Monica Fedele

Monica Fedele
Italian National Research Council | CNR · Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" IEOS

PhD in Biology and Patholgy

About

189
Publications
18,948
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,429
Citations
Introduction
Monica Fedele currently works at the Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" IEOS, Italian National Research Council. Monica does research in Cancer Research, Cell Biology and Endocrinology. Her current project is 'PATZ1 in development and cancer.'
Additional affiliations
December 2001 - present
Italian National Research Council
Position
  • CNR - Consiglio Nazionale delle Ricerche
January 2000 - December 2001
University of Naples Federico II
Position
  • PostDoc Position
May 1998 - December 1999

Publications

Publications (189)
Article
Full-text available
Background Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting sing...
Article
Full-text available
The classification of tumors into subtypes, characterized by phenotypes determined by specific differentiation pathways, aids diagnosis and directs therapy towards targeted approaches. However, with the advent and explosion of next-generation sequencing, cancer phenotypes are turning out to be far more heterogenous than initially thought, and the c...
Preprint
Full-text available
Background Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting sing...
Preprint
Full-text available
The classification of tumors in subtypes, characterized by phenotypes determined by specific differentiation pathways, aids diagnosis and directs therapy towards targeted approaches. However, with the advent and explosion of next-generation sequencing, cancer phenotypes are turning out to be far more heterogenous than initially thought, and the cla...
Preprint
Full-text available
Cancer stem cells (CSCs) are a subpopulation of cancer cells within tumors that exhibit stem-like properties, and represent a potentially effective therapeutic target towards long-term remission by means of differentiation induction. By leveraging an Artificial Intelligence (AI) approach solely based on transcriptomics data, this study scored a lar...
Article
Full-text available
Epithelial–mesenchymal transition (EMT) is a cellular process involved in many physiological and pathological conditions [...]
Article
Full-text available
Triple-negative breast cancer (TNBC) is among the most aggressive breast cancer subtypes. Despite being initially responsive to chemotherapy, patients develop drug-resistant and metastatic tumors. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a secreted protein with a tumor suppressor function due to its anti-proteolytic activity. Neverthele...
Article
Full-text available
Simple Summary Lung cancer is the leading cause of cancer death worldwide. Most lung cancers are classified as non-small cell lung cancer (NSCLC), which is diagnosed at an advanced stage when various treatments cannot be curative. Immunotherapy is a promising treatment for many cancers, including NSCLC, and the big challenge is the identification o...
Article
Full-text available
The immune system (IS) may play a crucial role in preventing tumor development and progression, leading, over the last years, to the development of effective cancer immunotherapies. Nevertheless, immune evasion, the capability of tumors to circumvent destructive host immunity, remains one of the main obstacles to overcome for maximizing treatment s...
Article
Significance: Metabolic end products and intermediates can exert signaling functions as chemical sources for histone post-translational modifications, which remodel chromatin and affect gene expression. Among them, lactic acid is responsible for histone lactylation, a recently discovered histone mark that occurs in high lactate conditions, such as...
Article
Full-text available
Small interfering RNA (siRNA) therapies require effective delivery vehicles capable of carrying the siRNA cargo into target cells. To achieve tumor-targeting, a drug delivery system would have to incorporate ligands that specifically bind to receptors expressed on cancer cells to function as portals via receptor-mediated endocytosis. Cell-targeting...
Article
Full-text available
Diet and lifestyle factors greatly affect health and susceptibility to diseases, including cancer. Stem cells’ functions, including their ability to divide asymmetrically, set the rules for tissue homeostasis, contribute to health maintenance, and represent the entry point of cancer occurrence. Stem cell properties result from the complex integrati...
Article
Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive group of breast cancers. The lack of specific actionable targets makes chemotherapy the main treatment for TNBC patients. However, chemotherapy has limited success due to scarce bioavailability, severe systemic side effects and drug resistance. Polymeric nanoparticles (PNPs) may...
Article
Full-text available
Epithelial–mesenchymal transition (EMT) is a transdifferentiation process wherein epithelial cells acquire characteristics typical of mesenchymal cells [...]
Article
Full-text available
Triple-negative breast cancer (TNBC) is an aggressive cancer with limited targeted therapies. RNA aptamers, suitably chemically modified, work for therapeutic purposes in the same way as antibodies. We recently generated 2′Fluoro-pyrimidines RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells. Her...
