Y. Bai & Q.M. Wang, FEMS Yeast
Research 8 (5): 805 (2008)
2. H.surugaensis (Nagah., Hamam. & Nakase) F.Y. Bai &
Q.M. Wang, in Wang & Bai, FEMS Yeast Res. 8(5): 805
(2008)
Tremellaceae Fr., Syst. Mycol. (Lundae) 1: lv (1821)
Bandonia A.M. Yurkov, X.Z. Liu, F.Y. Bai, M. Groenew.
& Boekhout, Studies in Mycology 81: 143 (2015)
1. B. marina (Uden & Zobell) A.M. Yurkov, X.Z. Liu, F.Y.
Bai, M. Groenew. Boekhout, Studies in Mycology 81: 143
(2015)
Bullera Derx, Annales Mycologici 28 (1–2): 11 (1930)
1. B. unica Hamam. & Nakase, Antonie van Leeuwenhoek
69: 288 (1996)
Cutaneotrichosporon X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 139 (2015)
1. Cu. curvatus (Diddens & Lodder) A.M. Yurkov, X.Z.
Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in
Mycology 81: 139 (2015
Papiliotrema J.P. Samp., M. Weiss & R. Bauer, Mycologia
94 (5): 875 (2002)
1. P. pseudoalba(Nakase & M. Suzuki) X.Z.Liu, F.Y. Bai, M.
Groenew. & Boekhout, Studies in Mycology 81: 126 (2015)
2. P. flavescens (Saito) X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 126 (2015)
3. P. mangalensis (Fell, Statzell & Scorzetti) A.M. Yurkov,
Studies in Mycology 81: 126 (2015)
4. P. laurentii (Kuff.) X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 126 (2015)
Trimorphomycetaceae X.Z. Liu, F.Y. Bai, M. Groenew.
& Boekhout, Studies in Mycology 81: 133 (2015)
Saitozyma X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout,
Studies in Mycology 81: 134 (2015)
1. S. flava (Saito) X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 134 (2015). Groenew.
& Boekhout, Studies in Mycology 81: 134 (2015)
Kwoniella Statzell & Fell, FEMS Yeast Res. 8(1): 107
(2008)
1. K. mangroviensis Statzell, Belloch & Fell, FEMS Yeast
Res. 8(1): 107 (2008)
Vishniacozyma X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 123 (2015)
1. V. carnescens (Verona & Luchetti) X.Z. Liu, F.Y. Bai, M.
Groenew. & Boekhout, Studies in Mycology 81: 124 (2015)
2. V. dimennae (Fell & Phaff) X.Z. Liu, F.Y. Bai, M. Groenew.
& Boekhout, Studies in Mycology 81: 124 (2015)
3. V. tephrensis (Vishniac) X.Z. Liu, F.Y. Bai, M. Groe-
new. & Boekhout, Studies in Mycology 81: 124 (2015)
4. V. victoriae (M.J. Montes, Belloch, Galiana, M.D.
Garcı
´a, C. Andre
´s, S. Ferrer, Torr.-Rodr. & J. Guinea) X.Z.
Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in
Mycology 81: 124 (2015)
3. TRICHOSPORONALES Boekhout & Fell, Int J Evol
Microbiol 50: 133 (2000)
Trichosporonaceae Nann., Repert. mic. uomo: 285 (1934)
Trichosporon Behrend, Berliner Klin. Wochenschr. 21:
464 (1890)
1. T. arenicola J.A. Lima & L.A. Queiroz, Publicac¸o
˜es
Inst. Micol. Recife 690: 2 (1972)
2. T. asahii Akagi ex Sugita, A. Nishikawa & Shinoda, J.
Gen. Appl. Microbiol., Tokyo 40(5): 405 (1994)
3. T. coremiiforme (M. Moore) E. Gue
´ho & M.T. Sm.,
Antonie van Leeuwenhoek 61(4): 308 (1992)
4. T. cutaneum (Beurm., Gougerot & Vaucher bis) M. Ota,
Annls Parasit. hum. comp. 4: 12 (1926)
5. T. japonicum Sugita & Nakase, Int. J. Syst. Bacteriol.
48(4): 1426 (1998)
Vanrija R.T. Moore, Botanica Marina 23 (6): 367 (1980)
1. V. humicola (Dasz.) R.T. Moore, Botanica Marina 23
(6): 368 (1980)
Cryptococcaceae Ku
¨tz. ex Castell. & Chalm., Manual of
Tropical Medicine: 1070 (1919)
Cryptococcus Vuill., Revue Ge
´ne
´rale des Sciences Pures et
Applique
´es 12: 741 (1901)
1. Cr. deuterogattii Hagen & Boekhout, In: Hagen F,
Khayhan K, Theelen B, Kolecka A Polacheck I, Sionov E,
Falk R, Parnmen S, Lumbsch JT, Boekhout T Fungal
Genet. Biol. (In Press) (2015)
2. Cr. neoformans (San Felice) Vuill., Rev. Ge
´n. Sci. Pures
Appl. 12: 747–750 (1901)
4. FILOBASIDIALES Ju
¨lich, Biblthca Mycol. 85: 324
(1981)
Filobasidiaceae L.S. Olive, J. Elisha Mitchell scient. Soc.
84: 261 (1968)
Filobasidium L.S. Olive, J. Elisha Mitchell Scient. Soc.
84: 261 (1968)
1. F. capsuligenum (Fell, Statzell, I.L. Hunter & Phaff)
Rodr. Mir., Antonie van Leeuwenhoek 38(1): 96 (1972)
2. F. chernovii (A
´. Fonseca, Scorzetti & Fell) X.Z. Liu,
F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology
81: 118 (2015)
3. F. magnum (Lodder & Kreger-van Rij) X.Z. Liu, F.Y.
Bai, M. Groenew. & Boekhout, Studies in Mycology 81:
118 (2015)
4. F. uniguttulatus Kwon-Chung, Int. J. Syst. Bacteriol.
27(3): 293 (1977)
Fungal Diversity
123
Naganishia Goto, J. Fermen. Technol. Osaka 41: 461
(1963)
1. N. albida (Saito) X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 118 (2015)
2. N. liquefaciens (Saito & M. Ota) X.Z. Liu, F.Y. Bai, M.
Groenew. & Boekhout, Studies in Mycology 81: 119 (2015)
3. N. qatarensis Fotedar et al., Int J Syst Evol Microbiol.,
68(9): 2918 (2018)
Piskurozymaceae X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 120 (2015)
Solicoccozyma X.Z. Liu, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 121 (2015)
1. S. keelungensis (C.F. Chang & S.M. Liu) A.M. Yurkov,
Studies in Mycology 81: 121 (2015)
2. S. terrea (Di Menna) A.M. Yurkov, Studies in Mycology
81: 122 (2015)
Subphyllum: Pucciniomycotina
Class: Microbotryomycetes incertae sedis
Pseudohyphozyma Q.M. Wang, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 184 (2015)
1. P. bogoriensis (Deinema) Q.M. Wang, F.Y. Bai, M.
Groenew. & Boekhout, Studies in Mycology 81: 185 (2015)
Sampaiozyma Q.M. Wang, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 185 (2015)
1. S. ingeniosa (Di Menna) Q.M. Wang, F.Y. Bai, M.
Groenew. & Boekhout, Studies in Mycology 81: 186 (2015)
1. KRIEGERIALES Toome & Aime, Mycologia 105 (2):
489 (2013)
Camptobasidiaceae R.T. Moore, Mycotaxon 59: 8 (1996)
Glaciozyma Turchetti, L.B. Connell, Thomas-Hall &
Boekhout, Extremophiles 15(5): 579 (2011)
1. G. antarctica (Fell, Statzell, I.L. Hunter & Phaff)
Turchetti, L.B. Connell, Thomas-Hall & Boekhout,
Extremophiles 15(5): 579 (2011)
2. LEUCOSPORIDIALES J.P. Samp., M. Weiss & R.
Bauer, Mycological Progress 2 (1): 61 (2003)
Leucosporidiaceae Ju
¨lich, Biblthca Mycol. 85: 377 (1982)
Leucosporidium Fell, Statzell, I.L. Hunter & Phaff,
Antonie van Leeuwenhoek 35(4): 438 (1969)
1. L. scottii Fell, Statzell, I.L. Hunter & Phaff, Antonie van
Leeuwenhoek 35(4): 440 (1969)
2. L. escuderoi Vaca, Laich & R. Cha
´vez, Antonie van
Leeuwenhoek 105 (3): 599 (2014)
3. SPORIDIOBOLALES J.A. Samp., M. Weiss, R. Bauer,
Mycol. Prog. 2(1):66 (2003)
Sporidiobolaceae R.T. Moore, Bot. Mar. 23(6): 371
(1980)
Rhodotorula F.C. Harrison, Proc. & Trans. Roy. Soc.
Canada, ser. 3 21(5): 349 (1927)
1. R. aurantiaca (Saito) Lodder, Verh. K. Akad. Wet.,
tweede Sect. 32: 78 (1934)
2. R. babjevae (Golubev) Q.M. Wang, F.Y. Bai, M. Groe-
newald & T. Boekhout, Studies in Mycology 81: 181 (2015)
3. R. diobovata (S.Y. Newell & I.L. Hunter) Q.M. Wang,
F.Y. Bai, M. Groenewald & T. Boekhout, Studies in
Mycology 81: 181 (2015)
4. R. evergladensis Fell, Statzell & Scorzetti: 547 (2011)
5. R. glutinis (Fresen.) F.C. Harrison, Proc. & Trans. Roy.
Soc. Canada, ser. 3 21(5): 349 (1928)
6. R. graminis Di Menna, J. Gen. Microbiol. 18: 270 (1958)
7. R. mucilaginosa (A. Jo
¨rg.) F.C. Harrison, Proc. & Trans.
Roy. Soc. Canada, ser. 3 21(5): 349 (1928)
8. R. paludigenum Fell & Tallman, Int. J. Syst. Bacteriol.
30(4): 658 (1980)
9. R. sphaerocarpum S.Y. Newell & Fell, Mycologia 62(1):
276 (1970)
10. R. toruloides I. Banno, J. Gen. Appl. Microbiol., Tokyo
13: 193 (1967)
Rhodosporidiobolus Q.M. Wang, F.Y. Bai, M. Groenew.
& Boekhout, Studies in Mycology 81: 181 (2015)
1. Rho. fluvialis (Fell, Kurtzman, Tallman & J.D. Buck)
Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Stud.
Mycol. 81: 181 (2015)
Sporobolomyces Kluyver & C.B. Niel, Zentbl. Bakt. Par-
asitKde, Abt. II 63: 19 (1924)
1. S. blumea M. Takash. & Nakase, Mycoscience 41(4):
366 (2000)
2. S. carnicolor Yamasaki & H. Fujii, Bull. Agrochem.
Soc. Japan 24: 11-15 (1950)
3. S. johnsonii (Nyland) Q.M. Wang, F.Y. Bai, M. Groe-
newald & T. Boekhout, Studies in Mycology 81: 182 (2015)
4. S. pararoseus H.C. Olson & B.W. Hammer, Iowa State
College Journal of Science 11: 210 (1937)
5. S. salmonicolor (B. Fisch. & Brebeck) Kluyver & C.B.
Niel, Zentralblatt fu
¨r Bakteriologie und Parasitenkunde
Abteilung 2 63: 19 (1924)
Class: Cystobasidiomycetes R. Bauer, Begerow, J.P.
Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006)
1. CYSTOBASIDIALES R. Bauer, Begerow, J.P. Samp.,
M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006)
Cystobasidiaceae Ga
¨um., Vergl. Morph. Pilze (Jena): 411
(1926)
Cystobasidium (Lagerh.) Neuhoff, emend. Yurkov et al.,
Antonie van Leeuwenhoek 107: 179 (2015)
1. C. benthicum (Nagahama, Hamamoto, Nakase & Hor-
ikoshi) Yurkov et al., Antonie van Leeuwenhoek 107: 186
(2015)
Fungal Diversity
123
2. C. minuta (Saito) A.M. Yurkov, A. Kachalkin, H.M.
Daniel, M. Groenew., Libkind, V. de Garcia, P. Zalar,
Gouliamova, Boekhout & Begerow, Antonie van
Leeuwenhoek 107 (1): 180 (2014)
3. C. pallidum (Lodder) Yurkov et al., Antonie van
Leeuwenhoek 107: 181 (2015)
4. C. portillonense (Laich, Vaca & Cha
´vez) Q.M. Wang,
F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology
81: 173 (2015)
5. C. slooffiae (Nova
´k&Vo
¨ro
¨s-Felkai) Yurkov et al.,
Antonie van Leeuwenhoek 107: 190 (2015)
Occultifur Oberw., Rep. Tottori Mycol. Inst. 28: 119
(1990)
1. O. externus J.P. Samp., R. Bauer & Oberw., Mycologia
91(6): 1095 (1999)
Symmetrosporaceae Q.M. Wang, F.Y. Bai, M. Groenew.
& Boekhout, Studies in Mycology 81: 175 (2015)
Symmetrospora Q.M. Wang, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 175 (2015)
1. S. marina (Phaff, Mrak & O.B. Williams) Q.M. Wang,
F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology
81: 176 (2015)
2. ERYTHROBASIDIALES R. Bauer, Begerow, J.P.
Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006)
Erythrobasidiaceae Denchev, Mycol. Balcanica 6: 87.
2009.
Erythrobasidium Hamam., Sugiy. & Komag., J. Gen.
Appl. Microbiol., Tokyo 34(3): 285 (1988)
1. E. hasegawianum Hamam., Sugiy. & Komag., J. Gen.
Appl. Microbiol., Tokyo 37: 131 (1991)
Sakaguchiaceae Q.M. Wang, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 177 (2015)
Sakaguchia Y. Yamada, K. Maeda & Mikata, Biosc.,
Biotechn., Biochem. 58(1): 102 (1994)
1. S. dacryoidea (Fell, I.L. Hunter & Tallman) Y. Yamada,
K. Maeda & Mikata, Biosc., Biotechn., Biochem. 58(1):
102 (1994)
2. S. cladiensis (Fell, Statzell & Scorzetti) Q.M. Wang,
F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology
81: 177 (2015)
3. S. lamellibrachiae (Nagahama, Hamamoto, Nakase &
Horikoshi) Q.M. Wang, F.Y. Bai, M. Groenewald & T.
Boekhout, Studies in Mycology 81: 177 (2015)
Hasegawazyma Q.M. Wang, F.Y. Bai, M. Groenew. &
Boekhout, Studies in Mycology 81: 175 (2015)
1. H. lactosa (T. Haseg.) Q.M. Wang, F.Y. Bai, M.
Groenew. & Boekhout, Studies in Mycology 81: 175
(2015)
Class: Agaricostilbomycetes
Subclass: Agaricostilbomycetidae
1. AGARICOSTILBALES Oberw. & R. Bauer, Sydowia
41: 240 (1989)
Agaricostilbaceae Oberw. & R. Bauer, Sydowia 41: 240
(1989)
Sterigmatomyces Fell, Antonie van Leeuwenhoek 32: 101
(1966)
1. St. halophilous Fell, Antonie van Leeuwenhoek 32: 101
(1966)
Kondoaceae R. Bauer, Begerow, J.P. Samp., M. Weiss &
Oberw., Mycological Progress 5 (1): 45 (2006)
Kondoa Y. Yamada, Nakagawa & I. Banno, Journal of
General and Applied Microbiology Tokyo 35 (5): 383
(1989)
1. K. malvinella (Fell & I.L. Hunter) Y. Yamada, Naka-
gawa & I. Banno, Journal of General and Applied Micro-
biology Tokyo 35 (5): 384 (1989)
Subphyllum: Ustilaginomycotina
Class: Ustilaginomycetes R. Bauer, Oberw. & Va
´nky,
Can. J. Bot. 75: 1311 (1997)
1. USTILAGINALES G. Winter, Rabenh. Krypt.-Fl., Edn
2 (Leipzig) 1.1: 73 (1880)
Ustilaginaceae Tul. & C. Tul., Annls Sci. Nat., Bot., se
´r. 3
7: 14 (1847)
Ustilago (Pers.) Roussel, Flore du Calvados et terrains
adjacents, compose
´e suivant la me
´thode de Jussieu: 47
(1806)
1. U. abaconensis (Statzell, Scorzetti & Fell) Q.M. Wang,
Begerow, F.Y. Bai & Boekhout, Studies in Mycology 81:
82 (2015)
Pseudozyma Bandoni emend. Boekhout, J Gen Appl
Microbiol, Tokyo 41(4): 359-366 (1985)
1. P. hubeiensis F.Y. Bai & Q.M. Wang, in Wang, Jia &
Bai, Int. J. Syst. Evol. Microbiol. 56(1): 291 (2006)
Class: Malasseziomycetes Boekhout, Q.M. Wang, F.Y.
Bai, In: Q.-M. Wang, B. Theelen, M. Groenewald, F.-Y.
Bai, T. Boekhout, Persoonia 33: 46 (2014)
1. MALASSEZIALES R.T. Moore, Bot. Mar. 23(6): 371
(1980)
Malasseziaceae Denchev & R.T. Moore, Mycotaxon 110:
379 (2009)
Malassezia Baill., Traite
´de Bot Me
´dicale Cryptogamique:
234 (1889)
1. M. furfur (C.P. Robin) Baill., Traite
´Bot. Me
´d. Crypt.:
234 (1889)
Subphyllum: Pucciniomycotina
Class: Tritirachiomycetes Aime & Schell, Mycologia
103(6): 1339 (2011)
Fungal Diversity
123
1. TRITIRACHIALES Aime & Schell, in Schell, Lee &
Aime, Mycologia 103(6): 1339 (2011)
Tritirachiaceae Aime & Schell, Mycologia 103(6): 1339
(2011)
Tritirachium Limber, Mycologia 32(1): 24 (1940)
1. T. candoliense Manohar, Boekhout & Stoeck, Fungal
Biol. 118(2): 143 (2014)
Basidiomycota incertae sedis
Class: Wallemiomycetes Zalar, de Hoog & Schroers,
Antonie van Leeuwenhoek 87(4): 322 (2005)
1. WALLEMIALES Zalar, de Hoog & Schroers, Antonie
van Leeuwenhoek 87(4): 322 (2005)
Wallemiaceae R.T. Moore, Rhizoctonia Species, Taxon-
omy, Molecular Biology, Ecology, Pathology and Disease
Control (Dordrecht): 20 (1996)
Wallemia Johan-Olsen, Skr. VidenskSelsk. Christiania, Kl.
