ArticlePDF Available

Abstract and Figures

One of the most important families of Iranian flora is Apiaceae (Umbelliferae). Most of the species of this family are aromatic plants and rich in essential oils with diverse structures. In the present review, the essential oil composition of 63 genera comprising 141 Apiaceae (66.4% native 33.6% endemic) are summarized.
Content may be subject to copyright.
Send Orders for Reprints to reprints@benthamscience.net
Current Organic Chemistry, 2020, 24, 1-101 1
REVIEW ARTICLE
1385-2728/20 $65.00+.00 © 2020 Bentham Science Publishers
Review of the Essential Oil Composition of Iranian Endemic and Native Taxa of
Apiaceae (Umbelliferae)§
Maryam Akaberi1, Zahra Tayarani-Najaran2, Iraj Mehregan3, Javad Asili1, Amirhossein Sahebkar4,5,6,
Mohammad Hassanzadeh-Khayyat7.* and Seyed Ahmad Emami1,8,*
1Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; 2Pharmacological
Research Center of Medicinal Plants, Department of Pharmacodynamics & Toxicology, School of Pharmacy, Mashhad University of
Medical Sciences, Mashhad, Iran; 3Department of Biology, S ciences and Research b ranch, Islamic Azad University, Tehran, Iran;
4Halal Research Center of IRI, FDA, Tehran, Iran; 5Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad
University of Medical Sciences, Mashhad, Iran; 6Neurogenic Inflammation Research Center, Mashhad University of Medical Sci-
ences, Mashhad, Iran; 7Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, School of Pharmacy, Mash-
had University of Medical Sciences, Mashhad, 91775-1365, Iran; 8
Department of Traditional Pharmacy, School of Pharmacy,
Mashhad University of Medical Sciences, Mashhad, Iran
A R T I C L E H I S T O R Y
Received: December 04, 2019
Revised: March 02, 2020
Accepted: April 04, 2020
DOI:
10.2174/1385272824999200513103632
Abstract: One of the most important families of Iranian flora is Apiaceae (Umbelliferae). Most of the species
of this family are aromatic plants and rich in essential oils with diverse structures. In the present review, the
essential oil composition of 63 genera comprising 141 Apiaceae (66.4% native 33.6% endemic) is summarized.
§Dedicated to Doctor Valiallah Mozaffarian on the occasion of his 66th birthda y.
Keywords: Apiaceae, Iran, Umbelliferae, volatile oil, monoterpenes, sesquiterpenes, phenylpropanoids.
1. INTRODUCTION
Iran is a country in Southern and Western Asia. It is the 18
th
largest country in th e world in terms of area at 1,648,195 km2. Iran
is a country of particular geopolitical significance owing to its loca-
tion in the Middle East and central Eurasia. It is the habitat of nu-
merous plant species, owing to a great v ariety of climate. Iran's
climate ranges from arid or semiarid, to subtropical along the Cas-
pian coast and the northern forests (Fig. 1). In Iran , there are nearly
190 families of vascular plants, including 1,215 genera. The spe-
cies, subspecies, varieties, and hybrids found thus far in Iran
amount to 7,576 (almost 6,417 species, 611 subspecies, 465 varie-
ties, and 83 hybrid s), out of which 2,324 plant species are endemic
to the country [1, 2].
One of the most important families of Iranian flora is Apiaceae
Lindl. (Umbelliferae Juss.). The plant family is divided into 3 sub-
families: 1) Hydrocotyoideae 2) S aniculo ideae and 3) Apioioideae
and consists of about 434 genera and 3,780 species comprising of
aromatic, usually herbs, less often shrubs or trees. Stems usually
hollow in intermodal region, with secretory canals.
The leaves are usually pinnate, ternate, or decompounds, rarely
palmate, or phyllodinous, spiral, with a broad sheathing base, stipu-
*Address correspondence to this author at the Halal Research Center of IRI, FDA,
Tehran, Iran; Biotechnology Research Center, Pharmace utical Techno logy Institute ,
Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation
Research Cente r, Ma shhad Univer sity o f Medical Sciences, Mashhad, Iran;
E-mail: amir_saheb2000@yahoo.com
lar flanges sometimes present. The inflorescence is usually a com-
pound umbel often with subtending involucral bracts, sometimes a
head or simple umbel or reduced to a single flower or dichasium.
The flowers are small, bisexual [marginal flowers sometimes ster-
ile], actinomorphic, epigynous. The calyx consists of 5 sepals,
which may be reduced or absent. The coroll a is formed by 5 (rarely
0) petals, often bifid at the apex with an incurved point, all equal in
size or outer petals larger than inn er (radiant), white, yellow, yel-
lowish-green, pale blue or pink. Stamens 5. Carpels (l-) 2; ovules
pendant, 1 per loculus; styles 2, usually with enlarged base (stylo-
podium). Fruit dry, consisting of (1-) 2 indehiscent, terete or later-
ally or dorsally compressed carpel s separated by a narrow or broad
commissure, glabrous or with hairs, scales, vesicles, bristles or
spines; carpels usually adnate to a simple or divided axis (carpo-
phore) and separating when mature (carpophore occasionally ab-
sent); each mericarp usually with 5 prim ary and often 4 secondary
longitudinal ridges; ridges sometimes winged or crested, separated
by valleculae; resin canals (vittae) almost always present.
The Apiaceae have a worldwide distribution. Economically im-
portant members include a number of food, herb, and spice plants.
However, many are extremely poisonous. The Apiaceae are distinc-
tive in being herbs, with sheathing leaves (compound or simple,
often decompound), the inflorescence usually an involucrate com-
pound umbel with actinomorphic flowers having a 2-carpellate and
2-loculate, inferior ovary, each carp el with one, axile-apical, pendu-
lous ovule, the fruit a schizocarp of m ericarps [3-5]. Constituents of
the family other than volatile oils and resins, include furo coumar-
2 Current Orga nic Chemistry, 2020, Vol. 24, No. 00 Akaberi et a l.
ins, choromono-coum arins, monoterpenes and sesquiterpen es,
triterpenoid saponins and acetylenic compounds. Alkaloids occur
but are rare [6].
The Apiaceae family in Iran has 122 genera; and 295 species
[2]. Mo reover, it has 11 genera (Alococarpum, Azilia, Demavendia,
Dicyclophora, Haussknechtia, Kalakia, Kelussia, Lomatopodium,
Mozaffariania, Opsicarpium, Scaligera), 122 species, 4 subspecies,
3 varieties and 2 forms which are endemic to the country [1]. Genus
Ferula, with 34 species, is the largest genus of this family in Iran [7]
(see Tables 67 and 68 for th e name and basionym of the Apiaceae
plants in Iran).
There has been extensive research on the various aspects of this
family. However, in this article different studies on volatile oils of
Iranian species from the Apiaceae family will be reviewed. The
genera and species are presented in alphabetic order.
One of the most important constituents of Apiaceae is essential
oil. In Apiaceae, six groups of compounds compose the constituents
of essential oils namely: monoterpenes, monoterpenoids (oxygen-
ated monoterpen es), sesquiterpenes, sesquiterpenoids (oxygenated
sesquiterpenoids), phenyl propanoids, and miscellaneous com-
pounds. The strctures of these compounds are shown in Fig. (4 -8)
[8].
1.1. Alococarpum H. Ried l & Kuber
Alococarpum is a monotypic genus related to Prangos. The
plants belonging to this genus, being endemic to Iran, are branched,
perennial herb with ternatisect leaves. Umbels have few rays, and
calyx is teeth recurved, lanceolate, and tomentose. Petals are ovate-
lanceolate, pubescent on the outer surface, yellow , and are reflexed
at apex. While outer flowers are female and fertile, inner ones are
male, sterile, or hermaphrodite. Fruit is subsessile and oblong-
ovate; mericarps have 5 equal ribs. Stylopodium is compressed and
undulate at margins. Style is elongate and longer than stylopodium
[1] [4] [7]. A summary of the composition of the oils of Iranian
Alococarpum species can b e seen in Table 1 .
Fig. (1). Geographic map of Iran.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 3
1.2. Amirkabiria Mozaff.
Amirkabiria is an invalid name of Kelussia Mozaff. (see Kelus-
sia Mozaff.). A summary of the composition of the oils of Iranian
Amirkabiria species can be seen in Table 2.
1.3. Ammi L.
Ammi consists of 3 or 4 species of annual or biennial herbs dis-
tributed in the Mediterranean region to west Asia. Leaves are 1-3-
pinnate with obovate, elliptic to linear-filiform lobes. Bracts are
pinnatisect, and bracteoles are usually simple. Petals are white or
yellow; outer petals are larger than inner ones. Fruits are slightly
compressed dorsally and glabrous; mericarps are oblong; dorsal and
lateral ridges are filiform and prominent; dorsal vittae is solitary
and commissural is 2 [4] [11] [12]. Two species of the genus are
found in Iran [7]. A summary of the composition of the oils of Ira-
nian Ammi species can be seen in Table 3.
Table 3. Ammi species oils.
Species
Sample origin
Method( s) of
analysis
Identified
Main components
Ref.
1-A. copticum L.
Mountains of
Fars Province
GC and
GC/MS
139 (100%)
Thymol (64.6%),
linoleic acid
(13.6%),
hexadecanoic acid
(9.7%)
13
2- A. copticum
L.
National Botanical
Garden of
Iran (Tehran Prov.)
GC and
GC/MS
9 (99.9%)
Thymol (37.2%),
ρ-cymene (32.3%),
γ-terpinene (27.3 %)
14
3- A. copticum
L.
Barij Essen ce Pharma-
ceutical Company,
Kashan (Isfahan Prov.)
GC and
GC/MS
20 (99.5%)
Thymol (45.9%),
γ-terpinene (20.6%),
o-cymene (19%),
ethylene methacrylate (6.9%)
15
4-A. copticum L.
Sabzevar (Khorasan
Razavi Pr ov.)
GC and
GC/MS
44 (91.6%)
Hexadecanoic acid (27.5%), ethyl
linoleate (8.5%),
6-methyl-α-ionone (8.0%),
isobutyl
phthalate (5.8%),
α-cadinol (4.7%), germacrene D
(4.3%),
δ-cadinene (3.5%)
16
Table 3. c ontd…
Table 1. Alococarpum species oils.
Species
Sample origin
Method( s) of
analysis
Identified
Main components
Ref.
1- A. erianthum
(DC.) H. Riedl &
Kuber *
Tabriz-Babaghi (Azerbai-
jan Prov.)
GC and
GC/MS
21 (99.2%)
α-Pinene (46.5%)
and limonene
(10.1%)
9
*endemic to Iran
Table 2. Amirkabiria species oils.
Species
Sample origin
Oil yield
(%)
Method( s)
of analysis
Identified
Main components
Ref.
1- A. odo ratissima
Mozaff.*
Mountains of Chaharma-
hal va Bakhtiari province
Not stated
GC/MS
5 (89.0%)
Butylyd in dihydrofetalide
(82.1%)
10
*endemic to Iran
4 Current Orga nic Chemistry, 2020, Vol. 24, No. 00 Akaberi et a l.
Species
Sample origin
Method( s) of
analysis
Identified
Main components
Ref.
5- A. copticum L.
Baluchistan (Sista n va
Baluchistan Prov.)
GC/FID and GC
MS
19 (99.8%)
Thymol (67.4%),
ρ-cymene (17.9%),
γ-terpinene (11.3%)
17
6- A. copticum L.
Mountains of Mazan-
daran province
GC/MS
9
Thymol (42.16%),
γ-terpinene (31.49%), ρ-cymen
(23.29%)
18
7- A. visnaga L.
(Lam.)
National Botanical
garden (Tehran Prov.)
GC and GC/MS
21 (96.2%)
cis-Pinene hydrate
(42.8%), methyl
octadecanoate (14.7%),
α-terpinene (9.2%),
trans- thujen e (5.3%)
19
1The percentages are described as v/w, otherwise specified as w/w.
1.4. Anethum L.
Anethum genus, being a monotypic genus, is an annual herb dis-
tributed in the west Asia. Leaves are 3-5-pinnate with long filiform
lobes. Bracts and bracteoles are absent. Sepals are absent. Petals are
yellow, not radiant. Fruit is ellipsoid, strongly dorsally compressed,
and glabrous. P rimary ridges are slender, prominent, and laterally
winged while the secondary ridges are absent. Vittae are solitary.
Stylopodium is conical, fluted at base [4] [11] [12]. One species of
the genus is found in Iran [7]. A summary of the composition of the
oils of Iranian Anethum L. species can be seen in Table 4.
Table 4. Anethum L. species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- A. graveolens
L. 4
Research
Farm of the
University of
Zanjan
(Zanjan Prov.)
(0.4- 0.7)
Not
stated
Not
stated
Not
stated
20
2- A. graveolens
L. 5
Research
Farm of the
University of Zanjan
(Zanjan Prov.)
(0.9-2.2)
Not stated
Not
stated
Not
stated
20
3- A. graveo lens
L. 6
Research
Farm of the
University of
Zanjan
(Zanjan Prov.)
(1.8-2.3)
Not stated
Not
stated
Not
stated
20
4- A. graveolens
L.
Azerbaijan Medical
Plants Research Center,
(Azerbaijan Prov.)
Not
stated
GC/MS
5 (60.7%)
Carvone (20.3%),
α-phellandrene
(18.3%),
limonene (16.8%)
21
5- A. graveolens
L.7
Karaj
(Alborz Prov.)
0.2
GC and
GC/MS
10 (83.2%)
α-Phellandrene
(56.1%),
limonene (23.8%)
22, 23
6- A. graveolens
L.8
Karaj
(Alborz Prov.)
2.4
GC and
GC/MS
11 (99.1%)
Carvon e (57.3%),
limonene (33.2%)
22, 23
Table 4. c ontd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 5
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
7- A. graveolens
L.1
Karaj
(Tehran
Prov.)
3.4
GC/MS
5 (89.1%)
Carvon e (38.8%),
α-phellandrene (19.2%),
dillether (15.7%),
limonene (13.2%)
23
8- A. graveolens
L. 2
Karaj
(Tehran
Prov.)
3.4
GC/MS
5 (97.4%)
Carvon e (63.9%),
limonene (17.7%)
23
9- A. graveo lens
L.3
Karaj
(Alborz Prov.)
2.5
GC/MS
5 (98.2%)
Carvon e (64.4%),
limonene (15.5%),
trancedihydro-carvone (10.6%)
23
10- A. graveo lens
L.6
Karaj
(Alborz Prov.)
Not stated
GC and
GC/MS
22 (99.3%)
Carvon e (36.1%), limonene
(19.9%), dill apiol (16.8%),
trans-dehydrocarcone
(7.4%), cis-
dehydrocarvone
(6.6%),
thymol (6.5%)
24
11- A. graveo lens
L.6
Dastgerd (Isfahan Prov.)
Not stated
GC/MS
16 (98.7%)
δ-Carvone (67.6%), l imonen
(12.0%), dill apiol (7.8%),
elemicin (1.8%)
25
1arial parts in flowering stage, 2early seed forming stage (green seeds), 3complete ripening stage (brown seeds), 4vegetative parts, 5flower, 6seed, 7arial parts, 8fruit.
Table 5. Angelica species oils.
Species
Sample origin
Oil yield (%)
Method( s) of
analysis
Identified
Main components
Ref.
1- A. urumiensis
Mozafff.1 *
Soluk, Uremia
(Azerbaijan Prov.)
0.2
(w/w)
GC and
GC/MS
27 (94.7%)
α-Cadinol (20.2%), p almitic ac id
(14.1%),
hexahydrofarnesylacetone (10.0%),
1-dode canol ( 7.6%), lino leic acid
(6.4%),
methyl palmitate
(5.9%),
oleic acid (5.3%)
27
2- A. urumiensis
Mozaff. 2 *
Soluk, Uremia,
(Azerbaijan Prov.)
0.2
(w/w)
GC and
GC/MS
50 (96.4%)
Palmitic acid (13.4),
α-cadinol (9.2%),
δ-cadenine (6.1%),
(epi)-α-cadinol (5.8%)
27
1 leaves, 2stem . *endem ic to Iran
1.5. Angelica L.
The plants belonging to this genus are perennial herbs, with a
thick rootstock and without a fibrous collar. This genus contains
around 110 species widely distributed in temperate regions of North
hemisphere. Basal leaves are 2-pinnate to 2-ternate, with large and
ovate ultimate segments; petioles are vaginate at the base. Upper
leaves are like basal but smaller. Inflorescence is in the form of
umbels with 15-95 rays. Bracts and bracteoles are numerous, linear
to lanceolate. All flowers are hermaphrodite. Sepals are absent.
Petals are pinkish-white. Fruit is broadly elliptic to orbicular,
strongly compressed dorsally, glabrous, with exterior ridges form-
ing wide undulate wings. Valleculae are 1-vittate. Commissures are
2-vittate [4] [11] [12]. One species of this genus is endemic to Iran
[26]. A summary of the composition of the oils of Iranian Angelica
species can be seen in Table 5.
6 Current Orga nic Chemistry, 2020, Vol. 24, No. 00 Akaberi et a l.
1.6. Anisosciadium DC.
This genus contains 3 species distributed in desert regions. The
plants are small annual herbs, with prostrate stems and 1-2-pinnate
leaves. Inflorescences are axial or terminal. Umbels have few to
many rays and unequal, leaf-like or spin escent. Bracts and bracteols
become recurved later. Each umbel unit includes a central hermaph-
rodite and sessile floret with or without sepals, plus several her-
maphrodites or male marginal florets in two series. Marginal florets
have sepals. Two of the sepals are usually prominent a leaf-like.
Petals are white, glabrous, radiate or non-radiate. Umbel units be-
come lantern-like at fruiting time. Central fruits are bicarpellate,
more or less pyriform, while the outer ones are mono-carpellate,
jointed to pedicels. Fruits have 4 or 9 dorsal and 2 comissural vittae
(Table 6). This genus has only one species in the west, southwest,
and south of Iran [7] [11] [12].
1.7. Apium L.
Apium genus contains 25 species widely distributed in temper-
ate to tropical regions. This genus is a biennial or perennial herb
with thin roots, without a fibrous collar. Basal and lower cauline
leaves are 1-pinnate while upper ones are sometimes ternate. Bracts
and bracteoles might be present or absent. Sepals are minute or
absent. Petals are whitish and entire. Fruit is laterally compressed
and glabrous; mericarps are elliptic ovoid to oblong, slightly con-
stricted at the commissure; ridges are filiform while laterals sub-
marginal; dorsal vittae are solitary and commissural is 2. [4] [11]
[12]. Two species of the g enus are found in Iran [7]. A summary of
the composition of the oils of Iranian Apium species can be seen in
Table 7.
1.8. Artedia L.
Artedia is a monotypic, annual herb distributed in the eastern
Mediterranean area. Leaves are 3-pinnate divided into setaceous
segments. Umbel is terminal with numerous rays. Bracts are trifid,
with prominent, subscarious sheathing bases and setaceous seg-
ments, reflexed in fruit. Bracteoles are similar to the bracts but re-
duced. Central flowers of the umbel are sterile, forming a tuft of
blackish or purplish bristles. Fruit is flattened very strongly, each
mericarp has 5 ridges, the 3 dorsal appear as lines, the laterals bear
large, flattened, scarious projections each forming an interrupted
wing [4] [11] [12]. One species of the genus is found in Iran [7]. A
summary of the composition of the oils of Iranian Artedia species
can be seen in Table 8.
Table 6. Anisosciadium species oils.
Species
Sample origin
Oil yield (%)
Method( s) of
analysis
Identified
Main components
Ref.
1- A. orien tale
DC. 1
Garehbygan station,
Fasa
(Fars Prov.)
Not stated
GC and
GC/MS
31
Myristicin (33.7%),
α-terpinolene (25.8%),
limonene (19.7%)
28
2- A. orien tale
DC. 2
Garehbygan station,
Fasa
(Fars Prov.)
Not stated
GC and
GC/MS
31
Myristicin (33.5%),
α-terpinolene (22%),
limonene (19.5%)
28
1 aerial parts, 2 fruits
Table 7. Apium species oils.
Species
Sample origin
Oil yield (%)
Method( s) of
analysis
Identified
Main components
Ref.
1- A. graveolens
L.
Dastgerd (Isfahan
Prov.)
Not stated
GC/MS
16 (98.7%)
Limonene (57.7%),
myrcene (18.7%),
4-terpineol (8.6%),
β-selinene ( 8.1%)
25
Table 8. Artedia species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- A. squa mata
L.
Darehshahr to
Abdanan (Ilam Prov.)
0.5 (w/w)
GC and
GC/MS
25 (99.6%)
α-Pinene (79.9%)
29
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 7
1.9. Astrodaucus Drude
The plants belonging to Astrodaucus genus are annual herbs.
There are 2 species distributed in Eurasia. Leaves are 3-4-pinnate
divided into short and very narrow segments. The sheaths are ex-
panded, conspicuous, free from the stems for most of their length.
Umbels are terminal, with 11-28 rays. Bracts are usually absent.
Bracteoles are present. Petals are white or yellowish and the outer
radiant is 2-lobed. Fruit is ellipsoid-fusiform and slightly com-
pressed. Primary ridges have 1 row of short hair-like spin es while
secondary ridges have one row of longer and stout spines [1] [4]
[12]. Two species of the genus are found in Iran, o f which one of
them is endemic [1] [7]. A summary of the composition of the oils
of Iranian Astrodaucus species can be seen in Table 9.
Table 9. Astrodaucus species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of Analy-
sis
Identified
Main components
Ref.
1- A. orientalis
(L.) Drude 2
Alamot
(Zanjan Prov.)
0.4 (w/w)
GC and
GC/MS
25 (98.6%)
Fenchyl acetate
(44.5%),
α-pinene (21.6%)
30
2- A. orientalis
(L.) Drude 3
Alamot
(Zanjan Prov.)
0.8 (w/w)
GC and
GC/MS
25 (98.8%)
Fenchyl acetate
(44.5%),
α-pinene (21.6%)
30
3- A. orientalis
(L.) Drude 4
Fasham
(Tehran Prov.)
1.5 (w/w)
GC/MS
40 (95.6%)
α-Pinene (32.7%),
α-fenchyl acetate
(14.5%),
β-pinene (8.5%),
bornyl acetate (7.9%)
31
4- A. orientalis
(L.) Drude 5
Campus o f Tabriz Univer-
sity (Azerbaijan Prov.)
0.3
GC/MS
43 (88.0%)
Sabinene (23 .1%),
α-pinene (16.4%),
fenchyl-acetate
(7.5%)
32
5- A. orientalis
(L.) Drude 6
Campus o f Tabriz Univer-
sity (Azerbaijan Prov.)
0.5
GC/MS
29 (93.6%)
Not stated
32
6- A orientalis
(L.) Drude 7
Campus o f Tabriz
University (Azerbaijan
Prov.)
1.1
GC/MS
28 (92.7%)
β-Pinene (22.3 %),
α-copaene (16.1%)
32
7- A. orientalis
(L.) Drude 8
Campus of Tabriz Univer-
sity (Azerbaijan Prov.)
0.1
GC/MS
5 (100%)
Anisole (37.9%),
bornyl acetate
(36.9%),
geranyl tiglate
(11.4%)
32
8- A. orientalis
(L.) Drude 6
Saveh
(Markazi Prov.)
0.22 (w/w)
GC and
GC/MS
63 (92.9%)
Sabinene (16 .5 %),
α
-pinene (11.0 %),
myrcene (7.0 %),
ρ-cymene (6.1 %),
α
-thujene (6.1 %),
β
-pinene (5.2 %)
33, 34
9- A. persicu s
(Boiss.)
Drude 8*
Taleghan
(Alborz Prov.)
0.4 (w/w)
GC and
GC/MS
14 (99.9%)
β-pinene (46.1%),
α-pinene (26.1%),
α-thujene (14.4%)
35
Table 9. c ontd…
8 Current Orga nic Chemistry, 2020, Vol. 24, No. 00 Akaberi et a l.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of Analy-
sis
Identified
Main components
Ref.
10- A. persicus
(Boiss.)
Drude 10*
Taleghan
(Alborz Prov.)
0.1 (w/w)
GC and
GC/MS
22 (94.4%)
Bornyl acetate
(26.5%),
β-sesquiph ellandren e (25.9%),
exo-fenc hyl acetat e
(25.1%)
35
11- A. persicus
(Boiss.)
Drude 11*
Taleghan
(Alborz Prov.)
0.1 (w/w)
GC and
GC/MS
20 (99.7%)
α-Pinene (56.4%),
exo-fenc hyl
acetate (37.7%)
35
12- A. persicus
(Boiss.)
Drude11*
Khojir Park, Tehran
(Tehran Prov.)
0.8 (w/w)
GC/MS
30 (96.8%)
Decanal (34.8%),
dodecanal (15.5%),
dodecanol (14.3%)
36
12- A. persicus
(Boiss.)
Drude 8
Irankhah village, Saghez
(Kurdestan
Prov.)
0.1%
GC/MS
21 (100%)
trans-Caryo phyllene ( 33.5%), b icy-
clogermacrene (27.3%),
germacrene-D (11.6%),
β-farnesene (7.2%)
37
13- A. persicus
(Boiss.)
Drude 11
Irankhah village, Saghez
(Kurdestan
Prov.)
0.6-0.9%
GC/MS
15 (98.6%)
α-Thujene (48.0%),
α-pinene (27.7%),
β-pinene (9.2%)
37
14- A. persicus
(Boiss.)
Drude 9
Irankhah village, Saghez
(Kurdestan
Prov.)
0.6-0.9%
GC/MS
21 (98.5%)
α-Thujene (43.8%),
α-pinene (20.9%),
β-pinene (21.3%)
37
1The percentages are described as v/w, otherwise specified as w/w 2leaf, 3seeds, 4aerial parts, 5stem, 6flowers, 7fruits, 8roots, 9 flowers/fruits, 10 root, 11 stem /leaves, *e ndemic to Iran
Table 10. Azilia species oils .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- A. eryngio ides
(Pau) Hedge &
Lamond*
Chahar mahal va Ba khtiar i
province
1.4
GC/MS
26 (93.8%)
Bornyl acetate
(40.9%)
38
2- A. eryngioides
(Pau) Hedge &
Lamond*
Aligoodarz (Lurestan Prov.)
0.5 (w/w)
GC and
GC/MS
27 (97.3%)
α-Pinene (64.5%), limonene
(11.7%), bornyl acetate
(6.4%)
39
*endemic to Iran. 1The percentages are described as v/w, otherwise specified as w/w
1.10. Azilia Hedge & Lamond
Azilia is a monotypic genus related to Prangos and endemic to
Iran. The plants are perennial, and completely glabrous, with erect
and thick stems. Leaves are leathery, simple to 1-pinnate, with
thick, broad, nearly round to reniform segments and spiny margins.
Inflorescences are strict and paniculate, with several umbles. Flow-
ers are hermaphrodite. Sepals are small and persistent. Petals are
rose-purple or white. Mericarps are dorsally compressed and ellip-
tic. Commissural vittae are 2 (-3) and dorsal vittae are 4 (-6). Stylo-
podium is compressed, and undulate at marginal spines (1, 4, 7, 11,
12). A summary of the composition of the oils of Iranian Azilia
species can be seen in Table 10.
1.11. Bunium L.
This genus has 48 species widely distributed in Europe to North
Africa and especially southwest and central Asia. Bunium is a gla-
brous perennial herb with slender subterranean parts ending in a
globose tuber. Rootstock does not have a fibrous collar. Leaves are
1-3-pinnate, with narrow ultimate segments. Bracts might be pre-
sent or absent. Bracteoles are present. Sepals are small or absent.
Petals are white or pinkish with prominent oil ducts, outer slightly
radiant or not. Fru it is oblong, oblong-elliptic or oblong-cylindrical,
compressed laterally , and glabrous. Primary ridges are prominent.
Vittae is 1-3 [4] [11] [12] The Bunium has 17 species in Iran, of
which two are endemic to the country [1] [7]. A summary of the
composition of the oils of Iranian Bunium species can be seen in
Table 11.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 9
Table 11. Bunium species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s)
of analysis
Identified
Main components
Ref.
1- B. caroides
(Boiss.)
Hausskn. ex
Bornm.2
Takab-Shah indej (Aze rbai-
jan Prov.)
0.1
GC, GC/MS, 13C-
NMR
30 (92.3%)
E-caryophyllene
(26.6%), dillapiole
(10.2%), asaricin
(7.5%), Z-β-
ocimene (5.9%)
40
2- B. cylindricum
(Boiss. &
Hohen.)
Drude2
Gachsar
(Tehran Prov.)
0.1 (w/w)
GC and
GC/MS
14 (100%)
Myristicin (43.1%),
β-phellandrene
(20.0%),
β-pinene (15.6%),
α-pinene (10.7%)
41
3- B. cylindricum
(Boiss. &
Hohen.)
Drude 2
Shahreza,
(Isfahan Prov.)
0.3 (w/w)
GC and
GC/MS
17 (99.3%)
Germacrene D
(31.2%), dillapiol
(26.9%), trans-
caryophyllene (11.1%), germacrene
B
(7.1%),
terpinolene (5.6%)
41
4- B. cylindricum
(Boiss. &
Hohen.)