Article
Full-text available
Abstract : Photodynamic therapy (PDT) may be an excellent alternative in the treatment of breast cancer, mainly for the most aggressive type with limited targeted therapies such as triple-negative breast cancer (TNBC). We recently generated conjugated polymer nano-particles (CPNs) as efficient photosensitizers for the photo-eradication of different...
Article
Full-text available
The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epi...
Article
Full-text available
The identification of tumor cell-specific surface markers is a key step towards personalized cancer medicine, allowing early assessment and accurate diagnosis, and development of efficacious targeted therapies. Despite significant efforts, currently the spectrum of cell membrane targets associated with approved treatments is still limited, causing...
Article
Full-text available
Thyroid cancer (TC) represents the most common endocrine malignancy, with an increasing incidence all over the world. Papillary TC (PTC), a differentiated TC subtype, is the most common and, even though it has an excellent prognosis following radioiodine (RAI) ablation, it shows an aggressive behavior in 20–30% of cases, becoming RAI-resistant and/...
Article
Full-text available
Background: Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic...
Preprint
Full-text available
Background: Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic...
Article
Full-text available
Proper regulation of neurogenesis, the process by which new neurons are generated from neural stem and progenitor cells (NS/PCs), is essential for embryonic brain development and adult brain function. The transcription regulator Patz1 is ubiquitously expressed in early mouse embryos and has a key role in embryonic stem cell maintenance. At later st...
Article
Full-text available
In this Special Issue, a series of eight original research articles and six reviews have been collected to highlight the latest knowledge into molecular features, diagnosis and therapeutic targeting of pituitary tumors, one of the most frequent intracranial tumors and neuroendocrine neoplasms [...]
Article
Full-text available
The goal of an efficacious cancer therapy is to specifically target diseased cells at high accuracy while sparing normal, healthy cells. Over the past three decades, immunotherapy, based on the use of monoclonal antibodies (mAbs) directed against tumor-associated antigens, to inhibit their oncogenic function, or against immune checkpoints, to modul...
Chapter
Glioblastoma (GBM) is the most lethal form of brain cancer. To date, no therapy exists to save patients from this deadly disease. Even though most of the patients subjected to surgical resection followed by radiotherapy and chemotherapy undergo remission, the tumor always recurs, leading to death in 15 months from diagnosis. Besides the blood-brain...
Article
Full-text available
Background: Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies...
Conference Paper
Triple-negative breast cancer (TNBC) is a high heterogeneous group of tumors with a distinctly aggressive nature and high rates of relapse. So far, the lack of any known targetable proteins has not allowed a specific anti-tumor treatment, thus the identification of novel agents for specific TNBC recognition and treatment is desperately needed. Nucl...
Preprint
Full-text available
Background: Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy, the current major option for treatment. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherap...
Preprint
Full-text available
Background: Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies...
Article
Full-text available
Triple-negative breast cancer (TNBC) is a high heterogeneous group of tumors with a distinctly aggressive nature and high rates of relapse. So far, the lack of any known targetable proteins has not allowed a specific anti-tumor treatment. Therefore, the identification of novel agents for specific TNBC targeting and treatment is desperately needed....
Article
Full-text available
Glial tumors are the leading cause of cancer-related death and morbidity in children. Their diagnosis, mainly based on clinical and histopathological factors, is particularly challenging because of their high molecular heterogeneity. Thus, tumors with identical histotypes could result in variable biological behaviors and prognoses. The PATZ1 gene h...
Article
Full-text available
Glioblastoma (GBM) is an extremely aggressive tumor of the central nervous system, with a prognosis of 12–15 months and just 3–5% of survival over 5 years. This is mainly because most patients suffer recurrence after treatment that currently consists in maximal resection followed by radio- and chemotherapy with temozolomide. The recurrent tumor sho...
Article
Full-text available
PATZ1 is a transcriptional factor downregulated in thyroid cancer whose re-expression in thyroid cancer cells leads to a partial reversion of the malignant phenotype, including the capacity to proliferate, migrate, and undergo epithelial-to-mesenchymal transition. We have recently shown that PATZ1 is specifically downregulated downstream of the Ras...
Article