I, Math.-Natur.(no. 12): 6 (1887)
1. W. sebi (Fr.) Arx, Gen. Fungi Sporul. Cult. (Lehr): 166
(1970)
Phyllum: ASCOMYCOTA
Subphyllum: Saccharomycotina
Class: Saccharomycetes (G. Winter, Rabenh. Krypt.-Fl.,
Edn 2 (Leipzig) 1.1: 32 (1880)
1. SACCHAROMYCETALES Kudryavtsev, System.
Hefen (Berlin): 270 (1960)
Dipodascaceae Engl. & E. Gilg, Syllabus, Edn 9 & 10
(Berlin): 59 (1924)
Galactomyces Redhead & Malloch, Can. J. Bot. 55(13):
1708 (1977)
1. G. candidum de Hoog & M.T. Sm., Stud. Mycol. 50(2):
504 (2004)
Endomycetaceae J. Schro
¨t., Krypt.-Fl. Schlesien (Breslau)
3.2(1–2): 208 (1893)
Trichomonascus H.S. Jacks., Mycologia 39(6): 712 (1947)
1. T. ciferrii (M.T. Sm., Van der Walt & Johannsen)
Kurtzman & Robnett, FEMS Yeast Res. 7(1): 149 (2007)
Saccharomycetaceae G. Winter, Rabenh. Krypt.-Fl., Edn
2 (Leipzig) 1.1: 58 (1880)
Citeromyces Santa Marı
´a, Bol. Inst. Nac. Invest. Agron.
17: 275 (1957)
1. Cit. matritensis (Santa Marı
´a) Santa Marı
´a, Bol. Inst.
Invest. Agron. Madr. 17(no. 37): 275 (1957)
Lodderomyces Van der Walt, Antonie van Leeuwenhoek
32: 2 (1966)
1. L. elongisporus (Recca & Mrak) van der Walt, Bothalia
10(3): 418 (1971)
Kazachstania Zubcova, Bot. Mater. Gerb. Inst. Bot. Akad.
Nauk kazakh. SSR 7: 53 (1971)
1. K. bovina Kurtzman & Robnett, J. Clin. Microbiol.
43(1): 105 (2005)
2. K. exigua (Reess ex E.C. Hansen) Kurtzman, FEMS
Yeast Res. 4(3): 238 (2003)
3. K. hetergenica Kurtzman & Robnett, J. Clin. Microbiol.
43(1): 107 (2005)
4. K. jiainica C.F. Lee & Chun H. Liu, FEMS Yeast Res.
8(1): 116 (2008)
5. K. pintolopesii Kurtzman, Robnett, J.M. Ward & T.J.
Walsh, J. Clin. Microbiol. 43(1): 108 (2005)
6. K. siamensis Limtong, Yongman., Tun, H. Kawas. &
Tats. Seki, Int. J. Syst. Evol. Microbiol. 57(2): 421 (2007)
7. K. slooffiae Kurtzman & Robnett, J. Clin. Microbiol.
43(1): 109 (2005)
8. K. yakushimaensis (Mikata & Ueda-Nishim.) Kurtzman,
FEMS Yeast Research 4 (3): 239 (2003)
Kluyveromyces van der Walt, Antonie van Leeuwenhoek
22: 271 (1956)
1. Kl. aestuarii (Fell) van der Walt, Antonie van
Leeuwenhoek 31: 347 (1965)
2. Kl. lactis var. drosophilarum (Shehata, Mrak & Phaff)
G.I. Naumov, E.S. Naumova, Barrio & Querol, Mikrobi-
ologiya 75(3): 299-304 (2006)
3. Kl. lactis var. lactis (Dombr.) van der Walt, Bothalia
10(3): 417 (1971)
4. Kl. marxianus (E.C. Hansen) van der Walt, Bothalia
10(3): 418 (1971)
5. Kl. nonfermentans Nagah., Hamam., Nakase & Hor-
ikoshi, Int. J. Syst. Bacteriol. 49(4): 1903 (1999)
Kodamaea Y. Yamada, Tom. Suzuki, M. Matsuda &
Mikata, Biosc., Biotechn., Biochem. 59(6): 1174 (1995)
1. Kod. ohmeri (Etchells & T.A. Bell) Y. Yamada, Tom.
Suzuki, M. Matsuda & Mikata, Biosc., Biotechn., Bio-
chem. 59(6): 1174 (1995)
Kregervanrija Kurtzman, FEMS Yeast Res. 6(2): 289
(2006)
1. Kr. fluxuum (Phaff & E.P. Knapp) Kurtzman, FEMS
Yeast Res. 6(2): 291 (2006) FEMS Yeast Research 6 (2):
289 (2006)
Lachancea Kurtzman, FEMS Yeast Res. 4(3): 239 (2003)
1. L. fermentati Kurtzman, FEMS Yeast Res. 4(3): 240
(2003)
2. L. meyersii Fell, Statzell & Kurtzman, Stud. Mycol.
50(2): 360 (2004)
3. L. thermotolerans (Filippov) Kurtzman, FEMS Yeast
Res. 4(3): 240 (2003)
Nakazawaea Y. Yamada, K. Maeda & Mikata, Biosc.,
Biotechn., Biochem. 58(7): 1256 (1994)
1. N. holstii (Wick.) Y. Yamada, K. Maeda & Mikata,
Biosc., Biotechn., Biochem. 58(7): 1256 (1994)
Saccharomyces Meyen ex Hansen, Vergleichende Mor-
phologie und Biologie der Pilze, Mycetozen und Bacterien:
29 (1883)
Fungal Diversity
123
1. S. cerevisiae Meyen ex E.C. Hansen, Meddn Carlsberg
Lab. 2: 29 (1883)
2. S. pastorianus Reess ex E.C. Hansen, Zentbl. Bakt.
ParasitKde, Abt. II 12(19-21): 538 (1904)
Saturnispora Z.W. Liu & Kurtzman, Antonie van
Leeuwenhoek 60(1): 28 (1991)
1. Sa. mendoncae Kurtzman, FEMS Yeast Res. 6(2): 292
(2006)
2. Sa. satoi (K. Kodama, Kyono & S. Kodama) Z.W. Liu &
Kurtzman, Antonie van Leeuwenhoek 60(1): 28 (1991)
Schwanniomyces Klo
¨cker, Meddn Carlsberg Lab. 7: 249
(1909)
1. Sch. etchellsii (Kreger-van Rij) M. Suzuki & Kurtzman,
in Kurtzman & Suzuki, Mycoscience 51(1): 11 (2010)
2. Sch. polymorphus var. africanus (Van der Walt, Nakase
& M. Suzuki) M. Suzuki & Kurtzman, in Kurtzman &
Suzuki, Mycoscience 51(1): 11 (2009)
3. Sch. vanrijiae (van der Walt & Tscheuschner) M. Suzuki
& Kurtzman, in Kurtzman & Suzuki, Mycoscience 51(1):
11 (2010)
Torulaspora Lindner, Jb. Vers.- Lehranst. Brau. Berl. 7:
441 (1904)
1. T. delbruechii (Lindner) E.K. Nova
´k & Zsolt, Acta bot.
hung. 7: 113 (1961)
2. T. globosa (Klo
¨cker) van der Walt & Johannsen, C.S.I.R.
Res. Rep. 325: 15 (1975)
3. T. maleeae Limtong, Imanishi, Jindam., S. Ninomiya,
Yongman. & Nakase, FEMS Yeast Res. 8(2): 340 (2008)
Zygotorulaspora Kurtzman, FEMS Yeast Res. 4(3): 243
(2003)
1. Z. florentina (T. Castelli ex Kudryavtsev) Kurtzman,
FEMS Yeast Res. 4(3): 243 (2003)
Pichiaceae Zender, Bull. Soc. bot. Gene
`ve, 2 se
´r. 17: 290
(1925)
Brettanomyces Kuff. & van Laer, Bulletin de la Socie
´te
´
Chimiques Belges 30: 270-276 (1921)
1. B. bruxellensis Kuff. & van Laer, Bull. Soc. Chim. Belg.
30: 276 (1921)
Pichia E.C. Hansen, Zentbl. Bakt. ParasitKde, Abt. II
12(19): 538 (1904)
1. P. fermentans Lodder, Zentbl. Bakt. ParasitKde, Abt. II
86: 242 (1932)
2. P. kluyveri Bedford ex Kudryavtsev, Bot. Mater. Otd.
Sporov. Rast. Bot. Inst. Komarova Akad. Nauk S.S.S.R.
13: 145 (1960)
3. P. kudriavzevii Boidin, Pignal & Besson, Bull. trimest.
Soc. mycol. Fr. 81(4): 589 (1965)
4. P. mandshurica Saito, Report of the Central Laboratory,
South Manchuria Railway Company 1: 35 (1914)
5. P. membranifaciens (E.C. Hansen) E.C. Hansen, Zentbl.
Bakt. ParasitKde, Abt. II 12(19-21): 538 (1904)
6. P. norvegensis Leask & Yarrow, Sabouraudia 14: 61
(1976)
7. P. occidentalis (Kurtzman, M.J. Smiley & C.J. Johnson)
Kurtzman, Robnett & Bas.-Powers, FEMS Yeast Res. 8(6):
946 (2008)
8. P. terricola Van der Walt, Antonie van Leeuwenhoek
23: 28 (1957)
Trichomonascaceae Kurtzman & Robnett, FEMS Yeast
Res. 7(1): 150 (2007)
Blastobotrys Klopotek, Archiv fu
¨r Mikrobiol 58: 92 (1967)
1. Bl. parvus (Fell & Statzell) Kurtzman & Robnett, FEMS
Yeast Res. 7(1): 149 (2007)
Barnettozyma Kurtzman, Robnett & Bas.-Powers, FEMS
Yeast Res. 8(6): 948 (2008)
1. Bar. californica (Lodder) Kurtzman, Robnett & Bas.-
Powers, FEMS Yeast Res. 8(6): 948 (2008)
Saccharomycodaceae Kudryavtsev, System. Hefen (Ber-
lin): 270 (1960)
Hanseniaspora Zikes, Zentbl. Bakt. ParasitKde, Abt. II 30:
148 (1911)
1. H. occidentalis M.T. Sm., Antonie van Leeuwenhoek
40(3): 441 (1974)
2. H. uvarum (Niehaus) Shehata, Mrak & Phaff ex M.T.
Sm., in Smith, Yeasts, a taxonomic study, 3rd Edn (Ams-
terdam): 159 (1984)
3. H. valbyensis Klo
¨cker, Zentbl. Bakt. ParasitKde, Abt. II
35: 385 (1912)
Debaryomycetaceae Kurtzman & M. Suzuki, Myco-
science 51(1): 12 (2010)
Debaryomyces Lodder & Kreger-van Rij, in Kreger-van
Rij, Yeasts, a taxonomic study, 3rd Edn (Amsterdam): 130,
145 (1984)
1. D. hansenii (Zopf) Lodder & Kreger, The Yeasts: a
taxonomic study: 280 (1952)
2. D. nepalensis Goto & Sugiy., J. Jap. Bot. 43: 103 (1968)
Meyerozyma Kurtzman & M. Suzuki, Mycoscience 51(1):
8 (2010)
1. Me. caribbica (Vaughan-Mart., Kurtzman, S.A. Mey. &
E.B. O’Neill) Kurtzman & M. Suzuki, Mycoscience 51(1):
8 (2010)
2. Me. guilliermondii (Wick.) Kurtzman & M. Suzuki,
Mycoscience 51(1): 7 (2010)
Millerozyma Kurtzman & M. Suzuki, Mycoscience 51 (1):
8 (2010)
1. M. farinosa (Lindner) Kurtzman & M. Suzuki, Myco-
science 51 (1): 8 (2010)
Candida Berkhout, De schimmelgeslachten Monilia, Oid-
ium, Oospora en Torula: 41 (1923)
This genus is highly polyphyletic and taxonomic changes
can be expected.
1. C. aaseri Dietrichson ex Uden & H.R. Buckley, in
Lodder, Yeasts, a taxonomic study, 2nd Edn (Amsterdam):
912 (1970)
Fungal Diversity
123
2. C. albicans (C.P. Robin) Berkhout, De Schimmelgesl.
Monilia, Oidium, Oospora en Torula, Disset. Ultrecht: 44
(1923)
3. C. anatomiae (Zwillenb.) S.A. Mey. & Yarrow, in
Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 611 (1978)
4. C. andamanensis Am-In, Limtong, Yongman. & Jin-
dam., Int. J. Syst. Evol. Microbiol. 61(2): 459 (2011)
5. C. atlantica (Siepmann) S.A. Mey. & Simione, in Meyer
& Yarrow, Mycotaxon 66: 100 (1998)
6. C. berthetii Boidin, Pignal, Mermie
´r & Arpin, Cahiers de
La Maboke
´1: 100 (1963)
7. C. boidinii C. Ramı
´rez, Microbiol. esp. 6(3): 251 (1953)
8. C. carpophila (Phaff & M.W. Mill.) Vaughan-Mart.,
Kurtzman, S.A. Mey. & E.B. O’Neill, FEMS Yeast Res.
5(4-5): 467 (2005)
9. C. catenulata Diddens & Lodder, Die Hefesammlung
des ‘Centraalbureau voor Schimmelcultures’: Beitrage zu
einer Monographie der Hefearten. II. Teil. Die
anaskosporogenen Hefen. Zweite Halfte: 486 (1942)
10. C. choctaworum S.O. Suh & M. Blackw., in Suh,
McHugh & Blackwell, Int. J. Syst. Evol. Microbiol. 54(6):
2422 (2004)
11. C.conglobata (Redaelli) Cif., in Lodder, Manuale di
Micologia Medica, Edn 2 2: 245 (1960)
12. C.cylindracea Koichi Yamada & Machida ex S.A.
Mey. & Yarrow, Mycotaxon 66: 100 (1998)
13. C. diddensii (Phaff, Mrak & O.B. Williams) Fell &
S.A. Mey. [as ‘diddensii’], Mycopath. Mycol. appl. 32: 189
(1967)
14. C. fennica (Sonck & Yarrow) S.A. Mey. & Ahearn,
Mycotaxon 17: 297 (1983)
15. C. freyschussii H.R. Buckley & Uden, Mycopath.
Mycol. appl. 36: 263 (1968)
16. C. germanica Kurtzman, Robnett & Yarrow, Antonie
van Leeuwenhoek 80(1): 79 (2001)
17. C. glabrata (H.W. Anderson) S.A. Mey. & Yarrow, in
Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 612 (1978)
18. C. glaebosa Komag. & Nakase, J. gen. appl. Micro-
biol., Tokyo 11: 262 (1965)
19. C. guilliermondii (Castell.) Langeron & Guerra, Annls
Parasit. hum. comp. 16(5): 467 (1938)
20. C. haemulonis (Uden & Kolip.) S.A. Mey. & Yarrow
[as ‘haemulonii’], in Yarrow & Meyer, Int. J. Syst. Bac-
teriol. 28(4): 612 (1978)
21. C. hollandica Knutsen, V. Robert & M.T. Sm., Int.
J. Syst. Evol. Microbiol. 57(10): 2434 (2007)
22. C. inconspicua (Lodder & Kreger-van Rij) S.A. Mey.
& Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol.
28(4): 612 (1978)
23. C. insectamans D.B. Scott, Van der Walt & Klift, in
van der Walt, Scott & van der Klift, Mycopath. Mycol.
appl. 47(3): 226 (1972)
24. C.intermedia (Cif. & Ashford) Langeron & Guerra,
Annls Parasit. hum. comp. 16(5): 461 (1938)
25. C.laemsonensis Am-In, Limtong, Yongman. & Jin-
dam., Int. J. Syst. Evol. Microbiol. 61(2): 458 (2011)
26. C. magnoliae (Lodder & Kreger-van Rij) S.A. Mey. &
Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4):
613 (1978)
27. C.maltosa Komag., Nakase & Katsuya, J. gen. appl.
Microbiol., Tokyo 10: 327 (1964)
28. C.maris (Uden & Zobell) S.A. Mey. & Yarrow, in
Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 613 (1978)
29. C. maritima (Siepmann) Uden & H.R. Buckley, in
Lodder, Mycotaxon 17: 298 (1983)
30. C. melibiosica H.R. Buckley & Uden, Mycopath.
Mycol. appl. 36: 264 (1968)
31. C. membranifaciens (Lodder & Kreger-van Rij) Wick.
& Burton, J. Bact. 68: 597 (1954)
32. C. mesenterica (A. Geiger) Diddens & Lodder, Die
Hefasammlung des ‘Centraalbureau voor Schimmelcul-
tures’: Beitrage zu einer Monographie der Hefearten. II.
Teil. Die anaskosporogenen Hefen. Zweite Ha
¨lfte: 196
(1942)
33. C. michaelii S.O. Suh, N.H. Nguyen & M. Blackw.,
Mycol. Res. 109(9): 1049 (2005)
34. C. mogii Vidal-Leir., Antonie van Leeuwenhoek 33:
342 (1967)
35. C. neustonenis C.F. Chang & S.M. Liu, Antonie van
Leeuwenhoek 97(1): 38 (2010)
36. C. norvegica (Reierso
¨l) S.A. Mey. & Yarrow, in Yar-
row & Meyer, Int. J. Syst. Bacteriol. 28(4): 613 (1978)
37. C. oleophila Montrocher, Revue Mycol., Paris 32: 73
(1967)
38. C. parapsilosis (Ashford) Langeron & Talice, Annls
Parasit. hum. comp. 10: 1 (1932)
39. C. phangngaensis Limtong, Yongman., H. Kawas. &
Tats. Seki [as ‘phangngensis’], in Limtong, Youngman-
itchai, Kawasaki & Seki, Int. J. Syst. Evol. Microbiol.
58(2): 517 (2008)
40. C. picinguabensis Ruivo, Pagnocca, Lachance & C.A.
Rosa, in Ruivo, Lachance, Rosa, Bacci & Pagnocca, Int.
J. Syst. Evol. Microbiol. 56(5): 1149 (2006)
41. C. pini (Lodder & Kreger-van Rij) S.A. Mey. & Yar-
row, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 613
(1978)
42. C.pseudolambica M.T. Sm. & Poot, in Smith, Poot &
Kull, Stud. Mycol. 31: 175 (1989)
43. C. ranongensis Am-In, Limtong, Yongman. & Jindam.,
Int. J. Syst. Evol. Microbiol. 61(2): 459 (2011)
44. C. rhagii (Diddens & Lodder) Jurzitza, Ku
¨hlw. &
Kreger-van Rij, Arch. Mikrobiol. 36(3): 237 (1960)
45. C. rhizophoriensis Fell, M.H. Gut., Statzell & Scorzetti
[as ‘rhizophoriensis’], in Fell, Statzell-Tallman, Scorzetti
& Gutie
´rrez, Antonie van Leeuwenhoek 99(3): 545 (2011)
Fungal Diversity
123
46. C. rugosa (H.W. Anderson) Diddens & Lodder, Die
Hefasammlung des ‘Centraalbureau voor Schimmelcul-
tures’: Beitrage zu einer Monographie der Hefearten. II. Teil.
Die anaskosporogenen Hefen. Zweite Halfte: 280 (1942)
47. C. saitoana Nakase & M. Suzuki, J. gen. appl.
Microbiol., Tokyo 31: 85 (1985)
48. C. sake (Saito & M. Ota) Uden & H.R. Buckley ex S.A.
Mey. & Ahearn, in Lodder, Mycotaxon 17: 298 (1983)
49. C. salmanticensis (Santa Marı
´a) Uden & H.R. Buckley,
in Lodder, Mycotaxon 17: 298 (1983)
50. C. sanitii Limtong, Am-In, Kaeww., Boonmak, Jin-
dam., Yongman., Srisuk, H. Kawas. & Nakase, in Limtong,
Kaewwichian, Am-In, Boonmak, Jindamorakot, Yong-
manitchai, Srisuk, Kawasaki & Nakase, FEMS Yeast Res.
