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PREFACE 

We were inspired to compile this book based on a speech delivered by Professor 
Zdzislaw Pawlak, the creator of rough set theory, at the 1995 ACM Computer 
Science Conference (CSC '95). This book is based on some of the papers presented 
at this workshop; but in all cases, the papers have been reviewed, revised and 
expanded in to chapters. The chapters include newer research results and 
applications for the mining of databases. 

As stated in the workshop program, "Database Mining can be defined as the 
process of mining for implicit, previously unknown, and potentially useful 
information from very large databases by efficient knowledge discovery techniques. 
Consequently, this is proving to be one of the most promising research areas in the 
fields of artificial intelligence and database systems. There is considerable 
excitement surrounding these developments and numerous commercial initiatives 
are under way to make use of rough sets for extracting useful information from 
databases. This book demonstrates the research and applications that can help point 
the way for other researchers working in this growing field as well as help database 
designers and developers better utilize rough sets as a powerful mining tool. 

We will take this opportunity to thank our distinguished contributors for developing 
these chapters for this work. We feel that this book will become an essential 
handbook for rough set researchers and database designers and developers. 
Researchers new to this field will also find this book an invaluable reference 
because of the concise introductions and thorough explanations provided by the 
authors. 

T. Y. Lin and Nick Cercone 
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1 
ROUGH SETS 

Zdzislaw Pawlak 

Institute of Computer Science, 
Warsaw University of Technolgy, Warsaw 00-665, Poland, 

ul. Nowowiejska 15/19, zpw@ii.pw.edu.pl 

The concept of the rough set is a new mathematical approach to imprecision, 
vagueness and uncertainty in data analysis. 

The starting point of the rough set philosophy is the assumption that with 
every object of interest we associate some information (data, knowledge). E.g., 
if objects are patients suffering form a certain disease, symptoms of the disease 
form information about patients. Objects are similar or indiscrenible, if they are 
characterized by the same information. The indiscernibility relation generated 
thus is the mathematical basis of the rough set theory. 

Set of all similar objects is called elementary, and form basic granule (atom) of 
knowledge. Any union of some elementary sets is referred to as crisp (precise) 
set - otherwise a set is rough (imprecise, vague). 

As a consequence of the above definition each rough set have boundary-line 
elements, i.e., elements which cannot be with certainty classified as members 
of the set or its complement. (Obviously crisp sets have no boundary-line 
elements at all). In other words boundary-line cases cannot be properly classi
fied employing the available knowledge. Thuse rough sets can be viewed as a 
mathematical model of vague concepts. 

In the rough set approach any vaque concept is characterized by pair of precise 
concepts - called the lower and the upper approximation of the vague concept. 
The lower approximation consists of all objects which surely belong to the 
concept and the upper approximation contain all objects which possible belong 
to the concept. Approximations constitute two basic operations in the rough 
set approach. 
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The above presented ideas can be illustrated by the following example. Suppose 
we are given data table - called also attribute-value table or information system 
- containing data about 6 patients, as shown below. 

Patient Headache Muscle-pain Temperature Flu 
pI no yes high yes 
p2 yes no high yes 
p3 yes yes very high yes 
p4 no yes normal no 
p5 yes no high no 
p6 no yes very high yes 

Columns of the table are labelled by attributes (symptoms) and rows by ob
jects (patients), whereas entries of the table are attribute values. Thus each 
row of the table can be seen as information about specific patient. For example 
patient p2 is characterized in the table by the following attribute-value set 

{(Headache, yes), (Muscle-pain, no), (Temperature, high), (Flu, yes)}, 

which form information about the patient. 

In the table patients p2, p3 and p5 are indiscernible wiht respect to the at
tribute Headache, patients p3 and p6 are indiscernible with respect to attributes 
Muscle-pain and Flu, and patients p2 and p5 are indiscernible with respect to 
attributes Headache, Muscle-pain and Temperature. Hance, for example, the 
attribute Headache generates two elementary sets {p2, p3, p5} and {pI, p4, p6}, 
whereas the attributes Headache and Muscle-pain form the following elemen
tary sets, {pI, p4, p6}, {p2, p5} and {p3}. Similary one can define elementary 
set generated by any subset of attributes. 

Because patient p2 has flu, whereas patient p5 does not, and they are indis
cernible with respect to the attributes Headache, Muscle-pain and Tempera
ture, thus flu cannot be characterized in terms of attributes Headache, Muscle
pain and Temperature. Hance p2 and p5 are the boundary-line cases, which 
connot be properly classified in view of the available knowledge. The remaining 
patients pI, p3 and p6 display symptoms which enable us to classify them with 
certainty as having flu, patients pI and p5 cannot be excluded as having flu 
and patient p4 for sure has not flu, in view fo the displayed symptoms. Thus 
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the lower approximation for the set of patients having fiu is the set {pI, p3, 
p6} and the upper approximation of this set is the set {{pI, p2, p3, p5, p6}. 
Similary p4 has not fiu and p2, p5 can not be excludes as having fiu, thus 
the lower approximation of this concept is the set {p4} whereas - the upper 
approximation is the set {p2, p4, p5}. 

We may also ask whether all attributes in this table are necessary to define fiu. 
One can easily see, for example that, if a patient has very high temperature, he 
has for sure fiu, but if he has normal tempetrature he has not fiu whatsoever. 

In general basic problems which can be solved using the rough set approach 
are the following: 

1) description of set of objects in terms of attribute values 

2) dependencies (full or partial) between attributes 

3) reduction of attributes 

4) significance of attributes 

5) decision rules generation 

and others. 

The rough set methodology has been applied in many real-life applications 
and it seems to be important to machne learning, decision analysis, knowledge 
discovery, expert systems, decision support systems, pattern recognition and 
others. 

Some current research on rough controllers has pinted out a new very promising 
area of applications of the rough set theory. 
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The rough set concept coincided with many other mathematical models of 
vagueness and uncertainty - in particular fuzzy sets and evidence theory - but 
it can be viewed in its own rights. 
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DATA MINING: TRENDS IN 

RESEARCH AND DEVELOPMENT 
Jitender S. Deogun, Vijay V. Raghavan*, 

Amartya Sarkar*, and Hayri Sever** 

ABSTRACT 

The Department of Computer Science and Engineering, 
University of Nebraska-Lincoln 

Lincoln, NE 68588, USA 

* The Center for Advanced Computer Studies 
University of Southwestern Louisiana 

Lafayette, LA 70504, USA 

** The Department of Computer Science 
Hacettepe University, 

Beytepe, Ankara 06532, TR 

Data mining is an interdisciplinary research area spanning several disciplines such 
as database systems, machine learning, intelligent information systems, statistics, 
and expert systems. Data mining has evolved into an important and active area 
of research because of theoretical challenges and practical applications associated 
with the problem of discovering (or extracting) interesting and previously unknown 
knowledge from very large real-world databases. Many aspects of data mining have 
been investigated in several related fields. But the problem is unique enough that 
there is a great need to extend these studies to include the nature of the contents 
of the real-world databases. In this chapter, we discuss the theory and foundational 
issues in data mining, describe data mining methods and algorithms, and review 
data mining applications. Since a major focus of this book is on rough sets and its 
applications to database mining, one full section is devoted to summarizing the state 
of rough sets as related to data mining of real-world databases. More importantly, 
we provide evidence showing that the theory of rough sets constitutes a sound basis 
for data mining applications. 
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1 INTRODUCTION 

It is estimated that the amount of information in the world doubles every 
20 months [1]; that is, many scientific, government and corporate information 
systems are being overwhelmed by a flood of data that are generated and stored 
routinely, which grow into large databases amounting to giga (and even tera) 
bytes of data [2]. These databases contain potential gold mine of valuable 
information, but it is beyond human ability to analyze such massive amounts 
of data and elicit meaningful patterns. Given certain data analysis goal, it 
has been a common practice to either design a database application on on-line 
data or use a statistical (or an analytical) package on off-line data along with a 
domain expert to interpret the results. Even if one does not count the problems 
related with the use of standard statistical packages (such as its limited power 
for knowledge discovery, the needs for trained statisticians and domain experts 
to apply statistical methods and to refine/interpret results, etc.), one is required 
to state the goal (i.e., what kind of information one wishes to extract from 
data) and gather relevant data to arrive at that goal. Consequently, there 
is still strong possibility that some significant and meaningful patterns in the 
database, waiting to be discovered, are missed. 

As often argued in the literature it is desirable to pursue a more general goal, 
which is to extract implicit, previously unknown, hidden, and potentially use
ful information from raw data in an automatic fashion, rather than developing 
individual applications for each user need. Unfortunately, the database tech
nology of today offers little functionality to explore data in such a fashion. At 
the same time KD techniques for intelligent data analysis are not yet mature 
for large data sets [3]. Furthermore, the fact that data has been organized and 
collected around the needs of organizational activities may pose a real diffi
culty in locating relevant data for knowledge discovery techniques from diverse 
sources. The data mininyl problem is defined to emphasize the challenges of 
searching for knowledge in large databases and to motivate researchers and 
application developers for meeting that challenge. It comes from the idea that 
large databases can be viewed as data mines containing valuable information 
that can be discovered by efficient knowledge discovery techniques. 

This chapter is organized as follows. In the Section 2, we discuss the fact that 
data mining is an interdisciplinary research area. In Section 3, current research 
on theoretical issues in data mining including data and knowledge represen
tation, probabilistic modeling and uncertainty management, and metrics for 

1 In the literature, data mining problem is also known as database mining or the knowledge 
discovery in databases (KDD). Some researchers view KDD as a broader discipline, with data 
mining as one component dealing with knowledge discovery methods [4]. 
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evaluation of data mining results is summarized. In Section 4, we classify data 
mining queries into four categories: data dependency, classification, clustering 
and characterization. A variety of data mining methods available to handle 
each of these query classes are presented. In Section 5, the focus is on the state 
of rough set methodology in the context of data mining and discuss research 
directions in rough set theory to make the rough set model suitable for data 
mining applications. In Section 6, we review data mining systems and tools. 
In Section 7, recommendations for future research directions in rough set based 
approaches to data mining are presented. 

2 A PERSPECTIVE ON DATA MINING 
AND RELATED RESEARCH AREAS 

Data mining is a promising interdisciplinary area of research shared by sev
eral fields such as database systems, machine learning, intelligent information 
systems, statistics, data warehousing and knowledge acquisition in expert sys
tems [4]. It may be noted that data mining is a distinct descipline and its 
objectives are different from the goals and emphases of the individual fields. 
Data mining may, however, heavily use theories and developments of these 
fields [5, 3, 6, 7, 8]. In the following we present basic differences (and/or simi
larities) between data mining and various allied research areas. 

In developing database systems to manage uncertain (or imprecise) information 
as well as certain (or precise) information, several extensions to relational model 
have been suggested [9, 10, 11]. The direction of such extensions include data 
representation as well as basic relational operations. In Lee's approach [9], the 
uncertainty associated with an attribute (treated as random variable) is rep
resented using a probability distribution on the power set (basic probability 
assignment) of its domain instead of an atomic value, while a set of values is 
allowed for the representation of imprecise data. For each tuple in a relation, a 
system attribute consisting of a pair of belief and plausibility values is attached 
to show confidence level in that tuple. With this representation, the tradi
tional null value is handled naturally by subdividing it into three cases such 
as unknown, inapplicable, and unknown or inapplicable. Lee has extended the 
Dempster-Shafer theory to handle the comparison of two independent basic 
probability assignments so that condition criteria involving independence of 
relational operations can be covered. Since the concern is to capture only the 
uncertainty in the data, Barbara et al. have associated discrete probabilistic 
functions with the values of attributes [11]. An attribute in a relation may be 
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deterministic or probabilistic in nature, while keys must be deterministic, which 
is a restriction imposed by the authors leading to simple relational operators. 
Probability values associated with the range of an attribute in a tuple should 
add to one and are either entered into the database system as confidence or 
belief values or computed from underlying sample. Barbara et al. have incor
porated missing probability, denoted by a wildcard symbol, so that the unin
teresting range of values are eliminated and it facilitates the insertion of data 
into a relation without knowing all information about probabilistic measures 
of an attribute's domain. In this model, called probabilistic relational algebra, 
basic probability theory, under the assumption of conditional independence, is 
used to extend relational operations with the drawback that missing probabil
ities involved in a join operation causes "information loss" Studies in either 
approximate queries or in uncertainty modeling may not be directly linked to 
the problem of data mining, but certainly provide a sound basis for the knowl
edge discovery process. For example, identifying probabilistic relationships in 
data can be useful in discovering functional or production-rule relationships in 
the data. 

The last few years have seen an increasing use of techniques in data mining 
that draw upon or are based on statistics; namely, in feature selection [12], 
data dependency involving two variables for constructing data dependency net
works [13, 14], classification of objects based on descriptions [7], discretization 
of continuous values [13, 15], data summarization [14], predicting missing val
ues [16], etc. The motivation behind this trend can be explained by the fact that 
statistical techniques for data analysis are well developed and in some cases, 
we do not have any other means to apply. In many data analysis problems sta
tistical methods are, however, not suitable either because of strong statistical 
assumptions, such as adherence to a particular probability distribution model, 
or due to fundamental limitations of the statistical approach. The primary 
limitation is the inability to recognize and generalize relationships, such as the 
set inclusion, that capture structural aspects of a data set, as a result of being 
entirely confined to arithmetic manipulations of probability measures [17, 18]. 
The chi-square test is used, for example, by some decision-tree based systems 
during tree pruning to determine whether a node should be branched [19]. It 
is also used to select a good set of features with which to perform the learning 
process [20]. Despite its popularity, it should be noted that the chi-square test 
only tells us whether an attribute, as a whole, is helpful in determining the 
class membership of an object. It does not, however, provide us with much 
information about whether an object characterized by certain values should be 
assigned to a particular class. 
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In the earlier work on machine learning, a number of theoretical and founda
tional issues of interest to data mining (e.g., learning from examples, formation 
of concepts from instances, discovering regular patterns, noisy and incomplete 
data, and uncertainty management, etc.) have been investigated. Data mining 
problem simply combines all aspects of knowledge discovery in the context of 
ultra large data. More specifically, data mining is the process of deriving rules, 
where a database takes on the role of training data set. In other words, a data 
mining application distinguishes itself from a machine learning problem, in the 
sense that available techniques must be extended to be applicable to uncon
trolled, real world data. That is, one does not have the luxury of specifying 
the data requirements from the perspective of knowledge discovery goals before 
collecting the data. 

It may furthermore be worth pointing out that the connection of the data 
mining problem to a database is loosely defined because of the terminological 
gap between artificial intelligence (AI) and database communities on perceiving 
what a database is; that is, the researchers in database systems think of a 
database as a collection of interrelated data within a database management 
system, while the researchers in AI consider it as a simple file structure or an 
off-line data collection, e.g., a single relation in a relational database. Therefore, 
the nature of the problem depends on the context that one intends to target. 
If the knowledge model is integrated/related to a data base within a DBMS, 
then it should also address issues related to the management of data such as 
data security, viewing levels of data, transaction management, and the use of 
general database functions/facilities [1,3]. 

3 THEORETICAL AND FOUNDATIONAL 
ISSUES 

The data (or instance space) is represented by a relation, which is the pre
dominant structure adopted in either machine learning or database systems. 
Each tuple in a relation corresponds to an entity (also known as object, in
stance or background fact). Entities are made up of attributes (also called 
fields or features). The given data set is divided into a training and a test set. 
The training set is then used to generate some knowledge and the test set is 
used to determine validity of and/or to refine that knowledge. In this section, 
we emphasize theoretical and foundational issues related to the very nature of 
real-world data from the perspective of knowledge discovery in databases. 
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3.1 Ultra Large Data 

One of the important issues in data mining is related to the volume of data, 
because many knowledge discovery techniques, involving exhaustive search over 
instance space, are highly sensitive to the size of data in terms of time com
plexity and inducing compact patterns. For example, candidate elimination 
algorithm [21], a tuple oriented learning technique from examples, aims to 
search the version space, whose size is doubly-exponential in the number of at
tributes, of training examples to induce a generalized concept that is satisfied 
by all of the positive examples and none of the negative examples. Hence the 
data driven techniques either rely on heuristics to guide their search through 
the large space of possible relations between combinations of attribute values 
and classes or reduce their search space horizontally or vertically. 

Horizontal reduction is related to merging identical tuples following either the 
substitution of an attribute value by its higher level value in a pre-defined gener
alization hierarchy of categorical values of the attribute [22] or the quantization 
(or discretization) of continuous (or numeric) values [13, 15, 23]. Vertical re
duction is realized by either applying some feature selection methods or using 
attribute dependency graph [24]. We consider vertical reduction as a part of 
methods for handling redundant data, in Section 3.5. We elaborate on some 
notable studies on horizontal reduction in the following. 

The simplest discretization procedure is to divide the range of a continuous 
variable into equal-width intervals as many as a user-defined number of inter
vals. A variation of that method is the use of Shannon's entropy theory such 
that the entropy scheme determines the interval boundaries by making the to
tal gain of information from the observed occurrences in each interval equal. 
This procedure is called 'even information intervals quantization' method [25]. 
The obvious drawback of such a procedure is that there may be a large amount 
of information loss, because the cut points would not necessarily be on bound
aries of pre-defined classes. In other words, their criteria of discretization fail 
to take into consideration the relationship between pre-assigned classes and 
interval boundaries. Both Ching et al. [23] and Fayyad & Irani [15] suggest 
class dependent discretization algorithms. Note that the whole idea here is to 
reduce the number of attribute values without destroying the interdependence 
relationship between the class and attribute values. 

Class-dependent discretization of Ching et al. [23] consists of three main pro
cesses: interval initialization, interval improvement, and interval reduction. In 
the first process, after an initial default number of intervals are selected, a de-
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scription of intervals, called the boundary set consisting of ordered end points 
of intervals, are determined such that the sample is distributed over intervals 
as evenly as possible. The maximum entropy criterion is used to minimize the 
information loss. The boundary improvement process, which uses an interde
pendence criterion given by a normalized class-attribute mutual information, 
considers all possible local adjustments on the boundary set to ensure a good 
estimation of global optimal interdependence. The last process combines sta
tistically insignificant intervals. 

Fayyad & Irani in [15] formally prove that the information entropy minimization 
criterion ofID3, used for binary splitting of continuous valued attributes, always 
selects a value between two examples of different classes in the sequence of 
sorted examples with respect to increasing order of that attribute values, i.e., 
the selected value is actually a boundary point. Note that there is a side 
benefit of this result, from the point of view of efficiency, since the algorithm 
needs only to examine a small number of boundary points polynomially related 
to the number of classes rather than all distinct values of continuous variable. 
The binary splitting method is generalized using divide-and-conquer principle; 
that is, the algorithm is applied recursively to select the boundary values once 
the training set is sorted. A criterion is applied to decide when to refrain from 
applying further binary splitting to a given interval. Given a potential binary 
partition 7rT on a current training set S, let HT be a hypothesis induced by 7rT 

if it were accepted; and let NT be the null hypothesis. Then {HT, NT} are two 
states of a binary decision problem that decides whether or not to recognize the 
partition 7rT,. Such a problem can be expressed in terms of Bayesian decision 
strategy, involving, for example, probability-of-error criterion. The decision 
criterion has been estimated using the minimum description length principle 
(MDLP) [26]. 

3.2 Noisy Data 

Non-systematic errors, which can occur during data-entry or collection of data, 
are usually referred to as noise. Unfortunately there is little support by com
mercial DBMSs to eliminate/reduce errors that occur during data entry, though 
the potential exists for providing such capability in relational data models, to 
force consistency among attribute values with respect to predefined functional 
dependencies. Hence, erroneous data can be a significant problem in real-world 
databases. This implies that a knowledge discovery method should be less sen
sitive to noise in the data set. This problem has been extensively investigated 
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for variations of inductive decision trees, depending on where and how much 
the noise occurs [27]. 

If a training sample is corrupted with noise, the system should be able to 
identify and ignore it. Presence of noise in the class information of training set 
affects the accuracy of generated rules; hence an attempt should be made to 
eliminate noise that affects the class information of the objects in the training 
set. Quinlan [27] has performed experiments to investigate the effect of noise on 
classifying examples from the test set. The experimental results indicate that 
for some systems adding substantial noise to the data results in low level of 
misclassification of unseen examples (test set). It has also been observed that 
rules learned from corrupted training set perform better in classifying noisy 
test data than rules that are learned from noise free training set. Chan and 
Wong [7] have used statistical techniques to analyze the effect of noise. Their 
solution involves estimating the class conditional density in presence of noise, 
comparing it with the true class density and then determining a classifier whose 
level of confidence is set accordingly. 

3.3 Null Values 

In DBMSs, a null value (also known as missing value) may appear as the value 
of any attribute that is not a part of the primary key and is treated as a symbol 
distinct from any other symbol, including other occurrences of null values. The 
null value does not only mean an unknown value, but also can mean inapplicable. 
In relational databases this problem occurs frequently because the relational 
model dictates that all tuples in a relation must have the same number of 
attributes, even if values of some attributes are inapplicable for some tuples. 
For example, in the list of personal computers, the attribute that contains the 
model type of the sound cards would be null for some model of computers. 

Lee provides an approach to extend relational database model for uncertain 
and imprecise information [9], where the traditional null value is handled by 
subdividing it into three cases such as unknown, inapplicable, and unknown 
or inapplicable. Other than this work, which does not offer any solution for 
existing data, we have not come across any work that deals with null values, 
though there are some recent studies on unknown values [28, 29, 30]. When the 
database contains missing attribute values, either the values can be discarded 
or an attempt can be made to replace them with the most likely values [19]. 
These are the ideas adopted by Quinlan [19] for inductive decision trees. In [31] 
it is suggested to construct rules that predict the value of the missing attribute, 
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based on the value of other attributes in the example, and the class information. 
These rules can then be used to "fill in" the missing attribute values and the 
resulting data set could be used to construct the descriptions. 

Grzymala-Busse [29], citing the drawbacks of the approaches given above, has 
transformed a given decision table with unknown values to a new and possibly 
inconsistent decision table, in which every attribute value is known, by replac
ing the unknown value of an attribute with all possible values of that attribute. 
In other words, he reduced the missing value problem to that of learning from 
inconsistent examples. He, then, used rough set theory to induce certain and 
possible rules. Using similar line of interpretation of missing values, Barbara et 
al. in [11] have interpreted missing values as uninteresting values of an attribute 
with which they have associated missing probability measures. Probabilistic re
lational operations would yield certain or possible probabilities (lower or upper 
bounds on the probability of a random variable) depending on whether missing 
probabilities are facilitated, or not. In [30], the problem of missing value is 
solved using the EM algorithm. The EM algorithm assumes that the missing 
values are missing at random, but the importance of this method lies in its un
derlying message- even when the data is complete, it is often useful to treat 
the data as a missing value problem for computational purposes [16]. 

3.4 Incomplete Data 

Suppose each object in the universe of discourse is described or characterized 
by the values of a set of attributes. If the description of the individual objects 
are sufficient and precise enough with respect to a given concept, one can 
unambiguously describe the class, a subset of objects, representing the concept. 

However, the available knowledge in many practical situations is often incom
plete and imprecise. The fact that data has been organized and collected around 
the needs of organizational activities causes incomplete data from the view point 
of the knowledge discovery task. Under such circumstances, the knowledge dis
covery model should have the capability of providing approximate decisions 
with some confidence level. 

Many methods were proposed to deal with the approximation of a concept. 
For example, the well-known fuzzy set theory characterizes a concept approx
imately by a membership function with a range between 0 and 1. Another 
approach is based on the rough set theory which provides the lower and up
per approximations of a concept depending on how relationship between two 
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different partitions of a finite universe of discourse is defined. If this relation
ship is probabilistic in nature, Wong and Ziarko [32] demonstrated that the 
generalized notion of rough sets can indeed be conveniently described by the 
concept of fuzzy sets when proper fuzzy set operations are employed. In a 
related study [33], Wong and Yao introduced a Bayesian decision theoretic 
framework which provides a plausible unification of the fuzzy set and rough set 
approaches for approximating a concept. Particularly they show that if a given 
concept is approximated by positive and negative regions of that concept, the 
same result given by the a-cut in the fuzzy set theory is obtained. We explain 
how the rough set approach reasons about incomplete data in Section 5, which 
is devoted to the state of rough sets in the context of data mining. In the rest 
of this subsection, we review work on inductive decision trees aimed at making 
them suitable for incomplete data. 

ID3-like algorithms [19, 34, 35], during the process of inducing decision trees 
as well as of refining induced decision trees, implicitly assume that enough in
formation is available in the data to decide exactly how each object should be 
classified. In other words, there is a single correct label for any given combi
nation of attribute values, describing objects, in the training set. Hence, for 
some time, inconclusive objects in a training set, i.e., objects having the same 
description and yet different class labels, have been interpreted as noise either 
in their descriptions or in their labels. Uthurusamy et al. in [36] have argued 
that this assumption is not valid in the first place on the ground that incon
clusive data sets are different from noisy data set, especially when descriptions 
of objects are incomplete to arrive at certain conclusions. The INFERRULE 
algorithm of Uthurusamy et al. improves ID3-like methods essentially around 
this issue. 

In particular, they have proposed a controlled feature selection measure , say 
R, to generate inductive decision trees such that INFERRULE stops specializ
ing (or partitioning a node) further whenever R exceeds a threshold value and 
returns a probabilistic guess of possible classes. INFERRULE selects the best 
attribute-value pair, rather than the best attribute, in order to avoid unnec
essary divisions of the data set that becomes problematic when an attribute 
has many values and only a few of them are relevant to the class labels. For a 
given value ai of an attribute A, let us define two vectors made up of estimated 
and actual joint distribution of ai and class labels over the data set, respec
tively. The attribute-value pair selection measure R is based on minimizing 
the proportion of standard error in estimating joint distribution over the geo
metric distance between these two vectors. The selection measure R indicates 
that the class distribution in its selected subset differs significantly from the 
class distribution in the original training set. Once the best attribute-value is 
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selected, the training set is split into two groups: one with A = ai and another 
with Ai- ai' 

3.5 Redundant Data 

As opposed to incomplete data, the given data set may contain redundant or 
insignificant attributes with respect to the problem at the hand. This case 
might arise in several situations. For example, combining relational tables 
to gather relevant data set may result in redundant attributes that the user 
is not aware of, since un-normalized relational tables may involve redundant 
features in their contents. Fortunately, there exist many near-optimal solutions, 
or optimal solutions in special cases, with reasonable time complexity that 
eliminate insignificant (or redundant) attributes from a given attribute set by 
using weights for either individual attributes or combination of some attributes. 
These type of algorithms are known as feature selection (or reduction). 

Feature selection, a pre-pruning process in inductive learning, is the problem of 
choosing a small subset of features that is necessary and sufficient to describe 
target concept(s). The importance of feature selection in a broader sense is 
not only to reduce the search space, but also to speed up the processes of 
both concept learning and classifying objects and to improve the quality of 
classification [37, 38, 39, 40]. It is well known that searching for the smallest 
subset of features in the feature space takes time that is bounded by 0(2l J), 
where: I is the number of features, and J is the computational effort required 
to evaluate each subset. This type of exhaustive search would be appropriate 
only if I is small and J is computationally inexpensive. Greedy approaches like 
stepwise backward/forward techniques [20, 35], dynamic programming [41], 
and branch and bound algorithm [42] are non-exhaustive and efficient search 
techniques, which can be applied with some feature selection criterion. For 
near-optimal solutions or optimal solutions in special cases, weights of either 
individual features or combinations of features are computed with respect to 
some feature selection criteria (or measures) such as Bhattacharya coefficient, 
divergence, Kolmogorov variational distance, etc., in statistics [43, 44]; Shan
non's entropy criterion, classification accuracy, or classification quality based 
on dice coefficient in pattern recognition and machine learning [37, 45, 46]. 

Projection Pursuit technique can also be used on the data to find "interesting 
low dimensional projections of a high dimensional point cloud by numerically 
maximizing a certain objective function or projection index" [47]. These "inter
esting" projections could then be further analyzed to check for some unspec-
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ified, unanticipated structures in the data. The projection pursuit methods 
are unaffected by the curse of dimensionality; however, they are poorly suited 
to deal with non-linear structures. Many of the classical multivariate analysis 
techniques, viz., principal components, factor analysis, discriminant analysis 
are special cases of projection pursuit method. As a final note, it may be worth 
pointing out that one could also use random sampling methods [14], along with 
the horizontal pruning methods [22]. 

3.6 Dynamic Data 

A fundamental characteristic of databases that are online is that they are dy
namic; that is, their contents are ever changing. This situation has several 
important implications for the Knowledge Discovery (KD) method. First, if 
a knowledge discovery model is implemented as a database application then 
the run time efficiency of a knowledge discovery method within the KD model 
and its use of retrieval functions of the DBMS become important factors for 
the performance evaluation of the KD method, because the KD methods are 
strictly read-only, long-running transactions. Second, if we regard the knowl
edge obtained from dynamic data to be persistent, then the knowledge discovery 
method should have the capability of evolving derived knowledge incrementally 
as the data changes over time. Active database systems have already provided 
trigger facilities (or if-then action rules) that can be used for implementing 
incremental knowledge discovery methods. 

4 DATA MINING METHODS 

Knowledge is usually represented in the form of rules- rules indicating the de
gree of association between two variables, rules mapping data into predefined 
classes, rules that identify a finite set of categories or clusters to describe the 
data, etc. These rules support specific tasks and are generated by repeated 
application of a certain technique, or more generally an algorithm, on the data. 
The quality of these rules and hence the knowledge discovered is heavily de
pendent on the algorithms used to analyze the data. Thus, central to the 
problem of knowledge extraction are the techniques/methods used to generate 
such rules. 

The core of an algorithm constitutes the model upon which the algorithm is 
built on. The issue of knowledge representation has been studied in the context 
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of various models, mainly relational, propositional or restricted first-order logic 
models. Choosing the appropriate model, realizing the assumptions inherent in 
the model and using a proper representational form are some of the factors that 
influence a successful knowledge discovery. For example, an overly powerful 
representation of the model might increase the danger of overfitting the training 
data resulting in reduced prediction accuracy on unseen data. In addition the 
search becomes highly complex and the interpretation of the model becomes 
difficult. 

Model evaluation is concerned with estimating how well a particular model and 
its parameters meet the criteria of the KDD process. This step may also include 
the assessment of the relative degree of interest of the extracted patterns and 
decide which to present and which order. Many measures associated with rules 
(or knowledge units) have been proposed for model evaluation. Confidence fac
tor (also known as accuracy of a rule) is a quantitative measure reflecting the 
strength of an induced rule. It is defined as the fraction of objects in a training 
set that satisfies both the antecedent and consequent parts of the rule. Classi
fication accuracy (or classification error) is the fraction of objects/instances in 
test data that are incorrectly classified. The specific factors that influence the 
impact and interestingness of a pattern and hence the criteria of model evalu
ation will vary for different databases and tasks. In this section we present an 
overview of the popular methods used to discover patterns (or knowledge) in 
ultra large data sets in the light of model representation and evaluation. 

Data Dependency Query: Data dependencies ( also known as functional 
dependencies) in DBMSs are defined during the design of conceptual schema, 
whereas in machine learning they are induced from given data. Depending 
on how data dependencies are perceived, their use in these two disciplines is 
different. For example, data dependencies in DBMSs ARe used for normal
izing relations and indexing relations, whereas in machine learning they are 
used as a preprocessing step of a knowledge discovery technique to reduce the 
number of attributes in a given data set, to quantize continuous values of an 
attribute, for testing a hypothesis (i.e., finding associations among values of 
certain attributes), or for constructing a data dependency graph. 

In KDW [14], Shapiro & Matheus have utilized the idea of probabilistic depen
dency between two discrete attributes. This information provides the weight 
and direction of the arc between nodes characterized by the two attributes. An 
acyclic dependency network has been built based on statistical significance of 
probabilistic dependencies between pairs of discrete attributes. Concept hierar
chies (or more generally dependency networks) are based on a partial ordering 
of propositions (or predicates), which are usually expressed as unary formulas. 
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Such structures may be a part of the background knowledge. Han et al. [22], 
for example, utilize generalization hierarchies of attributes' values in their in
ductive learning method to characterize a concept or discriminate it from other 
concepts. In another approach, Zhong & Ohsuga [13] have focused on the con
ditional distributions of two discrete attributes to form a basis for hierarchical 
model learning. They have transformed the instance space of two discrete at
tributes to a probability space, represented by a probability distribution matrix. 
After diagonalizing this probability distribution matrix, by selecting either a 
special attribute or a row, concept clusters have been formed. In the process 
of decomposing the database (i.e., while forming concept clusters) noisy data 
is filtered out. 

It is sometimes useful to determine associations among values of an attribute. 
For example, planning department at a supermarket may like to know if the 
customer who purchase 'bread' and 'butter' also tends to purchase 'milk', where 
'butter', 'bread', and 'milk' are usually part of the same multi-valued attribute 
of a sales transaction. This type of query along with interval classification has 
been suggested by Agrawal et al. in [48]. They represent knowledge as a set 
of rules, denoted by r : F(o) => G(o), where: F is a conjunction of unary 
formulas, G is a unary formula. Each rule r is associated with a confidence 
factor c, 0 :S c :S 1, which shows the strength of the rule r. The knowledge 
units considered in [48] are equivalent to the notion of ID3 trees, except that 
continuous values are partitioned into intervals in contrast to ID3 that uses 
binary splitting for this purpose. It is, however, worth pointing out that, given 
the set of objects 0, the rules are generated in a way that they satisfy certain 
additional constraints of two different forms: syntactic and support constraints. 
Syntactic constraints involve restrictions on predicates and methods that can 
appear in the rule. For example, a user may be interested in all associations 
that have 'milk' in the consequent and 'bread' in the antecedent. Support 
constraints concern statistical significance of a rule, which is the fraction of 
objects in ° that satisfy the conjunction of the consequent and antecedent of 
the rule. Finally, note that we use the dependencies among attributes in their 
narrow sense; however many data mining queries can, in broader sense, be 
viewed as an application or variation of data dependency analysis. 

Classification Query: This kind of query involves inducing a classification 
function (also known as inducing a classifier, supervised learning, concept learn
ing or discriminating description of classes) that partitions a given set of tuples 
into meaningful disjoint subclasses with respect to user defined labels or the 
values of some decision attributes. When a relation is used as a knowledge 
structure the set of attributes are partitioned into two groups. The first group 
is called the set of condition attributes or the feature set, depending on the 
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application domain. The second group is called the set of decision attributes. 
A block in the partition induced by the decision attribute(s) is called a con
cept (or a class). Typically, the IF part is specified by values of condition 
attributes, while the THEN part identifies a concept. Difference between two 
classes may be described by discriminating descriptions such as decision trees 
and decision lists. Many empirical learning algorithms, such as decision tree 
inducers, neural networks and genetic algorithms are designed to produce dis
criminating descriptions. This subject has extensively been investigated in the 
literature [49, 50, 51, 52, 53] and is the primary task in inductive learning. 

Note that this type of inductive learning can potentially help in predicting the 
future. In order to predict the future, known results from the past should 
be used as much as possible. In experimental environments, the validation of 
a decision algorithm is accomplished by splitting the available set of labeled 
samples into training and test sets. The training set is then used to generate 
a decision algorithm and the test set is used to determine the validity of that 
decision model. Classification accuracy (or classification error) is then measured 
as the fraction of objects/instances in test data that are incorrectly classified. 
There have been indications that the accuracy of a rule (as measured on training 
set) may not be a good indicator of its accuracy in general [54]. This is especially 
true on noisy data; DNF concept learners typically learn a few reliable disjuncts 
and many unreliable disjuncts each of which covers a small number of positive 
training examples [55]. If the evaluation criterion to derive the decision model 
is monotonic, then the training error can be controlled [37, 42]. In the process 
of estimating validation error, the concept of bootstrapping over test set may 
be used [12, 56]. Note that dividing the samples into training and test sets is 
an important problem and must be solved in a way that the distributions of 
the two sets are close to each other. The ratio of the sizes of the training set to 
the test set is then determined from the bias and the variance of the estimated 
error [57]. 

For classification with mixed mode data [23], the mutual information, between 
a class and an attribute, can be combined to determine the membership of an 
unknown object under the assumption that the given attributes are indepen
dent. 

Clustering Query: We call unsupervised partitioning of tuples of a relational 
table a clustering query (also known as unsupervised learning in the context of 
inductive learning). There are numerous clustering algorithms ranging from the 
traditional methods of pattern recognition to clustering techniques in machine 
learning [43, 58]. User-defined parameters such as the number of clusters or 
the maximum number of tuples within a cluster can influence the result of 
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a clustering query. Clustering queries may be helpful for the following two 
reasons. First, the user may not know the nature or structure of the data. 
Second, even if the user have some domain knowledge, labeling a large set 
of tuples can be surprisingly costly and time consuming. Instead, a classifier 
may be designed on a small, labeled set of samples, and then tuned up by 
allowing it to run without supervision on a large and unlabeled set of tuples. 
Unfortunately such technique does not work well when the patterns are time 
varying. Alternatively, interactive cluster techniques may be applied, which 
combine the computer's computational power with a human's knowledge. In 
Shapiro & Matheus's paper on knowledge discovery workbench [14], a tool for 
line clustering of points involving numerical values of two attributes is discussed, 
as a part of data visualization. That is an example of the kind of interaction 
that can take place between a human expert and a data mining tool. 

The problem of determining the exact number of clusters can be analyzed 
using some measure of the goodness of fit which expresses how well a given 
set of clusters matches the data. The curse of dimensionality usually forces 
the analyst to choose a simple quadratic optimizing function instead of using 
the chi-square or Kolmogorov-Smirnov statistic as the traditional measurement 
criterion. A test of hypothesis is then performed to determine whether to accept 
or reject the initial guess (null hypothesis). 

Characterization Query: A classification query emphasizes the finding of 
features that distinguish different classes. On the other hand, the characteri
zation query describes common features of a class regardless of the character
istics of other classes. The former kind of description is called discriminating 
while the latter is called characterizing. A typical example of characterization 
method can be found in [22]. Han et aI., in their attribute based learning 
framework called DBLEARN [22], utilize concept hierarchies, which constitute 
background knowledge, during the generalization process. A relation that rep
resents intermediate (or final) learning results is called an intermediate (or a 
final) generalized relation. A special attribute, vote, has been added to each 
generalized relation to keep track of the number of tuples in the original relation 
that got generalized to the current tuple in the generalized relation. The extent 
of the generalization is determined by a human user using a threshold value, 
which actually controls the number of tuples in a final generalized relation. A 
quantitative measure, e.g., percentage of votes, is associated with a final gener
alized rule, which is the disjunctive normal form of a final generalized relation, 
and is used to visualize the result of learning process. 
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5 ROUGH SETS AND DATA MINING 

Even though it has been more than a decade since the introduction of the 
rough set theory, there is still a continueing need for further development of 
rough functions and for extending rough set model to new applications. We 
believe that the investigation of the rough set methodology for data mining in 
relational DBMSs is a challenging research area with promise of high payoffs 
in many business and scientific domains. Additionally, such investigations will 
lead to the integration of the rough set methodology with other knowledge 
discovery methodologies, under the umbrella of data mining applications. In 
this section, we assess the current status of and trends in the data mining 
problem from the point of the rough set theory. 

5.1 An Introduction to Rough Set Theory 

Let the pair A = (U, R) be an approximation space, where U is a finite set, a 
subset of the universe of discourse, and R is a set of equivalence classes on U. 
A member of R is called an elementary (or atomic) set. A definable set in A 
is obtained by applying a finite number of union operations on R. Let R* be a 
family of subsets of R. Then, R* generates a topological space T A = (U, R*). 
We call each member of U an object. A concept of interest, X, is a subset of U. 
The least definable set in A containing X, ClA(X), is called closure set (also 
known as upper set) of X in A. Similarly, the greatest definable set in A that 
is contained in X, IntA(X), is called interior set (also known as lower set) of 
X inA. 

A concept X is definable in A if for some Y E R* , X is equal to the union of all 
the sets in Y; otherwise X is said to be a rough set or non-definable. We would 
like to generate a decision algorithm, denoted by D A (X), in A such that, for 
a given x E U, it yields one of these three answers: a) x is in X, b) x is not 
in X, c) unknown. In the following, we define corresponding sets of X in A 
for each answer. Let POSA (X) be a set of objects each of which is considered 
as a member of the concept X by DA(X), Let BNDA(X) be a set of objects 
for which DA(X) gives the answer unknown. Finally, let NEGA(X) be a set 
of objects that are not regarded as members of X by DA(X). It is easy to 
see that NEGA(X) = U - (POSA(X) U BNDA(X» by definition. In other 
words, the decision algorithm utilizes following rules to answer if x EX: 

i. x E POSA(X) ===} x E X, 
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ii. x E BNDA(X) =} unknown, and 

iii. x E NEGA(X) =} x is not in X. 

Note that if x is not in one of regions, then a decision may be taken on using 
closeness heuristic [59], provided that each region and object have some type 
of descriptions. For the sake of simplicity, the decision algorithm D A (X) is 
assumed to be a set of decision rules, where each rule gives positive answer. 

There are two approximation methods defined in algebraic approximation spaces: 

a. Lower Approximation: POS~(X) = A(X) = IntA(X), and 

b. Upper Approximation: POSA(X) = A(X) = C1A(X). 

In both methods, the boundary region of the concept X is equal to ClA (X) -
POSA(X). The degree of imprecision is expressed by the accuracy measure 

The classification Problem 

Let F = {X1 ,X2 , •.. ,Xk }, where Xi ~ U, be a partition of U. Interior and 
closure sets of F in A is defined as the family 

and 

respectively. 

A classification problem is described as generating a decision algorithm, D A(R, F), 
that relates definable sets to concepts. If D A (R, F) is a relation then it is called 
an inconsistent decision algorithm; otherwise, it is said to be a consistent deci
sion algorithm. Since POSA(R,F) = UXEF POSA(R,X), the extension of an 
approximation method to its counterpart in classification problem is straight
forward. Similarly, the classification accuracy f3A(F) is equal to 

L~-l !IntA(Xi )! 

L~=l !ClA(Xi )! . 
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In the classification problem, it is usual to define a second measure, quality of 
the classification F in A as shown in the below: 

(F) = L~-1 IIntA(Xi ) I 
1JA lUI' 

If'T/A(F) = f3A(F) the classification is said to be definable (or perfect); otherwise 
it is called roughly definable classification. 

The Notion of Decision Tables 

Information system (also known attribute system) can be viewed as an applica
tion of rough set theory such that each object is described by a set of attributes. 
It is defined as a quadruple S = (U, Q, V, p) where: U is the finite set of objects; 
Q is the set of attributes; denoted and p : U x Q =} V is a total description 
function. For all x E U and a E Q, p(x, a) = px(a). The set of attributes 
in S is considered as the 'union of' condition and decision attributes when 
classification of objects is emphasized. The condition and decision attributes 
are denoted by CON, and DEC respectively. In this context, the information 
system is called a decision table. For given P ~ Q, let UjP denote the set of 
natural equivalence classes on U by the values of P. 

A decision algorithm, induced from S, relates the elements of UjCON to that 
of UjDEC. Note that every approximation problem in an algebraic space can 
be converted to the one in a decision table. 

5.2 Data Mining Issues in Rough Sets 

In rough set theory, accuracy measure is used for approximation of a concept, 
and both accuracy and quality measures are used for a classification problem. 
Deogun at al. in [60] have proposed a unification of these two measures, which 
is the normalized size of intersection between approximated concept, X, and its 
positive region in an approximation space A, POSA(X), as formalized below. 

where S1 and S2 are scaling factors and their sum must be equal to one. These 
scaling factors quantify the user's preference as to amount of increment in accu-
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racy of D A(X) desired relative to a certain loss in accuracy of X (or vice versa). 
Note that when Sl = S2 = 0.5, the measure /-tA(X) becomes equal to Dice's co
efficient in information retrieval systems. Note that the unified quality measure 
takes into account not only positive coverage, but also negative training exam
ples that the condition part of a decision rule may cover. It is, however, worth 
pointing out that these measures are used to quantify accuracy (or quality) of 
an induced rough classifier and none of them are used during induction part 
of a process, except that, as explained later in this section, elementary clas
sifiers and rough classification methods in probabilistic approximation spaces 
utilize accuracy measure to select a conjunct (or an elementary set). According 
to a reported study [55], DNF concept learning algorithms may induce many 
unreliable disjuncts each of which covers a small number of positive training 
examples. Since rough classifiers can be viewed as a DNF concept learner, and 
the study to incorporate the unified quality measure into post-pruning process 
can be well justified. 

Ultra large data 

Knowledge discovery with an ultra large data set is a novel area for the rough 
set methodology. As stated earlier, one of the plausible approaches to tackle 
ultra large data is to reduce the data set horizontally, which is not unknown to 
the rough set community. For example, in KDD-R system, the data preprocess
ing unit discretizes the numerical attributes either by applying user-supplied 
discretization formula or by using an automatic discretization algorithm [61]. 
Alternatively, horizontal reduction of a very large data set table may use a 
generalization hierarchy of attributes to merge identical tuples, after the sub
stitution of an attribute value, by its higher level concept in the generalization 
hierarchy. This is one of the strategies used in the attribute oriented approach 
for inductive concept learning [22]. Since an attribute-oriented learning tech
nique operates on relations, its strategies can be easily adapted to rough clas
sifiers to reduce the size of some categorical attributes. 

Uncertainty in data 

In the algebraic space, rough set theory approximates given concept(s) using 
lower and upper sets of the concept(s). Given that the uncertainty in a data 
set is caused by noisy or incomplete data, this approach is not always desirable 
because it does not exercise oppurtunities to discover/generalize a valuable pat
tern that is perturbed by noise. This problem has been the subject of numerous 
studies on developing rough approximation methods based on different defini-



29 

tions of positive (and boundary) regions [60, 62, 63, 64]. For example, in the 
elementary set approximation of an unknown concept [60], an elementary set 
is mapped to the positive region of an unknown concept if its degree of mem
bership is bigger than a user defined threshold value. Alternatively, another 
approach would be to shift the domain of the problem from algebraic space 
to the probabilistic space, if one can assign prior probabilistic measures to the 
definable sets. 

In rough set based classification, inconsistent rough classifiers (or decision algo
rithms) have not received as much attention as consistent rough classifiers. In 
the rough set literature, the terms 'inconsistent' and 'nondeterministic' decision 
algorithms (or rules) are used interchangeably, though they are different con
cepts. The 'inconsistency' is attributed to the result of a classification method 
while the 'nondeterminism' is attributed to the interpretation of that result. 
As shown in [60], inconsistent decision algorithms, under an appropriate rep
resentation structure, can be interpreted deterministically as well as non deter
ministically. This is an important result, particularly when the background 
knowledge is incomplete and dynamic. 

Redundant data 

Redundant data can be eliminated by pruning insignificant attributes with re
spect to a certain problem at hand. In the rough set terminology, the emphasis, 
however, is given to more restrictive version of the redundancy problem that is 
called reduction of an information system (also known as attribute-value sys
tem). It is the process of reducing an information system such that the set of 
attributes of the reduced information system is independent and no attribute 
can be eliminated further without losing some information from the system, the 
result of which is called reduct [62, 65]. Given the fact that exhaustive search 
over the attribute space is exponential in the number of attributes it might not 
always be computationally feasible to search for the minimum size reduct of 
attributes. Furthermore, finding just a single reduct of the attributes may be 
too restrictive for some data analysis problems, which is one of the arguments 
stated in Kohavi & Frasca's paper [66]. One plausible approach is to utilize the 
idea of (}-reduct as described below. 

Let S(P) denote a substructure of S such that S(P) = (U, Q' = P U 
DEC, UaEP Va,p'), where P ~ CON, p' is a restriction of p to set U x Q'. 
It is said that CON - P is (}-superfluous in S iff 

rpS(P) (UjDEC) = rps(UjDEC)(l - (}), 
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where 0 s {} S 1. Similarly, P is a {}-reduct of CON iff CON - P is a {}
superfluous in S and no pI C P is (}-superfluous in S(P). As stated before, 
the feature selection problem is to choose a small subset of features that is 
necessary and sufficient to define the target concept(s). In terms of these new 
definitions, feature selection problem can be re-expressed as finding a {}-reduct 
of CON in S. A stepwise backward algorithm to find a {}-reduct of a given 
feature set was introduced by Deogun et al. in [37] on the premise that the 
quality of upper classifier decreases as the feature set is pruned down. 

Dynamic data 

The theory of rough sets is based on the premise that the universe of discourse 
( or the set of objects) is finite; that is, it considers a snapshot of a database, 
which may not be a valid assumption if the background knowledge is indeed 
dynamic. A plausible remedy for this problem is to design an incremental 
method and separate the summary and the result of a method from one to 
another. Ziarko, in [18], has used the strength of a decision rule as a part of 
the summary of the decision algorithm. Similarly, a further refinement of an
tecedent parts of rules in a decision algorithm is a part of the summary if the 
decision algorithm is persistent in the system and the background knowledge 
from which the decision algorithm has been induced is dynamic. Deogun et al. 
in [60] extended decision tables to represent upper classifiers such that each 
tuple contains a special and composed field, called incremental information, 
which contains the number of objects that satisfy condition part of a decision 
rule and the number of objects being classified correctly by the same decision 
rule. The extended decision table evolves over time, provided that the incre
mental information is updated correspondingly as the background knowledge, 
from which the upper classifier had been induced, changes. 

Data mining methods 

When we inspect the data mining queries with respect to the rough set method
ology, we see that attribute dependency analysis and classification are well 
investigated subjects among others. The hypothesis testing and association be
tween values of an attribute can easily be solved by the rough set methodology 
(see Deogun et al. [67]). A recent theoretical paper by Kent [68] extends the 
notions of approximation and rough equality to formal concept analysis. An 
immediate result of this study, in our data mining context, is to be able to 
use the rough set methodology for the characterization of a concept (or more 
generally for concept exploration). As a final note, for handling an interesting 
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subset of data mining queries by the rough set methodology, the rough classi
fiers face a problem when a new object (coming from outside of the data set) is 
introduced and the description of the object is not found in the corresponding 
classifier. In other words, the problem is to find the closeness of given object 
to known concepts at hand. The usual remedy for this problem is to map non
quantitative (nominal) values into a numerical scale and use a distance function 
for the evaluation. For example, Kira & Rendell suggested a binary scale and 
the they used it in their Relief algorithm for feature selection [38]. Using more 
domain knowledge, Slowinski & Stefanowiski in [59] have suggested a distance 
measure based on mapping the difference between two values of an attribute 
into a well-ordered scale consisting of indifferent, weakly indifferent, strictly 
different, and excessively different symbols (or intervals). For quantitative (or 
cardinal) attributes, a decision maker compares the absolute difference between 
two values with three threshold values in order to decide which interval should 
be assigned. In the case of nominal attributes, all pairs of values are assigned 
an interval in advance. Then the closeness of an object to a rule is determined 
over the interval [0,1] by using partial differences of attribute values. 

6 KNOWLEDGE DISCOVERY SYSTEMS 

A knowledge discovery system that is capable of operating on large, real-world 
databases, is referred to as a knowledge discovery in databases (KDD) system. 
Knowledge discovery in databases is changing the face of today's business world 
and has opened up new frontiers in the realm of science. In the business world, 
one of the most successful and widespread application of KDD is "Database 
Marketing" [69). Marketers are collecting mountains of information about cus
tomers, looking for patterns among existing customer preferences and using 
that knowledge to predict future customer behavior and to craft a marketing 
message that targets such potential customers. Not only is database marketing 
opening up new avenues for reaching out to customers, but it is also helping 
a faceless, distant marketer to recreate a personal relationship with its cus
tomers. In the scientific domain, KDD has a wide range of applications- from 
mass spectroscopy, to prognosis of breast cancer recurrence and the location of 
primary tumor, to automatic analysis and cataloging of celestial data. 

The development of a KDD system is a complex process and is influenced by 
many factors including the extent of user involvement in controlling the discov
ery process, the tasks it can support, the number and variety of tools provided 
to support these tasks and the kinds of output that is being generated by the 
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system. In this section, a number of KDD systems are described and compared 
in terms of the characteristics mentioned above. For ease of exposition, we 
classify these systems into two broad categories: 

a) generic systems, which support either a wide range of application areas or 
support a variety of data mining tasks, or 

b) application-specific systems, which have been developed with a specific ap
plication domain in mind. 

It is interesting to note that the versatility of a system decreases as one goes 
from systems supporting many data mining tools and/or many possible appli
cations, to systems solving a specific application problem. However, systems 
that support many tools place heavy reliance on the judgement of the user and 
hence are less autonomous than the ones that have been developed for specific 
applications. 

The algorithms used to extract the underlying patterns in the data set form the 
core of any knowledge discovery system. Providing a wide variety of knowledge 
discovery methods may cause unnecessary increase in the number of distinct 
knowledge structures maintained in a knowledge base and hence careful con
siderations must be given to the choice of a set of knowledge structures that is 
orthogonal, simple and minimal. 

6.1 Generic Systems 

These systems are versatile in the sense that a variety of tools are embedded 
in the system and/or that these can support a wide spectrum of applications. 

The INLEN system [70], which is partially operational, combines database, 
knowledge base, and a wide spectrum of machine learning techniques to assist 
a data analysis expert to extract new or better knowledge from the database 
or/and knowledge base and discover interesting regularities in the database. 
The representation of data in the database and of information in the knowledge 
base are relational tables and knowledge segments respectively. A knowledge 
segment (KS) can be simple or compound. Simple KSs include rule sets, equa
tions, networks, and hierarchies. Compound KSs consist of combinations of 
either simple KSs or KSs and relational tables. 
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The IN LEN system employs four sets of operators: Data Management Oper
ators (DMOs), Knowledge Management Operators (KMOs), Knowledge Gen
eration Operators (KGOs), and macro operators. Instead of interfacing the 
IN LEN system to a DBMS, the designers of INLEN has chosen to equip it with 
DMOs that have capabilities of a typical relational query language. KMOs 
have analogously been implemented to manipulate knowledge segments. The 
KGOs take input from both the database and the knowledge base, and invoke 
various machine learning programs. Macro operators allow a user to encompass 
a sequence of INLEN operators as a single operator. 

INLEN-1, the first stage of implementing the INLEN system, was built on 
a knowledge base of simple decision rules, a relational database, and a user
oriented and menu based graphical interface. Characterization of a class, classi
fication of a set of examples, improving the knowledge through new examples, 
suggesting likely values for unknown value of an attribute, and testing the 
performance of a rule set on a set of examples comprise implemented subset of 
KGOs. The INLEN approach lacks of orthogonality principle in designing both 
knowledge structures and built-in KGOs. For instance, rules in disjunctive nor
mal form, decision trees, and relational tables are typical knowledge structure 
in INLEN's knowledge base, though they are equivalent in terms of modeling 
real-world objects. Similarly, it would have been better if more complex KGOs 
had been implemented on the kernel consisting of primitive KGOs, rather than 
collecting all KGOs in one menu. 

The Knowledge Discovery Workbench (KDW) [14] is a collection of tools for 
interactive analysis of large databases. Many of its design principles and char
acteristics are similar to those of INLEN. The pattern extraction algorithms 
range from clustering to classification to deviation detection. Dependency anal
ysis for finding and displaying probabilistic relationships, and summarization 
for characterizing classes are also incorporated in KDW. All these have made 
KDW a versatile and domain independent system. However, owing to this rea
son control in KDW is provided exclusively by the user, "who must decide what 
data to access, how to focus the analysis, which discovery algorithm to apply 
and how to evaluate and interpret the result". KDW is "ideal for exploratory 
data analysis by a user knowledgeable in both data and operation of discovery 
tools". However such heavy reliance on the user has given the system a low 
ranking on the autonomy scale. 

Explora [4, 71] is another KDD system that incorporates a variety of search 
strategies to adapt discovery processes to the requirements of applications. It 
operates by performing a graph search through a network of patterns, searching 
for instances of interesting patterns. Interestingness is evaluated locally by the 
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verification method and is in the form of filtering redundant rules, finding some
thing that is useful to the user, or some characteristic that is unique to a frac
tion of the population. The pattern templates can assume three forms- rule 
searcher, change detector and trend detector. Explora is specifically designed 
to work with data that changes regularly and often. Its knowledge extraction 
tool is fundamentally a deviation detector that identifies significant differences 
between populations or across time periods. A user of Explora experiences a 
moderately high degree of versatility and autonomy. 

One of the leading data mining toolkit of modern era, that has been subjected 
to diverse applications, is Clementine [72). Clementine is built on the tech
nologies of neural networks and rule induction and hence can automatically 
identify the relationships in the data and generate rules to apply to future 
cases. It is essentially a classifier system and includes functions which can han
dle a sequence of records- ideal for handling time series data. Clementine has 
been applied to verify incoming foreign exchange stock price data, model skin 
corrosivity, select locations for retail outlets, anticipating toxic health hazards, 
and predicting audiences for television programs for the British Broadcasting 
Corporation (BBC). 

DataLogic/R [73) is another software designed to perform multiple tasks in 
data analysis, knowledge discovery and reasoning from data and is based on 
the concept of rough set analysis. The analysis and pattern discovery involves 
elimination of redundant attributes, elimination of redundant data and gener
ation of classification rules. These rules are non-redundant and can be either 
probabilistic or deterministic. The system also provides a series of quality indi
cators for these rules, viz., strength, confidence factors, supporting cases, train 
and test validation, etc. By varying the roughness, DataLogic/R can discover 
knowledge at different levels of detail. DataLogic/R has been used successfully 
in the "automated discovery of control rules for NOx and 502 emissions from 
utility boilers", and market analysis. 

The system LERS (Learning from Examples based on Rough Sets) [74, 75) in
duces a set of rules from examples given.in the form of a decision table. The 
examples in the table are described by the values of attributes and are charac
terized by a value of a decision, as assigned by an expert. The output is a set 
of rules that is minimal and provides a description of the concept defined only 
by the examples supporting it (positive examples). Besides the machine learn
ing rules from examples, LERS also contains options for knowledge acquisition. 
The sets of rules generated by these options are called All Coverings and All 
Rules and are usually bigger than the set of rules given by the machine learning 
options. Experiments have been performed to test the efficacy of LERS system 
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for a variety of examples that differ substantially from each other in terms of 
the number of examples, attributes and concepts. In terms of completeness of 
the rules, it is noted that All Rules provide the most complete set while the 
error rates of the rule sets induced by the machine learning options are the 
worst. 

System KDD-R [61) is a software providing a collection of rough sets based tools 
for comprehensive data analysis. It is based on the idea of variable precision 
rough sets (VPRS) model and investigates the relationship between two sets of 
user defined attributes, condition and decision attributes, that characterize the 
objects in a relational table. Control in the search space is provided by the user 
by specifying whether the data analysis will be focused on the lower bound or 
on the upper bound of each value of the decision attribute. The relationship 
between the discretized condition attributes and the binary decision attributes 
can be measured in terms of dependency between the sets of attributes, or the 
degree of accuracy, or the core attributes with respect to the given dependency 
function, or all the relative reducts of condition attributes with respect to reser
vation of lower bound. The algorithm for computation of all relative reducts 
is accomplished by the use of decision matrix. Computation of rules, besides 
the computation of reducts, is the other most important activity carried out 
by KDD-R. Minimal length rules for the lower bound (or upper bound) are 
computed using the decision matrix technique. These rules act synergistically 
in the decision process- individually each rule is treated as a piece of uncertain 
evidence and hence worth a little in the process of decision making; however, 
along with similar other rules, it can provide a substantial input to the decision 
making process. 

6.2 Application-specific Systems 

Commercial systems, like CoverStory [4), Spotlight [76) and KEFIR [4), have 
been developed to discover knowledge in databases using the concept of devia
tions. Deviations are powerful because they provide a simple way of identifying 
interesting pattern in the data. All these systems perform an automatic drill
down through data to determine the most important deviations and then rank 
these deviations according to some measure ofinterestingness. The interesting
ness of a deviation is generally measured from the relevant action that can be 
taken in response to that deviation. The systems then generate explanations 
for the most interesting deviations and, where appropriate, generates simple 
recommendations for actions in response to such deviations. CoverStory and 
Spotlight have been used successfully in supermarket sales analysis and KEFIR 
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has provided the health care analysts with an early warning system. The sys
tems are fully automated once the initial domain knowledge has been set up. 
However, limited applicability has forced them a low ranking on the versatility 
scale. 

R-MINI [4] is yet another system that primarily utilizes classification techniques 
and also deviation detection, to some extent, to extract useful information 
from noisy domains, such as financial markets. It utilizes a logic minimization 
technique to generate a minimum-sized rule set that is complete and consistent 
with all the examples in the database. Complete means that the rules cover 
all the examples in the database, while consistent means that the rules do not 
misclassify any examples. 

R-MINI starts by making every example into a rule. Minimality of the rule set 
is then achieved by iterating over the following two steps: 

1. Generalization Step- For each rule, find some way to expand it without 
allowing it to cover any counter-examples, shrink other rules to the smallest 
size that will not leave out any examples and delete any other rules that 
do not contain any examples (empty). 

2. Specialization Step- Take each rule and replace it with a rule that is not 
larger and that will not cause any examples to become uncovered. Delete 
any empty rules. 

The exact dimensions along which expansion and reduction will take place is 
randomized at each step. Since an iteration cannot increase the number of 
rules, an arbitrary number of iterations with random expansion and reduction 
methods at each step will result in monotonically non-increasing number of 
classification rules that are consistent and complete at every stage of their 
minimization. 

The feasibility of the system is determined using the S&P 500 data for a con
tiguous period of 78 months. The data spans 774 securities and comprised of 
40 variables for each month for each security. Only one of these 40 variables is 
categorical and the rest are numerical. The decision variable is the difference 
between the return of a given portfolio and the S&P average return for the 
same period. This was discretized into "strongly performing" (6% above av
erage or more), "moderately performing" (2%-6% above average), "neutral" 
(2% below to 2% above average), "moderately underperforming" (2% below 
to 6% below average), and "strongly underperforming" (6% below average or 
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more). The data is arranged in temporal sequence and the classification rules 
are generated from consecutive 12 months of data. The performance of these 
rules is then tested on the following sets of 12-month stream. This gives an 
idea of the temporal rate of decline of the predictive power of the classification 
rules. Once this rate is known, rules can be regenerated "every n years from the 
immediate past data so as to continue holding up the predictive performance" . 

Knowledge Discovery techniques using associative rules has been explored in 
TASA (Telecommunication Network Alarm Sequence Analyzer) [77]. It is an 
experimental knowledge discovery system developed for predicting faults in a 
telecommunication network. An alarm in a telecommunication network occurs 
whenever a part of the system behaves abnormally. A network typically gen
erates 200-1000 alarms per day. The TASA system seeks rules of the following 
form: "if a certain combination of alarms occur within a certain time period, 
then an alarm of another type will occur within a time period". The time 
periods are selected by the user and the rules being sought describe a temporal 
relationship between alarms. Once the rules are derived, the user can select 
a subset of rules to display or remove from display, specify an ordering of the 
rules or specify a grouping or clustering of the rules. 

In the scientific domain SKICAT [4] has been developed for automating the re
duction and analysis of large astronomical data. The SKICAT system employs 
a supervised classification technique and is intended to automatically catalog 
and analyze celestial objects, given digitized sky images (plates). The initial 
step is to identify, measure and catalog the detected objects in the image into 
their respective classes. Initial feature extraction is carried out by an image 
processing software known as FOCAS. Once these features are extracted, it is 
necessary to derive additional features that exhibit sufficient invariance within 
and across plates so that classifiers trained to make accurate predictions on one 
plate will perform equally well on others. 

One of the motivations for developing SKICAT is the need for classifying objects 
too faint for astronomers to recognize by sight. In order that SKICAT might 
classify objects that astronomers cannot, a set of faint objects is selected from 
plates. A second telescope, with higher resolution power and a higher signal
to-noise ratio is used to classify the faint objects and rules are generated on the 
classified set of faint objects from the lower resolution image. These rules can 
then be applied to other faint objects for which no high resolution images are 
available. 

Classification is done by repeatedly dividing the data set randomly into training 
and test sets. A decision tree is generated from each training set and its rules 
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are tested on the corresponding test set. "By gathering a large number of rules 
through iterating on a randomly subsampled training parts," a large collection 
of robust rules is derived. These rules collectively cover the entire original data 
set of examples. A greedy covering algorithm is then employed to select a 
minimum subset of rules that covers the examples. 

When subjected to data consisting of objects from different plates, the SKICAT 
system gave a classification accuracy of 94.2% and was superior to the results 
obtained from existing decision tree algorithms (ID3, GID3, O-Btree). The 
accuracy dropped noticeably for all methods when the derived attributes are 
left out. 

7 FUTURE RESEARCH DIRECTIONS 

In this chapter we have surveyed the state of the art in data mining, including 
research trends related to rough set theory. Since a major focus of this book 
is data mining as related to rough set theory, in this section we present future 
research directions in data mining as related to rough set theory. We strongly 
believe that rough set based approaches to data mining present an excellent 
and fertile area for research. As mentioned in the Section 5, some aspects 
of the nature of data (i.e., incomplete, redundant, and uncertain data) have 
already been investigated in the rough set methodology, but they need to be 
tested in large databases. Towards this direction, there have already been 
some reported works on using the rough set methodology based knowledge 
discovery tools on off-line data; KDD-R, an experimental open tool box [61]; 
LERS, a machine learning system from examples [74]; and DataLogic/R [73], a 
commercial product for data mining and decision support. In the following, we 
present future research directions that are critical for data mining applications. 

• Incremental rough approximation: This is a must feature that has to 
be provided for if the decision algorithm is to be persistent in the rough 
set model and the background knowledge is dynamic. One of the claims 
made by Deogun et al. in [60] is that evolving rough classifier schemes 
can be developed, if the decision table is accommodated with a composite 
increment field that contains frequencies of rows. 

• Closeness of two rules: Slowinski & Stefonowski's study on determining 
the nearest rule, in the case that the description of a given object does not 
match to those of known concepts, is a key contribution in enhancing the 
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performance of a rough classifier when the data set is poorly designed or 
sampled from a large data. Even though it is not stated in the paper, 
such a measure can make the rough set methodology usable for clustering 
queries. This is a very important subject that needs to be studied by the 
rough set community. 

• Null values: As stated before, a null value of an attribute is more general 
than unknown value of that attribute, and the reasoning about null values 
remains an open problem in the studies of data mining. A less restrictive 
version of the problem, which is known as unknown attribute values, has 
been studied by Grzymala-Busse and implemented in the LERS, a machine 
learning system [74]. 

• Characterization query: Even though data dependency analysis within 
the rough set methodology can be applied to characterize concepts, it 
lacks of an explicit context dimension that is very important notion when 
a knowledge model contains a set/hierarchy of persistent concepts. For 
example, characterization of the concept 'Windows' within the context of 
'product' is certainly different from that of the one within the context of 
'sale'. This subject has been formally studied by Wille [78] and used for 
concept modeling. We believe that this study can be further extended to 
capture approximate characterization of concepts. 

In summary, data mining is a practical problem that drives theoretical studies 
toward understanding and reasoning about large and existing data. Matheus 
et al. used the tradeoff between 'versatility' and 'autonomy' for evaluating a 
KDD system [3]. They have argued that an ideal KDD system would handle 
knowledge discovery tasks autonomously while being applicable across many 
domains. While progress is being made in the direction of automatically acquir
ing knowledge needed for for guiding and controlling the knowledge discovery 
process, the ideal system remains far from reach. At the system level, more 
research is needed in how to derive domain knowledge from databases and how 
to represent domain knowledge and derived knowledge in a uniform manner. 
At the level of methods for extracting patterns, we believe that data mining is 
an important application area where the theoretical results of rough set theory 
can be tested, in order to help us understand its strengths and weaknesses. 
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ABSTRACT 

Since introduction of the theory of rough set in early eighties, considerable work 
has been done on the development and application of this new theory. The paper 
provides a review of the Pawlak rough set model and its extensions, with emphasis 
on the formulation, characterization, and interpretation of various rough set models. 

1 INTRODUCTION 

In early eighties, Pawlak [22] introduced the theory of rough sets as an extension 
of set theory for the study of intelligent systems characterized by insufficient 
and incomplete information [22, 23, 26]. It is motivated by the practical needs 
in classification and concept formation [27]. One may regard the theory of 
rough sets to be complementary to other generalizations of set theory, such 
as fuzzy sets and multisets [6, 24, 27, 42]. In recent years, there has been a 
fast growing interest in this new emerging theory. The successful applications 
of the rough set model in a variety of problems have amply demonstrated its 
usefulness and versatility [13, 15, 25, 33, 50]. 

The main objective of this paper is to present a review of the standard rough 
set model and its extensions, and to give some new results. Our emphasis will 
be on the formulation, characterization, and interpretation of various rough 
set models. We group existing rough set models into two major classes, the 
algebraic and probabilistic rough set models, depending on whether statistical 
information is used. In the algebraic class, we examine different rough set mod-
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els in relation to modal logic, graded rough set models, rough set models over 
two universes, and rough set models over Boolean algebras. In the probabilis
tic class, we analyze. rough membership functions and variable precision rough 
set models. More importantly, the probabilistic rough set models are justified 
based on the framework of decision theory. 

In this paper, binary relations are used as a primitive notion. Rough set models 
are built and investigated based on various binary relations. Our aim is not to 
provide a complete and exhaustive summary of all works on rough set models. 
We only review existing works that fall in the framework we intent to establish 
based on binary relations. Many important studies, such as the construction 
of rough set model based on a covering of the universe [48] and algebraic study 
of rough set models [30, 37], are not covered in this paper. 

2 ALGEBRAIC ROUGH SET MODELS 

This section reviews the Pawlak rough set model and presents its extensions 
and interpretations. 

2.1 Pawlak rough set model 

Let U denote a finite and non-empty set called the universe, and let R ~ 
U x U denote an equivalence relation on U. The pair apr = (U, R) is called 
an approximation space. The equivalence relation R partitions the set U into 
disjoint subsets. Such a partition of the universe is denoted by U JR. If two 
elements x, y in U belong to the same equivalence class, we say that x and y 
are indistinguishable. The equivalence classes of R and the empty set 0 are 
called the elementary or atomic sets in the approximation space apr = (U, R). 
The union of one or more elementary sets is called a composed set. The family 
of all composed sets, including the empty set, is denoted by Com(apr), which 
forms a Boolean algebra. 

The equivalence relation and the induced equivalence classes may be regarded 
as the available information or knowledge about the objects under consider
ation. Given an arbitrary set X ~ U, it may be impossible to describe X 
precisely using the equivalence classes of R. That is, the available information 
is not sufficient to give a precise representation of X. In this case, one may 
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characterize X by a pair of lower and upper approximations: 

apr (X) U [xl~, 
[xlR~X 

apr(X) = U [xl~, (1.1) 
[xlRnx#~ 

where 
[xl~ = {y I x3?y}, (1.2) 

is the equivalence class containing x. The lower approximation apr(X) is the 
union of all the elementary sets which are subsets of X. It is the largest 
composed set contained in X. The upper approximation apr(X) is the union 
of all the elementary sets which have a non-empty intersection with X. It is the 
smallest composed set containing X. An element in the lower approximation 
necessarily belongs to X, while an element in the upper approximation possibly 
belongs to X. We can also express lower and upper approximations as follow: 

apr(X) 
apr(X) 

{x I [xl~ ~ X} 
{x I [xl~ n X =J 0}. (1.3) 

That is, an element of U necessarily belongs to X if all its equivalent elements 
belong to X; it is possibly belongs to X if at least one of its equivalent elements 
belongs to X. 

For any subsets X, Y ~ U, the lower approximation apr satisfies properties: 

(ALI) 

(AL2) 

(AL3) 

(AL4) 

(AL5) 

(AL6) 

(AL7) 

(AL8) 

(AL9) 

(ALlO) 

apr(X) = ,,-,apr(,,-,X), 

apr(U) = U, 
apr(X n Y) = apr(X) n apr(Y) , 

apr(X U Y) 2 apr(X) U apr(Y), 
X ~ Y ~ apr(X) ~ apr(Y), 
apr(0) = 0, 
apr(X) ~ X, 
X ~ apr(apr(X», 
apr(X) ~ apr(apr(X», 
apr(X) ~ apr(apr(X», 

and the upper approximation apr satisfies properties: 

(AUI) 
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(AU2) 

(AU3) 

(AU4) 

(AU5) 

(AU6) 

(AU7) 

(AU8) 

(AUg) 

(AUlO) 

apr(0) = 0, 
apr(X U Y) = apr(X) U apr(Y) , 

apr(X n Y) ~ apr(X) n apr(Y) , 

X ~ Y ~ apr(X) ~ apr(Y), 
apr(U) = U, 
X ~ apr(X), 
apr(apr(X)) ~ X, 
apr(apr(X)) ~ apr(X), 
apr(apr(X)) ~ apr(X), 

where'" X = U - X denotes the set complement of X. The lower and upper 
approximations may be viewed as two operators on the universe [14]. Properties 
(ALI) and (AU1) state that two approximation operators are dual operators. 
Hence, properties with the same number may be regarded as dual properties. 
These properties are not independent. 

Based on the lower and upper approximations of a set X ~ U, the universe 
U can be divided into three disjoint regions, the positive region POS(X), the 
negative region NEG(X), and the boundary region BND(X): 

POS(X) 

NEG(X) 
BND(X) 

apr (X) , 
U - apr(X), 
apr(X) - apr(X). (1.4) 

Figure 1 illustrates the approximation of a set X, and the positive, negative and 
boundary regions. Each small rectangle represent an equivalence class. From 
this figure, we have the following observations. One can say with certainty that 
any element x E POS(X) belongs to X, and that any element x E NEG(X) 
does not belong to X. The upper approximation of a set X is the union of the 
positive and boundary regions, namely, apr(X) = POS(X) U BND(X). One 
cannot decide with certainty whether or not an element x E BND(X) belongs 
to X. For arbitrary element x E apr(X), one can only conclude that x possibly 
belongs to X. 

An important concept related to lower and upper approximations is the ac
curacy of the approximation of a set [22]. Yao and Lin [44] have shown 
that the accuracy of approximation can be interpreted using the well-known 
Marczewski-Steinhaus metric, or MZ metric for short. For two sets X and Y, 
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x 

Boundary Region 

positive Region 

Negative Region 

Figure 1 Positive, boundary and negative regions of a set X 
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where X AY = (X U Y) - (X n Y) denotes the symmetric difference between 
two sets X and Y, and I . I the cardinality of a set. It reaches the maximum 
value of 1 if X and Yare disjoint, i.e., they are totally different, and it reaches 
the minimum value of 0 if X and Yare exactly the same. The quantity, 

IxnYI 
S(X,y) = IXUYI' (1.6) 

may be interpreted as a measure of similarity or closeness between X and Y. 
By applying the MZ metric to the lower and upper approximations, we have: 

D(apr(X), apr(X)) 
= 1- I~(X) n a]5f(X) I 

lapr(X) U apr(X) I 
lapr(X) I 

1 - lapr(X) I ' (1.7) 

The distance function defined above is indeed the inverse function of the accu
racy of rough set approximation proposed by Pawlak [22], namely, 

p(X) 

= 

1 - D(apr(X), apr(X)) 

I~(X)I 

lapr(X)1 
S(apr(X), apr(X)). (1.8) 

For the empty set 0, we define p(0) = 1. If X is a composed set, then p(X) = 1. 
If X is not composed set, then 0 ~ p(X) < 1. 

In the Pawlak rough set model, an arbitrary set is described by a pair of lower 
and upper approximations. Several different interpretations of the concepts of 
rough sets have been proposed. The interpretation suggested by Iwinski [11] 
views a rough set as a pair of composed sets, and the original proposal of 
Pawlak regards a rough set as a family of sets having the same lower and/or 
upper approximation. Rough sets may also be described by using the notion 
of rough membership functions, which will be discussed in Section 3. 

Given two composed sets Xl, X 2 E Com (apr) with Xl ~ X 2 , Iwinski called the 
pair (Xl, X 2) an rough set [11]. In order to distinguish it from other definition, 
we call the pair an I-rough set. Let R(apr) be the set of all I-rough sets. Set
~heoretic operators on R(apr) can be defined component-wise using standard 
set operators. For a pair of I-rough sets, we have: 

(Xl, X 2 ) n (YI , Y2 ) 

(Xl, X 2 ) U (YI , Y2 ) 

(Xl n YI , X 2 n Y2 ), 

(Xl U Y1 , X 2 U Y2 ). (1.9) 
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The intersection and union of two composed sets are still composed sets. The 
above operators are well defined, as the results are also I-rough sets. The system 
(R(apr) , n, U) is complete distributive lattice [11], with zero element (0,0) and 
unit element (U, U). The associated order relation can be interpreted as I-rough 
set inclusion, which is defined by: 

(1.10) 

The difference of I-rough sets can be defined as 

(1.11 ) 

which is an I-rough set. Finally, the I-rough set complement is given as: 

(1.12) 

The complement is neither a Boolean complement nor a pseudocomplement in 
the lattice (R(apr) , n, U). The system (R(apr) , n, U, "', (0,0), (U, U)) is called 
an I-rough set algebra. 

In Pawlak's seminal paper, another interpretation ofrough sets was introduced. 
Using lower and upper approximations, we define three binary relations on 
subsets of U: 

X~*Y -¢::::::} apr(X) = apr(Y), 
X~*Y -¢::::::} apr(X) = apr(Y) , 

X ~ Y -¢::::::} apr(X) = apr(Y) and apr(X) = apr(Y). (1.13) 

Each of them defines an equivalence relation on 2u , which induces a partition 
of 2u . By interpreting an equivalence, say [X]~ containing X, as a rough set, 
called a P-rough set, we obtain three algebras of rough sets. 

Consider the equivalence relation ~. The set of all P-rough sets is denoted by 
R~(apr) = 2u/~. Given two sets Xl, X2 E Com(apr) with Xl ~ X 2 , if there 
exists at least a subset X ~ U such that apr(X) = Xl and apr(X) = X 2 , the 
following family of subsets of U, -

(1.14) 

is called a P-rough set. A set X E (Xl ,X2 ) is said to be a member of the 
P-rough set. Given a member X, a P-rough set can also be more conveniently 
expression as [X]""' which is the equivalent class containing X. A member is 
also referred to as a generator of the P-rough set [3]. Rough set intersection 
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n, union U, and complement, are defined by set operators as follows: for two 
P-rough sets (X I ,X2 ) and (YI ,Y2 ), 

(X I ,X2 ) n (YI ,Y2 ) 

= {X E 2u I apr(X) = Xl nYI,apr(X) = X 2 nY2 } 

(Xl n YI ,X2 n Y2 ), 

(XI ,X2 ) U (YI , Y2 ) 

{X E 2U I apr(X) = Xl U YI,apr(X) = X 2 U Y2} 
= (Xl U YI , X 2 U Y2 ), 

,(Xl, X 2 ) 

{X E 2u I apr(X) = '" X2,apr(X) = '" XI}, 
= (",X2 ,,,,XI ). (1.15) 

The results are also P-rough sets. The induced system (R"", (apr) , n, U) is a 
complete distributive lattice [1, 30], with zero element [0]"", and unit element 
[U]"",. The corresponding order relation is called P-rough set inclusion given 
by: 

(XI,X2) I;; (YI , Y2) {=:::} Xl ~ YI and X 2 ~ Y2. (1.16) 

The system (R"",(apr), n, U,', [0]""" [U]"",) is called a P-rough set algebra. If 
equivalence relations ~* and ~* are used, similar structures can be obtained. 