This article (1) has been retracted at the request of the editors. The editors were made aware of concerns regarding potential manipulation of data in the article. An internal review by the editors determined that multiple duplicated electro-phoretic mobility shift assay–free probe bands appear to have been used to represent different experimental...
Article
Full-text available
Compared to other breast cancers, triple-negative breast cancer (TNBC) usually affects younger patients, is larger in size, of higher grade and is biologically more aggressive. To date, conventional cytotoxic chemotherapy remains the only available treatment for TNBC because it lacks expression of the estrogen receptor (ER), progesterone receptor (...
Article
Full-text available
While the overall mortality for breast cancer has recently declined, management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and the lack of targeted therapies. Genomic profiling studies highlighted the high level of heterogeneity of this cancer, which comprises different subtypes with uni...
Conference Paper
Full-text available
Introduction Triple-negative breast cancers (TNBCs) are a heterogeneous group of aggressive tumours lacking oestrogen and progesterone receptors and HER2 receptor, thus excluding the possibility of using targeted therapy against these proteins. Mesenchymal-like (ML) subtype, characterised by a stem-like, undifferentiated phenotype, is more invasive...
Article
Full-text available
Therapy-induced senescence is a major cellular response to chemotherapy in solid tumors. Senescent tumor cells acquire a secretory phenotype, or SASP, and produce pro-inflammatory factors, whose expression is largely under NF-κB transcriptional control. Secreted factors play a positive role in driving antitumor immunity, but also exert negative inf...
Article
Full-text available
POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) is an emerging cancer-related gene that is downregulated in different human malignancies, including thyroid cancer, where its levels gradually decrease going from papillary thyroid carcinomas (PTC) to poorly differentiated and undifferentiated highly aggressive anaplastic carcinomas (ATC)...
Article
Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic....
Article
Full-text available
PATZ1 is a zinc finger protein, belonging to the POZ domain Krüppel-like zinc finger (POK) family of architectural transcription factors, first discovered in 2000 by three independent groups. Since that time accumulating evidences have shown its involvement in a variety of biological processes (i.e., embryogenesis, stemness, apoptosis, senescence,...
Article
Full-text available
We have previously reported a critical role of HMGA proteins in pituitary tumorigenesis since either the Hmga1 or Hmga2 gene overexpression/activation induces the development of mixed growth hormone/prolactin cell pituitary adenomas by activating the E2F transcription factor 1, and then enhancing the G1/S transition of the cell cycle. Consistently,...
Article
Full-text available
Breast cancer is a heterogeneous disease that is characterized by a high grade of cell plasticity arising from the contribution of a diverse range of factors. When combined, these factors allow a cancer cell to transition from an epithelial to a mesenchymal state through a process of dedifferentiation that confers stem-like features, including chem...
Article
Full-text available
Glioblastoma (GBM), the most malignant of the brain tumors, has been classified on the basis of molecular signature into four subtypes: classical, mesenchymal, proneural and neural, among which the mesenchymal and proneural subtypes have the shortest and longest survival, respectively. Here we show that the transcription factor PATZ1 gene is upregu...
Article
Full-text available
Current treatment options for triple-negative breast cancers (TNBCs) is limited by the absence of well-defined biomarkers, excluding a targeted therapy. Notably, epidermal growth factor receptor (EGFR) is overexpressed in a great proportion of TNBCs and is a negative prognostic factor. In clinical trials, however, existing EGFR inhibitors showed di...
Article
Angiogenesis contributes in multiple ways to disease progression in tumors and reduces treatment efficiency. Molecular therapies targeting Vegf signaling combined with chemotherapy or other drugs exhibit promising results to improve efficacy of treatment. Dopamine has been recently proposed to be a novel safe antiangiogenic drug that stabilizes abn...
Article
Full-text available
Diabetic retinopathy (DR) is a major complication of diabetes mellitus, and is the leading cause of blindness in working-age people. Usually, DR progresses from the asymptomatic non-proliferative DR that does not significantly alter vision, to proliferative DR (PDR), which can result in aberrant retinal neovessel formation and blindness. The High-M...
Article
Full-text available
Non-Hodgkin lymphomas (NHLs) include a heterogeneous group of diseases, which differ in both cellular origin and clinical behavior. Among the aggressive malignancies of this group, the diffuse large B-cell lymphomas (DLBCLs) are the most frequently observed. They are themselves clinically and molecularly heterogeneous and have been further sub-divi...
Article
Full-text available