10(1): 118 (2010)
51. C. santamariae Montrocher, Revue Mycol., Paris 32:
77 (1967)
52. C.sekii Limtong, Kaeww., Jindam., Am-In, Boonmak,
Yongman., Srisuk, H. Kawas. & Nakase, in Limtong,
Kaewwichian, Am-In, Boonmak, Jindamorakot, Yong-
manitchai, Srisuk, Kawasaki & Nakase, FEMS Yeast Res.
10(1): 121 (2010)
53. C. silvae Vidal-Leir. & Uden, Antonie van Leeuwen-
hoek 29: 261 (1963)
54. C.solani Lodder & Kreger-van Rij, Yeasts, a taxo-
nomic study, [Edn 1] (Amsterdam): 672 (1952)
55. C.stellata (Kroemer & Krumbholz) S.A. Mey. &
Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4):
614 (1978)
56. C. suecica Rodr. Mir. & Norkrans, Antonie van
Leeuwenhoek 34: 115 (1968)
57. C. suwanaritii Limtong, Boonmak, Kaeww., Am-In,
Jindam., Yongman., Srisuk, H. Kawas. & Nakase, in
Limtong, Kaewwichian, Am-In, Boonmak, Jindamorakot,
Yongmanitchai, Srisuk, Kawasaki & Nakase, FEMS Yeast
Res. 10(1): 120 (2010)
58. C. tenuis Diddens & Lodder, Die Hefesammlung des
‘Centraalbureau voor Schimmelcultures’: Beitrage zu einer
Monographie der Hefearten. II. Teil. Die anaskosporoge-
nen Hefen. Zweite Ha
¨lfte: 488 (1942)
59. C. thaimeueangensis Limtong, Yongman., H. Kawas. &
Tats. Seki, Int. J. Syst. Evol. Microbiol. 57(3): 651 (2007)
60. C. torresii (Uden & Zobell) S.A. Mey. & Yarrow, in
Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 614 (1978)
61. C. tropicalis (Castell.) Berkhout, De Schimmelgesl.
Monilia, Oidium, Oospora en Torula, Disset. Utrecht: 44
(1923)
62. C. versatilis (Etchells & T.A. Bell) S.A. Mey. & Yarrow,
in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 614 (1978)
63. C. viswanathii Sandu & H.S. Randhawa, Mycopath.
Mycol. appl. 18: 179 (1962)
64. C. zeylanoides (Castell.) Langeron & Guerra, Annls
Parasit. hum. comp. 16(5): 501 (1938)
Priceomyces M. Suzuki & Kurtzman, in Kurtzman &
Suzuki, Mycoscience 51(1): 8 (2010)
1. P. carsonii (Phaff & E.P. Knapp) M. Suzuki, in Kurtz-
man & Suzuki, Mycoscience 51(1): 9 (2010)
Scheffersomyces Kurtzman & M. Suzuki, Mycoscience
51(1): 9 (2010)
1. Sch. spartinae (Ahearn, Yarrow & Meyers) Kurtzman &
M. Suzuki, Mycoscience 51(1): 9 (2010)
Dipodascaceae Engl. & E. Gilg, Syllabus, Edn 9 & 10
(Berlin): 59 (1924)
Yarrowia Van der Walt & Arx, Antonie van Leeuwenhoek
46: 519 (1980)
1. Y.lipolytica (Wick., Kurtzman & Herman) Van der Walt
& Arx, Antonie van Leeuwenhoek 46: 519 (1980)
Metschnikowiaceae T. Kamien
´ski ex Doweld, Index
Fungorum 33: 1 (2013)
Clavispora Rodr. Mir., Antonie van Leeuwenhoek 45: 480
(1979)
1. Cl. lusitaniae Rodr. Mir., Antonie van Leeuwenhoek
45(3): 480 (1979)
Metschnikowia Kamienski, Trudy imp. S-peterb. Obshch.
Estest.: 364 (1899)
1. Met. bicuspidata (Metschn.) T. Kamien
´ski, Trudy S.
Petersb. Obschch. Est. Otd. Bot. 30(1): 363 (1900)
2. Met. krissii (Uden & Cast.-Branco) Uden, Revta Biol.,
Lisb. 3: 96 (1962)
3. Met. pulcherrima Pitt & M.W. Mill., Mycologia 60(3):
669 (1968)
4. Met. reukauffii Pitt & M.W. Mill., Mycologia 60(3): 671
(1968)
5. Met. zobellii (Uden & Cast.-Branco) Uden, Revta Biol.,
Lisb. 3(1): 96 (1962)
Wickerhamomyces Kurtzman, Robnett & Bas.-Powers,
FEMS Yeast Res. 8(6): 951 (2008)
1. W. anomalus (E.C. Hansen) Kurtzman, Robnett & Bas.-
Powers, FEMS Yeast Res. 8(6): 952 (2008)
2. W. bovis (Uden & Carmo Souza) Kurtzman, Robnett &
Bas.-Powers, FEMS Yeast Res. 8(6): 952 (2008)
3. W. canadensis (Wick.) Kurtzman, Robnett & Bas.-
Powers, FEMS Yeast Res. 8(6): 952 (2008)
4. W. hampshirensis (Kurtzman) Kurtzman, Robnett &
Bas.-Powers, FEMS Yeast Res. 8(6): 952 (2008)
5. W. sydowiorum (D.B. Scott & Van der Walt) Kurtzman,
Robnett & Bas.-Powers, FEMS Yeast Res. 8(6): 952 (2008)
SACCHAROMYCETALES incertae sedis
Cyberlindnera Minter, Mycotaxon 110: 473 (2009)
1. Cyb. fabianii (Wick.) Minter, Mycotaxon 110: 474
(2009)
2. Cyb. jadinii (Sartory, R. Sartory, Weill & J. Mey.)
Minter, Mycotaxon 110: 474 (2009)
Fungal Diversity
123
3. Cyb. saturnus (Klo
¨cker) Minter, Mycotaxon 110: 476
(2009)
Hyphopichia Arx & Van der Walt, Antonie van
Leeuwenhoek 42(3): 310 (1976)
1. Hy.burtonii (Boidin, Pignal, Lehodey, Vey & Abadie)
Arx & Van der Walt, Antonie van Leeuwenhoek 42(3): 310
(1976)
Trigonopsis Schachner, Zeitschrift fu
¨r das Gesammte
Brauwesen 52: 137 (1929)
1. Tri. cantarellii (Van der Walt & Kerken) Kurtzman &
Robnett, FEMS Yeast Res. 7(1): 150 (2007)
Torulopsis Berl., Giorn. Vitic. Enol.: 54 (1894)
Species under this name are common in the literature and
now placed in various other genera, particularly Candida.
Yamadazyma Billon-Grand, Mycotaxon 35(2): 202 (1989)
1. Y. mexicanum (M. Miranda, Holzschu, Phaff & Starmer)
Billon-Grand, Mycotaxon 35(2): 203 (1989)
Zygoascus M.T. Sm., Antonie van Leeuwenhoek 52: 27
(1986)
1. Z. hellenicus M.T. Sm., Antonie van Leeuwenhoek
52(1): 27 (1986)
References
Abdel-Fattah JH, Moubasher M, Abdel-Hafez AH, Abdel-Hafez SI
(1977) Studies on mycoflora of salt marshes in Egypt. 1. Sugar
fungi. Mycopath 61:19–26
Abdel-Wahab MA (2005) Diversity of marine fungi from Egyptian
Red Sea mangroves. Bot Mar 48:348–355
Abdel-Wahab MA, Bahkali AHA (2012) Taxonomy of filamentous
anamorphic marine fungi: morphology and molecular evidence.
In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like
organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston,
pp 65–90
Abdel-Wahab MA, Jones EBG (2000) Three new marine ascomycetes
from driftwood in Australian sand dunes. Mycoscience
41:379–388
Abdel-Wahab MA, Pang KL, Nagahama T, Abdel-Aziz FA et al
(2010) Phylogenetic evaluation of anamorphic species of
Cirrenalia and Cumulospora with the description of eight new
genera and four new species. Mycol Prog 9:537–558
Abdel-Wahab MA, Hodhod MS, Bahkali AHA, Jones EBG (2014)
Marine fungi of Saudi Arabia. Bot Mar 57:323–335
Abdel-Wahab MA, Dayarathne MC, Suetrong S, Guo SY et al (2017)
New saprobic marine fungi and a new combination. Bot Mar
60:469–488
Abdel-Wahab MA, Jones EBG, Bahkali AHA, Elgorban AM (2019)
Marine fungi from Red Sea mangroves in Saudi Arabia with
Fulvocentrum rubrum sp. nov. (Torpedosporales, Ascomycota).
Nova Hedwig 108:365–377
Abraham EP (1979) A glimpse of the early history of the
cephalosporins. Rev Infect Dis 1:99–105
Adl SM, Simpson AG, Lane CE, Lukes
ˇJ et al (2012) The revised
classification of eukaryotes. J Eukaryot Microbiol 59:429–493
Alderman DJ, Jones EBG (1967) Shell disease of Ostrea edulis L.
Nature 216:797–798
Alderman DJ, Jones EBG (1971) Shell disease of oysters. Fish Invest
Ser 11(16):1–16
Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory
mycology. Wiley, New York
Alias SA, Jones EBG (2010) Fungi from mangroves of Malaysia. Inst
Ocean Earth Sci Uni Malaya, Malaysia
Alias SA, Moss ST, Jones EBG (2001) Cucullosporella mangrovei,
ultrastructure of ascospsores and their appendages. Mycoscience
42:405–411
Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus
sydowii (Thom & Church), a fungal pathogen of Caribbean Sea
fan corals. Hydrobiologia 460:105–111
Allen JRL, Pye K (1992) Coastal saltmarshes: their nature and
importance. In: Allen JRL, Pye K (eds) Saltmarshes: morpho-
dynamics, conservation, and engineering significance. Cam-
bridge University Press, Cambridge
Almeida C, Hemberger Y, Schmitt SM, Bouhired S et al (2012)
Marilines A-C: novel phthalimidines from the sponge-derived
fungus Stachylidium sp. Chem Eur J 18:8827–8834
Al-Nasrawi HG, Hughes AR (2012) Fungal diversity associated with
salt marsh plants Spartina alterniflora and Juncus roemerianus
in Florida. Jordan J Biol Sci 5:247–254
Alva P, Mckenzie EHC, Pointing SP, Pena-Murala R et al (2002) Do
seagrasses harbour endobiotes? In: Hyde KD (ed) Fungi in
marine environments. Fungal Divers Press, Hong Kong,
pp 167–178
Am-In S, Yongmanitchai W, Limtong S (2008) Kluyveromyces
siamensis sp. nov., an ascomycetous yeast isolated from water in
a mangrove forest in Ranong Province, Thailand. FEMS Yeast
Res 8:823–828
Amend AS (2014) From dandruff to deep-sea vents: Malassezia-like
fungi are ecologically hyper-diverse. PLoS Pathog 10:e1004277
Arnold AE (2007) Understanding the diversity of foliar endophytic
fungi: progress, challenges, and frontiers. Fung Biol Rev
21:51–66
Apinis AE, Chesters CGC (1964) Ascomycetes of some salt marshes
and sand dunes. Trans Br Mycol Soc 47:419–435
Araujo FV, Hagler AN (2011) Kluyveromyces aestuarii, a potential
environmental quality indicator for mangroves in the State of
Rio de Janeiro, Brazil. Braz J Microbiol 42:954–958
Ariyawansa HA, Tanaka K, Thambugala KM, Phookamasak R et al
(2014) A molecular phylogenetic reappraisal of the Didymo-
sphaeriaceae (= Montagnulaceae). Fungal Divers 68:699–699
Bai M, Sen B, Wang Q, Zie Y et al (2018) Molecular detection and
spatiotemporal characterization of Labyrinthulomycete protist
diversity in the coastal waters along the Pearl River Delta.
Microb Ecol 2:89. https://doi.org/10.1007/s00248-018-1235-8
Baldauf SI (2003) The deep roots of Eukaryotes. Science
300:415–424
Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and
biology. Farlowia 1:395–467
Ba
¨rlocher F, Newell SY (1994) Growth of the saltmarsh periwinkle
Littoraria irrorata on fungal and cordgrass diets. Mar Biol
118:109–114
Barr ME (1983) The ascomycete connection. Mycologia 75:1–13
Bass D, Howe A, Brown N, Barton H et al (2007) Yeast forms
dominate fungal diversity in the deep oceans. Proc R Soc B
274:3069–3077
Bates SS, Garrison DL, Horner RA (1998) Bloom dynamics and
physiology of domoic-acid-producing Pseudonitzschia species.
In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Phys-
iological ecology of harmful algal blooms. Springer-Verlag,
Heidelberg, Germany, pp. 267–292
Bauch R (1936) Ophiobolus kniepii, ein neuer parasitischer Pyreno-
mycet auf Kalkalgen. Pubbl Staz Zool Napoli 15:377–391
Bauer R, Luta M, Piatek M, Vanky K et al (2007) Flamingomyces and
Parvulago, new genera of marine smut fungi (Ustialinomy-
cotina). Mycol Res 111:1199–1206
Fungal Diversity
123
Beimforde C, Feldberg K, Nylinder S, Rikkinen J et al (2014)
Estimating the Phanerozoic history of the Ascomycota lineages:
combining fossil and molecular data. Mol Phylogenet Evol
78:386–398
Beraldi-Campesi H (2013) Early life on land and the first terrestrial
ecosystems. Ecol Process 2:1–17
Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of
the true fungi. Can J Bot 71:1114–1127
Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—
how close are we? Fungal Biol Rev 24:1–16
Bessey EA (1950) Morphology and taxonomy of fungi. McCraw-Hill,
New York
Binder M, Hibbett DS (2001) Phylogenetic relationships of the
marine gasteromycete Nia vibrissa. Mycologia 93:679–688
Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary
relationships of Mycaureola dilseae (Agaricales), a basid-
iomycetes pathogen of a subtidal Rhodophyte. Am J Bot
93:547–556
Blackwell M (2011) The Fungi: 1, 2, 3. 5.1 million species? Am J Bot
98:426–438
Bochdansky AB, Clouse MA, Herndl GJ (2017) Eukaryotic microbes,
principally fungi and labyrinthulomycetes, dominate biomass on
bathypelagic marine snow. ISME J 11:362–373
Boonyuen N, Chuaseeharonnacha C, Suetrong S, Sri-Indrasutdh V
et al (2011) Savoryellales (Hypocreomycetideae, Sordari-
omycetes): a novel lineage of aquatic ascomycetes inferred
from multiple-gene phylogenies of the genera Ascotaiwania,
Ascothailandia and Savoryella. Mycologia 103:1351–1352
Bovio E, Gnavi G, Prigione V, Spina et al (2016) The culturable
mycobiota of a Mediterranean marine site after an oil spill:
isolation, identification and potential application in bioremedi-
ation. Sci Total Environ 576:310–318
Bovio E, Garzoli L, Poli A, Prigione V et al (2018) The culturable
mycobiota associated with three Atlantic sponges, including two
new species: Thelebolus balaustiformis and T. spongiae. Fungal
Syst Evol 1:141–167
Bower SM (1987) Labyrinthuloides haliotidis (Protozoa: Labyrintho-
morpha), a parasite of juvenile abalone in a British Columbia
mariculture facility. Can J Zool 65:1996–2007
Bower SM (2000) Infectious diseases of ablone (Haliotis sp.) and
risks associated with transplanatation. In: Campbell A (ed)
Workshop on rebuilding albalone stocks in British Columbia.
NRC Research News, Ottawa, pp 111–122
Buatong J, Chaowalit P, Rukachaisirikul V (2012) Diversity of
endophytic and marine-derived fungi associated with marine
plants and animals. In: Jones EBG, Pang K-L (eds) Marine fungi
and fungal-like organisms. Walter de Gruyter, Berlin,
pp 291–328
Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production
of wood decay enzymes, mass loss and lignin solubilization in
wood by marine ascomycetes and their anamorphs. Fungal
Divers 15:1–14
Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and
biologically diverse group of microorganisms. Nat Prod Rep
21:143–163
Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P et al (2009)
Diversity of culturable marine filamentous fungi from deep-sea
hydrothermal ventsemi. Environ Microbiol 11:1588–1600
Byrne PJ, Jones EBG (1974) Lignicolous marine fungi. Veroff Inst
Meeresforsch Bremerhaven Supplement 5:301–320
Campbell J, Anderson JL, Shearer CA (2003) Systematics of
Halosarpheia based on morphological and molecular data.
Mycologia 95:530–552
Campbell J, Volkmann-Kohlmeyer B, Gra
¨fenhan T, Spataofora JW
et al (2005) A reevaluation of Lulworthiales: relationships based
on 18S and 28S rDNA. Mycol Res 109:556–568
Carter GT, Berman VS (2016) Marine natural propducts in Pharma:
how industry missed the boat. In: Baker BJ (ed) Marine
Biomedicine, from beach to bedside. CRC Press, New York,
pp 531–539
Chang Y, Wang S, Sekimoto S, Aerts AL et al (2015) Phylogenomic
analyses indicate that early fungi evolved digesting cell walls of
algal ancestors of land plants. Genome Biol Evol 7:1590–1601
Chen X, Si L, Liu D, Proksch P et al (2015) Neoechinulin B and its
analogues as potential entry inhibitors of influenza viruses,
targeting viral hemagglutinin. Eur J Med Chem 93:182–195
Chen S, Chen D, Cai R, Cui H et al (2016) Cytotoxic and antibacterial
preussomerins from the mangrove endophytic fungus La-
siodiplodia theobromae ZJ-HQ1. J Nat Prod 79:2397–2402
Choi J, Kim SH (2017) A genome tree of life for the fungi kingdom.
Proc Natl Acad Sci 114:9391–9396
Christian RR, Bryant WL, Brinson MM (1990) Juncus roemerianus
production and decomposition along gradients of salinity and
hydroperiod. Mar Ecol Prog Ser 68:137–145
Collier JL, Geraci-Yee S, Lilje O, Gleason FH (2017) Possible
impacts of zoosporic parasites in diseases of commercially
important marine mollusc species: part II. Labyrinthulomycota.