Drude 3
Shahreza,
(Isfahan Prov.)
0.2 (w/w)
GC and
GC/MS
20 (88.2%)
Dillapiol (25.8%),
trans-caryophyllene
(15.4%),
glubulol (12.2%),
spathulenol (7.2%),
germacrene D
(6.6%)
41
5- B. elega ns
(Fenzl) Freyn2
Zanjan-Bijar (Zanan Prov.)
0.1
GC, GC/MS, 13C-
NMR
19 (91.4%)
Caryoph yllene
(38.0%),
germacrene-D
(24.1%),
dillapiole (10.2%),
asaricin (7.5%)
40
6- B. persicu m
(Boiss.) B.
Fedtsch.
(Kerman Prov.)
4.0 (w/w)
GC and
GC/MS
17 (99.3%)
γ-Terpinene (40.0),
cuminaldehyde (13.7),
1,8-cineol (10.7),
terpinene-7-al
(10.5)
42
7- B. persicu m
(Boiss.) B.
Fedtsch.4
Not
stated
Not stated
GC and
GC/MS
22 (98.6%)
γ-Terpinene (20.1%), cuminicalde-
hyde
(16.6%),
ρ-metha-1, 3-dien-
7al (15.1%),
ρ-metha-1, 4-dien-
7al (13.2%),
limonene (11.0%)
43
Table 11 . contd…
10 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s)
of analysis
Identified
Main components
Ref.
8- B. persicu m
(Boiss.) B.
Fedtsch.5
Not stated
Not stated
GC and
GC/MS
18 (99.8%)
γ-Terpinene (29.3%), limonene
(15.7%), cuminic aldehyde
(15.5%),
ρ-metha-1, 4-
dien-7al (13.4%),
ρ- metha-1,
3-dien-7al (11.5%)
43
9- B. persicu m
(Boiss.) B.
Fedtsch.
Between Siriz
and Zarand
(Kerman Prov.)
3.1
GC/MS
25 (93.8%)
Cuminaldehyde
(27.0%),
γ-terpinene (25.8%),
ρ-cymene (12.1%), cuminylalcohol
(6.0%),
limonene (5.1%)
44
10- B. persicum
(Boiss.) B.
Fedtsch.6
Feizabad (Khorasan Prov.)
5.1
GC and
GC/MS
35 (96.3%)
γ-Terpinene (36.8%),
γ-terpinene-7-al
(18.7%),
ρ-cuminaldehyde
(11.8%),
ρ-cymene (9.4%)
45
11- B. persicum
(Boiss.) B.
Fedtsch.5
Feizabad (Khorasan Prov.)
6.2
GC and
GC/MS
35 (94.9%)
γ-Terpinene (40.8%),
ρ-cuminaldehyde
(14.1%),
γ-terpinene-7-al
(10.6%),
ρ-cymene (9.5%)
45
12- B. persicum
(Boiss.) B.
Fedtsch. 7
Kalat-e-nader mountain
(Khorasan Prov.)
9.1
GC and
GC/MS
35 (95.4%)
γ-Terpinene (44.2%),
ρ-cuminaldehyde
(16.9%),
γ-terpinene-7-al
(10.5%),
ρ-cymene (8.0%)
45
13- B. persicum
(Boiss.) B.
Fedtsch.8
Jopar lo cation
(Kerman Prov.)
3.5 (w/w)
GC and
GC/MS
17 (96.7%)
γ-Terpinen-7-al
(30.0 %),
γ-terpinene (23.2%),
cuminaldehyde
(15.7%),
ρ-cymene (12.8%),
limonene (5.9%)
46
14- B. persicum
(Boiss.) B.
Fedtsch. 8
Bidoiye locatio n (Kerman
Prov.)
4.0 (w/w)
GC and
GC/MS
16 (97.8%)
γ-Terpinene (32.9
%), γ-terpinen-7-
al (32.5 %),
cuminaldehyde
(10.9 %),
ρ-cymene (5.3 %)
46
Table 11 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 11
Species
Sample origin
Oil yield
(%) v/w1
Method( s)
of analysis
Identified
Main components
Ref.
15- B. persicum
(Boiss.) B.
Fedtsch. 8
Sardoiye lo cation (Kerman
Prov.)
7.0 (w/w)
GC and
GC/MS
14 (95.4%)
Cuminaldehyde
(38.8 %),
γ-terpinene (16.5%),
γ-terpinen-7-al
(15.5%),
ρ-cymene (14.2 %)
46
16- B. persicum
(Boiss.) B.
Fedtsch. 8
TakhteKho-
rjeh region
(Kerman Prov.)
8.5 (w/w)
GC and
GC/MS
15 (91.5%)
Cuminaldehyde
(33.0%),
γ-terpinene (22.3%),
γ-terpinen-7-al
(15.4 %),
ρ-cymene (13.1 %)
46
17- B. persicum
(Boiss.) B.
Fedtsch.3
Karaj
(Alborz
Prov.)
2.2
GC/MS
29 (98.3%)
Caryoph yllene (27.8%),
γ-terpinene (15.2%),
cuminyl acetate
(14.0 %),
cuminaldehyde
(6.0%),
ρ-cymene (5.3%)
47
18- B. persicum
(Boiss.) B.
Fedtsch.9
Kerman, (Kerman Prov.)
Not stated
GC/MS
16 (99.9%)
γ-Terpinene (38.0%),
α-methyl-benzenemethanol
(25.6%), cuminaldehyde
(11.5%),
o-cymene (7.8%), limonene (6.8%)
48, 49
19- B. persicum
(Boiss.) B.
Fedtsch.4
Kerman, (Kerman Prov.)
3.1
GC/MS
22 (100%)
γ-Terpinene (45.7%), cuminalde-
hyde
(12.7%),
limonene (10.6%),
cuminyl alcohol
(6.4%),
ρ-Cymene (5.6%)
48, 49
20- B. persicum
(Boiss.) B.
Fedtsch.3
Mashhad, (Khorasan
Prov.)
9.1
GC and
GC/MS
35 (95.4%)
γ-Terpinene (44.2%),
cuminaldehyde
(16.9%),
ρ-cymene (8.0%),
γ-terpinen-7-
al (10.5%)
50, 51
21- B. persicum
(Boiss.) B.
Fedtsch.
Lalezar Mount.
(Kerman Prov.)
4.2
GC and
GC/MS
26 (99.7%)
γ-Terpinen-7-al
(26.9%),
cuminaldehyde
(23.3%),
γ-terpinene (22.0%),
ρ-cymene (7.3%)
and 2-caren-7-al
(6.9%)
52
Table 11 . contd…
12 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s)
of analysis
Identified
Main components
Ref.
22- B. persicum
(Boiss.) B.
Fedtsh.3
Pakan Bazr
Seed producer, Isfahan
(Isfahan Prov.)
2
GC/MS
10 (99.8%)
γ-Terpinene (46.1%), cuminal
(23.9%),
ρ-cymene (15.9%)
53
23- B. persicum
(Boiss.) B.
Fedtsh.3, 10
Ten areas
(located in
Kerman, Yazd,
Qazvin, Semnan, Bandar-
abbas, Fars and Khorasan
Provs.)
2.3
GC and
GC/MS
19 (99.3%)
γ-Terpinene (26.3%),
γ-terpinen-7-al (22.3%),
cumin aldehyde
(19.8%),
ρ-cymene (14.2%), limonene
(6.2%),
α-terpinen-7-al
(5.2%)
54
24- B. persicum
(Boiss.) B.
Fedtsh.3, 11
Ten areas
(located in
Kerman, Yazd,
Qazvin, Semnan, Bandar-
abbas, Fars
and Khorasan Provs.)
2.4
GC and
GC/MS
15 (99.6%)
γ-Terpinene (30.7%),
γ-terpinen-7-al (25.6%),
cumin aldehyde
(17.3%),
ρ-cymene (9.9%),
limonene (7.3%)
55
25- B. persicum
(Boiss.) B.
Fedtsh.3, 12
Ten areas
(located in
Kerman, Yazd,
Qazvin, Semnan, Bandar-
Abbas, Fars
and Khorasan
Provs.)
-
GC and
GC/MS
23 (99.7%)
Cumin a ldehyde
(27.8%),
γ-terpinene (23.0%),
γ-terpinen-7-al (19.2%),
ρ-cymene (13.5%), limonene
(5.8%)
54
26- B. persicum
(Boiss.) B.
Fedtsh.3, 13
Ten areas
(located in
Kerman, Yazd,
Qazvin, Semnan, Bandar-
Abbas, Fars
and Khorasan
Provs.)
-
GC and
GC/MS
37 (98.6%)
γ-Terpinene (32.0%),
cumin aldehyde
(27.2%),
γ-terpinen-7-al (12.4%),
ρ-cymene (11%),
limonene (5.6%)
54
27- B. rectangulum
Boiss.&
Hausskn. ex
Boiss.2
Kerend gharb,
(Kermanshah Prov.)
0.3
GC and
GC/MS
7 (98.8%)
Dillapiol (81.8%),
germacrene D (11.3%)
55
28- B. rectangulum
Boiss.&
Hausskn. ex
Boiss.3
Kerend gharb,
(Kermanshah Prov.)
0.2
GC and
GC/MS
11 (99.7)
Dillapiol (63.3%),
germacrene D (22.4%),
trans-caryophyllene
(5.1%)
55
1The percentages are described as v/w, other wise specified as w/w. 2aerial parts 3 seeds 4hydrodistilation, 5 hydrodistilation -headspace solvent microextraction,
6second y ear, 7wild type (WT), 8fruit, 9supercr itical flu id extra ction, 10hydrodistilation (4%), 11hydrodistilation (10%), 12Microdistillation, 13solid phase microex traction (SPME).
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 13
Table 12. Bupleurum species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- B. exaltatum
M.Bieb.
The exact location not
mentioned (Khorasan
Prov.)
0.1
GC/MS
49 (97.3%)
(E)-β-Farnesene (29.8%),
germacrene-D (13.3%),
spathulenol (12.9%) .
56
1.12. Bupleurum L.
Bupleurum is a genus with 180 to 190 species distributed in
Eurasia, North Africa, Canary Islands, arctic, North America, and
South Africa. The plants are annual or perennial herbs, rarely sub-
shrub, without a collar of fibrous leaves. Leaves are always simple,
most often entire, with bases usually sheathing, lamina acicular,
linear, lanceolate, oval, ovate, obovate, or almost round. Inflores-
cence is in the form of umbels with a variable number of rays.
Bracts and bracteoles are usually present. Flowers are yellow, yel-
lowish-white, greenish, or dark purple. Calyx is teeth obsolete.
Stylopodium is light brown to black, depressed to conical. Fruit is
elliptic to oblong or ovoid; ridges are usually prominent, winged or
not winged; Vittae are 1-5 in valleculae, 2-10 on commissure [4]
[11] [12]. Fourteen species of the genus are found in Iran, of which
one of them is endemic [1] [7]. A summary of the composition of
the oils of Iranian Bupleurum species can be seen in Table 12.
1.13. Carum L.
This genus has around 30 species distributed in temperate to
tropical regions. Carum is a glabrous perennial herb with fusiform
taproots, without a fibrous collar. Leaves are 1-4-ninnate. Bracts
and bracteoles might be present or absent. Sepals are small or ab-
sent. Petals are white or pinkish, the outer ones are somewhat radi-
ant or not. Fruit is oblong-ellipsoid, compressed laterally, and gla-
brous. Primary ridges are prominent. Vittae are solitary or 2-3 [4]
[11] [12]. This genus has 2 species in Iran [1] [7]. A summary of
the composition of the oils of Iranian Carum species can be seen in
Table 13.
Table 13. Carum species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- C. carvi L.
Not stated
Not stated
GC/MS
16 (87.6%)
Cuminaldehyde (22.1%),
γ-terpinene (17.9%),
γ-terpinene-7-al (15.4%),
ρ-cymene (8.0%)
57
2- C. carvi L.
Kerman (Kerman Prov.)
2.7
GC and
GC/MS
98 (90.4%)
γ-Terpinene (24.4%), 2-methyl-3-
phenyl-
propanal (13.2%),
2, 4 (10)-thujadien
(14.0%)
58
3- C. carvi L.
Aparchat (Azerbaijan
Prov.)
5.5 (w/w)
GC/MS
11 (99.6%)
δ-Carvone (73.8),
limonene (24.8)
59
4- C. coptic um
(L.) C. B.
Clarke in
Benth. &
Hook.f.
Abbas Abad,
Torbat Heydarieh
(Khorasan Prov.)
1.0
GC/MS
22 (97.4%)
Thymol (71.1%),
terpinolene (13.1%),
cymene (10.2%)
60
5- C. coptic um
(L.) C. B.
Clarke in
Benth. &
Hook.f.
Shiraz (Fars
Prov.)
4.6
GC/MS
25 (99.6%)
Thymol (54.5%),
γ-terpinene (26.1%),
ρ-cymene (22.1%)
61
Table 13 . contd…
14 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
6- C. coptic um
(L.) C. B.
Clarke in
Benth. &
Hook.f.
Damghan (Semnan Prov.)
2.8
GC and GC/MS
8 (100%)
Thymol (49.0%),
γ-terpinene (30.8%) ,
ρ-cymene (15.7)
62
7- C. coptic um
(L.) C. B.
Clarke in
Benth. &
Hook.f.
Tehran (Tehran Prov.)
6.0 (w/w)
GC and
GC/MS
22 (74.3%)
Thymol (41.3%),
α-terpinolene
(17.5%),
ρ-cymene (11.8%)
63
8- C. coptio um
(L.) C. B.
Clarke in
Benth. &
Hook.f. 2
Torbat Heydarieh
(Khorasan Prov.)
0.9
GC, GC/MS, 1H-
NMR
11 (95.7%)
Thymol (42.7% ),
γ-terpinene (38.5% ),
ρ-cymene (14.1%)
64
9- C. coptioum
(L.) C. B.
Clarke in
Benth. &
Hook.f. 3
Torbat Heydarieh
(Khorasan Prov.)
3.0
GC, GC/MS 1H-
NMR
14 (100%)
Thymol (46.2%),
γ-terpinene (35.9%),
ρ-cymene (13.9%)
64
10- C. coptic um
(L.) C. B.
Clarke in
Benth. &
Hook.f.
Mashhad )Khorasan Prov.(
5.2
GC and
GC/MS
17 (99.3%)
Thymol (48.4%),
γ-terpinene (21.3%),
ρ-cymene (21.8%)
50, 51
11- C. copticu m
Benth. &
Hook.f. 4
Isfahan (Isfahan Prov.)
(3.5-4.1)
GC and
GC/MS
12 (97.5-
99.4%)
Thymol (53.1-
61.2%),
γ-terpinene (20.7-
25.0%),
ρ-cymene (13.1-
15.6%)
65
12- C. copticu m
(L.) C. B.
Clarke in
Benth. &
Hook.f. 2
Isfahan (Isfahan Prov.)
(0.25-0.35)
GC and
GC/MS
11 (97.7-
98.7%)
Thymol
(43.5-64.2%),
γ-terpinene (19.9-
39.7%),
ρ-cymene (9.9-
12.2%)
65
13- C. copticu m
(L.) C. B.
Clarke in
Benth. &
Hook.f.5
Ministry of Agriculture for
Medicinal Plant Research,
Isfahan (Isfahan Prov.)
Not stated
GC and
GC/MS
41
(71.0%)
Elemol (11.5%),
α-cadinol (10.6%),
δ-cadinene (7.8%),
caryophyllene (6.2%)
66
Table 13 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 15
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
14- C. copticu m
(L.) C. B.
Clarke in
Benth. &
Hook.f.4
Ten samples from various
location of Iran
2.2-4.8
GC and
GC/MS
13
(96.8-
99.9%)
ρ-Cymene (19.2-
57.3%),
γ-terpinene (12.9
- 37.4%),
thymol (1.5-
55.2%)
67
15- C. copticu m
(L.) C. B.
Clarke in
Benth. &
Hook.f.3
Abbas Abad village area,
Torbat e Heydarieh,
(Khorasan Razavi Prov.)
2.0
GC and
GC/MS
10 (97.8%)
Thymol (72.3%),
terpinolene (13.1%) and o-
cymene
(11.97%)
68
16- C. copticu m
(L.) C. B.
Clarke in
Benth. &
Hook.f.3
Kamfirouz
(ecotype A) near Shiraz,
(Fars Prov.)
Not stated
GC/MS
7(99.2%)
γ-Terpinene (48.1%),
ρ-cymene (33.7%),
thymol (17.4%)
69
17- C. copticu m
(L.) C. B.
Clarke in
Benth. &
Hook.f.3
Eghlid (ecotype B) near
Shiraz, (Fars Pro v.)
Not stated
GC/MS
7 (89.4%)
γ-Terpinene (50.2%), ρ-cymene
(31.9%)
70
18- C. copticu m
(L.) C. B.
Clarke in
Benth. &
Hook.f.3
Central province s of
Iran
Not stated
GC/MS
16 (98.9%)
Thymol (57.18%),
ρ-cymene (22.55%), γ-terpinene
(13.07%), transanethole
(1.7%)
70
1The percentages are described as v/w, otherwise specified as w/w, 2aerial parts, 3fruits, 4seeds, 5susp ension c ell culture
1.14. Chaerophyllum L.
The genus contains 33 species distributed in north temperate
regions. Chaerophyllum is an erect often hispid perennial or bien-
nial herb with sturdy and often tuberous roots without a fibrous
collar. Leaves are 2-5-pinnate or 2-ternate with winged petioles.
Bracts might be present or absent. Bracteoles are present, often
deflexed. Sepals are ± obsolete. Petals are white or occasionally
pink, outer sometimes radiant. Fruit is glabrous or seldom pubes-
cent, narrowly ovate to linear-oblong, scarcely laterally com-
pressed. Primary ridges are conspicuousand rounded. Secondary
ridges are absent. Dorsal vittae are 4 while commissural is 2. Stylo-
podium is ± flat at flowering, usually conical in fruit [4] [11] [12].
Eight species of the genus are found in Iran, of which one of them
is endemic [1] [7]. A summary of the composition of the oils of
Iranian Chaerophyllum species can be seen in Table 14.
Table 14. Chaerophyllum species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- C. bulbosum L.
Azerbaijan province
0.2 (w/w)
GC and
GC/MS
29 (92.2%)
(E)-β-Farnesene (22.3%), (Z )-β-
ocimene (18.8%),
myristicin
(17.1%), caryophyllene
oxide (6.6%),
allo-ocimene
(5.1%)
71
Table 14 . contd…
16 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
2- C. crinitum
Boiss.
Chaloos (Mazan daran
Prov.)
0.5 (w/w)
GC and
GC/MS
11 (84.3%)
(E)-β-Ocimene
(50.5%)
72
3- C. macrop odum
Boiss.
Chaloos (Mazan daran
Prov.)
0.1 (w/w)
GC and
GC/MS
28 (98.5%)
α-Pinene (23.0%),
β-pinene (17.3%),
fenchyl acetate (13.8%)
72
4- C. macrosp ermum
(Spreng.) Fisch.
& C. A. Mey .
Polour-Haraz road
(Tehran Prov.)
0.6 (w/w)
GC and
GC/MS
27 (99.8%)
(E)-β-Ocimene
(55.9%),
terpinolene (9.8%),
α-pinene (7.5%)
73
5- C. macrosp ermum
(Spreng.) Fisch.
& C.A. Mey .
Between Shaikhlar &
Nazarabad, Takaab
(Azerbaijan Prov.)
0.8
GC and
GC/MS
16 (99.6%)
(E)-β-Ocimene
(40.0%),
tricyclene (19.4%),
λ-3-carene (18.3%),
mycrene (10.1%)
74
6- C. macrop odum
Boiss. 2
Khalkhal (Ardabil
Prov.)
0.2
GC and
GC/MS
18 (99.2%)
β-Ocimene (24.9
(%, myrecticene
(15.7%),
terpinolene (14.2%), fenchyl
acetate (13.9%),
(E)-β-ocimene
(6.3%),
sabinen e (6.1%)
75
7- C. macrop odum
Boiss. 1
Khalkhal (Ardabil
Prov.)
0.2
GC and
GC/MS
10 (96.3% )
Myrecticene (39.1%), terpinolene
(23.0%), (E)-β-ocimene (22%),
γ-terpinene (5.4%)
75, 76
8- C. macrop odum
Boiss. 4
Lonbar, Khalkhal
(Ardabil
Prov.)
0.8
GC and
GC/MS
10 (98.5%)
Myristicin (42.5%),
trans-β-ocimene (41.0%),
β-pinene (7.9%)
77
9- C. macrop odum
Boiss. 5
Lonbar ,
Khalkhal
(Ardabil Prov.)
0.3
GC and
GC/MS
18 (99.3% )
trans-β-Ocimene (24.9%),
myristicin (15.7%), terpinolene
(14.5%),
fenchyl acetate
(13.9%),
cis-β-ocimene (6.3%),
sabinen e (6.1%)
77, 78
10- C. macropodum
Boiss. 6
Lonbar,
Khalkhal
(Ardabil
Prov.)
0.07
GC and
GC/MS
11 (97.1%)
trans-β-Ocimene (54.2%), myris-
ticin (22.4%),
sabinen e (8.9%)
77
11- C. macropodum
Boiss. 2
Southern Den a moun-
tainous (Kohgiluyeh va
Boyr-Ahmad Prov.)
0.2 (w/w)
GC/MS
21 (98.7%)
trans-β-Ocimene (34.5%), trans-
β-farnessene (11.8%), cis-β-
ocimene (10.4%),
ρ-cymene (7.3%),
spathulenol (6.5%)
79
Table 14 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 17
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
12-C. macrop odum Boiss.
Aleshtar in (Lurestan
Prov.)
GC and GC/MS
20 (97.6%)
Myristicin (23.2%), ρ-cymene
(16.7%),
trans-ocimene (10.2%), sabinene
(8.8%), cis-ocimene (7.3%),
spathulenol (6.1%)
80
1The percentages are described as v/w, otherwise specifie d as w/w, 2aerial part, 3root, 4flower, 5leaf, 6stem.
Table 15. Conium species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- C. maculatum
L.
Haranj, Taleghan (Alborz
Prov.)
0.2
GC and
GC/MS
17 (91.0%)
Germacrene D
(46.1%),
β-caryophyllene
(15.3%),
(E,E)-α-farnesene (10.1%)
81
1.15. Conium L.
Conium is a glabrous, annual, or biennial herb containing 6 spe-
cies distributed in temperate regions of Eurasia. Basal leaves are 2-
4-pinnate. Upper stem leaves are opposite and ternate. Bracts and
bracteoles are present. Sepals are absent. Petals are white. Fruit is
broadly ovate to suborbicular, laterally compressed, and glabrous;
mericarps are incurved, ridges are prominent. Vittae are absent [4]
[11] [12]. Only 1 species of the genus is found in Iran [7]. A sum-
mary of the composition of the oils of Iranian Conium species can
be seen in Table 15.
1.16. Coriandrum L.
Coriandrum is a branched glabrous annual herb with slender
taproots and fetid smell. The genus contain s 3 species found in the
southwest of Asia. Leaves are ternate, 1-3-pinnate, or pinnatisect.
Bracts are 0-1. Bracteoles are present. Sepals are acute and unequal,
persisting in fruit. Petals are white or pinkish, outer radiant, deeply
bilobed, often with only one lobe developing. Fruit is globose, hard,
and glabrous. Mericarps are hemispherical, united, or separating,
commissural face concave. R idges are not prominent. Dorsal vittae
are 0; commissural vittae are 0-2. Stylopodium is conical [4] [11]
[12]. One species o f this genus is found in Iran [7]. A summary of
the composition of the oils of Iranian Coriandrum species can be
seen in Table 16.
1.17. Cuminum L.
Cuminum is an aromatic glabrous annual herb consisting of 4
species distributed in the Mediterranean area to Sudan and central
Asia. Leaves are 2-3 parted with linear-filiform segments. Bracts
are long linear-filiform or ternate-divided. Umbels have 3-6 rays.
Bracteoles are linear. Sepals are subulate, unequal, and persisting.
Petals are white or rose, deeply emarginate, and incurved at the
apex. Fru it is oblong, and attenuate at both ends. Mericarps have a
concave commissural face. Ridges are prominent [4] [7] [12]. Two
species of the genus are found in Iran [7]. A summary of the
composition of the oils of Iranian Cuminum species can be seen in
Table 17.
Table 16. Corindrum species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- C. sativum L.2
Karaj (Alborz Prov.)
0.4 (w/w)
GC and
GC/MS
13 (90.3%)
n-Decanal (34.0%), E-(2 )-decanal
(17.4%),
cyclohexanone
(10.4%),
dodecanal (9.2%)
82
2- C. sativum L.3
Karaj (Alborz Prov.)
0.2 (w/w)
GC and
GC/MS
11 (92.1%)
E-(2)-Decanal
(36.2%),
n-decanal (23.1%),
E-(2)-dodecan al
(16.8%)
82
Table 16 . contd…
18 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
3- C. sativum L.4
Karaj (Alborz Prov.)
0.5 (w/w)
GC and
GC/MS
20 (94.3%)
Linalool (86.5%)
82
4- C. sativu m L.5
Sabzevar (Khoeasan
Prov.)
Not stated
GC and
GC/MS
14 (94.5%)
Linalool (82.9%),
cumin aldehyde (5.3%)
83
5- C. sativu m L.6
Sabzevar (Khoeasan
Prov.)
Not stated
GC and
GC/MS
18 (100%)
Linalool (7.8.0%),
α-thujene
(7.9%)
83
6- C. sativu m L.7
Sabzevar (Khoeasan
Prov.)
Not stated
GC and
GC/MS
18 (96.1%)
Linalool (79.6%),
γ-terpinene
(7.3%)
83
7- C. sativu m
L.4, 6
Not stated
0.2
GC and
GC/MS
27 (91.0%)
Linalool (66.3%),
γ-terpinene (5.3%)
84
8- C. sativu m
L.4, 8
Not stated
0.1
GC and
GC/MS
27 (89.0%)
Linalool (63.3%),
geranyl acetate
(8.5%)
84
1The percentages are described as v/w, otherwise specified as w/w, 2beginning of flowering stage, 3fall flowering stage, 4fruits, 5SCWE, 6hydrodistillation, 7Soxhlet extraction,
8Microwave-assisted hydrodistillation.
Table 17. Cuminum species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- C. cyminum
L.
Khalatpooshan, Tabriz
(Azerbaijan Prov.)
1.3-3.4
GC/MS
21 (90.0%)
Cuminaldehyde,
ρ-cymen,
1,4-parament,
diene 7-al, α-pinene,
β-pinene
85
2- C. cyminum
L.
Kerman
(Kerman Prov.)
1.5
GC and
GC/MS
49 (81.3%)
2-Methyl-3-phenyl-propanal
(32.3%),
γ-terpinene (15.8%),
myrtenal (11.6%)
58
3- C. cyminum
L.
Sirch
(Kerman Prov.)
3.4
GC/MS
13 (98.0%)
Cuminy l aldehyd e
(25.2%),
γ-terpinene (19.0%), ρ-mentha-1,
3-diene 7-al (13.0%),
β-pinene (10.3%)
86, 87
4- C. cyminum
L. 2
Sirch
(Kerman Prov.)
1.5
GC/MS
13 (99.9%)
γ-Terpinene (24.8%), β-pinene
(17.5%),
cuminyl aldehyde (14.2%),
ρ-cymene (9.5%)
87
Table 17 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 19
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
5- C. cyminum
L. 3
Sirch
(Kerman Prov.)
3.4
GC/MS
13 (99.8%)
Cuminy l aldehyd e
(25.2%), γ-terpinene (19.0%), ρ-
mentha-1, 4-diene 7-al (16.6%),
ρ-mentha-1, 3-diene 7-al (13.0%),
β- pinene ( 10.3%),
ρ-cymene (7.2%)
86, 87
6- C. cyminum
L. 4
Sirch
(Kerman Prov.)
3.4
GC/MS
13 (100%)
Cuminy l aldehyd e
(21.1%),
γ-terpinene (20.2%), ρ-mentha-1,
4-diene 7-al (18.5%),
β-pinene (13.8%),
ρ-mentha-
1, 3-diene 7-al
(11.3%)
87
7- C. cyminum
L. 5
Sirch
(Kerman Prov.)
3.1
GC/MS
13 (99.7)
ρ-Mentha-1, 4-
diene 7-al
(35.7%),
γ-terpinene (19.6%), cu minylal-
dehyde (14.7%),
β-pinene (12.3%),
ρ-mentha-
1, 3-diene 7-al
(7.4%)
87
8- C. cyminum
L.
Tehran
(Tehran Prov.)
Not stated
GC/MS
14 (88.5%)
γ-Terpinene (25.5%), cumin
aldehyde (24.9%),
β-pinene (19.7%),
ρ-cymene (12.9%),
ρ-menth-1en-7-al
(5.3%)
88
9- C. cyminum
L.