Example 1 This example illustrates the main ideas developed so far. Consider 
a universe consisting of three elements U = {a, b, c} and an equivalence relation 
~on U: 

a~a, b~b, b~c, c~b, c~c. 

The equivalence relation induces two equivalence classes [a]w = {a} and [b]w = 
[e]w = {b, c}. Table 1 summarizes the lower and upper approximations, the pos
itive, negative and boundary regions, and the accuracy of approximations for all 
subsets of U. The family of all composed sets is Com(apr) = {0, {a}, {b, e}, U}. 
It defines nine I-rough sets. Figure 2 shows the lattice formed by these I-rough 
sets. Based on the lower and upper approximations, a relation ~ on 2u is given 
by: 

0~ 0, 
{a} ~ {a}, 
{b,c} ~ {b,e}, 
{b} ~ {b}, {b} ~ {e}, {e} ~ {e}, {c} ~ {b}, 
{a,b} ~ {a,b}, {a,b} ~ {a,c}, {a,c} ~ {a,b}, {a,c} ~ {a,e}, 
U~U. 
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X apr(X) apr(X) POS(X) NEG(X) BND(X) p(X) 
0 0 0 0 U 0 1 

{a} {a} {a} {a} {b,e} 0 1 
{b} 0 {b,e} 0 {a} {b,e} 0 
{e} 0 {b,e} 0 {a} {b,e} 0 

{a, b} {a} U {a} 0 {b,e} 1/3 
{a, e} {a} U {a} 0 {b,e} 1/3 
{b,e} {b,c} {b,c} {b,c} {a} 0 1 

U U U U 0 0 1 

Table 1 Basic notions in Pawlak rough set model 

This relation induces the following equivalence classes, i.e., P-rough sets: 

(0,0) {0}, 
({a}, {a}) {{a} }, 

(0,{b,e},}) = {{b}, {en, 
({b,c}, {b,e}) = {{b,en, 

({a}, U) = {{a, b}, {a, en, 
(U,U) = {U}. 

Figure 3 is the lattice formed by these P-rough sets. From this example, one 
can see that I-rough set algebra is different from the P-rough set algebra. In 
general, the lattice formed by P-rough sets is isomorphic to a sublattice of the 
lattice formed by I-rough sets. 

2.2 Non-standard rough set models 

The Pawlak rough set model may be extended by using an arbitrary binary 
relation [41, 43]. Given a binary relation ~ and two elements x, y E U, if x~y, 
we say that y is ~-related to x. A binary relation may be more conveniently 
represented by a mapping r : U ---t 2u : 

rex) = {y E U I x~y}. (1.17) 

That is, rex) consists of all ~-related elements of x. It may be interpreted 
as a neighborhood of x [12, 14]. If ~ is an equivalence relation, rex) is the 
equivalence class containing x. By using the notion of neighborhoods to replace 
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({a}, U) 

({a}, {a}) (0, U) 

(0, {a}) (0, {b,c}) 

Figure 2 An example of I-rough set algebra 

({b,c},{b,c}) 

({a), {a}) / (0, {b,c}) 

~,0) 
Figure 3 An example of P-rough set algebra 



equivalence classes, we can extend equation (1.3) as follows: 

apr(X) 
apr(X) 

{x I rex) ~ X}, 
{x I rex) n X =1= 0}. 
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(1.18) 

The set apr(X) consists of those elements whose ~-related elements are all in 
X, and apr(X) consists of those elements such that at least one of whose ~
related elements is in X. They are referred to as generalized approximations 
of X. 

Generalized approximation operators do not necessarily satisfy all the prop
erties in Pawlak rough set models. Nevertheless, properties (ALl)-(AL5) and 
(AUl)-(AU5) hold independent of the properties of the binary relation. Prop
erties (AL7)-(ALIO) may be used to characterize various rough set models. 
Such a classification of rough set models is similar to the classification of modal 
logics. For this purpose, we use the following properties, adopting the same 
labeling system from Chellas [4]: 

(K) 

(D) 

(T) 
(B) 

(4) 

(5) 

apr(",X U Y) ~ "'apr(X) U apr(Y), 
apr(X) ~ apr(X), 
apr(X) ~ X, 
X ~ apr(apr(X)), 
apr(X) ~ apr(apr(X)), 
apr(X) ~ apr(apr(X)). 

Property (K) does not depend on any particular binary relation. In order to 
construct a rough set model so that other properties hold, it is necessary to 
impose certain conditions on the binary relation ~. 

Each of the properties (D)-(5) corresponds to a property of the binary relation. 
Property (D) holds if ~ is a serial relation, i.e., for all x E U, there exists at 
least an element y such that x~y. Property (T) holds if ~ is a reflexive relation, 
i.e., for all x E U, x~x. Property (B) holds if ~ is a symmetric relation, i.e., for 
all x,y E U, x~y implies y~x. Property (4) holds if ~ is a transitive relation, 
i.e., for all X,y,z E U, x~y and y~z imply x~z. Property (5) holds if the 
~ is an Euclidean relation, i.e., for all x, y, z E U, x~y and x~z imply y~z. 
By combining these properties, one can construct distinct rough set models. 
Various rough set models are named according to the properties of the binary 
relation or the properties of the approximation operators. For example, a rough 
set model constructed from a symmetric relation is referred to as a symmetric 
rough set model or the KD model. If ~ is reflexive and symmetric, i.e., ~ is 
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Figure 4 Rough set models 

a compatibility relation, properties (K), (D), (T) and (B) hold. This model 
is labeled by KTB,' which is the set of properties satisfied by operators apr 
and apr. Property (D) does not explicitly appear in the label because it is 
implied by (T). Similarly, Pawlak rough set model is labled by KT5, which is 
also commonly known as S5 in modal logic. 

By the results from modal logic, it is possible to construct at least fifteen 
distinct classes of rough set models based on the properties satisfied by the 
binary relation [4, 17,43]. Figure 4, adopted from Chellas [4] and Marchal [17], 
summarizes the relationships between these models. A line connecting two 
models indicates the model in the upper level is a model in the lower level. 
These lines that can be derived from the transitivity are not explicitly shown. 
The model K may be considered as the basic and the weakest model. It does 
not require any special property on the binary relation. All other models are 
built on top the model K. The model KT5, i.e., the Pawlak rough set model, 
is the strongest model. 
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In the above formulation of rough set model, one considBrs only two special 
kinds of relationships between the neighborhood rex) of an element x and a 
set X to be approximated. An element belongs to the lower approximation of 
a subset X if all its ~-related elements belong to X, it belongs to the upper 
approximation if there exists one elements belonging to X. The degree of 
overlap of X and rex) is not taken into consideration. By employing such 
information, graded rough set models can be obtained, in the same way graded 
modal logic is developed [2, 7, 9, 35, 36, 43). 

Given the universe U and a binary relation ~ on U, a family of graded approx
imation operators are defined as: 

apr (X) = 
-n 
aprn(X) 

{x Ilr(x)1 -IX n r(x)1 :::; n}, 

{x IIX n r(x)1 > n}. (1.19) 

An element of U belongs to apr (X) if at most n of its ~-related elements 
-n 

are not in X, and belongs to apr n (X) if more than n of its ~-related elements 
are in X. Based on the properties of binary relation, we can similarly define 
different classes of graded rough set models. 

2.3 Rough sets in information systems 

Following Lipski [16], Orlowska [20], Pawlak [21], Vakarelov [34], and Yao and 
Noroozi [45), we define a set-based information system to be a quadruple, 

S = (U,At, {Va I a E At}, {fa I a EAt}), 

where 

U is a nonempty set of objects, 

At is a nonempty set of attributes, 

Va is a nonempty set of values for each attribute a EAt, 

fa : U ~ 2Va is an information function for each attribute a EAt. 

The notion of information systems provides a convenient tool for the represen
tation of objects in terms of their attribute values. If all information functions 
map an object to only singleton subsets of attribute values, we obtain a de
generate set-based information system commonly used in the Pawlak rough set 
model. In this case, information functions can be expressed as fa : U ~ Va. 
In the following discussions, we only consider this kind of information systems. 
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We can describe relationships between objects through their attribute values. 
With respect to an attribute a E At, a relation ~a is given by: for x, y E U, 

(1.20) 

That is, two objects are considered to be indiscernible, in the view of single 
attribute a, if and only if they have exactly the same value. ~a is an equivalence 
relation. The reflexivity, symmetry and transitivity of ~a follow trivially from 
the properties of the relation = between attribute values. For a subset of 
attributes A ~ At, this definition can be extended as follows: 

(1.21) 

That is, in terms of all attributes in A, x and yare indiscernible, if and only 
if they have the same value for every attribute in A. The extended relation is 
still is an equivalence relation [20]. 

The above discussion provides a convenient and practical method for construct
ing a binary relation, and in turn a Pawlak rough set model. All other notions 
can be easily defined. For an element x E U, its equivalence class is given by: 

(1.22) 

For any subset X ~ U, the lower and upper approximations can be constructed 
as: 

= {xlrA(x)~X}, 

= {x I rA(x) nx i- 0}. (1.23) 

As shown in the following example, different subsets of attributes may induce 
distinct approximation space, and hence different approximations of the same 
set. 

Example 2 Consider the information system given in Table 2, taken from 
Quinlan [31]. Each object is described by three attributes. If the attribute 
A = {Hair} is chosen, we can partition the universe into equivalence classes 
{01' 02, 06, 08}, {03}, and {04' 05, 07}, reflecting the colour of Hair being blond, 
red and dark, respectively. With respect to the class + = {01, 03, 06}, the 
following approximations are obtained: 

apr A(+) = {03}, 
apr A ( + ) = {01' 02,03,06, Os}. 



Hence, 

Object 
01 

02 

03 

04 

05 

06 

07 

08 

POSA(+) 
BNDA(+) 
NEGA(+) 

Height Hair Eyes Classification 
short blond blue + 
short blond brown -
tall red blue + 
tall dark blue -
tall dark blue -
tall blond blue + 
tall dark brown -

short blond brown -

Table 2 An information system 

apr A(+) = {03}, 

apr A (+) - apr A ( +) = {O1, 02,06,08}, 

= u - apr A ( +) = {04, 05, or}. 
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If a set of two attributes A' = {Hair, Eyes} is used, we have equivalence classes 
{ 01, 06}, {02, 08}, {03}, {04, 05} and {07 }. The lower and upper approximation 
of + are: 

Three regions are: 

POSA'(+) 
BNDA'(+) 
NEGA'(+) 

apr A'(+) = {01,03,06}, 

apr A' (+ ) = {01, 03,06}. 

apr A'(+) = {01,03,06}, 

apr A'(+) - apr A'(+) = 0, 
u - apr A' ( +) = {02, 04, 05, 07, 08}' 

From this example, it is clear that some approximation spaces are better than 
others. 

The Pawlak rough set model can be easily generalized in information system 
by considering any binary relations on attribute values, instead of the trivial 
equality relation =. Suppose Ra is a binary relation on the values of an attribute 
a E At. By extending equation (1.20), for a E At we define a binary relation 
on U: 

(1.24) 
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Similarly, by extending equation (1.21), for A <; At we define a relation on U: 

XRAY -¢=} (Va E A)fa(x)Rafa(Y) 
-¢=} (Va E A)xRaY. (1.25) 

An object x is related to another object Y, based on an attribute a, if their 
values on a are related. With respect to a subset A of attributes, x is related to 
Y if their values are related for every attribute in A. When all relations Ra are 
chosen to be =, the proposed definition reduced to the definition in the Pawlak 
rough set model. 

The empty set 0 produces the coarsest relation, i.e., R0 = U x U, where x 
denotes the Cartesian product of sets. If the entire attribute set is used, one ob
tains the finest relation RAt. Moreover, if each object is described by an unique 
description, RAt becomes the identity relation. The algebra ({RA} ACAt, n) is 
a lower semilattice with the zero element RAt [20). -

The relation Ra preserves properties of Ra. Suppose Ra is a binary relation on 
Va, and Ra a binary relation on U defined by equation (1.24). Then, 

a) . Ra is serial ==> Ra is serial; 

b). Ra is reflexive ==> Ra is reflexive; 

c). Ra is symmetric ==> Ra is symmetric; 

d). Ra is transitive ==> Ra is transitive; 

e). Ra is Euclidean ==> Ra is Euclidean. 

The set of RA-related objects, rA(x) = {y I XRAY}, can be regarded as a 
neighborhood of x. Likewise, the set of Ra-related values, ra(v) = {VI I vRavl}, 
can be viewed as a neighborhood of v [12). By definition, a neighborhood of 
objects is defined according to neighborhoods of its attribute values: 

r A(X) = {y I XRAY} 

n {y I xRaY} 
aEA 

aEA 

n {y I fa(Y) E raUa(x))}. 
aEA 

(1.26) 

This suggests that the notion of generalized rough sets is useful for approximate 
retrieval in information systems. 
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2.4 Rough set model over two universes 

Recently, Wong, Wang and Yao generalized the rough set model using two 
distinct but related universes [38, 39, 47]. Let U and V represent two finite 
universes of interest. Suppose the relationships between elements of the two 
universes are described by a compatibility relation [32]. The formulation and 
interpretation of U and V and the compatibility relation between the two uni
verses depend very much on the available knowledge and the domain of applica
tions. For example, in a medical diagnosis system, U can be a set of symptoms 
and V a set of diseases. A symptom u E U is said to be compatible with a 
disease v E V if any patient with symptom u may have contracted the disease 
v. An element u E U is compatible with an element v E V, written u C v, if 
the u is related to v. Without loss of generality, we may assume that for any 
u E U there exists a v E V with u C v, and vice versa. 

A compatibility relation C between U and V can be equivalently defined by a 
multi-valued mapping, "( : U ~ 2v , as [5, 32]: 

"(u)={vEVluCv}. (1.27) 

That is, "(u) is a subset of V consisting of all elements compatible with u. 
Based on this multi-valued mapping, a subset X ~ V may be represented in 
terms of these elements of U compatible with the elements in X. For example, 
a particular group of diseases may be described by the symptoms compatible 
with them. Since the induced multi-valued mapping is not necessarily an one
to-one mapping, one may not be able to derive an exact representation for any 
subset X ~ V. By extending notion of approximation operators in rough set 
model, we define a pair of lower and upper approximations: 

apr (X) 
apr (X) 

{u E U I "(u) ~ X}, 
{u E U I "(u) nX"# 0}. (1.28) 

The set apr(X) consists of the elements in U compatible with only those el
ements in X, while the set apr(X) consists of the elements in U compatible 
with at least one element in X. Therefore, the lower approximation apr(X) 
can be interpreted as the pessimistic description and the upper approximation 
apr (X) as the optimistic description of X. These approximation operators 
satisfy properties similar to (ALl)-(AL6) and (AUl)-(AU6). Since two uni
verses are involved, there do not exist properties similar to (AL7)-(ALIO) and 
(AU7)-(AUIO). 
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2.5 Rough set model over Boolean algebras 

Recall that the set of composed sets Com (apr) forms a sub-algebra of the 
Boolean algebra of the power set. One can easily formulate Pawlak rough set 
model in a wider context of Boolean algebra. Suppose (A, /\, V,..." 0, 1) is a 
Boolean algebra and (8, /\, V,..." 0,1) is a sub-algebra. In terms of elements of 
8, one may approximate any element of A using a pair of lower and upper 
approximations: for a E A, 

apr(a) = V{b I bE 8,b ~ a}, 

apr(a) = I\{b I b E 8,a ~ b}. (1.29) 

Clearly, this definition reduce to Pawlak's original proposal if A is chosen to be 
2u and 8 is chosen to be Com(apr). 

Wong, Wang and Yao [39] extended the above formulation further by consider
ing two arbitrary Boolean algebras. Suppose f: A --t 8 and]: A --t 8 are 
two mappings from a Boolean algebra (A, V, /\-;...,,0,1) to another Boolean alge
bra (8, V, /\,"",0,1). We say that f and] are dual mappings if Yea) = ...,f(...,a) 
for every a E A. The pair of duaCmappings form an interval structure if they 
satisfy the following axioms: 

(ILl) [(a) /\ [(b) = [(a /\ b), 
(IL2) [(0) = 0, 

(IL3) [(1) = 1, 

(IUl) ](a V b) = Yea) V](b), 
(IU2) ](0) = 0, 

(IU3) ](1) = 1. 

These properties indeed correspond to properties (AL3), (AL2), (AL6), (AU3), 
(AU2) and (AU6). 

An alternate way of defining an interval structure is through another mapping 
j: A --t 8 satisfying the axioms: 

(AI) j(O) = 0, 

(A2) V j(a) = 1, 
aEA 

(A3) a =F b ==> j(a) /\ j(b) = 0. 

This mapping is called a basic assignment, and an element a E A with j(a) =F ° 
is called a focal element. From a given j, one can define a mapping L for all 
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aEA, 

L(a) = V j(b), (1.30) 
b::sa 

and another mapping 1 by the relationship 1 (a) = 'f (,a). The mapping 1 
can be equivalently defined by: -

Yea) V j(b). (1.31) 
aAbo;iQ 

Conversely, given an interval structure (f, 1), we can construct the basic as
signment j by the formula: for all a E A,-

j(a) = [Ca) 1\ ,(V [(b)). (1.32) 
b-<a 

Rough set models on the same universe and on two universes are only special 
cases of this general framework. Based on the axioms of an interval structure, 
the above developed relationships hold in any rough set model that is stronger 
than the KD model. More specifically, we have the following connections: 

j(X) {x I rex) = X}, 

j(X) apr(X) - n apr(Y), 
YeX 

apr(X) U j(X), 
YI:;;X 

apr (X) U j(X). (1.33) 
YnXo;i0 

Therefore, the basic assignment provides another representation of approxima
tion operators. 

3 PROBABILISTIC ROUGH SET MODELS 

Based on the notion of rough membership functions, we review two different 
approaches for the construction of probabilistic rough set model. One is related 
to probabilistic modal logic and the other is based on decision theory. 
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3.1 Rough membership functions 

Pawlak and Skowron [28], Pawlak et al. [29] and Wong and Ziarko [40] proposed 
another way to characterize a rough set by a single membership function. For 
any X ~ U, a rough membership function is defined by: 

( ) _ IX n [x]~1 
/-Lx x - l[x]~1 . (1.34) 

By definition, elements in the same equivalent class have the same degree of 
membership. The rough membership /-Lx (x) may be interpreted as the proba
bility of x belonging to X given that x belongs to an equivalence class. This 
interpretation leads to probabilistic rough sets [29, 40]. Like the algebraic 
rough set model, the intersection and union of probabilistic rough sets are not 
truth-functional. Nevertheless, we have: 

(m1) /-Lx(x) = 1 -¢=::} x E POS(X), 

(m2) /-Lx(x) = 0 -¢=::} x E NEG(X), 

(m3) 0 < /-Lx(x) < 0 -¢=::} x E BND(X), 

(m4) /-L~x(x) = 1- /-Lx (x), 

(m5) /-LXUY(x) = /-Lx (x) + /-LY(x) - /-Lxny(x), 

(m6) max(O,/-Lx(x) + /-LY(x) -1):::; /-LxnY(x) :::; min(/-Lx(x),/-LY(x)), 

(m7) max(/-Lx(x),/-LY(x)) :::; /-LXUY(x) :::; min(l,/-Lx(x) + /-LY(x)). 

They follow from the property of probability. The definition in equation (1.34) 
can be easily extended by using an arbitrary binary relation. 

3.2 Variable precision rough set model 

In the definition of graded rough set models, the size of r(x) is not taken into 
consideration. By using such information, we can define variable precision, 
or probabilistic, rough set model [40, 49], in parallel to probabilistic modal 
logic [8, 10, 19, 43]. 

With respect to the universe U and a binary relation lR on U, we define a family 
of probabilistic rough set operators: 

apr (X) 
-a 

{ I IXnr(x)1 1-} 
x Ir(x)1 2: a, 

{I IXnr(x)1 } 
= x Ir(x)1 > a . (1.35) 
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By definition, for a serial binary relation and a E [0,1]' probabilistic rough set 
operators satisfy the following properties: 

(PLO) 

(PLl) 

(PL2) 

(PL3) 

(PL4) 

(PL5) 

(PL6) 

(PUO) 

(PUl) 

(PU2) 

(PU3) 

(PU4) 

(PU5) 

(PU6) 

apr(X) = apro(X), 

apr (X) = '" apr 0< ('" X), 
-0< 

apr (U) = U, 
-0< 

apr (X n Y) ~ apr (X) n apr (Y), 
-0< -0<-0< 

apr (X U Y) 2 apr (X) U apr (Y), 
-0< -0<-0< 

X ~ Y =} apro«X) ~ apr)Y), 
a ~ f3 =} apr )X) 2 apr {3(X), 

apr(X) = apro(X), 
apr o«X) = "'apr (",X), 

~ 

apr 0«0) = 0, 
apr 0< (X U Y) 2 apr ",(X) U apr 0<(Y), 
apr ",(X n Y) ~ apr o«X) n apr ",(y), 
X ~ Y =} apr o«X) ~ apr ",(y), 

a ~ f3 =} apr o«X) ~ apr{3(X). 

Moreover, for 0 :::; a < 0.5, 

which may be interpreted as a probabilistic version of axiom (D). In this case, 
one can also partition the into three regions based on the value of a: 

POSo«X) 

NEGo«X) 
BND", (X) 

= apr (X), 
-'" 
U - apr", (X) , 
apr ",(X) - apr (X). 

-'" 
(1.36) 

They may be referred to as the probabilistic positive, negative and boundary 
regions. In the following subsection, we will show that the value of a can be 
determined within the framework of decision theory. 

3.3 Rough set model based on decision theory 

In the variable precision rough set model, the universe is partitioned into three 
regions. The same goal can be achieved by using rough membership functions in 
the framework of decision theory [46]. In terms of decision-theoretic language, 
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we have a set of states n = {X, ,X}, indicating that an element belongs to 
and does not belong to X, and the set of actions A = {aI, a2, a3}, representing 
the three actions, deciding POS(X), deciding NEG(X), and deciding BND(X), 
respectively. 

Let A(aiIX) denote the loss incurred for taking action ai when an object in 
fact belongs to X, and let A(ail'X) denote the loss incurred when the object 
actually belongs to ,X. P(X I rex)) and P(,X I rex)) are the probabilities 
that an object with neighborhood rex) belongs to X and ,X, respectively. 
They are in fact the rough membership functions with respect to X and ,X. 
Thus, the expected loss R(ailr(x)) associated with taking the individual actions 
can be expressed as: 

R(a1Ir(x)) 
R(a2Ir(x)) 

R(a3Ir(x)) 

AllP(X I rex)) + A12P(,X I rex)), 
A21 P(X I rex)) + A22P(,X I rex)), 
A31 P(X I rex)) + A32P(,X I rex)), (1.37) 

where Ail = A(aiIX), Ai2 = A(ail,X), and i = 1,2,3. The Bayesian decision 
procedure leads to the following minimum-risk decision rules: 

(P) Decide POS(X) if 

R(a1Ir(x)) ~ R(a2Ir(x)) and R(a1Ir(x)) ~ R(a3Ir(x)); 
(N) Decide NEG(X) if 

R(a2Ir(x)) ~ R(a1Ir(x)) and R(a2Ir(x)) ~ R(a3Ir(x)); 
(B) Decide BND(X) if 

R(a3Ir(x)) ~ R(a1Ir(x)) and R(a3Ir(x)) ~ R(a2Ir(x)). 

Since P(X I r(x))+P(,X I rex)) = 1, the above decision rules can be simplified 
so that only the probabilities P(X I rex)) are involved. Thus, we can classify 
any object with neighborhood rex) based only on the probabilities P(X I rex)), 
i.e., the rough membership function, and the given loss function Aij (i = 1,2,3; 
j = 1,2). 

Consider a special kind of loss functions with All ~ A31 < A21 and A22 ~ A32 < 
A12' The loss of classifying an object x belonging to X into the positive region 
POS(X) is less than or equal to the loss of classifying x into the boundary region 
BND(X), and both of these losses are strictly less than the loss of classifying 
x into the negative region NEG(X). We obtain the reverse order of losses by 
classifying an object that does not belong to X. For this type of loss functions, 
the minimum-risk decision rules (P)-(B) can be written as: 

(P) Decide POS(X) if P(X I r(x)) 2: (3 and P(X I r(x)) 2: ')'; 
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(N) Decide NEG(X) if P(X I r(x)) ~ 'Y and P(X I r(x)) ~ 15; 

(B) Decide BND(X) if 15 ~ P(X I r(x)) and P(X I r(x)) ~ /3; 
where 

/3 
A12 - A32 

(A31 - An) + (A12 - A32) , 
A12 - A22 

'Y (A21 - An) + (A12 - A22) , 

15 
A32 - A22 

(1.38) 
(A21 - A31) + (A32 - A22) 

From the assumptions, An ~ A31 < A21 and A22 ~ A32 < A12, it follows that 
/3 E (0,1], 'Y E (0,1), and 15 E [0,1). Decision rules (P)-(B) depend only on the 
parameters /3, 'Y, and 15 computable from the Ai/S directly supplied by the user. 

If 15 ~ /3, 15 ~ 'Y ~ /3. By decision rules (P)-(B), three regions can be determined 
by 15 and /3. If /3 < 15, we haye /3 < 'Y < 15. According to (P)-(B), the boundary 
region is empty, and both positive and negative region can be determined by 
'Y. To be consistent with the variable precision rough set model, we assume 
15 < /3, which implies 15 < 'Y < /3. Furthermore, we choose a tie-breaking rule to 
differentiate actions producing the same risk. If the risk of deciding POS(X) 
or BND(X) is the same, we decide POS(X); if the risk of deciding NEG(X) or 
BND(X) is the same, we decide NEG(X). Under these assumptions, (P)-(B) 
can be simplified into: 

(P) Decide POS(X) if P(X I r(x)) ~ /3; 
(N) Decide NEG(X) if P(X I r(x)) ~ 15; 

(B) Decide BND(X) if 15 < P(X I r(x)) < /3. 
The positive, negative, and boundary regions can be explicitly expressed in 
terms of the pair of parameters 15 and /3, namely: 

POS{3,o(X) {x I P(X I r(x)) ~ /3}, 
NEG{3,o(X) = {x I P(X I r(x)) ~ i5}, 
BND{3,o(X) = {x I 15 < P(X I r(x)) < /3}. (1.39) 

The lower and upper approximations apr (3,o(X) and apr{3,o(X) of X can be 
defined as: 

apr{3,o(X) 

POS{3,o(X) 

{x I P(X I r(x)) ~ /3}, 
POS{3,o(X) u BND{3,o(X) 
{x I P(X I r(x)) > i5}. (1.40) 
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Now assume the following condition: 

).12 - ).32 ).21 - ).31 

).31 - ).11 ).32 - ).22 . 
(1.41) 

We have j3 = 1 - 6. Let a = 6. The lower and upper approximations can be 
expressed by: 

apr 1-0<,0< (X) 

aprl_o<,o«X) 

= {x I P(X I rex)) 2: 1 - a}, 

{x I P(X I rex)) > a}. (1.42) 

They are exactly the probabilistic approximations given in equation (1.35) if 
the required probabilities are estimated from the cardinalities of X n rex) and 
rex), namely, P(X I rex)) = IX n r(x)l/lr(x)l. The approximations of in an 
algebraic rough set model can be easily derived. Consider the following loss 
function: 

(1.43) 

This means that there is a unit cost if an object belonging to X is classified 
into the negative region or if an object not belonging to X is classified into the 
positive region; otherwise there is no cost. For such a loss function; we obtain 
from equation (1.38) that j3 = 1 and 6 = O. Hence, according to equation (1.40), 
we have: 

aprl,O(X) 

apr1 ,o(X) 

With the probabilities estimated by 

{x I P(X I rex)) = I}, 

{x I P(X I rex)) > O}. 

apr1 ,O(X) and apr1 ,o(X) can be expressed as: 

apr1 ,O(X) 

aprl,O(X) 

{x I rex) ~ X}, 

{x I rex) nx"# 0}. 

(1.44) 

(1.45) 

(1.46) 

The results given here suggest that both algebraic rough set and probabilistic 
rough set models can be viewed as a special case of the decision theoretic 
framework. 
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4 CONCLUSION 

In the Pawlak rough set model, an equivalent relation is used to define an ap
proximation space. Following the argument of Pawlak and using an arbitrary 
binary relation, one can derive various type of generalized rough set models. 
Alternatively, one may also generalize Pawlak rough set model by using statis
tical information. Based on the properties of binary relation, one can identify 
the properties of lower and upper approximations. Generalized rough set mod
els may be grouped into two classes, the algebraic and probabilistic rough set 
models, depending on whether statistical information is used. The algebraic 
class includes normal rough set models, graded rough set models, rough set 
models over two universes, and rough set models over Boolean algebras. The 
probabilistic rough set models may be interpreted based on rough membership 
functions. 

The successful applications of the theory of rough sets depends to a large extent 
on the formulation, characterization, and interpretation of the theory. In this 
paper, existing works are reviewed using a very simple, and unified, view. That 
is, rough set models are constructed, classified, and interpreted based on the 
notion of binary relations. This view in may be useful in the applications of 
the theory of rough sets. 
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Observing the current state of commercial and industrial AI, control and hybrid sys
tems are said to have the highest potentials for massive practical applications of rough 
set theory. After a brief description of the control problem and fuzzy systems, the 
principles of rough control and a scenario of fine temperature control are discussed. 

1 INTRODUCTION 

The term "rough control" refers to applications of the rough set theory to con
trol problems. The objective of this article is to show that there are compelling 
reasons to pursue rough control and to explore a preliminary survey for its 
potentials of truly practical applications. 

The field of rough sets is relatively new and has remained unknown to most of 
the computing community. There appears, however, to be a growing interest 
among many researchers recently. Most research works in the field ofrough sets 
so far have been in "symbolic" approaches such as data and decision analysis, 
databases, knowledge based systems and machine learning. Also, more empha
sis appears to have been placed on theoretical aspects rather than everyday 
commercial and industrial applications. No one can over-emphasize the impor
tance of the theoretical foundation of any field; without sound foundation, this 
field would be a castle on sand. On the other hand, one would doubt the true 
value of any theory if it does not offer any practical applications. For a field to 
prosper, we need balanced successes on both theory and applications. 
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There has been some research on applications of rough control [1-6]. However, 
their number and application domains have been relatively few. This fact 
has been confirmed by my recent contacts with experts in rough sets at the 
RSSC'94 [7]. Also, my search in a national literature database has yielded a 
relatively small number of publications. Furthermore, some of the works in 
rough control are published in form of technical reports, which are not very 
visible to the world computing community. To promote rough control, quality 
articles should be published in more widely circulated international journals. 
Also, after a preliminary version of this article was presented at the ACM 
CSC'95 in March 1995, a Rough Control Group was initiated and I have been 
named as the first Chair. The major objective of the group is to pursue research 
and development of rough control and coordinate such efforts. Currently about 
60 researchers worldwide are in the group. 

Whether rough control will succeed is yet to be seen, but there are several 
reasons for which at least one should pursue its potentials. For the past couple 
of years, I have been serving as the Guest Editor of two special issues for com
mercial and industrial AI for the Communications of the ACM [8, 9]. In the 
second issue, an article for rough sets by Zdzislaw Pawlak, et.al. will appear 
[10]. This should introduce the theory to a wide spectrum of audience world
wide. In these two issues, I have assembled some of the foremost minds in AI 
to author and/or review about 23 articles. Through this extensive experience, 
I have observed practical and not-so-practical application domains within AI. 
The following Table 1 is a summary of my speculation regarding ratings on 
potentials of successful everyday applications of rough set theory [11]. 

Control has been the most successful application domain for recently evolved 
AI areas, such as fuzzy sets and chaos theory [12, 13]. Control is also one 
of the most practical application domains for neural networks [14]. It would 
be too naive to assume that these success stories in fuzzy sets, chaos, and 
neural networks will also be repeated for rough sets. However, observing these 
successful applications, control definitely deserves attention. There are several 
reasons to further support this claim: for example, there are some similarities 
between fuzzy and rough sets. Simply stated, control is a mapping problem 
from inputs to outputs. When compared with symbolic AI, the effectiveness of 
control is often easier to prove than, say, symbolic expert systems. If a machine 
can operate 5%, or even 1%, more efficiently than before, we do not need to 
elaborate words to explain its validity. 



Table 1 A Future Perspective on Successful Industrial Applications of Rough 
Sets. (On scale of 0 to 10, where 0 least and 10 most) 

Application Area Success Expectation 

Use of common sense 0 

Machine learning 3 

Expert systems 5 

Control 7 

Hybrid with other existing systems 8 
(e.g., fuzzy systems) 

2 THE CONTROL PROBLEM 
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"Control" in this article refers to control of the various physical, chemical, or 
other numeric characteristics, such as temperature, electric current, flow of 
liquid/gas, motion of machines, various business and financial quantities (e.g., 
flow of cash, inventory control), etc. A control system can be abstracted as 
a box for which inputs are flowing into it, and outputs are emerging from it. 
Parameters can be included as parts of inputs or within the box, i.e., the control 
system. 

For example, consider a system that controls room temperature by a heat 
source. The inputs may be the current room temperature and a parameter 
representing a target temperature. The output can be the amount of the heat 
source to be applied. The control problem in general is to determine the numeric 
values of the outputs for given values of the inputs. That is, the problem is to 
develop a formula or algorithm for mapping from the inputs to the outputs. 

Although the statement of the control problem is straightforward, achieving 
good control is not necessarily a simple matter for several reasons. For example, 
bad control can be time consuming or inefficient, it may unnecessarily fluctuate 
before reaching the target, or even worse, it may become unstable. A good 
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algorithm will be relatively simple yet it performs efficient and stable control. 
For easy problems, a simple mathematical formulation may be sufficient. When 
problems get harder, traditional control techniques such as PID (proportional, 
integral, and differential) may not work well. This is the type of problems 
where fuzzy control has been successful, and where our major target domain is 
centered for rough control as well. 

3 THE CASE OF FUZZY CONTROL 

Although fuzzy and rough sets are different, there are some similarities. Fuzzy 
control has already been successful in many applications, thus a reasonable 
approach exploring rough control would be to examine in what types of appli
cation domains and how or why fuzzy control has been successful. 

Typical situations where fuzzy control are particularly successful are difficult 
cases where traditional control methods do not work well. For example, the 
control rules may be so complex that mathematical formulation is either im
possible, or even if it is possible, it is too complicated or costly for practical 
applications. For such situations, fuzzy approaches allow us to represent de
scriptive or qualitative expressions such as " slow" or "moderately fast." These 
expressions are much closer in spirit of human thinking and natural language, 
and are easily incorporated with symbolic statements in form of fuzzy logic. 
Fuzzy systems are also suitable for uncertain or approximate reasoning. For 
example, the input and parameter values of a system may involve fuzziness, 
inaccuracy, or incompleteness. Similarly, the control rules that derive output 
values may also be incomplete or inaccurate. Fuzzy logic allows decision making 
with estimated values under incomplete information. 

In the following, we will illustrate the basic ingredients of fuzzy control by a 
simple example. (For more on basics, see Tutorial of [12]; for more extensive 
coverage see [15].) 

Given two input values, E = (the difference between the current temperature 
and the target temperature) and dE = (the time derivative of the difference), we 
are to determine output value, W = (the amount of heat or cooling source). We 
select fuzzy variables, such as, NB = Negative Big, NS = Negative Small, ZO= 
Zero, PS = Positive Small, and PB = Positive Big. Membership functions for 
the fuzzy variables, as functions of input and output values, are then defined 
(typically as a set of triangles or trapezoids in a graph representation). For 
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example, the membership function value or degree of variable PS is 1 and other 
variables, NB, NS, and so on, are 0, when E = 0.5. Generally, other membership 
functions can be defined and selections can affect the control performance. 
Fuzzy if-then rules that derive W from E and dE in terms of the fuzzy variables 
are given as the following table. For simplicity, assume the empty entries do 
not occur. 

dE 
NB NS ZO PS PB 

NB PB 
NS PS 

E ZO PB PS ZO NS NB 
PS NS 
PB NB 

This table represents nine rules corresponding to the nine entries in the table. 
For example, "if E = ZO and dE = NB, then W = PB" may be called Rule 
1. The remaining four entries in the same horizontal line of the table may be 
called Rules 2, 3, 4 and 5. The remaining four entries in the vertical line may 
be called Rules 6, 7, 8 and 9. 

Now with all the predetermined information, we can compute W for given 
values of E and dE. Suppose that E = 0.75 and dE = o. From the membership 
function defined earlier, E can be PB with degree = 0.5 and PS with degree 
= 0.5, dE is ZO with degree = 1.0. Hence, in the if-then table, two rules 
are applicable, Rules 8 and 9. Using each of these two rules we compute a 
membership function for W as follows, where /\ takes the minimum of the 
operand membership functions. The weight (firing strength) of each rule is 
determined as: 

as = mpB(E) /\ mzo(dE) = 0.5/\ 1.0 = 0.5 

a9 = mps (E) /\ mzo (dE) = 0.5 /\ 1.0 = 0.5 

Then the membership function associated with each rule is determined as: 

ms(W) = as /\ mNB(W) = 0.5/\ mNB(W) 
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m9(W) = 0:9 /\ mNS(W) = 0.5/\ mNs(W) 

The membership function for W, meW), is obtained as the max of the above 
two intermediate membership functions, ms(W) and m9(W). This meW) gives 
the fuzzy version of the solution for W, but we need a specific single value Wo 
as a system output to perform control. For this purpose, we compute the center 
of gravity of meW) as Wo, which is called a difuzzification procedure. 

4 ROUGH CONTROL TAXONOMY 

To develop various potential types of rough control in an organized fashion, 
classification of such types would be helpful. Generally there are different 
ways of classification and the following is just one possibility. In the course 
of developing actual applications, a newer and more appropriate classification 
may emerge in the future. 

1. Pure (rather than hybrid) Rough Control 

(a) Under an assumption of existing control rules, output values are deter
mined for imprecise or incomplete input and parameter values and/or 
rules. 

(b) Deriving feasible control rules when the input-output relations are 
vague. 

2. Hybrid systems 

(a) Rough + fuzzy systems. 

(b) Fuzzy + rough systems. 

(c) Rough + neural network systems. 

(d) Neural network + rough systems. 

(e) Rough + other systems (e.g., PID, chaos). 

5 PRINCIPLES OF ROUGH CONTROL 

1. Pure (rather than hybrid) Rough Control 
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(a) Under an assumption of existing control rules, output values are deter
mined for imprecise or incomplete input and parameter values and/or 
rules. The basic concept here is to explore the most typical feature 
of rough set theory. Inputs and parameters correspond to condition 
attributes in standard rough set theory; outputs are decision or action 
attributes. 
Typically, values of decision attributes in rough sets, i.e., outputs in 
rough control, are given in descriptive expression such as "slow." For 
control problems, we need to derive numeric values. Possible methods 
include the following. 
Methods of deriving numeric output values: 

i. Making the control rules fine enough to produce numeric values. 
ii. Use of rough measures (e.g., dependency), possibly in conjunction 

with a simple arithmetic formula. 
lll. As an extension of (2), a technique similar to defuzzification pro

cess discussed above for fuzzy control may be employed. The idea 
is to find "the center of gravity" or weighted mean of several pos
sible output values. For example, "rough variables" in place of 
fuzzy variables may be defined. Their weights (firing strengths) 
may be evaluated based on their dependencies. 

This type of rough control has high potentials when we look at proven 
successes of fuzzy control, the key elements contributed to those suc
cesses, and the similarities of the key elements in fuzzy and rough 
control. As stated earlier, the key elements for fuzzy control suc
cesses are the use of descriptive expressions and uncertain reasoning. 
Rough control also has these characteristics. 

(b) In this approach, we derive feasible control rules when the input
output relations are vague. The basic principle again, is to tailor a 
typical application of rough sets for discovering relationships in data 
to particularly fit control problems. Inputs and parameters corre
spond to condition attributes in standard rough set theory as before, 
and outputs are decision or action attributes. A set of existing con
trol rules, whether it is described by human experts or developed for 
PID or fuzzy control, may be incomplete, imprecise, or contain re
dundancy. By employing rough set theory, nonessential rules may be 
identified then deleted, or less important rules may be downgraded 
in priority or weighted by smaller factors. 

2. Hybrid systems 

This category is also one of the most promising for practical applications. 
The fundamental concept is to complement each other's weakness, thus 
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creating new approaches to solve problems. For example, fuzzy control 
has many established application cases while rough control has relatively 
few. Integrating rough control with successful fuzzy control cases could 
be relatively easy for accomplishing real world practicality of rough con
trol. Fuzzy sets allow partial membership to deal with gradual changes or 
uncertainties, while rough sets allow multiple memberships to deal with 
indiscernibility. A fuzzy-rough hybrid system may allow multiple-partial 
membership (e.g., multiple membership where each can be partial) to deal 
with both indiscernibility and uncertainty. In rough + fuzzy systems, 
for example, the macroscopic, possibly symbolic, output is determined by 
rough control while fine tuning is carried out by fuzzy control. In fuzzy + 
rough systems, the roles will be reverse. Or, rough control lacks capabili
ties of pattern recognition or memory. A hybrid system of rough control 
and neural networks may work well for certain applications. 

6 CASE STUDY 

In the previous two sections, potentials of rough control are stated in an abstract 
manner. In order to relate these statements to real world applications, we will 
consider a fictitious control example. We note that although we use one specific 
hypothetical example for easy understanding, the basic idea can be applied to 
many other types of control problems. 

Imagine we want to perform delicate room temperature control for a sophisti
cated experiment, perhaps for biomedical or solid state physics. In this scenario, 
we need fine temperature control: the allowable temperature deviation range 
is, say, within ±0.02 °C of the target temperature throughout the room. Fur
thermore, the homogeneity of the temperature distribution is required, i.e., the 
temperature difference between any two points of one meter distance must be 
less than, say, 0.01 °C. The difficulty of temperature control is compounded 
because of the various boundary conditions. For example, the current level of 
robotics is not good enough to make robots perform the experiment. That is, 
human technicians must be in the room, which themselves are complicated heat 
sources. 

Solving the problem theoretically, for example, by the Navier-Stokes' equation 
for air flow, associated with thermodynamic equations for heat conduction, 
convection, and radiation, under such complicated boundary conditions is out 
of question. A practical approach is to develop' empirical formula for control 
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from experimental data for temperature distributions and various heat/cooling 
sources. Rough control may be used in various stages of such development. 

The major component of the inputs (attributes) is the measured temperatures 
throughout the room. Since the temperatures have to be measured three di
mensionally, many sensors will be required at least initially. Other factors, such 
as the human body heat source, can be added as a part of the inputs. These 
inputs can be denoted as sl, s2, .... The outputs can be heat/cooling sources, 
which can be denoted as, tl, t2, .... The problem here is to deal with incom-
plete and imprecise data. Even if we use many sensors, there are still many 
points in the room where the true temperatures are never measured. Also, in 
addition to the sensor reliability problem, local temperature fluctuations due to 
various causes such as convection, radiation, and small turbulence, will make 
measurements inaccurate. 

An input-output mapping table may look as follows: 

An input-output mapping table 
(Input) sl s2 s3 . . . (Output) tl t2 ... 

+.03 
+.03 

+.01 
+.01 

-.04 .. . 
-.03 .. . 

-.6 +.2 .. . 
-.6 +.3 .. . 

Such a table can be constructed initially in various ways. For example, if there 
are any existing methods to approximate the mapping, they can be used. Or, 
experiments can be conducted by human experts, possibly involving trial-and
errors. 

Since maintaining many temperature sensors is expensive, lesser sensors are de
sirable. During the first stage, rough control may be used to reduce the number 
of sensors required to achieve the required control. For example, suppose that 
contributions of Sensors No.4, 7, and 23, to the outputs are found to be in
significant, then they may be deleted. Similarly, some of output elements may 
be found insignificant and thus deleted. Or, rough control may suggest other 
possible ways for achieving the same results. 

After the initial construction of the input-output mapping table, the system 
becomes operational. However, the operations probably require much fine tun
ing. For example, there will be a certain limit to the number of the table 
entries because of the space and efficiency. In other words, all the possible 
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combinations of input-output values may not be included in the table. Also, 
the data are incomplete and inaccurate. Rough control may be used for fine 
tuning of such a circumstance. For example, the closest table entries are used 
as "zeroth approximation." Rough control then finds " superposing corrections" 
to the zeroth approximation. Rough control may compute the corrections by 
first determining the input-to-output dependencies, then taking "the center of 
gravity" as in case of defuzzification. Generally, the use of traditional method 
for zeroth approximation and rough control for fine tuning may be conservative 
but probably safer than relying the total control on a new technology. 

The above illustrates a basic idea of rough control. Many other variations and 
extensions for employing rough control would be possible, depending on the 
types of applications. 

7 CONCLUSIONS 

This article has presented a preliminary study on rough control potentials. The 
topics are arranged in a top-down approach starting from a global overview of 
the subject to somewhat detailed specifications of rough control. 

Once rough control is proved to be feasible, its implication can be enormous. 
As stated earlier, it can be applied to control various physical, chemical, or 
other numeric characteristics, such as temperature, electric current, flow of 
liquid/gas, motion of machines, various business and financial quantities, etc. 
This means that controlling these characteristics in turn can be applied to 
many areas involving various engineering, scientific and management problems. 
Again, a list of successful application areas of fuzzy control [12] would be a good 
reference source to consider potential application areas for rough control. The 
list may include: transportation, consumer electronics, robotics, computers, 
communications, agriculture, medicine, management, finance, and education. 
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Rough Set-based machine learning and knowledge acquisition, as embodied in the 
system LERS, are applied to the task of sorting out natural-language word sense re
lationships. The data for training and testing are derived from The Oxford English 
Dictionary; a subsequent objective of this research enterprise is automatically placing 
additional terms in Roget's International Thesaurus. The results of this research are 
promising, so that now we would like to employ this approach to providing a com
prehensive whole-language base for general use in building varied natural-language 
computing applications. 

1 INTRODUCTION 

Computer-based natural language systems of all sorts-interfaces, message an
alyzers, question answerers, etc.-have been, and continue to be, limited by a 
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system's ability to deal with natural language semantics for the English lan
guage as a whole. Research by the Sedelows and their associates has concen
trated on associational semantics-which is meant to indicate that word senses 
are heavily influenced through association with other semantically-similar or 
at least semantically- related words. The Sedelow research has drawn heavily 
upon the Bryan graph-theoretic model of abstract thesauri [1, 2] as applied 
to a conceptual thesaurus Roget's International Thesaurus [11] to study the 
effectiveness of such a thesaurus for the bete noire of all semantic systems: 
ambiguity. Using the Bryan model it has been shown possible to disambiguate 
among word senses without human intervention, solely by algorithm. The lat
tice representations employed in Formal Concept Analysis [14, 15] also have 
proved to be excellent for documenting precise semantic inter- relationships 
among word senses. 
Given these encouraging research' results involving the use of a thesaurus for 
fine-grained semantic distinctions, a next major goal is to enhance the cover
age of a whole-language thesaurus such as Roget's International Thesaurus by 
automatically adding to it terms it does not currently contain. The computa
tional availability of that most major of dictionaries for English, The Oxford 
English Dictionary (OED) [12], has prompted the experiment reported on in 
this paper. Here, the first task was to explore the use of Machine Learning as 
embodied in the LERS system to classify terms within the OED. Our objective 
was to see whether the philologically-analytic data for each word in the OED 
is sufficient for good internal classification, where by internal classification we 
mean the discriminant association of a word sense with the more semantically 
appropriate among two or more senses of other words. Success there would 
then prompt exploration of mapping OED terms into the Thesaurus. 
The Rough Set-based system LERS first requires a decision table consisting 
of examples, their attributes, values for those attributes, and a classification 
assignment (decision) provided by an expert. The four words we chose to use 
as training examples were 1. concept; 2. conception; 3. conceptual; and 4. 
imagination. The decision table for these words provided the input to, first, 
a machine-learning rule- generating option of LERS. Those rules were, then, 
the basis for the rules LERS would generate for the words 1. conceit; and 2. 
image. This comparison, using Rough Sets, resulted in classifying senses of 
"conceit" and "image" as to whether they were more closely related, semanti
cally, to "concept", "conception", and "conceptual" -all treated as instances 
of "concept"-or to "image". As any user of the English language knows, this 
classification is not a straightforward task; all the words are inter-related as to 
meanings and thus conceptually/semantically tangled. Hence, we have here a 
strong test. 
Since a basic purpose of this experiment was to see how useful the OED data 
might be for automating this particular task, for Attribute categories we turned 
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to the "General Explanations" section in the OED. From that section we se
lected as Attributes the following philological characterizations: Part of Speech, 
Origin, Status, Word Type, Citizenship, Domain Specification, and Form His
tory. In addition, we added as Attributes the following: Hypernym (a term 
up the abstraction ladder from, e.g., " concept") , Hyponym (a term down the 
abstraction ladder); Meronym (part-whole relationship); and Synonym. As an 
example, the first sense of Concept I in our OED [12] would have the follow
ing values for these attributes: Part of Speech - Substantive (all words in the 
OED for which Part of Speech is not specified are, by default, substantives); 
Origin - Latin; Status - Obsolete; Word Type - Single; Citizenship - Natural (a 
somewhat obscure classification which includes Naturals, Denizens, Aliens, and 
Casuals, etc. Naturals include all native words like " father" , and all fully natu
ralized words like " street" , " rose" . Denizens are words such as "aide-de-camp" 
which are fully naturalized as to use but not as to form. Aliens are names of 
foreign objects for which we have no native equivalent, e.g., shah, and Casuals 
are also foreign words, but are not in habitual use.); Domain Specification -
Concept I has no value for this attribute (the second sense of "concept", Con
cept II has two values for this attribute: Logic and Philosophy); Form History 
- adoption (again, a complicated attribute; adoption means the word comes 
from a form in another language, in this case, Latin); Hypernym - "conceit"; 
Hyponym - Concept I has no value for this attribute; Meronym - Concept I has 
no value for this attribute; Synonyms - idea, throught, disposition, imagina
tion, opinion, fancy. Finally, the expert's Classification for Concept I is that it 
belongs to the group (we called it a semicolon group because of the way Roget's 
is subdivided) Concept. 
It should be emphasized that when the data in the decision table is entered, no 
attribute may have more than one value. So that in fact the first two entries, 
both for the sense of concept we have labeled Concept I, are as follows: 

Concept-l Substantive Latin Obsolete Single Natural? Adoption Conceit? 
? Idea concept. 

Concept-2 Substantive Latin Obsolete Single Natural? Adoption Conceit? 
? Thought concept. 

Notice that these entries differ only in a single attribute value- - through the 
appearance of the synonym " idea" in Concept-1 and the synonym "thought" in 
Concept-2. Question marks stand for an attribute for which there is no value. 
In the OED, the entry for "concept" begins with etymological information in
dicating that the word's origin is chiefly Latin. This information applies to 
all senses of "concept" under the boldface dictionary heading: Concept. The 
expert extracted this information; to do so automatically would require the use 
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of an already parsed version of the OED on CD-RO M or calling a parsing algo
rithm for each word being considered. Following the etymological information 
for all the senses listed under the boldfaced heading, the definition for the first 
sense of "concept" appears. It begins with a symbol indicating that this sense 
is obsolete (Status). It then reads: 

= CONCEIT, in various senses: a. A thought, idea: = CONCEIT sb. I. 
b. Disposition, frame of mind; ibid. 2 c. c. Imagination, fancy; ibid. 7. d. 
Opinion; ibid. 4. Obs. 

There is no indication of part-of-speech, so the default value is Substantive; 
its origin has been established as Latin; the status is Obsolete; the word is 
Single (no hyphens or spaces in the headword); it is Natural (no indication of 
anything else; default is Natural); there is no specification of domain; the form 
history is Adoption from Latin (see etymology for this information). The next 
four attribute values required the expert. As a hypernym Conceit was chosen 
because the definition specifies that this sense of Concept" = CONCEIT, in var
ious senses". Although the equal sign here might suggest synonymy, "various 
senses" suggests a partitioning or subdivision; hence, the assignment of Con
ceit as hypernym. The partitions, themselves, would seem to be in parallel, so 
the terms "thought", "idea," "disposition", "frame of mind", "imagination", 
"fancy", and" opinion" were all classified as synonyms of "concept". And fi
nally, the value of the decision was "concept", itself. No values were chosen for 
the attributes hyponym and meronym. 
For this experiment, the attributes Hypernym, Hyponym, and Meronym were 
included as is conventional in traditional semantic taxonomies [6] as well as in 
computer-accessible data bases such as WordNet [7]. For some empirical in
vestigations using the Thesaurus we have found the equivalent of a Hypernym 
useful as a way of characterizing a semantic partition. That is, we could use 
a word in the explicit hierarchy in the Thesaurus as a name for a semantic 
partition which would discriminate among, for example, word senses. Word
Net has been constructed on the premise that such taxonomic relationships 
will prove useful. Hence, for compatibility and potential utility we used such 
attributes. However, for the specific goal of adding terms to a lexicon-in our 
case, principally to a Thesaurus-it may be that synonyms will be sufficient. 
If so, that would obviate the need for the more fine-grained discriminations 
implied by the taxonomic attributes and would make parsing the definition al
gorithmically even more straightforward. 
Perhaps a word of explanation as to the possible sufficiency of the Synonym 
attribute for this specific goal is in order. As indicated above, the Thesaurus 
has an explicit hierarchy. The uppermost level in the hierarchy is divided into 
eight classes. Each class is divided into several labeled sub-classes indicated 
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by Roman numerals, and each sub- class is divided into labeled sub-sub-classes 
designated by capital letters. Each sub-sub-class is divided into several of 1032 
categories, which are numbered consecutively throughout the text and which 
are the lowest level in the hierarchy to be labeled with a word. Below this level 
are groupings of paragraphs, grouped by part of speech; next are paragraphs 
which are numbered; at the bottom level are what we have called semicolon 
groups (at least one boundary of such a group is marked by a semicolon) which 
contain those words which are most closely associated semantically. For exam
ple, here is one occurrence of the word" concept" in the Thesaurus: 

Class Six: Intellect 
I. Intellectual Faculties and Processes 

Faculties 
C. FUnctions of Mind 

478. Idea 
Nouns 

478.1 
478.1.1 idea, idee [dial.], 
Idee [G.], thought, think [slang], 
notion, fancy, concept, conception, 
conceit, percept, perception, 
impression, mental impression; 

As is evident, a number of words occurring in the Concept I sense in the OED 
occur in semicolon group 478.1.1 [the Thesaurus does not provide numbering 
for the semicolon groups; for clarity we have added that in our data base and 
here]. Notice that "conceit" is here in synonymous relationship with " concept" , 
" idea" , " fancy" , etc. This example suggests a reason for our speculation that 
the Synonym attribute may be sufficient for this specific task. 
To return to the input Decision Table for the experiment, there were twelve 
examples based on the entries in the OED for" Concept"; fifty-one for" Concep
tion"; two for "Conceptual"; and fourteen for " Imagination" . (As an aside, it 
might be noted that the OED's greater emphasis upon " Conception" , vis-a-vis 
"Concept" correlates very well with the Thesaurus. A recent article [13] using 
a Formal Concept Analysis approach, notes that although " concept" , was the 
initiating term, the resulting lattice had "conception" as the Supremum, with 
"concept" and other senses of " conception" (e.g., " coming with child") below.) 
The input Decision Table described above was then used in classification runs 
with the Test Data, which consisted of twenty-one entries for "conceit", and 
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twenty-four for "image". It should be noted that in the Decision Table for 
the Test Data, the expert's "decision" was always "concept", (the classification 
covering" concept", "conceptual", and "conception") and never" image" (the 
classification covering "imagination" in the input control data)-thus creating 
more of a challenge for system LERS. 

2 INDUCTION SYSTE·M LERS 

System LERS (Learning from Examples based on Rough Sets) has four options 
of rule induction [4]. Two of these options, called LEM1 and LEM2, entail 
machine learning. Using the LEM1 or the LEM2 option, the system induces a 
set of rules sufficient to describe all examples. The description is discriminant. 
Two other options, called All Global Coverings and All Rules, respectively, 
are for knowledge acquisition. When LERS is used in either of these options, 
it induces, in general, much larger rule sets. When using these bigger rule 
sets it is possible to tell to which concept an example belongs even when the 
given information is incomplete, i.e., when values of only some attributes are 
available. Other systems that also use the rough set approach to rule induction 
were presented in [10] and [16]. Rough set theory was introduced by Z. Pawlak 
in 1982, see [8, 9]. 
In the experiments on data derived from the OED, two LERS options were 
used: LEM2 and All Rules. LERS in the option LEM2 induces the simplest 
rules taking into account the users priorities. By contrast, LERS in the All 
Rules option induces all rules that can be induced from input data. In both 
cases, any induced rule is as simple as possible. 
During classification of unseen (testing) examples LERS uses a new scheme 
similar to the bucket brigade algorithm of generic algorithms. In this scheme, 
for every example first an attempt is made for complete matching by induced 
rules. If the attempt is successful-i.e., there exists at least one rule that 
matches the example-the concept to which the example belongs is decided 
by voting, in which all rules supporting the same concept vote for the concept 
with their strength and specificity. The strength of a rule is the number of 
times the rule was successful for training data in the correct classification of 
examples. The specificity of a rule is the number of conditions in the rule. 
When complete matching is impossible, a partial matching is attempted. Here 
rules that partially match the example vote, each rule votes with the product 
of three numbers: strength, specificity, and the ratio of the number of matching 
conditions of the rule to the total number of conditions of the rule. This scheme 
was successfully used in medicine [5]. 
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3 EXPERIMENTS 

Both the training and testing data sets that were constructed from the OED are 
presented in the Appendix under names oedthes.tab and test.tab, respectively. 
Both sets contain missing attribute values, denoted by question marks. In our 
experiments the LERS system induced rules treating? as a special value. Thus 
?s were included in rule conditions. 
In the first experiment, the quality of rule sets for two options, LEM2 and All 
Rules, was estimated by running a statistical test leaving-one-outfor oedthes.tab 
data set. In this test rules are iteratively induced from all examples excluding 
one that is used for testing. The number of iterations is equal to the total 
number of examples. Thus every example is used-once-for testing. In the 
option LEM2 a total of 37 errors (incorrectly recognized examples) out of 81 
examples was registered. Option All Rules produced only two errors during 
leaving- one-out (out of 81 examples). 
LERS with the LEM2 option induced 13 rules; two of these rules contained 
missing attribute values. In this induction, the attributes: hypernym, hy
ponym, and meronomy were given higher priorities. To the attribute synonyms 
was assigned the highest priority. Moreover, LERS with the All Rules option 
induced 71 rules, among these, 23 rules were involved with missing values. 
For the following experiments both rule sets, induced by LERS using LEM2 and 
All Rules options, were modified by removing all rules with conditions contain
ing missing values. The obvious reason for doing so is that rules relating missing 
values should not participate in matching missing values of examples; rather, 
the classification should be exclusively based on matching actual attribute-value 
pairs. The modified rule set induced by the LEM2 option of LERS was called 
mod-lem2.rul, the modified rule set induced by All Rules option of LERS was 
called mod-all. rul. 
Selected rules from the set mod-all.ml, with the strengths equal to or greater 
than six, are presented below: 

(synonyms, Imagination) ~ (semicolon-group, concept) with strength = 9, 
(synonyms, Apprehension) ~ (semicolon-group, concept) with strength = 8, 
(meronomy, Mind) ~ (semicolon-group, image) with strength = 7, 
(synonyms, Notion) ~ (semicolon-group, concept) with strength = 6, 
(hypernym, Conceit) ~ (semicolon-group, concept) with strength = 6, 
(hyponym, Concept) ~ (semicolon-group, image) with strength = 6. 

Note that all of these rules are in the set mod-all.rul, however, mod-all.rul 
additionally contains one rule in this range (with strength equal to or greater 
than six): 
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(meronomy, Origination-in-the-Mind) ---+ (semicolon-group, concept) 
with strength = 6. 

Two different experiments were done with rule sets mod- lem2. rul and mod
all.rul. First, both rule sets were tested on the original, training data set 
oedthes.tab, from which both rule sets were induced. This was done to check 
how modification affected the quality of rule sets. It turned out that the mod
lem2.rul rule set misclassified 34 examples (out of 81). On the other hand, the 
rule set mod-all.rul was still able to classify correctly all 81 examples. 
The second experiment was running rule sets mod-lem2.rul and mod-all.rul 
against a testing data set, test. tab, containing 45 examples. The rule set mod
lem2.rul was able to recognize correctly only the following two examples: the 
third example, because this example was matched by the following rule: 

(synonyms, Notion) ---+ (semicolon-group, concept) with strength = 6; 

and the eighth example, because this example was matched by the following 
rule: 

(synonyms, Apprehension) ---+ (semicolon-group, concept) with strength = 8 

Rule set mod-all. rul correctly recognized five examples. This rule set correctly 
recognized the above two examples (for the same reasons) and, additionally, 
the following examples: the twentieth example, because among the two rules 
that match this example: 

(hypernym, Production) ---+ (semicolon-group, concept) with strength = 4, 
(status, Current) & (synonyms, Fancy) ---+ (semicolon-group, image) 
with strength = 2, 

the first rule is stronger and won in the voting; the twenty-first example, be
cause this example was matched by the following rule: 

(hypernym, Production) ---+ (semicolon-group, concept) with strength = 4; 

and the thirty-ninth example, because this example was matched by the fol
lowing rule: 

(synonyms, Plan) ---+ (semicolon-group, concept) with strength = 3. 

In all of the above cases, correct classification was made on the basis of com-



99 

plete matching. 

4 CONCLUSIONS 

First, it is obvious that in this specific application of LERS, the option All Rules 
induced a much better rule set than the option LEM2. Not only the leaving
one-out test, but also testing rule sets against the training data and testing 
data all produced better results in the case of the All Rules option. This ob
servation supports a significant claim by Grzymala-Busse and Grzymala-Busse 
[3] that rule sets induced by the knowledge acquisition options of LERS are of 
higher quality than rule sets induced by the machine learning options of LERS. 
Secondly, the rule set mod-lem2.rul incorrectly classified four examples (all of 
them during complete matching), and in the remaining 39 cases it could not 
classify examples from test.tab at all. By contrast, the much more complex rule 
set mod-all. rul was unable to classify at all only two examples, but it classified 
incorrectly 38 examples, eight during complete matching and 30 during partial 
matching. 
Thirdly, in the natural language domain much bigger training data sets should 
be used for proper rule induction. In our study the training set was definitely 
too small. Further attempts should be made to induce rules from more repre
sentative data sets. One function of our work is to show that further research 
in this direction is promising. 
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APPENDIX A 

TRAINING DATA SET OEDTHES.TAB (IN 
LERS FORMAT) 

[ name part-of-speech origin status word-type citizenship domain- specifi
cation form-history hypernym hyponym meronomy synonyms semicolon
group J 
concept-1 Substantive Latin Obsolete Single Natural? Adoption Conceit 
? ? Idea concept 
concept-2 Substantive Latin Obsolete Single Natural? Adoption Conceit 
? ? Thought concept 
concept-3 Substantive Latin Obsolete Single Natural? Adoption Conceit 
? ? Imagination concept 
concept-4 Substantive Latin Obsolete Single Natural? Adoption Conceit 
? ? Opinion concept 
concept-5 Substantive Latin Obsolete Single Natural? Adoption Conceit 
? ? Fancy concept 
concept-6 Substantive Latin Obsolete Single Natural? Adoption Conceit 
? ? Disposition concept 
concept-7 Substantive Latin Current Single Natural Logic Adoption Idea 
Class-of-Objects? Notion concept 
concept-B Substantive Latin Current Single Natural Logic Adoption Idea 
Class-of-Objects ? Idea concept 
concept-9 Substantive Latin Current Single Natural Philosophy Adoption 
Idea Class-of-Objects ? Idea concept 
concept-lO Substantive Latin Current Single Natural Philosophy Adoption 
Idea Class-of-Objects ? Notion concept 
concept-ll Verb-Thansitive Latin Obsolete Single Natural? Adoption Con
ceive ? ? ? concept 
concept-12 Verb-Thansitive Latin Rare Single Natural? Adoption Con
ceive ? ? ? concept 
conception-1 Substantive Latin Current Single Natural? Adoption Action 
Conceiving-in-the-Womb? ? concept 
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conception-2 Substantive Latin Current Single Natural? Adoption Fact 
Being-Conceived-in-the- Womb? ? concept 
conception-3 Substantive Latin Obsolete Single Natural Plants Adoption 
Generation ? ? ? concept 
conception-4 Substantive Latin Obsolete Single Transferred Plants Adop
tion Generation ? ? ? concept 
conception-5 Substantive Latin Obsolete Single Natural Plants Adoption 
Production ? ? ? concept 
conception-6 Substantive Latin Obsolete Single Transferred Plants Adop
tion Production ? ? ? concept 
conception-7 Substantive Latin Obsolete Single Natural Minerals Adop
tion Generation ? ? ? concept 
conception-8 Substantive Latin Obsolete Single Transferred Minerals 
Adoption Generation ? ? ? concept 
conception-9 Substantive Latin Obsolete Single Natural Minerals Adop
tion Production ? ? ? concept 
conception-lO Subst;mtive Latin Obsolete Single Transferred Minerals 
Adoption Production ? ? ? concept 
conception-II Substantive Latin Current Single Natural ? Adoption Em
bryo ? ? ? concept 
conception-12 Substantive Latin Current Single Natural? Adoption Foe
tus ? ? ? concept 
conception-13 Substantive Latin Current Single Concretely? Adoption 
Foetus ? ? ? concept 
conception-14 Substantive Latin Current Single Concretely? Adoption 
Embryo ? ? ? concept 
conception-15 Substantive Latin Current Single Natural? Adoption Ac
tion ? ? Apprehension concept 
conception-16 Substantive Latin Current Single Natural? Adoption Fac
ulty ? ? Apprehension concept 
conception-17 Substantive Latin Current Single Natural ? Adoption 
Forming-An-Idea? ? Apprehension concept 
conception-18 Substantive Latin Current Single Natural ? Adoption 
Forming-A-Notion? ? Apprehension concept 
conception-19 Substantive Latin Current Single Natural? Adoption Ac
tion ? ? Imagination concept 
conception-20 Substantive Latin Current Single Natural? Adoption Fac
ulty ? ? Imagination concept 
conception-2I Substantive Latin Current Single Natural ? Adoption 
Forming-An-Idea? ? Imagination concept 
conception-22 Substantive Latin Current Single Natural ? Adoption 
Forming-A-Notion? ? Imagination concept 
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conception-23 Substantive Latin Current Single Natural Philosophy Adop
tion Action? ? Apprehension concept 
conception-24 Substantive Latin Current Single Natural Philosophy Adop
tion Faculty? ? Apprehension concept 
conception-25 Substantive Latin Current Single Natural Philosophy Adop
tion Forming-An-Idea ? ? Apprehension concept 
conception-26 Substantive Latin Current Single Natural Philosophy Adop
tion Forming-A-Notion ? ? Apprehension concept 
conception-27 Substantive Latin Current Single Natural Philosophy Adop
tion Action ? ? Imagination concept 
conception-28 Substantive Latin Current Single Natural Philosophy Adop
tion Faculty ? ? Imagination concept 
conception-29 Substantive Latin Current Single Natural Philosophy Adop
tion Forming-An-Idea ? ? Imagination concept 
conception-30 Substantive Latin Current Single Natural Philosophy Adop
tion Forming-A-Notion ? ? Imagination concept 
conception-31 Substantive Latin Current Single Natural Philosophy Adop
tion Forming? ? Notion concept 
conception-32 Substantive Latin Current Single Natural Philosophy Adop
tion Faculty? ? Notion concept 
conception-33 Substantive Latin Current Single Natural? Adoption? ? A
Part-Of-Mind Notion concept 
conception-34 Substantive Latin Current Single Natural? Adoption? ? A
Part-Of-Mind Idea concept 
conception-35 Substantive Latin Current Single Natural Philosophy Adop
tion ? ? A-Part-Of-Mind Notion concept 
conception-36 Substantive Latin Current Single Natural Philosophy Adop
tion ? ? A-Part-Of-Mind Idea concept 
conception-37 Substantive Latin Current Single Natural Philosophy Adop
tion General-Notion? ? ? concept 
conception-38 Substantive Latin Current Single Natural Philosophy Adop
tion Concept ? ? ? concept 
conception-39 Substantive Latin Current Single Natural ? Adoption ? ? 
Origination-in-the-Mind Designing concept 
conception-40 Substantive Latin Current Single Natural? Adoption? ? 
Origination-in-the-Mind Planning concept 
conception-41 Substantive Latin Current Single Natural? Adoption? ? A
Part-of-the-Mind Mental- Product concept 
conception-42 Substantive Latin Current Single Natural? Adoption? ? A
Part-of-the-Mind Design concept 
conception-43 Substantive Latin Current Single Natural? Adoption? ? A
Part-of-the-Mind Plan concept 
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conception-44 Substantive Latin Current Single Natural? Adoption? ? A
Part-of-the-Mind Original-Idea concept 
conception-45 Substantive Latin Current Single Natural? Adoption? ? 
Mental-Product-of- Inventive-Faculty Mental-Product concept 
conception-46 Substantive Latin Current Single Natural? Adoption? ? 
Mental-Product-of- Inventive-Faculty Design concept 
conception-47 Substantive Latin Current Single Natural? Adoption? ? 
Mental-Product-of- Inventive-Faculty Plan concept 
conception-48 Substantive Latin Current Single Natural? Adoption? ? 
Mental-Product-of- Inventive-Faculty Original-Idea concept 
conception-49 Substantive Latin Current Single Natural? Adoption? ? 
Origination-in-the-Mind Mental-Product concept 
conception-50 Substantive Latin Current Single Natural? Adoption? ? 
Origination-in-the-Mind Design concept 
conception-51 Substantive Latin Current Single Natural? Adoption? ? 
Origination-in-the-Mind Plan concept 
conception-52 Substantive Latin Current Single Natural? Adoption? ? 
Origination-in-the-Mind Original-Idea concept 
conceptual-1 Adjective Latin Current Single Natural? Adoption? ? A
Part-of-Concept ? concept 
conceptual-2 Adjective Latin Current Single Natural? Adoption? ? A
Part-of-Mental-Conception? concept 
Imagination-1 Substantive Latin Current Single Natural? Adoption Ac
tion Concept? Mental-Image image 
Imagination-2 Substantive Latin Current Single Natural? Adoption Ac
tion Concept ? Idea image 
Imagination-3 Substantive Latin Current Single Natural? Adoption Form
ing Concept ? Mental- Image image 
Imagination-4 Substantive Latin Current Single Natural? Adoption Form
ing Concept ? Idea image 
Imagination-5 Substantive Latin Current Single Natural? Adoption Fac
ulty Image Mind? image 
Imagination-6 Substantive Latin Current Single Natural? Adoption Fac
ulty Concept Mind ? image 
Imagination-7 Substantive Latin Current Single Natural? Adoption Power 
Concept ? ? image 
Imagination-8 Substantive Latin Current Single Natural? Adoption Op
eration Fantastic-Thought? Fancy image 
Imagination-9 Substantive Latin Current Single Natural ? Adoption 
Creative-Faculty? Mind Poetic-Genius image 
Imagination-10 Substantive Latin Current Single Natural ? Adoption 
Power Conception ? Poetic- Genius image 
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Imagination-ll Substantive Latin Current Single Natural? Adoption Mind 
? Mind ? image 
Imagination-I2 Substantive Latin Current Single Natural? Adoption Op
eration ? Mind Thinking image 
Imagination-I3 Substantive Latin Current Single Natural? Adoption Op
eration ? Mind Thought image 
Imagination-I4 Substantive Latin Current Single Natural? Adoption Op
eration ? Mind Opinion image 
Imagination-I5 Substantive Latin Current Single Natural? Adoption Op
eration ? ? Opinion image 

APPENDIX B 

TESTING DATA SET TEST.TAB (IN LERS 
FORMAT) 

[ name part-of-speech origin status word-type citizenship domain- specifi
cation form-history hypernym hyponym meronomy synonyms semicolon
group 1 
conceit-I Substantive Latin Current Single Natural? Adoption Concep
tion ? ? Conceiving concept 
conceit-2 Substantive Latin Current Single Natural? Adoption Concep
tion ? ? Conception concept 
conceit-3 Substantive Latin Current Single Natural? Adoption Concep
tion ? ? Notion concept 
conceit-4 Substantive Latin Current Single Natural? Adoption Concep
tion ? ? Idea concept 
conceit-5 Substantive Latin Current Single Natural? Adoption Concep
tion ? ? Thought concept 
conceit-6 Substantive Latin Current Single Natural? Adoption Concep
tion ? ? Device concept 
conceit-7 Substantive Latin Obsolete Single Natural ? Adoption Faculty? 
? Conception concept 
conceit-8 Substantive Latin Obsolete Single Natural? Adoption Faculty? 
? Apprehension concept 
conceit-9 Substantive Latin Obsolete Single Natural? Adoption Faculty? 
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? Understanding concept 
conceit-IO Substantive Latin Current Single Natural? Adoption Opinion 
? ? Overweening-Opinion concept 
conceit-ll Substantive Latin Current Single Natural? Adoption Opinion 
? ? Overestimation concept 
conceit-I2 Substantive Latin Current Single Natural? Adoption Opinion 
? ? Vanity concept 
conceit-I3 Substantive Latin Current Single Natural? Adoption Opinion 
? ? Pride concept 
conceit-I4 Substantive Latin Current Single Natural? Adoption Notion? 
? Fancy concept 
conceit-I5 Substantive Latin Current Single Natural? Adoption Notion? 
? Whim concept 
conceit-I6 Substantive Latin Current Single Natural? Adoption Opinion 
? ? Fancy concept 
conceit-I7 Substantive Latin Current Single Natural? Adoption Opinion 
? ? Whim concept 
conceit-I8 Substantive Latin Current Single Natural? Adoption Action? 
? Fancy concept 
conceit-I9 Substantive Latin Current Single Natural? Adoption Action? 
? Whim concept 
conceit-20 Substantive Latin Current Single Natural? Adoption Produc
tion ? ? Fancy concept 
conceit-2I Substantive Latin Current Single Natural? Adoption Produc
tion ? ? Whim concept 
image-I Substantive Latin Current Single Natural? Adoption Imitation 
Solid-Form? Statue concept 
image-2 Substantive Latin Current Single Natural? Adoption Imitation 
Solid-Form? Effigy concept 
image-3 Substantive Latin Current Single Natural? Adoption Imitation 
Solid-Form? Sculptured- Figure concept 
image-4 Substantive Latin Current Single Natural? Adoption Represen
tation Solid-Form? Statue concept 
image-5 Substantive Latin Current Single Natural? Adoption Represen
tation Solid-Form? Effigy concept 
image-6 Substantive Latin Current Single Natural? Adoption Represen
tation Solid-Form? Sculptured-Figure concept 
image-7 Substantive Latin Current Single Natural? Adoption? Painting
On-A-Surface ? Likeness concept 
image-8 Substantive Latin Current Single Natural? Adoption? Painting
On-A-Surface ? Portrait concept 
image-9 Substantive Latin Current Single Natural? Adoption? Painting-
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On-A-Surface? Picture concept 
image-IO Substantive Latin Current Single Natural? Adoption? Painting
On-A-Surface ? Carving concept 
image-l1 Substantive Latin Current Single Natural? Adoption Represen
tation·? ? Idea concept 
image-I2 Substantive Latin Current Single Natural? Adoption Represen
tation ? ? Conception concept 
image-I3 Substantive Latin Current Single Natural? Adoption Represen
tation ? ? Mental-Picture concept 
image-I4 Substantive Latin Current Single Natural? Adoption Represen
tation ? ? Mental- Impression concept 
image-I5 Substantive Latin Current Single Natural? Adoption Represen
tation ? Mind ? concept 
image-I6 Verb-Transitive Latin Current Single Natural? Adoption Form 
? ? Conceived concept 
image-17 Verb-Transitive Latin Current Single Natural? Adoption Form 
? ? Devise concept 
image-I8 Verb-Transitive Latin Current Single Natural? Adoption Form 
? ? Plan concept 
image-I9 Verb-Transitive Latin Current Single Natural? Adoption? ? 
Mind Imagine concept 
image-20 Verb-Transitive Latin Current Single Natural ? Adoption ? ? 
Mind Picture concept 
image-2I Verb-Transitive Latin Current Single Natural ? Adoption ? ? 
Mind Represent concept 
image-22 Verb-Transitive Latin Current Single Natural? Adoption? ? Im
age Imagine concept 
image-23 Verb-Transitive Latin Current Single Natural? Adoption? ? Im
age Picture concept 
image-24 Verb-Transitive Latin Current Single Natural? Adoption? ? Im
age Represent concept 
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In this paper we present a new approach to generate multiple knowledge using rough 
sets theory. The idea is to generate several knowledge bases instead of one knowledge 
base for the classification of new object, hoping that the combination of answers of 
multiple knowledge bases result in better performance. Multiple knowledge bases can 
be formulated precisely and in an unified way within the framework of rough sets 
theory. Our approach is based on the reducts and decision matrix of the rough set 
theory. Our method first eliminates the superfluous attributes from the databases, 
next, the minimal decision rules are obtained through decision matrices. Then a 
set of reducts which include all the indispensable attributes to the learning task are 
computed, finally, the minimal decision rules are grouped to the corresponding reducts 
to form different knowledge bases. We attempt to make a theoretical model by using 
rough sets theory to explain the generation of multiple knowledge. The distinctive 
feature of our method over other methods of generating multiple knowledge is that in 
our method, each knowledge base is as accurate and complete as possible and at the 
same time as different from the other knowledge bases as possible. The test result 
shows the higher classification accuracy produced by multiple knowledge bases than 
that produced by single knowledge base. 

1 INTRODUCTION 

Knowledge bases have been successfully applied in a lot of real-world applica
tions where intelligent decisions have to be made. Usually, knowledge base can 
be represented as a set of decision rules. This kind of knowledge base can be 
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derived from human experts or a collected data. Most of the time the collected 
data is so huge that it is beyond the human experts' ability to analyze without 
automated analysis techniques. The analysis and extraction of useful informa
tion from a collected data has been a subject of active research in database 
mining. 

Rough sets as a non-statistical methodology for data analysis was introduced 
by Pawlak [9]. It provides a powerful tool for data analysis and knowledge 
discovery from imprecise and ambiguous data. So far, the theory of rough sets 
has been successfully applied in many areas, such as knowledge acquisition, 
forecasting and predictive modeling, knowledge base system, and data mining 
[11, 14]. A number of algorithms and systems have been developed based 
on rough sets theory which may induce a set of decision rules from a given 
decision table, and may use induced decision rules to classify future examples. 
Most of them are attempting to find and select the best minimal set of decision 
rules that use only a minimal subset of attributes from the given data table. 
A minimal set of decision rules as a knowledge base represents the minimum 
knowledge necessary to support the classification of the given data. 