Bot Mar 60:409–417
Comeau AM, Vincent WF, Bernier L, Lovejoy C (2016) Novel
chytrid lineages dominate fungal sequences in diverse marine
and freshwater habitats. Sci Rep 6:30120
Cooke MC (1888) New British fungi. Grevillea 16:77–81
Crous PW, Wingfield MJ, Alfeans AC, Silveira SF (1994) Cylindro-
cladium naviculatum sp. nov., and two new vesiculate
hyphomycete genera, Falcocladium and Vesicladiella. Myco-
taxon 50:441–458
Cuomo V, Vanzanella F, Fresi E, Cinelli F et al (1985) Fungal flora of
Posidonia oceanica and its ecological significance. Trans Br
Mycol Soc 84:35–40
Damare S, Raghukumar C (2008) Fungi and macroag-gregation in
deep-sea sediments. Microb Ecol 56:168–177
Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea
sediments of the Central Indian Basin. Deep-Sea Res I 53:14–27
Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry
under high-pressure conditions. Chem Soc Rev 35:858–875
Dayarathne MC, Maharachchikumbura SSN, Jones EBG, De Silva
KHWL et al (2018) The evolution of Savoryellaceae and
evidence for its ranking as a subclass. Fungal Divers 84:25–41
Debbab A, Aly AH, Proksch P (2013) Mangrove derived fungal
endobiotes—a chemical and biological perception. Fungal
Divers 61:1–27
Demoulin V (1974) The origin of Ascomycetes and Basidiomycetes.
The case for a red algal ancestry. Not Rev 40:13–14
Desmazieres JBHJ (1849) Plantes Cryptogames de France, 2nd ed.,
No. 1778. Lille
Devadatha B, Sarma VV, Ariyawansa HA, Jones EBG (2018a)
Deniquelata vittalii sp. nov., a novel Indian saprobic marine
fungus on Suaeda monoica and two new records of marine fungi
from Muthupet mangroves, East coast of India. Mycosphere
9:565–582
Devadatha B, Sarma VV, Jeewon R, Wanasinghe DN et al (2018b)
Thyridariella, a novel marine fungal genus from India: morpho-
logical characterization and phylogeny inferred from multigene
DNA sequence analyses. Mycol Prog 17:791–804
Doilom M, Manawasinghe IS, Jeewon R, Jayawardena RS et al
(2017) Can ITS sequence data identify fungal endobiotes from
cultures? A case study from Rhizophora apiculata. Mycosphere
8:1869–1892
Doweld A (2014) Nomenclatural novelties. Index Fungorum 123:1
Drake H, Ivarsson M, Bengtson S, Heim C et al (2017) Anaerobic
consortia of fungi and sulfate reducing bacteria in deep granite
fractures. Nat Commun 8:55
Fungal Diversity
123
Duc PM, Wada S, Kurata O, Hatai K (2010) In vitro and in vivo
efficacy ofantifungal agents against Acremonium sp. Fish Pathol
45:109–114
Dupont J, Schwabe E (2016) First evidence of the deep-sea fungus
Oceanitis scuticella Kohlmeyer (Halosphaeriaceae, Ascomy-
cota) from the Northern Hemisphere. Bot Mar 59:275–282
Dupont J, Magnin S, Rousseau F, Zbinden M et al (2009) Molecular
and ultrastructural characterization of two ascomycetes found on
sunken wood off Vanuatu Islands in the deep Pacific Ocean.
Mycol Res 113:1351–1364
Ebel R (2012) Natural products from marine-derived fungi. In: Jones
EBG, Pang KL (eds) Marine fungi and fungal-like organisms.
der Gruyter, Berlin, pp 411–440
Edgcomb VP, Beaudoin D, Gast R, Biddle JF et al (2011) Marine
subsurface eukaryotes: the fungal majority. Environ Microbiol
13:172–183
Elbra
¨chter M, Schnepf E (1998) Parasites of harmful algae. In:
Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiolog-
ical ecology of harmful algal blooms. Springer, Berlin,
pp 351–363
Fang W, Lin X, Zhou X, Wan J et al (2014) Cytotoxic and antiviral
nitrobenzoyl sesquiterpenoids from the marine derived fungus
Aspergillus ochraceus Jcma1F17. Med Chem Commun
5:701–705
Fazzani K, Jones EBG (1977) Spore release and dispersal in marine
and brackish water fungi. Mater Org 12:235–248
Fell JW (1967) Distribution of yeasts in the Indian Ocean. Bull Mar
Sci 17:454–470
Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang
KL (eds) Marine fungi and fungal-like organisms. Walter de
Gruyter GmbH & Co KG, Berlin/Boston, pp 91–102
Fell JW, Master IM, Wiegert RG (1984) Litter decomposition and
nutrient enrichmen. In: The mangrove ecosystem: research
methods, pp 239–251
Fell JW, Statzell-Tallman S, Scorzetti G, Gutie
´rrez MH (2011) Five
new species of yeasts from fresh water and marine habitats in the
Florida Everglades. Antonie Van Leeuwenhoek 99:533–549
Fenical W, Jensen PR (1993) Marine microorganisms: a new
biomedical resource. In: Attaway DH, Zaborsky OR (eds)
Marine biotechnology, vol 1 pharmaceutical and bioactive
natural products, vol 1. Plenum Press, New York, pp 419–459
Fenical W, Jensen PR, Cheng XC (1998) US Pat 6069146. https://
patents.google.com/patent/US6069146A/en. Accessed Sept 2018
Fisher WS, Nilson EH, Shleser RS (1975) Effect of fungus
Haliphthoros milfordensis on the juvenile stages of the American
lobster, Homarus americanus. J Invertebr Pathol 26:41–45
Flewelling AJ, Ellsworth KT, Sanford J, Forward E et al (2013)
Macroalgal endobiotes from the Atlantic Coast of Canada: a
potential source of antibiotic natural products? Microorganisms
1:175–187
Fotedar R, Kolecka A, Boekhout T, Fell FW et al (2018a) Naganishia
qatarensis sp. nov., a novel basidiomycetous yeast species from
a hypersaline marine environment in Qatar. Int J Syst Evol
Micobiol 68:2924–2929
Fotedar R, Kolecka A, Boekhout T, Fell JW et al (2018b) Fungal
diversity of the hypersaline Inland Sea in Qatar. Bot Mar. https://
doi.org/10.1515/bot-2018-0048
Freeman KR, Martin AP, Karki D, Lynch RC et al (2009) Evidence
that chytrids dominate fungal communities in high-elevation
soils. Proc Natl Acad Sci USA 106:18315–18320
Frenken T, Alacid E, Berger SA, Bourne EC et al (2017) Integrating
chytrid fungal parasites into plankton ecology: research gaps and
needs. Environ Microbiol 19:3802–3822
Gachon MM, Sime-Ngando T, Strittmatter M, Chambouvet A et al
(2010) Algal diseases: spotlight on a black box. Trends Plant Sci
15:633–640
Gadd GM (2007) Geomycology: biogeochemical transformations of
rocks, minerals, metals and radionuclides by fungi, bioweather-
ing and bioremediation. Mycol Res 111:3–49
Gaertner A (1982) Lower marine fungi from the Northwest African
upwelling areas and from the Atlantic off Portugal. Meteor
Forsch Ergebn D 34:9–30
Gao SS, Li XM, Williams K, Proksch P et al (2016a) Rhizovarins
A-F, indole-diterpenes from the mangrove-derived endophytic
fungus Mucor irregularis QEN-189. J Nat Prod 79:2066–2074
Gao XW, Liu HX, Sun ZH, Chen YC et al (2016b) Secondary
metabolites from the deep-sea derived fungus Acaromyces
ingoldii FS121. Molecules 21:371/1–371/7
Garzoli L, Gnavi G, Tamma F, Tosi S et al (2015) Sink or swim:
updated knowledge on marine fungi associated with wood
substrates in the Mediterranean Sea and hints about their
potential to remediate hydrocarbons. Prog Oceanogr
137:140–148
Garzoli L, Poli A, Prigione V, Gnavi G et al (2018) Peacock’s tail
with a fungal cocktail: first assessment of the mycobiota
associated with the brown alga Padina pavonica. Fung Ecol
35:87–97
Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion
factors for aquatic hyphomycetes. Appl Environ Microbiol
59:502–507
Gingras M, Hagadorn JW, Seilacher A, Lalonde SV et al (2011)
Possible evolution of mobile animals in association with
microbial mats. Nat Geosci 4:372
Gleason FH, Ku
¨pper FC, Amon JP, Picard K et al (2011) Zoosporic
fungi in marine ecosystems: a review. Mar Freshw Res
62:383–393
Gleason FH, Carney LT, Lilje O, Glockling ST (2012) Ecological
potentials of species of Rozella (Cryptomycota). Fungal Ecol
5:651–656
Gleason FH, Gadd GM, Pitt JI, Larkum AWD (2017a) The roles of
endolithic fungi in bioerosion and disease in marine ecosystems.
I. General concepts. Mycology 8:205–215
Gleason FH, Gadd GM, Pitt JI, Larkum AWD (2017b) The roles of
endolithic fungi in bioerosion and disease in marine ecosystems.
II. Potential facultatively parasitic anamorphic ascomycetes can
cause disease in corals and molluscs. Mycology 8:216–227
Gnavi G, Ercole E, Panno L, Vizzini A et al (2014) Dothideomycetes
and Leotiomycetes sterile mycelia isolated from the Italian
seagrass. Posidonia oceanica based on rDNA data. Springer Plus
3:508
Gnavi G, Garzoli L, Poli A, Prigione V et al (2017) The culturable
mycobiota of Flabellia petiolata: first survey of marine fungi
associated to a Mediterranean green alga. Plos ONE
Godinho VM, Furbino LE, Santiago IF, Pellizzari FM et al (2013)
Diversity and bioprospecting of fungal communities associated
with endemic and cold-adapted macroalgae in Antarctica. ISME
J 7:1434–1451
Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic
fungi in marine ecosystems. Trends Microbiol 13:229–235
Gueidan C, Thu
¨sH,Pe
´rez-Ortega S (2009) Phylogenetic position of
the brown algae-associated lichenized fungus Verrucaria tavare-
siae (Verrucariaceae). The Bryologist 114:563–569
Gueidan C, Ruibal C, De Hoog GS, Schneider H (2011) Rockinhab-
iting fungi originated during periods of dry climate in the late
Devonian and middle Triassic. Fungal Biol 115:987–996
Guo X, Zhang Q, Zhang X, Zhang J et al (2015) Marine fungal
communities in water and surface sediment of a sea cucumber
farming system: habitat-differentiated distribution and nutrients
driving succession. Fungal Ecol 14:87–98
Gutie
´rrez MH, Pantoja S, Tejos E, Quin
˜ones RA (2011) The role of
fungi in processing marine organic matter in the upwelling
ecosystem off Chile. Mar Biol 158:205–219
Fungal Diversity
123
Gutie
´rrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect
marine diatoms in the upwelling ecosystem of the Humboldt
current system off central Chile. Environ Microbiol
18:1646–1653
Haga A, Tamoto H, Ishino M, Kimura E (2013) Pyridone alkaloids
from a marine-derived fungus, Stagonosporopsis cucur-
bitacearum, and their activities against azole-resistant Candida
albicans. J Nat Prod 76:750–754
Han WB, Lu YH, Zhang AH, Zhang GF et al (2014) Curvulamine,a
new antibacterial alkaloid incorporating two undescribed units
from a Curvularia species. Org Lett 16:5366–5369
Hanic LA, Sekimoto S, Bates SS (2009) Oomycete and chytrid
infections of the marine diatom Pseudo-nitzchia pungens
(Bacillariophyceae) from Prince Edward Island. Can Bot
87:1096–1105
Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine
fungal communities. Environ Microbiol 18:2001–2009
Hassett BT, Ducluzeaua ALL, Collins RE, Gradinger R (2017)
Spatial distribution of aquatic marine fungi across the western
Arctic and sub-Arctic. Environ Microbiol 19:475–484
Hassett BT, Vonnahme TR, Peng X, Jones EBG, Heuze
´C (2019)
Review of planktonic marine fungi, cultured and high-through-
put sequencing diversity and ecology. Bot Mar (in press)
Hatai K (2012) Diseases of fish and shellfish caused by marine fungi.
In: Raghukumar C (ed) Biology of marine fungi. Springer,
Germany, pp 15–52
Hatai K, Rosa D, Nakayama T (2000) Identification of lower fungi
isolated from larvae of mangrove crab, Scylla serrata,in
Indonesia. Mycoscience 41:565–572
Hattori T, Sakayaroj J, Jones EBG, Suetrong S et al (2014) Three
species of Fulviformes (Basidiomycota, Hymenochaetales) asso-
ciated with rots on mangrove tree Xylocarpus granatum in
Thailand. Mycoscience 55:344–354
Hawksworth DL (1991) The fungal dimension of biodiversity:
magnitude, significance and conservation. Mycol Res
95:641–655
Hawksworth DL, Lu
¨cking R (2017) Fungal diversity revisited: 2.2 to
3.8 million species. Microbiol Spectr. https://doi.org/10.1128/
microbiolspec.FUNK-0052-2016
He F, Bao J, Zhang XY, Tu ZC et al (2013) Asperterrestide A, a
cytotoxic cyclic tetrapeptide from the marine-derived fungus
Aspergillus terreus SCSGAF0162. J Nat Prod 76:1182–1186
Heckman DS, Geiser DM, Eidell BR, Stauffer RL et al (2001)
Molecular evidence for the early colonization of land by fungi
and plants. Science 293:1129–1133
Hibbett DS, Binder M, Bischoff JF, Blackwell M et al (2007) A
higher-level phylogenetic classification of the Fungi. Mycol Res
111:509–554
Hibbett DS, Bauer R, Binder M, Giachini AJ et al (2014) 14
Agaricomycetes. In: Systematics and evolution. Springer, Berlin,
pp. 373–429
Hibbett D, Abarenkov K, Koljalg U, Opik M et al (2016) Sequence-
based classification and identification of Fungi. Mycologia
108:1049–1068
Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD et al (2007)
Phylogenetic relationships, host affinity, and geographic struc-
ture of boreal and arctic endobiotes from three major plant
lineages. Mol Phylogenet Evol 42:543–555
Hirai J, Hamamoto Y, Honda D, Hidaka K (2018) Possible
aplanochytrid (Labyrinthulea) prey detected using 18S metage-
netic diet analysis in the key copepod species Calanus sinicus in
the coastal waters of the subtropical western North Pacific.
Plankton Benthos Res 13:75–82
Ho
¨hnk W (1952) Studien zur Brack-und Seewassermykologie 1.
Vero
¨ff Inst Meeresforsch Bremerh 1:115–125
Ho
¨hnk W (1955) Marine Pilze vom watt und meeresgrund (Chytridi-
ales und Thraustochytriaceae). Natwissen 42:348–349
Ho
¨hnk W (1956) Studien zur Brack-und Seewassermykologie. VI.
Uber die pilzliche Besiedlung verschieden salziger submerser
Standorte. Veroeff Inst Meeresforsch Bremerhaven 4:195–213
Ho
¨hnk W (1959) Ein Beitrag zur ozeanischen Mykologie. Dtsch
Hydrogr Z Reihe B 3:81–87
Ho
¨hnk W (1961) A further contribution to the oceanic mycology.
Cons Inter Explor Mer 12:202–208
Ho
¨ller U, Wright AD, Matthe
´e GF, Konig KM et al (2000) Fungi
from marine sponges: diversity, biological activity and sec-
ondary metabolites. Mycol Res 104:1354–1365
Hong JH, Jang S, Heo YM, Min M et al (2015) Investigation of
marine-derived fungal diversity and their exploitable biological
activities. Mar Drugs 13:4137–4155
Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon
MC et al (2017) An updated phylogeny of Sordariomycetes
based on phylogenetic and molecular clock evidence. Fungal
Divers 84:25–41
Hongsanan S, Jeewon R, Purahong W, Xie N et al (2018) Can we use
environmental DNA as holotypes? Fungal Divers 92:1–30
https://clinicaltrials.gov/ct2/results?term=plinabulin&pg=1. Accessed
Sept 2018
https://www.beyondspringpharma.com/en/pipeline/plinabulin/
Accessed Sept 2018)
Hug LA, Roger AJ (2007) The impact of fossils and taxon sampling
on ancient molecular dating analyses. Mol Biol Evol
24:1889–1897
Hughes GC (1974) Geographical distribution of the higher mariner
fungi. Vero
¨ff Inst Meerersforsch Bremerhaven, Suppl.
10(5):419–441
Hughes GC (1986) Biogeography and the marine fungi. In: Moss ST
(ed) The biology of marine fungi. Cambridge Uni Press,
Cambridge, pp 275–295
Hughes GC, Chamut PS (1971) Lignicolous marine fungi from
southern Chile, including a review of distribution in the southern
hemisphere. Can J Bot 49:1–11
Huhndorf SM (1994) Neotropical ascomycetes. 5. Hypsostromat-
aceae, a new family of Loculoascomycetes and Manglicola
samuelsii, a new species from Guyana. Mycologia 86:266–269
Hyde KD (1986) Frequency of occurrence of lignicolous marine fungi
in the tropics. In: Moss ST (ed) The biology of marine fungi.
Cambridge Univ Press, Cambridge, pp 311–322
Hyde KD, Jones EBG (1988) Marine mangrove fungi. Mar Ecol
9:15–33
Hyde KD, Lee SY (1998) Ecology of mangrove fungi and their role in
nutrient cycling: what gaps occur in our knowledge? Hydrobi-
ologia 295:107–118
Hyde KD, Jones EBG, Moss ST (1986) Mycelial adhesion to surfaces.
In: Moss ST (ed) The biology of marine fungi. Cambridge Univ.
Press, Cambridge, pp 331–340
Hyde KD, Jones EBG, Lean
˜o E, Pointing SB et al (1998) Role of
fungi in marine ecosystems. Biodivers Conserv 7:1147–1161
Hyde KD, Jones EBG, Ariyawansa H, Liu JK et al (2013) Families of
Dothideomycetes. Fungal Divers 63:1–313
Hyde KD, Maharachchikumbura SSN, Hongsanan S, Samarakoon
MC et al (2017) The ranking of fungi—a tribute to David L.
Hawksworth on his 70th birthday. Fungal Divers 84:1–23
Hyde KD, Chaiwan N, Norphanphoun C, Boonmee S et al (2018)
Mycosphere notes 169–224. Mycosphere 9:271–430
Inderbitzin P, Lim SR, Volkmann-Kohlmeyer B, Kohlmeyer J et al
(2004) The phylogenetic position of Spathulospora based on
DNA sequences from dried herbarium material. Mycol Res
108:737–748
Inui T, Takeda Y, Iizuka H (1965) Taxonomical studies on genus
Rhizopus. J Gen Appl Microbiol 11:1–121
Fungal Diversity
123
Iqbal SH, Webster J (1973) Aquatic hyphomycete spora of the River
Exe and its tributaries. Trans Br Mycol Soc 61:331–336
Ishida S, Nozaki D, Grossart HP, Kagami M (2015) Novel basal,
fungal lineages from freshwater phytoplankton and lake samples.
Environ Microbiol Rep 7:435–441
Jaritkhuan S, Jones EBG, Bremer GB (1998) Thraustochytrids as a
food source for aquaculture. In: Proc Intern Mycol Conference
on Biodiversity and Biotechnology, pp 163–168
James TY, Kauff F, Schoch C, Matheny PB et al (2006) Recon-
structing the early evolution of fungi using a six-gene phylogeny.