Mashhad, (Khorasan Prov.)
3.5
GC and
GC/MS
20 (83.7%)
Cuminaldehyde
(30.2%),
ρ-cymene (14.1%),
γ-terpinene (12.8%),
safranal (9.4%),
β-pinene (6.4%)
51
10- C. cyminum
L.
Kerman
(Kerman Prov.)
Not stated
GC and
GC/MS
10 (93.5%)
Benzald ehyde (27 .2%), ph enyl-
propanol (17.5%),
γ-terpinene (12.6%), benzene-
methanol (10.8%), benzene 1
methyl (7.7%),
β-pinene (7.1%)
89
11- C. cyminum
L.6
not
stated
2.3% (w/w)
GC and
GC/MS
13 (100%)
γ-Terpinene (23.2%),
α-pinene (16.4%), cuminaldehyde
(13.0%),
ρ-mentha-1,
4-dien-7-al (41.0%)
90
Table 17 . contd…
20 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
12- C. cyminum
L.7
Not
stated
2.3% (w/w)
GC and
GC/MS
13 (100%)
γ-Terpinene (23.9%),
α-pinene (16.3%),
o-cymene (5.1%),
cuminaldehyde (15.7%),
ρ-mentha-1, 3-dien-7-al (8.2%),
ρ-mentha-
1, 4-dien-7-al (27.4%)
90
13- C. cyminum
L. 8
Gonabad, Bajestan, Sabzevar,
Mahvalat, Bardeskan, Nays-
haboor, Ferdos, Sarayan,
Boshroyeh, Ghay en, Esfa-
rayen (Khorasan Prov.)
1.4
2.2
GC and
GC/MS
17 (95.2%-99.9%)
Cuminaldehyde (17.5%22.3%),
safranal (16.8%-29.0%),
γ-terpinene (14.1%-19.6%), γ-
terpinene-7-al (13.5%-25.5%), β-
pinene (6.8%-10.4%),
ρ-cymene (4.1%-8.8%)
91
14-C. cyminum L.
Yazd
Not stated
GC and
GC/MS
15 (95/04)
Propanal (26 .19%), 1-pheny l-1-
butanol (16.49%),
γ- terpinen e (13.04%) , benzene
methanol (25.4%)
92
1The percentages are described as v/w, otherwise specified as w/w, 2sam ple collected o n 1 5 February 1997 , 3samp le collected on 25 February 1997, 4sample c ollected on 5 March
1997, 5sample collected on 5 M arch 1997, 6supercr itical CO2 oil, 7steam-distilled oil, 8fruit collected from thirty three farms in North, Central and South Khorasan provinces.
Table 18. Daucus species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- D. carota L.
subsp. Sativus
(Hoffm.) Arcang.
Dezful (Khuzestan
Prov.)
0.2
GC and
GC/MS
91 (97.1 %)
trans-Anethole (23.5%),
myrcene (14.5%)
93
2- D. littora lis
Smith subsp .
hyrcanicus
Rech.f*1
The coast of Bandar-e-
Anzali,
)Guilan Prov.)
1.6
GC and
GC/MS
33 (87.1 %)
Germacerene D (28.7% and
36.1%), acorenoneB (19.7%)
myristicine (8.6% and 9.7%)
94
3- D. littora lis
Smith subsp .
hyrcanicus
Rech.f*2
Not stated
1.1
GC and
GC/MS
31 (90.6 %)
Acorenone B (29.6 %), germac-
eren D (22.1%), caryophyllene
(6.6 %)
94
4- D. littora lis
Smith subsp .
hyrcanicus
Rech.f *3
Not stated
2.5
GC and
GC/MS
16 (97.4 %)
Acorenone B (57.5%),
myristicin (15.2%)
94
5- D. littora lis
Smith subsp .
hyrcanicus
Rech.f * (root)
Not stated
2.6
GC and
GC/MS
29 (94.4 %)
Germacrene-D (36.1%),
acorenone B (19.7%)
94
*endemic to Iran 1leave & stem 2flower 3fruit
1.18. Daucus L.
Daucus is an annual or biennial herb consisting of around 22
species distributed in the Mediterran ean area, southwest and central
Asia, tropical Africa, Australia, New Zealand, and America. Leaves
are (1-) 2-3-pinnate. Umbels are terminal. Central flowers of umbel
are often sterile, reduced to purplish or blackish bristles. Umbels
have 3-numerous rays. Bracts are pinnatisect, pinnate, or 3-fid.
Petals are usually small, white, pink, or yellowish. Fruit has the
primary ridges bearing small, hair-like spines, and the secondary
ridges with longer, patent spines in a single series [4] [11] [12]. Six
species of the genus are found in Iran, of which 2 species and 1
subspecies of them are endemic to the country [1] [7]. A summary
of the composition of the oils of Iranian Daucus L. species can be
seen in Table 18.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 21
1.19. Dicyclophora Boiss.
Dicyclophora, a monotypic annual herb, is endemic to Iran.
Leaves are (1-) 2-3-pinnatisect. Umbels are terminal or axillary,
with long peduncle. Bracts are long, narrow, and acuminate. Um-
bels have unequal rays. Central umbellule is usually sterile, in-
flated, club-like, and purple-black. Central flowers are fertile, ses-
sile, and hermaphrodite while outer ones are male. Pedicels are
biseriate. Sepals are absent in central flowers while there are 2-3 in
outer flowers which are short, become hard, and recurved. Petals
are white, rarely pale rose. Fruits are pyriform, with 9 dorsal and 2
commissural vittae [1] [4] [7 ] [11] [12]. A summary of the compo-
sition of the oils of Iranian Dicyclophora species can be seen in
Table 19.
1.20. Diplotaenia Boiss.
Diplotaenia is a glabrous perennial herb, without a fibrous col-
lar. This genu s consists of 2 species found in Iran and Turk ey. Ba-
sal leaves have 3-4-ternate or -pinnate, ultimate segments narrowly
linear. Upper stem leaves are much reduced. Umbels are terminal
and axillary, whorled with 15-25 rays. Bracts and bracteoles are
several and lanceolate. Sepals are small. Petals are white, with an
inflexed lacinula. Fruit is strongly compressed dorsally, and gla-
brous; all ridges are equidistant, raised, 1-vittate, and unwinged;
interior valleculae are 1-vittate while the exterior ones are 2-3-
vittate; vittae are broad [4] [11] [12]. Two species of the genus are
found in Iran, of which 1 of th em is endemic to the country [1] [7].
A summary of the composition of the oils of Iranian Diplotaenia
species can be seen in Table 20.
Table 20. Diplotaenia species o ils.
Species
Sample origin
Oil yield
(%) v/w1
Method ( s) of
analysis
Identified
Main components
Ref.
1- D. cach rydifolia
Boiss. 2
Kandovan (Mazandaran
Prov.)
4.5
GC and
GC/MS
18 (94.2%)
Limonene (41.8%), elemieine
(22.0%),
cis-β-ocimene (18.7%)
97
2- D. cach rydifolia
Boiss. 3
Kandovan (Mazandaran
Prov.)
2.7
GC and
GC/MS
21 (99.2%)
Limonene (47.6%),
elemieine (20.5%), cis-β-ocimene
(8.6%),
1,8-cineole (5.7%)
97
3- D. cachrydifolia
Boiss.4
Kandovan (Mazandaran
Prov.)
0.9
GC and
GC/MS
18 (89.9%)
Limonene (28.0%), elemieine
(15.4%),
cis-isoelemieine (15.1%) ,
apiol (11.8%),
cis-β-ocimene (10.9%)
97
4- D. cach rydifolia
Boiss.
(Mazandaran Prov.)
2.0
GC and
GC/MS
26 (99.5%)
Limonene (30.4%),
(E)-isoelemicin (15.2%), elemicin
(15.0%), dillap iole (12.5%),
(Z)-β-ocimene (11.6%)
98
Table 20 . contd…
Table 19. Dicyclophora species oils.
Species
Sample origin
Oil yield (%)
Method( s) of
analysis
Identified
Main components
Ref.
1- D. persica
Boiss.*
Gardane Bezin
(Fars
Prov.)
0.1 (w/w)
GC and
GC/MS
44 (89.0%)
ρ-Cymene (13.6%), α-pinene
(13.4%),
α-phellandrene (9.4%),
(Z)-falcarinol (5.0%)
95
2- D. persica
Boiss.*
Darab-Fars road
(Fars
Prov.)
0.5 (v/w)
GC and
GC/MS
45 (98.6%)
α-Pinene (31.5%), (Z)-β-ocimene
(23.3%),
ρ-cymene (6.7%),
(E)-β-ocimene (5.4%)
96
*endemic to Iran
22 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method ( s) of
analysis
Identified
Main components
Ref.
5- D. cachrydifolia
Boiss.
Alborz mountain (Tehran
Prov.)
0.5
GC/MS
70 (92.4%)
Dillapiole (35.0%), limonene
(20.0%),
elemicin (8.9%)
99
6- D. cachrydifolia
Boiss.5
Taleghan (Alborz Prov.)
2.7
GC/MS
18 (91.4%)
Limonene (49.7%),
dillapiole (10.8%),
(Z)-β-ocimene (12.7%)
100
7- D. cachrydifolia
Boiss.6
Taleghan (Alborz Prov.)
0.4
GC/MS
17 (91.6%)
Limonene (50.7%), dillapiole
(18.3%),
(Z)-β-ocimene (10.3%)
100
8- D. cachrydifolia
Boiss.
7
Not stated
Not stated
GC and
GC/MS
18
Dillapiole (35.1%), limonene
(33.5%),
α-calacorene (25.5%)
101
9-D. damavandica
Mozaff., Hedge
& Lamond 8*
Damavand (Tehran Prov.)
Not stated
GC and
GC/MS
20 (95.1%)
γ-Terpinene (16.2%)
102
10-D. damavandica
Mozaff., Hedge
& Lamond 9*
Damavand (Tehran Prov.)
Not stated
GC and GC/MS
17 (96.4%)
Dillapiol (30.1%)
102
11-D. damavandica
Mozaff., Hedge
& Lamond 10*
Damavand (Tehran Prov.)
Not stated
GC and
GC-MS
16 (94.2%)
(Z)-β-Ocimene
(21.6%),
α-phellandrene
(21.3%),
terpinolene (20.0%)
102
12-D. damavandica
Mozaff., Hedge
& Lamond*
Lar
(Tehran Prov.)
0.8 (w/w)
GC/MS
17 (95.3%)
α-Phellandrene (24.1%), cis-β-
ocimene (23.1),
terpinolene (19.6%),
β-phellandrene (11.4%)
103
1The percentages are described as v/w, otherwise specified as w/w, 2full flowering stage, 3beginning of fruit, 4before flowering stage, 5in fresh form, 6in dried form, 7supercritical fluid
extraction (SFE) method 8seed, 9root, 10leaf, *endem ic to Iran
1.21. Dorema D. Don
Dorema is a monocarpic sturdy herb with long, erect, and thick
stems. This genus has 12 species distributed in the southwest and
central Asia. Basal leaves are rosulate, petiolate, with reticulate
veins, and 3-ternate; ultimate segments are broad, with 2, 3 lobes,
or irregularly lobed. Cauline is left reduced to a sheath. Inflores-
cence is arranged in the form of panicles. Umbels are simple, with
short rays, and terete-capitate. Flowers are regular, hermaphrodite,
and male; males are in lower bran ches while hermaphrodites are in
upper branches. Bracts are few, deciduous, or absent. Sepals are
indistinct. Petals are yellow, cream, or green-yellow and oblong-
ovate. Ovary is cylindrical. Stigma is truncated. Fruit is compressed
dorsally, elliptic, with filiform ridges, 3-4 dorsal, and 2-8 commis-
sural vittae [4] [12]. The genus has 7 species in Iran, o f which two
of them are endemic [1] [7]. A summary of the composition of the
oils of Iranian Dorema species can be seen in T able 21.
1.22. Ducrosia Boiss.
The genus has 5 species distributed from Egypt to the northwest
of India. Ducrosia is an annual or biennial herb, with round, smooth
or slightly ridged stems usually branched from the base. Leaves are
ternate, lanceolate, or filiform or undivided sub-reniform to
cuneate, dentate or lobed lamina, with long petioles; sheaths have
membranaceous margins. Umbels are terminal, with several rays.
Bracts and bracteoles are small, usually reflexed. Flowers are regu-
lar. Sepals are 5, unequal. Petals are ovate, inflexed at the apex,
greenish-yellow or white. Fruit is compressed dorsally, with one
dorsal and 2 commissural vittae [4] [12]. Three species of the genus
are found in Iran, of which one of them is endemic to the country
[1] [7]. A summary of the composition of the oils of Iranian Ducro-
sia species can be seen in Table 22.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 23
Table 21. Dorema species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method ( s) of
analysis
Identified
Main components
Ref.
1- D. ammoniacum
D. Don. 2*
Semnan
to Firoozkuh after Bashm
Defile (Semnan
Prov.)
0.1 (w/w)
GC and
GC/MS
29 (95.1%)
(Z)-Ocimenone (22.3%),
(E)-ocimeno ne (18 .1%),
β-cyclocitral
(9.9%),
ar-curcumene (6.4%)
104
2-D. ammoniacum D. Don. 3
Shahsavaran, Kash an (Isfa-
han Prov.)
0.053
(w/w)
GC and GC/MS
18 (87.2%)
(E)-Nerolidol (11.7%),
E, E-farnezylacetone (8.9%),
phytol (8.9%), di-n-butyl phtha-
late (6.9%), 2(E)-trid ece n-1-al
(6.1%),
α-farnesol (5.5%)
105
3-D. ammoniacum D. Don. 4
Shahsavaran, Kash an (Isfa-
han Prov.)
0.005
(w/w)
GC and GC/MS
13 (92.3%)
Phytol (15.2%), (E)-
nerolidol (14.6%),
α-farnesol (14%),
2-(E)-tridecenol (12.8%), tetrad e-
canal (5.6%)
105
4-D. ammoniacum D. Don. 2
Shahsavaran, Kash an (Isfa-
han Prov.)
0.011
GC and GC/MS
12 (94.1%)
α-Farnesol (41 .2%), β-bisabolene
(13%), α-bisabolol (6.4%),
(Z)-farnesal (5.5%)
105
5-D. ammoniacum D. Don. 5
Shahsavaran, Kash an (Isfa-
han Prov.)
0.050
GC and GC/MS
12 (92.6%)
β-Bisabolene (56.1 %),
elemicin (12.2%), tridecanol
(6.1%)
105
6-D. ammoniacum D. Don.6
Shahroud (Semnan P rov.)
_
GC and GC/MS
64 (89.2%)
α-Muurolol (13.68%), hexade-
canoic acid (6.81%), (E)-
nerolidol (5.09%)
106
7-D. ammoniacum D. Don.7
Shahroud (Semnan Prov.)
_
GC and GC/MS
25 (100%)
(E)-β-Ocimene (30.94%),
γ-terpinene (11.09%),
ρ-cymene (10.03%), (Z)-β-
ocimene (7.11%),
terpinolene (6.19%), endo-
fenchyl acetate (5.25%)
106
8- D. auch eri
Boiss.*
Hezar mountain (Kerman
Prov.)
0.2 (w/w)
GC and
GC/MS
35 (89.2%)
α-Eudesmol (31.2%), δ-cadinene
(10.9%)
81
9- D. glabrum
Fisch. C.A.
Mey *5
Rocky slopes
of Aras River
bank; Jolfa,
(Azerbaijan Prov.)
1.0 (w/w)
GC/MS
34 (81.6%)
Delta-cadinene
(12.78%),
β-bisabolene(7.5%),
α-fenchyl acetate (6.3%),
copaene (5.7%), cubenol (5.4 %)
107
1The percentages are described as v/w, otherwise specified as w/w, 2fruits, 3dry stem & leaf, 4fresh stem &leaf, 5root, 6stem, 7leave, *endemic to Iran.
24 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Table 22. Ducrosia species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method ( s) of
analysis
Identified
Main components
Ref.
1-D. anethifolia
(DC.) Boiss.
Iranian Botanical Garden
(Tehran Prov.)
0.4 (w/w)
GC and
GC/MS
20 (21.6%)
Decanal (45.0%),
tetradecanal (13.8%),
chrysanthenyl acetate (7.7%)
108
2-D. anethifolia
(DC.) Boiss.
Mehdiabad (Kerman Prov.)
0.4 (w/w)
GC and
GC/MS
63 (94.0%)
Decanal (54.0%),
α-pinene (11.6%)
109
3-D. anethifolia
(DC.) Boiss.
Larestan (Fars Prov.)
0.4 (w/w)
GC/MS
33 (77.9%)
Decanal (18.8%),
α-thujene (14.5%), decanol
(9.3%), sclareol (6.8%),
limonene (5.1%)
110
4-D. anethifolia (DC.)
Boiss.2
Lalehzar mountainous
(Kerman Prov.)
2.0
GC/MS
20 (99.8%)
n-Decanal (70.1%),
α-pinene (12.4%),
dodecanal (5.4%)
111
5-D. anethifolia (DC.)
Boiss.2
West of I ran
0.9 (w/w)
GC and
GC/MS
32 (93.4%)
Dodecanal (28.8%),
n-decanal (21.1%),
(2E)-trid ecen -1-al (15.8%),
(2E)-dodecenal (13.4%)
112
6-D. assadii
Alava*
Bakrii v illage
(Kerman Prov.)
0.4 (w/w)
GC and
GC/MS
29 (88.3%)
Decanal (36.4%),
dodecanal (36.4%),
cis-chrysanthenyl acetate (6.7%),
decanol (6.6%),
linalool (6.1%)
113
7-D. assadii Alava* 3
Lalehzar
(Kerman Prov.)
0.31 (w/w)
GC and
GC/MS
61 (99.7%)
Decanal (74.0%),
dodecanal
(7.2%)
114
8- D. assadii Alava* 4
Lalehzar
(Kerman Prov.)
0.11 (w/w)
GC and
GC/MS
50 (99.1%)
Decanal (35.2%), nonadecane
(12.0%),
cis-citronellyl
acetate (11.6%),
(Z)-5-nonadece ne (10 .6%),
heneicosane (5.8%),
dodecanal ( 5.1%)
114
9- D. assadii Alava*
Delibakrii (Kerman Prov.)
Not stated
GC and
GC/MS
29 (88.3%)
Decanal (36.4%),
dodecanal (8.1%),
cis-citronellyl
acetate (6.7%),
decanol (6.6%),
linlool (6.1%)
115
10- D. assadii
Alava*5
Dehbakri (Kerman Prov.)
0.71 (w/w)
GC and
GC/MS
31 (97.7%)
n-Decanal (46.7%),
n-decanol (13.8%),
dodecanal (10.0%), α-pinene
(6.1%)
115
11- D. assadii
Alava*6
Dehbakri (Kerman Prov.)
0.49 (w/w)
GC and
GC/MS
32 (96.6%)
n-Decanal (42.2%),
n-decanol (13.3%),
dodecanal (8.8%),
decanoic acid (5.5%)
115
1The percentages are described as v/w, otherwise specified as w/w, 2aerial parts, 3first oil of aerial parts, 4second oil of ae rial parts, 5flowers, 6fruits *endemic to Iran.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 25
Table 23. Echinophora species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- E. cinere a
(Boiss.) Hedge
& Lamond*
Abadeh (Fars Prov.)
0.8 (w/w)
GC/MS
19 (98.9%)
α-Phellandrene (61.4%),
β-phellandrene (10.7%),
α-pinene (9.6%),
ρ-cymene (6.0%)
116
2- E. cinere a
(Boiss.) Hedge
& Lamond*2
Nojian, mountain, Khor-
ram Abad (Lurestan Prov.)
Not stated
GC/MS
33 (96.7%)
ρ-Cymene (34.4%), α-
phellanderen (21.9%)
117
3- E. cinerea
(Boiss.) Hedge
& Lamond *3
Nojian, Mountain, Khor-
ram Abad (Lurestan Prov.)
Not stated
GC/MS
33 (93.8%)
α-Phellanderen (40.6%), Z-β-
ocimene (17.3%),
ρ-cymene (12.8%),
α-pinene (5.2%)
117
4- E. cinerea
(Boiss.) Hedge
& Lamond*
Lordegan, Naghan, and
Ardal
regions (Chaharmahal va
Bakhtiari
Prov.)
2.05 (w/w)
GC/MS
27
α-Phellandrene (42.40 to
54.87%),
α-pinene (12.28 to 25.54%),
β-phellandrene (10.29 to 11.08%)
118
5- E. platyloba
DC.*
Sofeh moun tains, Isfahan
(Isfahan Prov.)
Not stated
GC and
GC/MS
10 (100%)
trans-β-Ocimene
(82.7%),
phellanderen (9.9%)
119
6- E. platyloba
DC.*
Darakeh, Tehran (Tehran
Prov.)
0.3 (w/w)
GC and
GC/MS
9
(99.3%)
trans-Ocimene
(82.0%), linalool (2.0%)
120
7- E. platyloba
DC.*
Damavand (Tehran Prov.)
1.3 (w/w)
GC/MS
29 (95.3%)
(E)-β-Ocimene
(49.9%),
γ-decalactone (8.4%), α-pinene
(6.0%),
linalool (5.6%)
121
8- E. platyloba
DC.*
Shalamzar (I sfahan Prov.)
0.7 (w/w)
GC/MS
29 (97.4%)
(E)-β-Ocimene
(26.7%),
δ-3-carene (16.2%),
limonene (6.6%)
122
9- E. platyloba
DC. *
Alvand Mount ain, Go lpay-
gan-Khom ein Roa d
(Isfahan Prov.)
Not stated
GC and GC/MS
11 (100%)
trans-β-Ocimene (67.9%),
2-furanone (6.2%),
Myrcene (6.0%)
123, 124
10- E. sibthorpiana
Guss.
Taleghan (Alborz Prov.)
1.1
GC, GC/MS, 13C-
NMR,
1H-NMR
12 (98.9%)
Methyl eugenol
(50.4%),
δ-3-carene (17.4%),
α-phellandrene (16.3%),
ρ-cymene (8.3%)
125
11- E. sibthorpiana
Guss.
Tehran (AlborzTehran
Prov.)
0.7
GC and
GC/MS
17 (95.7%)
δ-3-Carene ( 31.8%),
α-phellandrene (31.0%),
methyl eugenol
(16.9%),
β-phellandrene (5.3%)
126
12- E. platylob a
DC.*
Shalamzar (I sfahan Prov.)
0.7 (w/w)
GC and
GC/MS
29 (97.4%)
(Z)-β-Ocimene
(26.7%),
δ-3-carene (16.2%),
limonene (6.6%)
127
1The percentages are described as v/w, otherwise specified as w/w, 2hydrodistillation, 3hydrodistillation- solvent micro extractions, *endemic to Iran
1.23. Echinophora L.
The genus has 9 species distributed from the M editerranean
area to Iran. Echinophora is a spiny or unarmed perennial or bien-
nial herb with solid stems and sturdy taproots often crowned with a
non-fibrous collar. Leaves are 1-2-pinnate or 3-ternate; petiole is
shorter than rachis, seldom winged. Bracts and bracteoles are pre-
sent. Outer pedicels are hardening and thickening in fruit and often
concrescent. Central flower is only of umbellule hermaphrodite,
and sessile while outer flowers are male; occasionally central um-
bellule is completely sterile. Sepals are usually present on outer
flowers while absent on the inner ones. Petals are white or yellow.
Mericarps are ± pyriform, terete, glabrous or hairy, situated within
26 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
the thickened, often concrescen t, outer pedicels and very occasion-
ally fused with them, often one aborted. Primary ridges are ± con-
spicuous while the secondary ridges are absent. Vittae are 6 [4 ] [11]
[12]. The genus has 4 species in Iran, of which two of them are
endemic [1] [7]. A summary of the composition of the oils of Ira-
nian Echinophora species can b e seen in Table 23.
1.24. Eryngium L.
Eryngium is a glabrous perennial, biennial or annual herb that
has around 250 species distributed in tropical to temperate regions.
Leaves are entire to dissected, often prominently veined and ±
spiny. Inflorescen ce is usually branched. Flowers are sessile in
capitula subtended by an involucre of ± spiny bracts. Bracteoles are
entire or tricuspidate, and pungent. Sepals are prominent and stiff.
Petals are whitish, blue, or greenish and shorter th an sepals. Fruit is
± ovoid; mericarps are plano-convex, bearing scale-like out-
growths; carpophore is absent [4] [11] [12]. Ten species of the ge-
nus are found in Iran [7]. A summary of the composition of the oils
of Iranian Eryngium L. species can be seen in Table 24.
1.25. Falcaria Fabr.
The genus has 4 or 5 species distributed in central Europe, the
Mediterranean area, and west, and central Asia. Falcaria is an
annual, biennial, or perennial herb with a thick rootstock, with or
without a fibrous collar. Leaves are simple or 1-2-ternate to pin-
natisect with large, oblong to linear segments; margins are carti-
laginous and serrate. Sepals are small but conspicuous. Bracts and
bracteoles are subulate or absent. Petals are white. Fruit is laterally
compressed; mericarps are linear-oblong to ovoid, subconstricted at
the commissure; ridges are slightly arched or obsolete; dorsal vittae
are solitary per vallecula or 12-16 and forming a continuous row,
commissural 2-8 [4] [11] [12]. Only one species of the genus is
found in Iran [7]. A summary of the composition of the oils of Ira-
nian Falcaria species can be seen in Tab le 25.
1.26. Ferula L.
Ferula is an erect robust perennial herb, with thick rootstock
and fibrous collars. The genus has 130 species distributed from the
Mediterranean area to central Asia. Basal and lower cauline leaves
Table 24. Eryngium species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s)
of analysis
Identified
Main components
Ref.
1- E. billa rdieri
Del.
The exact location is not
mentioned (Lurestan Prov.)
0.6 (w/w)
GC and
GC/MS
42 (97.2%)
α-Muurolene (42.0%),
β-gurjunene (17.0%),
δ-cadinene (6.2%),
valencene (5.7%)
129
2- E. bung ei
Boiss.
Sari
(Mazndaran Prov.)
1.0
GC and
GC/MS
16 (98.7%)
Cumin a lcohol
(55.3%), terpinolene (14.6%),
carvacrol (8.9%), limonene
(7.5%)
130
3- E. bung ei
Boiss.
Neka, (Mazndaran Prov.)
0.8
GC and
GC/MS
29 (70.8%)
ρ-Cymen-8-ol (14.1%), methyl
2-decanoate (10.4%),
limonene (8.0%)
131
4- E. caeruleum
M, Bieb.
Neka, (Mazndaran Prov.)
0.6
GC and
GC/MS
12 (84.2%)
Limonene (52.1%),
β-sesquiph ellandren e (8.1%),
α-pinene (5.5%),
δ-2-carene (5.3%)
131
5- E. caeruleum
M, Bieb.
The exact location not men-
tioned, North of Ir an
Not stated
GC and
GC/MS
56 (99.8%)
Cyclobuta[1,2,3,4]dicyclooctene,
hexadecahydro (47.03%),
n-hexadecanoic
acid (11.16 %),
linoleic (5.41%)
132
6- E. platyloba
DC.
Maragheh district (Azerbaijan
Prov.)
0.6
GC/MS
33 (91.9%)
(Z)-β-Ocimene (38.9%),
α-phellandrene
(24.2%),
ρ-cymene (7.4%),
β-phellandrene (6.3%)
133
7- E. caeruleum
M, Bieb.
Ramsar (Mazandaran Prov.)
0.3
GC and
GC/MS
20 (96.4%)
Limonene (60.5%),
δ-3-carene (13.0%)
133
1The percentages are described as v/w, otherwise specified as w/w
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 27
are 4-6-pinnate, triangular-ovate in outline with ovate-oblong to
filiform-setaceous lobes while the upper cauline leaves are progres-
sively redu ced to sheathing bases. Sheaths are well developed, usu-
ally coriaceous, and amplexicaul. Inflorescence is paniculate-
corymbose or rarely racemo se or all umbels are proliferating. Cen-
tral umbels are fertile, often shortly peduncled; lateral umbels are
usually sterile, and long-peduncled. Bracts are absent. Bracteoles
are absent or a few, minute, and caducous. Sepals are minute or
obsolete. Petals are usually yellow, glabrous, or rarely hairy. Meri-
carps are strongly compressed dorsally, dorsal ridges are filiform,
laterals are winged, wings are 0.5-4 mm wide; dorsal vittae are
solitary or 2-6 per vallecula, all equal and confined to an intercostal
area only; commissural vittae are 2-12. [4] [11] [12]. Thirty-two
species of the genus are found in Iran, of which 20 species and 2
varieties of one of them are endemic to the country [1] [7]. A sum-
mary of the composition of the oils of Iranian Ferula species can be
seen in Table 26.