A single knowledge base which utilizes a single minimal set of decision rules 
to classify future examples may lead to mistakes, because the minimal set of 
decision rules are more sensitive to noise and a small number of rules means 
that few alternatives exist when classifying unseen objects. Recently, in or
der to enhance the classification accuracy, the concept of multiple knowledge 
bases or redundant knowledge emerged. The idea is to generate several knowl
edge bases instead of one knowledge base for the classification of new objects, 
hoping that the combination of answers of multiple knowledge bases result in 
better performance. Many research results illustrated that such multiple rules, 
if appropriately combined during classification, can improve the classification 
accuracy [7, 8, 2, 1]. Gams [2] developed the inductive learning system GI
NESYS that generate multiple sets of decision rules. One set of rules consists 
of "main" rule and of several "confirmation" rule. Each instance is classified 
with one set of rules by combining the probability distribution returned by dif
ferent rules. Although the combination rule used by Gams is rather ad-hoc, the 
reported results are encouraging. In the learning system YAILS [12], redun
dancy is used to deal with several types of uncertainty existing in real domains 
to achieve higher accuracy. YAILS uses a simple mechanism to control redun
dancy. This mechanism consists on splitting the learned rules into two sets by 
a user-definable parameter (minimal utility, which acts as a way of controlling 
redundancy) : foreground rules and background rules. All these methods lack 
a theoretical formalism about the generation of redundant knowledge. The fo
cus of this paper is to make a theoretical model to explain the generation of 
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multiple knowledge bases (or redundant knowledge). The distinctive feature 
of our methods over other methods of generating multiple know ledges is that 
each knowledge base is as· accurate and complete as possible and at the same 
time as different from the other knowledge bases as possible. 

2 RELATED NOTATIONS OF ROUGH 
SETS 

2.1 Knowledge Representation System 
The basic component of a knowledge representation system (KRS) is a set of 
objects. A database is a special case of a knowledge representation system. 
Let S =< U, C, D, VAL, f > be a knowledge representation system, where U 
is a non-empty set of objects (i.e., U = {Ul,U2, ... ,un }), C is a non-empty 
set of condition attributes, and D is a non-empty set of decision attributes. 
We have A = CUD which is the set of all attributes and enD = 0. Let 
VAL = UaEA V ALa, where for each a E A, V ALa is a finite attribute domain 
and the elements of V ALa are called values of attribute a (a E A). f is an 
information function such that f(Ui, a) E V ALa for every a E A and Ui E U. 
Every object which belongs to U is associated with a set of values corresponding 
to the condition attributes C and decision attributes D. 

Suppose B is a nonempty subset of A, Ui,Uj are members of U, and R is an 
equivalence relation over U (R = U x U). We define a binary relation, called 
an indiscernibility relation as IND(B) = {(Ui,Uj) E R : 'Va E B f(ui,a) = 
f(uj, a)}. We say that Ui and Uj are indiscernible by a set of condition at
tributes B in a knowledge representation system iff 'Va E B, f(Ui, a) = f(uj, a). 
The indiscernibility relation partitions U into equivalence classes. Equivalence 
classes of the relation R are called elementary sets in an approximation space 
Apr = (U, R). For any object Ui ~ U, the equivalence classes of the relation R 
containing Ui be denoted [Ui]R. 

Let X be a subset of U, the lower approximation of X in Apr is the set 
Apr(X) = {Ui E Ul[ui]R ~ X}. The upper approximation of X in Apr is 
the set Apr-(X) = {Ui E UI[Ui]R n Xi=- 0} 

Table 1 shows an example of a knowledge representation system. U = { 
Ul, U2, ... , us}. Each object is described by a set of condition attributes C 
= {S, H, E, e}, with attribute values V ALs = {O, I}, V ALH = {O, 1, 2}, 
V ALE = {I,2}, and V ALc = {O, I}. The set of values V ALcLAss = { 0, 
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u S H E C CLASS 

"1 0 0 1 0 0 

"2 1 0 2 1 1 

"3 1 1 1 0 0 

"4 0 2 1 1 1 
"5 1 2 1 0 1 

"6 1 0 1 0 0 

"7 1 2 2 1 1 ". 0 0 2 1 1 

Table 1 A knowledge representation system 

I} of the decision attribute D represents the set of concept descriptions which 
are to be learned based on the attribute values of C. In our terminology, the 
concept is a subset of objects with a particular value of a decision attribute. 
All objects belonging to the concept are said to be positive, whereas all objects 
outside the concept are negative. 

2.2 Attribute Reduction Techniques 
Attribute reduction techniques aim at removing superfluous attributes and find
ing minimal subsets of attributes, each of which has the same discriminating 
power as the entire attributes. Let C* denote the collection of equivalent classes 
of the relation IN D( C) and D* be a family of equivalent classes of the relation 
IND(D). The POS(C,D) is a union of lower approximation of all elementary 
sets of the partition D* in the approximation space Apr = (U,IND(C)) such 
as POS(C, D) = UXED * Apr(X) 

Definition 2.1 The degree of dependency between the condition attributes 
and the decision attributes D is denoted as 'Y( C, D) and defined as 'Y( C, D) = 
card~~~fb~,D)) , where card denotes set cardinality. 

Definition 2.2 The set of attributes P (P ~ C) is a reduct of attributes C 
which satisfies the following conditions: (1) POS(P, D) =1= POS(P', D), 'rip' c 
P and (2) 'Y(P, D) = 'Y(C, D). 

Attribute reducts, denoted as RED(D), are the minimal subsets of condition 
attributes C with respect to decision attributes D, none of the attributes of any 
minimal subsets can be eliminated without affecting the essential information. 
These minimal subsets can discern decision classes with the same discriminating 
power as the entire condition attributes. Any reduct REDi E RED(D), can 
be used instead of the original system S. For each reduct, we can derive a 
reduct table from the original knowledge representation system by removing 
those attributes which are not in the reduct. For example, HE is a reduct of 
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U H E Class 
11.1.11.6 0 1 0 
11.2.11.8 0 2 1 

"3 1 1 0 
"'4,11.5 2 1 1 

"7 2 2 1 

Table 2 A Reduct Table of Reduct HE 

Table 1 (we discuss how to compute reducts in Section 3), then a reduct table 
is obtained as shown in Table 2. 

3 GENERATING MULTIPLE 
KNOWLEDGE 

Recently, the subject of multiple knowledge bases (or redundant knowledge) 
and multiple experts have received considerable attention [7]. A minimal knowl
edge base employs only the information necessary to represent the given data 
set without losing essential information. In other words, a minimal knowledge 
base is a set of decision rules without any redundant attributes and attribute 
values. Depending on the criterion, one minimal knowledge base can be more 
useful than another that employs different information. Empirical tests [7, 8, 6] 
indicate that multiple knowledge is more helpful if it is as accurate and reli
able as possible and at the same time as different from the other knowledge 
as possible. This also seems plausible in real life. Adding a novice is prob
ably counterproductive and adding an expert whose knowledge is too similar 
to some other members only give more importance to the previous expert [2]. 
The multiple knowledge bases concept matches the concept of reducts in rough 
set theory. One reduct table can be obtained from a knowledge representa
tion system by removing those attributes which are not in the reduct without 
losing any essential information, thus simplify the knowledge representation 
system. l.From a reduct table, we can derive a knowledge base which consists 
of the corresponding decision rules. Using different reducts of a knowledge 
representation, we can derive different knowledge bases, thus forming multiple 
knowledge bases. 

Our approach uses reducts and decision matrix to construct multiple knowl
edge bases. The constructing task is to find multiple knowledge bases that 
can be used to predict the class of an unseen object as a function of its at
tribute values. One reduct corresponds to a minimal knowledge base in this 
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U H E C CLASS 
11.1,1./.6 0 1 0 0 
1.I.2· u 8 0 2 1 1 

"3 1 1 0 0 
"4 2 1 1 1 

"5 2 1 0 1 

"7 2 2 1 1 

Table 3 A simplified Table from Table 1 

paper. Our method performs in three steps. First, superfluous attributes are 
eliminated from databases to improve the efficiency and accuracy of the learn
ing process. Next, using the method first proposed by Ziarko in [15], decision 
matrices are used to compute the minimal decision rules of the knowledge rep
resentation system and then compute a set of reducts which include all the 
indispensable attributes of the databases to the learning task. Finally, con
struct different minimal knowledge bases corresponding to different reducts. A 
minimum knowledge base corresponding to a reduct is a set of decision rules 
which is fully covered by the attributes of a reduct. The fully cover means that 
all the condition attributes used by the decision rules is also the attributes of 
the reduct table. 

3.1 Elimination of Superfluous Attributes 
In the data collection stage, all the features believed to be useful and relevant 
are collected into the databases. In a database system, we describe each object 
by the attribute values of C. Very often it turns out that some of the attributes 
in C may be redundant in the sense that they do not provide any additional 
information about the objects in S. Thus it is necessary to eliminate those 
superfluous attributes to improve learning efficiency and accuracy. 

Definition 3.1. An attribute pEe is superfluous in C with respect to D if 
POSc(D) = POSc_{p}(D), otherwise p is indispensable in C with respect to 
D. 

If an attribute is superfluous in the information system, it should be removed 
from the information system without changing the dependency relationship of 
the original system. For example, S is a superfluous attribute in Table 1. Table 
3 is obtained by removing it from Table 1. As we can see, Table 3 is simple 
but has the same discernibility as Table 1. 

3.2 Minimal Decision Rules 
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u u ,u u 
u ,u E,I)(C,O H,O C,O H,O) H,O E,I C,O 

H,I E,I) C,O) (H,I)(C,O (H,I) (H,I)(E,I)(C,O 

Table 4 A decision matrix for class '0' 

A rule is a combination of values of some condition attributes such that the 
set of all objects matching it is contained in the set of objects labeled with the 
same concept, and such that there exists at least one such object. 'fraditionally, 
the rule r is denoted as an implication 

where CI , C2 , ... , and Cm are the condition attributes and d is a decision at
tribute. 

The process by which the maximum number of condition attribute values of 
a rule are removed without decreasing the classification accuracy of the rule 
is called Value Reduction [9] and the resulting rule is called maximally geneml 
or minimal decision rule. Thus, a minimal decision rule is optimal in the 
sense that no condition could be removed without decreasing the classification 
accuracy of the rule. This process checks whether a rule can be made more 
general by eliminating irrelevant attribute values. An attribute value in a rule 
is irrelevant if it can be removed from the rule without decreasing its expected 
classification accuracy, which is computed from the given data set. The minimal 
decision rules minimize the number of rule conditions and are optimal because 
their conditions are non-redundant. The computing of minimal decision rules 
is of particular importance with respect to knowledge discovery or data mining 
applications [14], since they represent the most general patterns existing in the 
data. 

A decision matrix approach was first proposed by Ziarko et al. in [15] to com
pute all minimal decision rules of a knowledge representation system S and then 
extended in [6] to large relational databases by integrating attribute-oriented 
generalization. It provides a way to generate the simplest set of decision rules 
(i.e., minimum length decision rules) while preserving all essential information. 
The method is based upon the construction of a number of boolean functions 
[10, 15] from decision matrices. For more details, please refers to [15, 16]. 

ExaIIlple 1: Table 4 and Table 5 depicts two decision matrices obtained from 
the knowledge representation system given in Table 3. Each cell (i,j) in a 
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u " , ~6 "a 
'lL2,'UR (E,2)(C,1) (H,O)(E,2)(C,1) 

"4 (H,2)(C,1) (H,2)(C,1) 

"n (H,2) (H,2) 

"7 (H,2)(E,2)(C,1) (H,2)(E,2)(C,1) 

Table 5 A decision matrix for class '1' 

decision matrix is a collection of attribute-value pairs distinguishing row i of 
the target class from column j of its complement. 

l,From Table 4, we can get the following minimal decision rules for the class '0': 

(H = 0) /\ (E = 1) -7 (CLASS =' 0') 
(H = 0) /\ (C = 0) -7 (CLASS =' 0') 
(H = 1) -7 (CLASS =' 0') 

Similarly, we can obtain the set of minimal rules for the class '1' from Table 5: 

(E = 2) -7 (CLASS =' I') 
(C = 1) -7 (CLASS =' I') 
(H = 2) -7 (CLASS =' I') 

3.3 Computing Multiple Reducts 
A reduct is a minimal subset of attributes which has the same discernibility 
power as the entire condition attributes. Finding all the reducts is a NP
complete problem [5, 6]. Fortunately, it is usually not necessary to find all the 
reducts in a lot of applications including ours. A reduct uses a minimum num
ber of attributes and represent a minimum and complete rules set to classify 
objects in the databases from "one angle". To classify unseen objects, it is op
timal that different reducts use different attributes as much as possible and the 
union of these attributes in the reducts together include all the indispensable 
attributes in the databases and the number of reducts used for classification is 
minimum. Here we proposed a greedy algorithms to compute a set of reducts 
which satisfy this optimal requirement partially because our algorithm cannot 
rruarantee the number of reducts is minimum. (It may be conjured that this 
problem is computationally intractable to solve). Our algorithm starts with the 
core attribute (CO) [6]. (Core is defined as the intersection of all reducts and 
can be computed easily from the discernibility matrix [10]. The core attributes 
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u " ," "4 
" ," EC HC H HEC 

HEC HC H HEC 

Table 6 A discernibility matrix 

are those entries in the discernibility matrix which have only one attribute. 
For example, Table 6 is the discernibility matrix for Table 3. The entry (1,3) 
and (2,3) has only one attribute in it, H is a core attribute.) Then through 
backtracking, a set of reducts are constructed. A reduct is computed by us
ing forward stepwise selection and backward stepwise elimination based on the 
significance values of the attributes and the dependency between conditions 
attributes and decision attributes [6]. The algorithm terminates when the at
tributes in the union of the reducts includes all the indispensable attributes in 
the databases. 

AlgorithIll 1: COIllputing Multiple Reducts 

Input: A relation Rafter eliIllination of superfluous attributes 

Output: A set of reducts UREDUi which have all the indispensable 
attributes in the relation 

AR = C - CO; REDU = CO; 1 --+ i 

Compute the significant value for each attribute a E AR 

Sort the set of attributes AR based on significant values 

While the attributes in U REDUi does not include all the indispensable at
tributes in the 

databases. 

(forward selection:) 
While K(REDU, D) i:- K(C, D) Do /* Create a subset REDU 

of attributes C by 
adding attributes * / 

Select the next attribute aj in AR based on the signif-
icant value; 

REDU = REDUU {aj}, AR = AR- {aj} 
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compute the degree of dependency K(REDU, D); 
Endwhile 

(backward elimination:) 
IREDUI-tN 

For j=O to N-l Do /* create a reduct by dropping redundant at
tributes * I 

Endfor 

If aj is not in CO Then remove it from REDUi 
compute K(REDU, D); 
If K(REDU, D) =1= K(C, D) Then REDUUai -t REDU 

REDUi = REDU; i + 1 -t i; /* backtrack to compute the next 
reduct * I 

Endwhile 

Using the algorithm, we can find two reducts which have all the three indis
pensable attributes in Table 3 is {HE, He}. The complexity of the algorithm 
cannot be determined exactly since it is highly dependent on the nature of the 
input data. The number of iteration really varies from data sets. From the 
experiment on the test data set from [6], it normally terminates after a few 
iterations. To compute a single reduct, it takes O(an + aloga) in every itera
tion in the worst case for n objects with a attributes because computing the 
degree of dependency using a hashing technique is O(n), computing attribute 
significance value is O(an), sorting the attributes based on the significance is 
value O(aloga). 

Let RU Lmin = {rl' r2, ... , r d be the set of all minimal decision rules generated 
by decision matrix method and let RED = {RED1 ,RED2, ... ,REDi} be the 
attribute reducts computed from the algorithm. A minimal knowledge base de
noted as KBREDi (REDi E RED) is defined as KBREDi = U{Cond(rk) ~ 
Cond(REDi) : rk E RU Lmin }, where CondO is the set of attribute names. 

For example, in Example 1, we have the set ofreducts RED = {HE,HC} with 
respect to decision attribute. According to the above definition, the minimized 
knowledge bases corresponding to reducts "HE" and "HC" are the following 
sets of decision rules extracted from all minimal decision rules: 

The minimal knowledge base KBREDI for reduct "HE" is 



(H = 0) 1\ (E = 1) -t (CLASS =' 0') 
(H = 1) -t (CLASS =' 0') 
(E = 2) -t (CLASS =' I') 
(H = 2) -t (CLASS =' I') 

The minimal knowledge base KBRED2 for reduct "HC" is 

(H = 0) 1\ (C = 0) -t (CLASS =' 0') 
(H = 1) -t (CLASS =' 0') 
(C = 1) -t (CLASS =' I') 
(H = 2) -t (CLASS =' I') 

In summary, the algorithm of generating multiple knowledge is as follow: 
Algorithm 2: Generating Multiple Knowledge Bases (DBMkbs) 

Input: a relational system R 

Output: Multiple knowledge bases UKBREDUi 

Step 1: Remove superfluous attributes from the databases 

Step 2: Compute the minimal decision rules through decision matrices 
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Step 3: Compute a set of reducts which cover all the indispensable attributes 
in the databases. 

Step 4: Group the minimal decision rules to the corresponding reducts to form 
a multiple knowledge bases 

3.4 Test Results 
Table 7 shows the test results of DBMaxi [6](which generate all the minimal 
decision rules), DBDeci [4, 5] (which generates only a set of minimal decision 
rules) and DBMKbs. For a detailed explanation of the data set, please refer 
to [13]. DBMaxi represent the upper bound of the classification accuracy. As 
can be see, the result of DBMkbs is very close to the upper bound. However, 
the problem of how to combine decisions of multiple knowledge bases remains. 
Currently, there are three strategies for combining multiple sets of knowledge 
rule: (1) Sum of distribution (2) Voting [7] (3) Naive Bayesian combination [8]. 
In the test, Voting is adopted to solve classification confliction. These three 
strategies are complementary to each other, each has its strong and weak point 
depending on the domain. A deep analysis and comparison of these strategies 
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Methods Iris Appendicitis Thyroid Cancer Average 
DBMaxi 96.33 91.05 98.86 98.30 96.14 
DBMkbs 96.00 90.80 98.00 97.50 95.57 
DBDeci 94.33 88.20 95.06 95.56 93.29 

Table 7 The Comparative Performance 

and developing new methods for combining multiple knowledge bases rules are 
one of our current research topics. 

4 CONCLUSION 

In this paper, an approach for constructing multiple knowledge bases based on 
rough set theory is presented. The concept of rough set offers a sound theoret
ical foundation for multiple sets of knowledge rules. Multiple knowledge base 
systems can be formulated precisely and in an unified way within the frame
work of rough set theory. In addition, by using the multiple knowledge bases, 
the classification accuracy may increase and the ability of explanation may im
prove as the same decision is explained by using many different "point of view" , 
which is one of the weak points of the inductive generated (nonredundant) sets 
of decision rules. 
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There are two approaches to control theory. One is the classical hard computing 
approach. Its modern theory is based on differential geometry and topology. An
other is fuzzy logic, a soft computing approach. Taking the views of both hard and 
soft computing, an integrated approach is proposed. The mathematical formalism 
for such an integrated structure is called the rough logic government. Intuitively, 
fuzzy logic is viewed as a methodology of constructing functions by a grand scale in
terpolation guided by qualitative information. Model theory of rough logic sysyem is 
used to formalized the design of classical fuzzy logic controllers. The design is formu
lated as a sequence of trasnformations of mathematical models of a control system. 
It starts from a symbolic model that consists of predicates or propositions in rough 
logic. Such a model is referred to as a theory in formal logic. By experts' suggestion, 
called fuzzificaton, t he symbolic model can be transformed into a fuzzy model that 
usually consists of rules of fuzzy sets (membership functions). In formal logic, such 
a transformation is called an interpretation of the theory. Of course, interpretations 
are usually not unique. The collection of all such interpretations is a higly structured 
set of membership functions; it is called a fibre space by differential geometers and 
topologists. Using one of the usual inference methods, the cross-sections of the fi
bre space is tranformed into a "virtual" space of trajectories or integral submanifold 
of a differentiable manifold. Conceptually, some of these "virtual" trajectories or 
integral submanifolds should correspond to some solutions of the system equations 
of a classical dynamic system. By veification and validation, part of the "virtual" 
space solidifies into a "real" space of trajectories or integral submanifolds of a differ
entiable manifold. These "real" trajectories or integral submanifolds are solutions of 
the system equations of a classical dynamic system; of course, in fuzzy logic design, 
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these equations are usually not expiliclty constructed. Several new applications are 
identified, most notably one is the stability problem. 

1 INTRODUCTION 

Rough set methodology is an emerging new technology in handling the classi
ficatory analysis of imprecise, uncertain or incomplete information systems. In 
this paper, we integrate this new technology together with evolutionary com
puting technology into the design theory of fuzzy logic control (FLC). 

One of the important novelties of FLC design is that the experts domain knowl
edge is the integral part of the system. FLC designer implicitly or explicitly 
believe that a control system has an underlying logic system behind it. So the 
essence of fuzzy logic control design is to search for such a underlying logic 
system. In this paper, we formalize such search. 

2 MATHEMATICAL MODELS IN 
CONTROL 

What is a mathematical models? The following paragraph about mathematical 
model is depict from a common text book of discrete mathematics [15]. 

A mathematical model is a mathematical characterization of a phe
nomena or a process. So mathematical model has three essential parts: 
a process or phenomena which is to be modeled, a mathematical struc
ture capable of expressing the important properties of the object to 
be modeled, an explicit correspondence between the two. 

The classical controller(CC) and FLC, though, have the same goal, they focus 
on different aspects of the same process. So they use different mathematics, 
and hence have different methods for proving the correctness of the model 
(verification and validation). 

In ee, one often starts from a model of the system [6]: 



x = F(t,U,X) 

Y = H(t,U,X) 

Then from the solutions of (1.1), one obtains the control function 

Y = K(t,U) 
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(1.1) 

(1.2) 

(1.3) 

where X, U, and Y represent respectively the state, the input, and the observ
able output variables in vector forms. The mathematical models (1.1) and (1.2) 
are often derived from the nature laws and/or engineering principles. Hence 
the correctness of the correspondence between the mathematical structure and 
the real world phenomena or process is obvious, and hence the verification and 
validation step is often brief or fell into background. On the other hand if 
systems are complex and precise (or even approximate) analytic descriptions of 
systems are unavailable, then CC approaches have to halt and to wait for new 
mathematical development. FLC designers then choose to model the solution 
directly (without the equations of a system). In other words, classical control 
models the system, while FLC models the solution without the system model 
( equations) . 

Their differences are fundamental and intrinsic, so are their respective method
ologies. FLC often needs long and tedious experiments-called tuning- to prove 
that the solution model is indeed correct. The goal of this paper is to propose 
theoretical foundation so that such proofs (verification and validation) can be 
conducted in a more organized and systematic fashion. We are aware that some 
modern formulation of control has extend the differential equations to differ
ential inclusions [2], so FLC designers may often attack more general problems 
than the solution of differential equations 

3 AN OVERVIEW OF FUZZY LOGIC 
CONTROLS 

We will express FLC theory in terms of the framework of fuzzy graphs [17], 
because it is equivalent, yet more concise. Let us set up our notations and 
terminology. 
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1. U is the input vector and Y is the output vector. 

2. The desirable control function Y = K(U). 

3. SymI n is a finite set of input symbols and SymOut is a finite set of output 
symbols. 

4. The mapping'" : Symln -+ SymOut, denoted by 'T] = ",(v), is a quali
tative approximation of the control function described by experts. This 
mapping is called symbolic control function, or in graph notations, the 
graph ('T], ",(v» is called symbolic graph. In current practice, it is often ex
pressed by a set of linguistic rules - a set of rules using linguistic variables. 

5. The assignment of a membership function to a symbol is called fuzzy in
terpretation. 

6. 'T], v are variables in Symln or SymOut respectively; they are called lin
guistic variables, however, no interpretations are assigned at this level. 

7. Note that we did not use the term linguistic variable in Zadehs technical 
sense ([18], p. 132). We did not include the interpretation as a part of 
the definition of a linguistic variable. In our approach, we want to vary 
these fuzzy interpretations. In other words, the tie between symbols and 
membership functions are dynamic. 

Now we will describe the FLC design procedure in our terminology. 

3.1 Step 1: A symbolic graph - a set of 
linguistic rules 

In this step, experts capture the unknown control function, Y = K(U), qual
itatively by a symbolic function, 'T] = ",(v), where v and 'T] are two variables 
that range respectively through Symln = {Sinl, Sin2, ... Sini ... Sinh} and 
SymOut = {Soutl,Sout2, ... Souti ... Soutk}. In current practice, the sym
bolic function 'T] = ",(v) is represented by a set of linguistic rules. Abstractly, 
Y = K(U) is a function of vector spaces, while 'T] = ",(v) is a function of finite 
sets. Intuitively, the two functions are related by experts interpretations of 
the symbolic input and output. The symbolic graph (v,'T]) is a mathematical 
representation of the set of linguistic rules. 
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In the Figure 1. below, it illustrated the interpreted symbolic graph. The 
curve is the unknown control function, Y = K(U). Experts use the sym
bols(represented by boxes) to capture its behavior qualitatively. 

Light boxes are the output symbols 

n~11 I 

/ 
~ 1\ I 

I --.... -- ........ 1 

---I 
Cool Cold 

I I 
Hot 

Heavy boxes are input symbols supplied by experts 

Figure 1 Interpreted symbolic graph 

Example IA. Let a set of if-then rules using linguistic variables be as follows 

IF temperature IS cold, THEN fan-speed IS high 
IF temperature IS cool, THEN fan-speed IS medium 
IF temperate IS warm, THEN fan-speed IS low 
IF temperature IS hot, THEN fan_speed IS zero 
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Then the rules can be expressed by the symbolic graph: 
Symln = cold, cool, warm, hot, 
SymOut = high, medium, low, zero, 

I v I TJ = 1>,( v) I 
cold high 
cool medium 
warm low 
hot zero 

3.2 Step 2. Fuzzy graphs - fuzzification 

To get the desirable control function, experts interpret each input symbol 
Sini E Symln by a membership function Ii, in notation, the interpretations 
are the assignments: 

i = 1,2, ... h; (1.4) 

Each assignment is called a fuzzy interpretation of the linguistic constant. For 
the output symbols, in TVFI case, one uses supporting values. We will base 
our exposition on this approach. 

j = 1,2, ... k 

where gj, j = 1,2, ... k are supporting values (constants) 

Example 1B Suppose experts suggest the following interpretations: 

Cold = Sin1 := 11, 
Cool = Sin2 := 12, 
Warm = Sin3 := 13, 
Hot = Sin4 := 14, 
High = Soutl := gl, 
Medium = Sout2 := g2, 
Low = Sout3 := g3, 
Zero = Sout4 := g4 

(1.5) 
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High 

Medium 
Low 

Low 

If we move the curve in each box to the supporting value 
(the horizontal bar), we will get an approximation of the 
cUNe(the control function). The cureve in a box is a 
membership function suggested by experts. 

Figure 2 Fuzzy interpretation of the linguistic constant 

(e.g, the support values are 91 = 800rpm, 92 = 500rpm , 93 = 200rmp, 
94 = Orpm) Then the symbolic graph is transform to a fuzzy graph (u, k(u)) -
a fuzzy approximation. 

I v I k(u) I 
h 91 
h 92 
h 93 
14 94 
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3.3 Step 3. Candidate graph - defuzzification 

Based on TVFI or Mamdani inference methods [1], the fuzzy graph (u, t(u)) 
can be transformed into a vector graph (u, k(u)) which is a candidate graph of 
the unknown control function. To be more precise, the vector graph (u, k(u)) is 
the graph of a function which is a un-verified and un-validated candidate of an 
approximation of the unknown control function. The graph is called candidate 
graph and the function is called candidate function - a proposed unverfied 
approximation. 

lu I (u, k(u)) 
5 RPM 

78 degrees 
350 RPM 

3.4 Step 4. Verification and validation -
Tuning 

In CC, the verification and validation of a control function is a relatively easy 
task, because the work is embedded in the system modeling. In FLC, sys
tem modeling is skipped, so the control functions can not simply be veri
fied/validated as a solution of the system model. The verification and vali
dation of the fuzzy graph (that is to show that the candidate graph is indeed 
the graph of the real world control function) has to be carried out directly by 
experiments. Of course experts' interpretation (assignment of a membership 
function to each symbol) can not so precise that they can pinpoint exactly one 
membership fucntion for each symbol. In practices, there are many candidates 
for interpretations. For each symbol Sini, i = 1,2, ... , h, let 

Fini = {Ii, fI, fI' , ... , H ... }, i = 1,2, ... , h (1.6) 

be a family of membership functions that interpret the symbol Sini. The so
called turning is to conduct experiments by varying H through Fini until a 
correct one is found. We propose to use evolutionary computing to breed better 
candidates, and to use rough sets to organize candidates. Roughly, FLC design 
is a grand scale extrapolation based on human intuition. 

Example 1D 
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This box show two interpretations 
of the same CK'7TT"Ih;nt,:~-----:"I 

In tunning phase, experts adjust the membership functions of a 
symbol until it is proved to be correct by experiments. The 
heavy curves in the box are two membership functons under 
experiments The final choice is depended on the experiments 

Figure 3 Interpretation of symbols 

4 POSSIBLE WORLDS MODEL THEORY 
FOR ROUGH LOGIC 

Expanding their axiomatic characterization of rough sets, Lin and Liu devel
oped the first order rough logic [10]. It can be shown that it is equivalent to 
first order modal logic 85 [12, 11]. The Possible worlds are called observable 
worlds [10]. We will call them possible worlds here, since it is equivalent and 
better known. In this paper, we do not need the full theory, so we will illustrate 
its world model by an example. 

Let E = {l, 2, 3, 4, 5, 6, 7, 8, 9} be the universe of discourse. Let R be an equiv
alence relation which partitions E into three equivalence classes: 

Hl = {3, 6, 9}, 



132 

H2 = {2, 5, 8}, 
H3 = {I, 4, 7}. 

Intuitively, Hi represents an equivalence class of elements which are indis
tinguishable from each other. The collection of one representative from each 
equivalence class is the possible worlds of modal logic and we have called them 
observable worlds [10]. For this example, all possible worlds are: 

W 1 = {I, 2, 3}, W 2 = {l, 2, 6}, W 3 = {I, 2, 9}, W 4 = {I, 5, 3}, 
W 3 = {I,5,6}, W 6 = {I,5,9}, W 7 = {I,8,3}, W 8 = {I,8,6}, 
W 9 = {I,8,9}, WlO = {4,2,3}, W l1 = {4,2,6}, W 12 = {4,2,9}, 
W 13 = {4,5,3}, W 14 = {4,5,6}, W 15 = {4,5,9}, W 16 = {4,8,3}, 
W 17 = {4,8,6}, W 18 = {4,8,9}, W 19 = {7,2,3}, W 20 = {7,2,6}, 
W 21 = {7, 2, 9}, W 22 = {7, 5, 3}, W 23 = {7, 5, 6}, W 24 = {7, 5, 9}, 
W 25 = {7, 8, 3}, W 26 = {7, 8, 6}, W 27 = {7, 8, 9}. 

Our notion of possible worlds is different from standard modal logic. To stress 
this fact we will say that the possible world Wi is derived from E. The collection 
of these possible worlds or observable worlds {Wi Ii = 1, ... ,27} is called the 
World Model W on E [10]. We should point out again, this world model is 
equivalent to the world model of the first order S5 logic formulated in [12]. 

5 TUNING BY ROUGH LOGIC 

The tuning of FLCs will be organized by the World Model of rough logic theory. 
We will us illustrate the idea by examples. 

Let Finl = {h, I{. I{', ... } be the collection of candidates for interpreting the 
linguistic constant Sinl = Cold (suggested by experts): 

Cold: (heavy line is common to three membership functions) 

Similarly, let Fin2 = {h, If, If', ... } be the possible interpretations of the lin
guistic constant Sin2 = Cool, 

For clarity we have drawn separate figures for Cool and Cold. As usual, these 
two classes of functions have overlapping supports (support= {x I I (x) > o}). 
A symbolic graph can be interpreted into several fuzzy graphs by varying the 
membership functions for each symbols. Here we illustrate three choices. Let 
the interpretations of linguistic constant Cold vary through Finl = {h, If, 
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Figure 4 Cold: heavy line is common to three membership functions 

fi',·· .}, and Cool vary through Fin2 = {12, f~, f~', .. . }, then we have following 
fuzzy graphs: 

cold it 
cold 12 
warm is 
hot f4 

f{ gl 
12 g2 
is g3 
f4 g4 
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Figure 5 Possible interpretations of "Cool" 

cold 1{ 
cool h 
warm is 
hot !4 

1{ gl 
h g2 
is g3 
14 g4 



cold f{' 
cool h 
warm h 
hot i4 

if' g1 
h g2 
h g3 
i4 g4 

cold it 
cool 12 
warm h 
hot i4 

it g1 
h g2 
h g3 
i4 g4 

6 ROUGH GOVERNMENT OF FUZZY 
CONTROLLERS 

6.1 The Structure of the Linguistic Rules 
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A symbolic graph (a set of linguistic rules) is a qualitative approximation to 
the unknown control function, it represents an insight of experts. If the control 
function is known, we can create a symbolic graph, called the ideal symbolic 
graph, which will perform the task exactly as the control function. The sym
bolic graph is a set of proper axioms in a Rough Logic Theory RLT. The ideal 
symbolic graph is the underlying first order logic. For a given control problem, 
experts may propose several symbolic graphs SG(l), SG(2), .... These SG rep
resent experts very very well educated guess. So we should refine them using 
the genetic algorithm during the tuning. Let SG(H), H = 1,2, ... , s, be these 
symbolic graphs, and let RLT(H) be the corresponding rough logic theories. 
In principle, if we have adequate family of RLT(H), we have 
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Underlying First Order Logic = lim RLT(H) 
+-H 

Example 2. We have a set the linguistic rules: 

IF temperature IS very cold 
IF temperature IS moderate cold 
IF temperature IS quite cool 
IF temperature IS moderate cool 
IF temperate IS moderate warm 
IF temperate IS very warm 
IF temperature IS hot 
IF temperature IS very hot 

THEN fan-speed IS very high 
THEN fan_speed IS moderate high 
THEN fan-speed IS upper medium 
THEN fan-speed IS medium 
THEN fan_speed IS moderate low 
THEN fan-speed IS very low 
THEN fan_speed IS near zero 
THEN fan-speed IS exactly zero 

(1. 7) 

It is clear that this set of linguistic rules is a refinement of the set in Example 
1, and hence there is a homomorphism between the corresponding two RLTs 
[4]. The inverse limit is taking in this sense [5]. 

6.2 The World Model -The Structure of 
Fuzzy Rules 

For a fixed H, and for a linguistic variable Sin(H)j, we have a set of member
ship functions to interpret it. 

Fin(H)j = {Hj,Hj,Hj', ... ,Hj} (1.8) 

Let the union of these interpretation be 

Fuzln(H) = U{Fin(H)ili = 1,2, ... m(i)} (1.9) 

Note that Fin(H)/s are pairwise disjoint, they form a partition on Fuzln(H). 
Fuzln(H) together with this partition is a rough structure for the rough logic 
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theory RLT(H). A possible world is a selection one representative from each 
Fin(H)i'sO 

The World Model W(H) on FuzIn(H) 

= the collection of possible worlds 
= the collection of fuzzy graphs. 

6.3 Building the Correct Fuzzy Rules 

If we know the rough logic RLT(H) is correct, then there is a correct possible 
world in W(H). In other words, the fuzzy graph corresponding to this correct 
possible world will produce the desirable control functions. However, in reality 
we do not know which one is correct, so we have to zigzag through the tuning to 
find a correct RLT(H). If the control function of an application were unique, 
then our search would be very lengthy and difficult. Fortunately, in most appli
cations, acceptable control functions are abundant, so such search for correct 
RLT(H) is possible. Our main strategy is to use evolutionary computing, such 
as genetic algorithm to breed the better fuzzy graph, and to use rough logic to 
govern such population of correct fuzzy graphs 
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1 INTRODUCTION 

This paper is an extension of articles Pawlak (1987), where some ideas concern
ing rough functions were outlined. The concept of the rough function is based 
on the rough set theory (Pawlak, 1991) and is needed in many applications, 
where experimental data are processes, in particular as a theoretical basis for 
rough controllers (Czogala et al., 1994, Mrozek and Plonka, 1994). 

The presented approach is somehow related to nonstandard analysis (Robinson, 
1970), measurement theory (Orlowska and Pawlak, 1984) and cell-to-cell map
ping (Hsu, 1980) but these aspects of rough functions will be not considered 
here. 

In recent years we witness rapid grow of development and applications of fuzzy 
controllers. The philosophy behind fuzzy control is that instead of describing, 
as in the case of classical control theory, the process being controlled in terms of 
mathematical equations - we describe the behavior of human controller in terms 
of fuzzy decision rules, i.e. rules that involve rather qualitative then quanti
tative variables and can be seen as a common-sense model of the controlled 
process, similarly as in qualitative physics physical phenomena are described 
in terms of qualitative variables instead of mathematical equations. 
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The idea of rough (approximate) control steams yet from another philosophi
cal background. It is based on the assumption that the controlled process is 
observed and data about the process are registered. The data are then used to 
generate the control algorithms, which can be afterwards optimized. Both, the 
generation of the control algorithm from observation, as well the optimization 
of the algorithm can be based on the rough set theory, which seems to be very 
well suited for this kind of tasks. The control algorithms obtained in this way 
are objective and can be viewed as an intermediate approach between classical 
and fuzzy approach to control systems. 

In some cases the observation can be postponed and control algorithm can be 
obtained directly from the knowledgeable expert, similarly as in the fuzzy set 
approach. In this case the control algorithm can be also simplified using the 
rough set theory approach. 

In general we assume that a rough controller can be seen as an implementation 
of rough (approximate) function, i.e. function obtained as a result of physical 
measurements with predetermined accuracy, depending on assumed scale. 

The aim of this paper is to give basic ideas concerning rough functions, which 
are meant to be used as a theoretical basis for rough controllers synthesis and 
analysis. The presented ideas can be also applied to other problems - in general 
to discrete dynamic systems, and will be discussed in further papers. 

2 BASIC OF THE ROUGH SET CONCEPT 

Basic ideas of the rough set theory can be found in Pawlak (1991). In this 
section we will give only those notions which are necessary to define concepts 
used in this paper. 

Let U be a finite, nonempty set called the universe, and let I be an equivalence 
relation on U, called an indiscernibility relation. By I(x) we mean the set of 
all y such that xly, i.e. I(x) = [xlI, i.e.- is an equivalence class of the relation 
I containing element x. The indiscernibility relation is meant to capture the 
fact that often we have limited information about elements of the universe and 
consequently we are unable to discern them in view of the available information. 
Thus I represents our lack of knowledge about U. 
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We will define now two basic operations on sets in the rough set theory, called 
the I-lower and the I-upper approximation, and defined respectively as follows: 

I*(X) = {x E U : I(x) ~ X}, 

reX) = {x E U: I(x) nx =J 0}. 

The difference between the upper and the lower approximation will be called 
the I-boundary of X and will be denoted by BN1(X), i.e. 

BNI(X) = reX) - I*(X). 

If I*(X) = I*(X) we say the the set is I-exact otherwise the set X is I-rough. 
Thus rough sets are sets with unsharp boundaries. 

Usually in order to define a set we use the membership function. The member
ship function for rough sets is defined by employing the equivalence relation I 
as follows: 

I () card(X n I(x)) f-t x - -----'.--,---'--'..:.... 
X - card(I(x)) . 

Obviously 
f-tir(x) E [0,1]. 

The value of the membership function expresses the degree to which the element 
x belongs to the set X in view of the indiscernibility relation I. 

The above assumed membership function, can be used to define the two previ
ously defined approximations of sets, as shown below: 

I*(X) = {x E U : f-tir(x) = I}, 

reX) = {x E U: f-tir(x) > OJ. 

3 ROUGH SETS ON THE REAL LINE 

In this section we reformulate the concepts of approximations and the rough 
membership function referring to the set of reals, which will be needed to 
formulate basic properties of rough real functions. 

Let R be the set of reals and let ( a, b) be an open interval. By a discretization 
of the interval (a, b) we mean a sequence S = {xo, Xl , ... , x n } of reals such that 
a = Xo < Xl < ... < Xn = b. Besides, we assume that 0 E S. The ordered pair 
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A = (R, 8) will be referred to as the approximation space generated by 8 or 
simple as S-approximation space. Every discretization 8 induces the partition 
7r(8) = {{xo}, (XOX1), {xd, (Xl,X2), {X2}, (X2,X3), 
{X3},"" {xn-d, (Xn-l,Xn), {xn}} on (a, b). By S(x) (or [xJs) we will denote 
block of the partition 7r (S) containing x. In particular, if x E 8 then S (x) = {x}. 
If S(x) = (Xi, Xi+1), then by S*(x) and S*(x) we will denote the left and the 
right ends of the interval S(x) respectively, i.e. 8*(x) = Xi and S*(x) = Xi+l. 

The closure of S(x) will be denoted by 8'(x). 

In what follows we will be interested in approximating intervals (O,x) = Q(x) 
for any x E [a, bJ. 

Suppose we are given an approximation space A = (R, S). By the S-lower and 
the S-upper approximation of Q(x), denoted by Q s(x) and QS (x) respectively, 
we mean sets defined below: 

Qs(x) = {y E R : 8(y) ~ Q(x)} = Q(S*(x)) 

QS(x) = {y E R: 8(y) n Q(x) i- 0} = Q(8*(x)). 

The above definitions of approximations of the interval (0, x) can be also un
derstood as approximations of the real number x which are simple the ends of 
the interval S(x). 

In other words given any real number x and a discretization 8, by the S-lower 
and the S-upper approximation of x we mean the numbers S*(x) and S*(x) 
respectively. 

We will say that the number x is exact in A = (R,8) if S*(x) = S*(x), 
otherwise the number x is inexact (rough) in A = (R, 8). Of course x is exact 
iff x E 8. 

Any discretization S can be interpreted as a scale (e.g. km, in, etc.), by means 
of which reals from R are measured with some approximation due to the scale 
S. 

The introduced idea of the rough set on the real line corresponds exactly to 
those defined for arbitrary sets and can be seen as a special case of the general 
definition. 

Now we give the definition of the next basic notion in the rough set approach 
- the rough membership function - referring to the real line (Pawlak and 
Skowron, 1993). 
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The rough membership function for set on the real line has the form 

~(Q(x) n S(y)) 
f-LQ(x)(Y) = ~(S(y)) , 

where ~(x) = Suplx - yl,x,y E X. 

Assuming that x = y, we get 

f-LQ(x)(Y) = f-L(Y), 

which can be understood as an error of measurement of x in the scale S. 

Remark 

We can also assume that the discretizatin S induces partition 'ireS) = {( -00, xo), 
{xo}, (XOXl), {xd, (Xl,X2), {X2}, (X2,X3), {X3}, ... , {xn-d, (Xn-l,Xn), {xn}, 
(Xn' +oo)} on R. In this case for x > b the upper approximation of x is 
S*(x) = +00, and similarly for x < a, we have S*(x) = -00. However for the 
sake of simplicity we will not consider this case here. 0 

4 ROUGH SEQUENCIES AND ROUGH 
FUNCTIONS 

Let A = (R, S) be an approximation space and let {an} be an infinite sequence 
of real numbers. 

A sequence {an} is roughly convergent in A = (R, S), (S-convergent) , if there 
exists i such that for every j > i S(aj) = S(ai)j S*(ai) and S*(ai) are referred 
to as the rough lower and the rough upper limit (S-upper, S-lower limit) of the 
sequence {an}. Any roughly convergent sequence will be called rough Cauchy 
sequence. 

A sequence {an} is roughly monotonically increasing (decreasing) in A = (R, S), 
(S-increasing (S-decreasing)) , if Sean) = S(an+1) or an < an+l (an> an+l) and 
Sean) i= S(an+1). 
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A sequence {an} is roughly periodic in A = (R, S) (S-periodic) , if there exists 
k such that Sean) = S(an+k)' The number k is called the period of {an}. 

A sequence {an} is roughly constant in A = (R,S) (S-constant) , if Sean) 
S(an+1)' 

Suppose we are given a real function I : X -+ Y and discretizations S = 
{XO,Xl, ... ,Xn } and P = {YO,Yl, ... ,Ym} on X and Y respectively. If I is 
continuous in every XES, we with say that I is S-continuous. Let I be a 
S-continuous function, and let N(Xi) = i. 

Function Ff : {n} -+ {n}, such that Ff(N(Xi)) = N(P*/(Xi)) will be called 
rough representation of I (or (S,P)-representation of I). 

The function Ff can be used to define some properties of real functions. 

A function I is roughly monotonically increasing (decreasing) if Ff (i + 1) = 
I(i) + 0:, where 0: is a non-negative integer, (0: is non-positive integer), for 
every i = 0,1,2, ... n - 1. 

A function I is roughly periodic if there exist k such that Ff(i) = Ff(i + k) for 
every i = 0,1, ... , n - 1. 

A function I is roughly constant if Ff (i) = Ff (i + 1), for every i = 0, 1, ... , n-1. 

Many other basic concepts concerning functions can be expressed also in the 
rough function, setting. 

By the P-lower approximation of I we understand the function 1* : X -+ Y 
such that 

I*(x) = P*(f(x)),for everyx E X. 

Similarly the P-upper approximation of I is defined as 

rex) = P*(f(x)),for everyx E X. 

We say that a function I is exact in x iff 1* (x) = rex); otherwise the function I 
is inexact (rough) in x. The number rex) - 1* (x) is the error 01 approximation 
of I in x. 

Finally in many applications we need the fix-point properties of functions. 
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We say that xES is a rough fix-point (rough equilibrium point) of a real func
tion f if F/(N(x)) = N(P*(f(x)). 

Now we give a definition of a very important concept, the rough continuity of 
real function. 

Suppose we are given a real function f : X -+ Y, where both X and Yare sets 
of reals and S, Pare discretizations of X and Y respectively. 

A function f is (roughly continuous) (S,P)-continuous in x if 

S(x) ~ P(f(x)). 

In other words a function f is roughly continuous in x iff for every y E S(x), f(y) 
E P(f(x)). 

The intuitive meaning of this definition is obvious. Whether the function is 
roughly continuous or not depends on the information we have about the func
tion, i.e. it depends on how exactly we "see" the function through the dis
cretization of X and Y. 

Obviously a function f is roughly continuous iff FI(i + 1) = FI(i) + a, where 
a E {-I, 0, + I} for every i = 0, 1, ... , n - I}. 

Remark 

Particularly interesting is the relationship between dependency of attributes in 
information systems and the rough continuity of functions 

Let S = (U, A), be an information system, (Pawlak, 1991), where U is a finite 
set of objects, called the universe and A is a finite set of attributes. With 
every attribute a E A a set of values of attribute a, called domain of a, is 
associated and is denoted by Va . Every attribute a E A can be seen as a 
function a : U -+ V , which to every object x E U assigns a value of the 
attribute a. Any subset of attributes B ~ A determines the equivalence relation 
IND(B) = {x,y E U : a(x) = a(y)for everya E A}. Let B,G ~ A. We 
will say that the set of attributes G depends on the set of attributes B, in 
symbols B -+ G, iff IND(B) ~ IND(G). If B -+ G then there exists a 
dependency function fB,C : Vbl x Vb2 X ..• X Vb n -+ VCl X VC2 X .•. x Vc~, such 
that fB,C(Vl,V2, ... ,vn ) = (Wl,W2,'" ,wm ), iff a(vd n a(v2)n, ... , na(vn ) ~ 
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a(wd n a(W2)n, ... , na(wm ), where Vl E Vb, Wj E VCj ' a(v) = {x E U : a(v) = 
x} and v E Va. The dependency function B -+ C, where B = {bl, b2 , ••. , bn} 
and C = {Cl' C2, ... ,cm } assigns uniquely to every n-tuple of values of attributes 
from B the m-tuple of values of attributes from C. 

There exists the following important relationship. B -+ C iff fB,c is eB, C)
roughly continuous. 0 

5 CONLUSIONS 

Rough function concept is meant to be used as a theoretical basis for rough 
controllers. Basic definitions concerning rough functions were given and some 
basic properties of these functions investigated. 

Applications of the above discussed ideas will be presented in the forthcoming 
papers. 
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ABSTRACT 

A hybrid classification system is a system composed of several intelligent techniques 
such that the inherent limitations of one individual technique be compensated for 
by the strengths of another technique. In this paper, we investigate the outline of 
a hybrid diagnostic system for Attention Deficit Disorder (ADD) in children. This 
system uses Rough Sets (RS) and Modified Rough Sets (MRS) to induce rules from 
examples and then uses our modified genetic algorithms to globalize the rules. Also, 
the classification capability of this hybrid system was compared with the behavior of 
(a) another hybrid classification system using RS, MRS, and the "dropping condition" 
approach, (b) the Interactive Dichotomizer 3 (ID3) approach, and (c) a basic genetic 
algorithm. 

The results revealed that the global rules generated by the hybrid system are more 
effective in classification of the testing dataset than the rules generated by the above 
approaches. 

1 INTRODUCTION 

A diagnostic system is a classification system that is trained to classify a given 
record. The intelligence of a trained system may materialize in the form of 
weights (neural networks and statistical models) or a set of rules (Rule-based 
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and Fuzzy rule-based systems). The neural net and statistical classifiers do not 
provide a back tracking facility for a given classification and they fail to provide 
a set of rules that is meaningful to the user [8, 22]. In rule-based systems, rules 
have to be manually specified by a domain expert [6]. This process is expensive 
and lengthy. Several classification systems have been built based on Rough Sets 
(RS) [7, 19, 20], Modified Rough Sets (MRS) [9, 10], and ID3 [21] approaches 
that do not need a domain expert for rule specification. These systems learn 
from examples by induction [21, 12] and then use their intelligence to classify 
a new record. 

We have shown previously that classification systems based on Rough Sets 
(RS) and Modified Rough Sets (MRS) are effective tools [9 10]. One of the 
limitations of such systems is that RS and MRS deliver only induced "local" 
rules. This is a limitation inherent to RS and MRS techniques. To overcome 
this limitation of RS and MRS a hybrid classification system is needed. 

A hybrid classification system is a system composed of several intelligent tech
niques such that the inherent limitations of one individual technique be com
pensated for by the strengths of another technique. In this paper, we investigate 
the outline of a hybrid diagnostic system for Attention Deficit Disorder (ADD) 
in children. This system uses RS and MRS to induce rules from examples 
and then uses genetic algorithms to globalize the rules. Also, the classifica
tion capability of this hybrid system will be compared with the behavior of 
(a) another hybrid classification system using RS, MRS, and the "dropping 
condition" approach [10] and (b) the ID3 approach. 

2 METHODS 

In this section, the Rough sets (RS), Modified Rough Sets (MRS), Modified 
Dropping Conditions, and Modified Genetic Algorithms are explained in detail. 

2.1 Rough Sets (RS). 

The mathematical foundation of RS will be discussed briefly and then its appli
cation will be discussed in detail by providing an example. For a comprehensive 
discussion of RS refer to (19). 
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Mathematical Foundation of RS. 

A rough set is a mathematical model used to deal with an approximate classi
fication of objects. 

Definition 1 An approximate space P is an ordered pair P(U, R) where U is a 
set called universe and R is a binary equivalence relationship over U. Relation 
R is called an indiscernibility relation. Through the rest of these definitions P, 
U, and R notations have the same meanings. 

Definition 2 If a E U , then [alR is an equivalence class of R. 

Definition 3 An elementary set (E) in P is an equivalence class of R or the 
empty set 0. 

Definition 4 Any finite union of elementary sets is called a definable set in 
P. 

Definition 5 Let A ~ U. The set (A,R) = {(a,r)la E A,r E R} where R is a 
binary equivalence relationship over U that is called a rough set inP. 

Definition 6 If A ~ U, then Upper(A), called upper approximation of A in 
P, is defined by Upper(A) = {a E UI[alR n A 'f. 0} and Lower(A), called lower 
approximation of A in P, is defined by Lower(A) = {a E UI[a]R ~ A}. 

Definition 7 The set Mp(A) = Upper(A) - Lower(A) is called a boundary 
of A in P. This is the space between the lower approximation of A in P, and 
the upper approximation of A in P. The boundary of A in P refers to those 
elements of the universe that are only partially in the space A. 

Definition 8 An information system, S, as defined by Pawlak (18), is a 
quadruple (U, Q, V, c5) in which U is a non-empty finite set of objects, b; Q is 
a finite set of attributes, q; V = UqEQ Vq, and Vq is the domain of attribute 
q. c5 is a mapping function such that c5(b,"q) E Vq for every q E Q and bE U. 
Q is composed of two parts: a set of condition attributes (C) and a decision 
attribute (D). 
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Application of RS. 

In reference to the definition 8 (above), the attraction of using rough sets lies 
in their ability to define and manipulate an information system for the purpose 
of establishing the relationship between condition values (C) and the decision 
value (D) in the form of rules. These rules may be used to predict a decision 
value for a new object for which only the condition values are known. The 
following example will describe the four components of an information system 
and it will explain the entire process of extracting rules from an information 
system using RS. This example will then be used to explain MRS and its 
application. 

example 1 Table 1 is an information system. The universe U is composed of 
nine objects, U = {al,a2,a3,a4,a5,a6,a7,aS,ag}. Each object in U represents 
a child (test subject, and ai may be considered as a subject identification num
ber). In this system, condition attributes are C = {M1 ,M2 } (Mi is a measure 
of the subject's operant behavior). The decision attribute is the test subject's 
IQ (i.e. D = {IQ}). Here, the domain of attributes, V = {I, 2, 3}. The map
ping schema (£5) is defined as follows. For the Ml attribute, 1 = "pass" and 2 
= "fail"; for the M2 attribute, 1 = "poor", 2 = "average", and 3 = "good"; 
for the Decision attribute IQ, 1 = "above average", 2 = "average or below". 
To use RS and MRS for the purpose of extracting rules from the information 
system of Table 1, we use algorithm ONE below (a formal discussion of the 
process, may be found in [6, 9, 12)). 

ALGORITHM ONE. 

Step 1- Reduce the information system vertically and horizontally (system 
reduction) . 

Step 2- Generate partitionings and classifications. 

Step 3- Generate lower and upper approximation spaces. 

Step 4- Extract local rules (certain, possible, and approximate). 

Step 5- End. 

System Reduction. The information system is reduced by removing all re
dundant objects (rows) and condition attributes (columns) from it (i.e. the 



153 

Q 
u C D 

M1 M2 IQ 
a1 1 3 1 
a2 2 1 2 
a3 1 1 2 
a4 2 2 1 
a5 1 3 1 
a6 2 2 2 
a7 2 1 2 
as 2 1 1 
ag 1 2 2 

Table 1 An Information System 

information system is reduced vertically and horizontally). In vertical reduc
tion, all the rows that are identical, considering their values in the Q attributes, 
are collapsed into one row. Here, rows 1 and 5 are identical in their values for 
the Q attributes and they are collapsed into one row. Also, rows 2 and 7 are 
identical in their values for Q attributes and are collapsed into one row, Table 
2. The vertical reduction has generated seven sets out of the initial universe of 
nine objects. These sets are Zl = {a1' a5}, Z2 = {a2' a7}, Z3 = {a3}, Z4 = {a4}, 
Z5 = {a6}, Z6 = {as}, and Z7 = {ag} and they are called Q-elementary sets. 
This means that rows for members of any given Q-elementary set are identical 
and rows for all sets in reference to their values in Q attributes are unique. 

In horizontal reduction, we determine whether the decision (D) depends on all 
the condition attributes (0) or a subset of 0, like Of. If Of exists, then Of 
replaces 0 and it is called the reduct of O. A given information system, may 
have more than one reduct. 

To find the reducts of 0, if any exist, for the information system of Table 2 we 
use the following steps. 

a: All the possible subsets of the condition attributes are built. These subsets 
are 0 1 = {M1 }, and O2 = {M2 }. 
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Q 
u C D 

Ml M2 1Q 
Zl = {ar, a5} 1 3 1 
Z2 = {a2,ar} 2 1 2 

Z3 = {a3} 1 1 2 
Z4 = {a4} 2 2 1 
Z5 = {a6} 2 2 2 
Z6 = {a8} 2 1 1 
Z7 = {a9} 1 2 2 

Table 2 Vertical Reduction (Q-elementary sets) of the Information System 
described by Table 1. 

b: Considering only the condition attributes in C1 , the objects of Table 2 are 
organized into two sets called Cl-elementary sets (Table 3-a). Likewise, 
three sets called C2-elementary sets (Table 3-b) for the universe of objects 
in Table 2. 

c: If the Cl-elementary sets or C2-elementary sets are the same as the Q
elementary sets, then the condition attributes C = {M1 , M 2 } are replaced 
by subset C1 = {Ml} or C2 = {M2 }, respectively. If both elementary sets 
are the same as the Q-elementary sets then there are two reducts for the 
condition attributes C and one is chosen either arbitrarily or by expert 
consultation. 

Tables 3-a and 3-b, reveal that neither Cl-elementary sets nor C2-elementary 
sets are the same as the Q-elementary sets. Thus, none of the condition at
tributes in C are redundant and Table 2 is the final outcome of the reduction 
step of Algorithm One. The rest of the steps of Algorithm One will be applied 
to the information system of Table 2. 

Partitioning. All objects in a reduced information system that have the same 
decision value (di ) make one partitioning (Li). Therefore, partitionings Ll and 
L2 include all the objects for which the decision values are 1 and 2, respectively: 
Ll = {zr,z4,zd and L2 = {Z2,Z3,Z5,Zr}. 



C1 

U ~ 
{ZI,Z3,zd 1 

{Z2, Z4, Z5, Z6} 2 

C2 
U 1M2 

{Z2, Z3, Z6} 1 
{Z4, Z5, Z7} 2 

{zI} 3 
(a) (b) 

Table 3 Testing the Horizontal reduction of the information system of Ta
ble 2. (a) the Cl-elementary sets. (b) the C2-elementary sets. 
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Classification. All objects in a reduced information system that have identical 
values for their condition attributes make one classification (R j ). The objects Z2 
and Z6 have the identical values for their condition attributes of C = {M1, M2}. 
Thus Z2 and Z6 makes one classification. For the information system of Table 
2 we have five classifications of R1 = {zI}, R2 = {Z2, Z6}, R3 = {Z3}, R4 = 
{Z4, Z5}, and R5 = {Z7}. 

Lower approximation. If the objects of a given classification, R i , are totally 
contained in a given partitioning, L j , then the objects of Ri are included in the 
lower approximation of Lj. The classification R1 has only one object, Zl. This 
object is in the partitioning L 1 . Thus, Zl is included in the lower approximation 
of L 1 . Also, the objects of classifications R3 and R5 are totally contained in 
the partitioning L2. As a result, the lower approximation for Ll and L2 are: 
Lower(L1 ) = {zI} and Lower(L2) = {Z3, zd. 

Upper approximation. If objects in classification Ri are contained partially in 
L j , then the objects of Ri are in the upper approximation of L j . The objects 
in classification R2 are Z2 and Z6. Only Z6 is contained in L1. Thus, the 
objects of the classification R2 are included in the upper approximation of L 1. 
The upper approximation for L1 and L2 are: Upper(L 1) = {Z4,Z5,Z2,Z6} and 
Upper(L2) = {Z2,Z6,Z4,Z5}. 

Rule Extraction. Local certain rules for decisions 1 and 2 are extracted from 
the objects in Lower(L1) and Lower(L2) respectively. Lower(Ld contains 
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only one object, Zl. The condition for Zl are Ml = 1 and M2 = 3 (Table 2). 
The local certain rules extracted from Zl is: 

(i): IF (Ml = 1 /\ M2 = 3) -+ IQ = 1. 

Lower(L2 ) contains two objects, Z3 and Z7. The local certain rules generated 
from these objects are: 

(ii): IF (Ml = 1 /\ M2 = 1) -+ IQ = 2. 

(iii): IF (Ml = 1 /\ M2 = 2) -+ IQ = 2. 

Rules (ii) and (iii) may be combined as follow: 

IF (Ml = 1 /\ M2 = 1) V (Ml = 1 /\ M2 = 2) -+ IQ = 2. 

Local possible rules for decisions 1 and 2 are extracted from objects in Upper(Ll) 
and Upper(L2 ), respectively. The same process that was described for extract
ing local certain rules is used and the local possible rules are: 

(i): IF (Ml = 2 /\ M2 = 2) V (Ml = 2 /\ M2 = 1) -+ IQ = 1. 

(ii): IF (Ml = 2 /\ M2 = 1) V (Ml = 2 /\ M2 = 2)-+ IQ = 2. 

Thus, if an object satisfies local possible rule (i), then the IQ for the object is 
possibly 1. 

2.2 Modified Rough Sets (MRS). 

Objects in the lower approximation spaces contribute to the local certain and 
global certain rules. In contrast, the objects in the upper approximation spaces 
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only contribute to the local and global possible rules. As a result, the global 
certain rules are extracted from a subset of the objects of the universe and, 
based on our total number of observations, this subset is not large. It may 
be argued that the objects which are not contributing to the local and global 
certain rules still must not be ignored. The following two facts strongly support 
this argument: 

1- Often the number of data points collected for a test is so small that we 
do not have the luxury of ignoring any of them. 

2- The objects within a given upper approximation space (e.g. (3) have 
a decision conflict which is the reason that they are not included in a lower 
approximation space. Often in (3, only a few objects have a decision that is 
different from that of the majority of objects. In such a case we cannot ignore 
all of the objects in (3 because of a few records that exhibit a decision conflict. 
The best solution to such a situation might be to change the decisions for 
those few records to the dominant decision in (3. Doing so makes the dominant 
decision an it approximate decision. The details of conflict resolution may be 
found in [12]. 

The Modified Rough Sets approach is a version of the Rough Sets approach 
in which the approximate decision concept has been exercised. Such exercise 
eliminates all the upper approximation spaces. In fact, the upper and lower 
approximations of a given decision realm are mapped on the same boundary. 

To explain the Modified Rough Sets further, the concepts of approximate de
cision and approximate releis introduced and applied in the example of the 
information system shown in Table 2. 

Approximate decision. An information system, S, is given. The object space 
in S is divided into n classifications of R1 , .•. ,Rn based on the condition values 
and m partitionings of L 1 , ..• ,Lm based on decision values of d1 , ... ,dm. Let 
the objects in classification Ri have decision conflicts (i.e., have different deci
sion values). As a result of this conflict, the objects in Ri will not be included 
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in the lower approximation space of any decision realm. A goal of the approxi
mate decision is to resolve the conflict of decisions in Ri. To meet this goal, let 
P[Rdj] be the probability of observing classification Ri, given the partitioning 
Lj; and let Qj be the probability of observing the partitioning L j in S. The 
probability of observing the partitioning L j , given the classification R i , based 
on Bayes theorem (5), is then: 

(1.1) 

We refer to P[Rilj] as the weight for decision j in Ri and it is shown as W/. 
The approximate decision for the objects in Ri is defined as dj = max{P[jIRi], 
j = 1"", m}. If there is not a unique maximum value then selecting the 
approximate decision among the eligible decisions is left to the user (expert). 

For our example, the classifications R2 = {z2,zd and R4 = {Z4,Z5} have a 
decision conflict among their objects(e.g. in R2, the decision value of Z2 and Z6 
are 2 and 1, respectively). The above approach for determining the approximate 
decisions for R2 and R4 is now applied. For easy reference, the two partitionings 
of our example are repeated here: L1 = {Z1, Z4, Z6} and L2 = {Z2, Z3, Z5, zd 
(the decisions for all the objects of L1 and L2 are equal to 1 and 2, respectively). 
For the calculation of the dominant decision in R2 and R4, remember that the 
z objects must be replaced by the actual a objects. This means that R 2 , R4 , L1 
and L2 are as follows: R2 = {a2,a7,as}, R4 = {a4,a6}, L1 = {a1,a5,a4,as}, 
and L2 = {a2, a7, a3, a6, ag}, 

The probability of observing the partitioning L1 and L2 in Table 1 (the original 
information system) are Q1 = 4/9, Q2 = 5/9 (in Table 1, four out of 9 objects 
have the decision value of 1 and five objects have the decision value of 2). For 
R2, P[R211] = 1/4 (only one object, as, of classification R2 is among the four 
objects of partitioning Lr), and P[R2121 = 2/5 (only two objects, a2 and a7, 
of classification R2 is among the five objects of partitioning L2)' Based on the 
formula (1, above), P[11R21 = (1/4 * 4/9)/(1/4 * 4/9 + 2/5 * 5/9) = 1/3 and 
P[21R21 = (2/5*5/9)/(1/4*4/9+2/5*5/9) = 2/3. The decision weights in R2 
are 1/3 and 2/3 for decisions 1 and 2, respectively. Therefore, the approximate 
decision in R2 is 2. 
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For R4, Ql = 4/9, Q2 = 5/9, P[R411] = 1/4, and P[R412] = 1/5. The 
P[1IR4] = 1/2 and P[2IR4] = 1/2. Since both decisions 1 and 2 have the 
same weight, the approximate decision in R4 is 2. This means that the 1Q 
value (decision value) for objects in R2 are changed to 2 and the objects in R4 
are changed to 2 in Table 2-b. As a result, we have a new information system, 
Table 4-a. 

Approximate rules. The local "certain" rules extracted from Table 4-a are no 
longer referred to as local certain rules but instead are called local approximate 
rules, because in their extraction approximate decisions are involved. To each 
approximate rule a weight rule weight is associated which is equal to the decision 
weight of the rule's decision. To extract these rules, the algorithm ONE is 
applied on the Table 4-a. Table 4-b shows the vertical and horizontal reduction 
of the new system. The set of approximate rules along with their rule weights 
are as follows: 

(i): IF (Ml = 1 A M2 = 3) -+ 1Q = 1 and Wi = 1. 

(ii): IF (Ml = 2 A M2 = 1) -+ 1Q = 2 and W2 = 2/3. 

(iii): IF (M 1 = 1 A M 2 = 1) -+ 1 Q = 2 and W2 = 1. 

(iv): IF (Ml = 2 A M2 = 2) -+ 1Q = 2 and W2 = 0.5. 

(v): IF (Ml = 1 A M2 = 2) -+ 1Q = 2 and W2 = 1. 

Mapping the lower and upper approximations of decision realms on the same 
boundary serves another purpose. It must be remembered that when using a 
statistical model in prediction it is assumed that a decision realm has a distinct 
boundary. However, within the decision realm one can find objects which have 
been imposed on the realm because of some threshold satisfaction. In contrast, 
the RS approach separates those objects which are totally and partially in a 
decision realm by the use of lower and upper approximations of the decision. 
Because of this difference, the comparison of predictions resulting from a sta
tistical model with those obtained from a RS approach for the same set of 
objects are not comparable unless for RS we map both the boundaries of lower 
and upper approximations of each decision realm over a common boundary as 
is done using Modified Rough Sets. In other words, the results obtained from 
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Q 
u C D 

MI M2 IQ 
ZI = {aI, a5} 1 3 1 
Z2 = {a2' a7} 2 1 2 

Z3 = {a3} 1 1 2 
Z4 = {a4} 2 2 2 
Z5 = {a6} 2 2 2 
Z6 = {a8} 2 1 2 
Z7 = {ag} 1 2 2 

(a) 

Q 
u C D 

MI M2 IQ 
WI = {aI, a5} 1 3 1 

W2 = {a2' a7, a8} 2 1 2 
W3 = {a3} 1 1 2 

W4 = {a4' a6} 2 2 2 
W5 = {ag} 1 2 2 

(b) 

Table 4 The modified information system for Table 2. (a) the modified 
information system. (b) the result of verticaland horizontal reduction 



161 

Modified Rough Sets are comparable to the results obtained from statistical 
models. 

As it was explained, Rs and MRS deliver only the local rules. Often the local 
rules are not practical and they need to be globalized. we discuss two global
ization techniqes in the following subsection. 

2.3 Globalization of Local Rules. 

Local rules may be globalized using a "modified dropping conditions" technique 
[14] or a "modified genetic algorithm" proper for use with RS and MRS [11]. 

A Modified Dropping Condition Approach. 

In this approach, we keep a subset of conditions in a given rule that preserves 
the uniqness of that rule among the set of local rules and the rest of conditions of 
the given rule are dropped. The global certain and possible rules are generated 
as follows: 

A- Make a table out of the condition values of the above rules (local certain 
and local possible rules), Table 5-a. The rows in this table come from objects 
Zl, Z3, Z7, Z4, Z6, Z2, and Z5 of Table 2. Objects Zl, Z3, and Z7 belong to, at 
most, one lower approximation space and the rest of the objects belong to at 
least one upper approximation space. 

B- All the duplicated rows among those that belong to either local certain 
or local possible rules are collapsed into one row, Table 5.b. 

c- For each row of Table 5.b, keep a subset of the condition values that are 
unique throughout the entire table and drop the rest of the condition values for 
the record (the dropped values are replaced by an asterisk). The value 3 in the 
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Ml M2 
Condition values 1 3 

for local 1 1 
certain rules 1 2 

2 2 
Condition values 2 1 

for local 2 2 
possible rules 2 1 

(a) 

Ml M2 
Condition values * 3 

for local 1 1 
certain rules 1 2 

Condition values 2 2 
for local 2 1 

possible rules 

(C) 

Condition values 

for local 

possible rules 

2 2 
2 1 D1 M2 

(e) 

M1 M2 
Condition values 1 3 

for local 1 1 
certain rules 1 2 

Condition values 2 2 
for local 2 1 

possible rules 

(b) 

M1 M2 
Condition values * 3 

for local 1 1 
certain rules 1 2 

(d) 

Table 5 Application of modefied Dropping Conditions approach. (a) Initial 
Table, (b) Duplicate rows removed, (c) intermediate Table, the dropped condi
tion from Table 5-a shown by (*), (d) the Final Table for extarcting the global 
certain rules, and (e) the Final table for extracting the global possible rules. 
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condition attribute of M2 for the first record of Table 5-b, record (rd, is able 
to uniquely identify this record throughout the entire table. In other words, 
there is no value of 3 in any of the records of this table, except rl' Therefore, 
we keep this condition value and drop the rest of the condition values in r1, as 
shown in Table 5-c. 

D- Split Table 5-c into two tables (Table 5-d and Table 5-e). Table 5-d and 
Table 5-e contain all the condition values for local certain and local possible 
rules, respectively. This means that the rows in tables 5-d and 5-e belong to 
objects of lower approximation and upper approximation spaces, respectively. 
The extracted rules from the rows of Table 5-d are: 

(i): IF (M2 = 3) --+ 1Q = 1. 

(ii): IF (Ml = 1 1\ M2 = 1) V (Ml = 1 1\ M2 = 2) --+ 1Q = 2. 

The above list defines the global certain rules. 

The extracted rules from the rows of Table 5-e define the global possible rules 
and they are: 

(iii): IF (Ml = 2 /\ M2 = 2) V (Ml = 2 1\ M2 = 1) --+ 1Q = 2. 

(iv): IF (Ml = 2 /\ M2 = 2) V (Ml = 2 1\ M2 = 1) --+ 1Q = 1. 

The local and global possible rules are not of interest and will not be pursued 
further in this study. The reason for such a decision stems from the fact that for 
rules (iii) and (iv) the conditions are the same but the decisions are different. 
That is, 1Q for a new object for which Ml = 2 AND M2 = 2 will be possibly 2 
and possibly 1 (not a very definitive decision). The local approximate rules 
may be globalized as it was described above. 

Each global certain rule has three properties: 
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Prop. 1: A global rule correctly classifies at least one object of the lower 
approximation space. 

Prop. 2: Each object of the lower approximation space is correctly classified 
by at least one global rule. 

Prop. 3: A global rule correctly classifies at zero or more objects of the upper 
approximation space. 

The problem with the "dropping condition" globalizing technique is that it only 
provides for horizontal reduction of the set of local rules. We will remove this 
shortcoming by using a modified Genetic Algorithm. 

2.4 A Basic Genetic Algorithm 

A genetic algorithm simulates the evolutionary process of a set of "genomes" 
over time. Genome is a biological term that refers to a set of "genes" and gene 
is the basic building block of any living entity. For our use here, "genome" is 
represented by a rule and "gene" is represented by a condition within a rule. A 
genetic algorithm starts with a set of genomes created randomly (a generation) 
and then the evolutionary process of the "survival of the fittest" genomes takes 
place. The un-fit genomes are removed and the remaining genomes reproduce a 
set of new genomes. Reproduction of the genomes is accomplished by applying 
the simulation of the two well known genetic processes: mutation and crossover. 
The new genomes created by mutation and crossover along with genomes that 
survived from the previous generation constitute a new generation of genomes. 
This process is repeated and in each repetition a fitter generation is created. 
Because each generation is built with information derived from the previous 
generation of genomes, it is said that each generation evolves with time. 

Our goal in developing a genetic algorithm was to meet two objectives. First, 
the algorithm should be appropriate for use in conjunction with RS and MRS. 
Second, the algorithm should be able to deliver a set of global rules that result 
from vertical and horizontal reductions of a given local rule set. 

To explain the details of the algorithm used in this study we need to define the 
fitness function, mutation process, and crossover process. To do so, Let S be a 
universe of objects. An object of this universe may be denoted as a pair (Ci , di ) 

in which Ci is a set of conditions with K members ( K independent variables, 
c~i), ... , c~i) ) and di is a decision (one dependent variable). It is assumed that 
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the conditions set will determine the value of the decision ( cii ), ... , C~i) --t 

dii ) ). The domain of the condition cj(l :S j :S k) in the universe S is the 
set {ajl,···, ajq}. This means that, ajm is a possible discrete value for the 
condition Cj in a given object. 

Fitness Function. At this stage we need to address the problem of assessing 
the fitness of each generation based on a set of conditions and their correspond
ing decisions. First, consider the following notations: 

As (Ci, di ) 

Bs (Ci , di ) 

{ (C/, d/) E S : C/ = Cd ' 
{(C/,d/) E S: (C/,d~) = (Ci,di)}. 

The empirical estimate of the conditional probability of decision d, given the 
condition set C, is given by,-

Pc(d) = card (Bs(C, d)) = Nd 
card (As(C, d)) Nc 

(1.2) 

One might consider Pc(d) to assess the usefulness of conditions in determining 
the decision, d. Also, based on the above probability, different so-called fitness 
functions can be proposed. Two such functions were discussed by Packard (14): 

(1.3) 

(1.4) 

Where Pm(d), Po(d) and a/Nc refer to the maximum entropy distribution, 
empirical distribution of d, and a bias correcting factor, respectively. Note that 
a/Nc is used to reduce the bias introduced by sampling from a finite population. 
In practice, a is adjusted until an acceptable, i.e. shorter, confidence interval 
for the fitness function is obtained. In the information theory nomenclature, FI 
and F2 refer to "relative entropy" or "Kullback Leibler distance". The details 
may be found in [1, 2). 
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In order to measure the fitness at each (Gi , di ), we propose the conditional 
probability (1.1) corrected for bias. 

F(G,d) = Pc(d) - ;c (1.5) 

It is observed that the application of the RS approach divides the universe of 
objects S into mutually exclusive sets of lower, L, and upper, V, approximate 
spaces. Also, it is true that the data for the objects of L space is less noisy 
than the data for the objects of V space. This makes the objects of the lower 
approximation more valuable. Thus, we need to modify the fitness function to 
be responsive to this fact. To do so, the conditional probability (1.1) needs to 
be modified to reflect the extra confidence placed on the elements of L, thus 

(1.6) 

where 0 :::; e ~ 1 and it is called V-confidence factor. The Pc' (d) will be 
substituted in the above fitness function (1.4). 

Application of the MRS approach transforms the universe S into one conflict
free space, H. Thus the genetic algorithm used in conjunction with MRS uses 
the conditional probability (1.1) in fitness function (1.4). 

Mutation Process. Based on Packard (14), a single genome may be mutated 
according to following mutation rules. 

1) Eliminate the condition Ci from the genome [Ci -+ *]. 

2) Change the value of condition Ci to the new value of a' [Ci -+ a']. 

3) Restate an already mutated condition using a new value of a' [* -+ a']. 

If the value for condition Ci is made of the disjunction of j values, then: 

4) Expand the value list for Ci [(al or,···, or aj) -+ (al or,···, or aj, or aj+d] 
or 

5) Shorten the value list for Ci [(al or,···, or aj) -+ (al or,···, or aj-l)]. 
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To adjust the mutation process for use in RS and MRS, mutation rule 3 is par
tially applicable and mutation rules 4 and 5 are not applicable at all. Mutation 
rule 3 is partially applicable because the use of RS or MRS generates a reduct of 
the universe and restating those conditions removed by RS or MRS defeats the 
purpose of using such approaches. However, restating those condition values 
removed in the mutation process is acceptable. 

Neither mutation rule 4 nor mutation rule 5 is applicable to the rules generated 
by the RS or MRS approaches because when ciin a rule has a list of j values, 
it will be delivered by RS or MRS as a list of j rules which are only different 
in the value of condition Ci. 

Crossover Process. In this process two parent genomes (two selected rules) 
mate and reproduce two offspring by swapping a part of their genes. For 
example, the two rules: 

may swap the values for c~i) and c~j) and the values for c~i) and c~j) to generate 
two new genomes: 

In this study we select the parents randomly from a subset of fitter genomes. 
Also, the number of conditions selected for swapping were chosen randomly. 

The crossover process has a conflict with the RS approach: when a subset of 
the conditions' values of two rules are swapped, two new rules (offspring) are 
created such that they may not be able to correctly classify any of the objects 
in the lower approximation space. To relax this conflict, one tries to operate in 
favor of objects in space L by controlling the value of () in equation 1.5. Also, 
there is a chance that resulting offspring mutate such that they become valid 
global rules. If a rule is among the M fitter genomes in the final generation (we 
refer to these rules as genetic-fit rules) but does not satisfy Property 1 of the 
global rules, then the rule will be eliminated from the set. 
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Note that each genetic-fit rule may classify correctly at least one object of space 
L, but each object of space L may not be classified correctly by any of the 
genetic-fit rules (violation of Property 2 of the global rules). In fact, we try to 
relax Property 2 for the genetic-fit rules in order to generate vertically reduced 
global rules. For example, if one can select a rule that classifies correctly a 
large number of objects in space U by sacrificing the ability to classify one rule 
in space L, then one would like to exercise this selection. To enforce property 
2, one insures that the number of objects in space L that cannot be correctly 
classified by any of the genetic-fit rules does not go beyond a threshold defined 
by the user. 

The crossover process has less conflict with the MRS approach because in MRS 
the Land U spaces combine into one homogeneous space which is free of con
flicted objects. 