Nature 443:818–822
James TY, Pelin A, Bonen L, Ahrendt S et al (2013) Shared
signatures of parasitism and phylogenomics unite Cryptomycota
and Microsporidia. Curr Biol 23:1548–1553
Janson JE, Bernan VS, Greenstein M, Bugni TS et al (2005)
Penicillium dravuni, a new marine derived species from an alga
in Fiji. Mycologia 97:444–453
Jayasiri SC, Hyde KD, Abd-Elsalam KA, Abdel-Wahab MA et al
(2015) The Faces of Fungi database: fungal names linked with
morphology, phylogeny and human impacts. Fungal Divers
74:3–18
Jayawardena RS, Purahong W, Zhang W, Wubet T et al (2018)
Biodiversity of fungi on Vitis vinifera L. revealed by traditional
and high-resolution culture-independent approaches. Fungal
Divers 90:1–84
Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal
diversity in oxygen-depleted regions of the Arabian Sea revealed
by targeted environmental sequencing combined with cultiva-
tion. FEMS Microbiol Ecol 71:399–412
Jeewon R, Hyde KD (2016) Establishing species boundaries and new
taxa among fungi: recommendations to resolve taxonomic
ambiguities. Mycosphere 7:1669–1677
Ji NY, Wang BG (2016) Mycochemistry of marine algicolous fungi.
Fungal Divers 80:301–342
Johnson TW, Sparrow FK (1961) Fungi in oceans and estuaries.
Cramer, Weinheim
Johnson RG, Jones EBG, Moss ST (1984) Taxonomic studies of the
Halosphaeriaceae: Remispora Linder, Marinospora Cavaliere
and Carbosphaerella Schmidt. Bot Mar 27:557–566
Johnson RG, Jones EBG, Moss ST (1987) Taxonomic studies of the
Halosphaeriaceae: Ceriosporopsis,Haligena and Appendi-
chordella gen. nov. Can J Bot 65:931–942
Jones EBG (1982) Decomposition by basidiomycetes in aquatic
environments. In: Frankland JC, Hedger JN, Swift MJ (eds)
Decomposer Basidiomycetes their biology and ecology. Cam-
bridge Univ Press, Cambridge, pp 192–212
Jones EBG (1988) Do fungi occur in the sea? The Mycologist
2:150–157
Jones EBG (1994) Fungal adhesion. Presidential address 1992. Mycol
Res 98:961–981
Jones EBG (1995) Ultrastructure and taxonomy of the aquatic
ascomycetous order Halosphaeriales. Can J Bot 73:S790–S801
Jones EBG (2000) Marine fungi: some factors influencing biodiver-
sity. Fungal Divers 4:53–73
Jones EBG (2011a) Fifty years of marine mycology. Fungal Divers
50:73–112
Jones EBG (2011b) Are there more marine fungi to be described? Bot
Mar 54:343–354
Jones EBG, Abdel-Wahab MA (2005) Marine fungi from the
Bahamas Islands. Bot Mar 48:356–364
Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater
basidiomycetes. In: Boddy L, Frankland JC, van West P (eds)
Ecology of saprotrophic basidiomycetes. Elsevier, London,
pp 301–324
Jones EBG, Le Campion-Alsumard T (1970) Marine fungi on
polyurethane covered plates submerged in the sea. Nova Hedwig
19:567–582
Jones EBG, Fell JW (2012) Basidiomycota. In: Jones EBG, Pang KL
(eds) Marine and fungal-like organisms. De Gruyter, Germany,
pp 49–63
Jones EBG, Mitchell JL (1996) Biodiversity of marine fungi. In:
Cimerman A, Gunde-Cimerman N (eds) Biodiversity: interna-
tional biodiversity seminar. National Institute of Chemistry and
Slovenia National Commission for UNESCO, Ljubljana, Slove-
nia, pp 31–42
Jones EBG, Pang KL (2012) Tropical aquatic fungi. Biodivers Cons
21:2403–2423
Jones EBG, Johnson RG, Moss ST (1983a) Taxonomic studies of the
Halosphaeriaceae: Corollospora Werdermann. Bot J Linn Soc
87:193–212
Jones EBG, Johnson RG, Moss ST (1983b) Ocostaspora apilongis-
sima gen. et sp. nov: a new marine Pyrenomycete from wood.
Bot Mar 24:353–360
Jones EBG, Vrijmoed LLP, Read SJ, Moss ST (1994) Tirispora,a
new genus in the Halosphaeriales. Can J Bot 72:1373–1378
Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S et al (2009)
Classification of marine Ascomycota, anamorphic taxa and
Basidiomycota. Fungal Divers 35:1–187
Jones EBG, Puglisi MP (2006) Marine fungi from Florida. Florida Sci
69:157–164
Jones MDM, Forn I, Gadelha C, Egan MJ et al (2011) Discovery of
novel intermediate forms redefines the fungal tree of life. Nature
474:200–203
Jones EBG, Pang KL, Stanley SJ (2012) Fungi from marine algae. In:
Jones EGB, Pang KL (eds) Marine and fungal-like organisms.
De Gruyter, Germany, pp 329–344
Jones EBG, Alias SA, Pang KL (2013a) Distribution of marine fungi
and fungus-like organisms in the South China Sea and their
potential use in industry and pharmaceutical application.
Malaysian J Sci 32(SCS Sp Issue):119–130
Jones EBG, Sueterong S, Cheng WH, Rungjindamai N et al (2014)
An additional fungal lineage in the Hypocreomycetidae (Falco-
cladium species) and the taxonomic re-evaluation of Chaeto-
sphaeria chaetosa and Swampomyces species, based on
morphology, ecology and phylogeny. Cryptog Mycol
35:119–138
Jones EBG, Suetrong S, Bahkali AH, Abdel-Wahab MA et al (2015)
Classification of marine Ascomycota, Basidiomycota, Blastocla-
diomycota and Chytridiomycota. Fungal Divers 73:1–72
Jones EBG, Ju WT, Lu CL, Guo SY, Pang KL (2017) The
Halosphaeriaceae revisted. Bot Mar 60:453–468
Jones MC, Dye SR, Fernandes JA, Fro
¨licher TL et al (2013b)
Predicting the impact of climate change on threatened species in
UK waters. PLoS ONE 8:e54216
Jones MDM, Richards TA (2011) Environmental DNA analysis and
the expansion of the fungal tree of life. In: Po
¨ggeler S,
Wo
¨stemeyer J (eds) Evolution of fungi and fungal-like organ-
isms, The Mycota XIV. Springer, Berlin
Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic
chytrids: their effects on phytoplankton communities and food-
web dynamics. Hydrobiologia 578:113–129
Karling JS (1977) Inconographicum iconarum, 2nd edn. Cramer,
Vaduz
Karpov SA, Letcher PM, Mamkaeva MA, Mamkaeva KA (2010)
Phylogenetic position of the genus Mesochytrium (Chytridiomy-
cota) based on zoospore ultrastructure and sequences from the
18S and 28S rRNA gene. Nova Hedwig 90:81–94
Karpov SA, Kobseva AA, Mamkaeva MA, Mamkaeva KA et al
(2014) Gromochytrium mamkaevae gen. & sp. nov. and two new
Fungal Diversity
123
orders: Gromochytriales and Mesochytriales (Chytridiomycetes).
Persoonia 32:115–126
Kendrick B, Risk MJ, Michaelides J, Bergman K (1982) Amphibious
microborers, bioeroding fungi isolated from live corals. Bull Mar
Sci 32:862–867
Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S et al
(2014) An antibacterial cytochalasin derivative from the marine-
derived fungus Diaporthaceae sp. PSU-SP2/4. Phytochem Lett
10:5–9
Kirichuk NN, Pivkin MV (2015) Filamentous fungi associated with
the seagrass Zostera marina Linnaeus, 1753 of Rifovaya Bay
(Peter the Great Bay, the Sea of Japan). Russ J Mar Biol
41:351–355
Kirk P, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth &
Bisby’s dictionary of the fungi, 10th edn. CAB International,
Wallingford, UK
Kis-Papo T (2005) Marine fungal communities. In: Dighton J, Wjits
JF, Oudemans P (eds) The fungal community, its organisation
and role in the ecosystem, 3rd edn. CRC Press, Boca Baton,
pp 61–92
Kitancharoen N, Nakamura K, Wada S, Hatai K (1994) Atkinsiella
awabi sp. nov. isolated from stocked abalone, Haliotis sieboldii.
Mycoscience 35:265–270
Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic
marine microorganisms. Chem Rev 93:1753–1769
Koch J, Jones EBG (1989) The identity of Crinigera maritima and
three new genera of marine cleistothecial ascomycetes. Can J
Bot 67:1183–1197
Koch V, Wolff M (2002) Energy budget and ecological role of
mangrove epibenthos in the Caete
´estuary, North Brazil. Mar
Ecol Prog Ser 228:119–130
Kohlmeyer J (1963a) Parasitische und epiphytische Pilze auf
Meeresalgen. Nova Hedwig 6:127–146
Kohlmeyer J (1963b) Fungi marini novi vel critici. Nova Hedw
6:297–329
Kohlmeyer J (1966) Ecological observations on arenicolous marine
fungi. Z Allg Mikrobiol 6:94–105
Kohlmeyer J (1968a) Marine fungi from the tropics. Mycologia
60:252–270
Kohlmeyer J (1968b) The first Ascomycete from the deep sea.
J Elisha Mitchell Sci Soc 84:239–241
Kohlmeyer J (1969a) Deterioration of wood by marine fungi in the
deep sea. In: Materials performance and the deep sea. Am Soc
Test Mater, Spec Tech Publ, vol 445, pp 20–29
Kohlmeyer J (1969b) Marine fungi of Hawaii including the new
genus Helicascus. Can J Bot 47:1460–15487
Kohlmeyer J (1969c) The role of marine fungi in the penetration of
calcareous substances. Am Zool 9:741–746
Kohlmeyer J (1970) Ein neuer Ascomycet auf Hydrozoen im
Sudatlantik. Ber Dtsch Bot Ges 83:505–509
Kohlmeyer J (1973a) Spathulosporales, a new order and possible
missing link between Laboulbeniales and Pyrenomycetes.
Mycologica 65:614–647
Kohlmeyer J (1973b) Fungi from marine algae. Bot Mar 16:201–215
Kohlmeyer J (1975) Revision of algicolous Zigonella spp. and
description of Pontogenia gen. nov. (Ascomycetes). Bio Sci
25:86–93
Kohlmeyer J (1977) New genera and species of higher fungi from the
deep sea (1615–5315 m). Rev Mycol 41:189–206
Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina.
In: Moss ST (ed) The biology of marine fungi. Cambridge
University Press, Cambridge, pp 99–210
Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher
fungi. Academic Press, New York
Kohlmeyer J, Volkmann-Kohlmeyer B (1989) Hawaiian marine
fungi, including two new genera of Ascomycotina. Mycol Res
92:410–421
Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the
filamentous marine fungi. Bot Mar 34:1–61
Kohlmeyer J, Volkmann-Kohlmeyer B (2001a) Fungi on Juncus
roemerianus: new coelomycetes with notes on Dwayaangam
junci. Mycol Res 105:500–505
Kohlmeyer J, Volkmann-Kohlmeyer B (2001b) Fungi on Juncus
roemerianus. 16. More new coelomycetes, including Te-
tranacriella, gen. nov. Bot Mar 44:147–156
Kohlmeyer J, Volkmann-Kohlmeyer B (2001c) The biodiversityof
fungi on Juncus roemerianus. Mycol Res News 105:1411–1412
Kohlmeyer J, Volkmann-Kohlmeyer B (2002) Fungi on Juncus and
Spartina: new marine species of Anthostomella, with a list of
marine fungi known on Spartina. Mycol Res 106:365–374
Kohlmeyer J, Volkmannn-Kohlmeyer B (2003) Marine Ascomycetes
from algae and animals’ hosts. Bot Mar 46:285–306
Kohlmeyer J, Bebout B, Volkmann-Kohlmeyer B (1995) Decompo-
sition of mangrove wood by marine fungi and Teredinids in
Belize. PSZNI Mar Ecol 16:27–39
Kohlmeyer J, Spatafora JA, Volkmann-Kohlmeyer B (2000) Lulwor-
thiales, a new order of marine Ascomycota. Mycologia
92:453–458
Ku
¨pper FC, Mu
¨ller DG (1999) Massive occurrence of the heterokont
and fungal parasites Anisolpidium, Eurychasma and Chytridium
in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hed-
wig 69:381
Ku
¨pper FC, Maier I, Mu
¨ller DG, Loiseaux-de Goer S et al (2006)
Phylogenetic affinities of two eukaryotic pathogens of marine
macroalgae, Eurychasma dicksonii (Wright) Magnus and
Chytridium polysiphoniae Cohn. Cryptog Algol 27:165–184
Kurtzman CP, Ribnett CJ (1998) Identification and phylogeny of
ascomycetous yeasts from analysis of nuclear large subunit (26S)
ribosomal DNA partial sequences. Antonie Van Leeuwenhoek
73:331–371
Lara E, Moreira D, Lo
´pez-Garcia P (2010) The environmental clade
LKM11 and Rozella form the deepest branching clade of Fungi.
Protist 161:116–121
Le Calvez T, Burgaud G, Mahe S, Barbier G et al (2009) Fungal
diversity in deep-sea hydrothermal ecosystems. Appl Environ
Microbiol 75:6415–6421
Le Campion-Alsumard T, Golubic T, Priess K (1995) Fungi in corals
symbiosis or disease? Interaction between polyps and fungi
causes pearl-like skeleton biominerilazation. Mar Ecol Prog Ser
117:137–147
Lee SY, Jones EBG, Diele K, Castellanos-Galindo GA et al (2017)
Biodiversity. In: Rivera-Monry V, Lee SY, Kristensen E,
Twilley RR (eds) Mangrove ecosystems: a global biogeographic
perspective. Springer, New York, pp 55–84
Lepelletier F, Karpov SA, Alacid E, Le Panse S et al (2014)
Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dino-
mycetaceae fam. nov.), a chytrid infecting marine dinoflagel-
lates. Protist 165:230–244
Letcher PM, Ve
´lez CG, Barrantes ME, Powell MJ et al (2008)
Ultrastructural and molecular analyses of Rhizophydiales
(Chytridiomycota) isolates from North America and Argentina.
Mycol Res 112:759–782
Letcher PM, Powell MJ, Davis WJ (2015) A new family and four new
genera in Rhizophydiales (Chytridiomycota). Mycologia
107:808–830
Li CW, Xia MW, Cui CB, Peng JX et al (2016) A novel
oxaphenalenone, penicimutalidine: activated production of
oxaphenalenones by the diethyl sulphate mutagenesis of
marine-derived fungus Penicillium purpurogenum G59. RSC
Adv 6:82277–82281
Fungal Diversity
123
Li DH, Cai SX, Tian L, Lin ZJ et al (2007a) Two new metabolites
with cytotoxicities from deep-sea fungus, Aspergillus sydowii
YHll-2. Arch Pharm Res 30:1051–1054
Li Q, Wang G (2009) Diversity of fungal isolates from three
Hawaiian marine sponges. Microb Res 164:233–241
Li WC, Zhou J, Guo SY, Guo LD (2007b) Endophytic fungi
associated with lichens in Baihua mountain of Beijing, China.
Fungal Divers 25:69–80
Liew ECY, Aptroot A, Hyde KD (2000) Phylogenetic significance of
the pseudoparaphyses in Loculoascomycete taxonomy. Mol
Phylogenetics Evol 20:1–13
Liu XZ, Wang QM, Theelen B, Groenewald M et al (2015a)
Phylogeny of tremellomycetous yeasts and related dimorphic
and filamentous basidiomycetes reconstructed from multiple
gene sequence analyses. Stud Mycol 81:1–26
Liu XZ, Wang QM, Go
¨ker M, Groenewald M et al (2015b) Towards
an integrated phylogenetic classification of the Tremellomycetes.
Stud Mycol 81:85–147
Liu Y, Li XM, Meng LH, Jiang WL et al (2015c) Bisthiodiketopiper-
azines and acorane sesquiterpenes produced by the marine-
derived fungus Penicillium adametzioides AS-53 on different
culture media. J Nat Prod 78:1294–1299
Liu Y, Mandi A, Li XM, Meng LH et al (2015d) Peniciadametizine
A, a dithiodiketopiperazine with a unique spiro[furan-2,70-
pyrazino[1,2-b][1,2]oxazine] skeleton, and a related analogue,
peniciadametizine B, from the marine sponge-derived fungus
Penicillium adametzioides. Mar Drugs 13:3640–3652
Liu S, Dai H, Makhloufi G, Heering C et al (2016) Cytotoxic
14-membered macrolides from a mangrove-derived endophytic
fungus Pestalotiopsis microspore. J Nat Prod 79:2332–2340
Liu Y, Singh P, Liang Y, Li J et al (2017a) Abundance and molecular
diversity of thraustochytrids in coastal waters of southern China.
FEMS Microbiol Ecol 5:89. https://doi.org/10.1093/femsec/
fix070
Liu JK, Hyde KD, Jeewon R, Phillips AJL et al (2017b) Ranking
higher taxa using divergence times: a case study in Doth-
ideomycetes. Fungal Divers 84:75–99
Loilong A, Salayaroj J, Ringjindamain Choeyklin R et al (2012)
Biodiversity of fungi on the palm Nypa fruticans. In: Jones EBG,
Pang KL (eds) Marine and fungal-like organisms. De Gruyter,
Germany, pp 273–290
Loque CP, Medeiros AO, Pellizzari FM, Olivera EC et al (2010)
Fungal community associated with marine macro algae from
Antarctica. Polar Biol 33:641–648
Lu
¨cking R, Huhndorf S, Pfister DH, Plata ER et al (2009) Fungi
evolved right on track. Mycologia 101:810–822
Lutley M, Wilson IM (1972) Development and fine structure of
ascospores in the marine fungus Ceriosporopsis halima. Trans
Br Mycol Soc 58:393–402
Ma X, Li L, Zhu T, Ba M et al (2013) Phenylspirodrimanes with anti-
HIV activity from the sponge-derived fungus Stachybotrys
chartarum MXH-X73. J Nat Prod 76:2298–2306
Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC
et al (2015) Towards a natural classification and backbone tree
for Sordariomycetes. Fungal Divers 72:199–301
Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC
et al (2016) Families of Sordariomycetes. Fungal Divers
79:1–317
Mantle PG, Hawksworth DL, Pazoutova S, Collinson LM et al (2006)
Amorosia littoralis gen. sp. nov., a new genus and species name
for the scorpinone and caffeine-producing hyphomycetes from
the littoral zone in The Bahamas. Mycol Res 110:371–1378
Marano AV, Pires-Zottarelli CLA, de Souza JI, Glockling SL, Leano
EM, Gachon CMM, Strittmatter M, Gleason FH (2012)
Hyphochytriomycota, oomycota and perkinsozoa (Supergroup
Chromalveolata). In: Jones EBG, Pang K-L (eds) Marine
mycology-marine fungi and fungal-like organisms. De Gruyter,
Berlin, pp 167–213
Marcel J, Pascale D, Andersen JH, Reyes F et al (2016) The marine
biodiscovery pipeline and ocean medicines of tomorrow. J Mar
Biol Assoc UK 96:151–158
Massana R, Gobet A, Audic S, Bass D et al (2015) Marine protist
diversity in European coastal waters and sediments as revealed
by high-throughput sequencing. Environ Microbiol
17:4035–40490
Mata JL, Cebria
´n J (2013) Fungal endobiotes of the seagrasses
Halodule wrightii and Thalassia testudinum in the north-central
Gulf of Mexico. Bot Mar 56:541–545
McMillan RT Jr (1984) Effective fungicides for the control of
Cercospora spot on Rhizophora mangle. Int J Plant Pathol
2(2):85–88
McNeill J, Barrie FR, Buck WR, Demoulin V et al (2012)
International Code of Nomenclature for algae, fungi and plants
(Melbourne Code) adopted by the Eighteenth International
Botanical Congress Melbourne, Australia, July 2011. Publ.