1.27. Ferulago W.D.J.Koch
The genus has 43 species distributed from the Mediterranean
area to central A sia. Ferulago is an erect perennial h erb with a thick
rootstock, crowned by a fibrous collar. Basal leaves are 3- to 6-
pinnate, triangular-ovate to linear in outline, with lanceolate-linear
to setaceous lobes; cauline leaves are smaller than basal, progres-
sively reduced to sheathing bases or rarely absent. Sheaths are lin-
ear-lanceo late and slightly inflated. Inflorescence is paniculate-
corymbose or -thyrsoid. Central umbels are fertile, laterals are usu-
ally sterile, and all usually long-peduncled. Bracts and bracteoles
are usually more than 5, well developed, and persistent. Sepals are
minute. Petals are yellow or rarely reddish-purple. Mericarps are
strongly compressed dorsally, and elliptical; dorsal ridges are fili-
form to broadly winged while lateral ridges are winged, 0.5-2.5 mm
wide; dorsal and commissural vittae are 4-30, unequal, distributed
throughout both sid es of mericarp [4] [11] [12]. Nine species of the
genus are found in Iran, of which 4 species and1 sub species of one
Table 25. Falcaria species oils.
Species
Sample origin
Method(s)
of analysis
Identified
Main components
Ref.
1- F. falca rioides
(Bornm.&Wolff)
Wolff
Uromieyeh
(Azerbaijan Prov.)
GC/MS
24 (97.6%)
Germacrene B
(67.9%)
38
2- F. vulg aris
Bernh.
Dalahoo (Kermanshah
Prov.)
GC/MS
64 (83.7%)
Carvacr ol (20.9%),
spathulenol (27.1%)
134
3- F. vulg aris
Bernh. 1
Ardabil
(Ardabil
Prov.)
GC and
GC/MS
8 (96.2%)
α-Pinene (43.8%),
β-caryophyllene (25.2%),
1,8-cineole (12.8%),
α-humulene (6.5%),
β-pinene (5.4%)
135
4- F. vulgaris
Bernh. 2
Ardabil
(Ardabil
Prov.)
GC and
GC/MS
11 (88.1%)
α-Pinene (33%),
α-terpinyl acetate (23.2%),
limonene (14.4%),
β-caryophyllene (6.8%)
135
5- F. vulgaris
Bernh. 3
Ardabil
(Ardabil
Prov.)
GC and
GC/MS
7 (91.3%)
α-Pinene (50.9%),
1,8-cineole (24.4%) ,
β-caryophyllene (7.3%)
135
6- F. vulgaris
Bernh. 1
Khalkhal
(Ardabil
Prov.)
GC and
GC/MS
10 (94.7%)
Germacrene D (32.1%),
α-pinene (16.1%),
1,8-cineole (14.1%), bicy-
clogermacrene (8.9%),
β-caryophyllene (7.3%)
136
7- F. vulgaris
Bernh. 2
Khalkhal
(Ardabil
Prov.)
GC and
GC/MS
13 (87.2%)
α-Pinene (31.5%),
α-terpinyl acetate (21.9%),
limonene (16.8%)
136
8- F. vulgaris
Bernh. 3
Khalkhal
(ArdabilProv.)
GC and
GC/MS
11 (95.3%)
α-Pinene (34.5%), limonene
(29.8%),
α-terpinyl acetate (12.3%)
136
1flower, 2 leaf, 3 stem.
28 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Table 26. Ferula species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- F. assa-foetida
L.*
Babini
(Kerman Prov.)
Not stated
GC and
GC/MS
19 (81.3%)
1-Methylpropyl (1E)- prop-1-en-
1-yl disulfide
(32.8%),
α-pinene (11.3%),
1-methylpropyl
(1Z)- pr op-1-en-
1-yl disulfide
(9.1%),
β-pinene (6.1%)
137
2- F. assa-fo etida
L. *2
Kerman (Kerman Prov.)
1.1 (w/w)
GC and
GC/MS
25 (94.0%)
(E)-1-Propenyl
sec-butyl disulfide (40.0%), (Z) -1-
propenyl sec-
butyl disulfide
(8.7%), germacrene B (7.8%),
α-pinene (5.9%)
138
3- F. assa-fo etida
L. *3
Kerman (Kerman Prov.)
0.8-5.5
(w/w)
GC and
GC/MS
16-22 (93.6%-
100%)
E-1-Propenyl sec-
butyl disulfide
(50.3-59.4%),
germacrene B
(7.7-11.7%),
(Z) -1-propenyl
sec-butyl disulfide (4.9-5.5%)
138
4- F. assa-fo etida
L.*
Iranian Research Institute
of
Forests and
Rangela nds (Isf ahan Prov .)
6.5
GC and
GC/MS
33 (97.5%)
(Z)-1-Propenyl
sec-butyl disulfide (35.1%), (E) -1-
propenyl sec-
butyl disulfide
(22.1%),
α-pinene (12.2%),
methyl
pentyl tetrasulfide (7.1%)
139
5- F. assa-fo etida
L.*
Kerman (Kerman Prov.)
17.0
GC/MS
13 (99.8%)
trans-Propenyl-
s-butyl disulfide
(59.0%), cis-
ocimene (12.0%),
trans-Ocimene
(5.0%)
140
6- F. assa-fo etida
L.4
Kashan area
(Isfahan Prov.)
0.49 (w/w)
GC and
GC/MS
26 (94.7%)
γ-Elemene (32.2%),
α-pinene (12.8%),
β-pinene (6.2%)
141
7- F. assa-fo etida
L.5
Kashan area
(Isfahan Prov.)
0.04 (w/w)
GC and
GC/MS
24 (90.1%)
trans-2-Undecen-1-ol (17.3%),
thymol (10.9%),
dodecanal (9.7%), spathulenol
(8.5%),
β-eudesmol (6.8%)
141
Table 26. contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 29
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
8- F. bad rakema
Kos.-Pol.
Tandoreh (Khorasan
Prov.)
4.0
GC, GC/MS and
13C-
NMR
74 (98.2%)
β-Pinene (45.8 %),
α-pinene (10.9 %)
142
9- F. behboudiana
(Rech. f. &
Esfand.)
Chambe rlain*
Abdanan
(Lurestan Prov.)
Not stated
GC and
GC/MS
13 (99.1%)
Sabinene (75 .3%), (E)-
caryophyllene (16.1%)
137
10-F. cupularis Boiss. 5
Dena Mountain (Kohgi-
luyeh va Boyr Ahm ad
Prov.)
0.45
GC and
GC-MS
36 (93.73%)
β-Pinene (13.87%), ocimene
(9.05%),
bornyl angelate (6.55%), allo-
ocimene (6.06%),
trans-isolimonene (5 .78%), dihy-
dro-linalool acetate (5.02%)
143
11-F. cupularis Boiss. 6
Dena Mountain
(Kohgiluyeh va Boyr
Ahmad Prov.)
0.36
GC and
GC-MS
30 (98.6%)
Limonene (25.04%), δ-2-carene
(15.81%),
sabinen e (7.96%),
β-phellandrene (6.89%),
α-terpinolene (5.61%),
δ-3-carene (5.21%)
143
12-F. cupularis Boiss. 7
Dena Mountain
(Kohgiluyeh va Boyr
Ahmad Prov.)
0.39 (w/w)
GC and
GC-MS
32 (91.9%)
α-Terpinyl isobutyrate (8.7%),
δ-3-carene (8.4%), bornyl angelate
(7.4%),
trans-sabino l (6.9%),
sothol ( 6.0%),
ρ-cymen-9-ol (5.5%), terpinyl
acetate (5.2%)
143
13- F. diversivittata
Regel &
Schmalh.
Kashmar (Khorasan Prov.)
Not stated
GC and
GC/MS
23 (87.3%)
Verbenone (69.4%),
ar-curcumene (6.2%)
137
14- F. flabelliloba
Rech. f. &
Aell.*
Bardask an
(Khorasan Prov.)
Not stated
GC and
GC/MS
33 (84.2%)
Epi-α-cadinol (17.8%),
(E)-γ-bisabolene (8.0%),
β-phellandrene (5.6%),
α-pinene (5.4%), 2,5-
diethylthiophene (5.4%)
137
15- F. flabelliloba
Rech. f. &
Aellen*
Shahtaghi, Mashhad
(Khorasan Prov.)
0.9 (w/w)
GC and
GC/MS
20 (80.0%)
δ-Cadinene (13.2%) , α-
cadinol (12.0%),
cadina-4, 1 (10)
-dien-8-β-ol (10.9%),
α-pinene (10.0%)
144
16- F. flabelliloba
Rech. f. &
Aellen *4
Binaloo d mountains
(Khorasan Prov.)
0.5
GC/MS
44 (87.2 %)
10-Epi-γ- eud esmol (1 4.1%), β-
dihydroagrofuran (13.3 %), α-
bisabolol (9.9 %)
145
Table 26 . contd…
30 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
17- F. foetida
(Bunge)
Regel
Sabzevar
(Khorasan Prov.)
Not stated
GC and
GC/MS
15 (97.3%)
2, 3, 4-
Trimethylthiophene (49.0%), 2, 5-
diethylthiophene (27.5%),
elemicine (8.1%)
137
18- F. galbaniflua
Boiss. &
Buhse 8
Firouzkouh (T ehran Prov.)
3.0
GC and
GC/MS
34 (86.1%)
β-Pinene (58.8%)
146
19-F. galbaniflua
Boiss. &
Buhse
Golestankouh
(Isfahan
Prov.)
Not stated
GC and
GC/MS
13 (99.9%)
β-Pinene (59.0 %),
α-pinene (36.6%)
146
20-F. galbaniflua
Boiss. &
Buhse
Ploor
(Tehran
Prov.)
Not stated
GC and
GC/MS
12 (98.8%)
β-Pinene (66.3 %),
α-pinene (20.3%),
δ-3-carene (8.6%)
137
21- F. galbaniflua
Boiss. &
Buhse 7
Firouzkouh (T ehran Prov.)
1.2
GC and
GC/MS
41 (87.4%)
β-Pinene (46.4 %), cis-
chrysanthemyl acetate (6.1%), (E)-
nerolidol
(5.2%)
137
22-F. gummosa
Boiss.
Esfarayen (Khorasan
Prov.)
Not stated
GC and
GC/MS
16 (93.2%)
β-Pinene (40.7 %),
β-phellandrene (22.7%),
α-pinene (16.2%),
δ-cadinene (7.2%)
137
23- F. gummosa
Boiss.
Kashan (Isfahan Prov.)
1.7
GC/MS
20 (80.7%)
β-Pinene (28.5 %), α-phellan deren
(10.3%), δ-3-carene (8.9%),
limonene (5.1%), comphene ( 5.0%)
147
24- F. gummosa
Boiss.
Ilam (Ilam
Prov.)
2.0
GC/MS
18 (100%)
β-Pinene (36.3 %), α-pinene
(33.9%), germacrene B
(5.9%),
limonene (5.4%),
fenchyl acetate
(5.0%)
147
25- F. gummosa
Boiss.
Semnan (Semnan Prov.)
1.8
GC/MS
17 (100%)
β-Pinene (41.0%), δ-3-carene (11.8
%),
limonene (9.2%), germacrene B
(7.2%),
β-phellandrene
(6.2%)
nerolidol (5.8%)
147
26- F. gummosa
Boiss.
Isfahan
(Isfahan Prov.)
18
GC and
GC/MS
30
(Not stated)
Limonene (14.0%), α-pinene
(13.0%),
terpinolene (10.0%),
β-myrcene (10.0%),
linalool (9.0%),
δ-3-carene (9.0%),
γ-terpinene (6.0%),
phellandral (5.0%)
148
Table 26 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 31
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
27- F. gummosa
Boiss.
Naragh, Kashan ( Isfahan
Prov.)
10.6
GC and
GC/MS
38 (97.6%)
β-Pinene (58.8 %),
δ-3-carene (12.1%),
α-pinene (5.7%)
149
28- F. gummosa
Boiss.
Daran
(Isfahan Prov.)
Not stated
GC/MS
73 (96.9%)
β-Pinene (43.8 %),
α-pinene (27.3%)
150
29- F. gummosa
Boiss.9
The exact location not
mentioned (Semnan Prov.)
Not stated
GC/MS
11-18 (95.7-100%)
β-pinene (41.0-
69.7%), guaiol
acetate (5.0-
22.8%), guaiol
acetate isomer
(0.9-21.6%),
guaiol (4.6-15.7%)
151
30- F. gummosa
Boiss.
Ghalhar, Delijan (Isfahan
Prov.)
Not stated
GC/MS
11 (100%)
β-Pinene (79.9 %), limonene (8.4%)
151
31- F. gummosa
Boiss.10
Naragh, Kashan ( Isfahan
Prov.)
Not stated
GC/MS
15-19 (99.4-100%)
β-Pinene (56.4-
66.4%),
δ-3-carene (9.1-11.7%),
limonene (0.8-11.2%),
guaiol acetate
(3.9-5.3%),
guaiol (3.7-5.2%),
α-pinene (4.0-5.2%)
151
32- F. gummosa
Boiss.11
Nashlaj, Kashan (Isfahan
Prov.)
Not stated
GC/MS
11-24 (99.9-100%)
β-Pinene (67.5-
77.2%), limonene
(3.8-8.9%),
α-pinene (3.5-
7.1%)
151
33- F. gummosa
Boiss. 10
Firouzkouh (T ehran Prov.)
Not stated
GC/MS
8-11 (1 00%)
β-Pinene (62.6-
71.0%),
δ-3-carene (3.0-
11.4%),
guaiol (3-8.2%),
α-pinene (4.2-
8.0%), guaiol
acetate (3.6-
7.9%)
151
34- F. gummosa
Boiss. 10
(Zanjan Prov.)
Not stated
GC/MS
5-14 (1 00%)
β-Pinene (55.0-
78.1%), α-pinene
(15.6-17.9%),
δ-3-carene (2.4-
7.4%),
limonene (2-
5.9%)
151
Table 26 . contd…
32 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
35- F. gummosa
Boiss. 10
Bigan, Sh irvan (Khorasan
Prov.)
Not stated
GC/MS
17-32 (88.0-98.2%)
β-Pinene (65.5-
68.4%),
α-pinene (11.5-
13.8%)
151
36- F. gummosa
Boiss.
Polour (Tehran Prov.)
Not stated
GC/MS
13 (99.5%)
β-Pinene (45.8 %),
α-pinene (12.6%),
δ-3-carene (10.9%), germacrene D
(9.7%),
limonene (5.8%)
151
37- F. gummosa
Boiss.8
Tandureh (Khorasan
Prov.)
Not stated
GC/MS
18 (86.1%)
β-Pinene (50.8 %),
α-pinene (9.9%)
151
38- F. gummosa
Boiss.4
Lar valley
(Tehran Prov.)
Not stated
GC/MS
17 (94.8%)
β-Pinene (50.1 %),
α-pinene (18.3%), zeta-carene
(6.7%)
151
39- F. gummosa
Boiss.4
Lar valley
(Tehran Prov.)
Not stated
GC/MS
22 (100%)
β-Pinene (82.0 %),
α-pinene (5.4%)
151
40- F. gummosa
Boiss.12
Lar valley
(Tehran Prov.)
Not stated
GC/MS
10 (96.9%)
β-Pinene (47.0 %),
δ-3-carene (20%),
α-pinene (10.7%), limonene (7.7%)
151
41- F. gummosa
Boiss.12
Not stated
Not stated
GC/MS
23 (97.5%)
β-Pinene (45.0 %),
δ-3-carene (8.2%),
limonene(8.2%),
β-eudesmol (6.9%),
α-pinene (6.1%)
151
42- F. gummosa
Boiss.12
Saveh
(Markazi Prov.)
Not stated
GC/MS
21 (100%)
α-Pinene (51.7%),
β-myrecene (12.2%), α-thujene
(9.3%)
151
43- F. gummosa
Boiss.8
Not stated
Not stated
GC/MS
9 (72.7%)
α-Pinene (53.0%),
β-elemol (12.4%)
151
44- F. gummosa
Boiss.
Polor (Tehr ann Pro v.)
6.7
GC and GC/MS
17 (94.6%)
β-Pinene (50.1 %),
α-pinene (18.3%),
δ-3-carene (6.7%)
152
45- F. gummosa
Boiss.13
North and
west mountain of
Iran
Not stated
Not stated
6 (100%)
β-Pinene (50.1 %),
α-pinene (18.3%),
δ-3-carene (6.7%)
153
46- F. hezarlalehzarica
Y. Ajani*
Kerman (Kerman Prov.)
Not stated
GC and
GC/MS
14 (85.5%)
(Z)-β-Ocimene
(41.7%),
myrcene (35.3%)
137
47- F. hirtella
Boiss. *
Bafgh
(Yazd Prov.)
Not stated
GC and
GC/MS
19 (87.0%)
Germacrene B
(15.5%),
bicyclogermacrene (12.9%),
α-pinene (9.9%),
γ-elemene (8.5%),
germacrene D
(8.5%),
β-elemene (6.3%), citronellyl
propanoate (5.2%)
137
Table 26 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 33
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
48- F. hirtella
Boiss.*
Moteh, Delijan (Isfahan
Prov.)
0.4 (w/w)
GC and GC/MS
35 (84.8%)
α-Pinene (15.4%), thymol (14.9%)
154
49- F. latisecta
Rech.f. &
Aellen *
Hezarmasjed mountains
(Khorasan Prov.)
0.4 (w/w)
GC and
GC/MS
22 (87.7%)
(Z)-Ocimenone
(32.4%), (E)-
ocimenone (20.3%), cis-
pinocarvone
(11.4%)
155
50- F. latisecta
Rech. f. &
Aellen *9
Bezgh, Kashmar t o Nei-
shabour (Khorasan Prov.)
0.3
GC/MS
28
(93.0 %)
sec-butyl-(Z)-
propenyl disulfide (35.2%), α-
cadinol
(10.7 %), Junicedrol
(10.0%), sec-
butyl- (E)-
propenyl disulfide (8.8%), epi-α-
bisabolol (5.1%)
156
51- F. latisecta
Rech. f. &
Aellen *4
The exact location not
mentioned (Khorasan
Prov.)
2.0
GC/MS
41 (88.9%)
Sec-butyl- (Z) -
propenyl disulphide (65.2%), se c-
butyl-(E)-
propenyl disulphide (6.8%)
157
52-F. macrocolea
(Boiss.) Boiss.*
Poldokhtar ( Lurestan
Prov.)
Not stated
GC and
GC/MS
18 (89.3%)
α-Pinene (21.9%),
β-pinene (17.8%)
(Z)-caryophyllene (6.2%),
δ-cadinene (5.1%)
137
54- F. macrocolea
(Boiss.)
Boiss.*
Fasham (Tehran Prov.)
1.1 (w/w)
GC/MS
42 (86.3%)
β-Pinene (15.9 %), α-pinene
(10.4%), β-caryophyllene (8.6%)
158
53-F. microcolea
(Boiss.) Boiss.*
Sisakht (Koh giluyeh- va
Boyer-Ahmad Prov.)
Not stated
GC and
GC/MS
17 (99.4%)
α-Pinene (41.2%),
nonane (16.0%),
β-pinene (13.8%)
137
55- F. microcolea
(Boiss.)
Boiss.*
Gardeneh Kandovan,
Chaloos (Mazandaran
Prov.)
1.5 (w/w)
GC and
GC/MS
30 (88.9%)
α-Pinene (19.2%), nonane (13.2%),
β-pinene (13.0%)
154
56- F. microcolea
(Boiss.)
Boiss.*
The exact location not
mentioned (Lurestan
Prov.)
Not stated
GC and
GC/MS
22 (93.6%)
α-Pinene (27.3%),
β-pinene (16.4%),
nonanal (8.7%),
β-caryophyllene (8.5%),
thymol (6.7%)
159
57- F. oopoda
(Boiss. &
Buhse) Bo iss.
Shahroud (Semnan Prov.)
Not stated
GC and
GC/MS
13 (99.0%)
α-Terpinyl acetate
(73.3%), sabinene (19.77%)
137
58- F. orientalis
Boiss.
Urmia (Azerbaijan Prov.)
Not stated
GC and
GC/MS
13 (99.4%)
Nonane (45.6%),
α-pinene (32.1%),
2- methylo ctane
(19.4%)
137
Table 26 . contd…
34 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
59- F. ovina
(Boiss.) Boiss.
Barajin (Ghazv in Prov.)
Not stated
GC and
GC/MS
16 (91.5%)
α-Pinene (61.0%),
myrcene (6.3%)
limonene (6.3%), cam phene
(11.7%)
137
60- F. ovina
(Boiss.) Boiss.
Bojnou rd (Khorasan Prov.)
Not stated
GC and
GC/MS
13 (83.7%)
α-Pinene (63.8%), camphene
(6.5%)
137
61- F. ovina
(Boiss.) Boiss.
Sadd-e Lar (Tehran
Prov.)
Not stated
GC and
GC/MS
12 (90.1%)
α-Pinene (68.7%)
137
62- F. ovina
(Boiss.) Boiss.
Eghlid
(Fars Prov.)
Not stated
GC and
GC/MS
20 (92.1%)
α-Pinene (65.4%),
β-pinene (5.1%)
137
63- F. ovina
(Boiss.)
Boiss.
Ab-Ali-Tehran (Tehran
Prov.)
0.6 (w/w)
GC and
GC/MS
19 (90.0%)
α-Pinene (50.0%), limonene
(11.5%)
9
64- F. ovina
(Boiss.)
Boiss.
Mimeh
Isfahan Prov.)
1.0
GC/MS
43 (86.7%)
Carvacr ol (9.0%) ,
α-pinene (8.2%), geranyl isovaler-
ate (7.2%),
geranyl propionate (7.0%)
160
65- F. ovina
(Boiss.)
Boiss.5
Haraz road
(Mazandaran Prov.)
0.1
(w/w)
GC and
GC/MS
68 (93.8%)
α-Pinene (22.5%), borneol acetate
(14.1%),
camphene (11.0%), borneol (6.5%),
limonene (6.4%)
161
66- F. persica
Willd. va r.
latisecta Chamberlain*
Daran
(Isfahan Prov.)
Not stated
GC and
GC/MS
17 (98.7%)
α-Pinene (55.0%),
camphene (20.5%),
spathulenol
(6.0%)
137
67- F. persica
Willd. var .
persica*
Bouiinz ahra
(Ghazvin Prov.)
Not stated
GC and
GC/MS
24 (96.6%)
α-Pinene (33.5%),
spathulenol (8.2%), camphen e
(11.7%),
citronellyl acetate
(5.3%),
β-elemene (5.1%)
137
68- F. persica
Willd.*
Alborz Mountains (Tehran
Prov.)
0.2
GC and
GC/MS
61 (93.7%)
Dillapiole (57.3%),
elemicine (5.6%)
162
69- F. persica
Willd. va r.
persica *
Tehran (Tehran Prov.)
0.2
GC and
GC/MS
39 (82.0%)
Dimethyl trisulphide (18.2%),
myristicin (8.9%), dimethyl
tetrasulphide (7.6%)
163
70- F.
stenoca rpa
Boiss. &
Hausskn. ex
Boiss.*
Babakal an, Gach saran
(Kohgiluyeh va Boyer
Ahmad Prov.)
0.3
GC and
GC/MS
26 (97.8%)
α-Pinene (48.8%),
β-pinene (30.1%)
164
Table 26 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 35
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
71-F. stenocarpa
Boiss. &
Hausskn. *
Orzou (Kerman Prov.)
Not stated
GC and
GC/MS
22 (97.3%)
α-Pinene (37.3%),
β-pinene (36.2%)
137
72-F. szowitsiana
DC.
Shahroud (Semnan Prov.)
Not stated
GC and
GC/MS
25 (96.9%)
α-Pinene (51.6%),
β-pinene (13.7%),
limonene (10.0%),
sabinen e (5.5%)
137
73- F. szowitsiana
DC.14
Qotour valley- Khoy
(Azerbaijan Prov.)
0.2
GC and
GC/MS
47 (95.9%)
Neryl acetate
(41.5%), bicyclogermacrene
(9.0%),
α-pinene (5.5%)
165
74- F. szowitsiana
DC.15
Qotour valley- Khoy
(Azerbaijan Prov.)
0.2
GC and
GC/MS
51 (97.7%)
Neryl acetate
(33.0%),
β-Caryophyllene ( 8.9%),
α-pinene (8.0%),
β-pinene (6.7%)
165
75- F. szowitsiana
DC.
Gardaneh Ahovan (Sem-
nan Prov.)
0.3 (w/w)
GC and
GC/MS
23 (100%)
α-Pinene (12.6%), germacrene D
(12.5%),
β-pinene (10.1%)
29
1The percentages are described as v/w, otherwise specified as w/w, 2hydrodistilled oil, 3supercritical carbon dioxide, 4fruits, 5leaves, 6flower 7stem 8root, 9seven different samples from
the area, 10two different samples from the area, 11three different samples from the area, 12oleogum resine, 13sap, 14flower/fruits, 15stem/le aves.*en demic to Iran.
Table 27. Ferulago species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- F. angu lata
(Schlecht.)
Boiss.2
The exact location not
mentioned (Khorasan
Prov.)
0.4 (w/w)
GC and
GC/MS
15 (93.5%)
α-Phellandrene (20.7%),
α-pinene (16.8%),
β-phellandrene
(16.2%),
ρ-cymene (14.6%), bornyl acetate
(5.5%),
myrecene (5.1%)
166
2- F. angu lata
(Schlecht.)
Boiss. 3
The exact location not
mentioned (Khorasan
Prov.)
0.7 (w/w)
GC and
GC/MS
17 (97.6%)
α-Phellandrene (27.2%),
β-phellandrene (16.6%),
α-pinene (12.2%),
ρ-cymene (10.3%),
δ-3-carene (7.8%),
(Z)-β-ocimenone (6.0%)
166
3- F. angula ta
(Schlecht.)
Boiss.4
The exact location not
mentioned (Khorasan
Prov.)
0.5 (w/w)
GC and
GC/MS
18 (98.1%)
α-Pinene (21.2%),
α-phellandrene (18.1%),
ρ-cymene (17.7%), β-
phellandrene (15.8%),
bornyl acetate (5.3%)
166
Table 27 . contd…
36 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
4- F. angu lata
(Schlecht.)
Boiss.5
Esfarayen (Khorasan
Prov.)
0.57 (w/w)
GC and GC/MS
20 (98.1%)
α-Phellandrene
(24.2%),
β-phellandrene (14.9%),
α-pinene (14.7%),
ρ-cymene (10.3%),
δ-3-carene (6.7%),
(Z)-β-ocimene (5.8%)
167
5- F. angula ta
(Schlecht.)
Boiss.
Dalahoo (Kermanshah
Prov.)
3.0
GC/MS
33 (89.7%)
α-Pinene (17.3%), bornyl acetate
(14.5%)
168
6- F. angu lata
(Schlecht.)
Boiss.2
Shahoo mountain (Ker-
manshah Prov.)
0.6
GC and
GC/MS
30 (98.2%)
cis-Ocimene (27.9%),
α-pinene (25.7%), germacrene D
(22.3%)
169, 170
7- F. angu lata
(Schlecht.)
Boiss.6
Shahoo mountain (Ker-
manshah Prov.)
3.2
GC and
GC/MS
26 (99.3%)
Cis-Ocimene (76.1%),
α-pinene (7.3%)
169, 170
8- F. angu lata
(Schlecht.)
Boiss.2
Nevakoh mountain (Ker-
manshah Prov.)
0.6
GC and
GC/MS
34 (97.5%)
α-Pinene (27.1%), cis-ocimene
(22.6%), bornyl
acetate (8.5%),
germacrene D
(6.5%),
trans-verbenol (5.8%)
169, 170
9- F. angu lata
(Schlecht.)
Boiss6
Nevakoh, mountain,
(Kermanshah Prov.)
3.2
GC and
GC/MS
24 (99.3%)
cis-Ocimene (64.8%),
α-pinene (15.4%),
γ-terpinene
(5.9%)
169, 170
10- F. angula ta
(Schlecht.)
Boiss.
Hezar Mountain (Kerman
Prov.)
2.5
GC and
GC/MS
25 (88.7%)
β-Phellandrene (3 2.0%),
α-phellandrene (13.8%)
171
11- F. angula ta
(Schlecht.)
Boiss.
Dena mountain (Kohgi-
luyeh va Boyr Ahmad
Prov.)
0.5
GC and
GC/MS
62 (89.7%)
(Z)-β-Ocimene
(35.5%), terpinolene (5.7%),
α-phellandrene (5.4%)
172
12-F. angulata
(Schlecht) Boiss.
The central parts of Iran
0.25
GC and GC/MS
51
γ-Terpinolene (11.97%), α-pinene
(10.00%), sabinene
(6.89%), linalool (5.56%),
cis-ocimene (4.41%)
173
13- F. angulata
(Schlecht.)
Boiss.
Dena mountain, (Kohgi-
luyeh va Bo yr Ahmad
Prov.)
0.8
GC and GC/MS
37 (100%)
Suberosin (12.4%), spathuleno l
(10.9%),
trans β-
caryophyllene (7.3%),
ar-curcumene (7.1%),
bicyclogermacrene (7.0%)
174
Table 27 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 37
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
14- F. angula ta
(Schlecht.)
Boiss. 5
Shahoo Mountains, (Ker-
manshah Prov.)