Development of the Algorithm. In general, a genetic algorithm is composed 
of the following steps: 

Step 1. Create a set of N random rules (first generation of genomes). 

The following steps will create a new generation of genomes: 

Step 2. Calculate the fitness of each rule. 

Step 3. Sort the rules based on their fitness value in descending order. 

Step 4. Keep M fitter rules (M < N) and eliminate the rest of the rules. 

Step 5. Create the next generation by making N - M rules out of M rules 
using Crossover and Mutation operators. 

Step 6. Go to step 2. 

The basic genetic algorithm is not fit for use with RS and MRS approaches. 
Thus, the basic genetic algorithm is modified to remove this shortcoming. 

Algorithm RS-GEN. This algorithm is a modification of the basic genetic 
algorithm for use with RS approach. 
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Step 1. Apply Rough sets to divide the universe of objects S into Land U 
spaces(N, N I , and N2 are the number of objects in the universe, lower 
approximation space, and upper approximation space, respectively). 

Step 2. Extract the Local Certain (LC) Rules from L. 

Step 3. Calculate the fitness of each rule against the universe S using formula 
F(C,d) and conditional probabilty Pc(d). 

Step 4. Sort the rules based on their fitness value in descending order. 

Step 5. Keep M fitter rules (M < N) and eliminate the rest of the rules. 

Step 6. Create the next generation by making N - M rules out of M rules 
using modified Crossover and Mutation operators proper for use with RS 
and MRS. 

Step 7. Go to step 3 (the number of repetitions is the same as the number of 
generations and it is determined by the user). 

Instead of creating n random rules in step 1, we use the set of LC rules ex
tracted from the lower approximation space of the universe. To justify this 
action, it can be argued that the set of LC rules is more coherent than a set of 
random rules. Also, since RS and MRS approaches are capable of generating 
a reduct of the universe, those conditions that are not correlated with the de
cisions were already removed. In other words, the mutation process is already 
partially completed by the application of RS and MRS approaches which in 
turn shortens the time needed to reach an acceptable generation of genomes. 
This is considered as one of the advantages of synthesizing RS or MRS with 
the genetic algorithm. 

Note that if there is a genetic-fit rule which does not satisfy any object of space 
L (violation of Property 1), the rule will be removed from the set of genetic-fit 
rules. By doing so, one tries not to defeat the purpose of using the RS approach. 

To make the RS-GEN algorithm applicable to the MRS approach, we make 
changes only in steps 1 , 2, and 3 and the rest of the steps remain the same. 

Algorithm MRS-GEN. This algorithm is a modification of the RS-GEN 
algorithm for use with MRS. 

Step 1. Apply Modified Rough sets to transform the universe of objects into 
a conflict free space H. 
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Step 2. Extract the Local approximate (LA) Rules from H. 

Step 3. Calculate the fitness of each rule against space H using formula F (C, d) 
and conditional probability Peed). 

Step 4. Sort the rules based on their fitness value in descending order. 

Step 5. Keep M fitter rules (M < N) and eliminate the rest of the rules. 

Step 6. Create the next generation by making N - M rules out of M rules 
using modified Crossover and Mutation operators proper for use with RS 
and MRS. 

Step 1. Go to step 3 (the number of repetitions is the same as the number of 
generations and it is determined by the user). 

3 DATA ANALYSIS 

A set of five behavioral tasks, as part of an Operant Test Battery (OTB) [15, 
16, 17, 18], was performed by two groups of children at the Arkansas Chil
dren's hospital. There were 80 children in each group. The children in the first 
group had Attention Deficit Disorder (ADD) and the children in the second 
group had no known problem with brain function and were used as a control 
group. Briefly, the OTB tasks were identified as Conditioned Position Respond
ing (CPR), Progressive Ratio (PR), Incremental Repeated Acquisition (IRA), 
Delayed Matching-to-Sample (DMTS), and Temporal Response Differentiation 
(TRD). We measured Accuracy (ACC), Response Rate (RR) and Percentage 
of Task Completed task (PTC) for CPR, IRA, DMTS, and TRD. Also, we 
measured the Break Point (BREAK), RR, and PTC for PR. 

In addition, we measured Choice Response Latency (CRL) and Observing Re
sponse Latency (ORL) for CPR, Average Hold (AVG-HLD) for TRD, CRL for 
IRA, and Observing Response Latency (ORL) and Increment Choice Response 
Latency (ICRL) for DMTS. 

Moreover, for each child we collected AGE, SEX, and IQ. Collectively, each 
child had 24 conditions (independent variables) and one decision (dependent 
variable). The decision field was the actual diagnosis of the child (ADD or not 
ADD). 

The values for all conditions except AGE, SEX, and IQ were discretized into 
three categories of "I" (low), "2" (average), and "3" (high) using the Equal 
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Interval Width method [5]. A preliminary study of the data revealed that for 
the older ADD children, measures of OTB task performance are very close to 
those of their counterparts in the control group. Thus, data for 14 and 15 year 
old children were removed from the dataset (a total of 3 records). Since we had 
only 4 children age 5, we also removed their records from the dataset. For the 
rest of the children, the condition AGE was discretized as follows: "I" (AGE 
range 6 - 7), "2" (AGE range 8 - 9), "3" (AGE range 10 - 11), and "4" (AGE 
range 12 - 13). The condition SEX had two categories of "I" (male) and "2" 
(female). The condition IQ was discretized into four categories of "I" (very 
low; IQ range 50 - 70), "2" (low; IQ range 71 - 90), "3" (average; IQ range 
91 - 110), and "4" (above average; IQ range (111 - 130). Since we had only 
3 children with IQ = "I" (very low), we also removed their records from the 
dataset. 

The resulting dataset was composed of 150 records and each record had 24 
condition fields and one decision field. For the rest of the paper we refer to this 
dataset as the original dataset. 

4 RESULTS 

We applied the RS-GEN and MRS-GEN algorithms separately to the original 
dataset for 300 repetitions. In each repetition we kept 15 fitter rules. Two sets 
of genetic-fit rules were created in this process and they were called GLOBAL
RS-GEN and GLOBAL-MRS-GEN. 

To check the validity of the sets of genetic-fit rules, we created a testing dataset 
from the original dataset using the statistical approach of random res amp ling 
[3, 4]. Our testing dataset had 48 records. We applied GLOBAL-RS-GEN and 
GLOBAL-MRS- GEN genetic-fit rules on the testing dataset and the results 
are shown in Table 1. 

Separately, for the same original dataset, we applied the "dropping condition" 
approach to globalize the local rules extracted from the same original dataset 
by RS and MRS. The two new rule sets were called GLOBAL-RS-DROP and 
GLOBAL-MRS- DROP. We applied these two new rule sets to the same testing 
dataset and the results of classifying the testing set are illustrated in Table 1. 
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RULE SETS # of Correctly Classified Records of the 
Testing Dataset 

GLOBAL-RS-GEN 40 (84 %) 
GLOBAL-MRS-GEN 45 (94 %) 
GLOBAL-RS-DROP 34 (71 %) 

GLOBAL-MRS-DROP 37 (77 %) 
ID3 33 (69 %) 

BASIC-GEN 28 (54 %) 

Table 6 Number of correctly classified records of the testing dataset using 
different techniques. 

We also trained an ID3 classification system with the original dataset and tested 
the system against the same testing dataset. The findings are also shown in 
Table 1. 

In addition, to compare the quality of the rule sets generated by RS-GEN 
and MRS-GEN algorithms, we applied the basic genetic algorithm on a set 
of randomly generated rules. The rules were evolved for 300 generations and 
the end result set of rules, called BASIC-GEN, were tested against the same 
training set. These findings are also shown in Table 1. 

5 CONCLUSION 

The results presented in Table 1 reveal that the synthesis of the genetic algo
rithm and RS or genetic algorithm with MRS is an effective tool in classification 
of data. Based on this study, it seems that the global rules generated by the hy
brid system are more effective in classification than the rules generated by the 
basic genetic algorithm, dropping condition, and ID3 approaches. We feel this 
hybrid system has a great potential to be used in many types of classifications. 
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The medical experience with urolithiasis patients treated by the extracorporeal shock 
wave lithotripsy (ESWL) is analysed using the rough set approach. The evaluation 
of the significance of attributes for qualifying patients to the ESWL treatment is 
the most important problem for the clinical practice. The use of a simple rough set 
model gives a high number of possible reducts which are difficult to interpret. So, 
the heuristic strategies based on the rough set theory are proposed to select the most 
significant attributes. All these strategies lead to similar results having a good clinical 
interpretation. 

1 INTRODUCTION 

Medicine in last decades of this century is characterized by an enormous devel
opment and expansion of measurement and laboratory techniques. It creates 
an increasing stream of data which must be analyzed by the physicians. These 
data contain usually different information about patients: e.g. information 
coming from interviewing and investigating patients by specialists, measure-
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ment parameters characterizing the patients' condition, and data describing 
the course of the treatment. 

A large part of this data is now being stored in databases. Usually such records 
may have different practical importance for the physicians. So, they want to 
analyse collected data sets concerning, e.g. the problems of diagnosis and/or 
treatment of a given disease in order to find and select the most important 
part from the diagnostic point of view. It should be stressed that a selection 
of attributes (i.e. characteristic features) describing patients to the diagnostic 
procedure is often based on an intuitive determination of their diagnostic and 
prognostic significance. So, it is possible, that among the attributes chosen to 
characterize patients there are ones which may be less important than others or 
even unimportant for predicting the results of the treatment. The evaluation 
of usefulness of attributes is particularly important for these medical problems 
which are quite new and where the diagnostic knowledge is still imprecisely 
defined. 

An example of such a medical problem is the analysis of the clinical experi
ence with urolithiasis patients treated by extracorporeal shock wave lithotripsy 
(ESWL) at the Urology Clinic of the Medical Academy in Poznan [9]. Urolithi
asis is one of the most common diseases of urinary tract. The current progress 
in the urinary stones treatment is based on a development of a non - invasive 
method of disintegration of calculi by extracorporeally induced shock waves, i.e. 
the extracorporeal shock waves lithotripsy (ESWL) (cf. [1], [2], [6]). In or
der to qualify patients for the ESWL treatment different data, i.e. attributes, 
characterizing patients, are taken into account. The source of these data is 
usually: anamnesis (i.e. information coming from investigating patients by the 
physician), laboratory and imaging tests. 

In should be stressed, however, that the ESWL treatment of patients is a new 
urology techniques, applied for a relatively short period (e.g. in Urology Clinic 
of the Medical Academy in Poznan since 1990). Moreover, there is still lack of 
convincing recommendations for it in a medical literature. So, all attempts to 
study recommendations for the ESWL treatment are very interesting for the 
practitioners. 

The main aims of performed analysis from the medical point of view are: 

• an evaluation of usefulness of particular attributes for qualifying patients 
to the ESWL treatment, 
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• an identification of the most significant attributes for the qualification of 
patients. 

The additional aim is to discover relationships between values of attributes and 
a prediction of the course of the ESWL treatment as well as its final result for 
the patients. 

The representation of the ESWL experience (for a smaller number of patients) 
has been preliminary examined in the study [14]. In this study a group of the 
most interesting attributes was found out using the approach based on the rough 
set theory [10]. This study was mainly focused on performing the evaluation 
of the attribute ability to approximate patients classification (connected with 
qualifying patients to the ESWL treatment), and looking for, so called, reducts 
of attributes (i.e. subset of attributes ensuring the same approximation of 
patients' classification as a set of all attributes). However, the authors and 
medical experts met difficulties with interpretation of obtained reducts because 
of their too high number. 

As we want to avoid the above ambiguity in interpreting results, it seems to be 
necessary to consider introducing a modified approach allowing to evaluate the 
attribute significance in a more convincing way. 

In the following paper, we are going to use three different and independent 
heuristic approaches which should identify the most significant attributes in 
the case of a 'difficult' data sets. These are multistrategic approaches which 
combine elements of the rough set theory with techniques of dividing the infor
mation system into subsystems and algorithms of the rule discovery. 

The usefulness of these strategies is verified in the analysis of the redefined 
ESWL data set. The number of patients in the currently considered ESWL 
data set has been extended over 27% in comparison to [14). 

The paper is organised as follows. Section 2 gives the brief description of the 
data set. Then, basic information about the chosen methodology are given in 
section 3. Section 4 contains a detailed description of the performed analysis. 
Discussion of obtained results and final remarks are given in Section 5. 
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2 DATA DESCRIPTION 

The ESWL treatment of urinary stones has been performed at the Urology 
Clinic of the Medical Academy in Poznan since 1990. We chose to the analysis 
only data about patients with known and confirmed (Le. not leading to ambi
guity in the interpretation) long term results of the treatment. The patient's 
condition before the ESWL treatment was described by attributes which are 
currently considered in the urological clinical practice. These are 33 preopera
tion attributes including 
- anamnestic attributes (investigation patients by the physician), 
- attributes presenting results of laboratory as well as x-ray and ultrasound 
imaging tests. 
The definition of attributes and values belonging to their domains is presented 
in Table 2. Let us notice all of these attributes (except attribute 1 and 3) have 
a qualitative character. Their domains usually consist of a limited number of 
values which are qualitative and linguistic terms. In addition, the domains of 
many attributes cannot be ordered. 

The postoperation conditions of the patients were described by two attributes 
having the following clinical meaning: 
1. A patient's physical condition after the lithotripsy, i.e.: 
- treatment without complications, 
- treatment with complications. 
2. Long term results of the treatment: 
- recovery (good results), 
- no recovery, 
- lack of effects. 

Classif- Meaning of the 
ication classification 

Yl Patient's condition 
after the ESWL 

lithotripshy 
Y2 Long-term result 

of the treatment 

Decision clinical meaning 
classes of the original value 

1 good - without 
complications 

2 with complications 
1 recovery 
2 no recovery 
3 lack of effects 

Table 1 The definition of the classification of patients in the ESWL informa
tion system 
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Table 2 The definition of attributes creating the ESWL information system 

No. Attribute name no. of values 
of attribute 

1 Age 3 
2 Sex 2 
3 Duration of disease 2 
4 Type of urolithiasis 2 
5 Lithuresis 2 
6 Operations in the past 4 
7 Nephrectomy 2 
8 PNCL 2 
9 Number of the ESWL treatment previously done 4 

10 Evacuation of calculi by zeiss catheter 3 
11 Lumbar region pains 4 
12 Dyspectic symptoms 3 
13 Basic dysuric symptoms 3 
14 Other dysuric symptoms 4 
15 Temperature 3 
16 General uriscopy 2 
17 Urine reaction 3 
18 Erythrocyturia 2 
19 Leucocyturia 2 
20 Bacteriuria 2 
21 Crystaluria 8 
22 Proteinuria 1 
23 Urea 2 
24 Creatinine 2 
25 Bacteriological test 2 
26 Kidney location 4 
27 Kidney size 3 
28 Kidney defect 4 
29 Status of urinary system 6 
30 Secretion of urinary contrast 4 
31 Location of the concrement 8 
32 Calixcalculus 7 
33 Stone size 4 
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The two postoperation attributes define two classifications of patients, denoted 
as Yl and Y2 respectively. These definitions are presented in Table 1. The 
values of these classifications are called decision classes. The both classifications 
are typical standards used to evaluate the medical treatment. 

Although the current experience at the Urology Clinic of the Medical Academy 
in Poznan includes approximately over 1000 patients per year, only part of it 
can be taken into account. In study [14] data about 343 patients were available. 
Nowadays, we have extended this number up to 435 patients. 

3 BRIEF INFORMATION ABOUT THE 
METHOD 

From the medical point of view the performed analysis should verify the cur
rently used intuitive indications for qualifying patients to the ESWL treatment 
and help the urologists to predict the result of the treatment. In other words, 
these aims lead to the evaluation of usefulness of particular preoperation at
tributes for two patients' classifications and to the identification of the most 
significant attributes for these classifications. 

The rough sets theory [10] is applied to achieve these aims. We have decided 
to choose it because of at least two reasons. The first one is connected with a 
qualitative character of analysed data what makes them difficult for standard 
statistical techniques. The second reason is an inspiration of previous successful 
applications of the rough sets theory in the analysis of a surgical experience 
[11], [12], [13]. 

From the rough set theory point of view the analysis is connected with ex
amining dependencies between attributes in the defined data set (called further 
an ESWL information system). More precisely, similarly to previous medical 
applications [11], [12],[13], the following elements of rough set theory are used: 

• creating classes of indiscernibility relation (atoms) and building approxi
mations of the objects' classification, 

• evaluating the ability of attributes to approximate the objects' classifica
tion; the measure of the quality of approximation of the classification is 
used to for this aim; it is defined as the ratio of the number of objects in 
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the lower approximations to the total number of objects in the information 
system, 

• discovering cores and reducts of attributes (the reduct is the minimal subset 
of attributes which ensures the same quality of classification as the entire 
set of attributes; the core is an intersection of all reducts), 

• examining the significance of attributes by observing changes in the quality 
of approximation of the classification caused by removing or adding given 
attributes. 

All necessary definitions could be found in [10], [15] or [18]. 

Results obtained in [14] show that using these elements to identify the most 
significant attributes for the two patients' classifications may be insufficient. So, 
we propose to use independently three additional heuristic approaches directly 
oriented to determine the most significant attributes. The heuristics are the 
following: 

• The strategy based on adding to the core the attributes of the highest 
discriminatory power, 

• The strategy based on dividing the set of attributes into disjoint subsets 
and analysing the significance of attributes inside subsets, 

• The strategy oriented into the analysis of the condition parts of decision 
rules induced from the information system. 

In the first strategy, the core of attributes is chosen as a starting reduced subset 
of attributes. It usually ensures lower quality of approximation of the objects' 
classification than all attributes. A single remaining attribute is temporarily 
added to the core and the influence of this adding on the quality is examined. 
Such an examination is repeated for all remaining attributes. The attribute 
with the highest increase of the quality of classification is chosen to add to the 
reduced subset of attributes. Then, the procedure is repeated for remaining 
attributes. It is finished when an acceptable quality of the classification is 
obtained. If there are ties in choosing attributes several possible ways of adding 
are checked. This strategy has been previously used by authors in [11] giving 
results having the good medical interpretation. 

The aim of the second strategy is to reduce the number of interchangeable and 
independent attributes in the considered information system. If the system 
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contains too many of such attributes, one usually gets as a result an empty 
core, high number of equivalent reducts and atoms supported by single objects. 
We suggest to divide the set of all attributes into disjoint subsets. Each subset 
should contain attributes which are dependent each other in a certain degree 
and have a common characteristic for a domain expert. Such a division could 
be done either nearly automatically as in [20] or depending on the background 
domain knowledge (as it was done in [13]). 

In two previous strategies elements of the rough set theory were used to deter
mine the significance of attributes. On the other hand, the objects represented 
in the information system are also treated as learning examples and decision 
rules can be induced from them. In this paper, we assume that decision rules 
are represented in the following form: 

where ai is the ith attribute, Vi is its value and classj is one of the decision 
classes in the objects' classification. 

The decision rules reflect the important and hidden relationships between values 
of condition attributes and a classification decision [19]. So, it is also possible 
to examine the syntax of condition parts of these rules and to identify the 
condition attributes occurring the most often in the rules. This concept is 
similar to the heuristic used in INLEN system [7] and has been also studied by 
Stefanowski in [8]. 

In this study for the rule discovery we have mainly used our implementation 
of LEM2 algorithm introduced by Grzymala (see [3], [4]. In this algorithm 
inconsistencies in data sets are handled by means of the rough set theory. 
So, the approximations of decision classes are treated as the target concepts. 
The algorithm LEM2 induces from lower approximations of decision classes, so 
called, discriminating rules (also called certain rules). These rules distinguish 
positive examples, i.e. objects belonging to the lower approximation of the 
decision class, from other objects (cf. introductory sections in [4], [5],[17]). 

To help the physicians in evaluating the induced rules we use two measures 
characterizing the rules: strength of the rule, and length of the rule. The 
strength of the rule is a number of learning examples (i.e. here patients in the 
ESWL information system) satisfying the condition part ofthe rule. The length 
of the rule is the number of elementary conditions (i.e. attribute value pairs) 
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being used in the rule. Generally, we interesting in discovering the shortest and 
strongest (i.e. the most general) rules. 

4 ANALYSIS OF THE ESWL 
INFORMATION SYSTEM 

4.1 Looking for reducts 

Let us consider two classifications: Yl and Y2. The first one determines the 
patient's condition after the performing lithotripsy treatment and the second 
classification expresses the final ESWL treatment result. 

Decision Number Lower Upper Accur-
class of patients approx. approx. accy 

card(YI) card (QYI) card(QY1 ) /LQ(Y1 ) 

1 296 296 296 1.00 
2 139 139 139 1.00 

Table 3 First classification (Yl) - accuracy of approximation of each class by 
all attributes Q 

To analyse the dependency between condition attributes and the classification 
of patients the rough set theory was used. The results are presented in Table 
3 and 4. It can be seen that the quality of approximations of the patients' 
classification, by the set of all 33 attributes (denoted by Q) in both cases was 
equal to 1.00. However, the number of atoms was the nearly same as the number 
of objects (patients), and was equal to 434 for both classifications. Although, 
the quality of the approximation of the classification was the maximal one, this 
number of atoms is too high. Nearly all of these atoms were represented by 
single patients. So, they could not be treated as a good basis for expressing 
strong classification patterns. One can check, that similar results were also 
obtained for the smaller number patients in the previous study [14]. 

Then, we looked for cores and reducts of attributes. TJsing the microcomputer 
program RoughDAS [16] we were able to conclude, that the core of the first 
classification Yl is empty and the core of classification Y2 consisted of two 
attributes only (i.e. 20 and 21). For both classifications, we found out that 
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Decision Number Lower Upper Accur-
class of patients approx. approx. accy 

card(Y2) card(QY2) card(QY2) !lQ(Y2 ) 

1 270 270 270 1.00 
2 143 143 143 1.00 
3 22 22 22 1.00 

Table 4 Second classification (Y2) - accuracy of approximation of each class 
by all attributes Q 

the number of the reducts was very high. We could not precisely determine it 
within reasonable time because of the limited capacity of the used computer 
equipment. 

Let us, notice, that identical results (i.e. getting many reducts) were obtained 
previously for the smaller number of analysed patients. We could suspect, that 
the attributes used to construct the data set are independent each other. So, 
taking into account their ability to approximate the patients' classifications we 
must say that they are interchangeable. One can remove few of them and others 
will take their role and still give the highest classification ability. As a result, 
the number of reducts is very high and even finding all of them would not lead 
to any good solutions because experts cannot analyse the reducts and indicate 
the most acceptable one. 

Therefore, to help the urologists in determining the significance of attributes, we 
decided to use three heuristic approaches to select the most significant attribute. 

Before performing these experiments, we additionally checked the contents of 
the information system. We calculated the distribution of values for each at
tributes over all objects. It was found out that the distributions of possible 
values for attributes 7, 8, 10, 17, 26, 27, and 28 are characterized by occurring 
mainly the one single value (i.e. the same value for 405 - 430 objects). So, one 
could suspect that these attributes may have weak discriminatory power. 

4.2 Adding attributes to the core 

Proceeding in the way described in section 3, for both classifications we obtained 
the most acceptable reduced subset of attributes. They are presented in Table 



Classification Attributes 

Yl 1 3 6 11 14 21 22 25 28 29 30 31 33 

Y2 1 2 6 11 14 16 20 21 31 33 

Table 5 Acceptable subsets of attributes for both classifications obtained as 
a result of adding the most discriminatory attributes to a core 

The current reduced Added Quality of approx. 
subset of attributes attribute of classification 

after adding 
the attribute 

20,21 11 0.08 
31 0.09 
32 0.07 

20,21,31 6 0.26 
11 0.30 
33 0.25 

11,20,21,31 6 0.50 
33 0.48 

6,11,20,21,31 1 0.69 
33 0.66 

1,6,11,20,21,31 33 0.82 
14 0.80 
3 0.80 

1,6,11,20,21,31,33 2 0.90 
3 0.82 

1,2,6,11,20,21,31,33 14 0.94 
16 0.94 

1,2,6,11,14,20,21,31,33 16 0.99 
18 0.98 

Table 6 Partial listing of steps in adding attributes to the core for classifica
tion Y2 
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5. We noticed that starting subsets of attributes gave a very low quality of 
approximation of the patients' classification (i.e. around 0.01). 

The partial listing of the steps of adding attributes in this strategy (for classifi
cation Y2) is presented in Table 6. Due to the large number of analysed possible 
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adding, we give information about choosing between the most discriminatory 
attributes only. The other remaining attributes gave the smaller increase of the 
quality. 

The obtained reduced subsets of attributes are nearly the same as the ones 
found in the study [14]. On the other hand, one can notice that this strategy 
started from adding attributes to the core characterized by a very low quality 
of approximation of the classification and first additions did not lead to the fast 
increase of this quality. The final results partly depends on the first choices 
which in the ESWL case are not fully reliable. This is the additional motivation 
to check other strategies. 

4.3 Dividing the set of attributes 

The aim of this strategy is to solve the difficulties with existing in the ESWL 
information system too many interchangeable and independent attributes. We 
suggest to divide the set of all attributes into disjoint subsets. According to the 
medical experts' background knowledge it is possible to divide attributes into 
two disjoint subsets which have a different medical source and interpretation: 

• attributes coming from the physician's investigation of the patient - anam
nesis; i.e. these are attributes 1 - 14 and they create information system 
A, 

• attributes obtained as a result of laboratory tests and examinations; i.e. 
these are attributes 15 - 33 and they create information system B. 

Then, for both classifications Yl and Y2 and each information system A and 
B we examined the significance of attributes using "traditional rough set ap
proach" [12]. 

For classification Yl and information system A we calculated the quality of 
classification. It was equal to 0.8. The information system contained one 
core and reduct, i.e. {1,2,3,4,6,8,9,1O,11,12,13,14}. Then, we checked the 
influence of particular core attribute on the ability of approximation of the 
objects classification. We removed temporarily single attributes and observed 
the value of the quality of the classification for the reduced set of attributes. 
Results of this experiment are presented in Table 7. The attributes in Table 
7 are ordered according to their influence on the quality of classification. So, 



information system A information system B 
The removed Quality of The removed Quality of 

attribute classification attribute classification 
11 0.63 21 0.81 
1 0.67 25 0.82 
6 0.71 29 0.83 
3 0.72 30 0.83 
12 0.75 32 0.83 
2 0.75 20 0.85 
14 0.76 31 0.855 
4 0.77 15 0.867 
5 0.77 22 0.867 
9 0.78 33 0.867 

13 0.78 24 0.869 
10 0.79 16 0.871 
8 0.8 18 0.874 

19 0.874 
17 0.883 
26 0.883 
28 0.883 

Table 7 Analysis of the significance of attributes for classification Yl and 
information systems A and B 
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information system A information system B 
The removed Quality of The removed Quality of 

attribute classification attribute classification 
11 0.618 33 0.810 
6 0.660 30 0.837 
1 0.670 21 0.84 
2 0.706 25 0.846 
3 0.713 32 0.848 
5 0.722 20 0.850 
12 0.736 31 0.860 
9 0.749 22 0.869 
14 0.756 29 0.871 
4 0.761 18 0.874 
10 0.775 19 0.878 
13 0.763 24 0.878 

15 0.885 
16 0.885 
26 0.885 
27 0.885 
28 0.885 

Table 8 Analysis of the significance of attributes for classification Y2 and 
information systems A and B 

we can say that attributes 11, 1, 6, 3 seem to be the most significant while 
attributes 7, 8, 9, 10, 13 have the smallest discriminatory power. 

The similar analysis was performed for classification Yl and information system 
B. The quality of classification was equal to 0.89. The information system 
contained one core and reduct, i.e. {15,16,17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 
29,30,31,32,33 }. Results of checking the influence of particular core attribute 
on the ability of approximation of the objects classification are presented in 
Table 7. If we analyse the attribute influence on the quality of classification, 
we can say that attributes 21, 25, 29, 30, 32 seem to be the most significant 
while attributes 17, 23, 26, 27 , 28 have the smallest discriminatory power. 

For classification Y2 and information system A the quality of classification was 
equal to 0.78. The information system contained one core and reduct, i.e. {I, 
2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}. Results of the significance analysis are 
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presented in Table 8. One can say that attributes 11, 1, 6 seem to be the most 
significant while attributes 7, 8, 10 , 13 may be treated as unimportant. 

The similar analysis was performed for classification Y2 and information system 
B. The quality of classification was equal to 0.89. The information system 
contained one core and reduct, i.e. {15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 
28, 29, 30, 31, 32, 33 }. Then, we checked the significance of particular core 
attribute. Results are presented in Table 8. One can notice that attributes 33, 
30, 21, 25 may be the most significant while attributes 17, 23, 15, 16, 26, 27 , 
28 are non significant. 

To sum up, one can say that the performed analysis has led us to the following 
selection of the most significant attributes: 

• For classification Yl attributes 1,3,6,11,21,25,29,30,32. 

• For classification Y2 attributes 1,6,11,21,25,30,32,33. 

4.4 Analysis of condition parts of the decision 
rules 

For both classifications Yl and Y2, we induced decision rules taking into account 
all attributes describing patients. In this strategy, first we restricted the set of 
induced rules to the "strong" ones, i.e. satisfied by large enough number of 
learning examples. So, from the set of induced rules we removed the "weak" 
rules, i.e. supported by few examples only (in the ESWL case - rules satisfied 
by 1-2 patients for decision classes of low cardinality and rules satisfied by 
1-5 patients for larger decision classes). Then, we created the histogram of 
occurrence of particular attributes in condition parts of" strong" rules. Finally, 
we chose attributes occurring in the decision rules more often than the defined 
threshold T (here 25%). The selected attributes are presented in Table 9. 

4.5 Determining the most significant 
attributes 

One can notice that results obtained using three above strategies are similar, 
i.e. the similar attributes are selected to the final subset. Moreover, similar 
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Classification Attributes 
Yl 2 3 5 14 15 25 29 
Yz 1 4 6 11 21 31 32 33 

Table 9 The most frequent attributes in decision rules for both classifications, 
discovered by the analysis of decision rules 

Class- no. of Selected attributes Quality 
fication subset 

Yl 1 1 3 6 11 21 25 29 30 31 32 0.95 
Yl 2 1 2 3 6 11 12 14 20 21 25 29 30 31 32 0.98 
Yz 3 1 6 11 21 25 30 31 32 33 0.89 
Yz 4 1 2 3 4 5 6 11 20 21 22 25 29 30 31 32 33 1.0 

Table 10 The classification ability of subsets of the most significant attributes 

attributes were identified as non - significant ones. In fact these non - significant 
attributes contain the ones observed in section 4.1 as 'badly' defined. 

Taking into account results obtained by all strategies we performed an addi
tional experiment. We took into account the subsets of the most discriminatory 
attributes identified by the second strategy. Then, we extended these subsets 
by adding the most significant attributes chosen by two other strategies. This 
operation led us to first reduced subsets of the most significant attributes for 
both patients classifications (subsets no. 1 and 3 in the Table 10). Addition
ally, we add to these subsets other remaining attributes characterized by still 
satisfactory discriminatory power. In this way we created two other subsets 
of attributes (subsets no. 2 and 4. in Table 10). Then, we have checked the 
ability of these subsets to approximate the patients' classifications. The results 
are given in Table 12. 

We analysed the ESWL information system reduced to these subsets of at
tributes. For system built using subset no. 1, we found out that this subset is 
the unique reduct. The significance analysis in this reduced system indicated 
attributes 6, 11 and 31 as the most important. If the subset no. 2 is used 
to reduce the ESWL system, one could also get one reduct. For the second 
classification Y2, and subset no. 3 we also obtained one reduct. Subset no. 4 
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led to four possible reducts but their core has enough attributes and ensured 
quality equal to 0.89. 

The above results show that the selected attributes, in particular subset no. 1 
for classification Yl and subset no. 3 for classification Y2 have good ability to 
approximate patients classification and could be taken as the most significant 
ones. 

5 CONCLUSIONS 

In this paper the ESWL information system was analysed. The aim of this 
analysis was to evaluate the significance of attributes describing patients for 
two classifications expressing the patient's condition after the ESWL treatment 
and the long-term results of the treatment. 

One can notice that use of the simple rough set methodology to analyse the 
extended ESWL information system (435 patients) has led to results which are 
very difficult to interpret, i.e. too many atoms supported by single patients, 
empty or nearly empty cores of attributes, high number of the possible reducts 
of attributes. To avoid this interpretation ambiguity, three additional heuristic 
strategies have been used to examine the significance of attributes. We noticed 
that all these strategies have led to very similar results. So, we could identify 
the most significant attributes in a more satisfactory way than in the previous 
study. The selected attributes are presented in Table 10. 

We hope that these strategies could be useful tools for studying data relation
ships in the so called 'difficult' data sets which are very often met in medical 
applications. 

In further analysis of the ESWL problem, the chosen most significant attributes 
will be the basis for discovering the decision rules. The decision rules will be 
interpreted from the point of view of the clinical practice. The most powerful 
decision rules (supported by the highest number of patients, with the good 
practical interpretation and verified in several tests) will be further used to 
create the methodology supporting the qualification of new coming patients to 
the ESWL treatment. 
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Two families of systems developed over the past several years for easy information access 
and analysis from relational databases, DBLEARN/DB-Discover and DBROUGHI 
GRG, are described. DBLEARN is a system for discovering knowledge in databases (data 
mining) by performing attribute-oriented induction integrating learning-from-examples 
with set-oriented database operations. DBLEARN extracts generalized data from data
bases by applying concept tree ascension generalization, which substantially reduces the 
computational complexity of the learning processes. Different knowledge rules, including 
characteristic rules, discrimination rules, quantitative rules, and data evolution regulari
ties can be efficiently discovered. DB-Discover is a newer implementation of attribute
oriented induction, which features a graphical user interface and a significantly faster dis
covery process (approximately lOOO-fold increase in speed). DBROUGH is a rough set 
based knowledge discovery system which integrates database operations, rough set theory 
and machine learning methods (data generalization and data reduction). In the data 
reduction phase, rough sets techniques are applied to the generalized relation to eliminate 
irrelevant or unimportant attributes to the discovery task thus reducing the generalized 
relation to the best minimal attribute set. GRG (Generalization, Reduction, Generation) 
combines the best features of DB-Discover and DBROUGH into a single system provid
ing improved efficiency and more fine-grained results. Mter describing these system fam
ili es, design issues are discussed. 

1. INTRODUCTION AND DATA MINING 

We are forever making tradeoffs in computer science. Historically we have 
devised algorithms and written programs in which the major tradeoff has been 
between computing speed (time) versus computer memory (storage). With 
present-day fast processors and large capacity memories and disks, we can 
attempt to solve problems given up a generation ago as unreasonable. Parallel 
processing has added anomer dimension of capability to our repertoire of prob
lem solving tools. 
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A subtler form of the traditional space/time tradeoff is the decision of search 
versus inference: when does the cost of retrieving information exceed the cost of 
re-creating that information? It is impractical to predict all possible valid infer
ences which can be made from a database relational structure and the values of 
the attributes, and many of these inferences would be meaningless. Nevertheless 
determining the search/inference tradeoff is useful. This tradeoff is the crux of 
the knowledge discovery in databases (KDD) or data mining process. 

Data mining in relational databases requires three primitives for the specifi
cation of a discovery task: task-relevant data, background knowledge, and the 
expected representations of the learned results. We can subsequently generalize our 
results from relational databases to other databases as well. 

Characterizing the features of science graduate students requires only data 
relevant to science graduates, but this data may extend over several relations. 
Thus, a query can be used to collect task-relevant data from the database. Task
relevant data can be viewed as examples for learning and learning-from-examples 
is an important strategy for knowledge discovery in databases. Most learning
from-examples algorithms partition the set of examples into positive and nega
tive sets and perform generalization using the positive data and specialization 
using the negative ones. Unfortunately, a relational database does not explicitly 
store negative data, and thus no explicitly specified negative examples can be 
used for specialization. Therefore, a database induction process relies only on 
generalization, which must be performed cautiously to avoid over-generaliza
tion. 

Concept hierarchies represent background knowledge necessary to control 
the generalization process. Different levels of concepts can be organized into a 
taxonomy of concepts which is partially ordered according to a general-to-spe
cific ordering. The most general concept is the null description, described by a 
reserved word ''ANY'', and the most specific concepts correspond to the specific 
values of attributes in the database (Han et al., 1992). Using a concept hierarchy, 
the rules learned can be represented in terms of generalized concepts and stated 
in a simple and explicit form, which is desirable to most users. 

A concept hierarchy table of a typical university database for three attributes 
is shown in Table 1. 
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Attribute concept Values 

Major Sciences Biology, Chemistry, Physics, '" 

Humanities English, Philosophy, Religious Studies, .. , 

Social Sciences Political Science, Sociology, History, .. , 

ANY Science, Humanities, Social Sciences, .. , 

Birth-Place British Columbia Vancouver, Victoria, Richmond, , .. 

Alberta Edmonton, Calgary, Red Deer, .. , 

Saskatchewan Regina, Saskatoon, Moose Jaw, .. , 

ANY British Columbia, Alberta, Saskatchewan, .. , 

GPA Excellent 80,81, "', 100 
Above Average 70, 71, "', 79 
Average 60,61, "', 69 
ANY Excellent, Above Average, Average, .. , 

.. , .. , .. , 

Table 1: Example Concept Hierarchy Tables. 

Concept hierarchies can be provided by knowledge engineers or domain 
experts. This is realistic even for large databases since a concept tree registers only 
the distinct discrete attribute values or ranges of numerical values for an attribute 
which is, in general, not very large and can be input by domain experts. More
over, many conceptual hierarchies are actually stored in the database implicitly. 
For example, the information that "Vancouver is a city of British Columbia, 
which, in turn, is a province of Canada", is usually stored in the database if there 
are "city", "province" and "country" attributes. Such hierarchical relationships 
can be made explicit at the schema level by indicating "city province country". 
Then, the taxonomy of all the cities stored in the database can be retrieved and 
used in the learning process. 

Some concept hierarchies can be discovered automatically or semi-automat
ically. Numerical attributes can be organized as discrete hierarchical concepts, 
and the hierarchies can be constructed automatically based on database statistics. 
Such automatic construction can be performed by first obtaining the distribu
tion of attribute values in the database, then setting the range of the values and 
performing refined classifications in tightly clustered subranges. For example, for 
an attribute "CGPA", an examination of the values in the database discloses that 
cumulative grade point averages (CGPAs) fall between 0 to 4, and most CGPA's 
for graduates are clustered between 3 and 4. One may classifY 0 to 1.99 into one 
class, and 2 to 2.99 into another but give finer classifications for those between 3 
and 4. Even for attributes with discrete values, statistical techniques can be used 
under certain circumstances. For example, if the birth-places of most employees 
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are clustered in Canada and scattered in many different countries, the highest 
level concepts of the attribute can be categorized as "Canada" and "foreign". 
Thus, the available concept hierarchies can be modified based on database statis
tics. Moreover, the concept hierarchy of an attribute can also be automatically 
discovered or refined based on its relationship with other attributes (Cai et al., 
1991). 

Different concept hierarchies can be constructed on the same attribute 
based on different viewpoints or preferences. For example, the birthplace could 
be organized according to administrative regions such as provinces, countries, 
etc., geographic regions such as east-coast, west-coast, etc., or the sizes of the city, 
such as, metropolis, small-city, town, countryside, etc. Usually; a commonly ref
erenced concept hierarchy is associated with an attribute as the default concept 
hierarchy for the attribute. Other hierarchies can be selected explicitly by users. 

Rules are one of the expected forms of the learning results. Different rules, 
such as characteristic rules, discrimination rules, data evolution regularities, etc. 
can be discovered by the generalization processes. A characteristic rule is an asser
tion which characterizes a concept satisfied by all or a majority of the examples 
in the class undergoing learning (the target class). For example, the symptoms of 
a specific disease can be summarized by a characteristic rule. A discrimination 
rule is an assertion which discriminates a concept of the target class from other 
(contrasting) classes. For example, to distinguish one disease from others, a dis
crimination rule should summarize the symptoms that discriminate this disease 
from others. Data evolution regularities represent the characteristics of the 
changed data if it is a characteristic rule, or the changed features which discrimi
nate the current data instances from the previous ones if it is a discrimination 
rule. If quantitative measurement is associated with a learned rule, the rule is 
called a quantitative rule. 

In learning a characteristic rule, relevant data are collected into one class, the 
target class, for generalization. In learning a discrimination rule, it is necessary to 
collect data into two classes, the target class and the contrasting class(es). The 
data in the contrasting class(es) imply that such data cannot be used to distin
guish the target class from the contrasting ones, that is, they are used to exclude 
the properties shared by both classes. 

Each tuple in a relation represents a logic formula in conjunctive normal 
form, and a data relation is characterized by a large set of disjunctions of such 
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conjunctive forms. Thus, both the data for learning and the rules discovered can 
be represented in either relational form or first-order predicate calculus. 

A relation which represents intermediate (or final) learning results is called 
an intermediate (or a final) generalized relation. In a generalized relation, some 
or all ofits attribute values are generalized data, i.e., nonleaf nodes in the concept 
hierarchies. Some learning-from-examples algorithms require the final learned 
rule to be in conjunctive normal form (Dietterich et al., 1983). This require
ment is usually unrealistic for large databases since the generalized data often 
contain different cases. However, a rule containing a large number of disjuncts 
indicates that it is in a complex form and further generalization should be per
formed. Therefore, the final generalized relation should be represented by either 
one tuple (a conjunctive rule) or a small number (usually 2 to 8) of tuples corre
sponding to a disjunctive rule with a small number of disjuncts. A system may 
allow a user to specifY the preferred generalization threshold, a maximum num
ber of disjuncts of the resulting formula. 

Exceptional data often occur in a large relation. The use of statistical infor
mation can help learning-from-examples handle exceptions and/or noisy data. A 
special attribute, vote, can be added to each generalized relation to register the 
number of tuples in the original relation which are generalized to the current 
tuple in the generalized relation. The attribute vote carries database statistics and 
supports the pruning of scattered data and the generalization of the concepts 
which take a majority of votes. The final generalized rule will be the rule which 
either represents the characteristics of a majority number of facts in the database 
(called an approximate rule), or in a quantitative form (called a quantitative rule) 
indicating the quantitative measurement of each conjunct or disjunct in the rule. 

2. Attribute-Oriented Generalization 

Attribute-oriented induction in which generalization is performed attribute 
by attribute using attribute removal and concept tree ascension is summarized 
below. 1 As a result, different tuples may be generalized to identical ones, and the 
final generalized relation may consist of a small number of distinct tuples, which 

1 In fact we utilize seven strategies when performing attribute-oriented induction: (1) generaliza
tion on the smallest decomposable components; (2) attribute removal; (3) concept tree ascension; 
(4) "vote" propagation; (5) attribute threshold control; (6) generalization threshold control; and 
(7) rule transformation. See Cai, Cercone, & Han (1991) for details. 
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can be transformed into a simple logical rule. We presented the general idea of 
basic attribute-oriented induction in detail elsewhere (eai et al., 1991). Basic 
attribute-oriented induction is specified in Algorithm 1. 

This basic attributed-oriented induction algorithm extracts a characteristic 
rule from an initial data relation. Since the generalized rule covers all of the posi
tive examples in the database, it forms the necessary condition of the learning 
concept, that is, the rule is in the form: learnin~class(x) ~ condition(x), where 
"condition(x)" is a formula containing "x". However, since data in other classes 
are not taken into consideration in the learning process, there could be data in 
other classes which also meet the specified condition. Therefore, "condition(x)" 
is necessary but may not be sufficient for "x" to be in the learning class. 

Algorithm 1. Attribute-oriented induction in relational databases. 
Input: (i) A relational database, (ii) a concept hierarchy table, and (iii) 

the learning task, and optionally, (iv) the preferred concept 
hierarchies, and (v) the preferred form to express learning 
results. 

Output. A {characteristic, discrimination, ... } rule learned from the 
database. 

Method. Attribute-oriented induction consists of the following 4 steps: 
Step 1. Collection of the task-relevant data. 
Step 2. Basic attribute-oriented induction. 
Step 3. Simplification of the generalized relation, and 
Step 4. Transformation of the final relation into a logical rule. 

Notice that the basic attribute-oriented induction (Step 2) is performed as 
follows. 

begin for each attribute Ai (1 <i<n, # of attributes) in the generalized rela
tion do 
while number_oCdistinccvalues_in_Ai > generalization_threshold 
do 

begin 
if no higher level concept in the concept hierarchy table for Ai 
then remove Ai 
else substitute for the values of Ai's by its corresponding 

minimal generalized concept; 
merge identical tuples 

end 
while number_oUuples_in~eneralized_relation > 

generalization_threshold do 
selectively generalize some attributes and merge 
identical tuples 

end. {Attribute-oriented induction} 
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Attribute-oriented generalization can also be applied to learning other 
knowledge rules, such as discrimination rules, data evolution regularities, etc. 
Since a discrimination rule distinguishes the concepts of the target class from 
those of contrasting classes, the generalized condition in the target class that 
overlaps the condition in contrasting classes should be detected and removed 
from the description of discrimination rules. Therefore, a discrimination rule 
can be extracted by generalizing the data in both the target class and the con
trasting class synchronously and by excluding the properties that overlap in both 
classes in the final generalized rule. 

3. DBLEARN/DB-Discover Family 

DBLEARN is our initial version of the machine learning program which 
implements attribute oriented generalization using concept hierarchies (Han et 
al., 1992; Han et al., 1993). DB-Discover consists of five components: a user
interface, a command module, a database access module, a concept hierarchy, 
and a learning module. DB-Discover is illustrated structurally in Figure 1. 

The user-interface of DBLEARN consisted of an interactive command line 
interface which implemented a superset of SQL (structured query language). 
Subsequendy, DB-Discover incorporated a graphical user interface which made 
the diwcovery program accessible by unskilled data miners via knowledge of the 
concept hierarchies. rather than of the database schema. 

The command module is the primary controller of communication 
between the DB-Discover modules. It provides one or two relations to be general
ized to the learning module and provides the functions necessary to do so. The 
command handler guides the construction of the necessary query to extract 
desired relations and connects to the database access module to initialize the 
query and retrieve tuples for the learning module. The command module also 
directs loading of the concept hierarchies from the concept hierarchy module, 
provides access to them so the interface can display them, and then performs the 
translation from high level concepts to low level database attribute values. 

We illustrate DBLEARN using the NSERC (Natural Sciences & Engineering 
Research Council) Grants Information System (NGIS). NGIS is intended to be 
used by individuals in "universities, government and industry ... to search for 
grants that are of particular interest". Together with details about individual 
grants, the system provides summary statistics and reports. 
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Figure 1. The architecture of DB-Discover. 

The central database table consists of rows, each of which describes an award 
(grant) by NSERC to a researcher. Values constituting each row (that is, the col
umns constituting the table) specify the different propenies of the award, includ
ing the name of the recipient, the amount of the award and so on. In the schema 
diagram in Figure 2, nodes representing the properties of awards are represented 
by nodes linked to the '1\ward" node. 

Several subsidiary tables record other propenies of awards such as, the prov
ince of the organization where the work will be performed. Most subsidiary 
tables simply associate English (and French) phrases describing the entity to a 
code denoting it. Tables are specified by rectangular nodes and attributes are rep
resented by ovals. 

Figure 2. Schema diagram for NSERC Grants Information System. 
A concept hierarchy table for the attribute "province" of the NGIS database 

is shown in Table 2. 
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attribute ... . concept values" 
><. 

province British Columbia British Columbia 

Praries Alberta, Saskatchewan, Manitoba 

Ontario Ontario 

Quebec Quebec 

Maritime New Brunswick, Nova Scotia, New-
foundland, Prince Edward Island 

Canada British Columbia, Praries, Ontario, 
Quebec, Maritime, 

ANY Canada, Outside Canada 

Table 2: A concept hierarchy table for the attribute province. 

A concept hierarchy table for the attribute "disc_code" of the NGIS data
base is shown in Table 3. 

'ilttrlbut& ~ecmcept .. .• .. ,;!p;' ; .. valueS' 
disc_code hardware 23000 - 23499 

system organization 23500 - 23999 
software 24000 - 24499 
theory 24500 - 24999 
database systems 25500 - 25999 
artificial intelligence 26000 - 26499 
computing methods 26500 - 26999 
other disciplines 0- 22999, 27000 
computing science hardware, system organization, software, 

theory, database systems, artificial intelli-
gence, computing methods 

ANY computing science, other diSCiplines 

Table 3: A concept hierarchy table for the attribute disc_code 

DBLEARN's database learning language can be viewed as an extension to 

SQL. Suppose that the learning task is the discovery of the characteristics of com
puting science operating grants by amounts, provinces, and the percentages of 
grants awarded in a given discovered category and the percentage of funds 
awarded for the discovered category.2 The learning task is presented to 
DBLEARNas 

learn characteristic rule for "CS_Op_Grants" 
from Award A, Organization 0, grant_type G 
where O.or~code = A.org_code and G.Grant_order 
"Operating Grants" 
and A.grant_code = G.grant_code and A.disc_code = 
"Computer" 
in relevance to amount, province, prop (votes) *, 
prop (amount) 3 
using table threshold 18 
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The results returned from DBLEARN: 

Amount Geographic Area # of Grants Prop. of amount 

0-20Ks B.C. 7.4% 4.7% 
0-20Ks Prairies 8.3% 5.4% 
0-20Ks Quebec 13.8% 8.7% 
0-20Ks Ontario 24.5% 15.7% 
0-20Ks Maritime 
20Ks-40Ks B.C. 5.3% 7% 
20Ks-40Ks Prairies 5.3% 6.6% 
20Ks-40Ks Quebec 5.1% 7% 
20Ks-40ks Ontario 12.9% 16% 
20Ks-40ks Maritime 1% 1.3% 
40Ks-60Ks B.C. 1.2% 3.1% 
40Ks-60Ks Prairies 0.2% 0.4% 
40Ks-60Ks Quebec 1% 2.5% 
40Ks-60Ks Ontario 5.1% 11.5% 
60Ks- B.C. 0.2% 0.6% 
60Ks- Prairies 0.4% 1.6% 
60Ks- Quebec 0.2% 0.6% 
60Ks- Ontario 1.2% 4.5% 

Total: $10,196,692 100% 100% 

Discussion 
The original DBLEARN prototype suffered from relatively poor perfor

mance, albeit serving well as an adequate proof of concept for knowledge discov
ery in databases. The primary causes of the performance difficulties are detailed 
in Carter & Hamilton (1994) and include: excessive storage requirements, inef
ficient data representations, and inefficient data retrieval. 

All initial data in DBLEARN are read into internal data structures before gen-

2 For another example, suppose that the learning task is to learn characteristic rules for graduate 
students relevant to the attributes Major, Birth-Place, and GPA in a student database using con
ceptual hierarchies such as the one shown earlier (Table 1) and a threshold value of 3. The learn
ing task is presented to DBLEARN as 

in relation Student 
learn characteristic rule for Status = "graduate" 
from Student 
in relevance to J:iIarre, M:l.jor, Birth_Place, GPA 

Mter applying the appropriate strategies (generalization on the smallest decomposable compo
nents, attribute removal, concept tree ascension, etc.), we could learn the logical formula: 

Vx graduate (xl ---7 

{Birth_Place (xl ECanada & GPA(xlEexcellent} [75%] I 
{Major (xl Escience & Birth_Place (x) Eforeign & 

GPA (xl Egood} [25%]. 

3 propO is a built-in function which returns the number of original tuples covered by a generalized 
tuple in the final result and the proportion of the specified attribute value. 
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eralization. Thus DBLEARN defined a maximum number of possible tuples in 
the initial retrieved relation. A similar strategy was carried out for attributes. 
These and other assumptions led to an internal relation structure in the multiple 
megabyte range, enough to cause severe disk swapping on a central server (cli
ent-server model). DB-Discover implemented a dynamically allocated minimal 
storage scheme. 

DBLEARN stored all values as strings in (maximum-predicted-Iength) fixed 
length tables. DB-Discover developed a compact attribute-value representation in 
which range4 and non range values (leaves of concept hierarchies) can be stored 
compacdy. 

A key factor in DBLEARN's overall program efficiency is the speed of match
ing a concept with an attribute value. DBLEARN performed a linear search of 
unordered concepts. DB-Discover addressed these problems resulting in a 1000-
fold speedup of process and additionally added a graphical user interface which 
permitted users access to discovered data via concept hierarchies. 

4. Information Reduction with Rough Sets 

Throughout this section we will make use of the information presented in 
Table 4 by way of illustration. Table 4 illustrates a collection of Japanese and 
American cars and our objective is to discover knowledge which can tell us fac
tors that affect the gasoline mileage of a car. We partition the table into two dis
joint subsets, the condition attributes C ("make_model", type of fuel system 
"fuel", engine displacement "disp", "weight", number of cylinders "cyl", "power", 
presence of turbocharge "turbo", compression ratio "comp", and transmission 
"trans") and the decision attribute D ("mileage"). 

An attribute-oriented generalization algorithm similar to DBLEARN and DB
Discover is first applied constrained by two thresholds: the attribute threshold 
and the proportion threshold, using the concept hierarchy shown in Table 5. 

If the attribute is generalizable, it should be generalized to a higher level con
cept.5 The generalized car information system illustrated in Table 6 is the result 

4 The notation x-y denotes a range value with a lower bound of x and an upper bound of y, such 
that for any ZEX-y, X:::;z<y. 

5 An attribute is generalizable if there exists a concept hierarchy for the attribute, otherwise it is 
nongeneralizable. Furthermore an attribute is generalizable to threshold t> 1 if it is generalizable and 
the number of distinct values for the attribute in relation R exceeds t. 
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Make_Model fuel disp weight cyl power turbo comp trans mileage 

Ford Escort EFI medium 876 6 high yes high auto medium 
Dodge Shadow EFI medium 1100 6 high no medium manu medium 

Ford Festiva EFI medium 1589 6 high no high manu medium 

Chevrolet Corvette EFI medium 987 6 high no medium manu medium 

Dodge Stealth EFI medium 1096 6 high no high manu medium 

Ford Probe EFI medium 867 6 high no medium manu medium 

Ford Mustang EFI medium 1197 6 high no high manu medium 
Dodge Daytona EFI medium 798 6 high yes high manu high 
Chrysler LeBaron EFI medium 1056 4 medium no medium manu medium 

Dodge Sprite EFI medium 1557 6 high no medium manu low 
Honda Civic 2-BBL small 786 4 low no high manu high 
Ford Escort 2-BBL small 1098 4 low no high manu medium 
Ford Tempo 2-BBL small 1187 4 medium no high auto medium 
Toyoto Corolla EFI small 1023 4 low no high manu high 

Mazda 323 EFI medium 698 4 medium no medium manu high 
Dodge Daytona EFI medium 1123 4 medium no medium manu medium 
Honda Prelude EFI small 1094 4 high yes high manu high 
Toyoto Paseo 2-BBL small 1023 4 low no medium manu high 

Chevrolet Corsica EFI medium 980 4 high yes medium manu medium 
Chevrolet Beretta EFI medium 1600 6 high no medium auto low 
Chevrolet Cavalier EFI medium 1002 6 high no medium auto medium 
Chrysler LeBaron EFI medium 1098 4 high no medium auto medium 
Masda626 EFI small 1039 4 medium no high manu high 
Chevrolet Corsica EFI small 980 4 medium no high manu high 
Chevrolet Lumina EFI small 1000 4 medium no high manu high 

Table 4: A collection of "cars" information. 

attribute concept values 

make_model honda civic, acura, ... , accord 
toyota tercel, ... , camry 
mazda mazda_323, mazda_626, "', mazda 939 
japan (car) honda, toyoto, ... , mazda 
ford escort, probe, ... , taurus 
chevrolet corvette, camaro, ... , corsica 
dodge stealth, daytona, ... , dynasty 
usa (car) ford, dodge, ... , chevrolet 
any (make-model) japan (car), ... , usa (car) 
light 0, ... , 800 
heavy 801, ... , 1200 
medium 1201, ... , 1600 
any (weight) light, medium, heavy 

Table 5: A concept hierarchy for Table 4. 

of applying algorithm 2 to Table 4 with all thresholds set to 2 and p 0.84. 
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Algorithm 2 differs from previous attribute oriented algorithms (algorithm 1) in 
the use of the ratio d/ti to choose the next attribute for generalization. Rather 
than selecting the attributes in arbitrary order, we select the attribute which has 
the most values in proportion to threshold, thus directing the algorithm to areas 
where the most improvement is possible. 

If the attribute is generalizable, it should be generalized to a higher level con
cept.6 The generalized car information system illustrated in Table 6 is the result 
of applying algorithm 2 to Table 4 with all thresholds set to 2 and p = 0.84. 
Algorithm 2 differs from previous attribute oriented algorithms (algorithm 1) in 
the use of the ratio d/ti to choose the next attribute for generalization. We select 
the next attribute for processing which has the most values in proportion to 

threshold rather than in arbitrary order, thus directing the algorithm to areas 
where the most improvement is possible. 

Make_Model fuel disp weight cyl power turbo camp trans mileage 

USA EFI medium medium 6 high yes high auto medium 
USA EFI medium medium 6 high no medium manu medium 

USA EFI medium heavy 6 high no high manu medium 
USA EFI medium medium 6 high no high manu medium 

USA EFI medium light 6 high yes high manu high 

USA EFI medium medium 4 medium no medium manu medium 

USA EFI medium heavy 6 high no medium manu low 

Japan 2-BBL small light 4 low no high manu high 

USA 2-BBL small medium 4 low no high manu medium 
USA 2-BBL small medium 4 medium no high auto medium 
Japan EFI small medium 4 low no high manu high 

Japan EFI medium light 4 medium no medium manu high 

Japan EFI small medium 4 high yes high manu high 
Japan 2-BBL small medium 4 low no medium manu high 

USA EFI medium medium 4 high yes medium manu medium 
USA EFI medium heavy 6 high no medium auto low 
USA EFI medium medium 6 high no medium auto medium 

USA EFI medium medium 4 high no medium auto medium 
Japan EFI small medium 4 medium no high manu high 
USA EFI small medium 4 medium no high manu high 

Table 6: A generalized cars information system. 

6 An attribute is generalizable if there exists a concept hierarchy for the attribute, otherwise it is 
nongeneralizable. Furthermore an attribute is generalizable to threshold t> 1 if it is generalizable and 
the number of distinct values for the attribute in relation R exceeds t. 
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Algorithm 2. Extracts a generalized information system from a relation (EGIS). 
Input: (i) A set of task-relevant data R, a relation or arity n with a set of 

attributes Ai (l5,i5,n); (ij) a set H of concept hierarchies where 
each HiEH is a hierarchy on the generalized attribute Ai, if 
available; (iii) ti is a threshold for attribute Ai, and di is the 
number of distinct values of attribute Ai; and (iv) p defined by 
user is a proportional value (O<p5,l). 

Output. The generalized information system R'. 
MAXTUPLES ~ P x IRI; R' ~ R; 
while IR'I ;:: MAXTUPLES and 3di > ti do 

select an attribute Ai EA such that di/ti is maximal 
if Ai is generalizable 
then ascend tree Hi 1 level & make appropriate substitutions in R' 
else remove attribute Ai from R' 
endif 
remove duplicates from R'; recalculate di for each attribute 

endwhile 

Often it is difficult to know exactly which features are relevant and/or 
important for the learning task. Usually all features believed to be useful are col
lected into the database; hence databases normally contain some attributes that 
are unimportant, irrelevant, or even undesirable for a given learning task. The 
need to focus attention on a subset of relevant attributes is now receiving a great 
deal of attention in the data mining community (Matheus et al., 1993; Kira & 
Rendell, 1992). Pawlak (1982) introduced rough sets theory which provides the 
necessary tools to analyze a set of attributes globally. Using rough set theory, the 
minimal attribute set or reduct of the attribute in the generalized relation can be 
computed and each reduct can be used instead of the entire attribute set without 
losing any essential information. By removing these attributes which are not in 
the reduct, the generalized relation can be further reduced. To reduce the gener
alized relation further, two fundamental concepts play an important role - the 
reduct and the core. Intuitively; a reduct of the generalized relation is its essential 
part, that part which is sufficient to define all basic concepts in the class under 
consideration. The core is, in a certain sense, the reduct's most important part. 
Reducing the generalized relation entails removal of irrelevant or superfluous 
attributes in such a way that the set of elementary categories in the generalized 
relation are preserved. This procedure enables us to eliminate all unnecessary 
data from the generalized relation, preserving only that part of the data which is 
most useful for decision making. 
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Objects can be grouped to represent a certain relationship among a set of 
attributes C, in a generalized information system. Each relationship among the 
set of attributes C correspond to a classification of objects on the generalized 
information system into disjoint equivalence classes, where objects belonging to 
the same classification class have the same attribute values for every attribute in 
C. An equivalence relation Ux U;;;2 R(C) represents the classification correspond
ing to the set of attributes in C. Pawlak (1991) calls the pair AS = (u, R(C)) an 
approximation space. 

Information and Attribute Reduction 
Before discussing attribute reduction, it is instructive to perform a depen

dency analysis of attributes first. Let RYC) = {Xl' Xl> ... , Xn} be the collection of 
equivalence classes of the relation R(C), where an element ~ is a group of objects 
having the same values for all attributes in C, and let R*(D) = {Yl , Y2> ... , Ym} be 
a collection of equivalence classes of the relation R(D), where each element is a 
group of objects having the same values for all attributes in D and creates a con
cept class on the universe U. The lower approximation in the approximation 
space AS, denoted as LOW(C D) is defined as the union of those equivalent 
classes of the relation R(C) which are completely contained by one of the equiva
lence classes of relation R(D), that is 

LOW(C D) = U YiR*(D) {X E R*(C): Yi:JX} 

The upper approximation in the approximation space AS, denoted as UPP(C 
D), is defined as the union of those equivalence classes of R(C) which are par
tially contained by one of the equivalence classes of R(D), that is 

UPP(C D) = U YiR*(D) {X E R*(C): YinX;i:O} 

The lower approximation LOW(C D) characterizes objects which can be classi
fied into one of the concepts without any uncertainty based only on the classifi
cation information. The upper approximation UPP(C D) is a set of objects 
which can possibly be classified into one of the concepts with some ambiguous 
measurements. By definition 

U;;;2 UPP(C D);;;2LOW(C D) 
The degree of dependency K(C, D) in the relationship between the groups 

of attributes C and D can be defined as 

K(C D) = card (LOW(C D) )/card(U) 
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where card yields set cardinality. The dependency between two sets of attributes 
C and D indicates the extent to which values of attributes in D depend on values 
of attributes in C. By definition, OsK(C, D}:;l because U~ LOW(C, D). If K(c' 
D) is equal to 1, the dependency is considered to be fully functional. K(c' D) is 
equal to 0 when none of the values of attributes in D can be uniquely deter
mined from the values of attributes in C. 

In actual applications, databases usually contain incomplete and ambiguous 
information. The original rough sets technique does not use information in the 
boundary area UPP(c' D) - LOW(C, D) of an approximation space AS. In 
some situations, this leads to information loss and the inability to take advantage 
of statistical information. Extensions to rough sets theory to rectifY this situation 
can be found in Shan et al. (1994) and Ziarko (1993). Essentially these exten
sions draw some elementary sets belonging to the boundary area into the lower 
approximation; we can easily modifY our approach by changing slighdy the 
computation of the degree of dependency. The decision rules obtained in this 
fashion are characterized by an uncertainty factor which is, in fact, probabilistic 
that an object matching the condition part of the rule belongs to the concept. 

We say that an attribute a E Cis supeifluous in C with respect to D if K(c' 
D) = K(C-{aj, D); otherwise a is indispensable in C with respect to D. If we 
remove an indispensable attribute, we decrease the degree of dependency, that is, 
K(C-{aj, D) < K(c' D), if a is indispensable. Furthermore, we call a subset B of a 
set of attributes C a reduct of C with respect to D if and only if (1) K(B, C) = 

K(c' D); and (2) K(B, D) "* K(B,-{aj, D), for any aEB? The first condition 
ensures that the reduct preserves the degree of dependency with respect to D and 
the second condition ensures that the reduct is a minimal subset and that any 
further removal will change the degree of dependency. 

A given information system can have more than one reduct and each reduct 
can be used to represent the original information system. Hu et al. (1993) com
puted all reducts for small information systems and then chose one to use. 
Unfortunately, finding all reduCts of an information system is NP-hard (Wong 
& Ziarko, 1985) and, for many applications such as ours, is also unnecessary. 
We are interested in finding one "good" reduct.8 Table 7 illustrates the signifi-

7 A reduct is a minimal sufficient subset of a set of attributes which preserves the degree of depen
dency with respect to another set and which has the same ability to discern concepts as when the 
full set of attributes is used, (Pawlak, 1991). 
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cance values for the attributes in Table 6. Higher significance value for an 
attribute indicates greater interaction with decision attributes in D. 

attribute name x2 
weight 17,54 

make_model 12,86 

disp 7,08 

cyl 5,94 

power 5,68 

Iran 4,53 

comp 3,84 

fuel 0,63 

turbo 0,63 

Table 7: 

The following greedy algorithm, algorithm 3, constructs a reduct for a gen
eralized information system U. 

Algorithm 3. Computes a reduct (GENRED). 
Input: (i) A generalized information system U; (ii) a set of attributes C 

over the information system U; and (iii) the degree of depen
dency K(C, 0) in the information system U; 

Output. A reduct, that is, a set of attributes SM. 
Compute the sign ificance value for each attribute aE C; 
Sort the set of attributes C based on significance values; 
SM~O; 

while K(SM, 0) *- K(C, 0) 
do /*create subset SM of attr's C by adding attr's */ 
select an attr a with the highest significance value in C; SM ~ a U SM; 
compute degree of dependency K(SM, 0) in the information system U 

endwhile 
N~ISMI; 
for i = 0 to N-J 

do /*creaW a reduct of attr's SM by dropping condition attr's */ 
remove the l attribute aj from the set SM; 
compute the degree of dependency K(SM, 0) in the information system U 
if K(SM, 0) *- K(C, 0) then SM ~ SM U aj 

endif 
endfor 

8 The computation of a "good" reduct depends on the optimality criterion associated with attributes. 
Alternatively/additionally, we can assign significance values to attributes and base the selection of 
those values. The chi-square statistic, traditionally used to measure the association between two 
attributes in a contingency table, compares the observed frequencies with the frequencies that one 
would expect if there were no association between the attributes (Press et aI., 1988). 
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Algorithm 3 assigns a significance value based on an evaluation function to 
each attribute and sorts the attributes based on their significance values. A for
ward selection method is then employed to create a smaller subset of attributes 
with the same discriminating power as the original attributes. At the end of this 
phase, the attribute set SM contains the "good" performing attribute subset 
found thus far. Finally, to compute a reduct, a backward elimination method 
removes attributes, one by one, from the set SM The lower the significance 
value is, the earlier the attribute is processed. The degree of dependency is calcu
lated at each step based on the remaining attributes in SM; if the degree of 
dependency is changed the attribute is restored to the set SM, otherwise it is per
manently removed. Attributes remaining in the set SM for the reduct, other 
attributes may be removed. Table 8 illustrates a reduct for the generalized car 
information system presented in Table 6. The forward selection process collects 
the attributes with higher significance values one by one. For Table 6 this process 
stops with the collected set SM = {weight, make_model, disp, cyl, power, tran, 
comp} which has the same degree of dependency as the original set. The back
ward elimination step deletes redundant attributes from SM resulting in the set 
SM = {weight, make_model, power, tran, comp} as a reduct from which further 
deletion would reduce the degree of dependency. 

make_model weight power comp tran mileage 

USA medium high high auto medium 
USA medium high medium manu medium 
USA heavy high high manu medium 
USA medium high high manu medium 
USA light high high manu high 
USA medium medium medium manu medium 
USA heavy high medium manu low 
Japan light low high manu high 
USA medium low high manu medium 
USA medium medium high auto medium 
Japan medium low high manu high 
Japan light medium medium manu high 
Japan medium high high manu high 
Japan medium low medium manu high 
USA heavy high medium auto low 
USA medium high medium auto medium 
Japan medium medium high manu high 
USA medium medium high manu high 

Table 8: A reduct of the generalized car information system (Table 6). 
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For n objects (tuples) with a attributes, the time complexity of our algorithm 
is O(an + a log a) in the worst case because computing the degree of dependency 
using a hashing technique is O(n), computing attribute significance values is 
O(an), sorting the attributes based on significance values is O(a log a), creating 
the smaller subset of attributes using a hash technique is O(an), and creating the 
reduct is O(an). 

Before introducing GRG, we first introduce an earlier version entided 
DBROUGH, which inspired many of the ideas we wish to incorporate and 
improve upon. 

5. DBROUGH/GRG (Generalize, Reduce, Generate) Family 

OBROUGH is a direct descendant ofOBLEARN; its architecture is shown in 
Figure 3. The system takes SQL-like database learning requests and applies dif
ferent algorithms to discover rules. Again background knowledge is stored in 
concept hierarchies, which, in this case, can be adjusted dynamically according 
to database statistics and specific learning requests. 

OBROUGH can execute the following procedures to produce results: 
(1) OBchar: find the characteristic rule for the target class; 
(2) DBClass: find the characteristic rules of the target class with other 

classes; 
(3) DBDeci: find the decision rules for the decision attributes; 
(4) DBMaxi: find all the maximal generalized rules or the best k maximal 

generalized rules; 
(5) DBTrend: find the data trend regularities for the target class; 
(6) DBMkbs: find different knowledge bases for the target class; 

Perhaps the best way to illustrate DBROUGH is by example as well. Hu & 
Cercone (1994) provide details on system operation, including the syntax of its 
extended SQL language. Our example illustrates use of the procedure oBchar; 
specification of the learning task to OBROUGH is as follows: 
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USei"RequeSt -----, 

Attribute-Oriented 
Induction 

Rule Generation Programs 

1. Characteristic Rules (DBChar) 
2. Classification Rules (DBClass) 
3. Decision Rules (DBDeci) 
4. Maximal Generalized Rules (DBMaxi) 
5. Multiple Knowledge Bases (DBMkbs) 
6. Data Trend Regularities (DBTrend) 

Figure 3. The Architecture of DB ROUGH 

learn characteristic rule for "CS_Op_Grants" 
from Award A, Organization 0, grant_type G 
where O.org_code = A.org_code and G.Grant_order= 

"Operating Grants" 
and A.grant_code=G.grant_code and A.disc_code="Computer" 
in relevance to amount, province, prop (votes) *, 

prop (amount) 9 
using table threshold 18 
using hierarchy disc, amount, prov, grant_type go 

The results returned from DBROUGH are almost identical to those shown 
earlier in response to a similar request of DB LEARN, as expected. Another exam
ple illustrates the diversity of DB ROUGH: 

learn discrimination rule for 10ntario_CS_Grants" 
where O.province= "Ontario" 
in constrast to INewfoundland_CS_Grants" 
where O. province= "Newfoundland" 
from award A, organization 0, grant_type G 
where A.grant_code=G.grant_code and 

A.org_code=O.org_code 
and A. disc_code = "Computer" 
in relevance to disc_code, amount, grant_order go 

9 propO is a built-in function which returns the number of original tuples covered by a generalized 
tuple in the final result and the proportion of the specified attribute respectively. 
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Notice that both attribute and table threshold values are defaulted. All of the 
concept hierarchy information required is stored in a default file concept. The 
classification rule for "One Grants" versus "Newfoundland_Grants" is: 

Vx Ont_Grants(x) ~ 
{disc_code=/lComputer/l & 

gran t_order=/lOperating_grants/l & 

amount=(/l20-40K,40-60K")} [34.387%] I 
{disc_code=/lComputer" & grant_order=/lOther" 

& amount=("40K- ,40-60K")} [4.743%] I 
{disc_code=IIComputer" & 

gran t_order="Strategic_grants, 
Operating_grants" & amount= ("40K- ")} 
[5.534%] I 

{disc_code=IComputer" & 
grant_order="Strategic_grants" & 
amount=("40-60K")} [0.004%] 

The final reduced relation is illustrated in Table 9. 

disc30de granLorder amount votes 

Computer Operatin9-Grants 20-40K 62 

Computer Operating_Grants 40-60K 25 
Computer Other 60K- 7 
Computer Other 40-60K 5 
Computer Strategic_Grants 60K- 8 
Computer Operating_Grants 60K- 6 
Computer Strategic_Grants 40-60K 1 

Table 9: The final reduced relation. 

DBROUGH is the first system to apply attribute oriented generalization to 
remove undesirable attributes and generalize the primitive data to a desirable 
level, much like the DBLEARN family, and then perform a data reduction process 
based on rough set theory to compute the minimal attribute set (reduct) for use 
is further reducing the generalized relation. Although the realization of a general 
purpose, fully automated knowledge discovery system is still in the future, 
DBROUGH and its successor, GRG (still under development) are promising to 
lead us to such a realization. 

Induction of Decision Rules 
Decision rules preserve logical properties of data. They are easy to under

stand. Decision rules are a common way to represent knowledge in rue-based 
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expert systems and have become popular in inductive learning systems. A rule is 
a combination of values of some condition attributes such that the set of all 
objects matching it is contained in the set of objects labeled with the same class 
(and such that there exists at least one such object). A rule r is denoted as an 
implication 

r: (ail = Vi1) & (ai2 = Vi2) & ... & (ain = ViJ ~ (d = Vd ), 

where ai]o ai2, ... , and ain are the condition attributes and d is the decision 
attribute. The set of attribute-value pairs occurring on the left hand side of the 
rule r is referred to as the condition part, denotedcond(r}, and the right hand side 
is the decision part, dec(r}, so that the rule can be expressed as cond(r} ~ dec(r}. 
Including more condition attributes in cond(r} makes the rule more specific. 
Decision rules obtained directly ftom the reduced relation (information system) 
are the specific rules which only match one equivalence class. These rules can be 
generalized by removing one or several conditions from the condition part. 

Our aim is to produce rules in the learning process which are maximally 
general rules by removing the maximum number of condition attributes values 
without decreasing classification accuracy of the rule. Computing such rules in 
especially important in data mining applications since they represent the most 
general patterns existing in the data. A reduced information system can be con
sidered as a set of specific decision rules, each rule of which corresponds to an 
equivalence class of R*(RED} which is the set of equivalence classes generated by 
the subset of C;;;2 RED of condition attributes C where the subset RED is a reduct 
of C Before describing our rule generation algorithm, algorithm 4, we introduce 
two propositions: rule redundancy and rule inconsistency. 

Rule redundancy: 
(1) If ri and') are valid rules where cond(rJ = cond(,)) and dec(rJ = dec(')), 

then ri and ') are logically equivalent rules. 

(2) If ri and ') are valid rules where cond(,)) =:J cond(rJ and dec(rJ = 

dec(')), then,) is logically included in rio 
Rule inconsistency: 

(1) If ri and ') are valid rules where cond(,)) =:J cond(rJ and dec(rJ "* 
dec(')), then ri and 'J are decision inconsistent. 

Algorithm 4 computes a set of maximally generalized rules. 



Algorithm 4. Computes a set of maximally generalized rules (GENRULES). 
Input: A non-empty set of specific decision rules RULE 
Output. A non-empty set of maximally general rules MRULE 
MRULE f- 0; Nf-l RULEI /* N is the number of rules in RULE */ 
for i = 0 to N-J do 
rf- ri 
M f- I rl /* M is the number of condition attribures in rule r */ 
compute the significance value SIC for each condition of the rule r 
sort the set of conditions of the rule based on the significance values 
for j = 0 to M-l do 

remove the /h condition attribute ai in rule r 
if r inconsistent with any rule rnE RULE then 

restore the dropping condition aj 
end if 

endfor 
remove any rule r' EMRULEthat is logically included in the rule r 
if rule r is not logically included in a rule r' EMRULEthen 
MRULE f- r U MRULE 
end if 

endfor 
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To obtain a set of maximally general rules, algorithm 4 tells us to consider 
each rule in the set of specific decision rules for dropping conditions until we are 
left with a set of maximally general rules. The order in which we process the 
attributes determines which maximally general rule is generated. Thus a maxi
mally general rule may not turn out to be the best with respect to the conciseness 
or the coverage of the rule. Given a rule with m conditions, we could evaluate all 
;tn -1 possible subsets of conditions on the database and select the best rule but 
this is, in general, impractical. 

For a near optimal solution, each condition of the rule is assigned a signifi
cance value by an evaluation function before the dropping conditions process is 
started. The significance value indicates the relevance of this condition for this 
particular case. Higher significance values indicate more relevance. The process 
of dropping conditions should first drop the conditions with lower significance 
values, as described in Ziarko and Shan (1995). Their evaluation function 
for a condition Ci of a rule is defined as 

SIG(ci) = P(ci)(P(D\ci) - P(D)), 

where P(ei) is the probability of occurrence of the condition Ci or the propor
tion of objects in the universe matching to this condition; (P(D\ci) is the 
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conditional probability of the occurrence of the concept D conditioned on 
the occurrence of the condition Ci; P(D) is the proportion of the concept D in 
the database. For example the specific rule (the seventh entry in Table 8) can be 
translated as 

(1) if (make_model=USA) & (weight=heavy) & (power=high) & 
(comp=medium) & (tran=manu) 

(2) then (mileage=low) 
By definition we have 

(1) SIG(tran=manu) = -0.03 
(2) SIG(make_model=USA) = 0.04 
(3) SIG(power=high) = 0.06 
(4) SIG(comp=medium) = 0.07 
(5) SIG(weight=heavy) = 0.093 

Thus we drop conditions of the rule in the sequence given above. No inconsis
tency results from dropping the first three conditions. Mer dropping the fourth 
condition "comp", the new rule "if (weight=heavy) then (mileage=low)" is 
inconsistent with the specific rule derived from the third entry in Table 8, thus 
the condition "comp" is replaced. The fifth condition "weight" also cannot be 
dropped because of inconsistency. Thus the maximally generalized rule for the 
specific rule derived from the seventh entry in Table 8 is 

if (weight=heavy) & (comp=medium) then (mileage=low) 

Suppose there are r/ tuples (decision rules) with d amibutes in the reduced 
information system. The computation of significance values of one rule requires 
computation Oed r/) and the process of dropping conditions on one rule 
requires O(dr/). Thus finding a maximally general rule for one decision rule 
requires O(2d r/) time and finding maximally general rules for r/ decision rules 
requires O(2d r/2) time. Eliminating redundant rules requires O(r/2) time and 
the complexity of algorithm 4 is O((2d + 1)r/2) = Oed r/2). 

Table 10 shows the set of maximally general rules corresponding to the val
ues in Table 8 where "-" indicates "don't care". Rules in Table 10 are more con
cise than the original data in Table 4 and they provide information at a more 
abstract level. Nevertheless they are guaranteed to give decisions about mileage 
consistent with the original data. The column "supp" is the number of tuples in 
the original database which support the generalized rule. This measure provides 
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confidence because if the tuples in the original database distribute evenly over all 
possible discrete values for an attribute then it is impossible to obtain a meaning
ful set of rwes. Higher values for "supp" indicate greater confirmation of the rwe. 

make_model weight power camp tran mileage supp 

heavy - medium low 2 

USA medium high medium 9 
USA medium - medium - medium 8 

medium auto medium 4 
USA - light medium 1 

heavy - high - medium 1 

- medium high manu high 3 
Japan - - - high 6 
- light - - high 3 

Table 10: A set of maximally general rules. 