2012. Regnum Fungal Diversity 123 Vegetabile 154. Koeltz
Scientific Books. ISBN 978-3-87429-425-6
Meng LH, Li XM, Liu Y, Wang BG (2014) Penicibilaenes A and B,
sesquiterpenes with a tricyclo[6.3.1.0(1,5)]dodecane skeleton
from the marine isolate of Penicillium bilaiae MA-267. Org Lett
16:6052–6055
Meng LH, Li XM, Liu Y, Wang BG (2015) Polyoxygenated
dihydropyrano [2,3-c]pyrrole-4,5-dione derivatives from the
marine mangrove-derived endophytic fungus Penicillium brocae
MA-231 and their antimicrobial activity. Chin Chem Lett
26:610–612
Meng LH, Wang CY, Mandi A, Li XM et al (2016) Three
diketopiperazine alkaloids with spirocyclic skeletons and one
bisthiodiketopiperazine derivative from the mangrove-derived
endophytic fungus Penicillium brocae MA-231. Org Lett
18:5304–5307
Meyers SP (1996) Fifty years of marine mycology: highlights of the
past, projections for the coming century. SIMS News
46:119–127
Meyers SP, Moore RT (1960) Thalassiomycetes II. New genera and
species of Deuteromycetes. Am J Bot 47:345–349
Meyers SP, Reynolds ES (1958) A wood incubation method for the
study of lignicolous marine fungi. Bull Mar Sci Gulf Caribbean
8:342–347
Meyers SP, Reynolds ES (1960) Occurrence of lignicolous fungi in
northern Atlantic and Pacific marine localities. Can J Bot
38:217–226
Meyers SP, Ahearn DG, Grunkel W, Roth FJ (1967) Yeasts from the
North Sea. Mar Biol 1:118–123
Minic Z (2009) Organisms of deep sea hydrothermal vents as a source
for studying adaptation and evolution. Symbiosis 47:121–132
Mohamed DJ, Martiny JBH (2011) Patterns of fungal diversity and
composition along a salinity gradient. ISME J 5:379–388
Montagne JFC (1856) Sylloge Generum Specierumque Cryptoga-
marum. Bailliere et Fils, Paris
Moore RT, Meyers SP (1959) Thalassiomycetes I. Principles of
delimitation of the marine mycota with a description of a new
aquatically adapted Deuteromycete. Mycologia 51:871–876
Morrison-Gardiner S (2002) Dominant fungi from Australian coral
reefs. Fungal Divers 9:105–121
Moustafa AF (1975) Osmophilous fungi in the salt marshes of
Kuwait. Can J Microbiol 21:1573–1580
Mouzouras R (1986) Pattern of timber decay caused by marine fungi.
In: Moss ST (ed) The biology of marine fungi. Cambridge
University Press, Cambridge, pp 341–353
Fungal Diversity
123
Naff CS, Darcy JL, Schmidt SK (2013) Phylogeny and biogeography
of an uncultured clade of snow chytrids. Environ Microbiol
15:2672–2680
Nagahama T, Nagano Y (2012) Cultured and uncultured fungal
diversity in deep-sea environments. In: Raghukumar C (ed)
Biology of marine fungi. Springer, Berlin, pp 173–187
Nagahama T, Hamamoto M, Hor K (2006) Rhodotorula pacifica sp.
nov., a novel yeast species from sediment collected on the deep-
sea floor of the north-west Pacific Ocean. Int J Syst Evol
Microbiol 56:295–299
Nagahama T, Abdel-Wahab MA, Nogi Y, Miyazaki M et al (2008)
Dipodascus tetrasporeus sp. nov., an ascosporogenous yeast
isolated from deep-sea sediments in the Japan Trench. Int J Syst
Evol Microbiol 58:1040–1046
Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA et al (2011)
Molecular evidence that deep-branching fungi are major fungal
components in deep-sea methane cold-seep sediments. Environ
Microbiol 13:2359–2370
Nagai K, Kamigiri K, Matsumoto H, Kawano Y et al (2002) YM-
202204, a new antifungal antibiotic produced by marine fungus
Phoma sp. J Antibiot 55:1036–1041
Nagano Y, Nagahama T, Hatada Y, Nunoura T et al (2010) Fungal
diversity in deep-sea sedimentsdthe presence of novel fungal
groups. Fungal Ecol 3:316–325
Nakagiri A (1989) Marine fungi in sea foam from Japanese coast. IFO
Res Commun 14:52–79
Nakagiri A, Ito T (1991) Basidiocarp development of the cyphelloid
gasteroid aquatic basidiomycetes Halocyphina villosa and
Limnoperdon incarnatum. Can J Bot 69:2320–2327
Nakagiri A, Ito T (1997) Retrostium amphiroae gen. et sp. nov.
inhabiting a marine red alga, Amphiroa zonata. Mycologia
89:484–493
Nakagiri A, Okane I, Ito T (1998) Zoosporangium development,
zoospore release and culture properties of Halophytophthora
mycoparasitica. Mycoscience 3:223–230
Newell SY (2001) Fungal biomass and productivity. In: Methods in
microbiology, vol 3. Academic Press, pp 357–372
Newell SY, Ba
¨rlocher F (1993) Removal of fungal and total organic
matter from decaying cordgrass leaves by shredder snails. J Exp
Mar Biol Ecol 171:39–49
Newell SY, Fell JW (1992) Ergosterol content of living and
submerged, decaying leaves and twigs of red mangrove. Can J
Microbiol 38:979–982
Newell SY, Porter D (2000) Microbial secondary production from
saltmarsh-grass shoots, and its known and potential fates. In:
Weinstein MP, Kreeger DA (eds) Concepts and controversies in
tidal marsh ecology. Kluwer, Amsterdam, pp 159–185
Newell SY, Porter D, Lingle WL (1996) Lignocellulolysis by
ascomycetes (Fungi) of a saltmarsh grass (smooth cordgrass).
Microsc Res Tech 33:32–46
Nicot J (1958) Une moisissure are
´nicole du littoral atlantique:
Dendryphiella arenaria sp.nov. Rev Mycol 23:87–99
Nilsson S (1957) A new Danish fungus, Dinemasporium marinum.
Bot Not 110:321–324
Niu S, Si L, Liu D, Zhou A et al (2016) Spiromastilactones: a new
class of influenza virus inhibitors from deep-sea fungus. Eur J
Med Chem 108:229–244
Norphanphoun C, Raspe
´O, Jeewon R, Wen TC et al (2018)
Morphological and phylogenetic characterisation of novel
Cytospora species associated with mangroves. MycoKeys
38:93–120
Oberwinkler F (2012) Evolutionary trends in Basidiomycota. Stapfia
96:45–104
Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N (2016) Marine protists:
diversity and dynamics. Springer, Tokyo. ISBN 978-4-431-
55129-4
Orsi W, Biddl JF, Edgcomb V (2013) Deep sequencing of subseafloor
eukaryotic rRNA reveals active fungi across marine subsurface
provinces. PLoS ONE 8:e56335
O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M et al (2005)
Fungal community analysis by large-scale sequencing of envi-
ronmental samples. Appl Environ Microbiol 71:5544–5550
O’Rorke R, Lavery SD, Wang M, Nodder SD et al (2013)
Determining the diet of larvae of the red rock lobster (Jasus
edwardsii) using high-throughput DNA sequencing techniques.
Mar Biol 161:551–563
Overy DP, Ra
¨ma
¨T, Oosterhuis R, Walker AK, Pang KL (2019) The
neglected marine fungi, sensu stricto, and their isolation for
natural products’ discovery. Mar Drugs 17(1):42–62. https://doi.
org/10.3390/md17010042
Panebianco C (1994) Temperature requirements of selected marine
fungi. Bot Mar 37:157–161
Panebianco C, Tam WT, Jones EBG (2002) The effect of pre-
inoculation of balsa wood by selected marine fungi and their
effect on subsequent colonization in the sea. Fungal Divers
10:77–88
Pang KL (2012) Phylogeny of the marine Sordariomycetes. In: Jones
EBG, Pang K-L (eds) Marine fungi and fungal-like organisms.
Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 35–47
Pang KL, Jones EBG (2012) Epilogue: importance and impact of
marine mycology and fungal-like organisms: challenges for the
future. In: Jones EBG, Pang KL (eds) Marine and fungal-like
organisms. De Gruyter, Germany, pp 509–517
Pang KL, Jones EBG (2017) Recent advances in marine mycology.
Bot Mar 60:361–362
Pang KL, Abdel-Wahab MA, Sivichai S, El-Sharouney HM et al
(2002) Jahnulales (Dothideomycetes, Ascomycota): a new order
of lignicolous freshwater ascomycetes. Mycol Res
106:1031–1042
Pang KL, Vrijmoed LLP, Kong RYC, Jones EBG (2003) Polyphyly
of Halosarpheia (Halosphaeriales, Ascomycota): implications on
the use of unfurling ascospore appendages as a systematic
character. Nova Hedwig 77:1–18
Pang KL, Vrijmoed LLP, Goh TK, Plaingame N et al (2008) Fungal
endobiotes associated with Kandelia candel (Rhizophoraceae) in
Mai Po Nature Reserve, Hong Kong. Bot Mar 51:171–178
Pang KL, Jheng JS, Jones EBG (2011) Marine mangrove fungi of
Taiwan. National Taiwan Ocean Univ, Chilung, pp 1–131
Pang KL, Hyde KD, Alias SA, Suetrong S et al (2013) Dyfrol-
omycesillaceae, a new family in the Dothideomycetes, Ascomy-
cota. Cryptog Mycol 34:223–232
Pang KL, Tsui CKM, Jones EBG, Vrijmoed LLP (2016a) Bio-
prospecting fungi and the Labyrinthulomyces and the Ocean-
Land Interface. In: Baker BJ (ed) Marine Biomedicine, from
beach to bedside. CRC Press, New York, pp 379–391
Pang KL, Overy DP, Jones EBG, da Luz Calado M et al (2016b)
Marine fungi’ and ‘marine-derived fungi’ in natural product
chemistry research: toward a new consensual definition. Fungal
Biol Rev 30:163–175
Panno L, Bruno B, Voyron S, Anastasi A et al (2013) Diversity,
ecological role and potential biotechnological applications of
marine fungi associated to the seagrass Posidonia oceanica. New
Biotechnol 30:685–694
Panzer K, Yilmaz P, Weiß M, Reich L et al (2015) Identification of
habitat-specific biomes of aquatic fungal communities using a
comprehensive nearly full-length 18S rRNA dataset enriched
with contextual data. PLoS ONE 10:e0134377
Pe
´rez-Ortega S, Spribille T, Palice Z, Elix JA et al (2010) A
molecular phylogeny of the Lecanora varia group, including a
new species from western North America. Mycol Prog
9:523–535
Fungal Diversity
123
Pe
´rez-Ortega S, Garrido-Benavent I, Grube M, Olmo R et al (2016)
Hidden diversity of marine borderline lichens and a new order of
fungi: Collemopsidiales (Dothideomyceta). Fungal Divers
80:285–300
Pers
ˇoh D (2015) Plant-associated fungal communities in the light of
meta’omics. Fungal Divers 75:1–25
Petersen KRL, Koch J (1997) Substrate preference and vertical
zonation of lignicolous marine fungi on mooring posts of oak
(Quercus sp.) and larch (Larix sp.) in Svanemøllen Harbour. Bot
Mar 40:451–463
Picard KT (2017) Coastal marine habitats harbour novel early
diverging fungal diversity. Fungal Ecol. 25:1–13
Pinruan U, Jones EBG, Hyde KD (2002) Aquatic fungi from peat
swamp palms: Jahnula appendiculata sp. nov. Sydowia
54:242–247
Pinruan U, Hyde KD, Lumyong S, McKenzie EHC et al (2007)
Occurrence of fungi on tissues of the peat swamp palm Licuala
longicalycata. Fungal Divers 25:157–173
Pivikin MV, Afiyatullov SS, Elyakov GB (1999) Biodiversity of
marine fungi and new biological active substances from them.
In: Chou CH, Walker GR, Reinhardt C (eds) From organisms to
ecosystems in the Pacific. Biodivers Alleopathy, pp 91–99
Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative
assessment of lignocellulose degrading enzyme activity in
marine fungi. Bot Mar 41:293–298
Pointing SB, Buswell JA, Jones EBG, Vrijmoed LLP (1999)
Extracellular cellulolytic enzyme profiles of five lignicolous
mangrove fungi. Mycol Res 103:690–700
Poli A, Vizzini A, Prigione V, Varese GC (2018) Basidiomycota
isolated from the Mediterranean Sea—phylogeny and putative
ecological roles. Fungal Ecol 36:51–62
Porter D, Farnham WF (1986) Mycaureola edulis, a marine basid-
iomycete parasite of the red alga, Dilsea carnosa. Trans Br
Mycol Soc 87:575–582
Porter D, Lingle WL (1992) Endolithic thraustochytrid marine fungi
from planted shell fragments. Mycologia 84:289–299
Prieto M, Wedin M (2013) Dating the diversification of the major
lineages of Ascomycota (Fungi). PLoS ONE 8:e65576
Pruksakorn P, Arai M, Kotoku N, Vilche
`ze C et al (2010)
Trichoderins, novel aminolipopeptides from a marine sponge-
derived Trichoderma sp., are active against dormant mycobac-
teria. Bioorg Med Chem Lett 20:3658–3663
Pugh GJF (1962) Studies on fungi in coastal soils. II. Fungal ecology
in a developing salt marsh. Trans Br Mycol Soc 45:560–566
Pugh GJF, Jones EBG (1986) Antarctic marine fungi: a preliminary
account. In: Moss ST (ed) The biology of marine fungi.
Cambridge Univ. Press, Cambridge, pp 323–330
Raghukumar C (1987) Fungal parasites of marine algae from
Mandapam (South India). Dis Aquat Organ 3:137–145
Raghukumar C (2008) Marine fungal biotechnology: an ecological
perspective. Fungal Divers 31:19–35
Raghukumar S (2017) Fungi in coastal and oceanic marine ecosys-
tems. Springer, New York
Raghukumar C, Damare SR (2008) Deep-sea fungi. In: Michiels C,
Bartlett DH, Aertsen A (eds) High-pressure microbiology. ASM
Press, Washington, DC, USA, pp 265–292
Raghukumar C, Damare S, Singh P (2010) A review on deep-sea
fungi: occurrence, diversity and adaptions. Bot Mar 53:479–492
Rama T, Norden J, Davey ML, Mathiassen GH, Spatafora JW,
Kauserud H (2014) Fungi ahoy! Diversity on marine wooden
substrata in the high North. Fungal Ecol 8:46–58
Rateb ME, Ebel R (2011) Secondary metabolites of fungi from
marine habitats. Nat Prod Rep 28:290–344
Re
´blova
´M, Miller AN, Rossman AY, Seifert KA et al (2016)
Recommendations for competing sexual-asexually typified
generic names in Sordariomycetes (except Diaporthales,
Hypocreales, and Magnaporthales). IMA Fungus 7:131–153
Reed M (1902) Two new ascomycetous fungi parasitic on marine
algae. Univ Cal Publ Bot 1:141–164
Remy W, Taylor TN, Hass H (1994) Early Devonian fungi: a
blastocladalean fungus with sexual reproduction. Am J Bot
81:690–702
Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycosshiza from
early Debonian. Myhcologia 87(4):561–573
Richards TA, Jones MD, Leonard G, Bass D (2012) Marine fungi:
their ecology and molecular diversity. Annu Rev Mar Sci
4:495–522
Richards TA, Leonard G, Mah F, del Campo J et al (2015) Molecular
diversity and distribution of marine fungi across 130 European
environmental samples. Proc R Soc B 282:2015–2243
Roth FJ, Orpurt PA, Ahearn DG (1964) Occurrence and distribution
of fungi in a subtropical marine environment. Can J Bot
42:375–383
Ruff SE, Arnds J, Knittel K, Amann R et al (2013) Microbial
communities of deep-sea methane seeps at Hikurangi Continen-
tal Margin (New Zealand). PLoS ONE 8:e72627
Sachs J (1874) Lehrbuch der Botanik, 4th edn. Engelman, Leipzig
Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal
endobiotes: a continuum of interactions with host plants. Ann
Rev Ecol Syst 29:319–343
Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S
(2010) Phylogenetic diversity of endophyte assemblages associ-
ated with the tropical seagrass Enhalus acoroides in Thailand.
Fungal Divers 42:27–45
Sakayaroj J, Pang KL, Jones EBG (2011) Multi-gene phylogeny of
the Halosphaeriaceae: its ordinal status, relationships between
genera and morphological character evolution. Fungal Divers
46:87–109
Sakayaroj J, Preedanon S, Suetrong S, Klaysuban A et al (2012)
Molecular characterization of basidiomycetes associated with
the decayed mangrove tree Xylocarpus granatum in Thailand.
Fungal Divers 56:145–156
Samarakoon MC, Hyde KD, Promputtha I, Hongsanan S et al (2016)
Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes).
Mycosphere 7:1746–1761
Samarakoon MC et al (2019) An updated fossil calibrations and
ancient lineages of Ascomycota towards the divergence time
estimations (in press)
Sa
´nchez Ma
´rquez S, Bills GF, Zabalgogeazcoa I (2008) Diversity and
structure of the fungal endophytic assemblages from two
sympatric coastal grasses. Fungal Divers 33:87–100
Sarasan M, Puthumana J, Job N, Han J et al (2017) Marine algicolous
fendophytic Fungi—a promising drug resource of the era.
J Microbiol Biotechnol 27:1039–1052
Sarma VV, Hyde KD (2001) A review on frequently occurring fungi
in mangroves. Fungal Divers 8:1–34
Sarmiento-Ramirez JM, Sim J, Van West P, Dieguez-Uribeondo J
(2016) Isolation of fungal pathogens from eggs of the endan-
gered sea turtle species Chelonia mydas in Ascension Island.