0.6
GC and
GC/MS
31 (95.9%)
cis-Ocimene (27.9%),
α-pinene
(25.7%),
germacrene D
(22.3)
175
15- F. angula ta (Schlec ht.)
Boiss. 6
Shahoo Mountains, (Ker-
manshah Prov.)
3.2
GC and
GC/MS
26 (99.0%)
cis-Ocimene (76.1%),
α-pinene (7.3%)
175
16- F. angulata (Schlecht.)
Boiss.
Hamzeh (Lurestan Prov.)
0.26
GC/MS
33 (93.8%)
α-Pinene (34.45%), E-β-ocimene
(22.43%), bornyl acetate
(11.67%)
176
17- F. angulata (Schlecht.)
Boiss.
Guilane Gharb (Kerman-
shah Pro v.)
0.41
GC/MS
34 (93.7%)
α-Pinene (28.43%), E-β-ocimene
(20.12%), bornyl acetate (7.92%)
176
18- F. angulata (Schlecht.)
Boiss.
Kamiaran (Kurdestan
Prov.)
0.47
GC/MS
29 (82.0%)
α-Pinene (14.60%), E-β-ocimene
(27.90%), bornyl acetate
(10.23%)
176
19- F. angulata (Schlecht.)
Boiss.
Hamzeh (Lurestan Prov.)
0.28
GC/MS
Not stated
α-Pinene (34.45%), Z-β-ocimene
(22.43%), bornyl acetate
(11.67%)
177
20- F. angulata (Schlecht.)
Boiss.
Guilane Gharb (Kerman-
shah Pro v.)
0.40
GC/MS
Not stated
α-Pinene (28.43%), Z-β-ocimene
(20.12%), bornyl acetate (7.92%)
177
21- F. angulata (Schlecht.)
Boiss.
Kamiaran (Kurdestan
Prov.)
0.47
GC/MS
Not stated
α-Pinene (14.6%), Z-β-ocimene
(27.90%), bornyl acetate
(10.23%)
177
22- F. angulata (Schlecht.)
Boiss.
Sepidan (Far s Prov.)
6.50 (w/w)
GC/MS
29 (97.9%)
Limonene (34.93%), α-pinene
(13.93%), β-phellandrene
(6.61%),
α-phellandrene (4.87%), terpino-
lene (4.75%)
178
23- F. bernardii
L.Tomkovich
& Pimenov
Ariz between
Sanandaj and
Marivan (Kurdistan Prov.)
0.2
GC and
GC/MS
60 (87.9%)
2,4,5-Trimethyl-benzaldehyde
(21.2%),
α-pinene (17.0%), spathulenol
(5.0%)
179
24- F. bernardii
L.Tomkovich
& Pimenov
Eivan Gharb (Ilam Prov.)
0.29
GC/MS
38 (93.2%)
α-Pinene (35.03%), E-β-ocimene
(14.24%), bornyl acetate
(11.64%)
176
25- F. carduchorum
Boiss. &
Hausskn. ex
Boiss.*
Hezar Mountains (Kerman
Prov.)
0.4 (w/w)
GC and
GC/MS
23 (99.6%)
(Z)-β-Ocimene
(21.2%), terpinolene (13.1%),
α-phellandrene (12.7%),
β-phellandrene (10.9%)
180
26- F. carduchorum
Boiss. &
Hausskn. ex
Boiss. *5
Manesht Mountain
(Illam Prov.)
1.3
GC and
GC/MS
43 (92.3%)
(Z)-β-Ocimene (43.3%),
α-pinene (18.23%)
181
27- F. contra cta
Boiss. &
Hausskn. ex
Boiss. *4
Shirkouh
(Yazd Prov.)
1.8
GC and
GC/MS
22 (84.5%)
α-Phellandrene (46.8%),
β-phellandrene (24.5%)
182
Table 27 . contd…
38 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
28- F. contra cta
Boiss. &
Hausskn. ex
Boiss. *6
Shirkouh
(Yazd Prov.)
0.3
GC and
GC/MS
18 (81.5%)
ρ-Cymene (28.9%),
α-phellandrene (22.7%)
182
29- F. contra cta
Boiss. &
Hausskn. ex
Boiss. 4*
Tezerjan village (Yazd
Prov.)
0.68 (w/w)
GC and
GC/MS
24 (97.0%)
β-Phellandrene (1 5.1%),
α-phellandrene (14.4%),
β-eudesmol
(10.9%),
(E)-β-ocimene (10.0%),
α-pinene (7.5%),
ρ-cymene (7.2%), spathulenol
(5.4%), citronellol (5.2%)
183
30- F. contra cta
Boiss. &
Hausskn. ex
Boiss. *4
Tezerjan village (Yazd
Prov.)
0.4 (w/w)
GC and
GC/MS
22 (99.1%)
β-Phellandrene (1 5.3%),
α-phellandrene (11.5%),
(E)-β-ocimene (11.3%),
(E)-ρ-cymen e (9.4 %), spa thule-
nol (7.4%),
germacrene D (6.3%),
β-eudesmol (5.9%), linalool
(5.2%)
183
31- F. contra cta
Boiss. &
Hausskn. ex
Boiss. *3
Tezerjan village (Yazd
Prov.)
1.3 (w/w)
GC and
GC/MS
30 (99.2%)
β-Phellandrene (25.0%),
α-phellandrene (25.0%), ger-
macrene D (9.8%), α-pinene
(5.3%),
bicyclogermacrene (5.1%)
183
32- F. contra cta
Boiss. &
Hausskn. ex
Boiss. *2
Tezerjan village (Yazd
Prov.)
0.54 (w/w)
GC and
GC/MS
28 (91.6%)
β-Eudesmol (24.5%),
spathulenol (16.2%) ,
citronellol (11.9%),
linalool (6.8%)
183
33-F. macrocarpa (Fenzl)
Boiss.
Salehabad
(Ilam Prov.)
0.8
GC and
GC/MS
42 (99.5%)
Bornyl acetate ( 40.8%),
2,3,6-trimethyl benzaldehyde
(7.2%),
δ-selinene ( 5.5%), 1,1 0-di-epi-
cubenol (5.1%),
germacrene D (3.5%),
β-phellandrene (3.5%),
α-pinene (3.4%)
184
34- F. phialocarpa
Rech. f. & H.
Riedl *
Divandareh (Kurdistan
Prov.)
0.1 (w/w)
GC/MS
26 (93.8%)
α-Pinene (40.9%),
α-phellandrene (14.2%),
β-phellandrene (9.6%)
185
35- F. stellate
Boiss.5
Khosh-Ghadam area
(Illam Prov.)
0.58 (w/w)
GC and
GC/MS
38 (98.5%)
2,4,5-Trimethyl benzaldehyde
(61.1%),
2,4,6-trimethyl benzaldehyde
(7.5%)
161
Table 27 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 39
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
36-F. subvelutina
Rech.f.
Kashmar to
Neyshaboor (Khorasan
Prov.)
1.8
GC and
GC/MS
36 (98.3%)
Limonene (27.5%),
α-phellandrene (23.1%),
α-pinene (13.3%)
186
37- F. subvelu tina
Rech.f.5
Kashmar to
Neyshaboor (Khorasan
Prov.)
1.08 (w/w)
GC and
GC/MS
41 (97.8%)
Limonene (27.0%),
α-phellandrene (23.1%),
α-pinene (13.3%),
myrcene (5.0%)
161
1The percentages are described as v/w, otherwise specified as w/w, 2leaves, 3flower, 4stem, 5aerial parts, 6seed. *endemic to Iran.
of them are endemic to the country [1] [7]. A summary of the com-
position of the oils of Iranian Ferulago species can be seen in Table
27.
1.28. Foeniculum Mill.
Foeniculum is an erect tall perennial herb with sturdy root-
stocks not crowned with a fibrous collar. Th e genus has 4 or 5 spe-
cies distributed in Asia. Leaves are 3-4-pinnate with filiform lobes
and broad sheathing petioles. Bracts and bracteoles are absent. Se-
pals are absent. Petals are yellow, and not radiant. Fruit is ovoid
oblong, not compressed, and glabrous. Primary ridges are promi-
nent while the lateral oknes are somewhat broader; vittae are soli-
tary [4] [11] [12]. Only one species of the genus is found in Iran
[7]. A summary of the composition of the oils of Iranian Foenicu-
lum species can be seen in Table 28.
Table 28. Foeniculum species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- F. vulga re
Mill. cv.
Soroksari
Research Botanical field,
Tarbiat Modares Univer-
sity, Tehr an (Tehr an
Prov.)
4.6-5.6
GC and
GC-MS
Not stated
Anetol
(57.0-68.6%)
187
2- F. vulga re
Mill. HD1
Tehran (Tehran Prov.)
Not
stated
GC and
GC/MS
18 (100%)
trans-Anethole (76.6%) , fenchone
(11.3%),
ρ-allylanisole (6.6%)
188
3- F. vulga re
Mill.
HD-HSME 2
Tehran (Tehran Prov.)
Not
stated
GC and
GC/MS
15 (95.4%)
trans-Anethole (70.4%), fenchone
(9.3%),
ρ-allylanisole (8.8%)
188
4- F. vulga re
Mill.3
Jahad medicinal p lant
research
center, Karaj
(Alborz Prov.)
0.6-0.8
GC and
GC/MS
37 (95.8-
97.6% )
E-anethole (50.3-62.7%) , E-estragole
(9.4-16.5%), D-(+)-
fenchone (8.2-
8.8%)
189
5- F. vulga re
Mill.4
Jahad medicinal p lant
research
center, Karaj
(Alborz Prov.)
0.5-1.0
GC and
GC/MS
37 (91.4-
96.9% )
E-anethole (47.9-50.2%) ,
E-estragole (10.2-12.5%),
D-(+)-fenchone (7.6-8.9%)
189
6- F. vulga re
Mill.
Tehran (Alborz Prov.)
2.5
GC and
GC/MS
16 (99.9%)
(E)-anethol
(69.4%), fenchone (11.0%),
limonene (10.0%)
190
7- F. vulg are
Mill.5
Tafresh (Markazi Prov.)
0.7
GC and
GC/MS
29 (92.1%)
trans-Anethole (51.7%),
α-pinene (9.1%),
α-phellandrene (8.3%),
estragole (5.2%)
191
Table 28 . contd…
40 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
8- F. vulg are
Mill.6
Tafresh (Markazi Prov.)
0.6
GC and
GC/MS
32 (95.7%)
Myristicin (28.6%), dillapiole
(26.6%),
apiole (21.3%)
191
9- F. vulga re
Mill.
Northern part
of Isfahan
(Isfahan Prov.)
3.0
GC/MS
15 (97.7%)
trans-Anethole (81.1%), fenchone
(9.2%),
limonene (5.0%)
192
10- F. vulgare
Mill.1
Jahad medicinal p lant
research
center, Karaj
(Alborz Prov.)
Not
stated
GC and
GC/MS
37 (96.9%)
E-anethole (50.2%),
E-estragole (12.5%), limonene
(8.1%), D-(+)-fenchone (7.6%)
193
11- F. vulgare
Mill. 7
Jahad medicinal p lant
research
center, Karaj
(Alborz Prov.)
Not
stated
GC and
GC/MS
37 (91.4%)
E-anethole (47.9%),
E-estragole (10.9%),
D-(+)-fenchone
(8.9%),
limonene (6.7%)
193
12- F. vulgare
Mill.8
Jahad medicinal p lant
research
center, Karaj
(Alborz Prov.)
Not
stated
GC and
GC/MS
11 (91.6%)
(E, E) 2, 4-
Decadienal (22.6%),
1,8-cineole (17.4%),
(E,Z)-2,4-decadienal
(10.2%),
γ-terpinene (7.1%),
4-terpineol (5.8%),
camphore (5.6%)
193
13- F. vulgare
Mill.9
Karaj
(Alborz Prov.)
2.8
GC and
GC/MS
22 (99.3%)
trans-Anethole (48.7%),
limonene (25.6%),
fenchone (9.4%)
194
14- F. vulgare
Mill.10
Karaj (Alborz Prov.)
5.0
GC and
GC/MS
22 (89.5%)
trans-Anethole (69.0%),
limonene (10.0%)
194
15- F. vulgare
Mill.11
Karaj (Alborz
Prov.)
2.6
GC and
GC/MS
20 (99.4%)
trans-Anethole (75.2%),
limonene (8.8%),
fenchone (7.9%)
194
16- F. vulgare
Mill.12
Alborz research center,
Karaj
(Alborz Prov.)
2.5
GC and
GC/MS
7 (100%)
trans-Anethole (84.1%),
fenchone (7.9%)
195
17- F. vulgare
Mill.13
Alborz research center,
Karaj
(Alborz Prov.)
2.8
GC and
GC/MS
11 (100%)
trans-Anethole (68.4%),
limonene + 1,8-cineol (19.3%)
195
18- F. vulgare
Mill.14
Alborz research center ,
Karaj
(Alborz Prov.)
1.2
GC and
GC/MS
10 (99.4%)
trans-Anethole (58.6%),
limonene + 1,8-cineol (27.2%)
195
19- F. vulgare
Mill.15
Alborz research center,
Karaj
(Alborz Prov.)
1.1
GC and
GC/MS
8 (98.7%)
Limonene + 1,8-cineol (58.5%),
trans-anethole (28.3%)
195
Table 28 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 41
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
20- F. vulgare
Mill.16
Alborz research center,
Karaj
(Alborz Prov.)
0.4
GC and
GC/MS
22 (100%)
trans-Anethole (78.0%) and
cis-anethole (7.5%)
195
21- F. vulgare
Mill.17
Alborz research center,
Karaj
(Alborz Prov.)
0.5
GC and
GC/MS
32 (99.0%)
trans-Anethole (44.2%), limonene +
1,8-cineol (23.6%),
cis-anethole (13.3%)
195
22- F. vulgare
Mill.18
Alborz research center,
Karaj
(Alborz Prov.)
0.3
GC and
GC/MS
26 (100%)
Limonene +1,8-
cineol (56.5%),
fenchylacetate (16.5%)
195
23- F. vulgare
Mill.19
Alborz research center,
Karaj
(Alborz Prov.)
1.2
GC and
GC/MS
10 (99.9%)
trans-Anethole (58.6%),
limonene + 1,8-
cineol (27.1%)
196
24- F. vulgare
Mill. 20
Alborz research center,
Karaj
(Alborz Prov.)
0.7
GC and
GC/MS
22 (95.8%)
Limonene + 1,8-cineol (38.0%),
trans-anethole (30.7%)
196
25- F. vulgare
Mill.21
Alborz research center,
Karaj
(Alborz Prov.)
1.1
GC and
GC/MS
8 (100%)
Limonene + 1,8-cineol (58.5%),
trans-anethole (28.3%)
196
26- F. vulgare
Mill.22
Alborz research center,
Karaj
(Alborz Prov.)
1.1
GC and
GC/MS
13 (99.6%)
Limonene + 1,8-cineol (47.9%),
trans-anethole (36.4%)
196
27- F. vulgare
Mill.23
Alborz research center,
Karaj
(Alborz Prov.)
2.8
GC and
GC/MS
11 (100%)
trans-Anethole (58.6%),
limonene + 1,8-cineol (27.1%)
196
28- F. vulgare
Mill.24
Alborz research center,
Karaj
(Alborz Prov.)
1.1
GC and
GC/MS
13 (99.9%)
trans-Anethole (57.4%),
limonene + 1,8-
cineol (23.6%)
196
29- F. vulgare
Mill.25
Alborz research center,
Karaj
(Alborz Prov.)
2.5
GC and
GC/MS
7 (100%)
trans-Anethole (84.1%),
fenchone (7.7%)
196
30- F. vulgare
Mill.26
Alborz research center,
Karaj
(Alborz Prov.)
3.0
GC and
GC/MS
4 (99.0%)
trans-Anethole (83.7%),
fenchone (8.7%)
196
31- F. vulgare
Mill.27
Alborz research center,
Karaj
(Alborz Prov.)
2.4
GC and
GC/MS
11 (100%)
trans-Anethole (72.8%), fenchone
(11.3%), 1,8-cineol+ limonene
(7.4%),
estragole (5.4%)
196
32- F. vulgare
Mill.28
Alborz research c enter,
Karaj
(Alborz Prov.)
2.3
GC and
GC/MS
10 (99.0%)
trans-Anethole (75.1%), fenchone
(11.0%),
1,8-cineol + limonene (6.9%)
196
33- F. vulgare
Mill.29
Alborz research center,
Karaj
(Alborz Prov.)
0.4
GC and
GC/MS
22 (99.0%)
trans-Anethole (78.0%),
cis- anethol
(7.5%)
196
Table 28 . contd…
42 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
34- F. vulgare
Mill.30
Alborz research center,
Karaj
(Alborz Prov.)
0.2
GC and
GC/MS
18 (100%)
trans-Anethole (79.8%), fenchyl
acetate
(16.8%),
fenchone (6.9%)
196
35- F. vulgare
Mill.31
Alborz research center,
Karaj
(Alborz Prov.)
0.5
GC and
GC/MS
31 (99.5%)
trans-Anethole (44.2%), limonene +
1,8-cineol (23.6%),
cis- anethol ( 13.3%),
α-pinene (5.3%)
196
36- F. vulgare
Mill.32
Alborz research center,
Karaj
(Alborz Prov.)
0.3
GC and
GC/MS
15 (99.5%)
trans-Anethole (49.5%), limonene +
1,8-cineol (28.9%),
cis- anethol ( 8.7%)
196
37- F. vulgare
Mill.33
Alborz research center,
Karaj
(Alborz Prov.)
0.3
GC and
GC/MS
26 (99.0%)
Limonene + 1,8-cineol (56.5%),
fenchyl acetate (16.5%),
cis-carvacrole (6.6%)
196
38- F. vulgare
Mill.34
Alborz research center,
Karaj
(Alborz Prov.)
Not
stated
GC and
GC/MS
26 (99.0%)
Limonene + 1,8-cineol (54.1%),
fenchyl acetate
(10.9%),
α-pinene (8.8%),
cis-carvacrole (7.7%)
196
39- F. vulgare
Mill.35
Alborz research center,
Karaj
(Alborz Prov.)
Not
stated
GC and
GC/MS
29 (100%)
Limonene + 1,8-cineol (51.7%),
trans-anethole (19.7%),
fenchyl acetate
(12.6%)
196
40- F. vulgare
Mill.36
Alborz research center ,
Karaj
(Alborz Prov.)
0.2
GC and
GC/MS
26 (100%)
Limonene + 1,8-cineol (25.2%)
cis-carvacrole (14.6%), fenchyl
acetate
(14.2%), trans-
verbenyl acetate (10.9%),
α-pinene (8.8%)
196
41- F. vulgare
Mill.12
Alborz research center,
Karaj
(Alborz Prov.)
(2.2-3.4)
GC and
GC/MS
19 (100%)
trans-Anethole (72.9%),
fenchone (10.2%),
limonene (8.8%)
197
42- F. vulgare
Mill. 37
Yazd
(Yazd Prov.)
1.9
GC and
GC/MS
18 (97.8%)
(E)-Anethole
(74.4%),
α-fenchone (8.8%),
limonene (6.3%)
198
43- F. vulgare
Mill. 38
Yazd
(Yazd Prov.)
1.6
GC and
GC/MS
18 (97.9%)
(E)-Anethole
(72.2%),
α-fenchone (8.8%),
limonene (8.0%)
198
44- F. vulgare
Mill. 37
Sanandaj
(Kurdestan Prov.)
1.1
GC and
GC/MS
18 (99.1%)
(E)-Anethole
(71.5%),
α-fenchone (11.6%),
limonene (7.1%)
198
Table 28 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 43
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
45- F. vulgare
Mill. 38
Sanandaj
(Kurdestan Prov.)
1.6
GC and
GC/MS
18 (98.4%)
(E)-Anethole
(64.2%),
α-fenchone (13.3%), limonene
(7.7%),
methyl chavicol
(5.5%)
198
46- F. vulgare
Mill. 37
Marivan
(Kurdestan Prov.)
2.6
GC and
GC/MS
18 (99.1%)
(E)-Anethole
(70.0%),
α-fenchone (12.6%),
limonene (8.4%)
198
47- F. vulgare
Mill. 38
Marivan
(Kurdestan Prov.)
1.7
GC and
GC/MS
17 (98.8%)
(E)-Anethole
(62.1%),
α-fenchone (14.0%),
limonene (10.6%)
198
48- F. vulgare
Mill. 37
Hamedan
(Hamedan
Prov.)
1.5
GC and
GC/MS
18 (98.7%)
(E)-Anethole
(76.5%),
α-fenchone (9.7%),
limonene (5.0%)
198
49- F. vulgare
Mill. 38
Hamedan
(Hamedan
Prov.)
1.4
GC and
GC/MS
18 (100%)
(E)-Anethole
(77.5%),
α-fenchone (9.5%),
limonene (6.7%)
198
50- F. vulgare
Mill. 37
Ghazvin
(Ghazvin
Prov.)
1.9
GC and
GC/MS
18 (99.1%)
(E)-Anethole
(71.0%),
α-fenchone (12.4%),
limonene (7.5%)
198
51- F. vulgare
Mill. 38
Ghazvin
(Ghazvin
Prov.)
1.4
GC and
GC/MS
18 (99.8%)
(E)-Anethole
(73.0%),
α-fenchone (11.1%),
limonene (7.1%)
198
52- F. vulgare
Mill. 37
Semnan
(Semnan
Prov.)
1.9
GC and
GC/MS
18 (100%)
(E)-Anethole
(73.6%),
α-fenchone (10.0%),
limonene (8.8%)
198
53- F. vulgare
Mill. 38
Semnan
(Semnan
Prov.)
1.7
GC and
GC/MS
18 (100%)
(E)-Anethole
(69.1%),
limonene (12.4%),
α-fenchone (11.0%)
198
54- F. vulgare
L. 39
Sadra Experiment Station,
Shiraz (Fars
Prov.)
1.2-1.3
GC and
GC/MS
Not
stated
trans-Anethole (84.1-86.1% ),
fenchone (7.2-8.9%)
199
55- F. vulgare
Mill. 5
Shiraz (Fars
Prov.)
0.9
GC and
GC/MS
16 (94.1%)
trans-Anethole (56.6%),
limonene (22.7%)
200
Table 28 . contd…
44 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
56- F. vulgare
Mill. 5
Hamedan (Hamedan
Prov.)
0.9
GC and
GC/MS
16 (96.0%)
trans-Anethole (44.3%), limonene
(26.6%),
α-pinene (6.8%)
200
57- F. vulgare
Mill. 5
Kerman
(Kerman
Prov.)
0.9
GC and
GC/MS
15 (92.8%)
trans-Anethole (54.3%), limonene
(20.6%),
fenchone (6.8%)
200
58- F. vulgare
Mill. 5
Isfahan (Isfahan
Prov.)
0.7
GC and
GC/MS
18 (95.0%)
trans-Anethole (58.8%),
limonene (25.7%)
200
59- F. vulgare
Mill. 5
Bushehr
(Bushehr
Prov.)
0.8
GC and
GC/MS
19 (95.9%)
trans-Anethole (51.2%),
limonene (21.5%),
α-pinene (7.3%)
200
60- F. vulgare
Mill. 5
Paveh (Kermanshah
Prov.)
1.0
GC and
GC/MS
16 (92.0%)
trans-Anethole (46.3%),
limonene (31.7%)
200
61- F. vulgare
Mill. 5
Tabriz (Azerbaijan Prov.)
2.0
GC and
GC/MS
18 (94.7%)
trans-Anethole (50.3%),
limonene (21.2%),
α-pinene (6.1%),
fenchone (5.6%)
200
62- F. vulgare
Mill. 5
Mashhad (Khorasan
Prov.)
0.8
GC and
GC/MS
16 (94.8%)
trans-Anethole (54.8%),
limonene (11.5%),
α-pinene (8.5%),
fenchone (5.9%)
200
63- F. vulgare
Mill. 5
Tehran (Tehran Prov.)
0.9
GC and
GC/MS
19 (95.2%)
trans-Anethole (53.6%), limonene
(13.6%),
α-phellandrene (8.4%),
α-pinene (5.3%)
200
64- F. vulgare
Mill. 5
Kashan (Isfahan Prov.)
1.1
GC and
GC/MS
17 (96.5%)
trans-Anethole (46.5%),
limonene (15.0%),
α-phellandrene (13.3%),
fenchone (10.2%)
200
65- F. vulgare
Mill. 5
Shirvan (Kho rasan
Prov.)
1.1
GC and
GC/MS
19 (96.8%)
trans-Anethole (41.2 %),
α-pinene (16.9%),
limonene (16.0%)
200
66- F. vulgare
Mill. 5
Varamin (Tehran
Prov.)
0.8
GC and
GC/MS
15 (94.9%)
trans-Anethole (46.1%),
limonene (23.1%),
β-ocimene Z (5.9%),
fenchone (5.0%)
200
67- F. vulgare
The exact location not
mentioned (Kerman
Prov.)
1.84
GC/MS
20
trans-Anethole (78.5%),
fenchone (10.5%), limonene (6.9%),
tarragon (2.3%)
201
Table 28 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 45
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
68- F. vulgare
The exact location not
mentioned (Golestan
Prov.)
1.77
GC/MS
20
trans-Anethole (79.6%),
fenchone (8.5%), limonene (6.71%),
tarragon (2.3%),
α-pinene (1.05%)
201
69- F. vulgare
The exact location not
mentioned (Azerbaijan
Prov.)
1.61
GC/MS
21
trans-Anethole (78.7%), fenchone
(10.2%), limonene (5.6%), tarragon
(2.5%)
201
1hydrodistillation, 2hydrodistillation- solvent micro extraction, 3hydrodistillation (three different conditions), 4steam distillatio n (two samples) , 5leaves, 6roots, 7Cle venge r, 8callus,
9Inflorence at flowering stage, 10unripe seeds, 11ripe seeds, 12seed, 13flower, 14leaf (b efore flowering stage), 15leaf (at flowering stage), 16stem ( before flowering stage), 17stem ( at flow-
ering stage), 18stem (at seed m aturity time), 19leaf (before flowering stag e, wit hout UV radia tion) , 20leaf (before flowering stag e, under UV radiation; total radiation period=12 days),
21leaf (at flowering stage , with out UV radia tion), 22leaf (at flowering stage, un der UV r adiation; total radiation period=27 days), 23flower (at flowering stage, without UV radiation),
24flower (at flowering stage, under UV radiation; total radiation p eriod=27 days), 25se ed (without UV radiation), 26seed (under UV radiatio n; total radiation per iod=12 days), 27seed
(under UV radiation; total radiation period=27 days), 28stem (under UV radiatio n; total radi ation period=130 d ays), 29stem (before flowering stage, without UV radiation), 30 stem
(before flowering stage, under UV radiation; total radiation period=17days), 31stem (at flowering stag e, without UV radiation), 32stem (at flowering stage; under UV radiation, total
radiation period=27 days), 33stem (at seed maturation stage, without UV radiation), 34stem ( at seed m aturation stag e, under UV radiation; total rad iation period=17 day s), 35stem (a t
seed maturation stage, under UV r adiation; total radiation period=27 days), 36stem (at seed maturation stage, under UV radiation; total rad iation period =130 days), 37distillation,
38steam distillation , 39 pasty, waxy and full ripening Dried fruit.
Table 29. Froriepia species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- F. subpinn ata
(Ledeb.) Baill.
Masal Shanderman (Gui-
lan Prov.)
0.4
GC, GC/MS,
1H-NMR
10 (90.0%)
β-Phellandrene (5 0.3%),
sabinen e (25.7%)
202
2- F. subpinn ata
(Ledeb.) Baill.
Behshah r (Mazandaran
Prov.)
0.6
GC and
GC/MS
10 (96.8%)
ρ-Cymene -8-ol (34.7%), terpino-
lene (12.5%),
limonene (10.5%)
203
3- F. subpinnata
(Ledeb.) Baill. 1
Babol (Mazandaran Prov.)
1.2
GC and
GC-MS
72 (97.91%)
Myrcenone (36.95%),
limonene (13.62%), terpinolene
(11.04%),
β-pinene (7.69%)
204
4- F. subpinnata
(Ledeb.) Baill. 2
Babol
(Mazandaran Prov.)
1.5
GC and
GC-MS
53 (98.06%)
Myrcenone (27.40%),
limonene (18.60%), terpinolene
(14.70%), totarolone (7.35%)
204
1cultivated, 2wild
1.29. Froriepia K. Koch
Froriepia is an annual or biennial herb with slender branched
stems, without a fibrous collar. The genus has 2 species distributed
from Turkey to Iran. Leaves are 1-pinnatisect with filiform seg-
ments. Umbels have few rayed, unequal. Bracts might be present or
absent. Bracteoles are present. Flowers are polygamous or her-
maphrodite. Sepals are inconspicuous. Petals are white or whitish-
green. Fruit is broadly ovoid, slightly compressed laterally, and
glabrous; mericarps are subterete. Primary and secondary ridges are
filiform, scarcely prominent, sometimes lignified. Do rsal vittae are
solitary or absent, or with small vittae enclosed in lignified tissue.