6. Conclusions 

Attribute-oriented induction provides a simple and efficient way to learn 
different kinds of knowledge rwes in databases. As a newly emerging field, many 
systems reported to date are based on previously developed learning algorithms. 
A major difference of our approach from the others is attribute-oriented general
ization, in contradistinction to the tuple-oriented generalizations of other 
approaches. It is instructive to compare these two approaches. 

Both tuple-oriented and attribute-oriented generalization take attribute 
removal and concept tree ascension as their major generalization technique. 
However, the former technique performs generalization tuple by tuple, while the 
latter, attribute by attribute. The two approaches involve significantly different 
search spaces. Among many learning-from-examples algorithms, we use the can
didate elimination algorithm as an example to demonstrate such a difference. 

In the candidate elimination technique, the set of all concepts which are 
consistent with training examples is called the version space of the training 
examples. The learning process is the search in the version space to induce a gen
eralized concept which is satisfied by all of the positive examples and none of the 
negative examples. Since generalization in an attribute-oriented approach is per
formed on individual attributes, a concept hierarchy of each attribute can be 
treated as a factored version space. Factoring the version space may significantly 
improve the computational efficiency. Suppose there are p nodes in each concept 
tree and there are k concept trees (attributes) in the relation, the total size of k 
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factorized version spaces is pX exp k. However, the size of the unfactorized version 
space for the same concept tree should be Pk. 

Similar arguments hold for other tuple-oriented learning algorithms. 
Although different algorithms may adopt different search strategies, the tuple
oriented approach examines the training examples one at a time to induce gener
alized concepts. To discover the most specific concept that is satisfied by all of the 
training examples, the algorithm must search every node in the search space 
which represents the possible concepts derived from the generalization on this 
training example. Since different attributes of a tuple may be generalized to dif
ferent levels, the number of nodes to be searched for a training example may 
involve a huge number of possible combinations. Therefore, most learning
from-examples algorithms that adopt the tuple-oriented approach have a huge 
search space, which affects learning times when operating in large databases. 

We have gone significantly beyond DBLEARN which was our first in a series 
of systems which incorporated attribute oriented generalization. Our latest ver
sion in this family, DB-Discover has achieved storage and speed efficiencies of 
such a magnitude that we are currently installing a version of DB-Discover at 
Rogers Cablesystems Ltd., Canada's largest cable television supplier, for use by 
their marketing division. DB-Discover will be put to the test of helping market
ing personnel analyze their PPV (pay per view) database. To make DB-Discover 
useful to unskilled users, a graphical front-end has been designed and tested 
which will allow Rogers marketing personnel access to generalizable data via any 
concept hierarchy they design which "makes sense" to the database. 

DBROUGH was our first prototype of the new generation data mining utili
ties. DBROUGH incorporated novel ideas as well. DBROUGH integrated a variety 
of knowledge discovery algorithms such as DBchar for characteristic rules, 
DB class for classification rules, DBDeci for decision rules, etc. This integration 
permits DBROUGH to exploit the strengths of diverse discovery programs. 

Just as DB-Discover incorporated many efficiencies of design and implemen
tation when compared to the earlier DBLEARN efforts, GRG is intended to do the 
same to the combined efforts which resulted in both DB-Discover and 
DBROUGH. The importance of the information reduction phase which 
DBROUGH explored and upon which GRG will capitalize cannot be minimized. 
The potential for speeding up the learning process and the improvement in the 
quality of classification, the conciseness and expressiveness of the rules generated 
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are but a few of the advantages of this approach. 
We envision a future prototype GRG working in a distributed client-server 

architecture like the one illustrated in Figure 4. Figure 4 depicts a distributed sys
tem of cooperating agents. Each agent has a specialized function which it pro
vides as a service to the other agents in the system. Distinguished agents interact 
with human users via X-window interfaces. The agents communicate with each 
other via Transport Level Interface (TIl) communication channels. 

The distributed architecture will allow multiple users on a network to share 
the CPU intensive services offered by the system, such as English to SQL transla
tion and data mining via DBLEARN, DB-Discover, DBROUGH, and GRG. The 
graphical user interfaces (GUIs) will provide a wide complement of input and 
output modalities for effective, complex user/system interaction. 

Stastical 
Package 

Database Database 
Management Management 

System-1 System-2 

NETWORK BACKBONE 

Database 
Management 
System-n 

SystemX 
English 
to Sal 

Figure 4. A distributed client-server architecture for data miningprograms. 
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We present a mathematical treatment of query relaxation based on the notions of 
neighborhoods and rough sets. In a relational database management system, for each 
query term, the user provides the system a list of related terms, called a neighbor
hood. A relational database management system engine then performs queries using 
related terms in the neighborhood. A neighborhood in this sense is a binary rela
tion without further axioms. Since the relational database mananagement system 
engine can not perform transitive closure, the resulting list of relaxed queries is the 
closure (or upper approximation) in the theory of neighborhood systems. In contrast 
to relational database management systems, the underlying logic model for first-order 
deductive database systems provides for transitive closure and therefore guarantees 
the transitive closure of a neighborhood, the resulting list of which is precisely the 
upper approximation in rough set theory. 

1 INTRODUCTION 

Collaborative computing is characterized by interaction between two or more 
parties in order to perform a problem-solving task. The parties can consist of a 
mixture between humans and computer process; such a paradigm is commonly 
referred to as computer-support for cooperative work (CSCW). Alternatively, 
all of the parties can be computer processes, acting as proxies for humans; an 
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example of this type of proxy is a software intelligent agent. 

In this paper we focus on a particular class of collaborative computing known 
as cooperative answering. We define cooperative answering to be two or more 
parties acting together to answer a query posed by one or more of these par
ties. One technique used in conjunction with cooperative answering is query 
relaxation. Query relaxation involves rewriting the query terms to form a new 
query. Some of the reasons for relaxing a query include the following: 

• The query is too general or too specific. For example, the query may 
include the terms "adaptive," "control," and "system," resulting in the 
retrieval of data about many different types of adaptive control systems, 
when the purpose of the query was to create a view of the data limited to 
adaptive systems for longitudinal control of an automobile. 

• One or more of the query terms are not in the database or data dictionary. 
For example, a query about "vehicles" may be unsuccessful because the 
terms for "vehicle" used in a particular accident reporting database always 
refer to a specific class of vehicle, such as "light-duty passenger vehicles," 
"transit buses," and "heavy articulated trucks." 

• One or more of the query terms have multiple meanings. For example, the 
semantics of the concept "system lag" differ between an adaptive control 
system and that of a signal processing system. 

Let partYa be the party that poses the initial query qinitial, partYb be the party 
that receives qinitial, 6. be the set of databases available to these parties to 
search for the answer to qinitial, qrelaxedi denote the ith relaxation of qinitial, 

and qresultinitial and qresUltrelaxedi be the results from processing qinitial and 
qrelaxedi' respectively. 

We define query relaxation for cooperative answermg as an iterative process 
which involves the following steps: 

• partYa submits qinitial to partYb. 

• partYb processes qinitial against 6. and returns qresultinitial to partYa. 

• partYa requests assistance from partYb to relax qinitial. 

• partYa and partYb generalize, specialize, or eliminate terms in qinitial, re
sulting in qrelaxed1 • 
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• partYa submits qrelaxed1 to partYb. 

• partYb processes qrelaxed1 against t:, and returns qresultrelaxedl to partYa. 

• If desired by padYa, qrelaxed1 is further relaxed i times, with the last result 
returned by partYb being qresultrelaxed .. . 

At each iteration, the set of query terms T in qrelaxedi is either a superset, 
subset, or disjoint set of qrelaxedi_l' 

The cooperative answering systems developed by Chu and Chen [5] and Gaaster
land [6, 7] implement this type of collaboration. The two systems, however, are 
based on different data models-the former on the Relational Data Model and 
the latter on the a deductive logic model. 

We now introduce the mathematical basis for implementing cooperative an
swering using the notions of neighborhoods and rough sets. 

2 NEIGHBORHOODS AND ROUGH SETS 

The concept of neighborhood systems is studied in the theory of topological 
spaces or more generally Frechet spaces [14]. Intuitively, neighborhood systems 
handle the notions of close to, analogous to, and approximate to. Such a notion 
does not necessitate a transitive relation for all possible cases. For example, let 
P be a set of places known as "East Los Angeles," "Downtown Los Angeles," 
and "West Los Angeles." Let R be the relation on P defined "x is close to y," 
d d b close to 

enote y x --+ y. 

A l close to EastLos nge es --+ DowntownLosAngeles (1) 

close to WestLosAngeles --+ DowntownLosAngeles (2) 

close to 
EastLosAngeles f-+ WestLosAngeles (3) 

In this example is close to is not an equivalence relation since East Los Angeles 
is not close to West Los Angeles. 
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In contrast, in the following example the notion of neighborhood must be tran
sitive since the terms "Greater San Jose," "South Bay," and "Silicon Valley" 
are assumed to be synonyms for each other: 

GreaterSan]ose = SouthBay (4) 

GreaterSan] ose = Silicon Valley (5) 

analogous to SouthBay --=--+ GreaterSanJ ose (6) 

. . analogous to Szlzcon Valley --=--+ GreaterSan] ose (7) 

analogous to .. 
SouthBay --=--+ Szlzcon Valley (8) 

Approximation in rough set theory is based on transitive neighborhoods, namely 
the Pawlak topology. For relational database management systems, interac
tive query relaxation must be based on neighborhood systems, since transi
tive closure is not supported by the Relational Data Model. To support a 
transitive neighborhood system, a "pre-compiled" or non-interactive approach 
has to be adopted; these are known as goal query or approximate retrieval 
[3, 8, 9, 11, 13, 4]. In contrast, deductive database management systems ex
plicitly support transitive neighborhoods. 

A neighborhood system is the primitive notion in topological spaces, or more 
generally Frechet (V) spaces, and has been formulated in logic [1]. From a com
putational perspective, a neighborhood system is an association that associates 
each datum with a list of data, of which the list data structure can be processed. 
The notion has been used in databases [8, 9, 11, 4, 13], studied implicitly in 
rough set theory, and recently defined in the context of evolutionary comput
ing [2]. The notion of neighborhoods covers the whole spectrum of generalized 
rough sets that are based on various forms of modal logic or binary relations 
[12]. If we require the collection of all lists to be pairwise disjoint, namely, the 
collection is a partition of the data, then the theory of neighborhoods becomes 
rough set theory. 
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For references, we recall some basic definitions about neighborhood systems. 
Let U be the collection of data, and x a datum. A neighborhood of x, denoted 
by N (x), is anon-empty subset of U (a list of data) that mayor may not 
contain x. Any subset that contains a neighborhood is a neighborhood. A 
neighborhood system of x, denoted by NS(x), is a non-empty maximal family 
of neighborhoods of x. A neighborhood system of U, denoted by NS(U), is the 
collection of NS( x) for all x in U. If a neighborhood system NS(U) satisfies 
certain axioms, U is a topological space. For a neighborhood system NS(U) 
without any extra axioms, U is a Frechet (V) space. Examples of neighborhood 
systems are covering and partition of an universe. 

One can interpret a covering of U as a neighborhood system NS(U) by taking all 
covers of x as NS(x). So some x may have several neighborhoods. A partition 
of U is a special covering, where each datum x has only one neighborhood and 
all neighborhoods are pairwise disjoint. A basic neighborhood is the minimal 
neighborhood of a point. We are interested in the case that every datum has 
a basic neighborhood. Let R be a binary relation, and x is a datum. Define 
N(x) = ylyRx, then N(x) is a basic neighborhood for x. 

Let X be a subset of U. A lower approximation of X in a neighborhood system 
is defined as 

J(X) {x 13N(x)[N(x) ~ X]} 
interior of X, 

and a upper approximation of X is defined as 

C(X) {x I VN(x)[N(x) n X ::I 0]} 

closure of X. 

(9) 

(10) 

If the neighborhood system of U forms a partition, then J(X) and C(X) is the 
upper and lower approximation of rough sets. Let U and V be spaces with 
neighborhood systems. There is a natural neighborhood system, called the 
product neighborhood, in the Cartesian product U x V: 

NS(U x V) = 
{N((x, y)) = N(x)xN(y) I (x, y) E UxV}. (11) 

We call U x V a neighborhood product space. A neighborhood of a tuple in 
databases is a product neighborhood of each element. 

Let R be an equivalence relation and Q / R be the quotient set. There is a 
natural neighborhood system on Q / R under the natural projection P : U ---t 
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Q/R. We denote such a neighborhood system on Q/R by (Q/R,P(NS(U))). 
The quotient set Q / R with such a neighborhood systems is called the space of 
concepts, classification space, or simply quotient space. The neighborhood is 
defined as follows: Let x E U such that P(x) = y. For y E Q/R, we will take a 
subset N(y) as a neighborhood of y, if F-l(N(y)) is a neighborhood of x. The 
family of all such N (y) 's forms a neighborhood system NS( Q / R). 

Let S be a subset of U. There is a natural neighborhood system in S defined 
as follows: For xES, we will take N(x) n S as a neighborhood of x in S. 

Using the neighborhood system of subsets and quotients, we can derive the 
neighborhood system of the rule base that consists of rules extracted from 
a Pawlak information system (e.g., a relation in a database). From such a 
neighborhood system of rule bases we can apply approximate reasoning [10J. 

3 QUERY RELAXATION EXAMPLE 

Suppose there exists a deductive database containing data-stated as facts 
and relationships-about the location of heavy articulated trucks carrying haz
ardous cargo. The database contains the following data: 

vehicle(tlOl). 
vehicle(tl02). 
vehicle(tl03). 

place ( Greater _S an_J ose ) . 
place(South-Bay) . 

place(Silicon_Valley) . 
located_at (truck_I, Greater _SanJ ose). 

located_at (truck_2 , South-Bay). 
located_at (truck_3 , Silicon_Valley). 

close_to ( truckA, Silicon_Valley). 
close_to (trucL5 , San_Jose). 

Table 1 Database of facts and relationships. 

That is, there are five trucks numbered 1 through 5. The names "Greater San 
Jose," "South Bay," and "Silicon Valley" are places (i.e., locations). Assume 
that there is an integrity constraint that every truck has a location. 
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Now suppose that partYa poses qinitiat= Which vehicles are located in Silicon 
Valley? located_at(X, Silicon_Valley). 

The deductive DBMS will respond with the following answer "truck 3." This 
type of answer exemplifies a non-collaborative computing paradigm; that is, 
there are other trucks located in Silicon Valley but the database management 
system (i.e., partYb) in this case does not assist the user in modifying the query 
to obtain additional data. 

In contrast, a collaborative system can, for instance, provide the user with in
formation about the application domain, database schema (e.g., the predicate 
names and relationships), or data definition or manipulation language. Simi
larly, by providing feedback on search terms, for example, the user's response 
assists the DBMS in narrowing or broadening the search for an answer to the 
user's query, as demonstrated by Gaasterland [6]. 

Now suppose that partYb employs query relaxation and that partYb has access 
to the following relations in a thesaurus: 

synonym( Greater -.San_J ose, South--Bay). 
synonym(South...Bay, GreateLSanJose). 

synonym(Silicon_Valley, GreateLSan_Jose). 
synonym (Greater _San_J ose, Silicon_Valley). 

Table 2 Synonyms defined in a thesaurus. 

These are read "X is a synonym for Y." Given this information, partYb could 
rewrite qinitial as qrelaxed, as 

located_at(X, Silicon_Valley). 
located_at(X, South_Bay). 

located_at (X, GreateLSan_J ose). 

Table 3 The relaxed query, qrelaxed, . 

and answer the query with "trucks 1, 2, and 3." This represents a form of 
"horizontal" relaxation in that related terms are substituted for the original 
terms. 
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Now we introduce the query relaxation rule The variable dependency "located 
at" can be rewritten as "close to:" relax(located_at(X,Y), close_to(X,Y)). 

If we apply this rule, grelaxed, is generalized to the following: 

close_to (X, Silicon_Valley). 
close_to(X, South-Bay). 

close_to(X, GreateLSanJose). 
located_at (X , Silicon_Valley). 

10cated_at(X, South_Bay). 
10cated_at(X, GreateLSan_J ose). 

Table 4 The relaxed query, Qrelaxed2 • 

partYb will reply "trucks 1, 2, 3, 4, and 5." partYa could have specialized (i.e., 
the opposite of generalization) the query. Both generalization and specialization 
are forms of vertical query relaxation. 

In this example the relaxation rule represents a form of approximate reasoning 
and can be implemented using the notion of an indiscernibility function based 
on families of equivalence classes. The term rewriting based on substitution 
of predicates, constants, and variable dependencies can be replaced with op
erations based on the derivation of the lower and upper approximation of the 
neighborhood system or rough sets. 

4 CONCLUSIONS 

Neighborhoods and rough sets provide a mathematical basis for assessing the 
relationship between query terms and query relaxation terms. Rough sets give 
us a more complete relaxation of query terms than relaxation based on neigh
borhoods. Moreover, formal languages based on the Relational Data Model do 
not support transitive closure, so neighborhoods must be used to support such 
a model when relaxation is done on the "fly." In deductive database systems, 
one may want to use both. 



237 

REFERENCES 

[1] Engesser. K, Some connections between topological and modal logic, Math
ematical Logic Quarterly, 41, pp. 49-64, 1995. 

[2] Back, T., Evolutionary Algorithms in Theory and Practice, Oxford Uni
versity Press, 1996. 

[3] Bairamian, S., Goal Search in Relational Databases, thesis, California State 
Univeristy-Northridge, 1989. 

[4] Chu, W.W., Neighborhood and associative query answering, Journal of 
Intelligent Information Systems, 1, pp. 355-382, 1992. 

[5] Chu, W. W., and Q. Chen, A structured approach for cooperative query 
answering, IEEE Transactions on Knowledge and Data Engineering, 6(5), 
pp. 738-749. 

[6] Gaasterland, T., Generating Cooperative Answers in Deductive Databases, 
Ph.D. dissertation, University of Maryland, College Park, Maryland, 1992. 

[7] Gaasterland, T., Restricting query relaxation through user constraints, in 
Proceedings of the International Conference on Intelligent and Cooperative 
Information Systems. Huhns, M.; Papazoglou, M. P.; and Schlageter, G., 
eds. Los Alamitos, California, IEEE Computer Society Press, 1993, pp. 
359-366. 

[8] Lin, T. Y. and S. Bairamian, Neighborhood systems and goal queries, 
unpublished manuscript, California State University, Northridge, 1987. 

[9] Lin, T. Y., Neighborhood systems and relational databases, abstract, in 
Proceedings of Annual Computer Science Conferences, CSC '88, February 
1988. 

[10] Lin, T. Y., Neighborhood systems and approximation in database and 
knowledge base systems. Poster session paper presented at the Colloquium 
of the Fourth International Symposium on Methodologies of Intelligent Sys
tems, 1989. 

[11] Lin, T.Y., Q. Liu, and K.J. Huang, Rough sets, neighborhood systems 
and approximation, in Fifth International Symposium on Methodologies of 
Intelligent Systems, Selected Papers, 1990. 

[12] Yao, Y.Y. and Lin, T.Y., Generalization of rough sets using modal logic. 
To appear in Intelligent Automation and Soft Computing. 



238 

[13] Motro, A., Supporting Goal Queries in Relational Databases, in Expert 
Database Systems: Proceedings of the First International Conference, L. 
Kerschberg, ed., Institute of Information Management, Technology and 
Policy, University of South Carolina, 1986, pp. 85-96. 

[14] Sierpenski, W. and Krieger, C., General Topology, University of Toronto, 
Toronto, 1956. 



13 
RESOLVING QUERIES THROUGH 

COOPERATION 
IN MULTI-AGENT SYSTEMS 

Zbigniew W. Ras 

Univ. of North Carolina, Dept. of Compo Sci., Charlotte, N.C. 28223, USA 

Polish Academy of Sciences, Inst. of Compo Sci., 01-237 Warsaw, Poland 

ras@mosaic.uncc.edu or ras@wars.ipipan.waw.pl 

ABSTRACT 

Traditional query processing provides exact answers to queries. It usually requires 
that users fully understand the database structure and content to issue a query. Due 
to the complexity of the database applications, incorrect or incompletely specified 
queries are frequently posed and the users often receive no answers or they might 
need more information than they have received. In this paper a multi-agent system 
called a cooperative knowledge-based system (CKBS) is presented to rectify these 
problems. 

Key Words: intelligent information system, cooperative query answering, 
rough sets, multi-agent system, knowledge discovery. 

1 INTRODUCTION 

By a multi-agent system or simply a cooperative knowledge-based system (CKBS) 
we mean a collection of autonomous knowledge-based systems called agents 
(sites) which are capable of interacting with each other. These agents work 
for one another in problem solving according to their respective abilities. Each 
agent is represented by an information system (collection of data) and a dictio
nary (collection of rules). In [10], we proposed a strategy for generating rules 
from an information system S. This set of rules is sound in S and it remains 
sound for certain extensions of S. In contrary, a set of rules generated from 
an information system under closed world assumption (see [8], [18]) is usually 
not sound if we extend the system. Rules can be seen as rough descriptions of 
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some attribute values in terms of other attribute values. These descriptions are 
not precise and they provide only lower and upper approximations of attribute 
values. We assume here that additional rules can be provided by experts and 
added, if necessary, to appropriate dictionaries. Clearly, a dictionary built that 
way have a small chance to be consistent (its rules might be contradictory). 
The problem of repairing such rules is investigated in this paper. CKBS is 
locally sound if all its dictionaries are consistent. Any site of CKBS can be a 
source of a local or a global query. By a local query (reachable) for a site i we 
mean a query entirely built from values of attributes local for i. Local queries 
need only to access the information system of the site where they were issued 
and they are completely processed on the system associated with that site. In 
order to resolve a global query for a site i (built from values of attributes not 
necessarily local for i) successfuly, we have to access local dictionaries or/and 
information systems at other sites of CKBS because of the need of additional 
data. Moreover, we assume that CKBS is locally sound and it has to remain 
sound if we update any of its sites. 

Cooperative knowledge-based systems have been investigated by [3],[7], [5], 
and many others. In our paper by CKBS we mean, similarly as S.M. Deen in 
[6], a multi-agent system. Agents must cooperate in order to resolve locally 
unreachable queries. At the same time, following Gaasterland [7], we assume 
that cooperative answer is a correct, nonmisleading, and useful answer to a 
query. To be more precise, we assume that each contribution (rule created by 
one of the agents of CKBS) should be: 

• Locally valid. Saying another words, an agent (site) at CKBS should only 
create rules that he believes to be true. Elements of dictionaries satisfy 
that criterion, 

• Relevant to an agent of CKBS which has requested that rule. We mean 
here that rules should be described in a language which is local, if possible, 
for a receiving site. 

In this paper, we define a global query language (language oflocally unreachable 
queries) for CKBS, give its local interpretation (by one of the agents of CKBS) 
and provide a sound and complete set of axioms and rules. 
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2 BASIC DEFINITIONS 

In this section, we introduce the notion of an information system, a distributed 
information system, a dictionary, and s(i)-terms which are called local for a site 
i. We introduce the notion of a rough rule and show the process of building 
dictionaries. 

Information system is defined as a sequence (X, A, V, h), where X is a finite 
set of objects, A is a finite set of attributes, V is the set-theoretical union of 
domains of attributes from A, and h is a classification function which describes 
objects in terms of their attribute values. We assume that: 

• V = U{Va : a E A} is finite, 

• Va n Vb = 0 for any a, b E A such that a =I b, 

• h: X x A --+ V where h(x,a) E Va for any x E X, a E A. 

Let Sl = (X1,A1,V1,ht), S2 = (X2,A2,V2,h2) be information systems. We 
say that S2 is a subsystem of Sl if X 2 ~ Xl, A2 ~ A 1, V2 ~ V1 and h2 ~ h1. 

We use a table-representation of a classification function h which is natu
rally identified with an information system S = (X, A, V, h). For instance, 
let us assume that S2 = (X2, A 2, V2, h2) is an information system where X 2 = 
{a1,a6,aS,ag,alO,al1,a12}, A2 = {C,D,E,F,G} and V2 = {e1,e2,e3,h,h,gl, 
g2,g3,c1,C2,d1,d2}. Additionally, we assume that VB = {e1,e2,e3}, VF = 
{h,h}, Va = {gl,g2,g3}, Va = {C1,C2}, and VD = {d1,d2}. Then, the func
tion h2 defined by Table 1 is identified with an information system S2. 

X 2 F C D E G 
a1 11 c1 d2 e1 gl 
a6 12 c1 d2 e3 g2 
as 11 c2 d1 e3 gl 
a9 12 c1 d1 e3 gl 

aID 12 c2 d2 e3 gl 
all 11 c2 d1 e3 g2 
a12 11 c1 d1 e3 gl 

Table 1 Information System 82 
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By a distributed information system [16] we mean a pair DS = ({Si}iEI,L) 
where: 

• Si = (Xi, Ai, Vi, hi) is an information system for any i E I, 

• L is a symmetric, binary relation on the set I, 

• I is a set of sites. 

Systems Sil, Si2 (or sites iI, i2) are called neighbors in a distributed information 
system DS if (iI, i2) E L. The transitive closure of L in I is denoted by L +. 

A distributed information system DS = ({SdiEI' L) is consistent if: 

• (Vi)(Vj)(Vx E Xi n Xj)(Va E Ai n Aj)[(x, a) E Dom(hi ) n Dom(hj ) -+ 
hi(x, a) = hj(x, a)]. 

We assume that all sites in DS share a factual knowledge, so our distributed 
system is consistent. 

Now, we introduce the notion of a dictionary Dki , (k, i) E L+, containing rules 
describing values of attributes from Ak - Ai in terms of values of attributes 
from Ak n Ai (see [16]). We begin with definitions of s(i)-terms, s(i)-formulas 
and their standard interpretation Mi in a distributed information system DS = 
({Sj}jEI,L), where Sj = (Xj,Aj,Y},hj) and Y} = U{Y}a: a E Aj}, for any 
j E I. 

By a set of s(i)-terms we mean a least set Ti such that: 

• w E Ti for any w E Vi, 

We say that: 

• s(i)-term t is primitive if it is of the form I1 {w : w E Ud for any Ui ~ Vi, 
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• s( i)-term is in disjunctive normal form (DNF) if t = :E {tj : j E J} 
where each tj is primitive. 

Let tl = :E{tl j : j E JI}, t2 = :E{t2k : k E J2} be s(i)-terms in DNF. We say 
that: 

• tl is a subterm oft2 if (\ij) (3k)[Set(tl j ) ~ Set(t2k)] where Set(TI{w: wE 

Ud) = {w : w E Ui}, 

• tl is a proper subterm of t2 if tl is a subterm of t2 and tl i:- t2. 

By a set of s(i)-formulas we mean a least set Fi such that: 

Elements in Ti and Fi represent queries local for a site i. Following Grzymala
Busse [8] we call them reachable in Si or simply i-reachable. 

For example, a DNF query 

select * from Flights 
where airline = " Delta" 
and departure_time = "morning" 
and departure_airport = "Charlotte" 

is reachable in a database 

Flights( airline, departure.iime, arrival.iime, departure..airport, arrival..airport). 

Standard interpretation Mi of s(i)-terms and s(i)-formulas in a distributed 
information system DS = ({Sj}jEJ,£) is defined as follows: 



244 

• Mi(W) = {x E Xi: ifw E Via then W = hi(x,a)} for any wE Vi, 

• if t 1, t2 are s(i)-terms, then 

M i(t1 + t 2) = Mi(td U M i(t2), 
Mi(t1 * t2) = Mi(td n Mi(t2), 
M i (", t1) = Xi - M i(t1). 
Mi(t1 = t2) = ( if Mi(td = M i(t2) then T else F) 
M i (t1 =1= t2) = ( if Mi(td =1= M i (t2) then T else F) 
M i(t1 ::::; t 2) = ( if Mi(h) ~ M i(t2) then T else F) 
where T stands for True and F for False 

Let DSI = ({Slj}jEI,Ll), DS2 = ({S2j}jEI,L2) be distributed informa
tion systems and DSI is a subsystem of D52. Now, assume that 5l i = 
(Xli, Ai, Vi, hli ), S2i = (X2i' Ai, Vi, h2i), i E I and M i , Ni are standard inter
pretations of terms and formulas in DSI, D52, respectively. If Xli C X2i and 
h2il(Xi x Ai) = hli' then Ni is called a standard extension of Mi. 

By (k,i)-rule in DS = ({Sj}jEI,L), k,i E I, we mean a triple (c,t,s) such 
that: 

• t, s are s(k)-terms in DNF and they both belong to Tk n T i , 

We say that. (k, i)-rule (e, t, s) is in k-reduced form if there are no other s(k)
terms t1, Sl E Tk n T i , both in DNF such that: 

• Mk(t) c Mk(td ~ Mk(e) where Mk(t) =1= Mk(td and t1 is a proper 
subterm of t, 

• Mk(S) = Mk(sd and sl is a proper subterm of s. 

We say that (k, i)-rule (e, t, s) is in k-optimal form if there are no other s(k)
t~rms t 1 , Sl E Tk n Ti, both in DNF such that: 
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Now, we show the relationship between rough sets introduced by Pawlak (see 
[12]) and (k, i)-rules. 

Theorem 1 Let Sk = (Xk' A k, Vk, hk), Si = (Xi, Ai, Vi, hi). If (e, t, s) is a 
(k, i)-rule in k-optimal form and S"k = (Xb Ai n Ak, Vi n Vk, hk), then: 

• Mk(C) belongs to a rough set in (Xk' p) (see [8]), where p is the indiscerni
bility relation on Xk induced by S"k, 

• Mk(t) is its lower approximation, 

• Mk(t + s) is its upper approximation. 

Proof. It follows directly from the definition of a rough set, or more precisely 
from its lower and upper approximation. 0 

For any (k,i)-rule (e,t,s) in DS = ({Sj}jEI,L), we say that: 

• (t -t e) is a k-certain rule in DS, 

• (t + s -t c) is a k-possible rule in DS. 

Now, we introduce the notion of a strong consistency of (k, i)-rules in the in
terpretation M k. So, let us assume that rl = (Cl,t1,Sl), r2 = (e2,t2,s2) are 
(k,i)-rules. We say that: rl,r2 are strongly consistent in Mk, if either el,C2 
are values of two different attributes in Sk or Nk(tl * t2) = 0 for any standard 
extension Nk of the interpretation M k . 

Now, we are ready to introduce the notion of a dictionary D ki . Its elements 
can be seen as approximate descriptions of values of attributes from Vk - Vi in 
terms of values of attributes from Vk n Vi. To be more precise, we assume that 
Dki is a set of (k, i)-rules such that: if (e, t, s) E Dki and tl ='" (t + s) is true 
in any standard extension Ni of the interpretation Mi then ('" e, t 1, s) E D ki. 

Dictionary Dki is in k-reduced form (k-optimal form) if all its (k, i)-rules are 
in k-reduced form (k-optimal form). 
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Dictionary Dki is strongly consistent in Mk if any two rules in Dki are strongly 
consistent in M k. 

Let us assume that a distributed information system D5 = ({ 5diE{1,2}, L) 
has two sites, one represented by Table 1 and the second by Table 2. We 
assume here that VB = {bI,b2}, Vc = {c1,c2,c3}, VD = {dI,d2}, and VE = 
{eI, e2, e3}. 

X2 B C D E 
al bI cI dl el 
a2 bI c2 dl e2 
a3 b2 c3 d2 el 
a4 bI c2 dl e2 
a5 bI c3 dl e3 
a6 b2 c1 d2 e3 
a7 b2 c2 dl e2 

Table 2 Information System 81 

We show first how to construct a dictionary D12 in I-reduced form. The 
following rules can be computed directly from the information system 51: 

(bI, c1 *dI *e1 +c3* dl * e3, c2* dl * e2), (b2, c3 *d2 *eI +c1 *d2* e3, c2 *dI *e2). 
So, the dictionary D12 in I-reduced form may contain the following (1, 2)-rules: 
(bI, dl * el + dl * e3, e2), (b2, d2, e2). 

Now, we give a hint how to built a dictionary D12 which is strongly consistent in 
MI. First, we start with rules computed directly from the information system 
51: (bI, c1 *dI *eI +c3*dI *e3, c2*dI *e2), (b2, c3*d2*e1 +chd2*e3, c2*dhe2). 
Next, we optimize them. The optimization process for rules, built at any site i 
from the data in 5 i , is based on the following principle: 

Any two rules (mI, tI, 81), (m2, t2, 82) can be generalized at site ito (mI, tI *,81 *), 
(m2, t2*, 82*) if mI, m2 are values of the same attribute and for any informa
tion system 5 j and the interpretation M j in 5 j where 5 i is a subsystem of 5 j 

we have: 
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• Mj(tl) ~ Mj(tl *) and Mj(t2) ~ Mj(t2*), 

• Mj (s2) ~ Mj (s2*) and Mj(sl) ~ Mj(sl*), 

• Mj(t1 *) n Mj(sl *) = 0 and Mj(t2*) n Mj (s2*) = 0, 

• Mj(tl *) n Mj(s2*) = 0 and Mj(t2*) n Mj(sl *) = 0. 

It can easily be checked that a dictionary D12 which is strongly consistent in 
Ml contains, for example, the following rules: (b1, d1 * e1 + d1 * e3, d1 * e2), 
(b2, d2, d1 * e2). 

Dictionary Dki is built at site k and some of its elements (rules), if needed, can 
be sent to the site i of a distributed information system DS = ({Sj hEI' L), for 
any k, i E I) (see [10], [16]). Dictionary Dki will represent beliefs of agent k at 
site i. Elements of dictionaries Dkj, k E J sent to site i can be stored there. 
This way site i knows beliefs of all agents from J. Clearly, all these beliefs may 
form a set at site i which is inconsistent. 

3 COOPERATIVE KNOWLEDGE-BASED 
SYSTEM 

In this section we define a Cooperative Knowledge Based System (CKBS) based 
on dictionaries and introduce the notion of its local and global consistency. 

Let {DkihEKi> Ki ~ I, be a collection of dictionaries where Dki is created 
at site k E I for any k E Ki and Di = U{ Dki : k E K i } URi. By Ri we 
mean a set of rules (c, t, s) created by an expert and presented to the site i. 
Clearly, an expert believes here that (t -+ c) is a certain rule and (t + 8 -+ c) 
is a possible one. Additionally, we assume that t,8 are s(i)-terms. System 
({Si,DihEI,L), introduced in [16], is called a cooperative knowledge based 
system (CKBS). We say that ({Si, DihEI, L) is Si-consistent if for any two 
rules (w, tl, sl), (w, t2, s2) E Di, i E I, we have Mi(tl) ~ Mi(t2 + s2). System 
({ Si, DihEI, L) is consistent ifit is Si-consistent for any i E I and if ({ SdiEI, L) 
is consistent. 

Let us clarify the notion of Si-consistency. So, assume that r1 = (c, tI, sl) E 
Dki and r2 = (e, t2, 82) E D rni . It means that (tl -+ e) and (e -+ t2 + 82) 
are m-certain rules. Saying another words, site k of eKBS knows that all its 
objects satisfying property tI have also propert c and all its objects satisfying c 
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have also property t1 + 81. Similarly, site m of CKBS knows that all its objects 
satisfying property t2 have also property c and all its objects satisfying c have 
also property t2 + 82. On this basis, site i may assume that both rules are 
true at i unless they are in conflict. What do we mean by a conflict? Clearly, 
the value c is not reachable (foreign) for a site i. It means that our definition 
of rules in a conflict has to be based entirely on the semantical relationship 
between terms tI, 81, t2, 82 at site i. 

We say that rules r1, r2 are in a conflict at site i, if [Mi(tI) C Mi(t2 + 82) and 
Mi(tI) i- Mi(t2 + 82)] or [Mi(t2) C Mi(tI + 81) and Mi(t2) i- Mi(t1 + 81)]. 
The condition [Mi(t1) C Mi(t2 + 82) and Mi(t1) i- Mi(t2 + 82)] is equivalent 
to Mi(th '" (t2 + 82)) i- 0. Similarly, the condition [Mi(t2) C Mi(t1 + 81) and 
Mi(t2) i- Mi(t1 + 81)] is equivalent to Mi(t2* '" (t1 + 81)) i- 0. So, rules r1, r2 
are in a conflict at site i, if the interpretation Mi is a model of the formula 
(th'" (t2 + 82)) + (t2* '" (tI + 81)) i- O. Rules which are not in a conflict at 
site i will be called 80und at i. 

Let ({Si,Di}iEI,L) be a cooperative knowledge based system, a E Ak n Am 
and c E Va. We say that systems Sk, Sm are in a conflict (disagreement) on c 
if [3x E Xk n Xm][c = hk(x, a) i- hm(x, a)]. 

Now, we are ready to state the following question: Can we repair rules which 
are in a conflict at one of the sites of CKBS? What we mean here is to redefine, 
if possible, the rule r1 in Sk and r2 in Sm in a such a way that they are no longer 
in a conflict. To answer this question, we propose the notion of repairable rules. 

Let us assume that the rules r1 = (c, tI, 81) E Dki , r2 = (c, t2, 82) E Dmi are 
in a conflict at sie i which means that Mi(th '" (t2 + 82)) i- 0 or 
Mi(t2* '" (t1 + 81)) i- 0. We say that these rules are repairable at site i if 
systems Sk, Sm are not in a conflict on c. 

The repair process for rules r1 = (c, tI, 81) E Dki , r2 
repairable at site i, is outlined below. 

(c, t2, 82) E Dmi , 

Let us assume that Mi(th '" (t2 + 82)) i- 0 and that the term PI + P2 + ... + Pj 
is semanticaly equivalent to th '" (t2 + 82) where each Pi is a conjunct of values 
of attributes from Ai. By semanticaly equivalent, we mean that 
Mi(th", (t2 + 82)) = Mi(PI + P2 + ... + Pj) = Mi(PI) + Mi(P2) + ... + Mi(pj). 
Let x E Mi(PI). So, x has a property c and", c at site i. Now, we have two 
options: 
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If x E X k - X m , then the rule r2 (e, t2, 82) is replaced by a new rule 
r2* = (e, t2, 82 + Pl) in Dmi. 
If x E Xm - X k, then the rule r1 = (e, tI, 81) is replaced by a new rule 
r1* = (e,tl * (rv Pl),81) in Dki . 
Clearly, if x <t Xk U Xm then the rule r2 = (e, t2, 82) in Dmi is replaced by a 
new rule r2* = (e, t2, 82 + Pl) and the rule r1 = (e, tI, 81) is replaced by a new 
rule r1 * = (e, tI * (rv pI), 81) in Dki . We have to repeat the same process for 
terms P2,P3, ... ,Pj. If M i(t2* rv (t1 + 81)) -:j:. 0, the repair process is similar. 

To give an example of a CKBS let us assume for simplicity reason that our 
system has only two sites SITE1 and SITE2 and two information systems 
associated with them are represented by Figure 2. Dictionaries D 21 , Dl2 are 
added to the sites SITE1 and SITE2, respectively. Rules in a dictionary 
D2l are computed at SITE2 and rules in a dictionary Dl2 at SITE1. The 
resulting CKBS is shown in Figure 1. We assume here that (1,2)-rules have 
been requested by SIT E2 and added to the dictionary Dl2 if needed. 

SITEI ISiTE2l 

XI B C D X2 F C D E G 

al bl c1 dl 01 a1 11 c1 d2 01 gl 
a2 bl "02 d1 02 a6 12 cl d2 03 g2 

a3 b2 c3 d2 01 a8 11 c2 dl 03 01 
a4 bl 02 d1 02 ag 12 c1 dl 03 01 
a5 b1 c3 dl 03 a10 12 c2 d1 03 g1 
a6 b2 c1 d2 03 a11 f1 c2 d1 03 g2 

a7 b2 c2 d1 a2 a12 f1 c1 d1 03 01 

Dictionary 021 

Dictionarv D12 

(f1, el, d1*e3) 
(f2, d2*e3, d1*e3) (b1, d1*e1+d1*e3, d1*e2) 

(g1, e1+c1*d', c2*d1*e3) (b2. d2. d1·02) 
(g2, d2*e3, c2*d1*e3j 

Figure 1 DKBS with two sites SITEl and SITE2 
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4 QUERY LANGUAGE AND ITS 
INTERPRETATION. 

In this section we introduce a (global) query language and propose a class of 
its local interpretations (called standard) at one of the sites of CKBS. Next, for 
this class of local interpretations we give a complete and sound set of axioms 
and rules. 

Standard interpretation Mi , introduced in Section 3, shows how to interpret 
local queries in a CKBS. Now, we propose how to interpret queries (called 
global or locally unreachable) built from values of attributes belonging to a 
superset of Vi. We begin with definitions of DS-terms, DS-formulas and their 
standard interpretation in Si-consistent cooperative knowledge based system 
DS = ({(Sj, {Dnj}nEKj )}jEf, L), where Si = (Xi, Ai, Vi, Ii) for any i E I. To 
simplify our notation, we will write S instead of Si and assume that V = Vi = 
U{Via : a E Ad and Cs = UfVj : j E I} - V. Elements in Cs are called 
concepts or unreachable values of attributes for the site i in DS. 

For example, SQL query 

select * from Flights 
where airline = " Delta" 
and departure_time = "morning" 
and departure_airport = "Charlotte" 
and cost = "low" 

would be unreachable in a database 

Flights(airline, departure.1ime, arrivaLtime, departure_airport, 
arrivaLairport) 

because of the term cost = "low". 

So, coming back to our formal definitions, let us assume that a query language 
L(DS, Cs) is a sequence (A, T, F), where A is an alphabet, T is a set of terms, 
and F is a set of formulas. 
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The alphabet A of L(DS,Cs) contains: 

• constants: w where w E Vi U Cs 

• constants: 0,1 

• functors: +, *, '" 

• predicate: = 
• conne.ctives: V, A, "', =? 

• auxiliary symbols: (,). 

The set of terms T is a least set such that: 

• if w is a constant, then w is a term 

Parentheses are used, if necessary, in the obvious way. As will turn out later, 
the order of a sum or product is immaterial. So, we will abbreviate finite sums 
and products as 1:{tj : j E J} and TI{tj : j E J}, respectively. Intentionally, 
terms are names of certain features of parts being processed by CKBS, more 
complex than those expressed by constants. 

The set of formulas F is a least set such that: 

• if h, t2 are terms, then (tl = t2) is a formula, and 

• if 01., (3 are formulas, then (01. V (3), (01. A (3), (01. =? (3), ('" 01.) are formulas. 

Let Mi be a standard interpretation of s(i)-terms and s(i)-formulas in DS = 
({Sj}jEI,L). 

By S-standard interpretation of queries from L(DS, Cs) in S-consistent coop
erative knowledge based system ({Sj,{DkjhEKj)}jEI,L), where 
S = (Xi, Ai, Vi, hi) and Vi = U{Via : a E Ai}, we mean the interpretation 
Mi,K, such that: 
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• for any w E Vi, 

Mi,K.(W) = Mi(W), 
Mi,Ki('" W) = Xi - Mi,Ki(W) 

• for any wEe s, 

Mi(w) = {x E Xi : (3n E K i)(3t, s)([w, t, s) E Dni /\ x E Mi(t))} 
Mi(", w) = {x E Xi: (3n E K i)(3t, s)([w, t, s) E Dni /\ 
x rt Mi(S))} 

• for any terms tl, t2 E T 

Mi,Ki (tl + t2) = Mi,Ki (tl) U Mi,Ki (t2), 
Mi,Ki (it * tz) = Mi,Ki (tl) n Mi,Ki (t2), 
Mi,Ki ('" (it + t2)) = ('" Mi,Ki (tl)) n (N Mi,Ki (t2)), 
Mi,Ki ('" (tl * t2)) = ('" Mi,Ki (td) U ('" Mi,K.(t2)) , 
Mi,Ki ("'''' t) = Mi,Ki (t). 

• for any terms tl, t2 E T 

Mi,Ki(tl = t2 ) = (if Mi,Ki(td = Mi,Ki(t2) then T else F) 
where T stands for True and F for False 

• for any formulas ex, (3 E F 

Mi,Ki (ex V (3) = Mi,Ki (ex) V Mi,Ki «(3) 
Mi,Ki (ex /\ (3) = Mi,Ki (ex) /\ Mi,K; «(3) 
Mi,K; (ex => (3) = Mi,K; (ex) => Mi,Ki «(3) 
Mi,Ki('" ex) ='" Mi,K;(ex) 

From the point of view of the site i the interpretation Mi,K; represents a pes
simistic approach to query evaluation. It means that Mi,Ki (t) is interpreted as 
a set of objects in Xi which have the property t for sure. We are not retriev~ng 
here objects which might have property t. 

Let us adopt the following set A of Axiom Schemata: 
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.-1.1. Substitutions of the axioms of distributive lattices for terms and the 
axioms of equality 

.-1.2. ~ 1/' * 1/' = 0 for any constant W 

.-1.3. ~ IL' + W = 1 for any W E \'i 

.-1.-!. for each U' E \'j there is a subset WI, W2, ... , Wn of Fi such that 

.-1.5. 

..16. 

..1i. 

A.S. 

..19. 

..110 . 

..111. 

~ U' = Wj + lL'2 + ... + Wn 

t'l * t'2 = 0 
if t'l , L'2 E \ 'ia for some a E .-1. i 

for any term t . 
~ 0 = 1, ~ 1 = 0, 1 + t = 1, 1 * t = t, 0 * t = 0, 0 + t = t, "'V"'V t = t 
for an~' W ~ \'j 
IL' = L {t : [w. t, s] E Dki 1\ k E K;} 
for any W ~ \'j 
"'V H' = L{t: ["'V w,t,s] E Dki 1\ k E Kd 
"'V (tl + t2) = ("" t1) * ("" t2) 

"" (tl * t2 ) = ("'V td + ("" t2) 
Substitutions of the propositional calculus axioms 

The rules of inference for our formal system are the following: 

Rl. from (0 => (3) and 0 we can deduce (3 for any formulas 0, (3 
R2. from tl = t2 we can deduce t(td = t(t2), 

\\'here t(t 1) is a term containing tl as a subterm and t(t2) comes from 
t(t 1 ) by replacing some of the occurences of tl with t2' 

\\'e write A. f- 0 if there exists a derivation from a set A of formulas as premises 
to the formula 0 as the conclusion. 

\\'e write A. F= 0 to denote the fact that A semantically implies a, that is, for 
any S-standard interpretation Mi,K, of L(DS, Cs) in S-consistent cooperative 
knowledge based system we have Mi,K, (a) = T. 

Let us adopt the following definitions: 

• A term t is called simple if it is of the form TI {Wb : c E Ai}, where Wb E \lib 

for all b E ..1 i . 

• A term t is of standard form if t = L {tj : j E J} where each tj is simple 
and all t / s are different. 

• A formula is elementary if it has the form (t = F) where t is a simple 
term. 
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• A formula is primitive if it has the form IT {aj : j E J} where each aj is 
either an elementary formula or the negation of an elementary formula. 

• A formula is in normal disjunctive form if it is of the form L: {,8j : j E J} 
where each ,8j is primitive. 

• A formula IT {aj : j E J} is basic if it is primitive and all the elementary 
formulas occur in it, each one exactly once. 

• A formula is in standard form if it has the form L: {,8j : j E J} where 
each ,8j is basic and all ,8js are different. 

• A formula is positive if connectives" :::}, '" " do not occur in it. 

Theorem 2 (Soundness). For any formula a, if A I- a then A Fa. 

Proof. Our S-standard interpretation was defined in such a way as to make 
the axioms AI, A3, A4, A6, A7, AS, A9, AIO, All true. Axiom A2 holds because 
the system is consistent. Axiom A5 holds because of the definition of an in
formation system. Both rules of inference preserve validity under the standard 
interpretation. 0 

Theorem 3 For each term t there is a term s in a standard form such that 
AI-(t=s). 

Proof. Axioms AI, A2, A3, A4, A6, A7, AS, A9, AIO are applied to find term 
tl = L:{tl j : j E J} in normal disjunctive form such that I- (t = tl). Now, 
if two different wI, w2 E Via occur in tl j for some a E Ai and j E J, we 
have I- (tl j = F) because of axioms A5, A6. Therefore, we can derive term 
t2 = L: {t2j : j E J} in normal disjunctive form such that each t2 j is simple 
and I- (tl = t2). Let a E Ai be an attribute such that no w E Via occurs 
in tl j for soem j E J. Using I- (tlj = tlj * T) (axiom A6), we get I- (tlj = 
tlj * L:{w : wE Via} (axioms A3, A4) and, by the distributive law (axiom AI), 
I- (tlj = L:{tlj * w : w E Via}. Thus we have diminished by one the number 
of attributes which were not represented in tI j . A repeated application of the 
above procedure completes the proof. Clearly, finiteness of Via and Ai for any 
i E I, a E Ai is essential. 0 
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Theorem 4 For each atomic formula (t = s) there is a provably equivalent 
positive primitive formula. 

Proof. By applying Theorem 3 we transform t and s to standard form. Assume 
now that tl , t2, t3, ... , tk are simple terms occuring in either t or s but not in 
both. Multiplying both sides of (t = s) by h, t2, is, .... , tk we obtain 
f- (s = t) :=} (h = F) 1\ (t2 = F) 1\ ... 1\ (tk = F). 0 

Theorem 5 For each formula a there is provably equivalent formula {3 in stan
dard form. 

Proof. By applying Theorem 4 we replace in a each equality of terms by a 
positive primitive formula. Then, by using the propositional calculus axioms we 
obtain formula al in normal disjunctive form provably equivalent to a. Now, 
to obtain {3 from al, it is sufficient to exploit the theorem 
(((t = F)V ,...., (t = F)) :=} T) 1\ (T :=} ((t = F)V ,...., (t = F))) where t is a term. 
o 

Theorem 6 (Completeness). For any formula a, if A F a then A f- a. 

Proof. The set of formulas A is equivalent to a single formula ~, in the sense 
that A f- ~ and for every {3 E A, ~ f- {3. Formula ~ can be constructed by 
transforming each {3 E A into the standard form, then deleting all repeating 
formulas and taking the conjunction of the remaining finite number of formulas. 
We can assume (see Theorem 5) that both ~ and a are in standard form. 
Suppose that A F a and non(A f- a). It means that there is a basic formula 
~o occuring in ~ but not in a. Assume that ~o = I1 {rv (t = F) : t E T+} 1\ 

I1 {(t = F) : t E T-}. Now, we take information system S2 i = (Xi, Ai, Vi, hi), 
Vi = U{Vij : j E Ai} such that: 

• Xi = {h E ®{Vij : j E Ad : I1{h(j) : j E Ai} E T+}, where ® denotes 
cartesian product of sets. 

• hi(w) = {g E Xi: g(j) = w for the unique j such that w E Vij}. 
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Clearly Mi,K.( <p) = T and Mi,Ki (a) = F, where Ki = 0. This contradicts the 
assumption that A 1= a. 0 

Our query answering system is retrieving objects only if queries (terms) are 
conjuncts. The above completeness theorem gives us the set of axioms which 
is sound and sufficient to transform any global query to its equivalent DNF. 

5 CONCLUSION 

This paper presents a methodology and theoretical foundations of a coopera
tive knowledge-based system (CKBS) which is partially implemented at UNC
Charlotte on a cluster of SPARC 2 workstations. Our query answering system 
of CKBS identifies all k-unreachable attributes used in a query entering site 
k. Next it sends a message to all its neighbours that rules approximating 
these k-unreachable attributes are needed. This message invokes at each neigh
boring site a program similar LERS (see [8]) which computes rules describing 
k-unreachable attributes in terms of k-reachable ones. Finally, these rules are 
sent to site k and used by the query answering system to replace k-unreachable 
values of attributes in a query by k-reachable terms. 
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ABSTRACT 

We discuss two basic questions related to the synthesis of decision algorithms. 

The first question can be formulated as follows: what strategies can be used in order 
to discover the decision rules from experimental data? Answering this question, we 
propose to build these strategies on the basis of rough set methods and Boolean 
reasoning techniques. We present some applications of these methods for extracting 
decision rules from decision tables used to represent experimental data. 

The second question can be formulated as follows: what is a general framework for 
approximate reasoning in distributed systems? Answering this question, we assume 
that distributed systems are organized on rough mereological principles in order to 
assembly (construct) complex objects satisfying a given specification in a satisfactory 
degree. We discuss how this approach can be used for building the foundations for 
approximate reasoning. Our approach is based on rough mereology, the recently 
developed extension of mereology of Lesniewski. 

1 INTRODUCTION 

Different aspects of theory of decision systems are extensively investigated (see 
e.g. [13), [19), [20), [22), [23), [24), [25), [29), [42), [47), [51]). We adopt here 
the point of view that decision systems are built as hierarchies of teams of 
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intelligent agents, and we discuss some logical tools for synthesis of this kind 
of systems. Our approach is computationally efficient. 

The main control parameters which are adjusted by agents belonging to a sys
tem are [29], [47]: an information function (defined on objects with values being 
attribute value vectors), a similarity (tolerance) relation between information 
(attribute value) vectors, and a strategy for conflict resolution among possible 
decisions for a given information vector. 

Any particular agent (or team of agents) is realizing its local goal by means of 
decision rules extracted from low level knowledge represented by decision tables 
[25]. Adjustment of information function is related to information reduction 
(see e.g. [25], [42]) or feature extraction (see e.g. [3-4], [22], [45]). We present 
several applications of rough set methods [25] and Boolean reasoning techniques 
[8] for extracting the decision rules from decision tables. In particular we dis
cuss exemplary methods: dynamic reducts and rules [3-4]; stable coverings by 
dynamic reducts [6]; feature extraction, in particular quantization of real value 
attributes [45] and automatic synthesis of features for structural objects [5]; 
boundary region thinning [41], [53]; decision rules [26], [38-40], [47] and ap
proximate rules [21], [47] generation; data filtration [43]; tolerance reducts [46] 
and absorbents [50]. 

We point out the role of tolerance (similarity) relation for extracting laws from 
decision tables and for composing information from different agents. In partic
ular we discuss the problem of information reduction in tolerance information 
systems. The Boolean reasoning can be applied to reduce the set of attributes 
as well as the set of objects. The reduced sets of attributes are called (relative) 
tolerance reducts and the reduced sets of objects are called absorbents. We also 
outline a general scheme for decision function approximation with strategies for 
conflict resolution between possible decisions for a given information vector. 

Boolean reasoning and rough set methods are the basic low-level building 
blocks. Using these methods, we explain connections to other approaches for 
reasoning with uncertainty e.g. Dempster-Shafer theory of evidence [36], [44] 
and fuzzy sets [9], machine learning and pattern recognition (feature extraction, 
decision rules generation, and clustering), [20], [22], mathematical morphology 
(data filtration) [35], knowledge representation and modelling of complex sys
tems [23-24]' [29]. The results are applied to construct tools for extracting 
decision rules from experimental data. The effectiveness of these tools has 
been proven in applications to market data analysis, medical diagnosis, hand
written digit recognition or synthesis of real-time decision algorithms (see [3], 
[4], [5], [47], [48]). 
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One of the main problems concerning distributed systems of cooperating in
telligent agents is related to the construction of a general framework for ap
proximate reasoning about the system behaviour and performance. We have 
proposed an approach based on rough mereology introduced in [30-31] and 
extended in [15], [33] to systems of intelligent agents. We discuss how this ap
proach can be used for building a foundational basis for approximate reasoning 
in and about distributed systems. In a nutshell, for a given specification, a 
system of intelligent agents [33] is organized to assemble a complex object sat
isfying a given specification to a satisfactory degree. The constructed complex 
object may also be interpreted as a proof in which approximate inference rules 
are used. This proof supports a specified belief (specification) to some degree. 
We are convinced that the approximate rules and more general approximation 
logic structures (i.e. logics for reasoning under uncertainty) should be extracted 
from low-level logic by algorithmic tools (e.g. by decomposition of decision ta
bles). Algorithmic methods for extracting approximation logic from low-level 
knowledge bases create a bridge between logics for reasoning under uncertainty 
and practical applications.- In this way we are building a much-needed con
nection between theoretical investigations in logic and applications in Artificial 
Intelligence. 

The paper is structured as follows. In Section 2 we present preliminaries of 
rough set methods and Boolean reasoning methods. Applications of these meth
ods to data reduction and decision rules extraction are discussed in Section 3 
and applications to feature extraction are presented in Section 4. Section 5 
consists of basic ideas on which our approach to approximate reasoning is de
veloped. We conclude with some suggestions for further research. 

The paper summarizes and extends the results presented in [3], [4], [5], [15], 
[26], [29], [30]-[34], [37]-[47]. 

2 ROUGH SET AND BOOLEAN 
REASONING PRELIMINARIES 

In this section we recall some basic notions related to information systems 
and rough sets (for more details see [25]). An information system is a pair 
Ii:,. = (U, A) ,where U is a non-empty, finite set called the universe and A -
a non-empty, finite set of attributes, i.e. a : U -+ Va for a E A, where Va is 
called the value set of a. Every information system Ii:,. = (U, A) and non-empty 
set B ~ A determine a B-information function InE B : U --+ JPl(B x UaEB Va) 
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defined by InfB(x) = {(a,a(x)): a E B}. The set {JnfA(x): x E U} is called 
the A-information set and it is denoted by INF(A). A decision table is any 
information system of the form A = (U, AU {d}), where d tJ. A is a distinguished 
attribute called the decision. The elements of A are called conditions. For 
simplicity of notation we assume that the set Vd of values of the decision d 
is equal to {I, ... , r( d)}. Let us observe that the decision d determines the 
partition {Xl"",Xr(d)} of the universe U, where Xk = {x E U: d(x) = k} 
for 1 :::; k :::; r( d). The set Xi is called the i-th decision class of A. 

Let A = (U, A) be an information system. With every subset of attributes 
Be A, an equivalence relation, denoted by INDA(B) (or IND(B)) called the B
indiscernibility relation, is associated and defined by IND(B) = {(x, Xl) E U2 : 

for every a E B, a(x) = a(xl )}. Objects x, Xl satisfying relation IND(B) are 
indiscernible by attributes from B. 

Let A be an information system with n objects. By M(A) we denote an n x n 
matrix (c;j), called the discernibility matrix of it. such that 

c;j={aEA:a(Xi)-::j;a(Xj)} for i,j=l, ... ,n. 

A discernibility function fA for an information system A is a Boolean function 
of m Boolean variables ai, ... , a;" corresponding to the attributes al, ... , am 
respectively, and defined by 

where cij = {a* : a E Cij}. The set of all prime implicants of fA determines 
the set of all reducts of A [37]. 

If 11,.= (U, A) is an information system, B ~ A is a set of attributes and X ~ U 
is a set of objects, then the sets {s E U : [S]B ~ X} and {s E U : [S]B n X -::j; ¢} 
are called B-lower and B-upper approximation of X in A, and they are denoted 
by BX and BX, respectively. The set BNB(X) = BX -BX will be called the 
B-boundary of X. When B = A we also write BNA(X) instead of BNA(X). 
Sets which are unions of some classes of the indiscernibility relation IND(B) 
are called definable by B. The set X is B-definable iff BX = BX. Some 
subsets (categories) of objects in an information system cannot be expressed 
exactly by employing available attributes, but they can be defined roughly. If 
Xl, ... , X r( d) are decision classes of A then the set B X 1 U ... U B Xr (d) is called 
the B-positive region of A and is denoted by roS(B,{d}). 

If A = (U, Au {d}) is a decision table, then we define a function OA : U --+ 
JP>( {I, ... , r( d)}), called the generalized decision in A, by OA (x) = {i : :lx l E 
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U x'IND(A)x and d(x) = i}. A decision table A is called consistent (deter
ministic) if 18 A (x) I = 1 for any x E U, otherwise A is inconsistent (non
deterministic). 

A decision rule of a decision table A = (U, A U {d}) is any expression of the 
form T =} (d, i) where i E Vd and T is a Boolean combination of descriptors 
i.e. expressions (a, v) where a E A and v E Va. If T is a Boolean combination of 
descriptors then by T/I,. we denote the meaning of T in the decision table A, i.e. 
the set of all objects in U with the property T, defined inductively as follows: 

(i) if T is of the form (a, v) then T/I,. = {x E U: a(x) = v}; 
(ii) (T A T')/I,. = TA n T~; (T V T')/I,. = TA U T~. 

The decision rule T =} (d, i) for A is true in A iff TA ~ ((d, i))/I,.; if TA = ((d, i))A 
then we say that the rule is A-exact. 

We now recall some notions introduced in [38]. First we show how to construct 
a description of the decision classes by exact in A decision rules (Xi =} (d, i) 
where (Xi E qA, V) is a disjunction V A /i of conjunctions A /i of minimal sets 
/i of descriptors for i = 1, ... , r(d). The set /i defines in A a non-empty set 
of objects, i.e. (I;)A::j:. if; and is minimal in the following sense: the decision 
rule A /: =} (d, i) is no longer valid in A for any if; ::j:. /: C /i. A decision rule 
with the above property is called minimal with respect to the descriptors in A. 
The method allows to generate decision rules with one more property, namely, 
if V A /i =} (d, i) is a minimal with respect to descriptors rule in A and J 
is a set of descriptors such that A J =} (d, i) is valid in A and (A J)A ::j:. if; 
then /i ~ J for some i. The decision rules with the above property are called 
complete with respect to the descriptors in A. 

The work reported in [38] and [39] gives a simple method that allows to com
pute, for a given consistent decision table A, the description of all decision 
classes of A in the form of decision rules exact in A. These rules are complete 
and minimal with respect to descriptors. 

Let A = (U, A U {d}) be a consistent decision table and M' (A) = (ci j ) be 
its relative discernibility matrix. We construct new matrices (columns of the 
relative discernibility matrix) 

M(A, k) = (cjk) for any Xk E U 

The matrix M(A, k) is called the k-relative discernibility matrix of A. This en
ables us to construct the k-relative discernibility function fM(A,k) of M CA, k) in 
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the same way as the discernibility function was constructed from the discerni
bility matrix. Let Atr( r) denote the set of all attributes occurring in the prime 
implicant r of fM(A,k) and let Trace(A, k) be the following set of descriptor 
conjunctions: 

{/\ {(a, a(Xk)) : a E Atr(r)}: r is a prime implicant of fM(A,k)}' 

Now let CYi for any i E {1, ... , r(d)}) be a disjunction of all formulas from the 
set U{Trace(A, k) : d(Xk) = i}. 

Proposition 2.1 [38] Let A = (U, A U {d}) be a consistent decision table. The 
decision rules: 

CYi =? (d, i) where i E {1, ... , r(d)} 

are complete and minimal with respect to descriptors in A. 

3 APPLICATIONS OF ROUGH SET AND 
BOOLEAN REASONING METHODS 
FOR DATA REDUCTION AND 
EXTRACTION OF DECISION RULES 

o 

Given an information system (a decision table) A, some strategies are applied to 
produce decision rules. The primary technique offered by rough set theory has 
been here the reduct generation. Reducts offer the same classificational ability 
as the whole system but with a smaller set of attributes. As this approach 
is insufficient, however, we have implemented additional tools. We discuss in 
more detail some of the following strategies: 

the approximation of reducts [3-4], dynamic reducts and rules [3-4], [5], 
stable coverings [6], voting strategies [3-4], boundary region thinning [41], 
[53], data filtration [43], tolerance reducts [46] and absorbents [50]. 

3.1 Approximation of reducts 

The discernibility matrix [37] and the reduct approximation [3-4] provide meth
ods for extracting laws from decision tables. Several strategies for searching for 
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a subset of the set of discernibility matrix entries sufficient for the generation 
of laws encoded in the decision table are implemented in our system for object 
classification. One of the techniques for reduct approximation is based on the 
approximation of the positive region. The following algorithm computes this 
kind of reduct approximation. 

Algorithm For R E RED(A, d) and N equal to the number of objects in A: 

Step 1: Calculate positive regions POSR-{a} for all a E R. 
Step 2: Choose from the reduct R one attribute ao satisfying the condition: 

Va E R POSR-{ao} ~ POSR-{a}. 
Step 3: if POSR-{ao} > k· N (e.g. k = 0.9) then 

begin 

end 

R:=R-{ao} 
go to step 1 

Step 4: The new set of attributes (R) is called the S-reduct. 

S-reducts can help to extract interesting laws from decision tables. Applying 
reduct approximation instead of reducts, we slightly decrease the quality of 
classification of objects from the training set, but we expect to receive more 
general rules with a higher quality of classification for new objects. 

3.2 Boundary region thinning 

Objects are classified on the basis of information about them. In a given table 
we associate with any information vector the distribution of objects correspond
ing to this vector into decision classes. When this probability distribution is 
non-uniform, we regard objects corresponding to small values of this distribu
tion as in a sense abnormal or noisy objects. The generalized decision for a 
given information vector can be then modified by removing from it the decision 
values corresponding to these small values of the probability distribution. The 
decision rules generated for the modified generalized decision can give a better 
quality of classification of new, as yet unseen objects. Various techniques of 
this approach called boundary region thinning have been proposed in [53] and 
[41]. Boundary region thinning gives a new decision table to which the methods 
of synthesis of decision rules discussed in [26], [42] can be applied. 

The methods discussed above can be treated as a special case of methods based 
on a new version of reduct approximation proposed in [49]. Let A = (U, AU{ d}) 



266 

be a consistent decision table and let B C A. The conditional entropy of B in 
A is defined by 

1 
Hf;,(B) = - U L: IUBI L: Pi(U)logpi(U) 

uE/NF(B) iEI(u) 

where UB = {x E U : InfB(x) = u}, pi(U) = IUB n XiI/luBI, Xi = {x E 
U : d(x) = i}, I(u) = {i : p;(u) > O}. The a-reduct of A is a minimal set 
B ~ A such that Hf;,(B) ~ a, where a is a non-negative integer. In [49] a 
genetic algorithm for computing a-reducts is presented. The a-reducts with a 
properly tuned up parameter a can be applied to generate approximate rules 
(like default rules). 

3.3 Dynamic reducts and rules 

We now show an example of communication among cooperating agents working 
on synthesis of decision algorithms. In this example the information sharing 
among agents leads to the extraction from the subtables processed by agents 
of the most stable reducts called dynamic reducts. 

The underlying idea of dynamic reducts stems from the observation that reducts 
generated from the information system are unstable in the sense that they 
are sensitive to changes in the information system introduced by removing a 
randomly chosen set of objects. The notion of a dynamic reduct encompasses 
the stable reducts, i.e. reducts that are the most frequent reducts in random 
samples created by subtables of the given decision table [3-4]. We show here how 
to compute dynamic reducts from reduct (approximations) and how to generate 
dynamic rules from dynamic reducts. The dynamic reducts have shown their 
utility in various experiments with data sets of various kinds e.g. market data 
[14], monk's problems [19], handwritten digits recognition [5] or medical data 
[3-4]. The quality of unseen objects classification by decision rules generated 
from dynamic reducts increases especially when data are very noisy e.g. market 
data [14]. In all cases we have obtained a substantial reduction of the decision 
rule set without decreasing the classification quality of unseen objects. The 
results of experiments with dynamic reducts show that attributes from these 
reclucts can be treated as relevant features [3-4]. 

In order to capture the fact that some reducts are chaotic, we consider random 
samples forming subtables of a given decision table A = (U, AU {d}); we will 
call a subtable of A any information system lB = (U', AU { d} ) such that U' ~ U. 
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Let F be a family of subtables of A and let c be a real number from the unit 
interval [0,1]. The set DRe(A, F) of (F, c)-dynamic reducts is defined by 

DR (A F) = {C E RED(A d) . I{lffi E F : C E RED(lffi, d)}1 > 1 _ c} 
e , , . IFI -

For C E RED(lffi, d), the number I{lffi E F: C E RED(lffi,d)}/IFI is called the 
stability coefficient of C relative to :F. 

We present a technique for computing the dynamic reducts [3-4]. The exper
iments with different data sets have shown that this type of dynamic reducts 
allows generating decision rules with better quality of classification of new ob
jects than the other methods. The method consists of the following steps., 

Step 1: A random set of subtables is taken from the given table; for example: 
10 samples with the size of 90% of the decision table, 
10 samples with the size of 80% of the decision table, 
10 samples with the size of 70% of the decision table, 
10 samples with the size of 60% of the decision table, 
10 samples with the size of 50% of the decision table. 

Step 2: Reducts for all of these tables are calculated; for example reducts for 
any of the 50 randomly chosen tables. 

Step 3: Reducts with the stability coefficients higher than a fixed threshold 
are extracted. 

These reducts selected in step 3 are regarded as true dynamic reducts. 

The processes of decision rules generation based on reduct sets have high com
putational complexity. For example, the problem of computing a minimal 
reduct is NP-hard [37], and, therefore, we are forced to apply some approx
imation algorithms in order to obtain knowledge about reduct sets. One possi
bility is to use approximation algorithms that do not give an optimal solution 
but have the acceptable time complexity e.g. algorithms based on simulated 
annealing and Boltzmann machines, genetic algorithms and algorithms using 
neural networks. We use these algorithms in experiments for generating a large 
number of reducts. The other possibility is to use standard computational 
techniques on modified information systems, e.g. by conceptual clustering of 
values of attributes or groups of attributes, conceptual clustering of objects 
and extracting new attributes from existing decision tables. 

Dynamic reducts can be computed using approximations of reducts instead of 
reducts to generate dynamic reducts. If a set of dynamic reducts (with the 
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stability coefficients greater than a given threshold) has been computed, then 
it is necessary to decide how to compute the set of decision rules. To this end 
we have implemented several methods. The first one is based on the (F, c:)
dynamic core of A, i.e. on the set U DR, (A,.1"). We apply the methods based 
on Boolean reasoning presented in [26], [38] to generate decision rules (with 
minimal number of descriptors) from conditional attributes belonging to the 
dynamic core. The second one is based on the decision rule set construction 
for any chosen dynamic reduct. The final decision rule set is equal to the union 
of all these sets. In our experiments we have received slightly better results of 
tests applying the second method. If an unseen object has to be classified then 
first it is matched against all decision rules from the constructed decision rule 
set. Next, the final decision is predicted by applying a strategy predicting the 
final decision from all "votes" of decision rules. The simplest strategy we have 
tested was the majority voting i.e. the final decision is the one supported by 
the majority of decision rules. One can also apply fuzzy methods to predict 
the proper decision. 

The idea of dynamic reducts can be adapted to a new method of dynamic rules 
computation. From a given data table a random set of subtables is chosen. For 
example: 

10 samples with the size 90% of the decision table, 
10 samples with the size 80% of the decision table, 
10 samples with the size 70% of the decision table, 
10 samples with the size 60% of the decision table, 
10 samples with the size 50% of the decision table. 

Thus we receive 50 new decision tables. Then the decision rule sets for all these 
tables are calculated. In the next step the rule memory is constructed where 
all rule sets are stored. Intuitively, the dynamic rule is appearing in all (or 
almost all) of experimental subtables. The decision rules can also be computed 
from the so-called local reducts used to generate decision rules with minimal 
number of descriptors [26]. 

Several experiments performed with different data tables (see e.g. [3-5]) show 
that our strategies for synthesis of decision algorithms increase the quality of 
unseen object classification and/or allow to reduce the number of decision rules 
without decreasing the classification quality of unseen objects. 
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Stable covenngs by dynamic reducts 

If Rl,"" Rr are dynamic reducts with stability coefficients al,.'" a r < 1, 
then it is possible to find descriptions {31, ... , {3r (in terms of conditional at
tributes) of regions in the set U of training objects such that for any x E U: 

if {3i is true on x 
then the decision on x produced by decision rules generated 

from Ri is correct 

The formulas {31," . ,{3r can be synthesized by applying Boolean reasoning 
methods [6]. These formulas together with the dynamic reducts R 1 , .•. , Rr 
create a stable covering of the set of unseen objects as long as for any such 
object x satisfying {3i and {3j the decision rules generated from the dynamic 
reducts Ri and Rj predict the same decision on x. In [6] we present a proce
dure searching for dynamic reducts together with a stable covering. 

Two steps are performed when a new (unseen so far) object x is classified. First 
by applying rules corresponding to all descriptions {3i some dynamic reducts 
are pointed out. Next the decision rules corresponding only to thes~ reducts 
are applied to predict the decision on x. The rules corresponding to regions 
described by (3i should be constructed by taking into account that they will 
be used also for new objects, not belonging to the actual universe of objects. 
Hence some inductive techniques [6] are proposed for constructing the rule sets 
allowing to select from dynamic reducts those which are appropriate for a given 
object x. 

3.4 Approximate decision rules 

We discuss certain consequences for synthesis of the decision rules implied by 
the relationships between rough set methods and Dempster-Shafer's theory of 
evidence. 

In [44] it has been shown that one can compute a basic probability assign
ment (bpa) mA for any decision table A. The bpa mA satisfies the following 
conditions: 

mA(0) = 0 and ((}) = I{x E U : OA(X) = (}}I 
mA lUI 

where 0 # () ~ GA = {i : d(x) = i for some x E U}. 
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Hence the relationships between belief functions BelA and PIA related to the 
decision table A can be proven [44]: 

B I (8) = IAUiE8 Xii 
e A lUI 

and PI (B) = r:4UiE8 Xi I 
A lUI 

for any 8 S; GA. 

Boolean reasoning can be also applied to generate rules with certainty coeffi
cients from inconsistent decision table Pi,. These certainty coefficients can be 
expressed by values of belief functions [26]. 

The belief functions related to decision tables can be applied to generate ap
proximate decision rules. There are at least two reasons why we search for 
approximate decision rules for some subsets of GA. The first one can be called 
an economical reason and could be roughly formulated as follows: "A small 
number of approximate decision rules is preferred to a large number of exact 
rules" , e.g. to be able to take decisions in real-time. The second one is a conse
quence of the assumption that the values of conditional attributes in decision 
tables are influenced by noise. This is valid for many real decision tables. In this 
case one can expect to obtain a better classification quality of unseen objects 
by using approximate rules which are more general than exact rules computed 
from noisy data. 
One of possible approaches to applying the belief functions to extract some 
approximate decision rules is to search for solutions of the following problem: 

APPROXIMATION PROBLEM (AP) 
INPUT: A decision table A = (U, A U {d}), B S; Gll. and rational numbers 

E, tr E (0, 1J. 
OUTPUT: Minimal (with respect to the inclusion) sets B S; A satisfying two 

conditions: 
(i) IPIAJB(B) - BelAIB (B)I < c 

(ii) BelAIB (B) > tr. 
where AlB = (U, B U {d}). 

The above conditions (i) and (ii) are equivalent to 

IB U Xi - B U Xii < clUI and IBU Xii> trlUl 
iE8 iE8 iE8 

respectively. Hence (i) means that the boundary region (with respect to B) 
corresponding to UiE8Xi is "small" (less than clUJ) and the lower approxima
tion of UiE8Xi is "sufficiently large" (greater than trlUJ). Hence the solution 
for the above problem can be obtained by performing the following steps: 
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Step 1. Change the decision table A = (U, A U {d}) into N = (U, AU {dB}) 

where d9(X) = 1 if x E UiE9Xi and d9(X) = 0 otherwise. 

Step 2. Compute the relative reducts of N [38]. 

Step 3. By dropping attributes from relative reducts find minimal sets B sat
isfying (i-ii) . 

Next, one can compute the decision rules corresponding to B UiEEl Xi in N' = 
(U, B U {8B }) for any set B received in Step 3 by applying Boolean reasoning 
[26], [38]. 

The received rules have a more general form (have a simpler structure) than 
the exact ones (computed on data influenced by noise). So, they can be better 
predisposed than the exact rules to recognize properly unseen objects. This 
approach is used in [21] to generate default rules from decision tables. 

3.5 Tolerance information systems 

Tolerance relations provide an attractive and general tool for studying indis
cernibility phenomena. The importance of those phenomena was already no
ticed by Poincare and Carnap. Studies by, among others, Menger, Zadeh, and 
Pawlak have led to the emergence of new approaches to indiscernibility. 

We call a relation r <;;; X x X a tolerance relation on X if (i) r is reflexive: 
xrx for any x E X (ii) r is symmetric: xry implies yrx for any pair x, y of 
elements of X. The pair (X, r) is called a tolerance space. It leads to a metric 
space with the distance function 

dT(x, y) = min{k : 3XO,Xl, ... ,XkXO = x /\ Xk = Y /\ (Xirxi+l 
for i = 0, 1, ... , k - I)} 

Sets of the form r(x) = {y EX: xry} are called tolerance sets. For x E X, 
we define the r-domain of x, domT(x) by domT(x) = n{r(z) : x E r(z)}. 
We introduce the r-indiscernibility relation INDT by letting xINDTy iff 
domT(x) = domT(y). 

The symbol [X]T will stand for the equivalence class of INDT containing x. We 
collect below the basic properties of INDT and domT. 

Proposition 3.1 [42] 
(i) Y E domT(x) ift"V'z[x E r(z) => Y E r(z)] iff rex) C;;; r(y) 
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(ii) [x)r ~ domr(x) ~ r(x) 
(iii) ify E domr(x) then domr(y) ~ domr(x) and [Y)r ~ domr(x) 

(iv) 'v'X3<1,<2, ... ,<m[xJr = domr(xl)'l ndomr (x2)'2 n ... ndomr(xm)'m 

where X = {Xl,X2, ... ,Xm }, CI,C2, ... ,Cm E {D,l} and AO = X - A, 
Al = A. 0 

There are two main parameters which can be controlled in the adaptive pro
cess described above: the information function Inf (related essentially to the 
relevant feature extraction and information reduction), and a tolerance rela
tion r allowing to measure the degree of similarity of information vectors. The 
choices of rand Inf have a direct impact on the decision algorithm. A general 
scheme of decision algorithm approximating the decision function is based on 
the notion of a domain of a tolerance relation discussed above. The decision 
algorithm A = A(C, v, S) is based on two parameters: 

- C {domr (Xl), domr (X2), ... , domr (Xk)} is a set of r-domains 
- v {nl, n2, ... , nd is a vector of distances (of a given domain) from 

domains domr(xt}, domr(x2)"'" domr(xk) 

and strategy S producing from C and v the final decision. 
In case of measurement, the set C is endowed with an ordering relation and 
corresponds to the scale; in case of control decision, algorithm C corresponds 
to regions of states with decisions known from experience ; in case of data 
classification, the set C corresponds to the cluster set. 