J Mar Biol Assoc UK 97:661–667
Schaumann K (1974) Zur Verbreitung saprophytischer hoherer
Pilzkeime in der Hochsee. Erste quantitative Ergebnisse aus
der Nordsee und dem NO-Atlantik. Veroeff Ins Meeresforsch
Bremerhaven Supp 5:287–300
Schmit JP, Shearer CA (2003) A checklist of mangrove associated
fungi. Mycotaxon 80:423–477
Schmit JP, Shearer CA (2004) Geographical and host distribution of
lignicolous mangrove microfungi. Bot Mar 47:496–500
Schoch CL, Shoemaker RA, Seifert KA, Hambleton S et al (2006) A
multigene phylogeny of the Dothideomycetes using four nuclear
loci. Mycologia 98:1041–1052
Fungal Diversity
123
Schoch CL, Seifert KA, Huhndorf S, Robert V et al (2012) Nuclear
ribosomal internal transcribed spacer (ITS) region as a universal
NA barcode marker for fungi. PNAS 109:6241–6246
Scholz B (2015) Host-pathogen interactions between brackish and
marine microphytobenthic diatom taxa and representatives of the
Chytridiomycota, Oomycota and Labyrinthulomycota. Status
report for the Icelandic Research Fund from May to June 2014.
https://doi.org/10.13140/rg.2.1.4769.6087
Scholz B, Ku
¨pper FC, Vyverman W, Karsten U (2014a) Eukaryotic
pathogens (Chytridiomycota and Oomycota) infecting marine
microphytobenthic diatoms—a methodological comparison.
J Phycol 50:1009–1019
Scholz MJ, Weiss TL, Jinkerson RE, Jing J et al (2014b) Ultrastruc-
ture and composition of the Nannochloropsis gaditana cell wall.
Eukaryot Cell 13:1450–1464
Scholz B, Guillou L, Marano AV, Neuhauser S et al (2016a)
Zoosporic parasites infecting marine diatoms: a black box that
needs to be opened. Fungal Ecol 19:59–76
Scholz B, Ku
¨pper FC, Vyverman W, Karsten U (2016b) Effects of
eukaryotic pathogens (Chytridiomycota and Oomycota) on
marine microphytobenthic diatom community compositions in
the Soltho
¨rn tidal flat (southern North Sea, Germany). E J Phycol
5:253–269
Scholz B, Ku
¨pper FC, Vyverman W, O
´lafsson HG, Karsten U (2017a)
Chytridiomycosis of marine diatoms—the potential role of
chemotactic triggers and defense molecules in parasite-host
interactions. Mar Drugs 15:26
Scholz B, Ku
¨pper FC, Vyverman W, O
´lafsson HG, Karsten U
(2017b) Effects of environmental parameters on chytrid infection
prevalence of four marine diatoms—a laboratory case study. Bot
Mar 60:419–431
Schulz B, Boyle C (2005) The endophyte continuum. Mycol Res
109:661–686
Schulz B, Draeger S, Del Cruz TE, Rheinheimer J et al (2008)
Screening strategies for obtaining novel, biologically active,
fungal secondary metabolites from marine habitats. Bot Mar
51:219–234
Shivas RG, Young AJ, Crous PW (2009) Pseudocercospora avicen-
niae R.G. Shivas, A.J. Young & Crous, sp. nov. Fungal Planet 40
Shoemaker G, Wyllie-Echeverria S (2013) Occurrence of rhizomal
endobiotes in three temperate northeast pacific seagrasses. Aquat
Bot 111:71–73
Seifert KA, Morgan-Jones G, Gams W, Kendricket B (2011) The
genera of Hyphomycetes, CBS biodiversity series, vol 9. CBS-
KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD et al
(2015) Towards unraveling relationships in Xylariomycetidae
(Sordariomycetes). Fungal Divers 73:73–144
Senanayake IC, Al-Sadi AM, Bhat JD, Camporesi E et al (2016)
Phomatosporales ord. nov. and Phomatosporaceae fam. nov., to
accommodate Lanspora,Phomatospora and Tenuimurus, gen.
nov. Mycosphere 7:628–641
Senanayake IC, Crous PW, Groenewald JC, Maharachchikumbura
SSN et al (2017) Families of Diaporthales based on morpholog-
ical and phylogenetic evidence. Stud Mycol 86:217–296
Senanayake IC, Jeewon R, Chomnunti P, Wanasinghe DN et al
(2018) Taxonomic circumscription of Diaporthales based on
multigene phylogeny and morphology. Fungal Divers
93:241–443
Seto K, Kagami M, Degawa Y (2017) Phylogenetic position of
parasitic chytrids on diatoms: characterization of a novel clade in
Chytridiomycota. J Eukaryot Microbiol 64:383–393
Shang Z, Li L, Espo
´sito BP, Salim AA et al (2015) New PKS-NRPS
tetramic acids and pyridinone from an Australian marine-derived
fungus Chaunopycnis sp. Org Biomol Chem 13:7795–7802
Shearer CA, Raja HA (2007) Freshwater Ascomycetes Database:
hhtp://fungi.lifeIllinois.edu/
Shenoy BD, Jeewon R, Wu WP, Bhat DJ et al (2006) Ribosomal and
RPB2 DNA sequence analyses suggest that Sporidesmium and
morphologically similar genera are polyphyletic. Mycol Res
110:916–928
Simas T, Nunes JP, Ferreira JG (2001) Effects of global climate
change on coastal salt marshes. Ecol Model 139:115
Somrithipol S, Sudhom N, Tippawan S, Jones EBG (2007) A new
species of Falcocladium (Hyphomycetes) with turbinate vesicles
from Thailand. Sydowia 59:148–153
Soowannayan C, Tejab DNC, Yatip P, Mazumder FY et al (2019)
Vibrio biofilm inhibitors screened from marine fungi protect
shrimp against acute hepatopancreatic necrosis disease
(AHPND). Aquaculture 499:1–8
Sparks AK (1982) Observations on the histopathology and probable
progression of the disease caused by Trichomaris invadens,an
invasive ascomycete, in the Tanner crab, Chionoecetes bairdi.
J Invertebr Pathol 40:242–254
Sparks AK, Hibbits J (1979) Black mat syndrome, an invasive myctic
disease of the tanner crab, Chionoecetes bairdi. J Invert Path
34:184–191
Sparrow FK (1937) The occurrence of saprophytic fungi in marine
muds. Biol Bull 73:242–248
Sparrow FK (1960) Aquatic phycomycetes, 2nd edn. University of
Michigan Press, Ann Arbor
Spatafora J, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Indepen-
dent terrestrial origins of the Halosphaeriales (marine Ascomy-
cota). Am J Bot 85:1569–1580
Sridhar KR (2012) Decomposition of material in the sea. In: Jones
EBG, Pang KL (eds) Marine and fungal-like organisms. De
Gruyter, Germany, pp 475–500
Stanley SJ (1992) Observations on the seasonal occurrence of marine
endophytic and parasitic fungi. Can J Bot 70:2089–2096
Steele CW (1967) Fungus populations in marine waters and coastal
sands of the Hawaiian Line, and Phenix Islands. Pac Sci
21:317–331
Stevens FL (1920) New or noteworthy Porto Rican fungi. Bot Gaz
70:399–402
Subrmaniyan R, Ponnambalam S, Thirunavukarassu T (2016) Inter
species variations in cultivable endophytic fungal diversity
among the tropical seagrasses. Proc Natl Acad Sci India, Sect B
Biol Sci
Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J et al (2009)
Molecular systematics of the marine Dothideomycetes. Stud
Mycol 64:155–173
Suetrong S, Klaysuban A, Sakayaroj J, Preedanaon S et al (2015)
Tirisporellaceae, a new family in the order Diaporthales
(Sordariomycetes, Ascomycota). Cryptog Mycol 36:319–330
Sullivan BK, Sherman TD, Damare VS, Lilje O et al (2013) Potential
roles of Labyrinthula spp. in global seagrass population declines.
Fungal Ecol 6:328–338
Summerbell RC (1983) The heterobasidiomycetous yeast genus
Leucosporidium in an area of temperate climate. Can J Bot
61:1402–1410
Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013)
Antimicrobial potential of endophytic fungi derived from three
seagrass species: Cymodocea serrulata, Halophila ovalis and
Thalassia hemprichii. PLoS ONE 8:e72520
Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2014)
Diversity and antimicrobial activity of endophytic fungi isolated
from the seagrass Enhalus acoroides. Indian J Mar Sci
43:785–797
Supaphon P, Phongpaichit S, Sakayaroj J, Rukachaisirikul V et al
(2017) Phylogenetic community structure of fungal endobiotes
in seagrass species. Bot Mar 60:489–502
Fungal Diversity
123
Suryanarayanan TS (2012) Fungal endosymbionts of seaweeds. In:
Raghukumar C (ed) Biology of marine fungi, progress in
molecular and subcellular biology, vol 53. Springer, Berlin,
pp 53–69
Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N et al
(2010) Internal mycobiota of marine macroalgae from the
Tamilnadu coast: distribution, diversity and biotechnological
potential. Bot Mar 53:457–468
Sutherland GK (1915a) New marine fungi on Pelvetia. New Phytol
14:33–42
Sutherland GK (1915b) Additional notes on marine Pyrenomycetes.
New Phytol 14:183–193
Sutherland GK (1915c) New marine Pyrenomycetes. Trans Br Mycol
Soc 5:147–154
Sutherland GK (1916a) Additional notes on marine Pyrenomycetes.
Trans Br Mycol Soc 5:257–263
Sutherland GK (1916b) Marine fungi Imperfecti. New Phytol
15:35–48
Swart HJ (1963) Further investigations of the mycoflora in the soil of
some mangrove swamps. Acta Bot Neerl 12:98–111
Swart HJ (1970) Penicillium dimorphosporium sp. nov. Trans Br
Mycol Soc 55:310–313
Takishita K (2015) Diversity of microbial eukaryotes in deep sea
chemosynthetic ecosystems illuminated by molecular tech-
niques. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F
(eds) Marine protists diversity and dynamics. Springer, pp 47–61
Tao G, Liu ZY, Hyde KD, Lui XZ et al (2008) Whole rDNA analysis
reveals novel and endophytic fungi in Bletilla ochracea (Orchi-
daceae). Fungal Divers 33:101–122
Taxopeus J, Kozera CJ, OLeary SJB, Garbary DJ (2011) A
reclassification of Mycophycias ascophylli (Ascomycota) based
on nuclear large ribosomal subunit DNA sequences. Bot Mar
54:325–334
Taylor TN, Remy W, Hass H (1992) Fungi from the Lower Devonian
Rhynie chert: chytridiomycetes. Am J Bot 79:1233–1241
Taylor TN, Galtier J, Axsmith BJ (1994) Fungi from the Lower
Carboniferous of central France. Rev Palaeobot Palynol
83:253–260
Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular
mycorrhizae from the Early Devonian. Mycologia 87:560–573
Taylor TN, Hass H, Kerp H (1997) A cyanolichen from the Lower
Devonian Rhynie chert. Am J Bot 84:992–1004
Taylor TN, Klavins SD, Krings M, Taylor EL et al (2004) Fungi from
the Rhynie chert: a view from the dark side. Trans R Soc
Edinburgh, Earth Sciences 94:457–473
Teal JM (1962) Energy flow in the salt marsh ecosystem of Georgia.
Ecology 43:614–624, subunit DNA sequences. Bot Mar
54:325–334
Tedersoo L, Snachez-Ramirez S, Ko
¨ljalg U, Bahram M et al (2018)
High-level classification of the fungi and a tool for evolutionary
ecological analysis. Fungal Divers 90:135–159
Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeogra-
phy of marine fungi is shaped by the environment. Fungal Ecol
19:39–46
Theelen B, Cafarchia C, Gaitanis G, Bassukas ID et al (2018)
Malassezia ecology, pathophysiology, and treatment. Med
Mycol 56:S10–S25
Tokura R, Shimooka V, Morigichi K, Yahi T et al (1982) Studies on
the proper guidance of biological marine practise. VI. Observa-
tion of marine fungi in Hakoishi, Central Region of Japan. Kyoto
Univ. of Edu Fushimi-ku, Kyoto 612. Japan 12:29–57
Tomlinson PB (1986) The Biology of mangroves. Cambridge Univ
Press, Cambridge
Torta L, Piccolo SL, Piazza G, Burruano SD et al (2015) Lulwoana
sp., a dark septate endophyte in roots of Posidonia oceanica (L.)
Delile seagrass. Plant Biol 17:505–511
Van Hyning JM, Scarborough AM (1971) identification of fungal
encrustation of the snow crah Chionoecetes bairdi. J Fish Res
Board Can 30:1738–1739
Van Ryckegem G, Van Driessche G, Van Beeumen JJ, Verbeken A
(2006) The estimated impact of fungi on nutrient dynamics
during decomposition of Phragmites australis leaf sheaths and
stems. Microb Ecol 52:564–574
Ve
´lez CG, Letcher PM, Schultz S, Powell MJ, Churchill PF (2011)
Molecular phylogenetic and zoospore ultrastructural analyses of
Chytridium olla establish the limits of a monophyletic Chytridi-
ales. Mycologia 103:118–130
Velmurugan N, Lee YS (2012) Enzymes from marine fungi: current
research and future prospects. In: Jones EBG, Pang KL (eds)
Marine and fungal-like organisms. De Gruyter, Germany,
pp 441–474
Venkatachalam A, Govinda Rajulu MB, Thirunavukkarasu N,
Suryanarayanan TS (2015a) Endophytic fungi of marine algae
and seagrasses: a novel source of chitin modifying enzymes.
Mycosphere 6:345–355
Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015b)
Distribution and diversity of endobiotes in seagrasses. Fungal
Ecol 13:60–65
Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy,
origins and evolution of freshwater ascomycetes. Fungal Divers
23:351–390
Vrijmoed LLP (2000) Isolation and culture of higher filamentous
fungi. In: Hyde KD, Pointing SB (eds) Marine mycology: a
practical approach, fungal diversity research series 1. Fungal
Divers Press, Hong Kong, pp 1–20
Vohnı
´k M, Borovec O, Kolar
ˇı
´k M (2016) Communities of cultivable
root mycobionts of the seagrass Posidonia oceanica in the
Northwest Mediterranean Sea are dominated by a hitherto
undescribed pleosporalean dark septate endophyte. Microb Ecol
71:442–451
Vu D, Groenewald M, de Vries M, Gehrmann T et al (2018) Large-
scale generation and analysis of filamentous fungal DNA
barcodes boosts coverage for kingdom Fungi and reveals
thresholds for fungal species and higher taxon delimitation.
Stud Mycol 92:136–154
Wanasinghe DN, Jeewon R, Tibpromma S, Jones EBG, Hyde KD
(2017) Saprobic Dothideomycetes in Thailand: Muritestudina
gen. et sp. nov. (Testudinaceae) a new terrestrial pleosporalean
ascomycete, with hyaline and muriform ascospores. Stud Fungi
2:219–234
Wang G, Johnson ZI (2009) Impact of parasitic fungi on the diversity
and functional ecology of marine phytoplankton. In: Kersey WT,
Munger SP (eds) Marine phytoplankton. Nova Science Publisher
Inc., New York, USA, pp 211–228
Wang X, Ma ZG, Song BB, Chen CH et al (2013) Advances in the
study of the structures and bioactivities of metabolites isolated
from mangrove-derived fungi in the South China. Sea Mar Drugs
11:3601–3616
Wang JF, Lin XP, Qin C, Liao SR et al (2014a) Antimicrobial and
antiviral sesquiterpenoids from sponge-associated fungus, Asper-
gillus sydowii ZSDS1-F6. J Antibiot 67:581–583
Wang X, Singh P, Gao Z, Zhang X et al (2014b) Distribution and
diversity of planktonic fungi in the West Pacific Warm Pool.
PLoS ONE 9:e101523
Wang J, Wang Z, Ju Z, Wan J et al (2015a) Cytotoxic cytochalasins
from marine-derived fungus Arthrinium arundinis. Planta Med
81:160–166
Wang QM, Begerow D, Groenewald M, Liu XZ (2015b) Phylogeny
of yeasts and related filamentous fungi within Pucciniomycotina
determined from multigene sequence analyses. Stud Mycol
81:27–53
Fungal Diversity
123
Wang QM, Begerow D, Groenewald M, Liu XZ et al (2015c)
Multigene phylogeny and taxonomic revision of yeasts and
related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83
Wang QM, Yurkov AM, Go
¨ker M, Lumbsch HT et al (2015d)
Phylogenetic classification of yeasts and related taxa within
Pucciniomycotina. Stud Mycol 81:149–189
Wang W, Li S, Chen Z, Li Z et al (2017) Secondary metabolites
produced by the deep-sea-derived fungus Engyodontium album.
Chem Nat Compd 53:224–226
Wetsteyn LPMJ, Peperzak L (1991) Field observations in the
oosterschelde (The Netherlands) on Coscinodiscus concinnus
and Coscinodiscus granii (Bacillariophyceae) infected by the
marine fungus Lagenisma coscinodisci (Oomycetes). Hydrobiol
Bull 25:15–21
Wijayawardene NN, Bhat DJ, Hyde KD, Camporesi E et al (2014)
Camarosporium sensu stricto in Pleosporinae, Ploepsorales with
two new specvies. Phytotaxa 183:16–26
Wijayawardene NN, Hyde KD, Tibpromma S, Wamnasinghe DN
et al (2017a) Towards incorporating asexual fungi in a natural
classification: check-list and notes. Mycosphere 8:1457–1554
Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL
et al (2017b) Notes for genera: Ascomycota. Fungal Divers
86:1–594
Wijayawardene NN, Hyde KD, Lumbsch T, Liu JK et al (2018)
Outline of Ascomycota—2017. Fungal Divers 88:167–263
Winter G (1887) Exotische Pilze IV. Hedwigia 26:6–18
Wright EP (1881) On Blodgettia confervoides Harvey, forming a new
genus and species of fungi. Trans R Ir Acad 28:21–26
Wu B, Oesker V, Wiese J, Schmaljohann R, Imhoff JF (2014) Two
new antibiotic pyridones produced by a marine fungus, Tricho-
derma sp. strain MF106. Mar Drugs 12:1208–1219
Xing X, Guo S (2011) Fungal endophyte communities in four
Rhizophoraceae mangrove species on the south coast of China.
Ecol Res 26:403–409
Xing XK, Chen J, Xu MJ, Lin WH et al. (2010) Fungal endobiotes
associated with Sonneratia (Sonneratiaceae) mangrove plants on
the south coast of China. Forest Pathol
Xu W, Pang KL, Luo ZH (2014) High fungal diversity and abundance
recovered in the Deep-Sea sediments of the Pacific Ocean.
Microb Ecol 68:688–698
Xu R, Li XM, Wang BG (2016a) Penicisimpins A-C, three new
dihydroisocoumarins from Penicillium simplicissimum MA-332,
a marine fungus derived from the rhizosphere of the mangrove
plant Bruguiera sexangula var. Rhynchopetala. Phytochem Lett
17:114–118
Xu W, Luo ZH, Guo S, Pang KL (2016b) Fungal community analysis
in the deep-sea sediments of the Pacific Ocean assessed by
comparison of ITS,18S and 28S ribosomal DNA regions. Deep-
Sea Res I 10:951–960
Xu W, Guo S, Pang KL, Luo ZH (2017) Fungi associated with
chimney and sulfide samples from a South Mid-Atlantic Ridge
hydrothermal site: distribution, diversity and abundance. Deep-
Sea Res Part I 123:48–55
Xu W, Gong LF, Pang KL, Luo ZH (2018) Fungal diversity in deep-
sea sediments of a hydrothermal vent system in the Southwest
Indian Ridge. Deep-Sea Res Part I 131:16–26
Yao Q, Wang J, Zhang X, Nong X et al (2014) Cytotoxic polyketides
from the deep-sea-derived fungus Engyodontium album
DFFSCS021. Mar Drugs 12:5902–5915
Yarden (2014) Fungal association with sessile marine invertebrates.