Commissural vittae are 0 or 2, enclosed in lignified tissue or not [4]
[11] [12]. One species of the genus is found in Iran [7]. A summary
of the composition of the oils of Iranian Froriepia species can be
seen in Table 29.
1.30. Fuernrohria K. Koch
Fuernrohria is an erect, glabrous perennial herb with sturdy tap
roots usually crowned with a membranous collar. This genus is a
monotypic genus distributed in Turk ey, Caucasia, Armenia, and
Iran. Leaves are 2-3-pinnate or pinnatisect, pinnae whorled on th e
main rachis, segments ± filiform. Bracts are linear or divided, re-
sembling upper leaves. Bracteoles are linear. Sepals are present and
minute. Petals are white; flowers are usually hermaphrodite. Fruit is
oblong-pyriform to elliptic, scarcely laterally compressed, and gla-
brous; ridges are inconspicuous; vittae are 2 on commissural face
[4] [7] [11] [12]. A summary of the composition of the oils o f Ira-
nian Fuernrohria species can be seen in Table 30.
1.31. Grammosciadium DC.
The plants b elonging to Grammosciadium genus are perennials
or monocarpic plants with stout taproots often crowned with a fi-
brous collar. The genus has 7 species distributed in the eastern
Mediterranean region. Leaves are 1-2-pinnate, pinnae deeply pin-
natisect with short linear-mucronate segments. Upper leaves have
leaf-like stipules. Rays are indurated at the base. Bracts and bracte-
oles are present. Polygamous or central umbel is only fertile. Pedi-
cels are thickening at maturity, and indurated at the base. Sepals are
present. Petals are white with a central oil-duct, outer petals are
somewhat radiant. Mericarps are glabrous, ± terete, linear to ob-
46 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
long, vittate. Primary ridges are 5, laterals are sometimes winged,
secondary ridges are filiform, or absent [4] [11] [12]. Three species
of the genus are found in Iran [7]. A summary of the composition of
the oils of Iranian Grammosciadium species can be seen in Table
31.
1.32. Haussknechtia Boiss.
The plants belonging to this genus are up to 3 m tall, strong,
glabrous, perennial, or monocarpic plants with leaf-less stems. Ba-
sal leaves are large and bipinnatisect with ovate or oblong leaflets,
while the upper ones are very reduced upwards. Umbels are glo-
Table 30. Fuernrohria species oils.
Species
Sample origin
Oil yield (%)
Method( s) of
analysis
Identified
Main components
Ref.
1- F. setifolia K.
Koch
Takab
(Azerbaijan Prov.)
0.1 (w/w)
GC and
GC/MS
28 (97.6%)
Limonene (68.5%), germacrene D
(10.9%),
carvone (10.2%)
205
Table 31. Grammosciadium species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- G. platycarpum
Boiss. &
Hausskn.
Blooz, Sa fir/Chan eh
village, Takab
(Azerbaijan Prov.)
1.0 (w/w)
GC and
GC/MS
18 (98.8%)
Linalool (79.0%),
limonene (10.0%)
206
2- G. platyca rpum
Boiss. &
Hausskn.
Zarshouran village, Takab
(Azerbaijan Prov.)
0.7 (w/w)
GC and
GC/MS
18 (99.5%)
Linalool (81.8%),
limonene (5.8%)
206
3- G. platyca rpum
Boiss. &
Hausskn.2
Saveh (Markazi Prov.)
2.0
GC and
GC/MS
16 (96.2%)
Linalool (53.9%), (E,E)-α-
farnesene (20.4%),
(Z)-β-santalol
(10.9%)
207
4- G. platyca rpum
Boiss. &
Hausskn.3
Saveh (Markazi Prov.)
0.5
GC and
GC/MS
25 (87.0%)
Linalool (26.1%), (E,E)-α-
farnesene (24.1%),
(Z)-β-santalol
(10.6 %)
207
5- G. platyca rpum
Boiss. &
Hausskn.4
Sahand region between
Maragheh to Ashan village
(Azerbaijan Prov.)
1.6
GC-MS
29 (96.5%)
Linalool (76.4%),
α-humulene (6.1%)
208
6- G. scabridu m
Boiss.
Aghbolagh village, Takab
(Azerbaijan Prov.)
0.7
GC and
GC/MS
19 (99.9%)
γ-Terpinene (73.5%),
ρ-cymene (14.2%),
(E)-β-farnesene
(5.3%)
209
7- G. scabridu m
Boiss.
Dorud, Khorramabad
(Lurestan Prov.)
0.1 (w/w)
GC-FID and
GC/MS
16 (95.4%)
α-Pinene (32.4%), bornyl acetate
(13.7%),
limonene (11.8%),
endo-fenchyl acetate (9.7%)
210
8- G. scabridum
Boiss.
Southwest Mountains of
Khoram-Abad (Lurestan
Prov.)
GC and GC/MS
36 (89.3%)
2-Cyclohexen-1- on e (2 9.53 %),
limonene (17.09%),
apiol (11.78%), hexadecanoic
acid (5.62%), spathulenol (3.24%)
211
1The percentages are described as v/w, otherwise specified as w/w, 2fruits, 3leaves, 4aerial parts
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 47
bose, with rudimentary bracts and 6-7 white membranaceous brac-
teoles equal to florets. Each flower has 5 teeth-like sepals and 5
notched white petals curved inward. Fruits are ovate, sub-
compressed in cross-section, composed of two halves, each with 5
longitudinal ridges. Carpophores are absent [11] [12]. This is a
monotypic genus known only from the southwest of Iran [7] (Table
32).
1.33. Heptaptera Marg. & Reuter
The genus has 6 species distributed in the Mediterranean region
to southwest Asia [4]. The plants are perennial herbs with branched
terete or triquetrous stems, glabrescent, or covered with papillae.
Basal and lower cauline leaves are usually 1-3 (rarely -4) pin-
natisect, or rarely undivided. Leaves have ovate to lanceolate lobes.
Upper leaves are gradually reduced and less divided upward. Bracts
and bracteoles are present. Central umbels are shortly pedunculate,
mainly with hermaphrodite florets. Lateral umbels have longer
peduncles with usually male florets. Sepals are absent. Petals are
yellow and glabrous. Fruits are usually asymmetric, glabrous, usu-
ally with 2 lateral and one dorsal wings on the primary ridges of
one mericarp, and 2 lateral and 2 dorsal wings on the primary ridges
of the other. Mericarps are ellipsoid, ovoid to obovoid, more or less
flattened dorsally, with numerous vittae [11] [12]. Two species of
the genus are found in Iran [7] (Tab le 33).
1.34. Heracleum L.
The genus has 65 species distributed in north temperate regions
and tropical mountains. Heracleum is a perennial or monocarpic,
tall or dwarf herb, variable in facies, often aromatic, sometimes
with a collar of ribbon-like fibers; rootstock is usually thick. Stem
is terete and often sulcate. Lower leaves are simple and lobed or 1-
2-pinnate or trisect to biternate, hairy or glabrous. Bracts and brac-
teoles might be present or absent. Sepals are minute. Petals are
white or sometimes pale greenish, regular or the outer radiant, en-
tire with an inflexed cusp, or bilobed when radiant, usually gla-
brous. Stylopodium is conical with a narrow sinuate collar; styles
are filiform throughout, deciduous in fruit, and usually glabrous.
Fruits are strongly flattened dorsally, with a winged margin, hairy
or glabrous; dorsal and lateral ridges are slender and 5; dorsal vittae
are 4, filiform to broadly clavate, solitary between the ridges, not
reaching to the base of the mericarp; commissural vittae are 2-0 [4]
[11] [12]. Eight sp ecies of the genus are found in Iran, of which 3
of them are endemic to the country [1] [7]. A summary of the com-
position of the oils of Iranian Heracleum species can be seen in
Table 34.
1.35. Hippomarathrum Hoffmanns. and Link
Hippomarathrum is an erect, stiff, much-branched perennial
plant with a thick rootstock, crowned by a collar of fibers or bris-
tles. This genus has 3 or 4 species distributed in Europe, North
Africa, and some parts of Asia. Basal leaves are 3-5-ternate or ver-
ticillate-ternate, with linear or tiliform ultimate segments. Upper
stem leaves are much reduced, sometimes simple, and lanceolate.
Bracts and bracteoles are 5-7, linear to lanceolate, and entire. Flow-
ers are hermaphrodite. Sepals are conspicuous. Petals are yellow.
Fruit is ellipsoid to ± globose, not compressed; ridges are obtuse
and broad to ± acute, papillose, verrucose or cristate dentate;
valleculae and commissures are multi vittate [4] [11] [12]. One
species of the genu s is found in Iran [7]. A sum mary of the compo-
sition of the oils of Iranian Hippomarathrum species can be seen in
Table 35.
Table 32. Haussknechtia species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1-H. elymaitica
Boiss1 *
Gachsaran, Eas t of
Genaveh Lori Village,
(Kohgiluyeh va
Boyer Ahmad Prov.)
0.2 (w/w)
GC/MS
10 (98.8%)
β-Bisabolen e (51.1%),
trans-asarone (25.0%), lavan-
dulyl acetate (10.2%),
α-phellandrene (5.1%)
212
2-H. elymaitica
Boiss1 *
Ilam to Abdanan (Ilam
Prov .)
Not stated
GC and
GC/MS
12 (99.7%)
trans-Asarone (59.9%),
trans-methyl isoeugenol
(22.4%),
α-zingiberene (8.0%)
212
1 fruits, *endemic to Iran
Table 33. Heptaptera species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
Heptaptera anisoptera (DC.)
Tutin
Taleghan (Alborz Prov.)
0.2
GC/MS
10 (91.4%)
Thymol (48.8%),
3-carene (17.6%), phytol (7.9%)
213
48 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Table 34. Heracleum species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1-H. gorganicum Rech. f&
Golestan national park
(Golestan Prov.)
0.9
GC and
GC/MS
21
Octyl acetate (33.1%%), hexyl
butyrate (22.5%), hexyl 2-
methyl butyrate (5.4%)
214
2-H. gorganicum Rech. f&
Golestan national park
(Golestan Prov.)
1.54
GC and
GC/MS
21
Octyl acetate (36.6%), hexyl
butyrate (25.6%), hexyl 2-
methyl butyrate (6.3%)
214
3-H. gorganicum Rech. f&
Golestan national park
(Golestan Prov.)
1.96
GC and
GC/MS
21
Octyl acetate (39.9%), hexyl
butyrate (29.8%), hexyl 2-
methyl butyrate (7.1%)
214
4- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall.
Kandavan (Tehran Prov.)
0.1
GC, GC/MS and
1H-NMR
13 (93.5%)
trans-anethole (82.8%),
cis-anethole (5.6%)
215
5- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall. 2
Ardebil (Ardebil Prov.)
0.3 (w/w)
GC and
GC/MS
29 (75.0 %)
Hexylbutyrate (37.8%), hexylbu-
tanoate (32.7%), octy lacetate
(16.3%),
hexyl-2-methylbutanoate (5.7%)
216
6- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall. 3
Darbandsar, Tehran
(Tehran Prov.)
0.4 (w/w)
GC and
GC/MS
24 (99.6%)
(E)-Anethole
(47.0%), terpinolene (20.0%),
γ-terpinene (11.6%),
limonene (11.5%)
217
7- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall. 4
Darbandsar, Tehran
(Tehran Prov.)
0.5 (w/w)
GC and
GC/MS
33 (99.0%)
(E)-Anethole
(60.2%),
terpinolene (11.3%),
γ-terpinene (7.1%)
217
8- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall. 5
Darbandsar, Tehran
(Tehran Prov.)
5.2 (w/w)
GC and
GC/MS
30 (72.3%)
Hexyl butyrate
(22.5% ),
octyl acetate (19.0%)
and hexyl isobutyra te
(9.1%)
217
9- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall. 6
Darbandsar, Tehran
(Tehran Prov.)
3.5 (w/w)
GC and
GC/MS
30 (87.5%)
Hexyl butyrate
(35.5%),
octyl acetate
(27%)
217
10- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall. 7
Darbandsar, Tehran
(Tehran Prov.)
1.1 (w/w)
GC and
GC/MS
21 (98.6%)
(E)-Anethole
(60.2%), (E)-β-
ocimene (8.4%),
terpinolene (7.7%), β-pinene
(5.9%)
218
Table 34 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 49
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
11- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall. 8
Darbandsar, Tehran
(Tehran Prov.)
0.9 (w/w)
GC and
GC/MS
19 (98.0%)
(E)-Anethole
(47.5%), 1-(4-
methoxy phenyl)
-2-propan one (18 .1%),
anisaldehyde (8.9%)
218
12- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall. 9
Darbandsar, Tehran
(Tehran Prov.)
0.8 (w/w)
GC and
GC/MS
21 (100%)
(E)-Anethole
(38.6%),
γ-terpinene (17.8%), myrcene
(13.5%),
(E)-β-ocimene
(6.0%)
218
13- H. persicum D esf. ex
Fisch.,
C.A.Mey. &
Avé-Lall.
Research Institute o f
Forests and
Rangela nds (Teh ran
Prov.)
Not stated
GC and
GC/MS
23 (96.3%)
trans-Anethole (61.0%),
β-pinene (7.0%)
219
14- H. persicum
Desf. ex
Fisch.,
C.A.Mey. &
Avé-Lall.
Dizin, Tehran
(Tehran Prov.)
1.0
GC and
GC/MS
23 (100%)
trans-Anethole (61.0%),
β-pinene (7.0%)
220
15- H. persicum D esf.
ex
Fisch.,
C.A.Mey. &
Avé-Lall.11
North of
Tehran
(Tehran Prov.)
4.0
GC/MS
24 (99.5%)
Hexyl butyrate (56.5%), octyl
acetate (16.5%), hexyl 2-
methylbutanoate (5.2%)
221
16- H. persicum D esf.
ex
Fisch.,
C.A.Mey. &
Avé-Lall.10
Different location of Iran
(1.6 to 4.9
%)
GC and
GC/MS
36
(89.7-99.5%)
Octyl acetate
(7.5-40.8%),
hexyl butyrate
(13.3-43.8%),
hexyl isobutyrate
(2.9-7.2%),
hexyl 2-methyl
butyrate
(4.8-11.9%)
222
17- H. rechingeri
Manden 12*
Nour, Balade
(Mazandaran Prov.)
0.4
(w/w)
GC and
GC/MS
37 (94.2%)
Octyl acetate
(29.5%), elemicine (23.1%), (E)-
caryophyllene
(9.3%), caryophyllene oxide
(6.4%), terpinolene (6.1%)
223
18- H. rechingeri Manden *9
Nour, Balade
(Mazandaran Prov.)
Not stated
GC and
GC/MS
21 (98.7%)
_
224
19- H. rechingeri
Manden *2
Nour, Balade
(Mazandaran Prov.)
Not stated
GC and
GC/MS
16 (97.4%)
_
224
20- H. rechingeri
Manden *3
Nour, Balade
(Mazandaran Prov.)
Not stated
GC and
GC/MS
4 (99.1%)
_
224
1The percentages are described as v/w, otherwise specified as w/w, 2seeds, 3stems (before f lowering stage), 4stems (at full flowering stage), 5unripe seed, 6ripe seeds, 7leaves ( before
flowering stage), 8leaves (at the full flowering stage), 9flowers, 10fruits of 17 wild populations, 11fruits, 12aerial parts, *endemic to Iran.
50 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Table 35. Hippomarathrum species oils.
Species
Sample origin
Oil yield
(%)
Method(s) of analy-
sis
Identified
Main components
Ref.
1- H. microcarpum
(M. Bieb.) B.
Fedtsch.
Taleghan (Alborz Prov.)
0.9 (w/w)
GC and
GC/MS
33 (95.2%)
α-Pinene (15.9%),
β-caryophyllene (15.7%),
β-phellandrene (7.8%),
germacrene-D (6.8%)
225
2- H. microcarpum
(M. Bieb.) B.
Fedtsch.1
Tehran (Tehran Prov.)
0.2 (w/w)
GC and
GC/MS
31 (98.8%)
β-Caryophyllene ( 26.4%),
γ-muurolene (19.0%),
linalool (6.1%)
226
3- H. microcarpum
(M. Bieb.) B.
Fedtsch.2
Tehran (Tehran Prov.)
0.2 (w/w)
GC and
GC/MS
28 (89.5%)
β-Caryophyllene ( 18.5%),
γ-muurolene (19.2%), thymol
(6.9%), camphene (6.4%),
linalool (5.9%)
226
1leaves, 2flowers
Table 36. Johrenia species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- J. ramosissima
Mozaff.*
Marzanabad, Chaloos
(Mazandaran Prov.)
0.1
GC/MS
35 (88.5%)
Bornyl acetate
(14.8%),
trans-pinocarveol (12.5%),
α-campholenol (9.5%)
228
*endemic to Iran
Table 37. Johreniopsis species oils
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- J. seseloide s
(C.A.Mey.)
Pimenov
Darakeh
(Tehran Prov.)
0.1
GC/MS
20 (77.2%)
Spathulenol (18.2%),
α-terpineol (8.0%), hex ahydro-
farnesylacetone
(7.1%),
α-pinene (7.0%)
228
2- J. seseloide s
(C.A.Mey.)
Pimenov
Gardaneh Haris (Kurdistan
Prov.)
0.2
GC/MS
23 (97.0%)
α-Pinene (26.3%),
α-bornyl acetate
(12.4%), limonene (10.3%),
α-fenchyl acetate
(9.1%),
β-caryophyllene (8.6%)
228
3- J. seseloide s
(C.A.Mey.)
Pimenov
Gardaneh Delbar, Biear-
jmand (Semnan Prov.)
0.1
GC and
GC/MS
23 (89.7%)
β-Pinene (14.9 %),
germacrene D (11.1%)
41
1.36. Johrenia DC.
Johrenia is a glaucous, glabrous perennial herb with a thick
rootstock, crowned by a fibrous collar. The genus has 15 species
distributed in Europe and southwest and central Asia. Basal leaves
are 1-2-pinnate, with ultimate segments simple to pinnatisect. Up-
per stem leaves are reduced to a swollen vaginate petiole. Umbels
are terminal, with 3-20 rays. Bracts are absent. Bracteoles are 3-5,
linear to setaceous. All flowers are hermaphrodite; sepals are ab-
sent; petals are yellow and equal. F ruit is oblong or elliptic, dorsally
compressed, smooth, and glabrous; interior three ridges are reduced
to raised lines while the exterior two ridges are embedded in or
contiguous with the thick white usually spongy margin. Vittae are
restricted to the ridges; commissures are concave, plan e, or convex.
Multi is vittate [4] [11] [12]. The genus has 4 species in Iran, of
which three of them are endemic [1] [7]. A summary of the compo-
sition of the oils of Iranian Johrenia species can be seen in Table
36.
1.37. Johreniopsis Pimenov
Johreniopsis is a perennial herb, similar to Johrenia, with a
solitary, elate, virgate, and slender stem. The genus has 4 species
distributed in Caucasia and southwest of Asia. Basal leaves are 2-3,
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 51
ternatisect, with narrow lanceolate o r linear ultimate segments.
Umbels have unequal rays. Bracts might be absent or present. Brac-
teoles are linear-lanceolate. Sepals are ± inconspicuous. Petals are
yellow. Fruit has a conical stylopodium, and reflexed style; meri-
carps have filiform dorsal and winged marginal ridges, with 1-3
dorsal and 2 commissural vittae [4] [12]. Four species of the genus
are found in Iran, of which 3 of th em are endemic to the country [1]
[7]. A summary of the composition of the oils of Iranian Johreniop-
sis species can be seen in Table 37.
1.38. Kelussia Mozaff.
Kelussia is a monotypic genus and endemic to Iran. The plants
are tall perennial, erect, herbaceous, very sweet-smelling herbs,
with a rootstock without a fibrous collar. Basal leaves are large, and
2-pinnate, with oblong-elliptic, undivided, or rarely trilobate ulti-
mate segments; upper stem leaves are soon deciduous or wanting.
Inflorescence is in the form of a large, much-branched umbel with
8-12 rays. Terminal umbels have fertile flowers while the lateral
ones have male or sterile flowers. Bracts and bracteoles are present,
lanceolate, and soon deciduous. Calyx is teeth inconspicuous. Petals
are yellow and glabrous. Stylopodium is flattened or low-conical.
Fruit is strongly compressed dorsally, elliptic-orbicular, with keeled
dorsal ribs, and narrowly winged lateral ribs. Commissure is broad.
Vittae are numerous, septate, and dorsal 3 per vallecula, commis-
sural 12-14 (1, 7, 184). A summary of the composition of the oils of
Iranian Kelussia species can be seen in Table 38.
1.39. Laser Borkh. ex G.Gaertn., B.Mey. and Scherb.
Laser is an erect, glaucous perennial herb with solid stems and
sturdy taproots crowned with a fibrous collar. This genus has 2
species distributed in the central and southern Europe and the
southwest of Asia. Leaves are 1-2-pinnate or 1-2-ternate with broad
segments. Bracts and bracteoles are soon deciduous. Rays and pedi-
cels are indurated at th e base. Sepals are present. Petals are white
Table 38. Kelussia species oils.
Species
Sample origin
Method( s) of
analysis
Identified
Main components
Ref.
1- K. odoratissima
Mozaff. *
Kohrangh (Chaharmahal
va Bakhtiari
Prov.)
GC/MS
24 (90.4%)
Z-Ligustilide (33.7%),
3-E-butyldiene phthalide (20.1%),
E-ligustilide (6.7 %)
229
2- K. odoratissima
Mozaff. *
Bazoft ( Chaharmahal va
Bakhtiari
Prov.)
GC/MS
21 (95.6%)
Z-Ligustilide (47.3%), 3-E-
butyldiene phthalide (17.3%), E-
ligustilide (6.3%)
229
3- K. odoratissima
Mozaff. *
Doab Samsami (Chahar-
mahal va Bakhtiari
Prov.)
GC/MS
24 (93.6%)
Z-Ligustilide (37.6%),
3-E-butyldiene phthalide (19.9%)
229
4- K. odoratissima
Mozaff. *1
Zardkooh mountain (Cha-
harmahal va Bakhtiari
Prov.)
GC/MS
38 (100%)
Z-Ligustilide (29.2%), germacrene-
B (15.9 %), germacrene-D (15.5%),
β-phellandrene (9.2%),
δ-cadinene (5.8%)
230
5-K. odora tissima Moz aff. *1
Doab Samsami (Chahar-
mahalva Bakhtiari Prov.)
GC/FID,
GC/MS
6 (99.7%)
(Z)-Ligustilide (54.086.0%), ( 2E)-
decen-1-ol (2.012.3%)
231
6-K. odo ratissima Mo zaff. *2
Doab Samsami (Chahar-
mahalva Bakhtiari Prov.)
GC/FID,
GC/MS
32 (99.5%)
(Z)-Ligustilide (54.086.0%), ( 2E)-
decen-1-ol (2.012.3%)
231
7-K. odora tissima Moz aff. *3
Doab Samsami (Chahar-
mahalva Bakhtiari Prov.)
GC/FID,
GC/MS
31 (99.2%)
(Z)-Ligustilide (54.086.0%), (2E)-
decen-1-ol (2.012.3%)
231
8-K. odo ratissima Mo zaff. *4
Doab Samsami (Chahar-
mahalva Bakhtiari Prov.)
GC/FID,
GC/MS
21 (98.2%)
(Z)-Ligustilide (54.086.0%), ( 2E)-
decen-1-ol (2.012.3%)
231
9-K. odo ratissima Mo zaff. *5
Doab Samsami (Chahar-
mahalva Bakhtiari Prov.)
GC/FID,
GC/MS
21 (98.1%)
(Z)-Ligustilide (54.086.0%), ( 2E)-
decen-1-ol (2.012.3%)
231
10-K. odoratissima Mozaff. *
Kelus region, Freydoon-
shahr, ( Isfahan Prov.)
GC/MS
16 (87.4%)
3-n-Butyl ph thalide (25.1%), p entyl
benzene(15.1%),
3-octen-1-ol acetate (9.6%), cu-
parene (6.8%), 3-butyldine
phthalide (6.7%),
α-copaene (5.3%)
232
1fruits, 2root 3stalk 4leaves 5inflorescence * endemic to Iran
52 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
and clawed. Fruit is oblong, glabrous, and dorsally compressed;
primary ridges are 5 while the secondary ones are 4; vittae ± con-
spicuous, dorsal 4, commissural 2 are [4] [11] [12]. Two species of
the genus are found in Iran, of which one of them is endemic to the
country [1] [7]. A summ ary of the composition of the oils of Iranian
Laser species can be seen in Table 39.
1.40. Leutea Pimenov
Leutea is a perennial, polycarpic, and glabrous herb consisting
of 9 species distributed in central and southwest of Asia. Leaves are
often basal, rigid, with usually cylindrical, petiol-like segments and
rachis. Synflorescents are paniculate or subcorymbose; central and
lateral umbels are all fertile, with few rays. Bracts are absent or a
few and deciduous. Bracteoles are present or absent. Flowers are
hermaphrodite. Sepals are small and inconspicuous. Petals are yel-
lowish or grey-green or rarely white. Fruits are dorsally strongly
compressed, with ± inconspicuous dorsal ridges, with a flat or flat-
conical stylopodium; mericarps have a single dorsal and 2 commis-
sural vittae [4] [12]. Nine species of the genus are found in Iran, of
which 6 of them are endemic to the country [1] [7]. A summary of
the composition of the oils of Iranian Leutea species can be seen in
Table 40.
1.41. Levisticum Hill
Levisticum is a monotypic genus distributed in the Eastern
Mediterranean. This genus is a perennial, elate, subglabrous, rau-
cous herb with a thick rhizome. Leaves are large, and 2-3-
pinnatisect. Umbels have many rays. Bracts and bracteoles are pre-
sent, and membranaceous at the margin; bracteoles are ± concres-
cent. Sepals are indistinct. Petals are yellowish-white, incurved at
Table 39. Laser species oils.
Species
Sample origin
Oil yield (%)
Method( s) of
analysis
Identified
Main components
Ref.
1- L. trilobum
(L.) Borkh. ex
Gaertn.
Chaloos (Mazandaran Prov.)
1.8 (w/w)
GC/MS
18 (85.2%)
β-Caryophyllene ( 22.3%), m yr-
cene
(21.7%),
β-sesquiph ellandren e (19.2 %)
38
2- L. trilobum
(L.) Borkh. ex
Gaertn.
Gadouk, Firouzkooh (Te-
hran Prov.)
2.2 (w/w)
GC and
GC-MS
22 (92.1%)
α-Pinene (34.6%),
β-caryophyllene (17.81),
sabinen e (8.0%)
233
Table 40. Leutea species oils .
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- L. elbursensis
Mozaff.*
Karaj (Alborz
Prov.)
0.9 (w/w)
GC/MS
33 (98.0%)
α-Pinene (37.3%),
β-pinene (36.1%)
185
2- L. glaucop ruinosa
(Rech.f.)
Akhani &
Salimian *
The exact location not
mentioned (Golestan and
Mazandaran Prov.)
0.5 (v/w)
GC/MS
49 (88.1%)
α-Pinene (31.5%), sabinene
(9.7%),
β-pinene (9.2%)
234
*endemic to Iran
Table 41. Levisticum species oils.
Species
Sample origin
Oil yield (%)
Method ( s) of
analysis
Identified
Main components
Ref.
1- L. officinale
W.J.D.Koch.
Hezar Mountains (Kerman
Prov.)
3.2 (w/w)
GC and
GC/MS
23 (86.9%)
α-Terpinyl acetate
(40.5%),
β-phellandrene (16.7%)
180
2- L. officinale
W.J.D.Koch.
Hezar Mountain (Kerman
Prov.)
2.5 (w/w)
GC-FID and
GC/MS
19 (99.1%)
Z-β-Ociemene (28.1%), ρ-menth-
1-en-8-ol acetate (21.1%),
235
3- L. officinale
W.J.D.Koch.
Hezar Mountain (Kerman
Prov.)
2.8 (w/w)
GC-FID and
GC/MS
20 (99.8%)
ρ-menth-1-en-8-ol acetate
(42.1%),
β-phellandrene (13.3%), Z-β-
ociemene (13.0%), neocnidilide
(11.6%)
235
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 53
the apex. Fruit is ovoid or elliptic, and compressed dorsally; with
narrow dorsal ridges, 2 times broader, winged lateral ridges: Stylo-
podium is conical; style is 2 times longer. Mericarps have 2 dorsal
and one commissural vitta [4] [12]. One species of the genus is
found in Iran [7]. A summary of the composition of the oils of Ira-
nian Levisticum species can be seen in Table 41.
1.42. Lomatopodium Fisch. and C. A. Mey.
Lomatopodium is a monotypic and perennial herb, with a resi-
due of petioles, basal leaves, totally covered by very short hairs.