By a tolerance information system [46) we understand a triple A! = (U, A, r) 
where A! = (U, A) is an information system and r is a tolerance relation on 
information vectors InfB(x) = {(a,a(x)) : a E B} where x E U, B ~ A. 
In particular, a tolerance information system can be realized as a pair (A, D) 
where A = (U, A) is an information system, while D = (DB )BCA and DB ~ 
INF(B) x INF(B) is a relation, called the discernibility reiation:satisfying the 
following conditions: 

(i) INF(B) x INF(B) - DB is a tolerance relation; 

(ii) ((u - v) U (v - u) ~ (ua - va) U (va - ua)) & UDBV --t UaDBVa for any 
u, v, Uo, Va E INF(B) i.e. DB is monotonic with respect to the discernibil
ity property; 

(iii) non(uDcv) implies non(uIBDBVIB) for any B ~ C and u, v E INF(C) 
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where INF(B) = {InfB(x) : x E U} and if u E INF(C) and B <; C <; A 
then ulB = {(a, w) E u : a E B} i.e. ulB is the restriction of u to B. A 
(B, DB )-tolerance function 

TB : U ---+ IP(U) 

is defined by 
Y E TB(X) iff non (InfB (x)DBlnfB(y)) 

for any x, y E U. It defines a tolerance (indiscernibility) relation by 

yTBx iff non(InfB(x)DBlnfB(y)). 

A (B, DB )-tolerance function I[B, DB] : U ---+ IP(U) is defined by I[B, DB](X) = 
TB(X). 

for any x E U. The set I[ B , DB]( x) is called the tolerance set of x. The relation 
INF(B) x INF(B) - DB expresses similarity of objects in terms of accessible 
information about them. The set RED(A, D) is defined by 

{B <; A: I[A,DAJ = I[B,DBJ and I[A,DAJ =1= I[C,De] for any C C B}. 

Elements of RED(A, D) are called tolerance reducts of (A, D) (or, tolerance 
reducts, in short). It follows from the definition that the tolerance reducts are 
minimal attribute sets preserving (A, D A) - tolerance function. 

The tolerance reducts of (A, D) can be constructed in an analogous way to 
reducts of information systems. More precisely, tolerance reducts of (A, D) are 
computable relatively to the family {(A, D)[u, vJ : uD A v} where 

(A, D)[u, vJ = {B <; A : ulB DB vlB & (non(uIC Dc viC) for any C C Bn 

Theorem 3.2 [46J Let (A, D) be a tolerance information system, where A = 
(U, A) and A = {al,"" am}. Let gA,D be a Boolean function of m Boolean 
variables ai, ... ,a::n, corresponding to attributes al, ... , am and defined by 

where B* = {a* : a E B}. We have the following equivalence: 

ai, A .. . Aai. is a prime implicant of gA,D iff {ail,"" ai.} E RED(A, D). 
o 
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Corollary 3.3 The problem of computing minimal tolerance reducts of (A, D) 
is NP-hard. 0 

The presented method can be extended to the so-called relative tolerance 
reducts [47]. 

It is possible to apply Boolean reasoning for the object set reduction in tolerance 
information systems. This is based on the notion of absorbent [28], [50]. A 
subset Y ~ X is an absorbent for a tolerance relation r (r-absorbent, in short), 
if and only if, for each x E X there exists y E Y such that xry. The problem 
of minimal absorbent construction for a given tolerance information system 
can easily be transformed to the problem of minimal prime implicant finding 
for a Boolean function corresponding to this system [29], [50]. The problem of 
minimal absorbent construction is NP-hard [29], so efficient heuristics have been 
constructed to find sub-minimal absorbents for tolerance information systems. 

4 FEATURE EXTRACTION 

We may define features as functions (attributes) on objects derived from the ex
isting attributes. In this respect one may realize that a given data table presents 
not only a small fragment of the reality as it classifies a tiny fraction of objects, 
but it also employs a tiny fraction of possible attributes. The purpose of fea
ture extraction is to obtain a set of attributes with better classifying properties 
with respect to new objects. An important criterion for the quality of feature 
extraction is the reduction of dimensionality and size of the classification space. 
Our perception of the data structure determines the set of possible features. 
In this set we look for the relevant features. We would like to point out the 
fact that the process of synthesis of adaptive decision algorithms should allow 
for adaptive search for proper (from the classification point of view) represen
tation of object structure (knowledge representation). For example, searching 
for a proper representation of structure in the logical framework requires find
ing a proper syntax and semantics of a logical language. The applications of 
multi-modal logics to this problem are discussed in [5]. There are many feature 
extracting techniques [22]. We discuss here examples of some techniques con
structed with application ofrough set-theoretic methods and Boolean reasoning 
methods. 
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4.1 Feature extraction by searching in a given 
set of formulas 

Let A = (U, AU {d}) be a (consistent) decision table and let U = {Xl, ... , x n }. 

By DIEC(A) we denote the set ((x;,Xj) E U2 : d(x;) "# d(xj)} called the 
discernibility set of A. 
A finite family F of functions from U into a non-empty set W is A-complete 
if (x;,Xj) E DIEC(A) implies FA(X;,Xj)"# 0 for any (x;,Xj) E DIEC(A) where 
FA(Xi,Xj) = {f E F: f(Xi)"# f(xj)}. 

Let Pj be a Boolean variable corresponding to f E F. The discernibility formula 
<I>&(F) of A (relatively to F) is defined by 

1\{v{P! : f E FA(Xi,Xj)}: (x;,Xj) E DIEC(A)} 

By A(F) we denote the decision table (U, F U {d}). 

One of the basic problems related to new feature extraction is the following: 

(OFE): OPTIMAL FEATURE EXTRACTION PROBLEM FOR F 
INPUT: A decision table A such that F is A-complete 
OUTPUT: A minimal (with respect to the cardinality) relative reduct of A(F) 

The output is a minimal set of features discerning between all pairs of objects 
from DIEC(A). 

Proposition 4.1 Let A be a decision table such that F is A-complete. Then 

(i) Ph /\ ... /\ Ph is a prime implicant of the discernibility formula <1>& (F) iff 
{It, ... , fk} is a relative reduct of A(F); 

(ii) OFE problem is NP-hard. 0 

There are many examples in literature which can be treated as special cases of 
the above formulated Boolean reasoning process (see e.g. [37] for reduct com
putation, [38] for relative reduct computation, [38) for D-reducts computation 
and [26], [38-39], [42] for decision rules generation. This method has also been 
recently applied to quantization (scaling, discretization) [17], [45] ofreal value 
attributes. We illustrate our approach by the following examples: 

Example 1. Feature extraction by scaling of the real value attributes [17], 
[45]. 
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Let A = (U, A U {d}) be a decision table and let Va be included in an open 
interval (v~in, v~ax) ~ lR where lR is the set of reals. Let a(U) = {a(x) : 
x E U} = {Vi, ... , vd and Vi < ... < Vk. We choose Ci,"" ck to satisfy 
v~in < Ci < Vi < ... < Vk < Ck < v~ax. We define fa,c'(x) = 1 ifa(x) > Ci 

and 0 otherwise for any x E U. The set FA(Xi,Xj) for any (Xi,Xj) E DIEC(A) 
consists of functions fa,ck satisfying fa,ck (xi)XORfa,ck (Xj) iff a(xi) < Ck < 
a(xj) or a(xj) < Ck < a(xi). Then the discernibility formula <})A(F) (where 
F is the union of all sets FA(Xi,Xj) for (Xi,Xj) E DIEC(A))) can be used 
to generate the solution for optimal scaling problem. In real applications the 
formula <})A(F) is rather complicated and some heuristics should be applied 
to obtain sub-optimal solutions. This idea is realized in [45]. One can also 
consider more complicated case when the pairs from DIEC(A) are distinguished 
by hyperplanes not necessarily parallel to axes. Genetic algorithms and genetic 
programming techniques are then applied to search for sub-optimal solutions 
of OFE problem in this case. 0 

Example 2. Feature extraction for structural objects [5]. 

In [5] objects (with structures described by finite labelled graphs with distin
guished input nodes) are considered as structures for handwritten digits. The 
disjoint union of these graphs defines a Kripke model M. A multimodalformula 
discerns between objects Xi and Xj if 

M, Xi f= a and non(M, Xj f= a) or M, Xj f= a and non(M, Xi f= a) 

Let fo:(x) = 1 if M, x f= a and 0 otherwise, for any x E U. 

We put F(Xi,Xj) = {fo: : fo:(x;) XOR fo:(xj)}. A procedure for synthesis 
of multimodal formulas a discerning between objects in pairs of DIEC(A) is 
presented in [5] and applied to automatic generation of features discerning 
between handwritten digits. 0 

4.2 Feature extraction by discovery of 
approximate dependencies 

This technique consists of finding near-to-functional relationships in data tables 
[32], [40], [43] described by rules of the form a===> f3 where a and f3 are Boolean 
combinations of descriptors over B ~ A and C ~ A, respectively, such that 
laAI and laAnf3Al/llaAI are greater than the fixed thresholds. Let Fo:,{3 be the 
approximation function defined by a===> f3 in A [32], [40], [43]. 
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The approximation functions applied for filtration of decision tables can also be 
used in searching for new features. Let us assume that our system is searching 
for the approximation functions of the form FOI.,(3 for some a, (3 with the follow
ing property: if FOI.,(3(u) = v where U and v are some pieces of the information, 
then there is a strong evidence (measured e.g. by some threshold k) that the ob
ject characterized by u and v belongs to a distinguished set of decision classes. 
If it is possible to discover this kind of approximation function, then one can 
add as a new condition (a feature, a classifier) to the decision table the binary 
attribute aF defined by: 

aF(x) = 1 iff FOI.,(3({(a,a(x)): a E B}) = {(a,a(x)): a E C} 

where B, C are sets of attributes occurring in a, {3, respectively. 

One can expect to get an efficient classification mechanism by adding to the 
decision table several features of the above form distinguishing a particular set 
of decision classes with sufficiently large evidence (related to the value of the 
threshold k). 

In [32] we present a detailed introduction to mathematical morphology [35] and 
a higher-level version of mathematical morphology called analytical morphol
ogy. This is aimed at filtering data tables without any apriorical geometrical 
structure. 

4.3 Feature extraction by clustering 

Clustering may be defined informally as an attempt at imposing a distance mea
sure (function) d on objects of some collection in such a way that the collection 
U can be represented as a union C 1 U C 2 U ... U Ck of sub collections C i ~ U, 
i = 1,2, ... , k which form clusters, i.e. d-distances among objects within any 
cluster Ci are relatively small compared to distances between distinct clusters. 
The vague nature of this informal description reflects the ambiguity inherent 
to clustering: as a rule, neither the distance function nor the size of clusters, 
nor the degree to which they may overlap are defined clearly; they are sub
ject to some judicious choice. This choice can be based on different criteria: 
minimization of weighted least squares functionals, hierarchical clustering, and 
graph-theoretical methods [2]. 

No matter which technique we apply to clustering, it is important to real
ize that we interpret clusters as collections of objects similar to one another, 
while objects from distinct clusters are perceived by us as not being similar. 
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Clusters, therefore, define a similarity relation on objects from the given col
lection; it is seldom that this similarity has more properties besides reflexivity 
and symmetry. Clusters form a covering of the universe with intricate overlap
ping relationships as there is a trade-off between the crispness of clustering and 
the adaptive quality of clusters-based decision algorithms. This cluster-defined 
similarity is therefore a tolerance relation. We restrict ourselves to the simplest 
case in which a clustering C = {Cl , C2 , ... , Ck } on the universe U determines 
a tolerance relation TC on U by the condition 

XTcY iff x,yECi forsome i=I,2, ... ,k. 

It is an important property of any tolerance relation T that it determines a 
metric (distance function) dr on U by the formula 

dr(x, y) = min{n: there exists a sequence Xo, Xl, ... , xn such that 
Xo = X, Xn = Y and (XiTXi+l for i = 0, .. . ,n -I)} 
in case x"# y and dr(x, x) = 0. 

We will call dr the tolerance iterate metric. 
Clusters C i are therefore defined metrically by the conditions: 

a) drc-diameter C i = 1 for any i = 1,2, ... , k and 

b) drc-dist(C;, Cj) = min{ {maxdist(x, Cj) : x E Cd, 
max{ dist(x, Ci) : x E Cj}} ~ 2 for any i "# j. 

The following conclusion is obtained: 

Any clustering C on a set U of objects can be represented in the form C (T, k, m) 
where T is a tolerance on U, and k, m are natural numbers with 1 ~ k < m, 
and 

a) dr-diameter Ci ~ k for any Ci E C; 
b) dr- dist (Ci, Cj) ~ m for any pair Ci , Cj E C. 

The above observation is the cornerstone of our clustering strategy: we will 
search for tolerance relations T whose iterate metric will satisfy a) and b). 
Actually, we will search for tolerance relations T satisfying a stronger condition 
bl ) for some m 

bl ) dr-Dist(Gi , Gj) 
Gi, Gj E C. 

min{dr(x,y) x E G;,y E Gj } > m for any pmr 
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Finding such a tolerance T would mean that we have found a similarity of 
object relations whose iterates up to k separate objects into certain attractors 
(clusters) while iterates of higher degrees separate the clusters. 

There are two basic problems into which the clustering by tolerance problem 
splits: the problem of clustering with a given tolerance relation as well as 
the problem of searching for a proper tolerance relation. We present here a 
proposition related to the second problem. 

The searching for a proper tolerance is the crucial and most difficult task related 
to decision algorithm synthesis based on tolerance. Let us restrict our consid
erations to the tolerances defined by weighted distances between information 
vectors u, v: 

d(u,v) = LWilui - vii 
i 

where Wi is a weight of the i-th attribute and Wi ::::: O. 

Some heuristics have to be applied due to the high computational complexity 
of searching for the proper weights. One can use the ideas of e.g. simulated 
annealing [1], genetic algorithms [12] or neural networks [10]. 

We sketch here the basic idea of the simulated annealing application to this 
problem. Any choice of weights {Wi} determines the state of the system. The 
transition relation can be defined by choosing a local perturbation of weights. 
The resulting new state (the new tolerance relation) is tested. This testing 
stage consists of applying the clustering strategy based on the new tolerance 
for synthesis of decision algorithm which is then tested on unseen objects. 
If the test results are satisfactory, then the new state received by the local 
perturbation of weights is evaluated as better than the previous state and is 
taken as the current state of the process of simulated annealing. If the test 
results are not satisfactory, then the new state is selected as a current state 
with probability given by the Boltzmann distribution. Iterating the process, 
we determine a sequence of states that is a sequence of tolerance relations. One 
can experimentally choose the number of iterations. Once the iteration process 
is completed, we decrease (slightly) the control parameter (corresponding to the 
temperature) and repeat the iteration. This procedure is repeated until the stop 
criterion chosen in advance is reached. The obtained final tolerance relation is 
taken as the best possible tolerance. Clearly, much more work should be done 
to apply this idea to specific data tables. Although the scheme is universal, 
the choice of specific parameters of the simulated annealing process will depend 
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on the particular data table, and these parameters should be tuned to fit any 
concrete case. 

4.4 Feature extraction by optimization 

In this section we will treat learning processes as optimization processes. In 
this setting learning can be viewed as a searching for an optimal discernibility 
relation. The quality of a discernibility relation R is measured by cost function 
related to a decision table A from a given family of tables. There are several 
components of this function. The first one describes how the discernibility rela
tion approximates the set of pairs of objects which should be discerned. Hence 
the values of this component reflect the size of a boundary region, which can 
be described as the set of all pairs of objects (x, y) discernible by the decision 
and not discernible by R, i.e. (x, y) f/:. R. The second component estimates the 
cost of splitting decision classes by the discernibility relation R. This cost is 
increasing when the discernibility relation introduces too many cuts in decision 
classes. The last component is related to the complexity of the discernibility 
relation. The complexity can be measured by the time or/and space complex
ity of computation of the characteristic function of the discernibility relation 
R. This component can also include the cost of searching in the space R of 
discernibility relations. We also include in the cost of the discernibility rela
tion the changes in the classification quality caused by changes to the original 
decision table. 

We now present our approach in a more formal way. We assume that value 
sets Va for a E A are given. All decision tables considered in this section are 
assumed to have attributes from A. We consider a family R of binary relations 
R ~ INF(A, V) x INF(A, V) called the discernibility relations where V = UVa 
and INF(A, V) is the set of all functions from A into V. If A is a decision 
table and R E R then we define the relation R by (x, y) E R iff (lnf A (x), 
lnf A (y)) E R for any x, y E U. In the sequel we write R instead of k Let 
.IE = (U B, B U {dB}) be a decision table. We introduce the following notation: 
DIS (.IE) = {(x, y) E UB X UB : dB(x) "# dB(Y)} and 

By r we denote a tolerance relation defined on considered decision tables; r(A) 
is the set {.IE: Ar.IE}. 



281 

The cost function (assuming ft., T and n are fixed) is defined for R E n by 

[ IDIS(IBl) n RI 
CA,T (R) sup -Co log IDIS(IBl) I 

l$ET(A) 

r(dB ) IR n X!l I 
~ CiIXi,Bllog(l- IXi,B'I~B)] +D complexity(R) 

where R is a given family of relations, and Co, C l , D are positive reals. The 
complexity(R) is a heuristic measure of time/space complexity of the relation 
R. We assume R = URn where Rn contains relations of size n. The value 
complexity(R) can be expressed e.g. as a function of n for R E Rn. 

The optimal cost is defined by Copt = infRER CA,T (R). The optimal discernibility 
relation Ropt is a relation satisfying the equality CA,T (Ropt ) = Copt. Simulated 
annealing techniques [1] can be applied to find solutions near to optimal. Ge
netic algorithms [12], [13] can also be applied to search for optimal discernibility 
relation. The cost function can be used to construct fitting functions for chro
mosomes. Applications of these methods will be presented elsewhere. 

5 APPROXIMATE REASONING FOR 
DECISION SYNTHESIS IN 
DISTRIBUTED DECISION SYSTEMS 

Many researchers expect that methods based on approximation logic (logic for 
reasoning under uncertainty) should have serious impact on the design process 
of decision support systems as well as on inference engines for reasoning under 
uncertainty embedded in these systems. Unfortunately, it is so far rather rare 
to find in real systems this kind of application of logics for reasoning under 
uncertainty. There are at least two main reasons for this situation. The first 
one follows from the observation that the structure of an approximate logic 
supporting diagnosis or belief strongly depends on a particular knowledge base. 
The approximate logic should be in a sense extracted from a low-level knowledge 
(e.g. represented by decision tables). The methods presented in the previous 
sections can be treated as an attempt to extract laws for such logic. Specific 
inference rules for approximation reasoning should also be extracted from a low
level knowledge (e.g. by decomposition of decision tables). Much more work 
should be done to investigate algorithmic methods for discovery of structures 
of approximation logics. Methods for learning Bayesian-belief networks [7] give 
one of the examples of possible directions for this kind of research. 
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The second reason is a lack of a general formalism on which approximate logic 
should be built. There are many approaches to this problem known in liter
ature, e.g. Dempster-Shafer theory [52], Bayesian-based reasoning [36], belief 
networks [36], many-valued logics and fuzzy logics [9], non-monotonic logics 
[36]. Recently, we have proposed a novel approach (see [30], [31], [33)]), namely 
rough mereology as a foundation for approximate reasoning about complex 
objects. Our notion of a complex object includes, among others, proofs un
derstood as schemes constructed in order to support within our knowledge 
assertions/hypotheses about reality described by our knowledge incompletely. 
This approach seems to be a good common framework on which approximate 
logics can be built. We only present here the basic ideas of that approach. The 
interested reader can find more information in [15]. 

Let us begin with a formal proof of the formula 

(l)p-:Jp 

in the axiomatic propositional calculus. 

I .I1 
(2) p J (p J p) 

pJP 
I 
-I-
IMP 

• 
R 

I 

M1MP 

• _: (3) (p J (p J p)) J (p J p) 

• /2 

(4) (p J ((p J p) J p)) J ((p J (p J p)) J (p J p)) 

Formulae in II, 12, 13 are instances of axiom schemata. 

(5) P J ((p J p) J p) 

We would like to consider the above derivation tree as a scheme for synthesis 
of solution to the problem whether the formula (1) is a theorem of the respec
tive formal system. We wish to interpret the above scheme as a hierarchical 
scheme into which some intelligent agents R, M, II, 12, 13 are organized which 
act according to the following procedural steps: 

Step 1. The agent R receives the formula (1) and decomposes it into some 
ingredients possibly in various ways. 
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Step 2. R is involved in negotiations with other agents which select some 
ingredients of (1); the result of negotiations in the above example is that 
if M and I1 are able to validate (2) and (3), then (1) can use its rule M P 
to validate (1). 

Step 3. M repeats steps 1,2 with 12,13 validating (4), (5), respectively. 

Step 4. Synthesis of the proof follows by each agent sending to its parent the 
validated formula along with the validity check. 

Step 5. R issues the final validity check of the proven formula. 

The above scheme is the one that we adopt on the intuitive basis as the gen
eral scheme for organizing reasoning under uncertainty. We point also to the 
following observations which illuminate the differences between the above case 
and the case when we reason under uncertainty. 

A. Reasoning under uncertainty involves agents whose knowledge and a for
tiori logic is local and subjective. 

B. The knowledge of any agent includes its local mereological knowledge which 
permits decomposing objects into simpler ones; different agents can as a 
rule have distinct proprietary knowledge. The proprietary knowledge of 
an agent may not be fully understood by other agents which introduces 
uncertainty into their cooperation. In particular, the external specification 
(e.g. formula to be proven) may not be fully understood by agents. 

C. The decomposition process stops at the level of elementary objects (e.g. 
instances of axiom schemata, inventory objects etc.). The leaf (inventory) 
agents select objects which in their knowledge satisfy received specifica
tions to an acceptable degree. 

D. Any agent receiving an object is able within its knowledge to approximately 
classify this object by means of its similarity to certain model objects (e.g. 
logical values, local standards etc.) construed by the agent. 

E. The dual (to decomposition) process of synthesis of complex objects from 
simpler ones sent by children of the agent, consists of the assembling pro
cess along with the classification of the synthesized object with respect 
to the agent model objects. This classification is based on classifications 
made by children and involves the agent logic. 

F. The inference rules for approximate reasoning of the agent a are of the 
form: 

if(Xl,tl) and (X2,t2) and ... and (xm,tm) 
then (synt(xl, ... , xm), p(h, t2, ... , tm)) 
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where Xi is the object submitted by child i, ti is the similarity (tolerance) de
gree vector of child i with respect to its modelobjects, synt(xI, ... , xm) is the 
object synthesized from Xl, ... , Xm and p is an inference rule (which in [33] is 
interpreted as a mereological connective). The value p(iI, ... , tm ) is the vector 
of similarity degrees of synt( Xl, ... , xm) with respect to model objects of a. 

From the above discussion we extract a general scheme S for synthesis of a 
.solution under uncertainty. By an uncertainty frame S we will understand a 
tuple 

S= (AG,cag, {t(ag) :agEAGU{cag)}, 
{decomp(ag): ag E AGu {cag}}, 
{p( ag) : ag E AG U { cag }} ) 

where AG is a set of agent names, cag t/. AG is an external agent called the 
customer, t(ag) is in a family of tolerance relations of the agent ag measuring 
similarity of a given object to model objects of ag, decomp( ag) belongs to a 
family of mereological relations used to decompose objects at ag into simpler 
objects, while p(ag) is in a family of inference rules of ag taking as arguments 
a number of tolerances and transforming them into a tolerance at ag. 

Problem specifications are issued by the agent cag and are formulated in some 
languages of AG. When a specification is issued, the designing process of orga
nization of agents from AG into a hierarchical structure for solution synthesis 
(searching for a proof, assembling an object etc.) is initialized. The hierarchy 
is formed on the basis of structural complexity of objects described by agent 
knowledge. The task of the formed hierarchy is to synthesize a complex ob
ject along with the evaluation that it satisfies the specification. The agent cag 
compares this evaluation with its own evaluation of the issued object (solution) 
with respect to its knowledge. The process of learning the correct synthesis of 
solutions is completed when the two evaluations are consistent. 

The above synthesis scheme is derived from the methodological standpoint that 
reasoning under uncertainty should be based on different assumptions than 
reasoning in the classical logic viz. 

a. knowledge about the world is distributed among agents possessing incom
plete fragments of it; 

b. agents derive their inference rules as well as model objects (truth values) 
from their knowledge and as a result the inference rules are local, intricate 
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and strongly dependent on the local knowledge. It is hardly expected 
in many real-life cases that a human being is able to extract these rules 
from empirical knowledge without help from an automated computer-based 
system; 

c. The complex object that is issued is evaluated by composing local inference 
rules. The composition of local inference rules means propagating uncer
tainty through the scheme to the final similarity degrees. The propagation 
mechanism (proof) should be stable in the sense that when it starts with 
objects sufficiently similar to certain model objects, it should terminate 
with the final object satisfactorily close to certain model final objects. 

Our approach is analytic in the sense that the underlying logical apparatus 
is extracted from experimental knowledge expressed in local agent knowledge. 
Also, we adhere to the point of view that rules (logic) for composing uncer
tainty are intensional i.e. context-depending. This is contrary to the prevailing 
approaches based on some a priori assumptions about logical schemes of rea
soning under uncertainty, where the a priori set rules are based on some truth 
- valued logics. 

We now present a concise elaboration of the ideas exposed in the above intro
duction. The exposition is based on our results [15], [29], [30-31], [33-34]. 

5.1 Rough mereology 

The basic notion of rough mereology is that of a rough inclusion. A rough 
inclusion offers a most general formalism for the treatment of partial contain
ment. Rough mereology can be regarded as a far - reaching generalization of 
mereology of Lesniewski [18], [30-31]' [33-34]: it replaces the relation of being 
a (proper) part with a hierarchy of relations of being a part in a degree. 

For simplicity reasons, we restrict ourselves to the case when rough inclusions 
take their values in the interval [0, 1]; in the general (case) these values may be 
taken in a complete lattice, e.g. a finite boolean algebra. 

A real function /-l(X, Y) on a universe of objects U with values in the interval 
[0, 1] is a rough inclusion when it satisfies the following conditions: 

(A) /-l(X, X) = 1 for any X; 
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(B) fJ(X, Y) = 1 implies that fJ(Z, Y) 2:: fJ(Z, X) for any triple X, Y, Z; if in 
addition fJ(Y, X) = 1 then fJ(Y, Z) 2:: fJ(X, Z); 

(C) there is N such that fJ(N, X) = 1 for any X. 

An object N satisfying (C) is a fJ-null object: such objects are in principle 
excluded in mereology of Lesniewski. We let X =1-' Y iff fJ(X, Y) = 1 = fJ(Y, X) 
and X #1-' Y iff non(X =1-' Y). The relation X =1-' Y is an equivalence relation 
and we can factor the universe U throughout this relation. For notational 
simplicity, we will still denote classes of X =1-' Y by symbols of objects. We 
noW can introduce further conditions for rough inclusion: 

(D) if objects X, Y have the property that for any Z: 
if Z #1-' Nand fJ(Z, X) = 1 then there is T #1-' N with fJ(T, Z) = 1 = 
fJ(T, Y) then fJ(X, Y) = l. 
(D) is an inference rule: it can be applied to infer the relation of being a 
part from the relation of being a subpart. 

(E) For any collection :F of objects there is an object X with the properties: 

(i) if Z #1-' Nand fJ(Z, X) = 1 then there are T #1-' N, W E :F such 
that 

fJ(T, Z) = fJ(T, W) = fJ(W, X) = 1; 

(ii) if WE :F then fJ(W, X) = 1; 

(iii) ifY satisfies the above two conditions in place of X then fJ(X, Y) = 1. 

(E) can be applied to show the existence and uniqueness of classes of 
objects. 

An archetypal rough inclusion [31] is the rough membership function fJA defined 
for an information system A = (U, A) by the formula 

which can be in the obvious way extended to pairs of subsets ofthe universe U. 
A rough inclusion fJ on a universe U induces in U a model of mereology of 
Lesniewski. 

We define the relation part from a rough inclusion fJ by the following 

XpartY iff fJ(X, Y) = 1 and fJ(Y, X) < 1. 
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The relation part satisfies the axiom Al and A2 of mereology of Lesniewski [31] 
VIZ. 

(i) it is not true that Xpart X for any object X; 
(ii) if X part Y and Y part Z then X part Z for any triple X, Y, Z of objects. 

We can regard the relation part as decomposition scheme of objects extracted 
from the rough inclusion J-t. The relation part expresses the property of being a 
(proper) part. In many cases, however, it is convenient to argue about objects 
in terms of the property of being an improper part i.e. either a proper part of 
an object or the whole object. 

In mereology of Lesniewski [18] the property of being an improper part is 
introduced by means of relation ingr of being an ingredient, d~ned by the 
following condition: 

X ingr Y iff either X part Y or X = Y. 

Then the relation ingr defined from part satisfies the condition X ingr Y iff 
J-t(X, Y) = 1. 

Mereology of Lesniewski owes its specific metamathematical features to the 
definitions of the notions of a set of objects and of a class of objects [18]. In 
rough mereology, we extend these notions by introducing, for any collection F 
of objects of the universe U, the notions of a set of objects in F, set F in short, 
and of a class of objects in F, class F in short. 

The notions set F and classF are defined from ingr by conditions (E)(i) and 
(E)(i)-(iii) with F, respectively. It turns out [18] that the above relations in
duced by J-t satisfy all axioms of mereology of Lesniewski on non-null objects 
of the universe: any rough inclusion J-t introduces a model of mereology on the 
collection of non-J-t-null objects of the universe U. It is well - known [18] that in 
mereology the notions of a subset, an element, and an ingredient are all equiva
lent. Therefore rough mereological containment J-t(X, Y) can be interpreted as 
the membership degree of X in Y and therefore rough mereological approach 
encompasses fuzzy set approach. 

We will comment briefly here on the way in which rough mereology encompasses 
fuzzy logic. In the light of the afore - mentioned equivalence between the notion 
of an element and the notions of a subset, which the given rough inclusion J-t 
introduces on the objects in the universe U, we can interpret the value J-t(X, Y) 
of the rough inclusion J-t as the degree in which the object X is an element 
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of the object Y. This interpretation will be stressed by usage of the symbol 
JlY(X) instead Jl(X, Y). 

In fuzzy set theory [9], the values offuzzy membership functions are propagated 
by means of logical connectives derived from many - valued logic, e.g. t-norms 
and t-conorms. 
The following proposition (cf. [34]), whose proofs will be given elsewhere, 
demonstrates that a rough inclusions are preserved with respect to the fuzzy 
set-theoretic inclusion operators and, the decomposition schemes are invariant 
under change of inclusion operators. 

Proposition 5.1. 
Assume that Jl is a rough inclusion on a universe U of objects and T IS a 
continuous norm with T the residual implication induced by T [9]. Then 

(i) the function 11 (X, Y) = infz{T(Jlx(Z), JlY(Z))} is a rough inclusion on 
the universe U; 

(ii) 11 (X, Y) = 1 iff Jl(X, Y) = 1. D 

We can therefore regard t-norm-induced connectives as modifiers of numerical 
degrees of partial containment, which have no impact on the proper contain
ment i.e. on the decomposition scheme. The formula (i) expresses the inten
sional character of a rough inclusion. 

Propagating rough inclusions can be effected by means of rough mereological 
connectives. 

An n-rough mereological connective F is a relation F ~ [0, l]n x [0, 1] such that 

[1,1, ... ,1] E F- 1 (1}. 

Examples of mereological connectives are some connectives of many-valued logic 
e.g. F(x, y) = min(x, y) (Zadeh), F(x, y) = xy (Menger). When a connective 
F is chosen, we define the (F, Jl)-closeness relation Ep,I'(X, Y, r) by the formula 

Ep,I'(X, Y, r) iff there exist s, t 

such that 

F(Jl(X, Y), Jl(Y, X), s) and F(Jl(Y, X), Jl(X, Y), t) and s, t 2: r. 
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For a chosen threshold k E [0,1]' we define a tolerance Tp,!-"k via 

XTP,!-',kY iff Ep,!-'(X, Y, r) and r> k. 

The connective F in distributed systems of 5.2, below may vary from agent 
to agent; for simplicity of notation, we assume that all agents apply a fixed 
connective F. 

To the tolerance relation of the form Tp,!-"k, all procedures described in Section 
3.5. can be applied. 

The analytic approach requires that values of rough inclusions be generated 
from data tables. We would like to comment on the way in which one can 
generate rough inclusion from the knowledge encoded in data tables. 

Consider an information system A = (U, A). We call a function /10 : U x U -+ 
[0,1] a pre-rough inclusion when /10 satisfies the following conditions: 

(i) /1o(x, x) = 1 for any object x in U; 
(ii) if /1o(x, y) = 1 then /1o(z, y) ;::: /1o(z, x) for any triple x, y, Z of objects in U; 

(iii) /1o(x, y) = /1o(y, x). 

Pre-rough inclusion can be generated from the information system U; for in
stance, for a given partition P = {A1, . .. ,Ak} of the set A of attributes into 
non-empty sets A1, ... , Ak, and a given set W = {W1,"" Wk} of weights, 
Wi E [0,1] for i = 1,2, ... , k and Z::::~=1 Wi = 1 we can let 

( ) _ ~ '. IIND(x, y, i)1 
/1o,P,w x, y - L...J W, lA-I 

i=l ' 

where IND(x, y, i) = {a E Ai : a(x) = a(y)}. 

Clearly, /1o,P,w is a pre-rough inclusion for any choice of the parameters P, W. 

Once a pre-rough inclusion /10 is selected, it can be extended to a rough inclusion 
on the set 2u . We state the following proposition to this end, whose proof will 
be given elsewhere. 

Proposition 5.2. 
For a given: t-norm T, t-conorm 1.. and pre-rough inclusion /10 on the universe 
U of an information system A = (U, A), the formula 

/1(X, Y) = T{1..{/1o(x,y) : y E Y}: x E X} 
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where X, Y ~ U, defines a rough inclusion J1. on the set 2u of sets of objects 
in U. 0 

Remark. The correctness of the right hand side of the above equality follows 
from the associativity and commutativity of T, l... We assume the conventions 
Tq\=l, l..q\=O, Tr=l..r=rforrE[O,l]. 0 

We can therefore, in the light of Proposition 5.2, restrict ourselves to pre-rough 
inclusions. 

5.2 Rough mereological logic and distributed 
systems of decisions 

We begin with a set Ag of agent (team) names, an inventory I of objects and a 
language Link ~ Ag+ where Ag+ is the set of all finite non-empty strings over 
Ag and a variable bag for any agent ag to store complex objects at the agent 
ago If 

ag=ag1ag2 ... agkag E Link 

then it will mean that the ag-target agent ag can receive messages from the team 
ofag-sources ag1ag2, ... agk. For ag we let set(ag) = {ag1,ag2, ... ,agk,ag}. 
For L ~ Link, we let Ag(L) = U{ set(ag) : ag E L} and we denote by ~ a 
relation on Ag(L) defined by: ag ~ ag' if and only if there exists ag E L such 
that ag, ag' E set(ag) and ag is the ag-target. A set L ~ Link is a construction 
support in case (Ag(L),~) is a tree. A subset Ag(I) of Ag is the name set of 
inventory agents (these agents have access to inventory of atomic parts). 

We define an elementary construction c: if ag = ag1ag2 ... agkag E L, then an 
expression c = (lab(agI), lab(ag2)"'" lab(agk), lab(ag)) will be called an ele
mentary construction associated with ag with the leaf set Leaf(c) = {ag1, ag2, 
... , agk}, the root Root(c) = ag and the agent set Ag(c) = {ag1' ag2, ... , agk, ag}; 
we will write lab(ag ,c) instead of lab(ag) to stress the fact that the agent ag 
has the labellab(ag) in C. The label, lab(ag), of an agent ag is the set: 

{U(ag), L(ag), J1.(ag), decomp_rule(ag) , uncertainty_rule(ag), F(ag)} 

where U(ag) is the universe of ag, L(ag) is a set of unary predicates at ag, 
J1.(ag) ~ U(ag) x U(ag) x [0,1] is a pre-rough inclusion at ag, F(ag) is a set 
of mereological connectives at ag and decomp_rule(ag) is the set of relations 
of the form decomp_rulej of type (1)1,1>2, ... , 1>k, 1» where 1>i E L(agi) and 
1> E L( ag); the meaning of this relation is that it is satisfied by objects C1, .. , Ck 
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submitted by ag1, ... , agk iff Ci satisfies <Pi for i = 1, ... , k and the object 
c( C1 , ... , Ck) constructed by ag from C1, ... , Ck satisfies <P. U ncertainty_rule( ag) 
is a set of relations of type (f, p,( agd, ... , p,( agk), p,( ag)) such that for some 
Xi,Yi E U(agj) where i = 1, ... ,k if EF,I-'(agi) (Xi, Yj, ri) for i = 1,2, ... ,k then 
we have 

EF,I-'(ag) (C(X1' ... , Xk), C(Y1, ... , Yk), r), where 

f(r1, r2,· .. , rk, r) holds and f E F(ag). 

For two constructions c, c' such that 

Ag(c) n (Ag(c') = {ag} 

where ag = Root(c) E Leaf(c') and lab(ag, c) = lab(ag, c') we define a new 
construction c .ag c' called the ag-composition of c and c' with Root(c .ag c') = 
Root(c'), 

Leaf(c .ag c') = Leaf(c) U Leaf(c') - {ag}, 

Ag(c .ag c') = Ag(c) U Ag(c'). 

We call a construction any expression obtained from a set of elementary con
structions by applying the composition operation a finite number of times. If a 
construction c = C1 .ag1 C2.ag2 C3 • ... • agk Ck+1 is composed in the prescribed 
order out of elementary constructions C1, ... , Ck+1 then any Cj will be called an 
elementary construction in c. The construction c is a communication scheme of 
agents which is the result of the first stage of the design process. In this stage 
communication routes among agents are established. We now define a design 
scheme sch(c) over c (scheme for short) by choosing for any agent ag E Ag(c) 
a rule decomp_rulej (ag) of type (<P1, <P2, ... , <Pk, <p( ag)) in such way that if ag 
is a leaf agent in an elementary construction Cj of c with the root agO and 

decomp_rulej (ag*) 

of type (w 1, W 2, ... , W k, W (ag*)) then <P (ag) is one of W 1, W 2, ... , Wk. An ele
mentary scheme will be a scheme restricted to an elementary construction. A 
given design scheme sch(c) assigns to any of its agents ag a unique decomposi
tion formula 

<P(ag, sch(c)) 

and thus if we begin with inventory objects Cj which satisfy leaf decomposition 
formulae then the complex object c assembled at the root agent satisfies its 
decomposition formula. The process of forming a design scheme requires ne
gotiations among agents along already established communication routes; we 
propose to apply boolean reasoning [8] for the negotiation process. 
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We work with a given construction c. We consider a family 

Sch(c) = {schdc), ... , schm(c)} 

of design schemes over c called a synthesis pre - scheme. We describe in this 
section the communication and negotiation process making S ch (c) into a syn
thesis scheme under uncertainty. For any agent ag E Ag (c), the extended label 
Lab(ag) will be defined as the union lab(ag) U {st(ag)i : i = 1,2, ... , m} where 
lab(ag) is the label of ag in c and st(ag); is the i-th standard object at ag which 
means that st(ag)i E U(agi) and st(ag); satisfies the formula if>(ag, sch(c)i). 
Informally, the formulae if> ( ag, sch( c);) describe the corresponding standards 
and they are inferred e.g. as conditional formulae from a priorical decision sys
tems of agents. A fortiori, any design scheme sch(c)i of Sch(c) can be regarded 
as elementary synthesis scheme leading from the set {st (ag)i : ag E Leaf( c)} 
of i-th standard objects at leaf agents of c to the standard object st (ag*)i where 
agO = Root(c). For any agent ag E Ag(c), and any object x E U(ag), the agent 
ag can calculate by means of an F-closeness relation EF,/"(ag) associated with 
the rough inclusion p(ag) the vector 

dist(ag)(x) = [r; : i = 1,2, ... , m], where 

EF,/"(ag) (x, st(agi), r;) holds for i = 1,2, ... , m, 

from x to standards at ag. For any elementary construction 

Co = (lab(agl)' lab(ag2)"'" lab(agk)' lab(ag)) in c 

and a standard st(ag)i at ag, we can check whether there exists a relation f of 
type 

(f,p(agl),' .. ,p(agk),p(ag)) 

in uncertainty_rule( ag) with the property that 

if objects Xl, .. , xk are such that each x j satisfies 

and the object x = C(Xl, X2, ... , Xk) satisfies 

EF,/"(ag)(x,st(ag),r) and r 2: E(ag) 

then 
f(E(agd, E(ag2)"'" E(agk))' E(ag)) holds. 

Let us emphasize that the relations satisfying this property are extracted from 
experiments with samples of objects in the manner discussed in Section 5.1. If 
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such f = f(st(ag);) exists for any pair Co, st(ag)i in c then we say that the 
construction c has a proper uncertainty propagation. 

We now give an informal description of the process of synthesis. Our consider
ations will be based on the notion of approximate satisfiability of a predicate 
by an object viz. for a predicate <I> E L(ag) , a real number c and an object x 
at ag, we will say that the object x satisfies the predicate <I> in degree c in the 
case when there exists a standard st(ag)i such that st(ag)i satisfies <I> and 

EP,I"(ag)(x, st(ag)i, r) and r 2': c hold for some r E [0,1]. 

The root agent ag of c, on receiving a specification <I> from the customer, can be 
able to select a standard st(ag)i which satisfies <I> (by this choice the root agent 
ensures that the design scheme sch(c)i will provide the support for construction 
of a complex object satisfying the specification <1». Next, he can be able to set 
a value c such that any object x with the property that EP,I"(ag) (x, st(ag)i), r) 
and r 2': c will according to him satisfy the specification <I> from the customer. 
The main reason for setting c is that the leaf agents may be not able to de
liver standards as required to construct st(ag)i but they can deliver objects as 
close to these standards as to construct from them the object which satisfies 
the specification <I> in degree satisfactory for the customer. The approximate 
specification (<I>, c) at the root agent of c is then to be decomposed into a set 

{(<I>(ag),c(ag)) : ag i- Root(c)} 

of approximate specifications for non-root agents of c in such a way that the 
following conditions are satisfied for any ag E Ag(c) and for the elementary 
construction Co in c with the Leaf(co) = {agl, ag2,"" agd and Root(co) = ag: 

(i) there exists f(st(ag);) E F(ag) such that f(st(ag)i)(c(agd), C(ag2), ... , 
c(agk), r) and r 2': c(ag); 

(ii) if objects Xl, ... ,Xk are such that Xi satisfies (<I>(ag;),c(agi)) for 
1,2, ... , k, then the object C(Xl, X2, .. . , Xk) satisfies (<I>(ag), c(ag)). 

This decomposition is effected in the top-down negotiation process starting 
at Root(c), proceeding throughout subsequent elementary constructions and 
ending at leaf agents. The decomposition of c(ag) into values c(ag)i is achieved 
by means of the relation f(st(ag);) which permits for a given c(ag) to find 
acceptable values of c( ag)i. Let us observe that in this negotiation process the 
following set 

((<1>(ag), c(ag), f(st(ag);)) : ag E Ag(c)} 
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called the (c, <1>, c) - uncertainty propagation scheme is established as the suc
cessful result. The negotiation process can be carried in either parallel or 
sequential way leading to a non - empty family Psch(c) called a c-uncertainty 
propagation scheme of (c, <1>, c)-uncertainty propagation schemes for various 
specifications <I> delivered by the customer and various values c. We will call a 
synthesis scheme under uncertainty a synthesis pre - scheme Sch(c) endowed 
with a c-uncertamty propagation scheme Psch(c). We would like to empha
size the fact that a synthesis scheme under uncertainty is the result of the 
negotiation and learning process among agents on the basis of their knowl
edge. In any synthesis scheme under uncertainty one can notice top-down and 
bottom - up communication. The communication process is an instance of a 
much more general idea of approximate reasoning consisting of decomposing 
a global specification along with a given global uncertainty bound into local 
specifications with given local uncertainty bounds (top-down communication) 
and then synthesizing a complex object satisfying the global specification in 
degree exceeding the global uncertainty bound by assuring that complex ob
jects assembled at local nodes satisfy local specifications in degrees exceeding 
local uncertainty bounds. 

6 CONCLUSIONS 

The rough set methods combined with Boolean reasoning techniques have been 
used to develop efficient tools for extracting decision rules from low-level knowl
edge of agents. 

Adaptive systems of cooperating agents based on rough mereological approach 
have been proposed as a general framework for reasoning under uncertainty. 
It allows to express higher-level reasoning under uncertainty related to, for in
stance, non-monotonic reasoning, and reasoning about knowledge in distributed 
systems of computing agents. The agents extract from their data tables all 
constructs which they need: rough inclusions, predicates, decomposition rules, 
uncertainty rules, deep structure formulas. Automated design manufacturing 
and negotiations are carried out along the negotiated synthesis schemes. 

We expect to obtain more practical applications of Boolean reasoning methods 
and rough set methods by merging them with genetic programming and neural 
networks. This seems especially interesting for automatic relevant features 
synthesis. 
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One of the main research areas which could help build a bridge between existing 
logics for reasoning under uncertainty and practical applications is related to 
algorithmic methods for extracting the structures of these logics from low-level 
knowledge bases. Decomposition techniques of decision tables can be used as 
the main tool in searching for these structures. 

This work has been supported by a grant from the State Committee for Scien
tific Research (Komitet Badan Naukowych). 
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A fuzzy set can be represented by a family of crisp sets using its a-level sets, whereas 
a rough set can be represented by three crisp sets. Based on such representations, 
this paper examines some fundamental issues involved in the combination of rough-set 
and fuzzy-set models. The rough-fuzzy-set and fuzzy-rough-set models are analyzed, 
with emphasis on their structures in terms of crisp sets. A rough fuzzy set is a pair 
of fuzzy sets resulting from the approximation of a fuzzy set in a crisp approximation 
space, and a fuzzy rough set is a pair of fuzzy sets resulting from the approximation 
of a crisp set in a fuzzy approximation space. The approximation of a fuzzy set in a 
fuzzy approximation space leads to a more general framework. The results may be 
interpreted in three different ways. 

1 INTRODUCTION 

Theories of rough sets and fuzzy sets are distinct and complementary general
izations of set theory [20, 30]. A fuzzy set allows a membership value other than 
o and 1. A rough set uses three membership functions, a reference set and its 
lower and upper approximations in an approximation space. There are exten
sive studies on the relationships between rough sets and fuzzy sets [4, 21, 25, 26]. 
Many proposals have been made for the combination of rough and fuzzy sets. 
The results of these studies lead to the introduction of the notions of rough 
fuzzy sets and fuzzy rough sets [2, 3, 5, 6, 10, 11, 15, 16]. 
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In the theory of fuzzy sets, two equivalent representations of fuzzy sets have 
been suggested [9). A fuzzy set can be represented either by a membership 
function, or by a family of crisp sets called the a-level sets of the fuzzy set. 
In many situations, it may be more convenient and simpler to use the set
method, i.e., the use of a-level sets of a fuzzy set [13, 19). In contrast to 
the functional approach, i.e., the use of membership function of a fuzzy set, 
the set-method has many advantages in the definition, analysis, and operation 
with fuzzy concepts [22, 23). Most of the studies on the combination of rough 
and fuzzy sets are based on the functional approach. Nakamura [14, 15) used 
the a-level sets of a fuzzy similarity relation in the study of fuzzy rough sets. 
The use of set-method in the combination of rough and fuzzy sets is briefly 
described by Klir and Yuan in a more general framework [9) recently. One may 
expect the same advantages of set-method in studying these extended notions. 

The present study examines some of fundamental issues in the combination of 
rough and fuzzy sets from the perspective of a-level sets. One of the main 
objectives is to identify the relationships among rough fuzzy sets, fuzzy rough 
sets, and crisp sets. This will help us understand the inherent structures of these 
extended sets. In particular, a rough fuzzy set is defined as the approximation 
of a fuzzy set in a crisp approximation space, while a fuzzy rough set as the 
approximation of a crisp set in a fuzzy approximation space. Another objective 
is to study a more general framework in which a fuzzy set is approximated in a 
fuzzy approximation space. The results of the approximation can be interpreted 
in three different ways, a family of rough sets, a family of rough fuzzy sets, and 
a family of fuzzy rough sets. 

2 FUZZY SETS 

Let U be a set called universe. A fuzzy set F on U is defined by a membership 
function J1:F : U --+ [0,1). A crisp set can be regarded as a special case of 
fuzzy sets in which the membership function is restricted to the extreme points 
{O, I} of [0,1). The membership function of a crisp set is also referred to as a 
characteristic function. Given a number a E [0,1], an a-cut, or a-level set, of 
a fuzzy set is defined by: 

Fa = {x E U I J1:F(x) ~ a}, (1.1) 

which is a subset of U. A strong a-cut is defined by: 

Fa+ = {x E U I J1:F(x) > a}. (1.2) 
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Through either a-cuts or strong a-cuts, a fuzzy set determines a family of 
nested subsets of U. Conversely, a fuzzy set :F can be reconstructed from its 
a-level sets as follows: 

IL:F(X) = sup{a I x E :F,,}. 

The fuzzy-set equality and inclusion are expressed component-wise as: 

A = l3 -¢:::::} ILA(X) = ILB(X), for all x E U, 

A ~ l3 -¢:::::} ILA(X) S ILB(X), for all x E U. 

Using the notion of a-level sets, they can be equivalently defined by: 

A = l3 -¢:::::} A" = l3", for all a E [0, 1], 

A ~ l3 -¢:::::} A" ~ l3", for all a E [0,1]. 

(1.3) 

(1.4) 

(1.5) 

Therefore, we can use either definition of fuzzy sets. Each of these two represen
tations has its advantages in the study of fuzzy sets. One of the main advantage 
of set based representation is that it explicitly establishes a connection between 
fuzzy sets and crisp sets. Such a linkage shows the inherent structure of a fuzzy 
set. 

For an arbitrary family of subsets of U, (A"),,, a E [0,1], there is no guarantee 
that A" will be the a-level set of a fuzzy set. The necessary and sufficient 
conditions on (A"),, are given in the following representation theorems proved 
by Negoita and Ralescu [17, 18, 22]. 

Theorem 1 Let (A"),,, a E [0,1], be a family of subsets of U. The necessary 
and sufficient conditions for the existence of a fuzzy set:F such that:F" = A", 
a E [0,1], are: 

(i) a1 S a2 ===} A,,! ;2 A" 2 , 

00 

(ii) a1 S a2 S ... , and an -+ a ===} n A"n = A". 
n=l 

Theorem 2 Let 'lj;: [0, 1] -+ [0,1] be a given function, and (A"),,, a E [0,1], 
be a family of subsets of U. The necessary and sufficient conditions for the 
existence of a fuzzy set :F such that :F'Ij;(,,) = A", a E [0,1], are: 

(i /) 'lj;(ad S 'lj;(a2) ===} A,,! ;2 A"2' 
00 

(ii') 'lj;(a1) S 'lj;(a2) S ... , and 'lj;(an ) -+ 'lj;(a) ===} n A"n = A". 
n=l 
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An implication of Theorem 1 is that the family of a-level sets of a fuzzy set 
satisfies conditions (i) and (ii). 

There are a number of definitions for fuzzy-set complement, intersection, and 
union. We choose the standard max-min system proposed by Zadeh [30], in 
which fuzzy-set operations are defined component-wise as: 

J-t~A(X) = 1 - J-tA(X) , 

J-tAns(X) min[J-tA(x), J-ts(x)], 

J-tAUS(X) max[J-tA(x), J-ts(x)]. 

In terms of a-level sets, they can be expressed by: 

(-,A)" 

(An E)" 
(Au E)" 

= 
= 
= 

-,A(l_,,)+ , 

A" nE", 
Aa uE". 

(1.6) 

(1. 7) 

An important feature of fuzzy-set operations is that they are truth-functional. 
One can obtain membership functions of the complement, intersection, and 
union of fuzzy sets based solely on the membership functions of the fuzzy sets 
involved. 

3 ROUGH SETS 

Let U denote a finite and non-empty set called the universe, and let R ~ 
U x U denote an equivalence relation on U, i.e., R is a reflexive, symmetric and 
transitive relation. If two elements x, y in U belong to the same equivalence 
class, i.e., xRy, we say that they are indistinguishable. The pair aprR = (U, R) 
is called an approximation space. The equivalence relation R partitions the set 
U into disjoint subsets. It defines the quotient set U / R consisting of equivalence 
classes of R. The equivalence class [X]R containing x plays dual roles. It is a 
subset of U if considered in relation to the universe, and an element of U / R 
if considered in relation to the quotient set. The empty set 0 and equivalent 
classes are called the elementary sets. The union of one or more elementary 
sets is called a composed set. The family of all composed sets is denoted by 
Com(apr). It is a sub algebra of the Boolean algebra 2u formed by the power 
set of U. 

Given an arbitrary set A ~ U, it may not be possible to describe A precisely 
in the approximation space aprR = (U, R). Instead, one may only characterize 
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A by a pair of lower and upper approximations. This leads to the concept of 
rough sets. In this study, a rough set is interpreted by three ordinary sets: 

Reference set : A~U, 

Lower approximation: apr R(A) = {x E U I [xlR ~ A}, 
Upper approximation: aprR(A) = {x E U I [xlR n A"# 0}. (1.8) 

By definition, apr ~(A) ~ A ~ aprR(A) and aprR(A) = ...,apr R(...,A). The pair 
(apr (A),aprR(A)) is called a rough set with a reference set A. 
-R 

The characteristic functions of apr R (A) and apr R (A) are called strong and 
weak membership functions of a rough set [20]. Let /-LA and /-LR denote the 
membership functions of A and R, respectively. The physical meaning of lower 
and upper approximations may be understood better by the following two ex
pressions: 

/-Lapr (A) (x) 
-R 

/-LaprR(A) (x) 

and 

/-Lapr (A) (x) 
-R 

/-LaprR(A) (x) 

inf{/-LA(Y) lyE U, (x, y) E R}, 

SUp{/-LA(Y) lyE U, (x, y) E R}, 

inf{l-/-LR(x,y) I y (j. A}, 

SUP{/-LR(X,y) lyE A}. 

(1.9) 

(1.10) 

For the two special sets 0 and U, definition (1.10) is not defined. In this case, we 
simply define /-LaprR(U) (x) = 1 and /-LaprR(f/)) (x) = 0 for all x E U. In subsequent 
discussion, we will not explicitly state these definitions for boundary cases. 
Based on the two equivalent definitions, lower and upper approximations may 
be interpreted as follows. An element x belongs to the lower approximation 
apr R(A) if all elements equivalent to x belong to A. In other words, x belongs 
to the lower approximation of A if any element not in A is not equivalent to 
x, namely, /-LR(X,y) = o. An element x belongs to the upper approximation 
approximation aprR(A) if at least one element equivalent to x belongs to A. 
That is, x belongs to the upper approximation of A if any element in A is equiv
alent to x, namely, /-LR(X,y) = 1. Therefore, the weak and strong membership 
functions of a rough set can be computed from the membership function of the 
reference set if the equivalence relation is used to select elements to be consid
ered. Alternatively, they can also be computed from the membership function 
of the equivalent relation if the reference set is used to select elements to be 
considered. These two views are important in the combination of rough and 
fuzzy sets. For convenience, the strong and weak membership functions of a 
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rough set can be expressed as: 

!1apr (A) (X) 
-R 

!1aprR(A) (X) 

inf{max[!1A(Y), 1- !1R(X, y)ll y E U}, 

sup{min[!1A(y),!1R(x,y)ll y E U}. (1.11) 

Although both membership functions of R and A are used, the inf and sup 
operations are in fact performed only on one membership function. 

For two rough sets (apr R(A), aprR(A)) and (apr R(B), aprR(B)), their inter
section and union are given by (aprR(A n B),aprR(A n B)) and (aprR(A U 
B), aprR(A U B)), with reference sets An B and Au B, respectively. The 
rough-set complement is defined by (apr R ( -,A), apr R ( -,A)), with a reference 
set -,A. In contrast to fuzzy sets, rough-set intersection and union are not 
truth-functional as indicated by the properties: 

(RO) apr R(-,A) = -,aprR(A), 

aprR(-,A) = -,apr R(A), 

(R1) apr R(U) = U, 

aprR(0) = 0, 
(R2) apr R(A n B) = apr R(A) n apr R(B), 

aprR(A U B) = aprR(A) U aprR(B) , 

apr R(A U B) ;2 apr R(A) U apr R(B), 

aprR(A n B) ~ aprR(A) n aprR(B), 

(R3) apr R(A) ~ A, 

A ~ aprR(A), 

(R4) A ~ apr R(aprR(A)), 

aprR(apr R(A)) ~ A, 

(R5) apr R(A) ~ apr R(apr R(A)), 

aprR(aprR(A)) ~ aprR(A). 

Property (RO) shows that lower and upper approximations are dual to each 
other. The above pairs of properties may be considered as dual properties. It 
is sufficient to only define one of the approximations and to define the other one 
using property (RO). The two conditions with equality sign in (R2) imply the 
other two conditions. They state that in general it is impossible to calculate 
the weak membership function of rough-set intersection and the strong mem
bership function of rough-set union based only on the membership functions of 
two rough sets involved. One must also take into consideration the interaction 
between two reference sets, and their relationships to the equivalent classes 
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of R. Properties (RO)-(R2) follow from the definition of lower and upper ap
proximations. Property (R3) follows from the reflexivity of binary relations, 
property (R4) follows from the symmetry, and property (R5) follows from the 
transitivity. By removing the last two properties from (R2), properties (Rl)
(R5) form an independent set. They are also sufficient in the sense that any 
other properties of rough sets can be derived from them [12]. 

Rough sets are monotonic with respect to set inclusion: 

(RMl) 

(RM2) 

AS:;; B =::} apr R(A) s:;; apr R(B), 

A ~ B =::} aprR(A) ~ aprR(B). 

Let Rl and R2 be two equivalence relations on U. Rl is a refinement of R2, 
or R2 is a coarsening of Rl, if Rl s:;; R2. A refinment relation further divides 
the equivalence classes of a coarsening relation. That is, Rl is a refinement of 
R2 if and only if [X1Rl s:;; [xlR2 for all x E U. The finest equivalence relation 
is the identity relation, whereas the coarsest relation is the Cartesian product 
U xU. Rough sets are monotonic with respect to refinement of equivalence 
relations. If an equivalence relation Rl is a refinement of another equivalence 
relation R2, for any A s:;; U we have: 

(rml) 

(rm2) 

Rl ~ R2 =::} apr Rl (A) ;2 apr R2 (A), 

Rl ~ R2 =::} aprRl(A) ~ aprR2(A). 

Approximation of a set in a refined approximation space is more accurate in 
the sense that both lower and upper approximations are closer to the set. The 
two monotonicities of rough sets are useful in the combination of rough and 
fuzzy sets. 

4 COMBINATION OF ROUGH AND 
FUZZY SETS 

The combination of rough and fuzzy sets leads to the notions of rough fuzzy 
sets and fuzzy rough sets. Different proposals have been suggested for defining 
such notions. Before presenting rigorous analysis of these concepts based on 
a-level sets, we briefly review the main results of existing studies. 
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4.1 Overview 

Given an equivalence relation R on a universe U, it defines a quotient set U / R 
of equivalent classes. For any subset A of the universe, Dubois and Prade [6, 7] 
defined a rough set as a pair of subsets of U / R: 

qaprR(A) 
qaprR(A) 

{[X]R I [X]R ~ A}, 
{[X]R I [X]R n Ai- 0}. (1.12) 

The first [X]R is used as an element of U / R, and the second [X]R is used as a 
subset of U. The pair (qapr R(A), qaprR(A)) is called a rough set on U j R with 
reference set A. Although this definition differs from the original proposal of 
Pawlak [20], they are consistent with each other. Pawlak's lower and upper 
approximations may be viewed as extensions of qapr Rand qapr R: 

apr R(A) U [X]R' 
[xjREqapr RCA) 

aprR(A) U [X]R. (1.13) 
[xjREqaprRCA) 

The notion of rough fuzzy sets defined by Dubois and Prade deals with the 
approximation of fuzzy sets in an approximation space [6, 7]. Given a fuzzy set 
F, the result of approximation is a pair of fuzzy sets on the quotient set U / R: 

Mqapr (F) ([X]R) 
-R 

Mqapr R (F) ([X]R) 

inf{MF(Y) lyE [X]R}, 

= SUp{MF(Y) lyE [X]R}. (1.14) 

By using the extension principle, the pair can be extended to a pair of rough 
sets on the universe U: 

Mapr (F)(X) 
-R 

inf{MF(Y) lyE [X]R}, 

SUP{MF(Y) lyE [X]R}. MaprR(F) (x) 

Similar to equation (1.11), they can be expressed as: 

Mapr (F) (X) 
-R 

MaprR(F) (X) 

inf{max[MF(Y),MR(X,y)] I Y E U}, 

sup{min[MF(Y), 1- MR(X,y)] I Y E U}. 

(1.15) 

(1.16) 

The pair (qaprR(F),qaprR(F)) is called a rough fuzzy set on UjR, and the 
pair (apr R(F), aprR(F)) is called a rough fuzzy set on U, with reference fuzzy 
set F. 
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The notion of fuzzy rough sets defined by Dubois and Prade [6] is originated 
from Willaeys and Malvache [24] for defining a fuzzy set with respect to a 
family of fuzzy sets. It deals with the approximation of fuzzy sets in a fuzzy 
approximation space defined by a fuzzy similarity relation lR or defined by a 
fuzzy partition. We only review the results obtained from a fuzzy similarity 
relation. A fuzzy similarity relation lR is a fuzzy subset of U x U and has three 
properties: 

reflexivity: for all x E U, /-tlR(x, x) = 1, 

symmetry: for all x, Y E U, /-tlR ( x, y) = /-tlR (y , x) , 

transitivity: for all X,y,X E U,/-tlR(x,z) 2: min[/-tlR(x,Y),/-tlR(Y,z)]. 

Given a fuzzy similarity relation lR, the pair aprlR = (U, lR) is called a fuzzy 
approximation space. A fuzzy similarity relation can be used to define a fuzzy 
partition of the universe. A fuzzy equivalence class [x]lR of elements close to x 
is defined by: 

(1.17) 

The family of all fuzzy equivalence classes is denoted by U IlR. For a fuzzy set 
F, its approximation in aprlR is called a fuzzy rough set, which is a pair offuzzy 
sets on U IlR: 

/-tqapr n (F) ([X]lR) 

/-tqaprn (F) ([X]lR) 

inf{max[/-tF(Y), 1- /-t[x]n(Y)] I Y E U}, 

sup{min[/-tF(y),/-t[x]n(Y)]I Y E U}. 

They can be extended to a pair of fuzzy sets on the universe: 

/-tapr n(F)(X) 

/-taprn(F) (x) 

inf{max[/-tF(Y), 1 - /-tlR(X, Y)]I Y E U}, 

sup{ min[/-tF(Y), /-tlR(X, y)]1 Y E U}. 

(1.18) 

(1.19) 

The approximation of a crisp set in a fuzzy approximation space may be con
sidered as a special case. By comparing equations (1.16) and (1.19), one can 
conclude that rough fuzzy sets are special cases of fuzzy rough sets as defined 
by Dubois and Prade. Although the names of rough fuzzy sets and fuzzy rough 
sets are symmetric, the role played by them are not symmetric. 

Nakamura [14, 15] defined a fuzzy rough set by using a family of equivalence 
relations induced by different level sets of a fuzzy similarity relation lR. For a 
{3 E [0, 1], the level set lR,8 is an equivalence relation. It defines an approximation 
space aprlR{3 = (U, lR,8). The approximation of a fuzzy set F in aprlR{3 turns out 
to be a rough fuzzy set (apr", (F), aprlR (F)). The family of rough fuzzy sets, -"'-{3 {3 
(apr lR{3 (F), aprlR{3 (F)), {3 E [0,1], is related to a fuzzy rough set of Dubois and 
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Prade [6, 7]. Lin [11] studied the concept of fuzzy rough sets from the view 
point of the topology of function spaces. However, it needs to be clarified that 
fuzzy rough sets called by Lin are in fact rough fuzzy sets called by Dubois and 
Prade. 

All above proposals agree with Pawlak's formulation regarding the interpreta
tion of rough-set intersection and union. These operations are defined based on 
the approximations of the intersection and union of reference sets or fuzzy sets. 
Some other studies on the combination of rough and fuzzy sets do not have this 
feature. Iwinski [8] suggested an alternative definition of rough sets, which is 
related to but quite different from the one proposed by Pawlak [20]. An Iwinski 
rough set is defined as a pair of subsets taking from a sub-Boolean algebra of 
2u , without reference to a subset of the universe. For simplicity, we consider the 
sub-Boolean algebra formed by the set of all composed sets Com(apr). An Iwin
ski rough set is defined as pair of sets (AL' Au) with AL ~ Au from Com(apr). 
We may refer to AL and Au as lower and upper bounds, respectively. The 
intersection and union are defined component-wise as: 

(AL' Au) n (BL,Bu) = (AL n BL, Au n Bu), 

(AL' Au) U (BL,Bu) = (AL U BL,Au U Bu). (1.20) 

One of the difficulties with such a definition is that the physical meaning of 
(AL' Au) is not entirely clear. This notion may perhaps be interpreted in rela
tion to the concept of interval sets [27]. Biswas [3] adopted the same definition 
of rough fuzzy sets from Dubois and Prade. For rough-fuzzy-set intersection 
and union, a definition similar to that of Iwinski is used. Their use of two 
different models may lead to inconsistency in the interpretation of the concepts 
involved. 

Nanda and Majumdar [16] suggested a different proposal for the definition of 
fuzzy rough sets by extending the work of Iwinski. Their definition is based 
on a fuzzification of the lower and upper bounds of Iwinski rough sets. It may 
be related to the concept of interval-valued fuzzy sets, also known as <I>-fuzzy 
sets [5, 31].' The same definition was also used by Biswas [2]. 

Kuncheva [10] defined the notion of fuzzy rough sets which models the ap
proximation of a fuzzy set based on a weak fuzzy partition. It uses measures 
of fuzzy-set inclusion. A number of of different definitions may indeed be ob
tained with various measures of fuzzy-set inclusion. The intersection and union 
operations were not explicitly discussed by Kuncheva. This model is different 
from the above mentioned works. It is related to the probabilistic rough set 
model [29] and the variable precision rough set model [32]. 
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The review of existing results shows that the same notions of rough fuzzy set 
and fuzzy rough sets are used with different meanings by different authors. The 
functional approaches clearly define various notions mathematically. However, 
the physical meanings of these notions are not clearly interpreted. In the rest 
of this section, we attempt to address these issues. The approximation of a 
fuzzy set in a crisp approximation space is called a rough fuzzy set, to be 
consistent with the naming of rough set as the approximation of a crisp set 
in a crisp approximation space. The approximation of a crisp set in a fuzzy 
approximation space is called a fuzzy rough set. Such a naming scheme has 
been used by Klir and Yuan (9], and Yao (28]. Under this scheme, these two 
models are complementary to each other, in a similar way that rough sets and 
fuzzy sets complementary to each other. In contrast to the proposal of Dubois 
and Prade [7], rough fuzzy sets are not considered as special cases of fuzzy 
rough sets. As a result, the framework of the approximation of a fuzzy set in 
a fuzzy approximation space is considered to be a more general model which 
unifies rough fuzzy sets and fuzzy rough sets. All these notions are interpreted 
based on the concept of a-level sets, which may be useful for their successful 
applications. 

4.2 Approximation of fuzzy sets in crisp 
approximation spaces: rough fuzzy sets 

Consider the approximation of a fuzzy set F = (F"),,, a E (0,1], in an ap
proximation space aprR = (U, R), where R is an equivalence relation. For each 
a-level set F", we have a rough set: 

Reference set : F", 
Lower approximation: apr R(F,,) = {x E U I [X]R ~ F,,}, 
Upper approximation: aprR(F,,) = {x E U I [X]R n F" i- 0}. (1.21) 

That is, (apr R (F,,), apr R (F,,)) is a rough set with reference set F". For the 
family of a-level sets, we have a family of lower and upper approximations, 
(apr R(F")),, and (apr R(F")),,, a E [0,1]. A crucial question is whether they 
are the families of a-level sets of two fuzzy sets. Since the family F", a E [0,1]' 
is constructed from a fuzzy set F, we have al ~ a2 ====> F"1 ;2 F"2. By the 
monotonicity of lower and upper approximations with respect to set inclusion, 
i.e., properties (RMl) and (RM2), one can conclude that both (apr (F")),, and 

-R 
(aprR(F")),, satisfy condition (i). The a-level sets of the fuzzy set F satisfy 
condition (ii). This implies that both families, (apr R(F")),, and (aprR(F")),,, 
a E [0,1], satisfy condition eii). By Theorem 1, they define a pair of fuzzy sets 



312 

apr R(F) and aprR(F) such that, 

(apr R(F))a 
(aprR(F))a 

= apr R(Fa), 
aprR(Fa). 

They are defined by the following membership functions: 

Jtapr R(F)(X) sup{a I x E (apr R(F))a} 

= sup{a I apr R(Fa)} 
sup{a I [XlR ~ Fa,}, 

JtaprR(F) (x) sup{a I x E (aprR(F))a} 
= sup{a I X E aprR(Fa)} 

sup{a I [XlR n Fa ¥- 0}. 

(1.22) 

(1.23) 

For an equivalence class [XlR, [XlR ~ Fa if and only if JtF(Y) ~ a for all 
Y E [XlR' and [XlR n Fa ¥- 0 if and only if there exists ayE [XlR such that 
JtF(Y) ~ a. Therefore, the membership value of x belonging to apr R(F) is the 
minimum of membership values of elements in the equivalent class containing 
x, and the membership value of x belonging to aprR(F) is the maximum. They 
can be equivalently defined by: 

Jtapr (F)(X) sup{a I [X]R ~ Fa} 
-R 

sup{a I for all Y,Y E [XlR ~ JtF(Y) ~ a} 

inf{JtF(Y) lyE [XlR} 
= inf{Jt.r(Y) I (x, y) E R} 

inf{max[Jt.r(Y), 1- JtR(x,y)ll Y E U}, 
JtaprR(F) (x) = sup{a I [XlR n Fa ¥- 0} 

sup{a I there exists a Y such that Y E [XlR and JtF(Y) ~ a} 

SUP{JtF(Y) lyE [XlR} 
= SUp{JtF(Y) I (x, y) E R} 

sup{min(JtF(Y),JtR(x,y)) lyE U}. .(1.24) 

They may be considered as a generalization of a rough set based on the inter
pretation of rough sets given by equation (1.9). Moreover, these membership 
functions can be expressed conveniently by the same formula (1.16). 

The use a-level sets provides a clear interpretation of rough fuzzy sets. A fuzzy 
set F is described by a pair of fuzzy sets in an approximation space. It lies 
between the lower and upper approximations apr R(F) and aprR(F). We call 
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the pair (apr R(F), aprR(F)) a rough fuzzy set with a reference fuzzy set F. In 
other words, a rough fuzzy set is characterized by three fuzzy sets: 

Reference fuzzy set : /LF, 

Lower approximation: /Lapr (F) (x) = inf{/LF(Y) lyE U, (x, y) E R}, 
-R 

Upper approximation: /LaprR(F)(X) = SUp{/LF(Y) lyE U, (x, y)RH1.25) 

An a-level set of a rough fuzzy set is defined by in terms of the a-level sets of 
a fuzzy set F: 

(apr R(Fa), aprR(Fa)) 
«apr R(F))a, (aprR(F))a), (1.26) 

which is a rough set. By combining the results given in equations (1.5), (1.7), 
and the properties (RO)-(R5) of rough sets, rough fuzzy sets have properties: 
for two fuzzy sets A and B, 

(RFO) 

(RFl) 

(RF2) 

(RF3) 

(RF4) 

(RF5) 

apr R(.A) = .aprR(A), 
aprR(·A) = .apr R(A), 

aprR(U) = U, 
aprR(0) = 0, 
apr RCA n B) = apr R(A) n apr RCB), 
aprR(AUB) = aprR(A) UaprR(B), 
apr R(A U B) 2 apr RCA) U apr R(B), 
aprRCA n B) ~ aprR(A) n aprR(B) , 
aprRCA) ~ A, 
A ~ aprR(A), 

A ~ apr R(aprR(A)), 
aprRCapr R(A)) ~ A, 
apr RCA) ~ apr R(apr R(A)), 
aprRCaprR(A)) ~ aprR(A). 

Rough fuzzy sets are monotonic with respect to fuzzy set inclusion: namely, 
for two fuzzy sets A, B, 

(RFMl) 

(RFM2) 
A ~ B =:} apr RCA) ~ apr R(B), 
A ~ B =:} aprR(A) ~ aprR(B). 
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They are also monotonic with respect to refinement of equivalence relations. 
For two equivalence relations Rl and R2 and a fuzzy set F, we have: 

(rfmI) 

(rfm2) 

Rl ~ R2 ==} apr R' (F) ;2 apr R2 (F), 

Rl ~ R2 ==} aprRl(F) ~ aprR2(F). 

4.3 Approximation of crisp sets in fuzzy 
approximation spaces: fuzzy rough sets 

The concept of approximation spaces can be generalized by using fuzzy rela
tions [1, 6]. Consider a fuzzy approximation space apr~ = (U, ~), where ~ is a 
fuzzy similarity relation. Each of ~'s ,8-level sets is an equivalence relation [15]. 
One can represent ~ by a family of equivalence relations: 

,8 E [0,1]. (1.27) 

This family defines a family of approximation spaces: 

apr~ = (apr~f3 = (U, ~,B)),B, ,8 E [0,1]. (1.28) 

Given a subset A of U, consider its approximation in each of the approximation 
spaces. For a ,8 E [0, 1], we have a rough set: 

Reference set : A ~ U, 

Lower approximation: apr~f3(A) = {x E U I [x]~f3 ~ A}, 

Upper approximation: apriRf3 (A) = {x E U I [x]~f3 n A =I- 0}. (1.29) 

With respect to a fuzzy approximation space, we obtain a family of rough sets: 

,8 E [0,1]. (1.30) 

Consider the family of lower approximations (apr ~f3 (A)),B, ,8 E [0,1]. Recall 

that ~,B's are derived from a fuzzy similarity relation~. If,82 ::; ,81, then 
~,Bl ~ ~,B2' i.e., ~,B, is a refinement of ~,B2. By property (rmI), it follows that 
apr ~f31 (A) ;2 apr ~f32 (A). Let 'IjJ(,8) = 1 -,8. We have 'IjJ(,81) ::; 'lj;(,82) ==} 

apr 10 (A);2 apr 10 (A). Therefore, property W) holds. Since ~,B's are derived 
~"f3, -"'-f32 
from a fuzzy similarity relation at, they satisfy property (ii) in Theorem 1. 
Combining this result with the definition of lower approximation and prop
erty (rmI), one can conclude: 

00 n apr ~f3n (A) = apr ~f3 (A). 
n=l 

(1.31) 
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Hence, property (ii') holds. By Theorem 2, there exists a fuzzy set apr ~(A) 
such that (apr ~(A)),p(,a) = apr 1R,8 (A). Similarly, one can use Theorem 1 to show 

the existence of a fuzzy set apr1R(A) for the family of upper approximations 
(apr1R,8(A)),a such that (apr1R(A)),a = apr1R,8(A). In this case, property (rm2) 
is used. 

The membership functions of the derived two fuzzy sets are given by: 

lLaPT 3I (A) (x) sup{'l,b(,B) I x E (apr 1R (A)),p(,a)} 

sup{l - ,B I x E apr 1R,8 (A)} 

sup{l-,B I [xl1R,8 ~ A} 

= sup{l-,B I for all Y,IL1R(X,y) 2::,B ===> yEA} 
= sup{l - ,B I for all y, y (j. A ===> 1L1R(X, y) < ,B} 

inf{l- 1L1R(X, y) I y (j. A} 
inf{max[ILA(y), 1-1L1R(X, y)ll y E U}, 

lLapT3I(A) (x) sup{,B I x E (apr1R(A)),a} 
sup{,B I x E apr1R,8 (A)} 

= sup{,B I [xl1R,8 n A 1:- 0} 
sup{,B I these exists a y such that 1L1R(X,y) 2::,B and yEA} 
SUp{IL1R(X,y) lyE A} 

sup{min[ILA(y),IL1R(X,y)ll y E U}. (1.32) 

They may be regarded as a generalization of rough set according to the in
terpretation given by equation (1.10). They also conform to the general for
mula (1.16). 

We call the pair offuzzy sets (apr 1R(A), apr1R(A)) a fuzzy rough sets with ref
erence set A. A fuzzy rough set is characterized by a crisp set and two fuzzy 
sets: 

Reference set : A~U, 

Lower approximation: lLapT (A)(X) = inf{l-IL1R(X,y) I y (j. A}, 
-31 

Upper approximation: lLaPT3I(A)(X) = SUP{IL1R(X,y) lyE A}. (1.33) 

An ,B-Ievel set of a fuzzy rough sets is in terms of the ,B-Ievel sets of the fuzzy 
similarity relation as: 

(apr 1R(A), apr1R(A)),a (apr 1R,8 (A), apr1R,8 (A)) 

= «apr 1R(A))(l-,6) , (apr1R(A)),a), (1.34) 
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which is a rough set with reference set A in the approximation space apr1R{3 = 
(U, ~i3). 

Based on the properties of rough sets, one can see that fuzzy rough sets satisfy 
the properties: for A, B ~ U, 

(FRO) 

(FRI) 

(FR2) 

(FR3) 

apr 1R(-,A) = -,apr1R(A), 
apr1R(-,A) = -,apr 1R(A), 

apr 1R(U) = U, 
apr1R(0) = 0, 
apr 1R(A n B) = apr 1R(A) n apr 1R(B), 
apr1R(A U B) = apr1RCA) U apr1RCB), 
apr1R (AUB) 2 apr1R (A) uapr1R (B), 
apr1R(A n B) ~ apr1R(A) n apr1R(B), 
apr IR(A) ~ A, 
A ~ aprIRCA). 

For fuzzy rough sets, we do not have properties similar to (R4) and (R5), or 
(RF4) and (RF5). This stems from the fact the result of approximating a crisp 
set is a pair of fuzzy sets. Further approximations of the resulting fuzzy sets 
are not defined in this framework. 

Fuzzy rough sets are monotonic with respect to set inclusion: 

(FRMI) 

(FRM2) 

A ~ B ==> apr1R (A) ~ aprIR(B), 
A ~ B ==> aprIR(A) ~ apr1RCB). 

They are monotonic with respect to the refinement of fuzzy similarity relations. 
A fuzzy similarity relation ~l is a refinement of another fuzzy similarity relation 
~2 if ~l ~ ~2, which is a straightforward generalization of the refinement of 
crisp relations. The monotonicity of fuzzy rough sets with respect to refinement 
of fuzzy similarity relation can be expressed as: 

(frmI) 

(frm2) 

~l ~ ~2 ==> apr IR! (A) 2 apr IR2 (A), 

~l ~ ~2 ==> aprIRdA) ~ aprIR2(A). 
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This section examines the approximation of a fuzzy set in a fuzzy approximation 
space. In this framework, on the one hand, we have a family of a-level sets 
(Fa)a, a E [0,1]' representing a fuzzy set F, on the other hand, we have a family 
of ,8-level sets (RO)O, ,8 E [0,1], prep resenting a fuzzy similarity relation R. 
Each a-level set Fa is a crisp set, and each ,8-leval relation Ro is an equivalence 
relation. Rough sets, rough fuzzy sets, and fuzzy rough sets can therefore be 
viewed as special cases of the generalized model. 