Front Microbiol 5:228
Yi L, Cui CB, Li CW, Peng JX et al (2016) Chromosulfine, a novel
cyclopentachromone sulfide produced by a marine-derived
fungus after introduction of neomycin resistance. RSC Adv
6:43975–43979
Zalar P, de Hoog GS, Schroers HJ, Crous PW et al (2007) Phylogeny
and ecology of the ubiquitous saprobe Cladosporium sphaeros-
permum, with descriptions of seven new species from hyper-
saline environments. Stud Mycol 58:157–183
Zebrowski G (1936) New genera of Cladochytriaceae. Ann Miss Bot
Gard 23:553–564
Zhang XY, Zhang Y, Xu XY, Qi SH (2013a) Diverse deep-sea fungi
from the South China Sea and their antimicrobial activity. Curr
Microbiol 67:525–530
Zhang Y, Fournier J, Phookamsak R, Bahkali AH et al (2013b)
Halotthiaceae fam. nov. (Pleosporales) accommodates the new
genus Phaeoseptum and several other aquatic genera. Mycologia
105(3):603–609
Zhang P, Mandi A, Li XM, Du FY et al (2014) Varioxepine A, a 3H-
oxepine-containing alkaloid with a new oxa-cage from the
marine algal-derived endophytic fungus Paecilomyces variotii.
Org Lett 16:4834–4837
Zhao RL, Zhou JL, Chen J, Margaritescu S et al (2016) Towards
standardizing taxonomic ranks using divergence times—a case
study for reconstruction of the Agaricus taxonomic system.
Fungal Divers 78:239–292
Zhao RL, Li GJ, Sa
´nchez-Ramı
´rez S, Stata M et al (2018) A six-gene
phylogenetic overview of Basidiomycota and allied phyla with
estimated divergence times of higher taxa and a phyloproteomics
perspective. Fungal Divers 84:43–74
Zheng J, Zhu H, Hong K, Wang Y et al (2009) Novel cyclic
hexapeptides from marine-derived fungus, Aspergillus sclero-
tiorum PT06-1. Org Lett 11:5262–5265
Zheng J, Wang Y, Wang J, Liu P et al (2013) Antimicrobial
ergosteroids and pyrrole derivatives from halotolerant Aspergil-
lus flocculosus PT05-1 cultured in a hypersaline medium.
Extremophiles 17:963–971
Zhou Y, Debbab A, Wray V, Lin W et al (2014) Marine bacterial
inhibitors from the sponge-derived fungus Aspergillus sp.
Tetrahedron Lett 55:2789–2792
Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. In:
Deighton J, White JF, Oudemans P (eds) The fungal community.
CRC, Taylor and Francis, New York
Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of
ascomycetes associated with Fucus serratus. Mycol Res
107:1451–1466
Zuccaro A, Summerbell RC, Gams W, Schroers H-F, Mitchell JI
(2004) A new Acremonium species associated with Fucus spp,
and its affinity with a phylogenetically distinct marine Emeri-
cellopsis clade. Stud Mycol 50:283–297
Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J et al (2008)
Detection and identification of fungi intimately associated with
the brown seaweed Fucus serratus. Appl Environ e
`74:931–941
Fungal Diversity
123
Affiliations
E. B. Gareth Jones
1,2
Ka-Lai Pang
3
Mohamed A. Abdel-Wahab
1,4
Bettina Scholz
5
Kevin D. Hyde
6
Teun Boekhout
7,8
Rainer Ebel
9
Mostafa E. Rateb
10
Linda Henderson
11
Jariya Sakayaroj
12
Satinee Suetrong
13
Monika C. Dayarathne
6
Vinit Kumar
6,17
Seshagiri Raghukumar
14
K. R. Sridhar
15
Ali H. A. Bahkali
1
Frank H. Gleason
16
Chada Norphanphoun
6
1
Deptartment of Botany and Microbiology, College of
Science, King Saud University,
P.O Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
2
Hampshire, UK
3
Institute of Marine Biology and Centre of Excellence for the
Oceans, National Taiwan Ocean University, 2 Pei-Ning
Road, Keelung 20224, Taiwan
4
Department of Botany and Microbiology, Faculty of Science,
Sohag University, Sohag 82524, Egypt
5
BioPol ehf, Marine Biotechnology, Einbu
´astig 2,
545 Skagastro
¨nd, Iceland
6
Center of Excellence in Fungal Diversity Mae Fah Luang
University, 333 M.1 Thasud, Muang Chiang Rai,
Chiang Rai 57100, Thailand
7
Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8,
Utrecht, The Netherlands
8
Institute of Biodiversity and Ecological Dynamics (IBED),
University of Amsterdam, Amsterdam, The Netherlands
9
Department of Chemistry, Marine Biodiscovery Centre,
University of Aberdeen, Aberdeen AB24 3UE, UK
10
School of Computing, Engineering & Physical Sciences,
University of the West of Scotland, Paisley PA1 2BE, UK
11
School of Life and Environmental Sciences, University of
Sydney, Macleay Building A12, Sydney, NSW 2006,
Australia
12
School of Science, Walailak University, 222 Thaiburi,
Thasala District, Nakhon Si Thammarat 80161, Thailand
13
Fungal Biodiversity Laboratory (BFBD), National Center for
Genetic Engineering and Biotechnology (BIOTEC), 113
Thailand Science Park, Phaholyothin Road, Khlong Nueng,
Khlong Luang, Pathum Thani 12120, Thailand
14
Tamra’, 313 (Plot No. 162), Vainguinnim Valley, Dona
Paula, Goa 403 004, India
15
Department of Biosciences, Mangalore University,
Mangalore, Karnataka, India
16
School of Life and Environmental Sciences, University of
Sydney, Sydney, NSW 2006, Australia
17
Department of Entomology and Plant Pathology, Faculty of
Agriculture, Chiang Mai University, Huay Keaw Road,
Suthep, Muang District, Chiang Mai 50200, Thailand
Fungal Diversity
123
... More than 10,000 marine fungal species are estimated to live in the ocean, although less than 1900 have been formally described to date [8] (https:// www. marin efungi. ...
... The environmental variables were first screened for collinearity [32], and the model and variable significance were tested with ANOVA and 4999 permutations. Marine genera were assessed following comprehensive works and reviews based on both traditional and molecular methods [2,8,10,33]. Marine genera were assessed considering only taxa that presented > 0.01% of average relative abundance (considered non-rare taxa [34]). ...
Article
Full-text available
Fungi contribute to different important ecological processes, including decomposition of organic matter and nutrient cycling, but in the marine environment the main factors influencing their diversity and dynamics at the spatial and temporal levels are still largely unclear. In this study, we performed DNA metabarcoding on seawater sampled monthly over a year and a half in the Gulf of Trieste (northern Adriatic Sea), targeting the internal transcribed spacer (ITS) and the 18S rRNA gene regions. The fungal communities were diverse, very dynamic, and belonged predominantly to marine taxa. Samples could be clustered in two groups, mainly based on the high (> 30%) or low relative proportion of the ascomycetes Parengyodontium album, which emerged as a key taxon in this area. Dissolved and particulate organic C:N ratio played important roles in shaping the mycoplankton assemblages, suggesting that differently bioavailable organic matter pools may be utilized by different consortia. The proportion of fungal over total reads was 31% for ITS and 0.7% for 18S. ITS had the highest taxonomic resolution but low power to detect early divergent fungal lineages. Our results on composition, distribution, and environmental drivers extended our knowledge of the structure and function of the mycobiome of coastal waters. Supplementary Information The online version contains supplementary material available at 10.1007/s00248-024-02394-z.
... They exhibit a wide range of lifestyles (e.g. biotrophs, endophytes, epiphytes, hemibiotrophs, pathogens, saprobes) and can be found worldwide, including terrestrial, marine and freshwater environments (Jones et al. 2019;Hongsanan et al. 2020;Calabon et al. 2022;Gao et al. 2023). In addition, they are extremely adaptable to various ecological niches and can exist in anaerobic, aquatic, mutualistic, terrestrial and even in severe habitats, such as deserts (Zhang et al. 2012;Hyde et al. 2013;Hongsanan et al. 2020). ...
Article
Full-text available
Melanommataceous species exhibit high diversity with a cosmopolitan distribution worldwide and show a prominent saprobic lifestyle. In this study, we explored five saprobic species collected from plant litter substrates from terrestrial habitats in China and Thailand. A combination of morphological characteristics and multi-locus phylogenetic analyses was used to determine their taxonomic classifications. Maximum Likelihood and Bayesian Inference analyses of combined LSU, SSU, ITS and tef1-α sequence data were used to clarify the phylogenetic affinities of the species. Byssosphaeria poaceicola and Herpotrichia zingiberacearum are introduced as new species, while three new host records, Bertiella fici, By. siamensis and Melanomma populicola are also reported from litter of Cinnamomum verum, Citrus trifoliata and Fagus sylvatica, respectively. Yet, despite the rising interest in the melanommataceous species, there is a considerable gap in knowledge on their host associations and geographical distributions. Consequently, we compiled the host-species associations and geographical distributions of all the so far known melanommataceous species.
... Conversely, captive juvenile green turtles displayed more consistent mycobiota richness and diversity across various sampling sites and health conditions, unaffected by environmental fungi [31]. The taxonomic composition of cloacal and tank water fungal phyla in our study aligns with previously reported marine fungi groups found in green sea turtle faeces [31], as well as marine algicolous fungi, sediments, and sponges [64]. Due to the lower resolution of the ITS2 gene marker and many unassigned fungal ASVs beyond the family level, this study offers just a general overview and serves as a foundation for further exploration of specific groups of interest. ...
Article
Full-text available
Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communities of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only in oral samples. Fungal communities in loggerheads’ cloaca were diverse and varied significantly among individuals, differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing a baseline understanding of loggerhead sea turtle holobiont.
... Molecular-phylogenetic data obtained for obligate marine micromycetes (in particular, of the genera Alternaria, Aspergillus, Fusarium, Coprinus, Exidia, Penicillium, and some others) indicate their terrestrial origin (Richards et al., 2012;Jones et al., 2015Jones et al., , 2019Amend et al., 2019). ...
Article
In the Sevastopol Bay (Black Sea), in the autumn period of 2021, fungal complexes were studied on plexiglass plates painted with anti-fouling enamel Bioplast-52 (control) and coatings based on it modified with nanoparticles (NP) Zn-FeO, ZnO and Fe-SiO. 16 species of fungi belonging to seven genera, five families, five orders, three classes of the Ascomycota division have been identified. The species composition was dominated by representatives of the genera Aspergillus (7 species) and Alternaria (4 species). The total number of fungal species isolated on substrates varied from 3 (with ZnO NP) to 8 (Bioplast-52) and with Zn-FeO NP), and by exposure time – from 3 (fourteenth day) to 14 species (sixty-first day). There were no representatives of the genera Aspergillus and Alternaria on the coating modified with Fe-CuO NP; only species of the genus Aspergillus were found on the coating with ZnO NP, the smallest number and number of fungal species were found on these coatings. Fe-CuO and ZnO nanoparticles enhanced the antifouling properties of Bioplast-52 enamel.
Article
Full-text available
Plastic pollution of the ocean is a major environmental threat. In this context, a better understanding of the microorganisms able to colonize and potentially degrade these pollutants is of interest. This study explores the colonization and biodegradation potential of fungal communities on foamed polystyrene and alternatives biodegradable plastics immersed in a marina environment over time, using the Brest marina (France) as a model site. The methodology involved a combination of high-throughput 18S rRNA gene amplicon sequencing to investigate fungal taxa associated with plastics compared to the surrounding seawater, and a culture-dependent approach to isolate environmentally relevant fungi to further assess their capabilities to utilize polymers as carbon sources. Metabarcoding results highlighted the significant diversity of fungal communities associated with both foamed polystyrene and biodegradable plastics, revealing a dynamic colonization process influenced by the type of polymer and immersion time. Notably, the research suggests a potential for certain fungal species to utilize polymers as a carbon source, emphasizing the need for further exploration of fungal biodegradation potential and mechanisms.
Article
Full-text available
Stagonospora is an asexual morph genus that is classified under Massarinaceae in Dothideomycetes. Stagonospora species have been recorded in both tropical and temperate regions. Several species have been reported as saprobic or opportunistic pathogenic lifestyles on grasses and grass-like plants. In this study, Stagonospora was collected from a Typha species in Sam Roi Yot wetland in central Thailand. Morphological examination was coupled with multi-loci phylogenetic analyses using maximum likelihood and Bayesian interference of a data set containing large subunit ribosomal rDNA (LSU rDNA), internal transcribed spacer (ITS) regions, small subunit ribosomal rDNA (SSU rDNA), and translation elongation factor 1-alpha (tef1-α) sequences. Our new taxon is distinguishable from other Stagonospora species by having hyaline, one-septate conidia that taper toward the base. This discovery holds significant value in comprehending the fungal diversity within Thailand's wetlands and the specific fungal communities linked to Typha plants.
Article
Full-text available
The Mediterranean Sea stands out as a hotspot of biodiversity, whose fungal composition remains underexplored. Marine sediments represent the most diverse substrate; however, the challenge of recovering fungi in culture hinders the precise identification of this diversity. Concentration techniques like skimmed milk flocculation (SMF) could represent a suitable solution. Here, we compare the effectiveness in recovering filamentous ascomycetes of direct plating and SMF in combination with three culture media and two incubation temperatures, and we describe the fungal diversity detected in marine sediments. Sediments were collected at different depths on two beaches (Miracle and Arrabassada) on the Spanish western Mediterranean coast between 2021 and 2022. We recovered 362 strains, and after a morphological selection, 188 were identified primarily with the LSU and ITS barcodes, representing 54 genera and 94 species. Aspergillus, Penicillium, and Scedosporium were the most common genera, with different percentages of abundance between both beaches. Arrabassada Beach was more heterogeneous, with 42 genera representing 60 species (Miracle Beach, 28 genera and 54 species). Although most species were recovered with direct plating (70 species), 20 species were exclusively obtained using SMF as a sample pre-treatment, improving our ability to detect fungi in culture. In addition, we propose three new species in the genera Exophiala, Nigrocephalum, and Queenslandipenidiella, and a fourth representing the novel genus Schizochlamydosporiella. We concluded that SMF is a useful technique that, in combination with direct plating, including different culture media and incubation temperatures, improves the chance of recovering marine fungal communities in culture-dependent studies.
Article
Full-text available
The field of mycology has grown from an underappreciated subset of botany, to a valuable, modern scientific discipline. As this field of study has grown, there have been significant contributions to science, technology, and industry, highlighting the value of fungi in the modern era. This paper looks at the current research, along with the existing limitations, and suggests future areas where scientists can focus their efforts, in the field mycology. We show how fungi have become important emerging diseases in medical mycology. We discuss current trends and the potential of fungi in drug and novel compound discovery. We explore the current trends in phylogenomics, its potential, and outcomes and address the question of how phylogenomics can be applied in fungal ecology. In addition, the trends in functional genomics studies of fungi are discussed with their importance in unravelling the intricate mechanisms underlying fungal behaviour, interactions, and adaptations, paving the way for a comprehensive understanding of fungal biology. We look at the current research in building materials, how they can be used as carbon sinks, and how fungi can be used in biocircular economies. The numbers of fungi have always been of great interest and have often been written about and estimates have varied greatly. Thus, we discuss current trends and future research needs in order to obtain more reliable estimates. We address the aspects of machine learning (AI) and how it can be used in mycological research. Plant pathogens are affecting food production systems on a global scale, and as such, we look at the current trends and future research needed in this area, particularly in disease detection. We look at the latest data from High Throughput Sequencing studies and question if we are still gaining new knowledge at the same rate as before. A review of current trends in nanotechnology is provided and its future potential is addressed. The importance of Arbuscular Mycorrhizal Fungi is addressed and future trends are acknowledged. Fungal databases are becoming more and more important, and we therefore provide a review of the current major databases. Edible and medicinal fungi have a huge potential as food and medicines, especially in Asia and their prospects are discussed. Lifestyle changes in fungi (e.g., from endophytes, to pathogens, and/or saprobes) are also extremely important and a current research trend and are therefore addressed in this special issue of Fungal Diversity.
Preprint
Full-text available
The unique characteristics of Tezpur litchi varieties in terms of their size, quality, taste and relatively small seed size helped to recognize the Geographical Indication (GI) in 2014. The present study aimed to investigate the endophytic and rhizospheric fungal communities associated with Tezpur litchi (var. Bilati) for their plant growth-promoting (PGP) and biocontrol potential. Fungal isolates were evaluated for indole-3-acetic acid (IAA) production, phosphate solubilization activity (PSA), and antagonistic activity against the phytopathogen Alternaria alternata (MTCC 3880). The isolated fungi were found belonging to the genera Aspergillus, Colletotrichum, Fusarium, Penicillium, and Mycelia sterilia. Promising results were obtained for IAA production, with the highest values recorded at 179.25 ± 3 µg ml⁻¹ and 143.13 ± 3 µg ml⁻¹ by soil isolate SF32 and endophytic isolate BE23, respectively. All isolates exhibited varying degrees of PSA, with the highest value (3.44 ± 0.04 SI) observed in endophytic isolate LE07. Antifungal activity screening revealed significant inhibition of A. alternata by endophytic isolate BE14 (41.9 ± 1.4 mm zone of inhibition) and soil isolate SF32 (29.4 ± 0.8 mm). Subsequent molecular identification 18S ITS rDNA sequencing confirmed BE14 and SF32 as Penicillium citrinum and Aspergillus aculeatus, respectively. This study reports the association of P. citrinum in litchi and identifies the potential antifungal properties. Fourier transform infrared (FTIR) analysis of the crude metabolite from P. citrinum revealed the presence of various functional groups, including alcohols, alkanes, and aromatic compounds. Gas chromatography-mass spectrometry (GC-MS) analysis tentatively identified four major compounds: Succinic-acid-2,4,6-trichlorophenyl-3-methylbut-3-en-1-yl-ester, 1,5-but(3-cyclopentylpropoy)-1,1,3,3,5,5-hexamethyltrisiloxane, Hexamethyl-cyclotrisiloxane and Tris(tert-butyldimethylsilyloy)arsane. These findings suggest the presence of potentially bioactive metabolites with antifungal properties in P. citrinum. In conclusion, this study highlights the diverse fungal communities associated with Tezpur litchi and identifies potential candidates for promoting plant growth and managing fungal diseases through eco-friendly approaches. Further investigations are warranted to elucidate the specific mechanisms underlying the observed PGP and biocontrol activities of these promising fungal isolates.