This genus is endemic to Iran. Leaves are ± fleshy, leathery when
dried, rigid, with few pinnae. Umbels have few rays. Bracts are
absent. Bracteoles are 9-12, concentrated in a patellate disc. Flow-
ers are white and small, in the same size, densely covered by white
hairs, subsessile, or with a very short and thick petioles. Fruits are
covered by white hairs, polygonal in cross-section, ± isodiametric;
Merciarps have 5 ridges, a single dorsal, and 2 commissural vittae
[1] [7] [12]. A summary of the composition of the oils of Iranian
Lomatopodium species can be seen in Table 42.
1.43. Malabaila Hoffm.
This genus contains 14 species distributed in temperate regions
of Eurasia. Malabaila is an erect biennial or perennial herb, with a
thick rootstock, crowned by a fibrous collar. Basal leaves are 1-3-
pinnate, with ultimate segments simple to pinnatisect. Upper stem
leaves are often reduced to a sheath or petiole. Umbels are all fer-
tile, termin al, or lateral, with 4-20 rays. Bracts are present, decidu-
ous or persistent, or absent. Sepals are absent. Petals are yellow.
Fruit is strongly compressed dorsally, glabrous or hairy; mericarps
are broadly elliptic to obovate; dorsal ridges are filiform; laterals
are forming a ± inflated, hyaline margin; dorsal vittae are solitary;
commissural vittae are 2 [4] [11] [12]. The genus has 5 species in
Iran, o f which three of them are endemic [1] [7]. A summary of the
composition of the oils of Iranian Malabaila species can b e seen in
Table 43.
Table 42. Lomatopodium species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- L. khorassa nicum
Mozaff.
Rivash b etween N ei-
shaboor-Kashmar
(Khorasan Prov.)
0.5 (v/w)
GC/MS
32 (94.1%)
Myrcene (28.2%), (E)-β-ocimene
(15.4%),
limonene (10.1%)
236
2- L. staurophyllum
(Rech. f.)
Rech. f.*
Garmsar (Semnan Prov.)
0.5 (w/w)
GC and
GC/MS
15 (90.1%)
(E)-β-Ocimene
(26.8%), myrcene (26.3%),
(Z)-β-ocimene
(17.7%)
237
3- L. staurophyllum
(Rech. f.) Rech.
f.*
Garmsar (Semnan Prov.)
1.5 (w/w)
GC and
GC/MS
15 (80.0%)
E-β-Ocimene
(26.8%),
myrcene (26.3%),
Z-(β)-ocimene (17.7%)
238
*endemic to Iran
Table 43. Malabaila species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- M. secacul
(Mill.) Boiss.
Between Sabzevar and
Espharayen (Khorasan
Prov.)
0.3 (v/w)
GC and
GC/MS
16 (80.4%)
β-Elemene
(27.1%), hexyl
3-methyl butanoate (15.6%),
β-caryophyllene (5.6%)
239
2- M. secacu l (Mill.)
Boiss. 1
Soltanabad (Khorasan
Prov.)
0.04
(w/w)
GC and
GC-MS
14
(88.0 %)
β-Elemene (18.5%),
β-selinene ( 17.5%),
germacrone (16.0%)
240
3- M. secacul (M ill.)
Boiss. 2
Soltanabad (Khorasan
Prov.)
0.07
(w/w)
GC and
GC-MS
20
(97.7 %)
Hexyl 3-methyl butyrate (26.3 %),
β-elemene (15.8%), hexyl 2-
methyl butyrate (14.9 %), hexyl
butyrate (10.6%)
240
1stem, 2flower
54 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
1.44. Mozaffariania Pimenov & Maassoumi
Mozaffariania is a monotypic genus and endemic to Iran. The
plants belonging to this genus are perennial herb with a thick root-
stock, covered by p etiolar sheath remains, with a tall, erect, terete,
striate, and few-branched stem. Basal leaves are 2-pinnate, with
petiolulate ultimate segments; cauline leaves are gradually reduced
upwards. In florescence is in the form of umbels in a loose, few-
branched panicle. Terminal umbels are often with hermaphrodite
flowers while the lateral ones have hermaphrodite or only male
flowers. Bracts are numerous, subulate-linear, equal to or shorter
than rays; bracteoles are linear and unequal. Calyx is teeth small.
Petals are regular, greenish-yellowish, or yellow. Stylopodium is
conical. Mericarps are dorsally compressed. Dorsal rib s are filiform
while marginal ribs are narrow-winged, thickened, and spongy.
Vittae are solitary in valleculae, two on commissure [1] [7] [193]. A
summary of the composition of the oils of Iranian Mozaffariania
species can be seen in Table 44.
1.45. Oliveria Vent.
Oliveria is a monotypic, branched annual herb distributed from
Syria to Iran. Basal leaves are oblong, and 1-pinnate with lanceolate
ultimate segments. Upper leaves are ovate and dissected. Bracts and
bracteoles are present. Sepals are conspicuous. Petals are white or
pink. Fruit is ovoid-oblong and mericarps are laterally compressed,
densely hairy; dorsal vittae are 1 per vallecula, and commissural is
2 [4] [11] [12]. One species of the genus is found in Iran [7]. A
summary of the composition of the oils of Iranian Oliveria species
can be seen in Table 45a.
1.46. Opsicarpium Mozaff.
Opsicarpium is a monotypic genus and endemi c to Iran. The
plants belonging to this genus are perennial, shortly pubescent
plant, with 5-10 mm thick rootstock, covered with fibrous petioles
remains, with a tall and erect stem, branched above. Basal leaves
are pinnate, with sessile, and undivided serrate-dentate segments;
upper cauline leaves are similar to the basal ones, but smaller, while
the uppermost leaves are reduced to sheaths. Inflorescence is large,
in the form of numerous branched umbels. Bracts and bracteoles are
absent. Calyx is teeth inconspicuous. Petals are golden yellow and
regular. Fruits are elliptic, glabrous, dorsally compressed, and short
keeled at margins. Vittae numerous, dorsal 3-6 per vallecula, and
commissural 2-8 are [1] [7] [184] (Table 45b).
Table 44. Mozaffariania species oils.
Species
Sample origin
Method( s) of
analysis
Identified
Main components
Ref.
1- M. insignis
Pimenov &
Maassoumi*
Lavasan (Tehran Prov.)
GC and
GC/MS
25 (99.0%)
Octyl acetate
(41.1%),
β-pinene (30.3%),
α-pinene (23.9%)
155, 241
*endemic to Iran
Table 45a. Oliveria species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- O. decumb ens
Vent.
Kazeron
(Fars Prov.)
3.4
(v/w)
GC/MS
Not stated
α-Pinene (39.5%), thymol
(26.9%),
ρ-cymene (13.3%),
γ-terpinene (11.0%)
242
2- O. decumb ens
Vent.
Kermanshah (Kermanshah
Prov.)
0.1 (w/w)
GC and
GC/MS
14 (100%)
Carvacr ol (29.1 %), thymo l
(28.1%),
γ-terpinene (20.5%),
ρ-cymene (15.4%)
243
3- O. decumb ens
Vent
Lordegan (Chaharmahal
va Bakhtiari
Prov.)
0.2 (w/w)
GC and
GC/MS
10 (97.7%)
γ-Terpinene (23.3%),
myristicin (21.7),
thymol (20.5%),
ρ-cymene (19.4%),
carvacrol (9.4%)
244
4- O. decumb ens
Vent.
Lordegan (Chaharmahal
va Bakhtiari
Prov.)
1.8 (w/w)
GC and
GC/MS
16 (96.5%)
Thymol (49.3%),
γ-terpinene (23.1%),
ρ-cymene (10.0%)
245
5-O. decumbens
Kuh-dasht
(Lurestan province)
1.8%
(w/w)
GC and GC/MS
16 (96.4%)
Thymol (49.3%),
γ-terpinene (23.1%), ρ-cymene
(10.0%)
245
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 55
1.47. Petroselinum Hill
Petroselinum is a biennial plant, distributed in Eurasia, with a
thick rootstock, without a fibrous collar. Leaves are 2-pinnate with
large, cuneate, and usually lobed segments. Bracts and bracteoles
are present. Sepals are minute. Petals are yellowish, obovate, and
emarginate. Fruit is weakly compressed laterally, ovoid, and gla-
brous; ridges are filiform, and laterals are sub-marginal; dorsal
vittae are solitary, and commissu ral is 2 [4], [11], [12]. One species
of the genus is found in Iran [7]. A summary of the composition of
the oils of Iranian Petroselinum species can be seen in Table 46.
1.48. Peucedanum L.
Peucedanum is a glabrous or tomentellous perennial plant, of-
ten with a thick rootstock, sometimes with creeping caudicle, with
or without a fibrous collar. The genus has 100 to 120 species dis-
tributed in temperate regions of Eurasia and tropical and south Af-
rica mountains. Basal and low er stem leaves are simple, 1-3-pinnate
or 1-6-ternate, with ultimate segments simple to pinnatisect. Upper
stem leaves are reduced to a petiole. Bracts are absent or simple,
setaceous to ovate-lanceolate. Bracteoles are 3-many, setaceous to
lanceolate. Sepals are absent or minute and inconspicuous. Petals
are white to yellow, and equal. Fruit is orbicular to elliptic, strongly
compressed dorsally, and glabrous; dorsal ridges are prominent, not
winged, vittate; lateral ridges are winged, and wings closely ad-
pressed to one another; valleculae 1-3-vittate; commissures are flat
[4] [11] [12]. The genus has 5 species in Iran, of which three of
them are endemic [1] [7]. A summary of the composition of the oils
of Iranian Peucedanum species can b e seen in Table 47.
1.49. Physospermum Cusson
Physospermum genus, having 2 species distributed in Eurasia,
is a perennial glabrous herb, with a woody rootstock crowned by a
Table 45b. Opsicarpium species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- P. insignis Mozaff.
Saral zone, San andaj
(Kurdestan Prov.)
0.2 (w/w)
GC and GC/MS
30 (95.6%)
Caryoph yllene oxide (39 .91%),
limonene (32.36%),
trans-caryophyllene (7.62%),
neo-iso-menthol (4.04%),
β-pinen (3.05%)
246
Table 46. Petroselinum species oils.
Species
Sample origin
Oil yield (%)
v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- P. hortense
Hoffm.
Tehran (Tehran Prov.)
1.0
GC/MS
15 (99.4%)
1,8-Cineol (59.2%),
α-phellandren (18.6%),
α-pinene (7.6%)
247
2- P. hortense
Hoffm.1
Gharamalek
near Tabriz
(Azerbaijan Prov.)
2.2
GC/EI-MS
28 (98.7%)
Myristicine (43.1%),
apiole (13.9%),
α-pinene (11.5%),
β-pinene (9.6%),
elemicine (7.6%), allyltetramethoxy
benzene (6.1%)
248
3- P. hortense
Hoffm.1
Tehran (Tehran Prov.)
1.5
GC and
GC-MS
29 (88.7%)
Phenyl
propanoids (48.4),
myristicin (27.4 %), apiol (19.8 %),
β-phellandrene (10.4 %), α-pinene
(7.6 %), β-pinene (6.9 %)
249
4- P. hortense
Hoffm.2
Tehran (Tehran Prov.)
0.3
GC and
GC-MS
27 (87.2%)
Phenyl propanoids (40.4%),
myristicin (22.7%),
apiol (16.9%),
ρ-mentha-1,3,8-triene (10.6 %),
β-phellandrene (9.1%),
ρ-cymene (6.7 %)
249
1fruites, 2leaf.
56 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Table 47. Peucedanum species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- P. cervariifolium
C.A. Mey.
The exact location not
mentioned (Mazandaran
Prov.)
0.1
GC and
GC/MS
28 (93.3%)
β-Selinene (27 .4%),
α-selinene ( 16.3%),
α-guaiene (11.9%),
viridiflorene (10.9%), γ-muurolene
(7.4%)
250
2- P. officinale
L. 2
Iranian Botanical Garden,
Tehran (Tehran Prov.)
1.3 (w/w)
GC and
GC/MS
38 (98.7%)
Fenchone (2 7.7%),
(E)-β-ocimene
(18.7%),
β-pinene (8.1%)
251
3- P. officinale
L. 3
Iranian Botanical Garden,
Tehran (Tehran Prov.)
3.1 (w/w)
GC and
GC/MS
22 (99.7%)
Fenchone (3 2.0%),
(E)-β-ocimene
(17.8%), (Z)-
β-ocimene (9.4%)
251
4- P. petiola re
(DC.) Boiss.
Atashgah village, Karaj
(Alborz Prov.)
0.9 (w/w)
GC and
GC/MS
10 (97.6%)
Sabinene (57 .8%),
δ-3-carene (36.2%)
252
5- P. petiola re
(DC.) Boiss.4
Touchal, Tehran (Tehran
Prov.)
0.1
GC and
GC/MS
21 (92.7%)
β-Bisabolen e
(31.3%), (E)-
sesquilav andulol ( 20.5%), geranyl
acetate (5.7%),
citronellyl acetate
(5.2%),
sabinen e (5.2%)
253
6- P. petiola re
(DC.) Boiss.2
Touchal, Tehran (Tehran
Prov.)
0.1
GC and
GC/MS
27 (97.6%)
α-Pinene (42.6%),
sabinen e (42.3%)
253
7- P. petiola re
(DC.) Boiss.3
Touchal, Tehran (Tehran
Prov.)
1.2
GC and
GC/MS
7 (99.3%)
α-Pinene (47.3%),
sabinen e (45.9%)
253
8- P. ruthe nicum
M. Bieb.
Kalardasht (Mazandaran
Prov.)
0.3
GC and
GC/MS
17 (100%)
Thymol (57.8%),
β-bisabolene (6.1%), lanceol
(5.4%)
254
9- P. ruthenicum
M. Bieb.2
Arak
(Markazi Prov.)
0.4
GC and
GC/MS
33 (89.1%)
Thymol (18.3%),
β-bisabolene (13.3%)
255
10- P. ruthenicum
M. Bieb.5
Arak
(Markazi Prov.)
1.6
GC and
GC/MS
37 (88.7%)
β-Myrecene (10.7%),
germacrene-B (10.1%)
255
11- P. ruthen icum
M. Bieb.6
Arak
(Markazi Prov.)
1.8
GC and
GC/MS
24 (76.5%)
Caryoph yllene oxide (13.7%), 8, 9-
dehydroisolongifo-lene (11.3%),
1,8-cineole (11.2%)
255
12- P. ruthen icum
M. Bieb.
6
Rasband Mountains, Arak
(Markazi Prov.)
1.8
GC and
GC/MS
31 (83.9%)
Caryoph yllene oxide (13 .7%),
8,9-dehydroisolongifo-lene oxide
(11.4%),
1,8-cineole (11.2%),
cis-carveol (6.9%), camphor
(5.9%),
1-carvone (5.6%),
caryophylla-4(12),8 (13)dien-5-B-
ol (5.2%)
256
Table 47. contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 57
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
13- P. scoparium
(Boiss.) Boiss.
Sanandaj (Kurdistan Prov.)
0.5 (w/w)
GC/MS
33
(99.3%)
α-Pinene (39.6%),
β-pinene (23.9%),
β-phellandrene (9.5%)
257
1The percentages are described as v/w, otherwise specified as w/w, 2leaves, 3seed, 4rhizomes, 5flowers, 6fruit
Table 48. Physospermum species oils.
Species
Sample origin
Oil yield (%)
Method( s) of
analysis
Identified
Main components
Ref.
1-P. cornubiense
(L.) DC.
Gadook area
(Mazandaran Prov.)
1.4 (w/w)
GC and
GC/MS
9 (91.5%)
Caryoph yllene
oxide (27.5%),
limonene (16.2%),
β-caryophyllene (15.8%)
224
petiolar collar. Basal leaves are 2-3-pinnate or -ternate, with ulti-
mate segments ovate, and pinnatifid; upper stem leaves are minute,
lanceolate, and simple. Bracts and bracteoles are 2-5, linear-
lanceolate. Flowers are hermaphrodite and regular. S epals are small
and triangular. Petals are white. Fruit is spherical, glabrous, and
ridges are filiform; valleculae is 1-vittate; commissures are 2-vittate
[4] [11] [12]. One species of th e genus is found in Iran [7]. A sum-
mary of the composition of the oils of Iranian Physospermum spe-
cies can be seen in Table 48.
1.50. Pimpinella L.
Pimpinella is an annual, biennial or perennial herb, with or
without a fibrous collar. This genus has 200 species distributed in
Eurasia and Africa. Leaves are entire or 1-3-pinnate. Inflorescence
has a compound umbel. Bracts and bracteoles might be present or
absent. Sepals are usually minute. Petals are white, yellow or pink,
glabrous, or hairy on the back. Fruit is ovoid-oblong to subglobose,
somewhat laterally compressed, ± constricted at the commissure,
glabrous or variously hairy, rarely tuberculate. Primary ridges are
filiform, sometim es concealed by the indumentum. Mericarps have
(1-) 3 (4) dorsal and 2-4 (-6) commissural vittae [4] [11] [12].
Twenty-two species of the genus are found in Iran, of which 8 of
them are endemic to the country [1 ] [7]. A summary of the compo-
sition of the oils of Iranian Pimpinella species can be seen in Table
49.
Table 49 Pimpinella species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- P. affinis
Ledeb.
Taleghan
(Alborz Prov.)
0.2 (w/w)
GC and
GC/MS
21 (99.0%)
trans-α-Bergam otene
(56.2%),
(E)-γ-bisabolene
(11.3 %)
9
2- P. affinis
Ledeb.2
Noshahr (Mazandaran
Prov.)
0.3 (w/w)
GC and
GC/MS
4 (96.6%)
trans-α-Bergam otene (91.1%)
258
3- P. affinis
Ledeb.3
Noshahr (Mazandaran
Prov.)
1.1 (w/w)
GC and
GC/MS
5 (99.2%)
trans-α-Bergam otene (96.2%)
258
4- P. affinis
Ledeb.4
Noshahr (Mazandaran
Prov.)
4.1 (w/w)
GC and
GC/MS
6 (100%)
trans-α-Bergamotene (90.2%)
258
5- P. affinis
Ledeb.5
Noshahr (Mazandaran
Prov.)
0.3 (w/w)
GC and
GC/MS
6 (99.3%)
trans-α-Bergam otene (94.3%)
258
Table 49 . contd…
58 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
6- P. affinis
Ledeb.6
Noshahr (Mazandaran
Prov.)
0.9 (w/w)
GC and
GC/MS
15 (97.7%)
trans-α- Bergamotene (84.9%)
258
7- P. affinis
Ledeb.7
Noshahr (Mazandaran
Prov.)
2.5 (w/w)
GC and
GC/MS
6 (99.8%)
trans-α-Bergam otene (95 .5%)
258
8- P. affinis
Ledeb.8
Chaloos (Mazan daran
Prov.)
4.1 (w/w)
GC and
GC/MS
10 (96.0%)
Limonene (70.8%),
methyl eugenol
(9.7%), (E)-
nerolidol acetate
(9.1%)
259
9- P. affinis
Ledeb.9
Chaloos (Mazan daran
Prov.)
1.7 (w/w)
GC and
GC/MS
13 (98.4%)
γ-Terpinen-7-al
(49.1%),
limonene (37 .8%)
259
10- P. affinis
Ledeb.10
Chaloos (Mazan daran
Prov.)
0.4 (w/w)
GC and
GC/MS
10 (94.0%)
γ-Terpinen-7-al
(72.8%)
259
11- P. affinis
Ledeb.8
Khojir
(Tehran Prov.)
5.3 (w/w)
GC and
GC/MS
10 (99.0%)
Limonene (90.5%)
259
12- P. affinis
Ledeb.9
Khojir
(Tehran Prov.)
2.0 (w/w)
GC and
GC/MS
8 (100%)
Limonene (47.9%),
γ-terpinen-7-al (37.6%)
260
13- P. affinis
Ledeb.10
Khojir
(Tehran Prov.)
0.1 (w/w)
GC and
GC/MS
8 (98.3%)
γ-Terpinen-7-al
(69.9%), aromadendrene (5.4%),
daucene (5.0%)
259
14- P. affinis
Ledeb
North of Iran
0.9 (w/w)
GC and
GC/MS
24 (97.6%)
Geijerene (17.7%), limonene (12.9%),
pregeijerene (9.9%),
germacrene D
(8.5%)
260
15- P. anisactis
Rech.f.*
Damavand (Tehran
Prov.)
1.2 (w/w)
GC and
GC/MS
30 (96.3%)
Decanal (34.5%),
decanol (14.1%)
261
16- P. anisum
L. 11
Tehran (Tehran Prov.)
3.5
GC and
GC/MS
7 (98.3%)
trans-Anethole (92.8%)
262
17- P. anisum
L.12
Tehran (Tehran Prov.)
7.7
GC and
GC/MS
7 (89.0%)
trans-Anethole (83.0%)
262
18- P. anisum L.
Isfahan (Isfahan Prov.)
3.3 (w/w)
GC and
GC/MS
11 (98.7%)
trans-Anethole (91.7)
263
19- P. anisum L.
(Fars Prov.)
3.0 (w/w)
GC and
GC/MS
11 (98.1%)
trans-Anethole (89.0)
264
20- P. aurea D C.
Near Aras
River (A zerbaijan Prov.)
0.5
GC/MS
10 (95.0%)
β-Bisabolen e (39.6%), ger anyl
2-methyl butanoate (25.3%),
cis-Cadin-4-en -7-ol (7.3%),
α-amorphene (5.8%)
265
21- P. aurea
DC.13
Fasham (Tehran Prov.)
1.5 (w/w)
GC and
GC/MS
18 (96.3%)
Viridiflorol (32.5%),
β-bisabolene (29.5%),
1,8-cineol + limonene
(8.9%),
caryophyllene oxide (6.6%),
estragol (5.1%)
266
Table 49 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 59
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
22- P. aurea
DC.8
Fasham (Tehran Prov.)
2.0 (w/w)
GC and
GC/MS
8 (97.6%)
β-Bisabolen e (50.8%),
viridiforol (37.0%)
267
23- P. aurea
DC. 10
Fasham (Tehran Prov.)
0.4 (w/w)
GC and
GC/MS
32 (92.2%)
1,8-Cineol and
limonene (21.4%),
viridiflorol (12.8%),
α-pinene (11.5%),
kessane (10.5%)
266, 267
24- P. aurea
DC.8
Fasham (Tehran Prov.)
2.0 (w/w)
GC and
GC/MS
8 (97.6%)
β-Bisabolen e (50.8%),
viridiforol (37.0%)
267
25- P. aurea
DC.13
Fasham (Tehran Prov.)
1.5 (w/w)
GC and
GC/MS
18 (96.8%)
Viridiflorol (32.5%),
β-bisabolene (29.5%), limonene (7.7%),
caryophyllene oxide (6.6%),
estragol (5.1%)
267
26- P. aurea
DC.8
Tochal
(Tehran Prov.)
1.2 (w/w)
GC and
GC/MS
4 (100%)
β-Bisabolen e (76.5%),
caryophyllene oxide (21.4%)
267
27- P. aurea
DC.13
Tochal
(Tehran Prov.)
0.5 (w/w)
GC and
GC/MS
20 (100%)
β-Bisabolen e (55.2%),
α-zingiberene (8.7%)
267
28- P. aurea
DC.14
Tochal
(Tehran Prov.)
0.5 (w/w)
GC and
GC/MS
34 (93.3%)
β-Bisabolen e (18.3%), ger anyl
acetate (14.7%),
geranyl-2-methylbutyrate (9.0%), li-
monene
(7.3%), germacrene
D (5.7%),
α-zingiberen (5.4%)
267
29- P. aurea DC.
Damavand
(Tehran Prov.)
0.6
GC and
GC/MS
18 (92.9%)
trans-α-Bergam otene (72.8%)
133
30- P. aurea DC.
Kashan
(Isfahan Prov.)
0.3
GC and
GC/MS
26 (96.3%)
β-Caryophyllene ( 13.6%),
β-bisabolene
(12.2%),
(E)-β-farnesene (10.4%),
β-sesquiph ellandren e (10.2%),
cinnamyl tiglate
(7.4%)
268
31- P. barbata
(DC.) Boiss.
Mountains near Mahar-
lou lake, Shiraz
(Fars Prov.)
0.5 (w/w)
GC and
GC/MS
32 (97.0%)
Methyl eugenol
(34.0%), limonene
(26.6%), elemicin
(6.9%), sabinene
(6.7%),
perillaldehyde (5.2%)
269
32- P. barbata
(DC.) Boiss. 15
Ramhor moz
(Khuzestan Prov.)
0.7
GC and
GC-MS
17
(97.8%)
Pregeijeren e (32.7%),
γ-muurolene (16.4%), limonene (14.9%),
(E)-
anethole (7.1%), methyl
eugenol (5.7%)
270
Table 49 . contd…
60 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
33- P. barbata
(DC.) Boiss. 10
Ramhor moz
(Khuzestan Prov.)
0.4
GC and
GC-MS
22
(93.5%)
γ-Muurolene (28.2%), limonene (24.3%),
methyl
eugenol (8.7%),
pregeijerene (8.6%)
271
34- P. barbata
(DC.) Boiss. 16
Ramhor moz
(Khuzestan Prov.)
Not stated
GC and
GC-MS
17
(95.3%)
Limonene (33.3%),
γ-muurolene (18.6%), methyl eugenol
(14.8%),
elemicin (6.2%), pregeijerene (6.0%)
271
35- P. barbata
(DC.) Boiss. 9
Ramhor moz
(Khuzestan Prov.)
1.3
GC and
GC-MS
28
(96.5%)
Limonene (46.9%),
γ-muurolene (18.2%),
methyl eugenol
(6.9%)
271
36- P. barbata
(DC.) Boiss. 17
Ramhor moz
(Khuzestan Prov.)
2.1
GC and
GC-MS
12
(99.8%)
Limonene (45.3%), methyleugenol
(18.7%),
(E)-foeni culin (18.7%),
elemicin (7.5%)
271
37- P. barbata
(DC.) Boiss. 18
Ramhor moz
(Khuzestan Prov.)
1.7
GC and
GC-MS
12
(96.8%)
Limonene (63.6%), elemicin (13.8%),
methyl eugenol
(7.8%)
271
38- P. deverroides
(Boiss) Boiss. *
Boanat, K hataba n Moun-
tain (Fars Prov.)
1.2 (w/w)
GC and
GC-MS
29 (96.7%)
Iso-geijerene (20.3%),
trans-dictamnol
(14.5%),
pregeijerene (11.3%),
E-anethole (9.1%),
1,10-δ-epi-cubenol (5.7%),
z-dictamnol
(5.4%)
272
39- P. deverroides
(Boiss)
Boiss. *19
Aleshtar, (Lurestan
Prov.)
0.6 (w/w)
GC and
GC-MS
18 (86.1%)
Pregeijeren e (39.7%), geijerene (10.4%),
germacrene B
(6.9%)
273
40- P. deverroides
(Boiss)
Boiss. *20
Aleshtar, (Lurestan
Prov.)
2.5 (w/w)
GC and
GC-MS
17 (94.2%)
Pregeijeren e (51.6%),
geijerene (10.1%)
273
41- P. deverroides
(Boiss)
Boiss. 21*
Aleshtar, (Lurestan
Prov.)
7.1 (w/w)
GC and
GC-MS
11 (98.3%)
Pregeijeren e (66.9%), geijerene (14.1%),
germacrene B
(5.3%)
273
42- P. deverroides
(Boiss)
Boiss. 22*
Aleshtar, (Lurestan
Prov.)
1.3 (w/w)
GC and
GC-MS
20 (89.2%)
Pregeijeren e (41.5%), geijerene (12.1%),
δ-elemene (7.2%),
germacrene
B (5.3%)
273
Table 49 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 61
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
43- P. deverroides
(Boiss)
Boiss. 23*
Aleshtar, (Lurestan
Prov.)
2.4 (w/w)
GC and
GC-MS
15 (89.1%)
Pregeijeren e (40.4%), geijerene (9.4 %),
δ-elemene (7.2%),
germacrene B (6.7%),
spathulenol (5.1%)
273
44- P.deverroi des
(Boiss)
Boiss. 24*
Aleshtar, (Lurestan
Prov.)
7.5 (w/w)
GC and
GC-MS
22 (99.6%)
Pregeijeren e (35.5%), α-muurolene
(10.2%), trans-dictamol (9 .8%)
geijerene (8.2 %),
β-pinene (7.5%)
273
45- P. eriocarpa
Banks &
Soland 15
Khojir
(Tehran Prov.)
1.3
GC and
GC/MS
15 (97.3%)
Pregeijeren e (59.9%),
Limonene (17.6%),
elemicine (12.5%)
274, 275
46- P. eriocarpa
Banks &
Soland8
Khojir (Tehran Prov.)
5.7
GC and
GC/MS
8 (100%)
Limonene (49.3%),
elemicine (44.5%)
274, 275
47- P. kotschyana
Boiss. 9
Lavasanat (Tehran Prov.)
0.65
(w/w)
GC and
GC/MS
16 (98.1%)
β-Caryophyllene
(40.5%), germacrene D (29.9%),
langipinanol (7.2%)
276
48- P. kotschyana
Boiss. 25
Lavasanat (Tehran Prov.)