For a fixed pair of numbers (00,,8) E [0, 1] x [0, 1], we obtain a submodel in which 
a crisp set Fa is approximated in a crisp approximation space aprw{3 = (U, RO). 
The result is a rough set (apr"" (Fa),aprw (Fa)) with the reference set Fa. 

-"'{3 {3 

For a fixed ,8, we obtain a submodel in which a fuzzy set (Fa)a, a E [0,1], is 
approximated in a crisp approximation space aprw{3 = (U, R,e). The result is 
a rough fuzzy set (aprW{3(F),aprw{3(F)) with the reference fuzzy set F. On 
the other hand, for a fixed a, we obtain a submodel in which a crisp set Fa is 
approximated in a fuzzy approximation space (aprw{3 = (U, R,e)),6, ,8 E [0,1]. 
The result is a fuzzy rough set (aprw(Fa),aprw(Fa)) with the reference set 
Fa. In the generalized model, both a and ,8 are not fixed. The result may be 
interpreted in three different views. 

A family of rough sets: The first interpretation is based on a family of rough 
sets: 

a E [0,1]',8 E [0,1], (1.35) 

which represents the rough set approximation of each a-level set of a fuzzy set F 
in an approximation space induced by an ,8-level relation of a fuzzy similarity 
relation R. Under this interpretation, the relationships between different 00-
level sets of F, and the relationships between different ,8-level relations of R, 
are not taken into consideration. 

A family of rough fuzzy sets: In the second view, we consider the following 
family of rough fuzzy sets: 

,8 E [0,1]' (1.36) 

which takes into consideration the relationships between different a-level sets 
of a fuzzy set T. The relationships between different ,B-Ievel relations of a fuzzy 
similarity relation rR are not considered. 
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A family of fuzzy rough sets: By employing the relationship between dif
ferent ,8-level relations of a fuzzy relation )R, we obtain a family of fuzzy rough 
sets: 

aE[O,I]. (1.37) 

It does not take account the relationships between different a-level sets of a 
fuzzy set F. 

The above interpretations depend on the ways in which the family of rough 
sets (apr'D (Fa), apriR (Fa)), a E [0,1], {3 E [0,1], are grouped. An interesting 

-O'fJ fJ 
problem is how to take into consideration both relationships between different 
a-level sets of fuzzy sets, and the relationships between different {3-level rela
tions of fuzzy similarity relations. By comparing equations (1.11), (1.24), and 
(1.32), one can conclude that the membership functions of rough sets, rough 
fuzzy sets, and fuzzy rough sets can be computed uniformly using the same 
scheme: 

P,apr (a) (x) 
-r 

P,aprr (a) (x) 

inf{max[p,a(Y), 1- p,r(x, Y)]I Y E U}, 

sup{min[p,a(Y), p,r(x, y)]1 y E U}, (1.38) 

where r is a variable that takes either an equivalence relation or a fuzzy simi
larity relation as its value, and .6. is a variable that takes either a crisp set or 
a fuzzy set as its value. The same scheme is used by Dubois and Prade [6] to 
define a pair of fuzzy sets as the result of approximating a fuzzy set in a fuzzy 
approximation space. This involves the combination of degrees of memberships 
of a fuzzy set and a fuzzy similarity relation. The physical meaning is not 
entirely clear. It is questionable that an element with a degree membership 
belonging to a fuzzy set would have the same physical interpretation as a pair 
with a degree membership belonging to a fuzzy relation, as the universes of the 
former and latter are quit different. For this reason, in this study we do not 
mix the membership functions of a fuzzy set and a fuzzy similarity relation. As 
seen from equations (1.11), (1.24), and (1.32), the inf and sup operations are 
indeed performed on one membership function. The use of other membership 
function is only for the seek of convenience. 

5 CONCLUSION 

A rough set is the approximation of a crisp set in a crisp approximation space. 
It is a pair of crisp set. A rough fuzzy set is derived from the approximation of 
a fuzzy set in a crisp approximation space. It is a pair of fuzzy sets in which 
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all elements in the same equivalence class have the same membership. The 
membership of an element is determined by the original memberships of all 
those elements equivalent to that element. A fuzzy rough set is derived from 
the approximation of a crisp set in a fuzzy approximation space. It is a pair of 
fuzzy sets in which the membership of an element is determined by the degrees 
of similarity of all those elements in the set. By combining these submodels, 
we have proposed a more generalized model. In this model, we have studied 
the approximation of a fuzzy set in a fuzzy approximation space. The result 
of such an approximation is interpreted from three different point of views, a 
family of rough sets, a family of rough fuzzy sets, and a family of fuzzy rough 
sets. 

By using a family of a-level sets for representing a fuzzy set, this study offered 
a different and complimentary perspective in understanding the combination of 
rough and fuzzy sets. More importantly, the investigation has clearly demon
strated the relationships among rough sets, rough fuzzy sets, fuzzy rough sets 
and ordinary sets. The inherent structures in each of these sets have also been 
exposed. 
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ABSTRACT 

Knowledge comes in different species, such as equations, contingency tables, tax
onomies, rules, and concepts. We show how starting from contingency tables, simple 
tests can distinguish various special forms of 2-D knowledge. Our experience in data 
mining with the application of the 4ger system shows that the exploration of even 
a modestly sized database frequently leads to large numbers of regularities. The 
problem that we address in this paper comes from the recurring observation of users 
who show serious confusion when faced with thousands of regularities discovered in 
a database. As a response, 4ger uses tests which classify regularities into different 
categories and applies automated methods which combine large numbers of regular
ities in each category into concise, useful forms of taxonomies, inclusion graphs and 
other multi-dimensional theories. We focus on detection of 2-D regularities which can 
be represented by equivalence and implication relation, and we show how taxonomies 
and subset graphs can capture large numbers of regularities in those categories. We 
illustrate the presented algorithms by applications on two databases. 

1 FROM CONTINGENCY TABLES TO 
OTHER FORMS OF KNOWLEDGE 

Elsewhere (Zytkow & Zembowicz, 1993) we argue that contingency tables are 
the basic form of 2-D regularities while other forms of knowledge can be treated 
as their special cases. While a relation can be viewed as a subset of the Carte-
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sian product of the values of several attributes, a contingency table provides, 
for each cell in a Cartesian product, the count of all events in the data with the 
combination of attribute values characteristic for that cell. Relations are spe
cial cases, with the count of zero in some cells and without information about 
the relative frequency of events. The following partial order with contingency 
tables on the left shows other patterns as special cases: 

multi-function --> function 
/ \ 

contingency table --> relation equivalence 
\ / 
subset -------------------> 

Contingency tables are easy to generate and investigate. They express statis
tical regularities, distinguishing statistically probable combinations of events 
from those improbable (Fienberg, 1980; Gokhale & Kullback, 1978). The ma
jority of contingency tables do not lead to simple patterns. We will focus on 
those contingency tables which lead to the basic logical relations of implication 
(inclusion) and equivalence. Many relations in those categories are typically dis
covered in biological databases, and in various questionnaires. When a number 
of contingency tables in each of those categories are inferred from data, they 
can be combined into concept hierarchies and subset graphs. 

1.1 Logical relations inferred from 
contingency tables 

Consider two types of tables, depicted in Figure 1, for Boolean attributes Al 
and A2. Non-zero numbers of occurrences of particular value combinations are 
indicated by nl, n2, and n3. Zeros in the cells indicate that the corresponding 
combinations of values do not occur in data from which the table has been 
generated. The upper table in Figure 1, for instance, shows that 0 objects are 
both Al and non-A2 (labeled ....,A2 in the table), while n2 objects are neither 
Al nor A2. From the zero values we can infer inductively, with the significance 
that increases as we consider more data, that these value combinations do not 
occur in the population represented by data. 

The upper table motivates the partition of all data into two classes: (1) objects 
which are both Al and A2, and (2) objects which are neither Al nor A2. Each 
class has empirical contents, because we can determine class membership by the 
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I Al 0 nI 
I ,AI n2 0 

,A2 A2 
The regularity expressed in this table is equivalence: 

For all x, ( AI(x) if and only if A2(x) ) 
2 classes can be defined: (1) Al and A2, (2) non-AI and non-A2 

I Al 0 nI 
I ,AI n2 n3 

,A2 A2 
The regulanty expressed in this table is implication: 

For all x, ( if AI(x) then A2(x) ) or equivalently: 
For all x, ( if non-A2(x) then non-AI(x) ) 

Figure 1 Contingency table that leads to concepts of empirical contents. 

value of one attribute, and then predict the value of the other attribute. The 
lower table in Figure 1 leads to weaker conclusions. Only the values Al and non
A2 carry predictive contents: objects which are AI, are also A2. Equivalently, 
objects which are non-A2, are non-AI. 

The interpretation of zeros, illustrated in Figure 1 can be generalized to zeros 
that occur in tables of any size, but for large tables the inferred concepts and 
their properties may be too many and too weak. 

1.2 Approximate equivalence 

In real databases, rarely we see regularities without exceptions. Instead of 
cells with zero counts, we can expect cells with numbers small compared to 
those in other cells. We want to tolerate limited exceptions. Rather than 
directly compare the numbers in different cells to determine whether a table 
approximates equivalence, we use Cramer's V, set at a threshold close to 1.0. 
The Cramer's V coefficient is based on X2, which measures the distance between 
tables of actual and expected counts. For a given Mraw x Meal contingency table 

V= 
Nmin(Mraw -I,Meal-I)' 

where N is the number of records. Cramer's V measures the predictive power 
of a regularity. The strongest, unique predictions are possible when for each 
value of one attribute there is exactly one corresponding value of the other 
attribute. For ideal correlation, X2 is equal to N min(Mraw - 1, Meal - 1), so 
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Cramer's V = 1. On the other extreme, when the actual distribution is equal 
to expected, then X2 = 0 and V = o. 

2 FROM EQUIVALENCE RELATIONS TO 
TAXONOMIES 

As an example that illustrates our method for taxonomy formation we selected 
the small soybean database of 47 records and 35 attributes, because it has been 
extensively studied, for instance by Stepp (1984) and Fisher (1987). 

We used the 4ger system (Zytkow & Zembowicz, 1993) to discover statistically 
significant two-dimensional regularities in soybean data, for all combinations 
of attributes in all data and in a large number of subsets. Systems such as 
EXPLORA (Klosgen, 1992) could be also applied to derive the relevant contin
gency tables. We set 4ger parameters so the system seeks only the contingency 
tables, for which the Cramer's V values 2: 0.90. An example of such a find
ing, reported in Table 1, is a regularity between the attributes Stem-Cankers 
and Fruiting-Bodies, with the Cramer's V rating of 1. Note that the value 
of Fruiting-Bodies (0 or 1) can be uniquely predicted for each value of Stem
Cankers. 4ger found many such regularities, which strongly suggests that the 
database is conducive to taxonomy formation. 

FRUITING-BODIES 
I 1 0 0 0 10 
10 10 18 9 0 

0 1 2 3 
STEM-CANKERS 

Range: All records (47) 
Cramer's V = 1.0 
Chi-square = 47.0 

Table 1 A regularity found in the small soybean dataset by 4ger's search for 
regularities. The numbers in the cells represent the numbers of records with 
combinations of values indicated at the margins of the table. 

After detecting the equivalence relations, 4ger uses the following algorithm to 
build the hierarchy of concepts (for details see Troxel et. aI, 1994): 

Main Algorithm: Build concept hierarchy 
Create hierarchy units from equivalence relations 
Merge similar hierarchy units 
Sort merged hierarchy units by the decreasing number of descriptors 



hierarchy +- single node labeled "ALL" 
for each hierarchy unit, add hierarchy unit to hierarchy 

In the following subsections we describe details of this algorithm. 

2.1 Hierarchy Units Generated from 
Equivalences 
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Each contingency table, for which Cramer's V > 0.90, is used to build an 
elementary hierarchical unit: 

Procedure: Create hierarchy units 
for each regularity 

if regularity strength exceeds threshold 
Form hierarchy unit from regularity 

A hierarchy unit is a simple tree, comprised of 3 classes: the root and two 
children (see Figure 2). The root is labeled with the description of the class of 
records, in which the regularity holds. Each child is labeled with the descriptors 
which hold for that child based on the considered regularity. An example of a 
descriptor is Stem-Cankers(0,1,2): "the values of Stem-Canker are 0, 1, or 2". 
The children classes are approximately disjoint and they exhaustively cover the 
range of the regularity. 

In our example, the contingency table of Table 1 contains the knowledge that 
Fruiting-Bodies (the vertical coordinate) has the value of 1, if and only if Stem
Cankers (the horizontal coordinate) has the value 3. Knowing all the other 
values of both attributes, this is equivalent to "the value of Fruiting-Bodies is ° if and only if the value for Stem-Cankers falls in the range of 0,1,2". The cor
responding hierarchy unit is depicted in the left part of Figure 2. Each class in 
that unit contains the right attribute/value combination from the correspond
ing contingency table. 

2.2 Merging the Hierarchy Units 

If the same class can be derived from different regularities, it will occur in 
different hierarchy units and will be characterized by many descriptors. To 
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I ALL I I ALL I 
0=.---=-----, ,(\., rr..-::-::-:cn-----, 

Class 1 Class 2 ,.--r;;O::-::-::---"--''------',(\''[""7'i''------'--''----' Class 3A Class 4A 
Stem-Cankers(O,1,2) Stem-Cankers(3) Plant-Stand(O) Plant-Stand(l) 
Fruiting-Bodies(O) Fruiting-Bodies(l) Date(3,4,5,6) Date(O,1,2) 

Figure 2 Examples of two hierarchical units built from the regularities for 
(i) Fruiting-Bodies and Stem-Cankers, and (ii) Plant-Stand and Date. Both 
regularities hold for all data, hence the root is ALL in both cases. 

identify different occurrences, after each hierarchy unit is created, it is com
pared to all other units that apply to the same range of records, in search 
for common descriptors. If they were found in the same data set and have a 
common descriptor (the same attribute and equal value sets), the classes are 
identical (approximately identical, because of exceptions, as discussed above). 
The complementary classes must be also (approximately) identical. Both hi
erarchy units are collapsed into one and the descriptors for the corresponding 
children are merged (Figure 3). 

I ALL I I ALL I 
"",.-----..-y,,-----,'(\"[""7'i''------;-T''----' 

Class 3B Class 4B 
~.--~,-----,,(\" rr..---u~----, 

Class 3C Class 4C 
Plant-Stand(O) Plant-Stand(l) Plant-Stand(O) Plant-Stand(l) 
Fruit-Pods(O) Fruit-Pods(3) Stem-Cankers(O,3) Stem-Cankers(1,2) 

I ALL I 
""'.---..-----,,(\.,""'.---.------, 

Class 3 Class 4 
Plant-Stand(O) Plant-Stand(l) 
Date(3,4,5,6) Date(O,l,2) 
Fruit-Pods(O) Fruit-Pods(3) 
Stem-Cankers(O,3) Stem-Cankers(1,2) 

Figure 3 Hierarchy units formed from the regularities between (i) Plant
Stand and Fruit-Pods (upper left) and (ii) Plant-Stand and Stem-Cankers (up
per right), share the same descriptor (Plant-Stand) as the hierarchy unit found 
for the regularity between Plant-Stand and Date (right part of Figure 2). All 
three hierarchy units are merged together (lower part). 

Procedure: Merge similar hierarchy units 
for each pair of hierarchy units 

if both units share a common descriptor in each subclass 
Merge two hierarchy units into one 
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The same algorithm applies recursively to regularities found in subsets of data. 
For a regularity in a subset described by condition C, the root of the hierarchy 
unit is labeled by C (in Figure 4, C =Fruit-Pods(O)). 

Fruiting-Bodies (0) 
Canker-Lesion(3) 

I Fruit-Pods(O) I 
../ ~ 

Fruiting-Bodies(l) 
Canker-Lesion(O,I) 

Figure 4 A hierarchy unit over a subrange of the soybean data defined by 
the descriptor Fruit-Pods(O). 

The search through the soybean database produced 15 regularities holding for 
all data, initially leading to 30 classes and to 8 classes (4 hierarchy units) after 
merging. 

2.3 Taxonomy Formation 

The following procedure transform the list of hierarchy units into a multi-level 
taxonomy, which is exhaustive and (approximately) disjoint at each level: 

Procedure: Add hierarchy unit to hierarchy 
for each leaf in the hierarchy 

Attach children in the hierarchy unit to the leaf 
Remove children incompatible with the path to the root 
if there is only one child left, merge this child with its parent 

For our soybean example, this algorithms puts classes 5 and 6 at the uppermost 
level of the hierarchy tree, then classes 3 and 4, etc. (Table 2). We position the 
classes with greater number of descriptors above those with less descriptors, to 
minimize the number of times each descriptor occurs in the taxonomy. 

Some nodes in the nascent hierarchy can be empty. This possibility is examined 
as soon as new node is added, by computing the intersection of the value sets 
for each common attributes from the new node upward to the root of the 
taxonomy. If for a common attribute this intersection is empty, no objects in 
the dataset can possibly belong to the new node. This node is then eliminated. 
For example, Class 6 contains the attribute Stem-Cankers with the value range 
(0), and under it Class 4 contains the same attribute with the value range (1,2). 
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No records in the data can be in both these classes simultaneously, therefore 
the class 4 under Class 6 is eliminated (shown in italic in Table 2). 

All 

Class 5 Class 6 
Internal Discolor: 0 Internal Discolor: 2 
Precipitation: 1,2 Precipitation: 0 
Sclerotia: 0 Sclerotia: 1 
Area Damaged: 0,1 Area Damaged: 2,3 
Stem Cankers: 1,2,3 Stem Cankers: 0 
Canker Lesions: 0,1,2 Canker Lesions: 3 

Class 3 Class 4 Class 3 Class 4 
Stem Cankers: 0,3 Stem Cankers: 1,2 Stem Cankers: 0,3 Stem Cankers: 1,2 
Plant Stand: 0 Plant Stand: 1 Plant Stand: 0 Plant Stand: 1 
Date: 3,4,5,6 Date: 0,1,2 Date: 3,4,5,6 Date: 0,1,2 
Fruit Pods: 0 Fruit Pods: 3 Fruit Pods: 0 Fruit Pods: 3 

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 
SC: 0,1,2 SC: 3 SC: 0,1,2 SC: 3 SC: 0,1,2 SC:3 
FB:O FB: 1 FB: 0 FB: 1 FB: 0 FB: 1 
CL: 3(*) CL: 0,1(*) CL: 3(*) CL: 0,1 (*) 

.,( '" ,/ '" ,/ '" C7 C8 C7 C8 C7 C8 
CL: CL: CL: CL: CL: CL: 
0,1,3 2 0,1,3 2 0,1,3 2 
R: 0 R: 1 R: 0 R: 1 R: 0 R: 1 
D1 D3 D4 D2 

Table 2 The taxonomy generation process, depicted from the top (Classes 
5 and 6) till the bottom (Classes 7 and 8). Empty classes are shown in italic 
font. Abbreviations: FB = Fruiting-Bodies; R = Roots; SC = Stem-Cankers; 
CL = Canker-Lesions 

In Table 2 we have shown only the use of regularities for all data, with one 
exception, marked with (*). The values of Canker-Lesion (CL-3 and CL-O,l), 
shown in two locations under Class 3, come from a regularity found in the 
subset of data defined by Fruit-Pods=O. That regularity, depicted in Figure 
4, links Canker-Lesion to Fruiting-Bodies. Since the same values of Fruiting
Bodies define Class 1 and Class 2, the corresponding values of Canker-Lesion 
become inferred descriptors in the subclasses of Class 1 and Class 2 within 
Class 3. 

When after elimination of empty classes only one child class remains under a 
parent class, the descriptors of this class are added to the descriptor list of the 
parent class, expanding the intent of the parent node. The descriptors acquired 
from the lower class become inferred properties in the parent class, because all 
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objects in the parent class also belong to the remaining lower class. We see in 
Table 2 that Class 4 is eliminated under Class 6, therefore any object in Class 
6 is included in Class 3. However, Class 3 also contains objects that belong in 
Class 5, so the merged properties from Class 3 to Class 6 cannot be definitional, 
but merely inferred. The descriptors of Class 7 and Class 1 under Class 6 are 
also included as inferred descriptors for Class 6. 

ALL 
./ \. 

Class 5 Class 6/3/1/7 
./ \. 

Class 3/2/7 Class 4/1 
./ \. 

Class 7 Class 8 

Figure 5 The finished taxonomy, after pruning empty nodes and merging 
single children. 

After all the pruning, we are left with the four nodes at the bottom level 
in Table 2. These nodes, along with three internal nodes (cf Figure 5) form 
the taxonomy. We can hypothesize that this taxonomy describes the natural 
divisions of the soybean database's diseases. It turns out that the extents of 
the four leaf concepts in our taxonomy are equal to the four diseases, listed 
under each leaf in Table 2 as D1 through D4. We can hypothesize that the 
internal nodes correspond to natural classes of diseases. 

Our algorithm places concepts with higher empirical contents at the top of the 
taxonomy. This minimizes the number of descriptors which must be stored in 
the taxonomy. Our taxonomy, shown in Table 2 requires 33 descriptors, while a 
taxonomy which puts classes with the fewest attributes at the top (classes 7&8, 
followed by classes 1&2, 3&4, and 5&6 at the bottom, requires 44 descriptors. 

2.4 Empirical contents of taxonomy 

The children classes in each hierarchy unit contain a number of descriptors. In 
our soybean example, after all possible merges of hierarchy units, Classes 3 and 
4 each contain four descriptors (Figure 3). Each of those descriptors can be 
used as definitional and all other descriptors can be deduced. 

Each definitional descriptor D for a class C in a hierarchy, under a parent 
node P, is sufficient to determine whether a given record belongs to Conly 
within the range of P. To obtain a complete definition of C, we must use D 
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Attribute values for different diseases 
Attribute Disease 1 Disease 3 Disease 4 Disease 2 
Internal Discolor Q Q Q ~ 
Precipitation 1,2 1,2 1,2 0 
Sclerotia 0 0 0 1 
Area Damaged 0,1 0,1 0,1 2,3 
Stem Cankers 1,2,3* 1,2,3* 1,2,3* 0 
Canker Lesions 0,1,2* 0,1,2* 0,1,2* 3 
Stem Cankers ~ 1,2 1,2 
Plant Stand 0 1 1 0 
Date 3,4,5,6 0,1,2 0,1,2 3,4,5,6 
Fruit Pods 0 3 3 0 
Fruiting Bodies 1 0 0 0 
Canker Lesions 0,1 
Canker Lesions 0,1 ~ 
Roots 0 0 1 0 

Number of records 10 10 17 10 
Number of definitional descriptors 2 3 3 1 
Number of inferred descriptors 9 8 8 10 
Empirical Contents 8.4 7.8 7.8 12.4 

Table 3 Empirical contents for the soybean example. Attributes chosen as 
definitional are marked by both underline and bold typeface of the correspond
ing values, while inferred attributes-by slanted typeface. Descriptors marked 
with an asterisk (*) must not be included into the sum of the inferred de
scriptors because they repeat in the same column and should not be counted 
twice. 

in conjunction with the definition of the range of the hierarchy unit, which can 
be assembled from descriptors which are definitional for each node on the path 
from the root. Being able to make a choice of a definitional descriptor at each 
level, we can assemble the complete definition in a very flexible way. 

We measure the empirical contents (EC) of a class as 

EC = _ L 10 Number of values predicted by i 
g2 Number of all values of attribute in i' 

iff 

the sum is computed for the set I of all inferred descriptors for that class. Table 
3 shows the empirical contents of each of the four soybean diseases, based on 
Table 2. 



3 FROM SUBSET TABLES TO SUBSET 
NETWORKS 

We will now describe a way to detect and combine many subset relations. 

3.1 Testing for subset 
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The inclusion relation between the scopes of two Boolean attributes may be 
determined from the "triangular", 4-cell contingency tables. For example, the 
following table represents inclusion of attribute A in B, A c B, 

ACDI] 
--'A~ 

B --,B 

a, b, d indicate non-zero counts of records, c = O. This table could be also 
interpreted as implication of property B from property A, that is by A => B. 

Four inclusion cases are possible for 2 x 2 contingency tables, depending on 
which cell has zero counts. To allow some small level of noise and error, we 
admit some exceptions. For example, instead of c = 0 we require max(c/(a + 
c), c/(d + c)) < 8, where 8 is the tolerance (typically 10%). 

Similarly to equivalence, subset relation is not limited to Boolean attributes 
and can be inferred from large contingency tables. For instance, if a table 
includes 0 counts for the combination of values d3 and e7 of attributes D and 
E, then D = d3 C --,E = e7. If D and E have many values, there is little 
practical value in such subset relations because they cover only very limited 
cases and possess little empirical content. 

3.2 Inclusion network 

A significant number of 2-D regularities in a database can represent inclusions 
(Moraczewski et. aI, 1995). Inclusions can be conveniently combined into an 
inclusion graph, in which vertices represent attributes while directed edges 
stand for inclusion between extensions of attributes. 
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Constructing the inclusion graph 4ger stores equivalent attributes on the same 
node to reduce the subset edges. For example, if A c Band B == C, then 
Ace is removed. Transitivity of the inclusion also permits reduction of the 
graph: if A c Band Bee, then the inclusion Ace is removed. These steps 
reduce the number of nodes and edges in the inclusion graph while preserving 
its predictive content. 

To divide the typically large inclusion graphs into meaningful pieces, 4ger uses 
the maximum subsets, which are not subsets of any other node in the inclusion 
graph. For each maximum node M, it extracts the subgraph G M of all subsets 
of M. Graphs G M typically have strong domain-specific interpretation, rep
resenting, for instance, all species which inhabit various selective parts of the 
environment settled by the species M. After removing all edges shared with 
any other subgraph G M', the remaining subgraph GM has the interpretation 
of all species which are more selective than M but not more selected than 
any other species, except those under M. Each GM graph can be interpreted 
in domain-specific terms. The following algorithm describes inclusion graph 
formation and analysis. 

Algorithlll: Build Inclusion Graph and extract subgraphs GM 
given the list of significant contingency tables 

Select inclusions from contingency tables 
Build inclusion graph 
Remove redundant edges 
for each maximum node M 

G M +- graph of all subsets of M 
GM +- G M after removing edges shared with any other graph G M' 

3.3 Geobotanical database exploration 

Consider application of 4ger on a geobotanical database that resulted from 20-
year studies of Warsaw flora (Sudnik-W6jcikowska 1987) and consists of 1181 
Boolean attributes (presence of plant taxa in a given area) and 225 records 
(areas in the grid covering the whole city). The search in the space of 2-
D attribute combinations without slices evaluated 0.5 x 1181 * 1180 :::::! 7 x 
105 hypotheses. Although many interesting regularities are usually found in 
data subsets, the number of attributes in this database prohibits data slicing. 
Allowing only a partition into two slices per attribute leads to 0.5 x 1180 x 1179 x 
2 x 1181 :::::! 1.6 x 109 hypotheses to be tested. 4ger would take some 2 years 
to complete this task. In 10 hour search without slices 4ger discovered 16577 
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statistically significant contingency tables. 4ger determined that 594 tables 
capture equivalences of attributes, and applied the taxonomy formation method 
described in the previous section. The merging of hierarchy units resulted in 
interesting discoveries. One grid element included 29 species which turned out 
to be not established permanently in the flora; it showed that they occur in the 
vicinity of a mill. Another 9-attribute class, occupying just two grid elements, 
contained species fugitive from gardens. Several 6-attribute classes have been 
also detected. Since these and all other merged hierarchy units were extremely 
unbalanced, and hierarchy formation did not lead to any node reduction, the 
resultant multi-level hierarchy has not been interesting. 

6364 contingency tables passed the test for approximate subset. After merging 
equivalent nodes and removing redundant edges, this number was reduced to 
2475. 2358 contingency tables express "positive" inclusions (that is, A c B) 
while the remaining 117 represent exclusions of ranges of the corresponding 
plant taxa A and B (A c -,B or -,A c B). These are not used in the inclusion 
graph. The algorithm described earlier in this chapter formed 302 subgraphs 
GM, each corresponding to one maximum element M. The species in each 
GM are characteristic to a specific environment. The further away from M, 
the narrower is the ecological amplitude of the species. For instance, in a 
subgraph of species preferring moist areas, the root corresponds to a common 
meadow plant Ranunculus acris, growing on wet soils, that is missing only in the 
downtown and several dryer areas, while one of the lowest descendents is Calla 
palustris, growing only in peat-bogs, very wet, natural habitats (Moraczewski 
et. aI, 1995). 

4 SUMMARY 

We have presented an algorithm for conceptual hierarchy formation from knowl
edge in the form of contingency tables. We used the soybean database as an 
example. It turned out that four diseases hidden in the soybean data coincide 
with the four leaves in taxonomies generated by our algorithm. In contrast to 
fixed rules which define concepts in many machine learning systems, our ap
proach offers the choice among definitional descriptors in selecting a recognition 
procedure. Depending on the observable concepts available in a given situation, 
alternative definitional descriptors can be used, so that missing values do not 
pose a problem in our approach in contrast to many machine learning systems. 
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We also have shown that many subset relations can be combined into subset 
graph, which is useful in making inferences and interpreting knowledge about 
many subsets. 

Acknowledgments: Special thanks to Kim Swarm and Molly Troxel for their 
contributions to research on taxonomy formation, and to Ireneusz Moraczewski 
for his work on subset graphs. 
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This paper presents a generalization of Pawlak's conception of rough sets [6] and [7]. 
It is more general than Pawlak's solution of the problem of the definability of sets, the 
knowledge of which is incomplete and vague. The authors' conception is based on con
ception of contextual space [4], which was inspired by Ziarko's approach [12] to rough 
sets. Rough sets introduced by Pawlak [6] are particular cases of contextual rough sets 
defined in the contextual approximation space. This space is defined axiomatically 
by means of so called context relations. Every contextual rough set determined by 
set X can be determined by the union of the lower approximation of X and a subset 
of the boundary of X. One of the important notions of the conception is the notion 
of an element of a contextual rough set which allows for formulating and proving the 
counterpart of the axiom of extensionality for contextual rough sets. 

1 INTRODUCTION 

Identification of objects making use of knowledge, knowledge bases, databases, 
information systems, and expert systems is usually imprecise. Objects about 
which we have the same knowledge are simply indiscernible. This takes place, 
for example, when a machine for detecting forged banknotes has imprecise 
information about the notes. It is impossible for it to tell which are true. 
Another good case in point is a colour-blind person. Objects differentiated only 
by colours may be indiscernible for her/him. Such a ~tate of affairs influences 
gradation of accuracy estimates of recognising one set of objects in the context 
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of another, i.e. recogmsmg correlated data about elements of those sets (cf. 
[12]). For example for sets X and Y one can assume the following degree 
measurement from 0 to 4: 
o - all elements of set X are elements of set Y (X S; Y), 
1 - almost all elements of set X are elements of set Y, 
2 - majority of elements of set X are elements of set Y, 
3 - only some elements of set X are elements of set Y, 
4 - no elements of set X are elements of set Y (X n Y = 0). 

The above degree measurement can be interpreted as the degree measurement of 
errors, which are made while stating something about the relationship between 
the elements of sets X and Y, when in reality there is an inclusion X S; Y. SO, 
by claiming that "almost all elements of set X are elements of set Y" we make 
the slightest error, and by claiming that "no elements of set X are elements of 
set Y" we make the biggest error. 

Now the question arises whether it is possible to define an accuracy degree 
measurement of recognising the relationships between the elements of sets iIi 
an automatic way (by means of a machine). In authors' opinion the answer 
for this question is positive. Theoretical foundations for such an answer can be 
formulated within the proposed framework of rough set theory (cf. [7], [12]). 
First, we need to make some generalizations. These will concern the basic 
definitions of rough set theory. 

Rough set theory in the present article is an approach to the discussed solutionof 
the problem of thedefinability of sets such that 1) the knowledge of which is 
incomplete or vague, 2) the knowledge about each set is given independently of 
the knowledge about any other set, 3) the knowledge about the relationships 
among the elements is vague or inexact. This theory in itself is complementary 
to Zadeh's fuzzy set theory (11) and Pawlak's rough set theory (6) and (7). 
The authors' considerations on this subject were, however, inspired not only 
by Pawlak's and Zadeh's approach, but also by the conceptions of Ziarko [12] 
and Blizard [1] and (2). The generalization of rough sets proposed in this paper 
is a result of these considerations. 

The paper consists of four sections. In Section 1 we introduce the notion of 
an approxImation space and give some examples of such spaces. In Section 2 
we define and characterize the approximating operations, the lower and upper 
approximations of the defined degree for any set of the universe of a given ex
tended approximation space (called the contextual space). The main notion of 
a rough set in a given extended approximation space is introduced and cha-
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racterized in Section 3. Section 4 contains important definitions and theorems 
about the membership relations for rough sets. 

2 A CONTEXTUAL APPROXIMATION 
SPACE 

We know from experience that when we try to define a set about which our 
knowledge is incomplete or vague, we have to refer to our knowledge about 
another set. We then say that the first set is in the context with the other 
set. The less we know about the first set in relation to the other set, the more 
significant the context is. We say that the first set is in the context with the 
other set to the degree i, if i is a degree measurement of the significance level 
of context. 

Let us now introduce an axiomatically extended notion of an approximation 
space. Usually, by an approximation space we understand a pair < U, R > (see 
[6]), where U is a nonempty set and R an equivalence relation in this set, or 
a pair < U, C >, where U is a nonempty set, and C is its covering. Extending 
the latter interpretation of an approximation space with the context relations, 
we get a system CAS called the contextual approximation space, which we 
define in the following way: 

Definition 1 
Let CAS = < U;(I,:::;,{¢,E});{~i}iEf;C > be the ordered system, where U 
is a nonempty set, called the universe; (I,:::;, {¢, E}) is an ordered system such 
that: I is a set, :::; - a linear order relation in the set I, ¢ - the smallest element 
in I, E - the greatest element in I; {~i hEf is a set of relations in the power set 
P(U) of the universe U; C is a partition of the universe U. The system CAS 
is the contextual approximation space if and only if the following properties hold: 
for any X, Y ~ U and for all i, j E I 

(a) 3k E I(X ~k Y), 

(b) X ~i3 Y {:} X ~ Y, 

(c) X of 0 * (X n Y = 0 {:} Vk E I(X ~k Y * k = E)), 

(d) X ~i Y /\ i:::; j * X ~j Y, 

(e) X ~i Y {::} X ~i X n Y. 
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The relations of the set {~i hE! are called the context relations of a certain 
degree. The expression X ~i Y is read: X is in the context of Y to the 
degree i. 

From conditions (b), (c) and (a) of Definition 1, immediately follows 

Proposition 1 
In CAS the following conditions are satisfied: 

(a) 

(b) 

(c) 

x EX=} {x} ~¢ X, 

X :j: 0 1\ X n Y :j: 0 =} X ~€ Y, 

X :j: 0 =} X ~€ 0. 

Below we give two examples of contextual spaces. 

Example 1 
Let U be a nonempty finite set, C - a partition of U, c - a measure of the rela
tive degree of inclusion of two subsets of the universe U defined in the following 
way (see Ziarko [12]): for any X, Y ~ U 

{
I - card(X n Y)jcard(X) if card(X) :j: 0 

c(X, Y) = 
o if card(X) = 0, 

where 'card' denotes set cardinality, 

I = {i En: O:S i:S I} 

and n is the set of all real numbers. 

The context relations ~i are defined as follows: 

X ~i Y {:} c(X, Y) :S i, 

for any X, Y E P(U) and for all i E I. 

Based on this assumption and by Definition 1, we claim that the following 
system 
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< U;(I,:s,{O,l});{~i}iEI;C> 
is a contextual approximation space. 

Example 2 
Let U be a nonempty finite set, card(U) = n, I = {i EN: O:s i :s n} and 
C a partition of the set U. The context relations ~i are defined as follows: for 
any X, Y E P(U) and for each i E I 

X ~i Y -¢:} u(X, Y) :s i, 

where 

u(X, Y) = { 
card(X \ Y) if X 0 or XnY i- 0 

n if X i- 0 and XnY = 0. 

It is easy to see that the system 

< U;(I,:s,{O,n});{~i};EI;C >, 

where the number 0 is the smallest element in I and the number n is the 
greatest element in I, is a contextual space. 

3 APPROXIMATING OPERATIONS 

Let CAS be an arbitrarily given contextual approximation space. The idea of 
the rough set originated by Z. Pawlak [6] consists of the approximation of sets 
obtained by means of two operations on sets: the lower approximation and the 
upper approximation. 

In this paper referring to the conception originated by W. Ziarko [12] of the 
lower approximation and the upper approximation we introduce two opera
tions: the lower approximation Ci and the upper approximation Ci of the degree 
i E I. In order to define rough sets, the space CAS is extended to the space 
CAS' =< CAS, Ci , Ci > (cf. [9]), and operations [2, Ci are defined as follows: 

Definition 2 
In CAS, for every X ~ U and for any i E I, we define the following sets: 

(a) [2(X) = U{E E C: 3j ~ I(E ~j X 1\ j :s i)}; 
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(bJ BNj(X) = 
= U{E E C: 3j E I(E <;j X A E > j > i) A --,3j E I(E <;j X A j ~ i)}; 

(cJ Ci(X) = Q,;(X) U BNi(X); 

the set Q,; (X) is called the lower approximation of the degree i of the set X, 
the set B N j (X) is called the boundary of the degree i of the set X, 
the set Cj (X) is called the upper approximation of the degree i of the set X. 

Definition 2(a) says: the lower approximation of the degree i of the set X is 
the union of all classes of partition C which are in the context of X to a certain 
degree less than or equal to i. According to Definition 2(b) the boundary of the 
degree i of the set X is the union of all such classes of C which are not included 
in the lower approximation of the degree i of X but are in the context of X to 
a certain degree that is greater than i and less than E. According to Definition 
2( c) the upper approximation of the degree i of the set X is the union of the 
lower approximation and the boundary of the degree i of X. 

On the basis of Definitions 2(a)-(c), l(b) and l(c) the following propositions 
hold: 

Proposition 2 
In CAS*, for every X <; U, if i = 0, then 

CJX) = U{E E C: E <; X}, 

Cj(X) U{E E C: E n X :/; 0}. 

One can see that for i = 0, we get equalities defining the lower and upper 
approximations in Pawlak's sense [6]. 

Proposition 3 
In CAS*, for any X,E ~ U and for any i E I 

(aJ 

(b) 

and 

~(X) = C£(X) = U, 

BNE(X) = 0 



if i =F c, then 

(c) 

(d) 

Proposition 4 

E E C => Ci(E) = Ci(E) = E, 

C;(0) = BNi(0) = Ci(0) = 0. 
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In CAS*, for every X ~ U and for any i E I, the following conditions are 
satisfied: 

(aJ 

(bJ 

(cJ 

(dJ 

(eJ 

Example 3 
Let the system 

Ci(X) ~ Ci(X), 

Ci(X) n BNi(X) = 0, 

Ci(Ci(X)) = Ci(X), 

Ci(Ci(X)) = Ci(X), 

BNi(C;(X)) = BNi(Ci(X)) = 0. 

< U; (1,:::;, {l, 9}); {~i};EI; C >, 

where U = I = {l, 2, 3, ... , 9}, C = {E1' E2 , E3} and E1 = {l, 4, 7}, E2 = 
{2, 5, 8,}, E3 = {3, 6, 9,} be a contextual space from Example 2. 
Let X = {5,7}. 
Then 

U(E1' X) 2, 

C 1(X) = 0, 
.G'.:J(X) = E1 U E2 , 

BN1(X) = E1 U E2 , 

BN3(X) = 0, 

u(E3 , X) = 9, 

C1(X) = E1 U E2 , 

C 3 (X) = .G'.:J(X). 

The following theorem defines sufficient conditions for any two sets A and B 
to be: A - the lower approximation, B - the upper approximation of a degree 
of a set. 

Theorem 1 
In CAS*, for all sets A, B C U, such that 
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A U{E ~ A: E E G}, 

B U{E ~ B : E E G}, 

A ~ B 

the following property is satisfied: for any Z ~ B \ A and for all i E I such 
that i -::j:. s, if for every E E G and E ~ B \ A there exists j E I such that 

i < j < sand E ~j Z, 

and there is no j E I such that 

j~i and E ~j Z, 

then 

A ::::: Gi(AUZ) and B ::::: Gi(AUZ). 

The proof of this theorem is given in the authors' paper [5]. 

4 CONTEXTUAL ROUGH SETS 

In this section we introduce the definition of the generalized notion of the rough 
set. In GAS*, for every X ~ U and for any i E I, we define a rough set, 
which will be called a contextual rough set, in the following way: 

Definition 3 
The contextual rough set of the degree i determined by the set X is the family 

[X]i ::::: {Y ~ U: Q;(Y) ::::: Gi(X) /I. Gi(Y) ::::: Gi(X)}, 

As a particular case for i ::::: 0 we obtain the definition of the rough set intro
duced by Pawlak [6] (cf. also [7]). 

Example 4 
Using Definition 3 for the set X from Example 3 we get: 

Proposition 5 
In GAS*, for every X C U and for any i E I, 



(aJ 

(bJ 

and 
if BNi(X) 

(cJ 

0, then 
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[0]i = {0}, 

[XJ e = [UJ e = P(U) 

From the conditions (d), (e) of Definition 1, Definition 2, the axiom of choice 
and the propositions given above we infer: 

Theorem 2 
In CAS*, for every X C U and for any i E I, there exists a set Z C BNi(X) 
such that 

(*J 

According to the above theorem every contextual rough set of the established 
degree i determined by the set X is determined by the union of the lower 
approximation of the same degree i of X and a subset of the boundary of the 
degree i of X. A particular case of this theorem has been given by Wybraniec
Skardowska [10]. 
Proof· 
If BNi(X) = 0, then Z = 0 and [Xli [Q;(X)); in view of Proposition 5(c). 

If BNi(X) f 0, i.e. 

BNi(X) = U{E E C: 3j E I(E ~j X 1\ f > j > i) 1\ 
1\ -.3j E I(E ~i X 1\ j S; i)} f 0, 

then, from the axiom of choice it follows that there exists the choice set {Sj }jEJ 
for the family 

(1) {A ~ P(U): 3E E C(E ~ BNi(X) 1\ A = {S ~ E: 
3jEI(E ~j S 1\ f>j>i) 1\ -.3jEI(E ~j S 1\ jS;i)})}. 

Let us assume that 

(2) 

It is easy to see that from (1) and (2) it follows that for j E J 

(3) 
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We will prove that 
[Xl; = [Q;(X) U zl;. 

Since BNi(X) =I- 0, thus i < 6, and for any E E G, from the conditions: 

(4) 

(5) 

E ~ Q;(Y) ¢> En GJY) =I- 0, 

E ~ Gi(Y) ¢> E ~i Y, 

where Y ~ U, being simple conclusions from Definitions l(b),(d), 2(a), and 
from Definition 1 (b), (d), and also Proposition 4(c) and the condition (5), we 
obtain: 

(6) E ~ Gi(X) ¢> E ~ Gi(Gi(X)) ¢> E ~i Gi(X). 

In the further part of the proof we will use the following 

Lemma 

E ~i Gi(X) ¢> E ~i Gi(X) U z. 

We omit the proof of this Lemma. It requires of using the formula (6). 
From this Lemma and formula (5) we get the following equivalence: 

E ~ Gi(X) ¢> E ~ Q;(G;(X) U Z). 

Therefore, by Definition 2(a), we have: 

(7) Gi(X) = Q;(Gi(X) U Z). 

The definitions of a partition of a set and the set Z (see (2)) and Definition 2(b) 
imply that for any E E G 

E ~ BNi(X) ¢> E n Z = E n (Gi(X) U Z) =I- 0. 

Thus, by the definition (2) of the set Z, Definition 1( e) and Definition 2(b), the 
following equivalences hold: for any E E G 

E ~ BNi(X) ¢> En Z =I- 0 ¢> 

¢> 3j E I( E ~j En Z /\ 6 > j > i) /\ 
/\ -dj E I(E ~j En Z /\ j 5, i)) ¢> 

¢> 3jEI(E ~j En (Gi(X) U Z) /\ 6>j>i)/\ 

/\ ...,3j E I(E ~j En (Gi(X) U Z) /\ j 5, i)) ¢> 

¢> 3j E I(E ~j Gi(X) U Z /\ 6> j > i) /\ 



Hence we have: 

(8) 

1\ -.3j E I(E ~j C;(X) u Z 1\ j ~ i)) {:} 

{:} E ~ BNi(Ci(X) U Z). 

BNi(X) = BNi(Ci(X) U Z). 

Thus, in view of Definition 2(c) and (7), (8), we get the equality: 

(9) Ci(X) = Ci(Ci(X) U Z) 
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and from the equalities (7) and (9) on the basis of Definition 3, 
the condition (*) .• 

The proved theorem enables assigning the representative of the rough set [X]i 
only if the lower approximation and the boundary of the degree i of X is known. 

5 CONTEXTUAL ROUGH MEMBERSHIP 
RELATION 

Now we will formulate the definitions of an element of the contextual rough 
set. These definitions are based on the intuition: a set which is an element of 
a rough set can be understood as a set of indiscernible objects. The definition 
of an element of the contextual rough set is analogous to the one introduced 
by Bryniarski [3]. 

Definition 4 
In CAS*, for any X, Y ~ U and for all i E I, X is an element of the contextual 
rough set [Y]i' symbolically: X Ec [Y]i' if and only if 

(a) 3j E I((X E cv3E E C(Cj(X) = E)) 1\ 

1\ Cj(X) ~ Ci(Y) 1\ Cj(X) ~ Ci(Y)) 

and X is an element of the degree n E I of the contextual rough set [Y]i' 
symbolically: X En [Y);, if and only if 

(b) (X E C V 3E E C(Cn(X) = E)) 1\ 

1\ Cn(X) ~ Ci(Y) 1\ Cn(X) ~ Ci(Y). 
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The relation Ec will be called the membership relation and the relation En will 
be called the membership relation of the degree n. 

Proposition 6 
In CAS', for any E,X,Y <;;; U, for alli,j,k E I, the following conditions are 
satisfied: 

(a) X Ek [Yli :::} X Ec [Yli , 

(b) X Ec [Y]i :::} :::In E I(X En [YJ;), 

(c) E E C 1\ E Ek [Yl; 1\ k < E 1\ j < E:::} E Ej [Y]i' 

(d) Vx E X({x} E C :::} {x} E!1J [XL), 

(e) i < E 1\ E E C :::} (E <;;; Ci(X) {:} E Ei [Xli)' 

(f) E E C :::} (E <;;; Ci(X) {:} E Ec [Xli)' 

Proof· 
Implications (a) and (b) follow immediately from Definition 4. 

(c) Let E E C, E Ek [Y]i and j < E, k < E. From Proposition 3(c) we obtain: 

Ck(E) = Ck(E) = Cj(E) = Cj(E). 

From the above and Definition 4(b), we get: E Ej [Y]i' 

(d) Assuming that x E X and {x} E C, on the basis of Proposition lea), we 
have {x} <;;;!1J X. Thus, from Definitions 2(a)-(c) it follows for any i E I that: 

{x} <;;; C;(X) and {x} <;;; Ci(X). 

From this, Propositions 3(a),(c) and Definition 4(b), we obtain the conclusion: 
{x} E!1J [Xli' 

(e) Let i < E and E E C. First, let us assume that E <;;; Ci(X). Thus, by Propo
sition 3(c) and Definition 2(c), we have Ci(E) <;;; Ci(X) and 
Ci(E) <;;; Ci(X). Thus, by Definition 4(b), we get: E Ei [Xli' 

On the other hand, by assuming that E Ei [Xli' from Proposition 3( c) and 
Definition 4(b), we obtain: E <;;; Ci(X). 

(f) Let E E C. If i = E, then on the basis of Proposition 3( a), we have: 
E <;;; k.e(X) = CE(X) = U and from Definition 2(a)-(c) it follows that 
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Ck(E) ~ C(X) and Ck(E) ~ Ce(X), and from this and Definition 4(a) we 
get: E Ec [XL; thus it follows that the equivalence: 

E ~ Gi(X) '¢} E Ec [Xli 

is true. In the case, if i -# f this proposition follows easily from Propositions 
6(e),(c), which were proved above, and Definition 4 .• 

Definition 5 
In CAS* we define the binary relation ~c as follows: 

for any X, Y ~ U and for all i,j E I. 
The relation ~c is called the inclusion of contextual rough sets. 

Proposition 7 
The inclusion ~c of contextual rough sets is a partial order in the family of all 
contextual rough sets of the CAS*. 

Proposition 8 
In GAS*, for any X, Y ~ U and all i,j E I the following relationship holds: 

From introduced definitions and propositions we obtain: 

Theorem 3 
In GAS*, the counterpart of the axiom of extensionality for the membership 
relation Ec holds: for any Y, T, X included in U and for every i E I 

In other words, two contextual rough sets of the degree i containing exactly 
the same elements are equal. 
Proof· 
In the proof we use the following lemmas: 
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Lemma 1 
In CAS*, if X ~ U and i E I, then 

VE E C(E ~ BNi(X) => E n X Ec [XL). 

Lemma 2 
In CAS*, if X, Y ~ U and i E I, then 

VE E C((E Ec [XL => E Ec [YJ;) /\ 

/\ (E n X Ec [Xl; => E n X Ec (Yl;)) => [XL ~c [Y]i' 

In the proof of Lemma 2 Lemma 1 is used. We see that Theorem 3 holds 
because, by putting first E for X and then E n Y for X in the assumption of 
this theorem, by using Lemma 2 two times and Proposition 8, we obtain: 

[Y]i ~c [T)i and [T]i ~c [Y]i·. 

By analogy, the following theorem can also be proved: 

Theorem 4 
In CAS*, the counterpart of the axiom of extensionality for the membership 
relations En (n E I) holds: for any Y, T, X included in U and for every i E I 

(X Ei [Y]i 9 X Ei [T]i) => [Y]i = [T)i)' 

In other words, two contextual rough sets of the degree i containing exactly 
the same elements of the degree i (i E I) are equal. 

It seems that theorem 4 constitute a start point for elaborating a set-theoretical 
base for the approach of rough sets proposed in this paper. 

FINAL REMARKS 

On the basis of the notions introduced in this paper, we can solve not only 
the problem of gradation of the membership relation (see [8]), but also for
mulate the problem of defining and examining operations on contextual rough 
sets analogously to the classical operations on sets. An attempt at solving this 
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problem has already been presented in the paper [5]. The general solution of 
this problem will be the subject of future considerations. In authors' opinion 
definitions, facts, and theorems given in this paper are theoretical basis for for
mulating algorythms enabling mechanization of recognizing sets and relations 
among sets, where knowledge about those sets and relations is incomplete or 
vague. 
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Definitions of a reduct for a single object, decision class and all objects of decision 
table for the variable precision rough set model are introduced. The definitions have 
a property that the set of prime implicants of minimal disjunctive normal form of 
a discernibility function is equal to the set of reducts. Thus the problem of reducts 
maintenance in dynamically extended information systems is equivalent to the prob
lem of discernibility function maintenance. We prove that the problem can be stated 
in the form of a Boolean equation: 9 1\ h = f 1\ k, where f, hand k are given mono
tonic Boolean functions and 9 is a function to be determined in minimal disjunctive 
normal form. An incremental algorithm finding the solution of the above equation is 
proposed. 

1 INTRODUCTION 

The rough set model (RS) [1] has been conceived as a tool to conceptualize, 
organize and analyze various types of data, in particular, to deal with inexact, 
uncertain or vague knowledge in applications related to Artificial Intelligence. 

A basic problem related to practical applications of the rough set based knowl
edge representation systems (shortly RSKRS) is whether the whole set of at
tributes is really necessary to represent a given partition of the knowledge, 
and if not, how to determine the simplified and still sufficient knowledge repre
sentation equivalent to the original. Significant results in this area have been 
achieved in [2], where the methods of reducing the knowledge were studied. The 



356 

problem of reducing the RSKRS (known as finding reducts) is transformable 
to the NP-hard problem of finding minimal disjunctive normal form of a mono
tonic Boolean function. 

The variable precision rough set model (VPRS) [3] is an extension of the rough 
set model. The model was proposed to analyse and identify data patterns 
which represent statistical trends rather than functional. The main idea of 
VPRS model is to allow objects to be classified with an error smaller than 
some predefined level. 

In the paper we introduce definitions of a reduct for a single object, for a 
decision class and for all objects of a decision table in the VPRS model. The 
definitions have a property that, like in rough set model, the set of prime 
implicants of minimal disjunctive normal form (mdn/-form) of a discernibility 
function, which is given in conjunctive normal form (cn/-form) initially, is equal 
to the set of reducts. Thus the problem of reducts maintenance in dynamically 
extended information systems is equivalent to the problem of discernibility 
function maintenance. We claim that the problem can be stated in the form 
of a Boolean equation: 9 1\ h = /1\ k, where /, hand k are given monotonic 
Boolean functions and 9 is a function to be determined in mdn/-form. We 
propose an incremental algorithm finding the solution of the above equation. 

2 BASIC CONCEPTS OF INFORMATION 
SYSTEMS 

In/ormation system is a pair = (0, U), where U is a non-empty finite set of 
attributes and 0 is a non-empty finite set of objects described by the set of 
attributes U. Va will denote the domain of an attribute a. Function Va : 0 -+ 
Va, assigns a value of an attribute a E A to every object from O. 

Decision table is an information system S = (0, CUD), in which the sets of 
conditional and decisional attributes C and D respectively, such that CUD = U 
and CUD = 0, are distinguished. 

Each subset of attributes A ~ U determines a binary indiscernibility relation 
IN D(A), as follows: 

IND(A) = {(x,y) EO x OIVa E A,va(x) = va(y)}. 
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The family of all equivalence classes [xl A, x EO, of the relation IN D (A), 
A ~ U, constitutes a partition of 0, which we will denote by A * . 

In the sequel Di , Di E D*, will denote the set of objects with the decision value 
i. 
X will denote the complement of X in 0 : X = O\X. 
AX is lower approximation of X, X ~ 0, (in RS model) iff 

AX = U{E E A*IE ~ X} ,where A ~ U. 

A,eX is {3-lower approximation of X, X ~ 0, (in VPRS model) iff 

A,eX = U{E E A*lcard(E n X)/card(E) :s {3}, 

where A ~ U and 0 :s {3 < 0.5. 

The coefficient (3 determines the admissible degree of classification inaccuracy 
of X with regard to IND(A). One can easily note that A,eX = AX for (3 = 0 
and A(A,eX) = A,eX for 0 ~ {3 < 0.5. 

Property 2.1. 

VDi , D j E D*, i -:p j, A,eDi n A,eD j = 0; U A,eDi ~ O. 
DiED' 

Property 2.1 is a simple consequence of the assumption that 0 :s {3 < 0.5. 

Example 2.1. Determine CD l and C,eD l , {3 = 1/3, for the decision table 
from Table 2.1, where C = {a, b, c, d} and D = {e}. 

U a b c d e 
1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 2 1 1 
4 1 1 3 1 1 
5 2 2 2 2 1 
6 1 1 1 1 2 
7 2 2 2 1 2 
8 1 1 1 2 2 
9 1 1 3 1 2 

Table 2.1 Decision table. 
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Solution: 

where 
El = {I, 2, 6}; E2 = {3}; E3 = {4, 9}; 
E4 = {5}; E5 = {7}; E6 = {8}; 

card(E1 n Dd/card(Ed = 1/3 = /3; 
card(E2 n Dl/card(E2) = 0/1 < /3; 
card(E3 n Dl/card(E3) = 1/2 > /3; 
card(E4 n Dd/card(E4) = 0/1 < /3; 
card(E5 n Dd/card(E5) = 1/1 > /3; 
card(E6 n Dd/card(E6) = 1/1 > /3; 

Hence: 
CD1 = E2 UE4 ~{3,5} and C;3Dl = El UE2 UE4 = {1,2,3,5,6}. 

D 

Example 2.2. Determine B(C ;3Dd, /3 = 1/3, for the decision table from Table 
2.1 if: a) B = {a,b,c,d,}, b) B = {a,b,c}, c) B = {b,c,d}, d) B = {b,c}, e) 
B = {b,d}, f) B = {c,d}. 

Solution: 
From Example 2.1 we have: C;3Dl = {1,2,3,5,6}. 

a) B* = {{1,2,6},{3},{4,9},{5},{7},{8}}; 
B(C;3D1 ) = {1,2,3,5,6} = C;3D1 ; 

b) B* = {{I, 2, 6, 8}, {3}, {4, 9}, {5, 7}}; 
B(C;3Dl) = {3}:f. C;3D1 ; 

c) B* = {{1,2,6},{3},{4,9},{5},{7},{8}}; 
B(C;3Dl) = {1,2,3,5,6,} = C;3D1 ; 

d) B* = {{I, 2, 6, 8}, {3}, {4, 9}, {5, 7}}; 
B(C;3D1 ) = {3}:f. C;3D1 ; 

e) B* = {{1,2,3,4,6,9},{5},{7},{8}}; 
B(C;3Dd = {5}:f. C;3D1 ; 
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f) ~* = {{1,2,6},{3, 7},{4,9},{5},{8}}; 
~(C~Dd = {1,2,5,6,} i- C~Dl. 

3 REDUCTS OF DECISION TABLE IN 
VPRS MODEL 

o 

Given decision table S = (0, CUD) we are often interested in transfomation of 
S into a reduced system S' = (0, AUD) such that A ~ C and the classification 
abilities of S' for a given set of objects are the same as those of S. We can 
say informally that a minimal set of attributes A preserving the classification 
abilities is called a reduct. Here we introduce definitions of reducts in VPRS 
model that preserve classification abilities of the original decision table for all 
objects from POS~(C) = UD1ED* C ~Di. (Extended classification of reducts 
in RS and VPRS ~odels can be found in [4]). 

A fi -reduct for a decision table we call any subset ~, ~ ~ C, such that: 

A fi -reduct for a decision class Di we call any subset ~, ~ ~ C, such that: 

A fi -reduct for an object x we call any subset ~, ~ ~ C, such that: 

From Example 2.2 we can conclude that {b, c, d} is a {3 -reduct for Dl 
{1,2,3,4,5} in the decision table presented in Table 2.1. -

We have assumed that {3 -reducts preserve classification abilities of the original 
decision table for all objects from POS~(C). However, the formal trial to com
pute {3-reduct for an object from O\POS~(C) by the definition above returns 
o as the only fi-reduct. -
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4 DISCERNIBILITY FUNCTIONS 

It was proved in [2], [5] that the problem of computing reducts in RS model 
is transformable to the problem of finding prime implicants of a monotonic 
Boolean function called discernibility function. Following this approach to de
termination of reducts we define monotonic Boolean functions of this property 
for ~-reducts. 

Let LOA(X,y) be a Boolean expression which is equal to 1, if va(x) = va(y) 
for each a E A. Otherwise, let LOA(X,y) be a disjunction of variables corre
sponding to attributes a E A, such that va(x) i- va(y). 

6.{3 is a discernibility function for a decision table S iff 

II L0c(X,y) for all Di E D*. 

6.{3(Di) is a discernibility function for a decision class Di in S iff 

II L 8c(X,y). 

6.f!JX) is a discernibility function for an object x in S iff 

If x E C{3Di,i = VD(X), then 6.Q.(x) = II oc(x,y) else 6.Q.(x) = 1. 

yEQf3Di 

Property 4.1. (Composition of discernibility functions) 

Example 4.1. Determine all types of ~-reducts for decision table described 
by Table 2.1. 

Solution: 
First we construct Table 4.1 (discernibility matrix) in which we place values 
00 (x, y) for all pairs (x, y) E 0 x o. Then we construct appropriate discernibil
ity functions and determine their implicants. We use Property 4.1 to simplify 
computations. 
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x\y 1 2 3 4 5 6 7 8 9 
1 e e abed abc d e 
2 e e abed abc d e 
3 e e e abd e ab cd e 
4 e e e abed e d cd 
5 abed abed abd abed abed d abc abed 
6 e e abed abc d e 
7 abc abc ab d d abc abed abc 
8 d d ed cd abe d abed cd 
9 e e e abed e abe cd 

Table 4.1 Discernibility matrix. 

From Table 2.1 we have: 

D* = {D1 ,D2}, where Dl = {1,2,3,4,5} and D2 = {6, 7,8,9}; 
(7* = {{1,2,6},{3},{4,9},{5},{7},{8}}. 

Hence, 
(7{3Dl = {1,2,3,5,6}; (7{3Dl = {4,7,8,9}; 

~D2 = {7,8}; (7{3D2 = {1,2,3,4,5,6,9}; 

.6.~(1) = .6.~(2) = .6.~(6) = c(a V b V c)d = cd; 

.6.~(3) = c(a V b)(c V d) = c(a V b) = ac V be; 

.6.~(4) = .6.~(9) = 1; 

.6.~(5) = (a V b V c V d)d(a V b V c) = d(a V b V c) = ad V bd V cd; 

.6.~(7) = (a V b V c) (a V b)d = (a V b)d = ad V bd; 

.6.~(8) =d(cVd)(aVbVc) =d(aVbVc) =adVbdVcd; 

.6.~(Dl)=.6.~(I) 1\ .6.~(2) 1\ .6.~(3) 1\ .6.~(5) 1\ .6.~(6) = acd V bed; 

.6.~(D2) = .6.~(7) 1\ .6.~(8) = ad V bd; 

.6.~ = .6.~(Dt} 1\ .6.~(D2) = acd V bed. 

o 
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5 INCREMENTAL COMPUTATION OF 
jJ-REDUCTS 

Let us consider two decision tables: 5 = (0, CUD) and 5' = (0', CUD), 
0' = 0 U {z}. Our task is to compute ,B-reducts of 5' (i.e. prime implicants 
of discernibility functions of 5') using the knowledge about ,B-reducts of 5 (i.e. 
prime implicants of discernibility functions of 5). -

We restrict our considerations to determining ,B-reducts for objects. 
,B-reducts for decision classes and for the whole decision table may be computed 
Iii analogous way with the use of Property 4.1 (of composing discernibility 
functions) . 

In the sequel k will stand for the decision value of a new object z (i.e. k = VD(Z) 
) and all notations referring to 5' will be followed by the prime sign C). 

The essential property, we shall exploit to work out an inceremental way of 
computing ,B-reducts, is that for each family E E C* there is at most one ,B
lower approximation C{3Di (i E VD) such that E ~ C{3Di. We will specify 
only those discernibility functions for 5' which differ from the corresponding 
functions in 5. To simplify the problem of incremental computation of ,B
reducts we will analyse two simpler subcases: -

1. card([zl~) = 1 : 

6.~(z) = II "L 6c(z,y); 
YEQ{3Dk 

2. card([zlc) > 1 : 

a) If there is no C {3Di such that (0 n [zlc) ~ C {3Di and z tj. C (3D~ then 

6.~(z) = 1; 

b) If there is C{3Di such that (0 n [zlc) ~ C{3Di and z E C{3D~ then 

6.~(z) = 6.~(x), where x is an object from [zlc; 
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c) If there is Cj3Di such that (On [zlc) ~ Cj3Di and z (j. Cj3D~ and z (j. Cj3D~ 
then 

~~(x) = ~Q.(x) 1\ 'L8c(x,z) for x E Cj3D~; 

~~(z) = ~~(x) = 1 for x E [zlc; 

d) If there is Cj3Di such that (0 n [z]c) ~ Cj3Di and z (j. C(3D~ and z E 

C (3D~ then -,((0 n [z]c) ~ C (3D k ), [zlc ~ C j3D~, -,([zlc ~ C j3Di), C j3Di = 
Cj3Di\[z]c. Hence: 

~~(z) = ~~(x), where x is an object from [zlc; 

(5.2) 

~~(z)= II 'L 8c(x,y); 
yEQf3Dk 

~~(x) = ~~(z) for x E [zlc; 

~~(x) is defined by Eq. (5.2) for x E Cj3Dk . 

o 

Equations (5.1-5.2) do not determine ~~(x) uniquely. Beneath we present 

equations that express the dependency between ~~ and ~j3(x) in a unique 

way. To this end, we need to define the operator CABSREL(C1 , C2 ). Its argu
ments are Boolean expressions in en/-form. CABSREL returns en/-expression 
constructed from those implicates from C1 which are not absorbable by any 
implicate from C2 • 
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Ad. Eq. (5.1) For x E (0 n [zlc) 

~~(X) II I)c(x,y) = 
YEQ{3Di 

Hence Eq. (5.1) for x E [zlc can be rewritten as follows: 

~~(X) = ITYEQ{3Di\Q{3Dk L oc(x, y) /\ ITYEQ{3D: L oc(x, y) (5.3) 
where mdn/-form of the expression IT EC D.\C D LOC(X,y) can be computed 

Y -{3 • -{3 k 

from the equation below: 

MDNF(~~(x)) MDNF (~ L0c(x,y)/\ 
YEQ{3Di \Q{3Dk 

/\ CABSREL ( II L oc(x, y), 
YEQ{3Dk 

,c",It"D' I)o(x,y)) ) (5.4) 

o 

Ad. Eq. (5.2) 

f:l~(x) II :L tSc(x, y) = 
YEQ{3Dk 

II L°c(x,y,) /\ II L°c(x,y) = 
YEQ{3Dk \[zl::' YE[zl~ 

II L0c(x,y) /\ L0c(x,z); 
YEQ{3Dk \[zl~ 
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Hence Eq. (5.2) for x E C (3Dk can be rewritten in the form: 

(5.5) 

where mdnJ-form of the expression IT EC D \[ l' 2:<5c(x,y) is defined by the Y_(3 k Zc 

equation: 

MDNF(6.(!Jx)) MDNF ( II 2: <5c (x,y)/\ 
YEQ(3Dk \[zl:C 

/\ CABSREL (2: <5c (x, z), 

II 2:<5C(X,Y))) (5.6) 
YEQ(3Dk \[zl:C 

6 FINDING PRIME IMPLICANTS OF 
BOOLEAN SUBFUNCTION 

D 

In the previous section we encountered the problem of determining mdnJ-form 
of a Boolean subfunction (see Eq. 5.4, 5.6). Formally, the problem considered 
is as follows: 

Find prime implicants of function 9 such that: 

J = 9 /\ h(6.1) 

and 

6.2 mdnf-form offunction J (discernibility function) and cnJ-forms offunctions 
9 and hare given.1 

lit is possible to construct algorithms whieh determine prime implieants of 9 when only 
mdnf-form of f and enf-form of h are given [6). However, the time complexity of these 
algoritms is at least n-times, where n is a sum of the numbers of variables oceuring in all 
implicates of MCNF(h), greater than the complexity of the algorithm to be presented. 
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6.3 Implicates of menfform of functions h are not absorbable by implicates 
occuring in en/-form of function g and implicates of men/-form of function 
g are not absorbable by implicates occuring in en/-form of function h. 

Given en/-forms of functions g and h we can obtain their men/-forms applying 
the absorption law. In the sequel, we assume that men/-forms of functions g 
and h are known. 

The problem of determining subfunction g from the equation above may be 
solved iteratively. Each time mdn/- and men/-form of function gi, i = O ... n, 
where n is the number of implicates in MCN F(h), such that: 

{ go = f 
gi-I = gi /\ hi for i = 1 ... n, 

where hi is the i-th implicate of MCNF(h), 

should be determined. (men/-form of function gi is being obtained in a very 
simple way - by deleting hi from MCNF(gi-t}.) 

As f = go = hI /\ gi = hI /\ h2 /\ g2 = hI /\ h2 /\ ... /\ hn /\ gn and f = g /\ h = h /\ g 
thus g = gn' 

So we have simplified the initial task of finding the mdnfform of the function 
gi. Let us formulate this problem as follows: 

Given single implicate expression h, mdn/-form of function f and men/-form 
of function g, determine mdn/-form of subfunction g satisfying Eq. (6.1) and 
Condition (6.3). 
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Property 6.1. 

Each implicant of MDNF(f) contains at least one variable from h. 

Proof: Property 6.1 is a simple consequence of the fact that each prime impli
cant of a monotonic Boolean function has at least one common variable with 
any implicate in a en/-form of this function. This fact was proved in [2]. 

D 

Property 6.2. 

If a is a variable occuring both in implicate h and in some implicant h of 
MDNF(f), then 
a) h is a prime implicant of g, if there exists an implicate in MCNF(g) 
that contains a, 
b) fila is a prime implicant of g, otherwise. 

Proof: A variable appears in an implicate of men/-form of a Boolean function iff 
there is an implicant which contains this variable in mdn/-form of this function. 
Ad. a) If there is an implicate in MCNF(g) that contains a then MDNF(g) 
will contain prime implicants with this variable. Let us denote this set of 
implicants by G(a). If h also contains a then the set of prime implicants in 
MDNF(f) which contain a will be equal to G(a). 
Ad. b) It is trivial that fda is a prime implicant of 9 if fi is a prime implicant 
of 9 and a does not appear in h. 

D 

Property 6.3. 

If a is a variable occuring both in implicate h and in an implicant fi of 
M DNF(f), and no implicate in MCNF(g) contains a, then h does not contain 
any of the remaining variables from h. 

Proof: By contradiction: Let a appears both in implicate h and in an implicant 
h of MDNF(f), but it does not appear in any implicate of MCNF(g). Let 
h contains also variable b from h, where b is a different variable from a. From 
Property 6.2 b) we have that hla is a prime implicant of g. We can also 
conclude that hla contains b since h contains b. This means that MCNF(g) 
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contains b. However, applying Property 6.2 a) we induce that fda is a prime 
implicant of f, which leads to contradiction with the initial assumption. 

o 

Properties 6.1-6.3 allow us to construct Algorithm 6.1, which solves the simpli
fied problem: 

Algorithm 6.1 

begin 
MDNF_G = 0; 

determine set A containing those variables from H 
which occur also in MCNF_G; 
determine set A containing those variables from H 
which does not belong to A; 
forall implicant Y in MDNF_F; 

if there is a variable from A in Y then 
/* Loop 6.1 * / 

M DN F B = M DN F _G V Y; 
delete Y from M D N F _F; 

/* Property 6.2.a * / 

endif; 
endfor; 
forall implicant Y in MDNF Y; 

delete variables A from Y; 
/* there will be deleted only one variable from Y 

according to Property 6.3 * / 

/* Loop 6.2 * / 

MDNFB = MDNFBVY; /* Property 6.2.b */ 
delete implicants absorbable by Y from MDNF Y; 

endfor; 
return MDNF_G; 

end; 

Algorithm 6.1 has three arguments M D N F _F, M C N F _G and H represent
ing mdnj-form of function j, mcnj-form of function g and implicate h respec
tively. The resulting mdnj-form of g is returned by variable M DN F _G. Initially, 
MDNF_G does not contain any implicant. 
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Set A is constructed from those variables from H which occur also in M C N F _G. 
The time complexity of this operation is O(n), where n is the number of all 
implicates in M C N F _G. Set if will contain those variables from H which do 
not belong to A. This operation is performed in one step. 

According to Property 6.2.a, implicants from M DN F _F that contain some 
variables from A should belong to M D N F _G. Thus they are being deleted 
from M D N F _F and placed in M D N F _G. The time complexity of this opera
tion (Loop 6.1) is 0 (m), where m is the number of all implicants in M D N F _F. 
Having finished Loop 6.1, M DN F .-F does not have implicants containing vari
ables from A. 

In accordance with Property 6.2.b, MDNF_G should contain also all those 
implicants Y / a, such that Y is an implicant of M D N F _F and a E A. As 
a result of deleting variables A from implicants of M DN F _F before placing 
them in M D N F _G, there may be created implicants which already exist in 
M D N F _G. To avoid this, there are being deleted all such implicants from 
M D N F _F that are absorbable by consequtively determined implicants Y / a. 
Let [ means the number of implicants in M D N F _F before Loop 6.2 has been 
performed. The pessimistic time complexity of the absorption operation is 
0([2).2 

Example 6.1. Illustrate the execution of Algorithm 6.1 for M DN F_F 
acV bcdv cde, MCNF_G = e(a V d) and H = a V bVe. 

Solution: 
First, we determine sets A and A : A = {a}, if = {b,e}. Next we perform 
Loop 6.1. As a result we achieve: M D N F _G = ac and M D N F _F = bed V cde. 
While perfoming Loop 6.2 we add implicant cd to M D N F _G, thus obtaining 
the final form of M D N F _G : M D N F B = ac V cd. 

D 

Among the operations performed to determine prime implicants of subfunction 
g the most time consuming ones are: computation of men/-forms of functions 
g and h from their en/-forms, and testing, whether consequtive implicants be
ing created from MDNF_F in Loop 6.2 of Algorithm 6.1 exist already in 
MDNF_G. Pessimistic time complexity of these operations is 0([2), where [ 

2If card(A) = 1, then consequtiveiy determined impiicants Y/a are unique. Thus, there 
is no need to perform absorption operation. 
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is either the number of implicates of MCNF(g) or MCNF(h) respectively or 
the number of imp Ii cants in MDNF_F. Using tree structures described in [7], 
it is possible to lower the time complexity to O(l x n), where n is the number 
of all different variables occuring in respective men/-, mdn/-Boolean expressions. 

Let us note that when maintaining reducts in dynamic environment, one may 
keep the information only on a few the most interesting prime implicants of a 
discernibility function. This may considerably speed up the process of reducts 
reparation. 

7 CONCLUSIONS 

The problem of reducts maintenance in VPRS is equivalent to the problem of 
discernibility functions maintenance. If a new object creates a new class with 
regard to classifying attributes than a new discernibility function is created 
only for this object and the remaining discernibility functions are modified in 
a strightforward way by multiplying the old mdn/-form by an disjunction of 
literals. Otherwise, we define the problem in the form of a Boolean equation: 
~~ 1\ h = ~/3 1\ k, where ~~- is a discernibility function of an extension S' of 
an-informati;n system S, to-be determined in mdn/-form, ~/3- is in mdn}form, 
which represents ,8-reducts in S, hand k are Boolean expressions in en/-form. 
Occurrence of expressions hand k in the equation is caused by changes in 
at most two ,8-lower approximations after S has been extended. Modification 
of reducts is limited to computations only for the objects belonging to these 
changed ,8-lower approximations. We also offered a general method of how to 
modify these reducts. 

Problem of reducts (as defined in [2]) maintenance in RS, as a special case of 
reducts maintenance in VPRS, may be formulated in a simpler form. Reducts of 
extended system can be determined from the equation: ~~ = ~l!..l\k [8], [?]. On 

the other hand, it can be proved that the equation ~~ 1\ h = ~/31\ k is applicable 

in case of VPRS with Asymmetric Bounds [10], which is a generalization of 
VPRS and for types of reducts proposed in [4], [11]. 
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A procedure for construction of a rule inductive classifier is presented. A form of 
the classifier corresponds to the decision algorithms originated from the concepts of 
the rough set theory. The kernel-based and frequency-based estimators are used to 
approximate the probabilistic structure of the data. The procedure directly incor
porates attributes of any mixed type. It also accepts missing values in the data. A 
minimization of misclassification cost is used as the criterion of classifier generation. 
The procedure is illustrated on two datasets from the credit assessment domain. 

1 INTRODUCTION 

The rough set theory of Z.Pawlak [1] [2] inspired mamy of researchers to de
velope learning algorithms appropriated for classifying new objects (see papers 
in [3] [4] [5], for example). However, since the problem of classification exceeds 
the basic concepts of the rough set theory, the algorithms incorporate same 
statistical techniques, such as k-fold cross-validation or bootstrapping at the 
stage of verification. The procedure for classifier construction presented in this 
paper refers to statistical methods also at the stage of generation. The pro
cedure directly incorporates the arbitrary mixtures of continuous and discrete 
condition attributes, and accepts missing values in the data. The resulting 
decision algorithm may be used not only to classify new objects but also to 
explain hidden relationships between the attributes and decisions. 
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The classifier construction is based on the information about the finite set 
U = {U1, ... , un} oflearning objects. The set U is also called a learning sample. 
The information is expressed in terms of condition attributes a1, ... ,am and 
one decision attribute d. We denote by V(q) the set of values for the attribute 
aq (q = 1, ... , m), and by Vd the finite set of values (decisions) for the decision 
attribute. The set V(q) is finite for the discrete aq attribute and it is an interval 
of real numbers R when the aq attribute is continuous. If the set V(q) is treated 
as ordered then the attribute aq is ordinal. The condition attribute space is 
the product V = V(1) x ... x v(m). By a feasible subset in Vq we mean the set 
~(q) C Vq which is an interval, when the attribute aq is ordinal, or an arbitrary 
subset, otherwise. The set ~ C V we call a feasible subset in V if it has the 
form ~ = ~ (1) X ... x ~ (m), where ~ (q) are the feasible subsets in Vq for 
q = 1, ... , m. By the rough classifier [8] in V we mean a triple K = (S, Vd, K,), 
where S = {~1' ... ' ~k} is the partition of V into the feasible subsets, Vd is 
the set of decisions, and K, : S ~ Vd is a partial mapping which assigns a 
particular decision to each element of the partition. The mapping K, is called 
a classification algorithm or a decision algorithm of the rough classifier. The 
algorithm consists of the following rules 

a(1) E ~i1) and a(2) E ~i2) and ... and a(m) E ~im) then d = K,(~i) 

The rough classifier is complete when Dom(K,) = S. 

2 OPTIMIZATION CRITERION 

The classifier construction is based on the minimization of misclassification cost 
of unseen objects. In many practical situations it is more costly to make one 
kind of classification error than the other. For example, it is rather more costly 
to determine that a credit applicant will be paying debts back when in reality 
he is a defaulter, than to establish that a client with a good credit record will 
default on payments. 

Without a loss of generality we can state that Vd = {I, 2, ... , I}. Let S = 
{~1' ... , ~k} be the partition of the condition attribute space into the feasible 
subsets. By Pij we denote the probability of an object with the j-th decision 
occurring in the region ~i (i = 1, ... , kj j = 1, ... , I). The probability that 
the new object is associated with the j-th decision we denote by 7fj. Clearly, 
7rj = P1j + P2j + ... + Pkj (j = 1, ... ,I). 

Let the unit cost of misclassifying the object with the j-th decision as the object 
with the j' -th decision be equal C(j --+ j') (j =f. j'). In the case of a correct 
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classification the negative costs O(j ~ j) can be used. The minimization of 
the error rate can be obtained as a particular case of the misclassification cost 
minimization with O(j ~ j') = 1, if j =f. j', and O(j ~ j') = 0, otherwise. 

If new objects occuring in the region 6.; will be related all the time with the 
same decision j E Vd, then the mean unit cost will be equal 

O(6.i ~ j) = 0(1 ~ j)pil + 0(2 ~ j)Pi2 + ... + O(l ~ j)pil . (1.1) 

The optimal decision j E Vd minimizes the cost (1.1). The minimal value of 
the cost associated with the region 6.i is equal 

0(6.;) = min O(6. i ~ j) . (1.2) 
j = 1, ... ,l 

If O(6. i ~ j) = O(6. i ) then the decision j E Vd is called permissible for 6. i . 

If K;(~i) E Vd is the permissible decision for each element of the partition S = 
{ ~1 , ... , ~k} then the complete classifier K = (S, Vd, K;) is called permissible 
for S. 