The regulatory transcriptional factor PATZ1 is constantly downregulated in human thyroid cancer where it acts as a tumour suppressor by targeting p53-dependent genes involved in Epithelial-Mesenchymal Transition and cell migration. The aim of the present work was to elucidate the upstream signalling mechanisms regulating PATZ1 expression in thyroid...
Article
Full-text available
PATZ1 is a chromatin-regulating factor with emerging roles in stemness and cancer. It has been suggested to play a dual oncogene/tumor suppressor role depending on the cellular context, but its function in human tumor biology is still far to be completely elucidated. We have recently identified its tumor suppressive role in thyroid carcinogenesis,...
Article
Full-text available
Glioblastoma Multiforme (GBM) is the most common and aggressive human brain tumor, associated with very poor survival despite surgery, radiotherapy and chemotherapy. The epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor β (PDGFRβ) are hallmarks in GBM with driving roles in tumor progression. In approximately ha...
Article
Full-text available
Transmembrane protein 132A (TMEM132A) was first isolated from rat brain using PCR-selected cDNA subtraction, and it was found to be predominantly expressed in the brain. However, the transcriptional regulation of the TMEM132A gene has not been fully characterized. In this study, we characterized the promoter activity of the 880-bp region upstream o...
Article
Full-text available
The acquisition of pluripotent cells can be achieved by combined overexpression of transcription factors Oct4, Klf4, Sox2 and c-Myc in somatic cells. This cellular reprogramming process overcomes various barriers to re-activate pluripotency genes and re-acquire the highly dynamic pluripotent chromatin status. Many genetic and epigenetic factors are...
Article
Full-text available
PATZ1, a POZ-Zinc finger protein, is emerging as an important regulator of development and cancer, but its cancer-related function as oncogene or tumor-suppressor is still debated. Here, we investigated its possible role in thyroid carcinogenesis. We demonstrated PATZ1 is down-regulated in thyroid carcinomas compared to normal thyroid tissues, with...
Article
Full-text available
We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the C...
Article
Full-text available
The HMGA1 and HMGA2 genes code for proteins belonging to the High Mobility Group A family. Several genes are negatively or positively regulated by both these proteins, but a number of genes are specifically regulated by only one of them. Indeed, knock-out of the Hmga1 and Hmga2 genes leads to different phenotypes: cardiac hypertrophy and type 2 dia...
Article
Full-text available
PATZ1 is a transcriptional factor functioning either as an activator or a repressor of gene transcription depending upon the cellular context. It appears to have a dual oncogenic/anti-oncogenic activity. Indeed, it is overexpressed in colon carcinomas, and its silencing inhibits colon cancer cell proliferation or increases sensitivity to apoptotic...
Chapter
Pituitary tumors are in most cases monoclonal adenomas arising from the adenohypophysial cells, and represent about 15% of intracranial tumors. They, while benign tumors, show a significant morbidity related to the endocrinological symptoms of hypo-or hyper-secretion of hormones and/or mass effect of the tumor on adjacent brain structures. Despite...
Article
PATZ1, a member of the POZ-ZF protein family of transcription factors is emerging as an important cancer-associated factor that can act either as oncogene or tumour-suppressor depending on the cellular context. Consistent with a tumour-suppressor role in thyroid cells, we have shown that PATZ1 is highly downregulated in anaplastic thyroid carcinoma...
Article
PATZ1 is an emerging cancer-related gene coding for a POZ/AT-hook/kruppel Zinc finger transcription factor, which is lost or misexpressed in human neoplasias. Here, we investigated its role in development exploring wild-type and Patz1-knockout mice during embryogenesis. We report that the Patz1 gene is ubiquitously expressed at early stages of deve...
Article
Full-text available
We previously showed that loss of the high mobility group A1 (HMGA1) protein expression, induced in mice by disrupting the Hmga1 gene, considerably decreased insulin receptor expression in the major target tissues of insulin action, causing a type 2-like diabetic phenotype, in which, however, glucose intolerance was paradoxically associated with in...
Article
Full-text available
The generation of knockout mice for the Cbx7 gene validates the tumor suppressor role of CBX7, whose expression is lost in several human malignancies. Indeed, these mice developed liver and lung adenomas and carcinomas. Cyclin E overexpression due to the lack of Cbx7 negative regulation of its expression likely accounts for the phenotype of the Cbx...
Article
Full-text available
MicroRNA (miRNA) are an important class of regulators of gene expression. Altered miRNA expression has been constantly found in human neoplasias and plays an important role in the process of carcinogenesis. The aim of this study was to identify specific miRNA whose expression is altered in GH-secreting pituitary adenomas. Using a miRNACHIP microarr...

Network

Cited By