The minimal value of the cost associated with the partition S = {~1' ... , ~d 
is given by 

(1.3) 

3 ESTIMATION OF PROBABILITIES 

In practice, the probabilities Pij defined in the previous section are unknown 
and should be estimated. The simplest estimator of Pij is of the form 

A nij 
Pij = N' (1.4) 

where nij is the number of objects with the j-th decision in the region ~i' and 
N is the number of all learning objects. Using this estimator makes sense when 
the frequencies with which the learning objects with different decisions occur 
are close to the same frequencies for unseen objects. If this condition is not 
satisfied then the prior probabilities 7rj of each decision have to be given. In 
this case the estimator of Pij is of the form 

(1.5) 
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where nj is the number of learning objects with the j-th decision (j = 1, ... ,1). 

The alternative procedure of estimating the probabilities Pij can be based on 
the estimation of unknown probability density functions in the space V. Let us 
denote by fj : V -t R the probability density functions for the j-th decision in 
the space V. Then 

Pij = 7rj r h(x)dx, iLli 
(1.6) 

where dx is the product of counting and Lebesgue measures taken in the same 
order as the order of discrete and continuous attributes in the product V = 
V(1) x ... x v(m). It is known [6] that the optimal decision for a new object 
occuring at x E V is equal to the value j E Vd which minimizes the 

e(l -t j)ft(X)7rl + ... + e(l -t j)fl(X)7r1 . (1.7) 

In practice, the densities hex) have to be replaced by their estimators jj(x). 

The values of the attributes al, ... ,am,d for U v E U we denote by (xv,dv) 
where Xv = (x~1), ... , x~»). The kernel method [7] is used to estimate the 
densities fj(x). The estimators of hex) are given by 

jj(x) = ~. t IT K~q)(x(q), hjq») , 
J v = 1 q=l 

d v = j 

(1.8) 

where K~q) (x, h) (x E V(q), h > 0) is the specified kernel function for the 

attribute aq with the center in xSq) and with the smoothing parameter h. Using 
this approach the condition attributes with missing values are accepted. If the 
condition attribute aq is continuous then 

K(q)(x, h) = n x,x j ,Sj { 
( -(q) [ (q)]2) 

v n(x, xSq) ,h) 
for missing xSq) 

otherwise 
(1.9) 

where n(x,m,h) = (27rh)-!exp[_(x~;:,)2] is the probability density function 

for a normal distribution (with mean m and variance h), and XJq) , sjq) are, 
respectively, the mean value and the standard deviation of these values of the 
attribute a q which are related with the j-th decision. 

The problem of selecting the kernels K~q) for discrete attributes is more complex 
[7]. A diffusion approach is used to solve this problem. The values of the set 
V(q) can be identified with small air-tight boxes, which are connected by the 
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Figure 1 Illustration of the kernel construction for (a) binary, (b) ordinal, 
(c) nominal discrete condition attributes. 
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pipes of the same diameter. In the moment h = 0 the unit amount of gas is 
placed in the box corresponding to the value y E V(q). For h 2: a the value of 
Kq(x, y, h) is defined as the amount of gas in the box which corresponds to the 
value x E V(q). Evidently 

K (x 0) _ {I for x f= y 
q , y, - a otherwise (1.10) 

The idea of the pipe-line construction for the discrete condition attributes with 
the values expressed in different scales is illustrated in Figure 1. A specific 
value of the parameter A depends on the pipe diameter. In computations we 
assume A = 1. The inverse of the number given in the net mesh is equal to 
the mean value of the time intervals during which a gas particle is staying in 
the box. The gas diffusion process in the net is described by the system of 
differential equations A K = AK, where the matrix A is 

A 
-A ) , ( J. ~2~ .~2.~ .. ::: .... ~ 1 

o a O...-A 

( (1 ~ ~)~ .. (1~P)~ .•••........ ~ ) 

A A ... (1- p)A 

(1.11) 

(1.12) 

for, binary, ordinal or nominal condition attributes, respectively. The param
eter p in the matrix (1.12)is equal to the number of levels of the nominal 
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condition attribute. The kernel K~q) (x, h) is defined by the formula 

{ 

n(q)(x) ( ) 
K(q)(x h) = ~ for missing x..,q 

.." J ( ) 

Kq(x, x..,q ,h) otherwise 
(1.13) 

where n)q) (x) is the cardinality of the set {u.., E U : x~q) = x, d.., = j}, and 

n)q) is the number of objects which are related with the j-th decision and have 
no missing values for the aq attribute. In the most general case one could 
optimize the smoothing parameters h)q) in (1.8) with regard to all dimensions 
q = 1, ... , m, and for all decisions j = 1, ... , t. In practice, however, it is 
sufficient to consider only a few number of parameters [9]. The optimization is 
limited to two parameters he and hd, such that h)q) = [S)q)]2he for continuous 

attributes and h)q) = hd for all discrete condition attributes. 

The mean cost of decision-making with an arbitrary classifier may be estimated 
using unseen objects from the given test sample. Let n(j -+ j') be the number 
of test objects with the j-th decision classified as the objects with the j'-th 
decision. If the frequencies ';J in the test sample are approximately equal to 
the prior probabilities 7rj then the estimate of the mean cost is 

6 = ~ {~C(j -+ j')n(j -+ j')} , 
),) 

(1.14) 

otherwise 

(1.15) 

The mean cost can also be estimated using the leave-one-out method with 
the learning sample only. The values of the smoothing parameters he and hd 
leading to the minimal costs 6 can be found using this method. When he -+ 0 
and hd = 0 then the kernel-based estimators (1.6) of Pij with fJ(x) estimated 
by (1.8), are equivalent to the frequency-based estimators (1.5). 

4 DECISION RULE GENERATION 

The process of the rule generation has to be proceeded by a secondary coding of 
the condition attributes. The coding of aq is performed by selecting a certain 
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partition F(q) = {6~q), ... , 6~q:} of the set V(q) into the feasible sets. The 
collection F = (F(1), ... , F(m)) of the condition attributes partition generates 
the partition S(F) of the space V into the feasible subsets 

(1.16) 

Hence, because of (1.3), the cost C(F) can be defined as C(S(F)). The process 
of the secondary coding consists in constructing the sequence of the collections 
Fo, F1, ... , Fr, such that Fo = ({V(1)}, ... ,{v(m)}), and if 

Fi = {{6~1), ... , 6~\)}, ... , {6~m), ... , 6~~)}} , 

then in the successive step of the algorithm we find the set 6~q) and its partition 
~~q) = .3.~q) u ~~q) into the feasible subsets that for the collection 

Fi+1= 
{{6~1), ... , 6~1(}, ... , {6~q), ... , .3.~q), A~q), ... 6~q:}, ... , {6~m), ... , 6~~)}} 

the maximal cost fall C(Fi)-C(Fi+l) is observed. The number ofthe algorithm 
steps is given in advance or is determined using some additional information 
obtained, for example, from the test sample. 

In the second stage of classifier generation the partitions of the form S 
{61 , ... , 6 k } are determined under the following conditions: 

1. each element 6 i of S is the feasible subset in V, 

2. each element 6 i of S is the sum of the partition elements from S(Fr) for 
which a common permissible decision exists, 

3. the number of the elements in the partition S is minimal under the two 
previous conditions. 

In the third stage of classification algorithm construction, the permissible clas
sifiers for the partitions S obtained in the second stage are selected. 

In computations, the set of the feasible intervals for the continuous attribute 
a q have to be finite. The endpoints of these intervals have been selected using 
the method of intermediate values generation presented in [8]. 
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5 ILLUSTRATIVE EXAMPLES 

In this section we illustrate the method of classifier generation in the mixed 
case of discrete and continuous condition attributes by two case studies from 
the credit assessment domain. The credit dataset was used by J.R.Quinlan 
[10]. The German dataset was created by H.Hofmann from the University of 
Hamburg. Both datasets were donated to the repository of machine learning 
databases at the University of California in Irvine. In both datasets credit 
applicants (objects) are described by the sets of condition attributes charac
terizing the applicants. With each object one of two decisions is associated, 
good or bad credit applicant. The values of the condition discrete attributes 
are expressed in different scales: binary, e.g., whether the applicant is a foreign 
worker, ordinal, e.g., a number of existing credits at the bank, or nominal, e.g., 
personal status and sex. Also a number of continuous condition attributes, for 
example, credit amount, is used to characterize the applicants. 

number r error rate 
of steps "frequency" "kernel" 

0 0.4450 0.4450 
1 0.1532* 0.1532* 
2 0.1763 0.1590 
3 0.1763 0.1705 
4 0.1734 0.1676 
5 0.1734 0.1676 
6 0.1763 0.1763 

Table 1 Results obtained during the first stage of classifier construction for 
the credit dataset. 

The learning sample for the credit dataset has been composed of 154 randomly 
selected objects with the decision "+" and 192 randomly selected objects with 
the decision "-". The test sample has been composed of the left objects: 153 
with the decision "+" and 191 with the decision "-". The following optimal val
ues of the coefficients determining the smoothing parameters have been found: 
he = 0.23, hd = 0.03. The prior probabilities 7r _ = 0.555 and 7r+ = 0.445 are 
equal to the observed frequencies of the decisions in the dataset. The misclas
sification cost is defined by C(" +" -+ "-") = 1, C(" -" -+ "+") = 1, 
C(" -" -+ "-") = 0, C(" +" -+ "+") = 0, which corresponds to the 
minimization of the error rate. 
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Table 1 contains the results obtained during the classifier construction for 
the frequency-based and kernel-based estimators. For each number of steps 
r = 1, ... ,6, the error rates have been estimated on the test sample using the 
formula (1.15). The case r = 0 corresponds to the trivial classifier when all 
the objects are related with the same decision "-". The minimal error rate is 
obtained for r = 1, which corresponds to the classification algorithm with two 
classification rules. The algorithm assigns the decision "-" to the objects with 
ag = j, and the decision "+" to the objects with ag = t. 

The learning sample for the German dataset has been composed of 250 ran
domly selected objects with the decision good and 250 randomly selected ob
jects with the decision bad. The test sample has been composed of the left 
objects: 450 with the decision good and 50 with the decision bad. The follow
ing optimal values of the coefficients determining the smoothing parameters 
have been found: he = 0.6, hd = 0.5. The prior probabilities should reflect 
the proportions of good and bad credit applicants in the population of all bank 
clients. The values 7rgood = 0.9 and 7rbad = 0.1 have been assumed in com
putations. The misclassification costs have been defined by the donator of 
the dataset: C(good ---t bad) = 1, C(bad ---t good) = 5, C(bad ---t bad) = 0, 
C(good ---t good) = O. Table 2 contains the results obtained during the classi-

number r misclassification cost 
of steps "frequency" "kernel" 

0 0.5000 0.5000 
1 0.4300 0.4920 
2 0.4060 0.4920 
3 0.3980* 0.4940 
4 0.4740 0.4840 
5 0.4700 0.4720* 
6 0.4620 0.4860 

Table 2 Results obtained during the first stage of classifier construction for 
the German dataset. 

fier construction for the frequency-based and kernel-based estimators. For each 
number of steps r = 1, ... ,6, the misclassification costs have been estimated 
on the test sample using the formula (1.15). The case r = 0 corresponds to 
the trivial classifier which associates the decision good with each credit appli
cant. The minimal cost of decision-making is obtained for r = 3 using the 



382 

"frequency" method. It corresponds to the classification algorithm with the 
following four classification rules: 

1. if a5 ~ 8918 
2. if a5 < 8918 and a2 < 11.5 
3. if a5 < 8918 and a2 ~ 11.5 and al = 1 
4. if a5 < 8918 and a2 ~ 11.5 and al E {2, 3, 4} 

then d = bad, 
then d = good, 
then d = bad, 
then d = good. 

Table 3 includes characterization of each classification rule by the estimate of 
its probability and by the cost of decisions. 

Rule P(~i) C(~i -+ good) C(~i -+ bad) 
1 0.0324 0.0540 0.0216 
2 0.2284 0.0440 0.2196 
3 0.1544 0.1960 0.1152 
4 0.5848 0.2060 0.5436 

Table 3 Characterization of the classification rules for the German dataset. 

SUMMARY 

The presented classifiers combine features of rule inductive systems based on 
the rough set theory with statistical approximation of datasets probabilistic 
structure. The datasets structure is approximated from the learning sample 
using the nonparametric estimators of unknown probabilities. The final deci
sion algorithm minimizes the cost of misclassification. The proposed procedure 
of classifier construction accepts both continuous and discrete attributes. Con
tinuous attributes are directly incorporated by the procedure. The method 
handles nominal attribures with unordered values. Missing values in the data 
are also accepted. The resulting decision rules include only those of the pri
mary attributes which possess good classification properties. A particular form 
of the final decision algorithm depends on an a priori definition of the unit 
costs of wrong classification and the unit profits of correct classification. The 
strength of each decision rule is characterized by the estimate of its probabil
ity and by the estimate of the decision costs. The method leaves room for 
non-determinism in assignment of classes to partition blocks of the underlying 
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attribute space, which is important when several classes with very close values 
of the cost compete for assignment. 
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In order to acquire knowledge from databases, there have been proposed several meth
ods of inductive learning, such as ID3 family and AQ family. These methods are 
applied to discover meaningful knowledge from large databases, which shows they are 
useful. However, since there has been no formal approach proposed to treat these 
methods, efficiency of each method is only compared empirically. In this paper, we 
introduce matroid theory and rough sets to construct a common framework for empir
ical machine learning methods which induce the combination of attribute-value pairs 
from databases. Combination of the concepts of rough sets and matroid theory gives 
us an excellent set-theoretical framework and enables us to understand the differences 
and the similarities between these methods clearly. In this paper, we compare three 
classical methods, AQ, Pawlak's Consistent Rules and ID3. The results show that 
there exist the differences in algebraic structure between the former two and the latter 
and that this causes the differences between AQ and ID3. 
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1 INTRODUCTION 

1.1 Motivation 

In order to acquire knowledge from databases, there have been proposed several 
methods of inductive learning, such as ID3 family [2 , 3, 16] and AQ family [1 , 
12, 13]. These methods are applied to discover meaningful knowledge from 
large databases, which shows that these methods are useful. However, since 
there has been no formal approach proposed to treat these methods, efficiency 
of each method is compared by using real-world databases[l, 2, 13, 16], such 
as medical databases. These results suggest some differences between these 
methods. However, since sometimes these differences may depend on applied 
domains, general discussion is left unsolved. 

In this paper, we introduce matroid theory[20, 21, 22] and rough sets[15] 
to construct a common framework for empirical machine learning methods 
which induce knowledge from attribute-value pattern databases. Combina
tion of the concepts of rough sets and matroid theory gives us an excellent 
set-theoretical framework and enables us to understand the differences of these 
methods clearly. Using this framework, we compare three classical methods: 
AQ, Pawlak's Consistent Rules[15] and ID3 and we obtain seven interesting con
clusions from our approach. First, while AQ and Pawlak's method are equiva
lent to the greedy algorithm for finding the bases of a matroid from the space 
spanned by attribute-value pairs, ID3 method calculates ordered greedoids, 
which are defined by weaker axioms than matroids. Second, a matroid de
fined by AQ method(AQ matroid) is a dual matroid of one defined by Pawlak's 
method[15](Pawlak's matroid). Third, according to the computational com
plexity of the greedy algorithm, the efficiency of both methods depends on the 
number of attributes, especially, independent variables. Fourth, the induced 
results are optimal to the training samples if and only if the conditions on 
independence are hold. Thus, if the addition of new examples makes indepen
dent attributes change their nature into dependent ones, then the condition 
of deriving optimal solution is violated. Fifth, in addition to the fourth con
clusion, because a greedoid of ID3 has weaker structure than the other two 
methods, ID3 method is the most sensitive to training samples, although its 
computational complexity is the lowest. Sixth, if we get a well-defined weight 
function for predictive accuracy, then the solutions derived by the greedy al
gorithm would be optimal to prediction. Finally, seventh, we can also apply 
knowledge on combinatorial geometry, because matroid theory is closely related 
with combinatorial geometry. 
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The paper is organized as follows: section in Section 2 and 3, we briefly discuss 
original rough set model and AQ method respectively. In Section 4, the elemen
tary concepts of matroid theory are introduced, and several characteristics are 
discussed. Section 5 presents comparison between AQ matroid and Pawlak's 
matroid. Section 6 gives ID3 greedoid, which is algebraic structure of decision 
tree induction. In Section 7, we discuss optimal solutions given by the greedy 
algorithm. Section 8 presents discussion of pruning and truncation in terms of 
rough sets and matroid theory. In Section 9, we briefly discuss the relationship 
between matroid theory and combinatorial geometry. Finally, in Section 10, 
we conclude the results of this paper. 

1.2 Notations and Some Assumptions 

In this paper, we focus on algebraic specification of domain-independent aspects 
of classical empirical learning methods, AQ, Pawlak's method and ID3. Thus, 
we do not consider about constructive generalization[12], since this method 
explicitly needs domain-specific knowledge. And, moreover, we omit the proofs 
of the theorems, since all the proofs in Section 4 are originated from matroid 
theory, which readers could refer to [20, 21], and since the proofs of most of 
the theorem in Section 5 and Section 6 are trivial. For further information on 
rough sets and matroid theory, readers could refer to [15, 20, 21]. 

Below in this subsection, we mention about the following four notations used in 
this paper. First, for simplicity, we deal with classification oftwo classes, one of 
which are supported by a set of positive examples, denoted by D and the other 
of which are by a set of negative examples, U - D. Moreover, we assume that 
D is decomposed into several disjoint subsets, denoted by D = UjDj . Second, 
we regard an attribute-value pair as an elementary equivalence relation 
as defined in rough sets[15]. That is, the combination of attribute-value pairs, 
which is called the complex of selectors in terms of AQ theory, is denoted by an 
equivalence relation, R. A set of elements which supports R, which is called a 
partial star in AQ, is referred to as an indiscernible set, denoted by [X]R. For 
example, let {1, 2, 3} be a set of samples which supports an equivalence relation 
R. Then, we say that a partial star of R is equal to {1, 2, 3} in terms of AQ. 
This notion can be represented as [X]R = {1, 2, 3} in terms of rough sets. Third, 
when we describe a conjunctive formula, we use the ordinary logical notation. 
Furthermore, when an equivalence relation is described as an attribute-value 
pair, denoted by [attribute = value]. For example, if an equivalence relation R 
means "a=1 and b=O", then we write it as R = [a = 1] A[b = 0]. Finally, we 
define partial order of equivalence as follows: 
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Definition 1 Let A(Ri) denote the set whose elements are the attribute-value 
pairs included in Ri. If A(Ri) ~ A(Rj ), then we represent this relation as: 

For example, let Ri represent a conjunctive formula, such as a 1\ b 1\ c, where 
a, b, c are elementary equivalence relations. Then A(Ri) is equal to {a, b, c}. If 
we use the notation of Michalski's APC(Annotated Predicate Calculus) [12], Ri 
can be represented as, say [a = I]&[b = I]&[c = 1], then A(Ri) is equal to a 
set of selectors, {[a = 1], [b = 1], [c = I]}. 

2 ROUGH SET THEORY 

2.1 Elementary Concepts of Rough Set 
Theory 

Rough set theory is one of the most important approaches, which character
izes classification from the viewpoint of set theory, developed and rigorously 
formulated by Pawlak[I5]. This theory can be used to acquire certain sets of 
attributes for classification and can also evaluate how precisely the attributes 
of database are able to classify data. In this paper, we only mention what we 
need in relation to our reasoning strategy, because including whole discussion 
of rough sets is too lengthy and redundant. For further information, readers 
could refer to [15]. 

Table 1 is a small example of database which collects the patients who com
plain of headache. First, let us consider how an attribute "location" classifies 
the headache patients' set of the table. The set whose value of the attribute 
"location" is equal to "whole" is {2,8,1O}(In the following, the numbers rep
resent each record number). This set means that we cannot classify {2,8,IO} 
further solely by using the constraint R = [lac = whole]. Thus, we refer 
to this set as the indiscernible set over relation R, denoted by [X]R=U / R= 
{2,8,IO} (U denotes the total set of database). In this set, {2,1O} suffer from 
muscle contraction headache("m.c.h."), {8} suffers from intracranial mass le
sion("Lm.l."). Hence other additional attributes are needed to classify this 
set of patients as to their disease. Using this concept, we can evaluate the 
classificatory power of each attribute. For example, [prod = 1] is specific to 
the case of classic migraine ("classic"). It is notable that this notion can be 
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Table 1 A Small Example of Databases 

No. loc nat his prod jolt nau Ml M2 class 
1 occular per per 0 0 0 1 1 m.c.h. 
2 whole per per 0 0 0 1 1 m.c.h. 
3 lateral thr par 0 1 1 0 0 common. 
4 lateral thr par 1 1 1 0 0 classic. 
5 occular per per 0 0 0 1 1 psycho. 
6 occular per subacute 0 1 1 0 0 i.m.I. 
7 occular per acute 0 1 1 0 0 psycho. 
8 whole per chronic 0 0 0 0 0 i.m.I. 
9 lateral thr per 0 1 1 0 0 common. 
10 whole per per 0 0 0 1 1 m.c.h. 
Definition. loc: location, nat: nature, his:history, 
Definition. prod: prodrome, nau: nausea, jolt: Jolt headache, 
Ml, M2: tenderness of Ml and M2, 1: Yes, 0: No, per: persistent, 
thr: throbbing, par: paroxysmal, m.c.h.: muscle contraction headache, 
psycho.: psychogenic pain, i.m.I.: intracranial mass lesion, common.: 
common migraine, and classic.: classical migraine. 

extended to multivariate cases, such as [Xhloc=wholejl\[M2=lj = {2, 10}. More
over, an attribute itself can be also taken as a relation. For example, [xll oc = 
{[Xhloc=wholej, [Xhloc=lateralj, [Xhloc=occularj} = {{2, 8, 10}, {3, 4, 9}, {I, 5, 6, 7}}. 
Using these basic concepts, several specific sets and measures for these sets are 
defined as follows: 1 

Definition 2 Let R be an equivalence relation and X be the subset of u. 

positive region 
possible region 

boundary region 

accuracy measure 

POSiR(X) = U{Y E U/R: Y ~ X} 
POSSR(X) = U{Y E U/R: ynX -::f </>} 
BoundR(X) = PossR(X) - PosiR(X) 

0: (X) - card POSiR(X) 
R - card PossR(X)· 

o 

For example, the set whose class is "m.c.h." is composed of {l,2,5,10}. Let 
us take this set as X. Then the following relations Ri are obtained such that 

1 In [15], Pawlak does not use the· above term "possible region", but he refers to the above 
possible region as upper approximation of X. Compared with the word "positive", we use 
"possible" which reflects the intuitional meaning of an upper approximation. 



390 

Rl = [lac = occular] /\ [nat = per] /\ [his = per] 

/\[prod = 0] /\ [jolt = 0] /\ [nau = 0] /\ [MI = 1] /\ [M2 = 1], and 

R2 [lac = whole] /\ [nat = per] /\ [his = per] 

/\[prod = 0] /\ [jolt = 0] /\ [nau = 0] /\ [MI = 1] /\ [M2 = 1]. 

Let R denote Rl U R2 • That is, U / R = {[X]Rl' [X]R2} = {{I, 5}, {2, IOn The 
positive region of "m.c.h." over the relation R is U / R - {I, 5} = {2, IO}. And 
then its possible region is {I,2,5,IO}, which includes one case for "psycho": {5}. 
Furthermore, we can derive {I,5} as the boundary region, and the accuracy 
measure is 2/4. 

2.2 Pawlak's Consistent Rules 

Based on the concepts of rough sets, Pawlak[I5] introduces Reduction of Knowl
edge, which is a method to examine the independencies of the attributes iter
atively and extract the minimum indispensable part of equivalence relations. 
Here we only mention about the definition of consistent rules and their knowl
edge reduction. For further details, readers could refer to [15]. 

Definition 3 Let R j be an equivalence relation and D be a set of samples which 
belongs to a target concept. Rj => D is called a consistent rule when PosiRj (D) 
is given by: 

where P osi Rj (D) denotes the positive region of D in terms of R j . 0 

Definition 4 Let Ro be equal to R /\ [a = v], where [a = v] denotes a certain 
attribute-value pair. If an attribute-value pair [a = v] is satisfied with the 
following equation: 

then we say that [a = v] is dispensable in Ro, and can be deleted from R. 0 
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Intuitively, reduction procedure removes redundant variables which do not con
tribute to classification of a class. For the above example, because POSiR2 (X) = 
{2, 1O}, R2 :::} X is a consistent rule of X. Here, let us focus on an attribute 
"prod". That is, let R2 be decomposed into R3 /\ [prod = 0], where R3 is equal 
to [lac = whole] /\ [nat = per] /\ [his = per] /\ [jolt = 0] /\ [nau = 0] /\ [M1 = 1] /\ 
[M2 = 1]. Then, because [X]R3 = [X]R2' or POSiR3A[pTOd=O](X) = POSiR3(X), 
this attribute can be deleted. Applying this method iteratively, the following 
minimum equivalent relations are obtained: [lac = whole] /\ [M1 = 1] and 
[lac = whole] /\ [M2 = 1]. 

If we use some weight function for efficiency, this algorithm can be viewed as 
the greedy algorithm which finds independent variables. However, while AQ 
is based on incremental addition of equivalence relations, Pawlak's method is 
based on incremental removal of dependent equivalence relations. This charac
teristic is also discussed in Section 5. 

3 AQ METHOD 

3.1 Bounded Stars as Positive Regions 

AQ is an inductive learning system based on incremental STAR algorithm[12]. 
This algorithm selects one "seed" from positive examples and starts from one 
"selector" (attribute-value pair) contained in this "seed" example. It adds se
lectors incrementally until the "complexes" (conjunction of attributes) explain 
only positive examples, called a bounded star. In general, many complexes 
can satisfy these positive examples. Thus, AQ finds the most preferred ones, 
according to a flexible extra-logical criterion. 

It would be worth noting that the complexes supported only by positive exam
ples corresponds to the lower approximation, or the positive region in rough set 
theory. That is, the rules induced by AQ is equivalent to consistent rules defined 
by Pawlak when constructive generalization rules [12] are not used. In fact, AQ's 
star algorithm without constructive generalization can be reformulated by the 
concepts ofrough sets. For example, a bounded star denoted by G(eIU -D,m) 
in Michalski's notation is equal to G = {RiI[X]Ri = D j }, such that IGI = m 
where IGI denotes the cardinality of G. This star is composed of many com
plexes, which is ordered by LEFi , lexicographic evaluation functional, which is 
defined as the following pair:< (-negcov, 71), (poscov, 72) > where negcov and 
poscov are numbers of negative and positive examples, respectively, covered by 
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an expression in the star, and where 71 and 72 are tolerance thresholds for cri
terion pOSCOV, negcov (7 E [0 .. 100%)). This algorithm shows that AQ method 
is a kind of greedy algorithm which finds independent variables using selectors 
which are equivalent to equivalence relations in terms of rough sets. We will 
discuss this characteristic later in Section 5. 

3.2 INDUCE method of AQ algorithm 

An algorithm to derive a bounded star is called INDUCE method in AQ algo
rithm [12]. Here we illustrate how this INDUCE method works. For example, 
let us consider the above example of database shown in Table 1, which collects 
the patients who complain of headache. If the second sample, whose record 
number is 2, is selected as a seed, then an attribute value pair, [lac = whole] 
can be regarded as a selector. Then a partial star is obtained, which includes 
this seed and supports [lac = whole], as {2,8,1O}. 

This is not a bounded star for a class "m.c.h." (muscle contraction headache), 
because the class of "8" is "Lm.I." (intracranial mass lesion), that is, this star 
includes a negative example as to "m.c.h". Thus, additional selectors are re
quired to remove "8" from a star. This means that some selectors are needed 
in order to get a bounded star. In AQ method, a selector is chosen from the 
selectors which is supported by the seed, sample "2". For example, if a selector 
[his = per] is chosen, then a star of [lac = whole]&[his = per] is equal to 
{2,10}, which only consists of positive samples as to "m.c.h." 

Therefore [lac = whole] II. [his = per] can be regarded as a premise of a rule for 
classification of "m.c.h.", that is, if a sample satisfies [lac = whole] II. [his = per], 
then a class of this sample is "m.c.h.". It is also notable that [lac = whole] II. 
[M1 = 1] and [lac = whole]II.[M2 = 1] generate a bounded star whose elements 
are also {2,l0}. In order to choose a suitable selector from possible selectors, 
some extra-logical criterion should be applied, such as aforementioned LEF 
criterion, which includes domain-specific knowledge. That is, in AQ algorithm, 
domain knowledge is applied in order to select attribute-value pairs, or premises 
of rules from possible combination of those pairs, which are suitable to describe 
the structure of domain-knowledge. 
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4 MATROID THEORY 

4.1 Definition of Matroids 

Matroid theory abstracts the important characteristics of matrix theory and 
graph theory, firstly developed by WhitneY[22] in the thirties of this century. 
The advantages of introducing matroid theory are the following: 1) Because 
matroid theory abstracts graphical structure, this shows the characteristics of 
formal structure in graph clearly. 2) A matroid is defined by the axioms of inde
pendent sets. Therefore, it makes the definition of independent structure clear. 
3) Duality is one of the most important structures in matroid theory, which 
enables us to treat relations between dependency and independency rigorously. 
4) The greedy algorithm is one of the algorithms for acquiring an optimal base 
of a matroid. Since this algorithm has been studied in detail, well-established 
results can be applied to our problem. 

Although there are many interesting and attractive characteristics of matroid 
theory, we only discuss about duality, and the greedy algorithm, both of which 
are enough for our algebraic specification. For further information on matroid 
theory, readers might refer to [20]. 

First, we begin with the definition of a matroid. A matroid is defined as an 
independent space which satisfies the following axioms: 

Definition 5 The pair M(E,.1) is called a matroid, if 

1) E is a finite set, 
2) 0 E .1 C 2E , 

3) X E .1, Y eX=} Y E .1, 
4) X, Y E .1, card(X) = card(Y) + 1 =} (3a EX - Y)(Y U {a}) E .1. 

If X E .1, it is called independent, otherwise X is called dependent. D 

One of the most important characteristic of matroid theory is that this theory 
refers to the notion of independence using the set-theoretical scheme. As shown 
in [15], since rough set theory also considers the independence of the attributes 
from the viewpoint of set theory, it is expected that our definition of indepen
dence with respect to learning methods can be discussed by combination of 
rough set theory with matroid theory. 
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4.2 Duality 

Another important characteristic is duality. While this concept was firstly 
introduced in graph theory, a deeper understanding of the notion of the duality 
in graph theory can be obtained by examining matroid structure. Definition of 
duality is as follows: 

Definition 6 If M = (E, .1), is a matroid with a set of bases (3, then the 
matroid with a set of elements E, and a set of bases (3* = {E - BIB E (3} is 
termed the dual of M and is denoted by M*. 0 

From this definition, it can be easily shown that (M*)* = M, and M and thus 
M* are referred to a dual matroid pair. And we have the following theorem: 

Theorem 1 If M is a matroid, then M* is a matroid. o 

4.3 The Greedy Algorithm 

Since it is important to calculate a base of a matroid in practice, several meth
ods are proposed. In these methods, we focus on the greedy algorithm. This 
algorithm can be formulated as follows: 

Definition 7 Let B be a variable to store the calculated base of a matroid, 
and E denote the whole set of attributes. We define the Greedy Algorithm to 
calculate a base of a matroid as follows: 

1. B +- cp. 
2. Calculate "priority queue" Q using weight function of E. 
3. If B is a base of M(E,.1) then stop. Else go to 4. 
4. e +- first(Q), which has a minimum weight in Q. 
5. If B U {e} E.1 then B +- B U {e}. goto 2. o 

This algorithm searches one solution which is optimal in terms of one weight 
function. Note that a matroid may have many bases. The bases derived by 
the greedy algorithm are optimal to some predefined weight function. Hence 
if we cannot derive a suitable weight function we cannot get such an optimal 
base. In the following, we assume that we can define a good weight function for 
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the greedy algorithm. For example, we can use information gain as defined in 
[2, 16] for such function. When information gain is used as a weight function, 
the greedy algorithm with this weight function gives a solution optimal to 
apparent accuracy. since this gain is closely related with apparent accuracy or 
apparent accuracy. In other words, the solution is optimal to apparent rate, 
that is, in the language of statistics, the algorithm calculates the best class 
allocation of training samples. Under this assumption, this algorithm has the 
following characteristics: 

Theorem 2 The complexity of the greedy algorithm is 

O(mf(p(M)) + mlogm), 

where p(M) is equal to a rank of matroid M, m is equal to the number of 
the elements in the matroid, lEI, f represents a function of computational 
complexity of an independent test, which is the procedure to test whether the 
obtained set is independent, and is called independent test oracle. D 

Theorem 3 The optimal solution is derived by this algorithm if and only if a 
subset of the attributes satisfies the axioms of the matroid. D 

This theorem is very important when we discuss the optimal solutions of learn
ing algorithms. This point is discussed in Section 7. 

4.4 Unions and Intersections of Matroids 

Because matroid theory is based on set-theoretical framework, we can define 
unions and intersections of matroids. 2. 

First, we define the union of matroids as follows. 

Definition 8 Let M I , M 2 ,···, Mm be matroids on S. Let 

2 Unfortunately, intersections of matroids do not always satisfy the axioms of a matroid 
in general [20] However, in this paper, we deal with only special class of a matroid, called 
simple matroids, whose intersections always satisfy the axioms of a matroid. 
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Then J is the collection of independent sets of a matroid on S, which satisfies 
the axioms of independent sets. We refer to the matroid M whose independent 
sets are equal to J as: 

called the union of matroids. o 

Therefore, it guarantees that the problem can be decomposed into disjoint 
subproblems and that the total solution can be obtained by taking unions of 
the solutions of sub-problems. That is, let the whole problem denote S. We 
first try to decompose S into MI V M 2 • Then we will calculate both bases, 
and finally take the union of both bases. We use this result in the subsequent 
sections. 

In the same way, the intersection of a matroid is also defined: 

Definition 9 Let M I , M 2 ,···, Mm be matroids on S. Let 

Then J is the collection of independent sets of a matroid on S, which satisfies 
the axioms of independent sets. We refer to the matroid M whose independent 
sets are equal to J as: 

called the intersection of matroids. o 

It is notable that the intersection of matroids exactly corresponds to the core 
of reducts [15]. We illustrate this notion in the next section. 

5 AQ MATROIDS AND PAWLAK'S 
MATROIDS 

Here we show that our "rough sets" formalization of AQ algorithm is equivalent 
to the greedy algorithm for calculating bases of a matroid and that the derived 
bases are dual to those derived by Pawlak's reduction method. 
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5.1 AQ matroids 

Under the above assumption we can constitute a matroid of AQ method, which 
we call AQ matroid as follows: 

Theorem 4 Let B denote the base of a matroid such that [xlB = Dk. If 
we define an independent set ..J(Dk) as {A(Rj)} which satisfies the following 
conditions: 

1) Rj ~ B, 
2) [X]B ~ [X]Rj' 

3) VRi s.t. Ri ~ Rj ~ B, D j = [X]B ~ [X]Rj C [X]Ri1 

where the equality holds only if Rj = B. Then this set satisfies the definition 
of a matroid. We call this type of matroid, M(E, ..J(Dk)) , a AQ matroid. 0 

The first condition means that a base is a maximal independent set and each re
lation forms a subset of this base. And the second condition is the characteristic 
which satisfies all of these equivalence relations. Finally, the third condition de
notes the relationship between the equivalence relations: Any relation Ri which 
forms a subset of A(Rj) must satisfy [X]Rj C [X]R;. Note that these conditions 
reflect the conditional part of AQ algorithm. For example, let us consider the 
example shown in Table 1. Let us take two equivalence relations, [loe = whole] 
and [MI = 1]. [Xhloc=whole] and [XhMl=l] are equal to {2,8,1O}, and {I,2,5,IO}. 
Because these two sets are supersets of D = [Xhloc=whole]A[Ml=l] = {2,IO}, 
which is a positive region of class "m.c.h.", we derive the following relations: 
D C [Xhloc=whole] and D C [XhMl=l]' Therefore, {[loe = wholen, {[MI=In, 
and {[loe = whole] A [MI = In belong to the independent sets of the. target 
concept, classification of a class "m.c.h.". 

Note that D has the other two bases, {[loe = whole] A [M2 = In and {[loe = 
whole] A [his = pern, Since D has totally three disjoint bases, the base of a 
matroid is derived as the union of three bases, {[loe = whole], [MI = In u 
{[loe = whole], [M2 = In u {[loe = whole], [his = perno 3 

We can also derive the intersection of three bases, which corresponds to the 
core of reducts as: {[loe = wholen. 4 

3These three bases correspond to redl.lcts defined in rough set theory [15]. 
4These discussions suggest that the nature of AQ algorithm should be captured by the 

concepts of rough set theory. 
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It is also notable that each Dk has exactly one independent set J(Dk). There
fore the whole AQ algorithm is equivalent to the greedy algorithm for acquir
ing a set of bases of AQ matroid, denoted by {.1(Dk)}. Furthermore, since 
the independent test depends on the calculus of indiscernible sets, is less than 
O(p(M) * n 2 ) where n denotes a sample size, the computational complexity is 
given as follows: 

Theorem 5 Assume that we do not use constructive generalization. Then the 
complexity of A Q algorithm is less than 

O(mn2 p(M)) + mlogm), 

where p(M) is equal to a rank of matroid M, m is equal to the number of the 
elements in the matroid, lEI. 0 

Hence the computational complexity of AQ depends mainly on the number of 
the elements of a matroid, since it increases exponentially as the number of the 
attribute-value pairs grows large. 

5.2 Pawlak's Matroids 

On the other hand, since p(M) is the number of independent variables, m -
p(M) is equal to the number of dependent variables. From the concepts of the 
matroid theory, if we define a dependent set I as shown below, then M(E,I) 
satisfies the condition of the dual matroid of M(E, .1). 

Theorem 6 Let B denote the base of a matroid such that [X]B = D k· If 
we define an independent set I(Dk) as {A(Rj )} which satisfies the following 
conditions: 

1) B -< R j , 

2) [X)B = [X)Rj' 
3) VRi s.t. B -< Ri ::::5 Rj , Dk = [X)B = [XlRj = [XlRi7 

then M(E,I(Dk)) is a dual matroid of M(E, .1(Dk)), and we call M(E,I(Dk)) 
a Pawlak's matroid. 0 

The first condition means that a base is a maximal independent set and each 
relation forms a superset of this base. And the second condition is the char-
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acteristic which satisfies all of these equivalence relations. Finally, the third 
condition denotes the relationship between the equivalence relations: Any re
lation Ri which forms a subset of A(Rj) must satisfy [X]Ri C [X]R;. Note that 
these conditions reflect the conditional part of reduction method. For example, 
let us take R2 in Section 2.1 as an example. In this case, R2 is equal to a positive 
region of a class "m.c.h.". If we describe R2 as R2 = R3 A [jolt = 0] A [nau = 0], 
where R3 is equal to [loc = whole)A[nat = per)A[his = per)A(prod = O)A[MI = 
1] A [M2 = 1], [jolt = 0], and [nau = 0], R2 = R3 A [jolt = 0] A [nau = 0], then 
we get the following result: {2, 1O} = [X]R2 = [X]R3/\[jolt=O] = [X]R3. Therefore 
[jolt = 0], [nau = OJ, and [jolt = 0] A [nau = 0] are the elements of a Pawlak's 
matroid. 

As shown above, the algorithm of Pawlak's method is formally equivalent to 
the algorithm for the dual matroid of AQ matroid, and the computational 
complexity of Pawlak's method is less than O((p- p(M)) * (n2 +2n) +mlogm). 
Hence, we get the following theorem. 

Theorem 7 The complexity of the Pawlak's method is less than 

O(mn2 (p - p(M))) + mlogm), 

where p is a total number of attributes, p(M) is equal to a rank of matroid M, 
and m is equal to the number of the elements in the matroid, lEI_ 0 

From these consideration, if p(M) is small, AQ algorithm performs better than 
Pawlak's one under our assumption. 

6 ID3 GREEDOIDS 

6.1 Induction of Decision Trees and 
Greedoids 

Induction of decision trees, such as CART[2] and ID3[16] is another inductive 
learning method based on the ordering of variables using information entropy 
measure or other similar measures. This method splits training samples into 
smaller ones in a top-down manner until it cannot split the samples, and then 
prunes the overfitting leaves. 
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As to pruning methods, we discuss independently later, so here we briefly il
lustrate splitting procedures. For simplicity, let us consider classification of 
"m.c.h." in the example shown in Table 1. Then positive samples consist 
of {1,2,1O}. For each attribute, the splitting procedure calculates information 
gain, which is defined as the difference between the value of entropy measure (or 
other similar measures) before splitting and the averaged value after splitting. 
And the procedure selects the attribute which gives the maximum information 
gain. 

For example, since positive examples consist of three elements, the root en
tropy measure is equal to: -130 log2 130 = 0.5211. In the case of an attribute 
"Ml", the number of positive examples in a sample which satisfy [Ml = 
1] is three of four, and that of positive examples in a sample which satis
fies [Ml = 0] is zero of six. So, the expected entropy measure is equal to: 
-1~(~log2~) - 160 (010g20) = 0.1245. Because 010g20 is defined as 0, informa
tion gain is derived as: 130 log2 130 - 1~ (~ log2 ~) = 0.5211- 0.1245 = 0.3966. On 
the other hand, in the case of an attribute "location" , since the excepted entropy 
measure is equal to: - 1~ (:t log2 :t) - 130 (~ log2 ~) - 130 (0 log2 0) = 0.3170, infor
mation gain of this attribute is equal to: 0.5211 - 0.3170 = 0.2041. Therefore, 
"Ml" is better for classification at the root. In fact, "Ml" is the best attribute 
for information gain, and the training samples are split into two subsamples, 
one of which satisfies "Ml=I" and the other of which satisfies "Ml=O". Then 
these processes are recursively applied to subsamples. In this case, we get the 
following small tree for classification of "m.c.h.": 

1 
[Ml=I)(m.e.h.: 3 non - m.e.h. : 1) 

[loc=whole)· ..... (m.e.h. : 2) ! ~O'~O'~ul,",I""" (m.e.h .. , 1 non ~ m.e.h. , 1) 

[MI-0)(m.e.h . . 0 non - m.e.h . . 6) 

"Non-m.c.h." denotes the negative samples with respect to "m.c.h." For each 
node, (m.c.h.: p non-m.c.h.: n) denotes the number of elements of positive 
examples and that of negative examples. In other words, p "m.c.h." samples 
belong to that node, while n negative samples are also included. Note that, 
in this induction, [his = per) and[M2 = 1) are never derived without using 
surrogate split (2), while both attribute-value pairs are obtained by AQ method. 

The main characteristic of the bases derived by ID3 is the following. First, the 
attribute-value pairs are totally ordered, and in each branch, which corresponds 
to each base for D j , subsets of each branch have to preserve this order. For 
example, let a base be composed of binary attributes, say, {a, b, c}, in which 
ID3 the algorithm chooses these attributes from the left to the right. Then 
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the allowable subsets are: {a}, {a, b}, and {a, b, c}. Second, each base has the 
common attribute at least in the first element. For example, if one base is 
composed. of {a,b,c}, then another base is like {a,b,c}, or {a,d,c}, where a 
denotes a complement of a. 

Although these global constraints, especially the first one, decreases the search 
space spanned by attribute-value pairs, those make a family of subsets lose the 
characteristics of a matroid. In fact, a set of the subsets derived by ID3 method 
does not satisfy the axiom of a matroid. It satisfies the axiom of a greedoid[21] , 
which is a weaker form of a matroid, defined as follows. 

Definition 10 The pair M(E,:1) is called a greedoid, if 

1) E is a finite set, 
2) 0 E Fe 2E , 

3) X E F, there is an x E X such that X - x E F, 
4) X, Y E F, card(X) = card(Y) + 1 => (3a E X - Y)(Y U {a}) E:F. 

If X E .:1, it is called feasible, otherwise X is called infeasible. o 

Note that the third condition becomes a weaker form, which allows for the total 
ordering of elements. Because of this weakness, some important characteristics 
of matroids, such as duality, are no longer preserved. Hence ID3 has no dual 
method like AQ and Pawlak's method. However, since the optimality of the 
greedy algorithm is preserved, so we can discuss these characteristics in the 
same way. Using the above formulation, the search space for ID3 is defined 'as 
an ordered greedoid in the following. 

Definition 11 Let B denote the base of a matroid such that [X]B = Dk. If we 
define a feasible set K(Dk) as: {A(Rj )} which satisfies the following conditions: 

1) Rj ~ B, 
2) [X]B ~ [X]Rj' 
3) VRi s.t. Ri ~ Rj ~ B, D j = [X]B ~ [X]Rj C [X]Ri! 

where the equality holds only if R j = B, and if we demand that the each K(Dk ) 

should satisfy the following conditions: 

(1) for all Ri and Rl, Ri ~ Rl or Rl ~ Rj holds, 

(2) V K(Dq) and K(Dp), For all Rj E K(Dq) and Ri E K(Dp), 
if [X]R. n [xlRj =f. <p, then R j ~ R i , 
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then this set satisfies the definition of a greedoid. We call this type of greedoid, 
G(E,K.(Dk )), a ID3 greedoid. 0 

Note that each Dk has exactly one feasible set K(Dk)' For the above example 
where D = {2,10} as shown in Section 5, calK(D) = {[Ml = 1], [M1 = 
1]/\ [loc = whole]}. 

Therefore the whole ID3 algorithm is equivalent to the greedy algorithm for 
acquiring a set of bases of ID3 greedoid, denoted by {K(Dk)}. 

6.2 Computational Complexity of ID3 

As shown above, ID3 algorithm is also the greedy algorithm for deriving a 
base of a greedoid. However, the main feature of this algorithm is that two 
constraints to independent sets are given. This reduces the search space of 
independent sets, because the sets which satisfy the above two constraints are 
not so many. Here, we obtain the following theorem: 

Theorem 8 The complexity of ID3 algorithm is less than 

O(mn2 p(M)) + mlogm), 

where p(M) is equal to a rank of greedoid M,m is equal to the number of the 
elements in the greedoid, IFI. 0 

The difference in computational complexity between AQ and ID3 is the value 
of m. This difference is illustrated as follows. Let all attributes be binary and 
the total number of attributes be p. Then, for AQ, since the search space is 
spanned by the whole combination of attribute-value pairs, lEI is almost equal 
to 2P. On the other hand, the search space for ID3 is equal to 2P(M)+l - l. 
Therefore, if p(M) « p, then the computational complexity of ID3 is much 
lower than AQ. 

Hence, in many cases, this ID3 method is faster than the other two methods. 
However, it does not mean that ID3 performs well, because some optimal so
lutions will never be found by the two constraints to independent sets. They 
will not appear in the space of ID3 greedoid. This phenomenon sometimes 
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makes ID3 performs worse. For example, when training samples do not re
flect the importance of variable, that is, when some less important variables 
are given more weight than important ones, some relations between important 
ones can be never found. Therefore this fact explains one aspect that ID3 is 
more sensitive to training samples. 

7 OPTIMAL SOLUTIONS 

As discussed in the above section, when we adopt a weight function which is 
described as a monotonic function of apparent error rate, we obtain an op
timal solution which is the best for apparent error rate. Thus, in this case, 
Theorem 3 tells us that an optimal solution is obtained only when relations 
between training samples and attributes-value pairs satisfy the conditions of 
AQ matroid. 

However, this assumption is very strict, since apparent error rate depends on 
only given training samples. In practice, it is often violated by new additional 
training samples. For example, when in the old training samples, Ri -< R j 

implies [xlR; C [xlR;, additional samples cause the latter relation to be [xlR; = 
[xlR;. In other words, additional samples cause independent variables to be 
dependent. In this case, the former derived solution is no longer optimal to 
this weight function. This problem is also discussed from the viewpoint of 
predictive accuracy Cr.R; (D) defined in the following equation: 

card {([x]R; n D) U([xl R; n DC)} 
card {[xlR; U[xl R;} 

CR;ClR; (D) + (1 - cR;}aR; (DC), 

where CR; denotes the ratio of training samples to total population, aR; (D) 
denotes an apparent accuracy, and aR; (D) denotes the accuracy of classification 
for unobserved cases, [xl R; and DC. 

Therefore the value of CR; determines whether aR; (D) is suitable to predictive 
classification or not. On one hand, if cR; is near to 0, then Cr.R; (D) may be 
quite different from aR; (D). So, in this case, an optimal solution based on 
apparent accuracy is less reliable. On the other hand, if CR; is near to 1, then 
Cr.R;(D) may be equal to aR;(D). Thus, in this case, an optimal solution based 
on apparent accuracy is much reliable. As shown in the above formula, since 
cR; is dependent on sampling from total population, predictivity depends on 
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sampling from total population. Hence it is a very important factor whether 
sampling is good or not. 

The above formula also suggests that, if we have a weight function which is a 
monotonic function of predictive error rate, then we derive a base optimal to 
it. Unfortunately, it is impossible to derive such function, since we can only 
estimate predictive error rate. 

Two approaches discuss these functions: one is MDL function [18], and the 
other is Bayesian model [4], whose usefulness is ensured in their papers. Since 
MDL function can be viewed as one kind of Bayesian model, we focus on the 
latter model in this paper. Cestnik and Bratko discuss predictive accuracy 
insightfully [4] and they obtain the Bayesian formula as shown in Section 6. 
The above formula is rewritten as: 

A card [X]R; m oR(D)= oR(D)+ Pa· 
, card [X]R; + m' card [X]R; + m 

Therefore m corresponds to card [x]R; and Pa corresponds to oR; (DC), and 
Assistant Professional induces a tree optimal to this predictive accuracy. 

This result suggests that Assistant Professional calculates the best tree for 
predictive classification if suitable m and Pa are provided. In other words, this 
system is the best way in noisy domain. Interestingly, the report on MONK's 
problems supports this analysis [19]. In this report, it is reported that Assistant 
gains the best accuracy for deterministic DNF domain and noisy DNF domain. 
It is also notable that Assistant gets a good result even in non-DNF domain, 
the Monk's second problem. 

8 PRUNING, TRUNCATION AS 
GENERALIZATION 

Overspecialization, or overfitting consists of two factors. One is that the in
duced results perform worse when applied to future examples, and the other is 
that the induced result only covers small examples. As to the former factor, 
we discuss one possible solution in the above section: when we get a good esti
mator to predictive accuracy, the greedy algorithm calculates solutions optimal 
to predictive accuracy. However, this solution does not solve the latter prob-
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lem: to derive more general formulae which cover as many training samples as 
possible, such that the number of the formulae is as small as possible. 5 

From the viewpoint of covering, solutions derived by the above greedy algo
rithms do not always satisfy the condition of minimal covering problem. For
mally, let us consider a case when the training samples S consist of the union of 
[X]Ri (i E I), where Ri denotes the induced rule from training samples. Then, 
the minimal covering problem is to find a sub cover [X]Rj (j E J), where J ~ I, 
which has the property that IJI is a minimum. 

Unfortunately, we can not determine whether the number of the induced cov
ering, say k is minimal, since we do not know the cardinality of I, III. 

This problem is also described in our matroid framework. In the above defi
nition, since A(Ri) corresponds to a base of a matroid, the minimal covering 
problem is to find a subset L of UiEI2 A (R;). Because 2IA (Ri)1 is exponential to 
the number attributes, the computation will be intractable when IA(Ri)1 grows 
large, even if we confine the search space to the space spanned by independent 
sets. 6 

Since it is well known that the computational complexity of the minimal cov
ering problem is N P - complete [11], the best way is one of the two meth
ods: either we perform the exhaustive search for possible covering or we apply 
heuristic methods to get approximate solutions. 

9 MATROID THEORY AND 
COMBINATORIAL GEOMETRY 

It is well studied that matroid theory is closely related with combinatorial 
geometry. For example, nine different geometries can be constructed on a five
element set [21]. These geometries can be classified with respect to rank, which 
is equal to the cardinality of the base. Therefore, the algebraic structure of 
these geometries corresponds to that of matroids. 

5This problem is closely related with constructive generalization. However, we do not 
discuss this problem in this paper. Readers could refer to [14] for further discussion of 
constructive generalization. 

6If we deal with the whole attribute, the size of search space will be 21AI, where IAI denotes 
the number of total attribute-value pairs. 
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This means that we can also apply the above correspondence to AQ and 
Pawlak's matroids defined in Section 5. Let B 1j , B 2j , ... ,Bnj be bases of a 
AQ matroid which satisfies [X]Bij = D j . Then, B = Blj U B 2j U ... U Bnj is a 
union of the bases. If we regard a set B as a set of geometric points, then we 
can construct a geometry GB, based on the characteristics of these matroids, 
such as rank. Furthermore, if C = B 1j n B 2j n· .. n B nj , corresponding to core, 
exists, then this core can be viewed as a constraint on G B. 

For example, let us consider the database shown in Section 2. In this case, 
B for m.e.h. is equal to {[loc = whole]' [his = per], [MI = 1], [M2 = I]}. 
However, [MI = 1] and [M2 = 1] should be regarded as the same point, because 
[X][M2=1] = [X][Ml=l]' Thus, B is set to {[loc = whole]' [his = per], [MI = I]}, 
and we can construct a simple geometry on these three points, as shown in 
Fig. I(a). Furthermore, we have one constraint, because C is equal to {[loc = 
whole]}. 

This information on the constraint will be easy to see when a geometry structure 
is transformed into a geometric lattice shown in Fig. 1 (b). In this lattice, the 
bold characters denote partial sets which include C. Thus, those sets make a 
partial structure in the geometric lattice. 

Although the above example has only trivial structure because of rank-2, we 
have more interesting structure when rank 2: 3. For example, there are four 
possibilities when we consider a rank-3 geometry with five points, as shown in 
Fig.2. In this figure, any three-element subset, say {a, b, c}, can be a base of 
each matroid, when no constraint is imposed on these five-point geometries. In 
the same way as the above example, learning methods can check whether any 
constraint is available or not. 

In summary, rough classification and empirical learning methods can be viewed 
as a kind of method to construct finite point geometry. Furthermore, both 
AQ and Pawlak's method do not only calculate a geometric structure, but 
also calculate constraints on this geometry. It would be our future work to 
study precisely relations between AQ and Pawlak's matroids and combinatorial 
geometry. 
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Figure 1 Geometric Structure of the Small Example (Table 1) 

10 CONCLUSION 
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In this paper, we integrate the concepts of matroid theory with those of rough 
sets, which give us an excellent framework and enables us to understand the 
differences between AQ, Pawlak's method and ID3 clearly. Using this frame-
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Figure 2 Rank-3 Geometries of Five Points 

work, we obtain seven interesting conclusions from our approach. First, while 
AQ and Pawlak's method are equivalent to the greedy algorithm for finding 
bases of matroids, ID3 method calculates those of ordered greedoids. Second, 
AQ matroids are dual to Pawlak matroids. Third, the efficiency of AQ and 
Pawlak's method depends on the number of attributes, especially, indepen
dent variables. Fourth, the induced results are optimal to the training samples 
with respect to apparent accuracy. Fifth, in addition to the fourth conclusion, 
since a greedoid of ID3 has weaker structure than the other two methods, ID3 
method is the most sensitive to training samples, although its computational 
complexity is the lowest. Sixth, if we get a well-defined weight function for pre
dictive accuracy, then the solutions derived by the greedy algorithm would be 
optimal to prediction. Finally, seventh, we can also apply knowledge on combi
natorial geometry, because matroid theory is closely related with combinatorial 
geometry. 

Although these results were observed by some experimental results[l, 2, 13, 16], 
they have not yet been explained by formal theory. We feel that the extension 
of these approach can be applied to the extension of the above three original 
methods, such as POSEIDON(AQ16)[1], VPRS[24] and C4[17]. Thus, it would 
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be our future work to formalize these methods and to analyze the relationship 
between these existing algorithms by using our framework. 
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ABSTRACT 

21 
TOPOLOGICAL ROUGH 

ALGEBRAS 
Anita Wasilewska1 

Department of Computer Science, 
State University of New York, 
Stony Brook, NY, USA 11794 

It is known ([15]) that the propositional aspect of rough set theory is adequately cap
tured by the modal system 85. A Kripke model gives the approximation space (A,R) 
in which well formed formulas are interpreted as rough sets. Banejee and Chakraborty 
([1]) introduced a new binary connective in 85, the intended interpretation of which 
was the notion of rough equality, defined by Pawlak in 1982. They called the re
sulting Lindenbaum-Tarski like algebra a rough algebra. We show here that their 
rough algebra is a particular case of a quasi-Boolean algebra (as introduced in [4]). 
It also leads to a definition of a new classes of algebras, called topological quasi
Boolean algebras2 and topological rough algebras. We introduce, following Rasiowa 
and Bialynicki-Birula's representation theorem for the quasi-Boolean algebras ([4], 
[20]), a notion of quasi field of sets and generalize it to a new notion of a topological 
quasi field of sets. We use it to give the representation theorems for the topologi
cal quasi-Boolean algebras and topological rough algebras, and hence to provide a 
mathematical characterization of the rough algebra. 

IThis paper was initiated in November 1993 during the author's discussions with M. 
Banejee who also visited the Institute of Computer Science, Warsaw University of Technology, 
Warsaw, Poland. The research was supported by a Fulbright grant no. 93-68818 (1993-1994). 

2These observations and definition were introduced by A. Wasilewska in November 1993 
and hastily reported in [1], [2], and [3]. 
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1 INTRODUCTION 

We use here algebraic logic techniques to give a deeper mathematical mean
ing to the rough sets theory in general, and to the notion of rough equality, 
introduced by Pawlak in ([16]), in particular. 

It is difficult to establish who was the first to use the algebraic methods. The 
investigations in logic of Boole himself led to the notion which we now call 
Boolean algebra, but one of the turning points in the algebraic study of logic 
was the introduction by Lindenbaum,3 and in a slight different form by Tarski 
(in [23]) of the method of treating formulas, or equivalence classes of formulas 
as elements of an abstract algebra, called now the Lindenbaum- Tarski algebra. 

The main use of the Lindenbaum-Tarski algebra is to show the correspondance 
between logic and abstract algebras. The algebra corresponding to classical 
logic is, of course, Boolean algebra. Other non-classical logic algebraic studies 
were initiated by Stone (in [21]), Tarski (in [24]), and McKinsey and Tarski 
(in [14]), followed by Henkin ([5]) and Rasiowa and Sikorski ([17]). The in
vestigations of Tarski, McKinsey, Henkin, and Rasiowa led to what is now 
called algebraic models for intuitionistic, modal S4 and S5 logics, as opposed 
to Kripke models which were invented some 20 years later and applied to the 
intuitionistic and a variety of modal logics in [8]. 

Boolean and other algebras are fairly abstract structures. Their deeper math
ematical meaning is established by a proper representation theorem. The exis
tence of the representation theorem is always the first question one asks about 
a newly created algebra. The first representation theorem for Boolean algebras 
was established by Stone ( in [22]) and stated the following: 

Every Boolean algebra A is isomorphic to a field of sets. More exactly, A is 
isomorphic with a field of subsets of its Stone space S, which is a compact, 
totally disconnected Hausdorf space. 

The representation theorem, hence establishes a relationship between logic, 
algebra, set theory and topology. 

3 A. Lindenbaum was a prominent Polish mathematician who was killed by the Nazis dur
ing the Second World War, and whose various results were not published. It was McKinsey, 
a close collaborator of Tarski, who first (in [13]) called the method of treating the set of all 
formulas of propositional logic" an unpublished method of Lindenbaum explained to me by 
Professor Tarski". 
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In our work we use the algebraic logic techniques to link rough set theory, logic, 
abstract algebras and topology. In particular, we show that the notion of rough 
equality of sets leads, via logic and a Lindenbaum-Tarski like construction of 
an algebra of formulas, to a definition of new classes of algebras, called here 
topological quasi-Boolean algebras and topological rough algebras. We provide 
here the representation theorems for these new classes of algebras. In order to 
do so we proceed as follows: 

In section 2 we give a short overview of the work by Banerjee and Chakraborty 
([1]) leading to their definition of a rough algebra. Then we show that their 
rough algebra is a particular case of a quasi-Boolean algebra. The quasi
Boolean algebras are a slight generalization of de Morgan lattices, which have 
been introduced and examined in [9]. The quasi-Boolean algebras do not define 
a logic. They are a part of the theory of quasi-pseudo-Boolean algebras that 
are models for a constructive logic with strong negation ([10], [12], [26], [25]). 

In section 3 we introduce, justify, and discuss the notions of a topological quasi
Boolean algebra and of a topological rough algebra. We show that Bialynicki
Birula and Rasiowa's proof of a representation theorem for quasi-Boolean al
gebras ([4]) can be generalized, via MacKinsey and Tarski's proof for the topo
logical Boolean algebras ([14]), to our case. From that we get as a corollary the 
following mathematical characterization of the rough algebra. 

The rough algebra of Banerjee and Chakraborty is isomorphic with a topological 
rough-field of sets. 

2 ROUGH ALGEBRA AS A 
TOPOLOGICAL QUASI-BOOLEAN 
ALGEBRA 

Our work is based on Pawlak's definition of a rough equality ([16]), the work of 
Orlowska ([15]) and of Banerjee and Chakraborty ([1]). 

To make our paper self contained we review here some here basic definitions 
and explain the main points of Banerjee and Chakraborty's construction of the 
rough algebra. 
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Approximation space Let U be a non-empty set called a universe, and 
let R be an equivalence relation on U. The triple (U, 0, R) is called an 
approximation space. 

Lower, upper approximations Let (U, 0, R) and A C U. Denote by [u] 
the equivalence class of R. The sets 

IA = U{[u] E AIR: [u] C A}, 

CA = U{[u] E AIR: [u] n A f 0} 

are called lower and upper approximations of A, respectively. We use here a 
topological notation for the lower and upper approximation because of their 
topological interpretation and future considerations. 

Rough equality Given an approximation space (U, 0, R) and any A, E C U. 
We say that the sets A and E are roughly equal and denote it by A", RE if and 
only if IA = IE and CA = CE. 

Boolean algebra An abstract algebra (A, 1, 0, ~, n, u, -,) is said to 
be a Boolean algebra if it is a distributive lattice and every element a E A has 
a complement -,a E A. 

Topological Boolean algebra By a topological Boolean algebra we mean 
an abstract algebra (A, 1, 0, ~, n, u, -', I) where (A, 1, 0, ~, n, U,-,) 
is a Boolean algebra and, moreover, the following conditions hold: I(a n b) = 
Ian Ib, I a n a = I a, I I a = I a, and I1 = 1, for any a, b E A. 

The element I a is called a interior of a. The element -,I -.a is called a closure 
of a and will be denoted by Ca. Thus the operations I and C are such that 
ea = -.I-.a and Ia = -,C-.a. The element a is said to be open (closed) if 
a = Ia (a = Ca). 

Orlowska has shown in [15] that propositional aspects of rough set theory are 
adequately captured by the modal system S5. In this case a Kripke model 
gives the approximation space (A, 0, R) in which the well formed formulas are 
interpreted as rough sets. 

Following Orlowska result, Banerjee and Chakraborty introduced in [1] a new 
binary connective", in S5, the intended interpretation of which is the notion of 
the rough equality. I.e., they added to the standard set {U, n, -t, {:::}, -.,0, <>} 
of propositional modal connectives a new binary connective", defined in terms 
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of standard connectives as follows: for any formulas A, B (of the modal 85 
language), we write A f'V B for the formula ((DA ¢} DB)n(OA ¢} OB)). In 
the next step they have used this new connective to define a construction similar 
to the construction of Lindenbaum-Tarski algebra on the set of all formulas of 
85 with addition·al connective "'. Before describing their construction leading 
to the definition of the rough algebra, we include below a description of a 
standard construction of a Lindenbaum-Tarski algebra for a given logic. 

Lindenbaum-Tarski construction Given a propositional logic with a set 
:F of formulas. We define first two binary relations :::; and ~ in the algebra 
:F of formulas of the given logic as follows. For any A, B E F, 

A:::; B if and only if I- (A =? B), and 

A ~ B if and only if I- (A =? B) and I- (B =? A). 

Then we use the set of axioms and rules of inference of the given logic to prove 
all facts listed below. 

The relation :::; is a quasi-ordering in F. 

The relation ~ is an equivalence relation in F. We denote the equivalence 
class containing a formula A by [A]. 

The quasi ordering:::; on F induces an ordering relation on F / ~ defined as 
follows: [A] :::; [B] if and only if A:::; B. 

The equivalence relation ~ on F is a congruence with respect to all logical 
connectives. 

The resulting algebra with universe F / ~ is called a Lindenbaum-Tarski 
algebra. 

EXAMPLE 1 The Lindenbaum- Tarski algebra for classical propositional 
logic with the set of connectives {U, n, =?,....,} is the following. 

£7= (F/~, u, n, =?, -.), 

where the operations U, n, =? and are determined by the congruence 
relation ~ i.e. [A] U [B] = [(A U B)], [A] n [B] = [(A n B)], [A] =? [B] = 
[CA =? B)], ....,[A] = [....,A]. 
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We prove, in this case (see [17]) that the Lindenbaum-Tarski algebra is a 
Boolean algebra with a unit element V. Moreover, for any formula A, f- A 
if and only if [A] = V. 

EXAMPLE 2 The Lindenbaum- Tarski algebra for modal logic 84 or 85 
with the set of connectives {U, n, ::;., ..."D,O} is the following. 

£7 = ( F/::::::, U, n, ::;., ..." I, C), 

where the operations U, n, ::;. and ..." I, C are determined by the congruence 
relation :::::: i.e. [A] U [B] = [(A U B)], [A] n [B] = [(A n B)], [A]::;. [B] = 
[(A::;. B)], ...,[A] = [...,A], IA = [DA], and CA = lOA]. 

In the case of modal logic 84 the Lindenbaum-Tarski algebra (see [13], [14], [17]) 
is a topological Boolean algebra and in the case of 85 it is topological Boolean 
algebra such that every open element is closed and every closed element is open. 
Moreover, in both cases, for any formula A, f- A if and only if [A] = V. 

Banerjee, Chakraborty construction We define a new binary relation :::::: 
on the set F of formulas of the modal 85 logic as follows. For any A, B E F, 

A :::::: B if and only if A....., B, i.e. 

A:::::: B if and only if f- «DA ¢:} DB) n (OA ¢:} OB)). 

We prove that the above relation ::::::, corresponding to the notion of rough 
equality is an equivalence relation on the set F of formulas of 85. 

We define a binary relation ::; on F /:::::: as follows. 

[A] ::; [B] if and only if f- «DA::;. DB) n (OA::;. OB)). 

We prove that ::; is an order relation on F /:::::: with the greatest element 
1 = [A], for any formula A, such that f- A, and with the least element 
0= [Bl, such that f- ...,B. 

We prove that :::::: is a congruence relation with respect to the logical connec
tives ..." 0,0, but is not a congruence relation with respect to ::;., nand 
U. 

We introduce two new operations U and n in F /:::::: as follows 

[A] n [B] = [(A n B) U (A n OA n OB n ...,0 (A n B))], 

[A] U [B] = [(A U B) n (A U DA U DB U ...,D(A U B))]. 
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We call the resulting structure a rough algebra. 

The formal definition of the rough algebra is hence the following. 

Rough algebra An abstract algebra 

n = (F/~, U, n,"", I, C, 0, 1), 

such that the operations U, n are defined above and the operations ..." I, C 
are induced, as in the Lindenbaum-Tarski algebra, by the relation~, I.e . 
...,[A] = [...,A], IA = [DA], and CA = lOA] is called a rough algebra. 

Properties of the rough algebra In [3] many important properties of the 
rough algebra were were proved. They were also reported in [1]. We cite here 
only those which are relevant to our future investigations. 

PI (F/~, :::;, U, n,o, 1) is a distributive lattice with 0 and 1. 

P2 For any [AJ, [B] E F/~, ,([A] U [BD = (,[A] n ,[BD, 

P3 For any [A] E F/~, ,...,[A] = [A]. 

P4 The rough algebra is not a Boolean algebra, i.e. there is a formula A of a 
modal logic 85, such that ,[A] n [A] =I- 0 and ,[A] U [A] =I- 1. 

P5 For any [A], [B] E F/~, I([A] n [BD = (I[A] n I[BD, I[A] :::; [A], lI[A] = 
I[A], I1 = 1,and GI[A] = I[A], where G[A] = ...,[...,[A]. 

2.1 Questions and observations 

The above, and other properties of the rough algebra proved in [3] lead to some 
natural questions and observations. 

QI By the property P4, the rough algebra's complement operation (, ) is not 
a Boolean complement. Let's call it a rough complement. We can see that 
the rough complement is pretty close to the Boolean complement because 
the other de Morgan law ...,([A] n [B]) = (,[A] n ,[BD holds in the rough 
algebra, as well as the very Boolean laws ,I = 0 and ,I = O. So what 
kind of a complement is the rough complement? 
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Q2 The rough algebra is not, by P4, a Boolean algebra, so which kind of 
algebra is it? 

Q3 Has such an algebra been discovered and investigated before? 

OBSERVATION 1 A complement operation with similar properties to the 
rough complement was introduced in 1935 by Moisil and lead to a definition 
of a notion of de Morgan Lattices. De Morgan lattices are distributive lattices 
satisfying the conditions P2 and P3. They were investigated in [9], [7], [6]. 

OBSERVATION 2 In 1957 Bialynicki-Birula and Rasiowa have used the de 
Morgan lattices to introduce a notion of a quasi-Boolean algebra. They defined 
(in [4]) the quasi-Boolean algebras as de Morgan lattices with unit element 1. 

The formal definition of the quasi-Boolean algebras is the following. 

Quasi-Boolean algebra (Bialynicki-Birula, Rasiowa, 1957) An abstract 
algebra A = (A, U, n, ""', 1) is called a quasi-Boolean algebra if (A, U, n, 1) 
is a distributive lattice with unit element 1 and for any a, b E A, ""' (a U b) = 
("" an "" b) and ""'''"' a = a. 

One can easily prove that in every quasi-Boolean algebra the zero (0) element 
exists. From that and properties PI - P4 we get the following fact. 

FACT 1 
algebra. 

The rough algebra is not a Boolean algebra, but is a quasi-Boolean 

OBSERVATION 3 The property P5 tells that the operations I and C of the 
rough algebra (F/ ~, U, n,""', I, C, 0, 1) fulfill the axioms of the topological 
Boolean algebra. 

DEFINITION 1 (Topological quasi-Boolean algebra) 

An algebra (A, n, U, "", 1, 1) is called a topological quasi-Boolean algebra 
if (A, U, n,""', 1) is a quasi-Boolean algebra and for any a,b E A, I(anb) = 
IanIb, Iana=Ia, IIa=Ia, andI1=1. 

The element I a is called a quasi-interior of a. The element "" I "" a is called 
quasi-closure of a. It allows us to define in A an unary operation C such 
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that Ca ='" I '" a. We can hence represent the topological quasi-Boolean 
algebra as an algebra (A, n, U, "', I, C, 0, 1) similar to the rough algebra 
(P/~, U, n,"", I, C, 0, 1). From P4 we immediately get the following. 

FACT 2 A rough algebra n = (PI ~, U, n,"', I, C, 0, 1) is a topological 
quasi-Boolean algebra. 

3 TOPOLOGICAL ROUGH ALGEBRAS 

The property P5 of the rough algebra tells us also that the operations I and C 
fulfill an additional property: for any [A] E P/~, CI[A] = I[A]. This justifies 
the following definition. 

DEFINITION 2 (Topological rough algebra) A topological quasi
Boolean algebra (A, n, U, "', I, C, 0, 1) such that/or any a E A, CIa = la, 
is called a topological rough algebra. 

Note that the class of all topological quasi-Boolean algebras, and the class of 
all topological rough algebras are equationally definable. 

Directly from above we get the following answer to the question Q3. 

FACT 3 The rough algebra (P/~, U, n,"', I, C, 0, 1) is a topological 
rough- algebra. 

As we have said in the Introduction, one of the first questions one asks about a 
new algebra, or classes of algebras, is the existence and form of the representa
tion theorem. This is a question about a deeper mathematical meaning of the 
newly created abstract algebras. We are going to introduce here all notions and 
steps which lead to the understanding of meaning, complexity and beauty of 
the representation theorem (and of its proof). We are not including the proof 
here. It is quite long and technical and will be published separately. Since the 
first question (QI) we have asked here about the rough algebra was to pro
vide some characterization of its complement operation, which we have called 
a rough complement, we will start with the mathematical characterization of 
this notion. 
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The OBSERVATION 1 and FACT 1 provided already some characterization 
of the rough complement, namely that it is a quasi-Boolean complement. We 
use and extend here the 1957 work of Bialynicki-Birula and Rasiowa from [4] 
to characterize further the rough complement, the topological quasi-Boolean 
algebras, and the rough algebras. 

Let A be a non-empty set. We define after [4] the following notion. 

Involution Any mapping g: A -+ A such that for all a E A, g(g(a)) = a 
is called an involution. Clearly, every involution is a one-one mapping from A 
onto A. 

Let Q(A) be a non-empty class of subsets of A, containing A and closed un
der set-theoretical union and intersection, and under the operation '" defined 
as follows: for any X E Q(A), '" X = A - g(X). It is proved in [4] that 
(Q(A), A, U, n, "') is an example of a quasi-Boolean algebra. The quasi-Boolean 
algebra is a particular case (when the topology is given by the identity oper
ation, i.e. when for any a E A, I a = a) of the topological quasi-Boolean 
algebra. 

This justifies the following definition. 

DEFINITION 3 (Rough complementation) Given a non empty set A 
and an involution 9 on A. We call the operation'" X = A - g(X) a rough 
complementation of sets. 

DEFINITION 4 (Quasi-field of sets) Given a non empty set A and the 
rough complementation", in A, we call a structure (Q(A),A,U,n,"') a quasi
field of subsets of A. 

The representation theorem for the quasi-Boolean algebras says that quasi
fields of sets are typical examples of quasi-Boolean algebras (see [4], [20]), i.e. 
that the following holds. 

Representation theorem Every quasi-Boolean algebra is isomorphic to a 
quasi-field of certain open subsets of a topological, compact To space. 

We follow here basic notions of the algebraic logic, where the topological space 
is defined as follows. 
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Topological space A set A is said to be a topological space if with every 
X C A there is associated a set I X C A such that the following conditions are 
satisfied: for any X, YeA, I(XnY) = IXnIY, IX c X, IIX = X, IA = A. 
The operation I is called the interior operation. The topological space is often 
written as (A, I). 

Given a topological space (A,I), then (Q(A),A,u,n,,,,-,,I) where "'-' is rough 
complement is a topological quasi-Boolean algebra. Clearly, every sub algebra 
of this algebra is also a topological quasi-Boolean algebra. This justifies the 
following definitions. 

DEFINITION 5 (Topological quasi-field of sets) Given a topological 
space (A,I) and a quasi-field of sets (Q(A),A,u,n,,,,-,). We define the closure 
operation C as CX ="'-' I "'-' X and call a structure (Q(A), A, U, n, "'-', I, C) 
a topological quasi-field of sets or, more precisely, a topological quasi-field of 
subsets of A. 

DEFINITION 6 (Topological rough-field of sets) 

A topological quasi-field of sets (Q(A), A, u, n, "'-', I, C) is called a topo
logical rough-field of sets if additionally, for any set X E Q(A), CIA = I A. 

The most important notion leading to the proof of the representation theorem 
for any algebra are the notions of a filter and ideal (see [21], [20]). 

Filter A non-empty set 'V of elements of universe A of an algebra with two 
binary operations nand u is said to be a filter in A provided that, for any 
elements a, bE A, an b E 'V if and only if a E 'V and bE 'V. 

Ideal A non-empty set to of elements of A is said to be an ideal in A provided 
that, for any elements a, b E A, a U b E to if and only if a E to and b E to. 

A filter (ideal) is called maximal in A if it is proper and is not any proper subset 
of a proper filter (ideal) in A. 

We adopt Rasiowa's definition of a I-filter ([20]) to our purposes, i.e. we adopt 
the following definition. 
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DEFINITION 7 (Rough filter) A jilter V' (ideal tl) in a topological 
quasi-Boolean algebra (A, n, U, "', I, C, 0, 1) is called a rough filter (rough 
ideal) provided 

a E V' implies that I a E V' for every a E A. 

Then we show that all major properties of Rasiowa's I-filters hold for the 
rough-filters, in particular we show the following. 

FACT 4 (Maximal rough filter) For every element a # 0 in A there ex
ists a maximal rough jilter V' in A, such that a E V'. 

Given a topological quasi-Boolean algebra (A, n, u, "', I, C, 0, 1), let now 
put, for any set SeA, 

We prove the following duality property. 

Duality If V' is a rough maximal filter in a topological quasi-Boolean algebra, 

the the set tl is a rough maximal ideal. 

Then we combine the techniques of Stone ([21]), Rasiowa ([19]) and Bialynicki
Birula and Rasiowa ([4]) and prove that the following holds. 

THEOREM 1 (Representation theorem) For every topological quasi
Boolean algebra (topological rough algebra) A there exists a monomorphism h 
from A into a topological quasi-jield (rough-jield) of sets of a topological space 
A. 

FACT 5 The rough algebra n = (F/:::::, U, n, -', I, C, 0, 1) is isomorphic 
with a topological rough-jield of sets. 
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4 SUMMARY 

We have shown here that Pawlak's notion of a rough equality of sets leads via 
work of Banerjee and Chakraborty to the definition of two classes of abstract 
algebras. These algebras generalize McKinsey and Tarski notion of a closure 
algebra (named here after [11], [19], [20], a topological Boolean algebra) and 
Bialynicki-Birula and Rasiowa notion of a quasi-Boolean algebra. We have also 
shown that it is possible to formulate and prove proper representation theorems 
for those classes of algebras. We have also obtained, as a particular case of those 
general results, a deeper mathematical characterization of the notion of rough 
equality. 
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Normal disjunctive form of formulas, 

254 
Normal rough set models, 71 
NP-complete problems, 116 
NSERC Grants Information System, 

205-207 
Null values, 16-17, 39 

Observable worlds, 131-132 
O-Btree,38 
Operant Test Battery (OTB), 170-171 
Optimal costs, 281 
Optimization, feature extraction by, 

280-281 
Optimization criterion, 374-375 
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P4, 417-418, 419 
P5,418 
Paritioning, 154 
Pattern recognition, 260 
Pawlak's Consistent Rules, 385, 386, 

387,401,406,407-408 
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P-upper approximations, 144 
Pure rough control, 82 

Q-elementary sets, 154 
Quantitative rules, 202, 203 
Quasi-Boolean algebras, 411, 413-419, 

420-421 
topological, 418, 422 
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Sub-Boolean algebras, 310 
Subset networks, 333-335 
Subset tables, 333-335 
Sum of distribution, 119 
Superfluous attributes, 114, 214 
5-upper approximations, 142 
Symbolic graphs, 126-128, 135-136 
Synonyms, 93, 95,97, 98 
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