7.10
(w/w)
GC and
GC/MS
13 (97.8%)
β-Caryophyllene
(49.9%),
langipinanol (18.0 %),
germacrene D (11.7%),
valencene (5.5%)
276
49- P. kotschyana
Boiss. 26
Lavasanat (Tehran Prov.)
5.16
(w/w)
GC and
GC/MS
17 (96.9%)
β-Caryophyllene
(40.6%),
langipinanol (17.6 %),
germacrene D (11.3%),
limonene (7.8%)
276
50- P.kotschyana
Boiss. 27
Lavasanat (Tehran Prov.)
5.32
(w/w)
GC and
GC/MS
16 (95.5%)
β-Caryophyllene
(40.8%),
langipinanol (19.3 %), germacrene D
(12.4%),
bicyclogermacrene (5.4%)
276
51-P. olivierioides Boiss. &
Hausskn.9
Nahavand (Hamedan
Prov.)
0.57
GC and
GC/MS
24 (60.2%)
Germacrene D (11.1%), bicycloger-
macrene (4.4%)
277
52-P. olivierioides Boiss. &
Hausskn.28
Nahavand (Hamedan
Prov.)
0.09
GC and
GC/MS
25 (97%)
Germacrene D (36.5%), bicycloger-
macrene (7.5%)
277
53-P. olivierioides Boiss. &
Hausskn.29
Nahavand (Hamedan
Prov.)
0.52
GC and
GC/MS
26 (99.7%)
Germacrene D (21.9%), bicycloger-
macrene (15.9%)
277
54- P. puberula
(DC.) Boiss. 14
Ramhor moz
(Khuzestan Prov.)
0.5
(w/w)
GC and
GC/MS
10 (96.3%)
Pregeijeren e (55.4%), limonene (21.7%),
geijerene (10.4%)
278
55- P. puberula
(DC.) Boiss. 10
Ramhor moz
(Khuzestan Prov.)
0.3
(w/w)
GC and
GC/MS
14 (98.0%)
Limonene (46.6%), pregeijerene (14.6%),
elemicine (14.0%),
geijerene (8.5 %),
methy eugenol
(6.4%)
278
Table 49 . contd…
62 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
56- P. puberula
(DC.) Boiss.6
Ramhor moz
(Khuzestan Prov.)
3.8
(w/w)
GC and
GC/MS
10 (95.2%)
Limonene (58.9%),
elemicine (27.3%)
278
57- P. puberula
(DC.) Boiss.18
Ramhor moz
(Khuzestan Prov.)
6.0
(w/w)
GC and
GC/MS
7 (97.0%)
Limonene (78.8%),
elemicine (13.4%)
278
58- P. puberula
(DC.) Boiss. 19
Ramhor moz
(Khuzestan Prov.)
1.8
(w/w)
GC and
GC/MS
8 (94.4%)
Limonene (82.4%),
elemicine (7.0%)
279
59- P. puberula
(DC.) Boiss. 15
Mashhad (Khorasan
Prov.)
1.0
(w/w)
GC and
GC/MS
9 (93.5%)
Pregeijeren e (45.8%), limonene (25.3%),
methy eugenol (5.4%)
278
60- P. puberula
(DC.) Boiss. 10
Mashhad (Khorasan
Prov.)
0.9
(w/w)
GC and
GC/MS
8 (97.4%)
Pregeijeren e (38.8%), limonene (33.8%),
methy eugenol (12.0%),
geijerene (7.2%)
278
61- P. puberula
(DC.) Boiss. 6
Mashhad (Khorasan
Prov.)
3.6
(w/w)
GC and
GC/MS
10 (96.5%)
Limonene (60.8%), pregeijerene (18.1%),
methy eugenol (1 0.5%)
278
62- P. puberula
(DC.) Boiss. 18
Mashhad (Khorasan
Prov.)
7.0
(w/w)
GC and
GC/MS
6 (98.8%)
Limonene (74.1%),
methy eugenol (16.3%)
278
63- P. puberula
(DC.) Boiss. 19
Mashhad (Khorasan
Prov.)
5.0
(w/w)
GC and
GC/MS
6 (99.8%)
Limonene (80.6%),
methy eugenol (13.1%)
278
64- P. saxifraga
L.
Damavand (Tehran
Prov.)
0.7 (w/w)
GC and
GC/MS
24 (90.0%)
trans-α-Bergam otene (20 .1%),
β-sesquiph ellandren e (10.8%),
β-bisabolene (10.1%)
262
65- P. tragioide s
(Boiss.)
Benth. &
Hook. f. ex
Drude 9*
Chaloos road
(Tehran Prov.)
0.8
GC and
GC-MS
13 (97.7%)
trans-α-Bergam otene (70 .3%)
279
66- P. tragioide s
(Boiss.)
Benth. &
Hook. f. ex
Drude 8*
Chaloos road
(Tehran Prov.)
2.5 (w/w)
GC and
GC-MS
15 (96.4%)
Pregeijeren e (87.0%), nonadecane (8.6%),
isoacarone (15.1%)
279
67- P. tragioide s
(Boiss.)
Benth. &
Hook. f. ex
Drude 10*
Chaloos road
(Tehran Prov.)
0.2
GC and
GC-MS
13 (98.0%)
trans-α-Bergam otene (77 .1%)
279
Table 49 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 63
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
68- P. tragium
Vill.10
Polour (T ehran Prov.)
0.1
(w/w)
GC and
GC-MS
18 (97.1%)
Germacrene D (34.7%),
germacrene B (18.3%),
bornyl acetate (15.8%),
β-caryophyllene (5.6%)
280
69- P. tragium
Vill. 9
Polour (T ehran Prov.)
0.4
(w/w)
GC and
GC-MS
26 (94.8%)
β-Pinene (23.8 %), germacrene B (14 .1%),
hexadecanol (10.3%),
β-caryophyllene
(7.3%),
sabinen e(6.2%),
germacrene D (6.2%)
280
70- P. tragium
Vill. 21
Polour (T ehran Prov.)
1.3
(w/w)
GC and
GC-MS
23 (96.7%)
β-Pinene (25.3 %), germacrene B (17 .8%),
sabinen e (13.6%)
280
1The percentages are described as v/w, otherwise specified as w/w, 2stem plus the leaf for the first year, 3inflo rescence for the first year, 4see d for th e first year, 5stem p lus the lea f for
the second year, 6inflorescence fo r the sec ond year , 7seed for the se cond year, 8seeds, 9inflorescences, 10stems plus leaves, 11hydrodistillation, 12supercritical fluid extraction, 13flower,
14stem, 15arial parts, 16flowering shoot, 17unripe seeds, 18ripe seeds, 19leaves 2006, 20flowers 2006, 21seeds 2006, 22leaves 2007, 23flowers 2007, 24seeds 2007, 25see d I(fir st collection),
26seed II( second collection), 27seed III (th ird collect ion), 28stem and leav e, 29root, *endemic to Iran.
1.51. Prangos Lindl.
Prangos is an erect perennial plant with terete stems to a height
of 15-150 cm, with a well developed fibrous collar. This genus has
38 species distributed in Eurasia and the M editerranean region.
Leaves are (3-) 4-6-pinnate, usually with numerous linear to fili-
form, mucronate lobes which are narrower on the upper cauline
leaves; sheaths of basal leaves are conspicuous, often separated
from the petiole by a node. Terminal umbels have mainly hermaph-
rodite flowers while lateral umbels have hermaphrodite or male
flowers. Bracts and bracteoles are several, subulate to linear, persis-
tent or caducous, or ovate and persistent. Sepals are conspicuous or
obsolete. Petals are yellow or rarely white, glabrous or papillate to
pubescent on the outer surface. Stylopodium is often large, and ±
flat. Fruit is ± compressed laterally, narrowly ellipsoid to globose;
mericarps are with or without 5, straight undulate or plicate, entire
or crenate wings while mesocarp has 5 blocks of suberised tissue
under the primary ribs in which the vascular bundles are concen-
trated or mesocarp is continuous with evenly scattered vascular
bundles; vittae are numerous (4, 11, 12). The genus has 14 species
in Iran, of which 5 of them are endemic (1 , 7) (Emami & Aghazari
2011; Mozaffarian 2007). A summary of the composition of the oils
of Iranian Prangos species can be seen in Table 50.
Table 50. Prangos species oils.
Species
Sample origin
Oil yield (%)
v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- P. acaulis
(DC.) Bornm.
Damavand (Tehran Prov.)
0.8 (w/w)
GC and
GC/MS
23 (90.0%)
cis-Sesquisabinene hydrate
(27.1%),
α-pinene (12.5%),
γ-eudesmol (7.4%), spathulenol
(7.2%),
β-elemene (6.8%)
113
2- P. acaulis
(DC.) Bornm.2
Zagros Mountain (Lur-
estan Prov.)
0.4
GC and
GC/MS
22 (98.2%)
α-Pinene (25.0%),
3-ethylidene-2-methyl-1-hexen-4-
yne (23.5%),
α-terpinene (17.3%) ,
limonene (13.6%)
281
3- P. acaulis
(DC.) Bornm.3
Zagros Mountain (Lur-
estan Prov.)
0.3
GC and
GC/MS
18 (99.7%)
α-Pinene (39.5%),
3-ethylidene-2-methyl-1-hexen-4-
yne (37.9%), α-terpinene
(10.9%)
281
Table 50 . contd…
64 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield (%)
v/w1
Method(s) of
analysis
Identified
Main components
Ref.
4- P. acaulis
(DC.) Bornm.4
Zagros Mountain (Lur-
estan Prov.)
0.2
GC and
GC/MS
11 (100%)
3-Ethylidene-2-methyl-1-hexen-
4-yne ( 56.8%) ,
α-pinene (34.2%)
281
5- P. acaulis
(DC.) Bornm.5
Zagros Mountain (Lur-
estan Prov.)
0.3
GC and
GC/MS
26 (98.7%)
α-Pinene (22.9%),
3-ethylidene-
2-methyl-1-
hexen-4-yne (21.4%)
282
6- P. acaulis
(DC.) Bornm.6
Zagros Mountain (Lur-
estan Prov.)
0.5
GC and
GC/MS
21 (89.1%)
3-Ethylidene-2-methyl-1-hexen-
4-yne ( 14.3%) ,
α-pinene (13.7%)
282
7- P. acaulis
(DC.)
Bornm.*
Zagros Mountain (Lur-
estan Prov.)
1.4 (w/w)
GC and
GC/MS
43 (91.9%)
δ-3-Carene ( 25.5%),
α-terpinolene (14.8%),
α-pinene (13.6%), limonene
(12.9% ),
β-pinene (5.4%)
283
8- P. asperul a
Boiss.
Zagros Mountain (Lur-
estan Prov.)
1.0
GC and
GC/MS
42 (99.6%)
δ-3-Carene ( 25.5%),
α-terpinolene (14.8%),
α-pinene (13.6%),
limonene (12.9%),
myrcene (8.1%),
β-pinene (5.4 %)
284
9- P. asperul a
Boiss. su bsp.
haussknechtii
(Boiss.)
Herrnst. &
Heyn
Yasouj (Kohgiluyeh va
Boyr Ahmad Prov.)
0.3
GC/MS
52 (98.7%)
δ-3-Carene (16.1%),
β-phellandrene (14.7%),
α-pinene (10.5%),
α-humulene (7.8%),
germacrene-D (5.4%)
285
10-P. asperula Boiss.
Dena Mountains, (Kohgi-
luyeh va Boyr Ahmad
Prov.)
0.2 (v/w)
GC and
GC/MS
47 (98.8%)
2,3,6-Trimethylbenzal-
dehyde(18.4%),
δ-3-carene(18.0 %),
α
-pinene(17.4%)
286
11- P. crenata (Fenzl.)
Hiroe
Taleghan (Alborz Prov.)
0.2
GC/MS
10 (91.3%)
Thymol (48.8%),
3-carene (17.6%), phytol (7.9%),
methyl linolenate (5.6%)
214
12- P. ferulacea
(L.) Lindl.
Broujerd (Lurestan Prov.)
1.6 (w/w)
GC and
GC/MS
10 (99.7%)
α-Pinene (36.6%),
β-pinene (31.1%)
287
13- P ferulacea
(L.) Lindl. 7
Homand Absard (T ehran
Prov.)
2.3
GC and
GC/MS
31 (81.9 %)
β-Pinene (22.9 %),
δ-3-carene (16.0%),
α-pinene (12.6%),
epi-α-bisabolol (7.7%)
288
14- P. ferulacea
(L.) Lindl. 8
Homand Absard (T ehran
Prov.)
0.8
GC and
GC/MS
18 (81.0%)
β-Pinene (33.0 %),
γ-terpinene (19.0%),
α-pinene (10.1%),
δ-3-carene (10.0%),
α-limonene (8.9%),
germacrene-D (5.3%)
288
Table 50 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 65
Species
Sample origin
Oil yield (%)
v/w1
Method( s) of
analysis
Identified
Main components
Ref.
15- P. ferulacea
(L.) Lindl. 7
Research Station of Reg-
tangeland of Homand
Absard (Tehran Prov.)
2.3
GC and
GC/MS
31 (83.3%)
β-Pinene (22.9 %),
δ-3-carene (16.0%),
α-pinene (12.6%),
epi-α-bisabilol (7.7%)
289
16- P. ferulacea
(L.) Lindl. 8
Research Station of Reg-
tangeland of Homand
Absard (Tehran Prov.)
0.8
GC and
GC/MS
18 (82.3%)
β-Pinene (33.0 %),
α-pinene (10.1%),
δ-3-carene (10.0%), limonene
(8.9%),
germacrene D (5.3%)
289
17- P. ferulacea
(L.) Lindl.9
Shemshak and Dizin
(Tehran Prov.)
1.5
GC and
GC/MS
39 (100%)
Chrysan thenyl a cetate (26 .5%),
limonene (19.6%),
α-pinene (19.5%), mesitaaldehyde
(6.1%)
290
18- P. ferulacea
(L.) Lindl.9
Broujerd (Lure stan Prov .)
1.4
GC and
GC/MS
10 (100%)
α-Pinene (37.1%),
β-pinene (33.8%),
β-phellandrene (5.6%)
291
19- P. ferulacea
(L.) Lindl.10
Broujerd (Lure stan Prov .)
1.2
GC and
GC/MS
11 (100%)
β-Pinene (38.5 %),
α-pinene (30.7%),
β-phellandrene (10.3%)
291
20- P. ferulacea
(L.) Lindl.11
Broujerd (Lure stan Prov .)
2.1
GC and
GC/MS
8 (100%)
β-Pinene (43.0 %),
α-pinene (40.0%),
β-phellandrene (6.4%)
291
21- P. ferulacea
(L.) Lindl 12
Nashag village, Miyaneh
(Azerbaijan Prov.)
0.8
GC/MS
14 (93.7%)
α-Pinene (63.1%),
cis-ocimene (9.7%),
β-pinene (8.3%)
292
22- P. ferulacea
(L.) Lindl 13
Nashag village, Miyaneh
(Azerbaijan Prov.)
0.5
GC/MS
12 (94.7%)
α-Pinene (42.2%),
cis-ocimene (36.3%),
myrecene (5.0%)
292
23- P. ferulacea
(L.) Lindl 3
Sanandaj (Kurdestan
Prov.)
0.25
(w/w)
GC and
GC/MS
65 (96.2%)
β-Pinene (29.6 %),
α-pinene (19.8%),
δ-3-carene (11.4%), β-
phellandrene (11.1%)
161
24- P. ferulacea
(L.) Lindl 2
Sanandaj (Kurdestan
Prov.)
0.40
(w/w)
GC and
GC/MS
52 (91.5%)
β-Pinene (20.6 %),
δ-3-carene (10.4%),
α-pinene (8.8%),
β-phellandrene (8.1%),
α-humulene (5.9%)
161
25- P. latiloba
Korovin
Soltanabad , Sabzevar
(Khorasan Prov.)
0.7
GC and
GC/MS
27 (87.0%)
α-Pinene (25.1%), limonene
(16.1%),
myrcene (9.5%)
293
26- P. latiloba
Korovin3
Sabzevar (Khorasan Prov.)
0.3 (w/w)
GC and
GC/MS
12 (95.4%)
Germacrene D
(27.8%),
α-pinene (17.8%),
β-caryophyllene
(12.8%),
β-pinene (11.2%)
294
Table 50 . contd…
66 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield (%)
v/w1
Method( s) of
analysis
Identified
Main components
Ref.
27- P. latiloba
Korovin14
Sabzevar (Khorasan Prov.)
0.4 (w/w)
GC and
GC/MS
9 (88.7%)
Spathulenol (29.5%),
1,8-cineol (19.4%),
ρ-cymene (17.0%), α-bisabolol
(15.3%)
294
28- P. latiloba
Korovin4
Sabzevar (Khorasan Prov.)
0.2 (w/w)
GC and
GC/MS
8 (84.7%)
γ-Cadinen e (30.4%) , α-pinene
(25.5%),
sabinen e (12.6%)
294
29- P. pabularia
Lindl. 3
Not stated
0.2
GC/MS
23
Spathulenol (16.09%),
α-bisabolol (14.30%)
295
30- P. pabularia
Lindl. 13
Not stated
0.3
GC/MS
23
α-Pinene (21.5%)
295
31- P. scabra
Nábělek 12
Not stated
1.6
GC/MS
20 (92.3%)
β-Elemene (23.3%), (Z)-β-
farnesene (16.2%), epi-globulol
(11.5%),
β-caryophyllene (9.2%)
295
32- P. scabra
Nábělek15
Not stated
0.3
GC/MS
13 (80.1%)
Epi-globulol (21.9%), β-elemene
(19.7%),
β-caryophyllene oxide (9.0%)
296
33- P. uloptera
DC.
Fasham
(Tehran Prov.)
0.7 (w/w)
GC/MS
28 (89.1%)
β-Caryophyllene ( 27.1%), caryo-
phyllene oxide (15.9%),
α-pinene (12.4%)
296
34- P. uloptera
DC.7
Velenjak north of
Tehran (Tehran Prov.)
1.0 (w/w)
GC and
GC/MS
21 (71.6%)
β-Caryophyllene ( 18.2%), g er-
macrene D (17.2%),
limonene (8.7%)
297
35- P. uloptera
DC.8
Velenjak north of
Tehran (Tehran Prov.)
0.3 (w/w)
GC and
GC/MS
12 (52.9%)
α-Pinene (41.9%)
298
36- P. uloptera
DC. 13
Mishow-Dagh Mountain.
(Azerbaijan Prov.)
0.4
(w/w)
GC/MS
10 (93.2%)
α-Pinene (31.8%),
β- bourbonene
(15.1%),
α-curcumene (10.7%),
spathulenol (9.0%),
germacrene D (6.3%),
m-cymene (5.5%)
298
37- P. uloptera
DC.12
Mishow-Dagh Mountain.
(Azerbaijan Prov.)
0.4
(w/w)
GC/MS
18 (83.0%)
α-Pinene (15.0%),
β- bourbon ene (7.8%) ,
β-humulene (7.7%),
ρ-cymene (7.7%),
germacrene B (7.2%),
n-tetracosane (6.7%),
n-octadecane (6.2%),
n-eicosane (5.2%)
299
Table 50 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 67
Species
Sample origin
Oil yield (%)
v/w1
Method( s) of
analysis
Identified
Main components
Ref.
38- P. uloptera
DC.16
Mishow-Dagh Mountain.
(Azerbaijan Prov.)
0.5
GC/MS
11 (91.0%)
Saferole (21.7 %),
α-pinene (20.1%),
(-)-spathulenol (13.7%),
trans-anethole (8.7%),
β-bornylacetate
(8.7%),
trans-chrysanthenyl acetate
(7.0%)
299
39- P. uloptera
DC.17
Mishow-Dagh Mountain.
(Azerbaijan Prov.)
0.4
GC/MS
12 (87.7%)
α-Bisabolo le (30.5%),
saferole (19.1%),
(+)-spathuleno l (13.0%),
α-copaene (6.2%), 4-hydroxy-3-
methylacetophenone (5.4%)
300
40- P. uloptera
DC.18
Mishow-Dagh mountain.
(Azerbaijan Prov.)
0.4
GC/MS
5 (96.2%)
γ-Terpinene (35.5%), trans-
anethole (23.5%),
saferole (17.0%),
α-bourbonene
(13.0%),
α-bisabolole (7.2%)
300
41- P. uloptera
DC.18
Mishow-Dagh mountain.
(Azerbaijan Prov.)
0.4
GC/MS
5 (96.2%)
γ-Terpinene (35.5%), trans-
anethole (23.5%),
saferole (17.0%),
α-bourbonene
(13.0%),
α-bisabolole (7.2%)
300
1The percentages are described as v/w, otherwise specif ied as w/w , 2flowers oil, 3leaves oil, 4stems oil, 5hydrodistillation, 6supercritical fluid extract ion, 7aerial parts, 8seeds, 9fl owering
stage, 10fruiting stage, 11pre-flowering stage, 12fruit, 13umbels, 14root, 15inflorescence, 16aerial parts at vegetative stages, 17aerial parts at flowering stages, 18aerial parts at fruiting stages.
Table 51. Psammogeton species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- P. canescens
(DC.) Vatke
Sandy dunes
of Aran and
Bidgol desert
(Isfahan Prov.)
0.6
(w/w)
GC and
GC/MS
29 (99.7%)
β-Bisabolen e (33.4%),
apiol (28.3),
α-pinene (11.9%),
dill apiol (8.2)
301, 302
2-P. canescens (DC.) Vatke1
Khatab shekan
area (north of
Aran and
Bidgol) , around Kashan
(Isfahan Prov.)
0.3 (w/w)
GC and
GC/MS
23 (99.1%)
trans-Methyl
isoeugenol (32.6%), trans-
caryophyllene (9.6%), myrcene
(6.9%),
allo-ocimene (6.4%),
trans-β-ocimene (5.1%)
303
3- P. canescens
(DC.) Vatke2
Khatab shekan
area (north of
Aran and
Bidgol), around Kashan
(Isfahan Prov.)
0.8 (w/w)
GC and
GC/MS
14 (99.5%)
β-Bisabolen e (33.6%), trans-
isodillapiole (9.8 %),
myrcene (9.0%)
303
1leaves, 2aerial parts.
1.52. Psammogeton Edgew.
This genus, having 7 species distributed in the southwest of
Asia, consists of annual herbs, usually with biternatisect leaves;
Leaves are with a wedge-shap ed or lanceolate incised ultimate
segments. Inflo rescence is in the form of umbels. Bracts and brac-
teoles are present. Flowers are hermaphrodite, with or without a
rose, incised, or emarginated petals. Calyx is teeth inconspicuous.
Friuts are oblong, slightly compressed laterally, with 5 primary and
4 secondary ridges, covered usually with anchor-shaped bristles.
Vittae are 2 in valleculae, usually 1 on commissure. Inner seed face
is plane to slightly concave (4 , 12). Th ree species of the genus are
found in Iran, of which a subspecies of one of them is endemic to
the country (1, 7). A summary of the composition of the oils of
Iranian Psammogeton species can be seen in Table 51.
68 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
1.53. Pycnocycla Lindl.
Pycnocycla is an erect, perennial, suffruticose, glabrous, or
hairy and usually spiny plant. The genus has 12 species distributed
from tropical regions of West Africa to the northwest of India.
Stems are terete, striate, and often very branched. Leaves are entire
or subpalmately divided, or 1-4-pinnate, usually spiny, flat, or ±
acicular. Umbels are terminal and axillar, capitate, with many or
few short and stout rays, pedunculate or sessile. Bracts are lanceo-
late and herbaceous or linear, and spiny. Bracteoles are often spiny,
lanceolate-triangular, or linear-lanceolate. Central flowers of um-
bellules are hermaphrodite while the outers are male. Sepals are
present. Petals are white or rose-tinted, incurved at the apex, and
hairy. Fruiting umbellules are laterniform. Fruits have a single or
two mericarps, and are sessile; mericarps have several vittae [4]
[11] [12]. Eight sp ecies of the genus are found in Iran, o f which 4
species of them are endemic to the country [1] [7]. A summary of
the composition of the oils of Iranian Pycnocycla Lindl.species can
be seen in Table 52.
1.54. Rhabdosciadium Boiss.
Rhabdosciadium genus, having 5 species distributed in Eurasia
to west Asia, is a glabrous plant, often glaucous perennials with ±
leafless junciformis branches. Basal leaves are pinnatisect while the
upper ones are sheath-like. Bracts and bracteoles are present. Um-
bellules are few-flowered. Central flower is ± sessile, hermaphro-
dite while the outer one is pedicelled and is male. Sepals are ± pre-
sent. Petals are white. Fruit is glabrous, linear-cylindrical, and
slightly laterally compressed. Ridges are filiform, outer is ± nar-
rowly winged. Vittae are absent [4] [11] [12]. Three species of the
genus are found in Iran, of which all of them are endemic to the
country [1] [7]. A summ ary of the composition of the oils of Iranian
Rhabdosciadium species can be seen in Table 53.
Table 52. Pycnocycla species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- P. aucheriana
Decne. ex
Boiss. var .
aucheriana
The exact location not
mentioned (Hormozgan
Prov.)
0.1
GC and
GC/MS
20 (99.9%)
ρ-Cymene (44.7%),
α-phellandrene (25.0%),
β-phellandrene (11.7%),
spathulenol (5.6%), guaiol (5.1%)
304
2- P. aucheriana
Decne. ex
Boiss. 2
Sarchahan reg ion, Hadji
Abad
County (Hormozg an
Prov.)
0.1
GC/MS
28 (82.7%)
ρ-Cymene (21.7%), α-
phellandrene (9.0%),
spathulenol (6.3%), β-eudesmol
(6.0%)
305
3-P. aucheriana
Decne. ex
Boiss. 3
Sarchahan reg ion, Hadji
Abad
County (Hormozg an
Prov.)
3.8
GC/MS
18 (97.8%)
trans-isomyristicin (29.9%),
isoelemicin (16.1%), β-pinene
(13.5%), linalyl acetate (9.8%)
305
4- P. bashagardiana Mozaff.*
Bashagard villa ge, Jask
county (Hormozgan Prov.)
1.1
GC and
GC/MS
46 (98.1%)
Myristicin (18.6%),
cis-isomyristicin (15.3%),
E-β-ocimene (11.6%),
Z-β-ocimene (6.5%)
306
5- P. bashagardiana Mozaff.*
Bashagard
region (Jask), (Hormozgan
Prov.)
1.22 (w/w)
GC and GC-MS
51 (99.3%)
Myristicin (39.12%), (E)-β-
ocimene (21.97%),
sabinen e (15.0%), cis-iso-
miristicin (2.67%)
307
6- P. bashagardiana Mozaff.*
Bashagard
region (Jask), (Hormozgan
Prov.)
2.12 (w/w)
GC and GC-MS
52 (99.6%)
(E)-β-ocimene (55.40%), myristi-
cin (18.27%),
(Z)-β-ocimene
(12.47%), cis-iso-miristicin
(2.94%)
307
7- P. bashagardiana Mozaff.*
Bashagard villa ge,
Jask Coun ty (Hormozgan
Prov.)
1.7
GC and
GC/MS
44 (94.9%)
Myristicin (21.6%), cis-
isomyristicin (17.1%),
E-β-ocimene (9.2%)
307
Table 52 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 69
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
8- P. caespitosa Boiss. &
Hausskn.*
Delijan, (Markazi Prov.)
0.25
GC and
GC/MS
51 (97.4%)
β-Eudesmol
(20.3%),
2,3,6-trimethyl
benzaldehyde (13.2%),
Z-β-ocimene
(6.1%),
α-pinene (5.9%)
308
9- P. flabellifolia
(Boiss.) Boiss.
Hosseinieh, Andimeshk
(Khuzistan Prov.)
0.4
GC and
GC/MS
19 (94.2%)
α-Phellandrene ( 64.0%),
ρ-cymene (18.5%)
239
10- P. musiformis
Hedge &
Lamond*
(Hormozgan Prov.)
0.1
GC and
GC/MS
23 (99.9%)
Thymol (53.5%
α-pinene (10.7%)
304
11- P. nodiflora
Decne. ex
Boiss.
Sarvestan (Far s Prov.)
0.1 (w/w)
GC and
GC/MS
72 (86.8%)
β-Eudesmol (34.3%), hexade-
canoic acid (11.5%),
spathulenol (6.9%)
309
12- P. nodiflora
Decne. ex
Boiss.2
Doroodi region, Hadji
Abad County, (Hormozgan
Prov.)
0.05
GC and
GC/MS
21 (94.7%)
E-sesquila vandulol ( 18.6%),
spathulenol (11.9%) ,
δ-cadinol (9.0%),
t-cadinol (8.9%),
β-caryophyllene (7.9%)
310
13- P. nodiflora
Decne. ex
Boiss.3
Southern Iran
0.1
GC and
GC/MS
27 (89.6%)
E-sesquila vandulol ( 17.2%),
lavandulyl acetate (13.5%),
β-caryophyllene (11.1%), bicy-
clogermacrene (10.5%),
δ-cadinol (9.0%),
t-cadinol (6.8%)
310
14- P. spinosa
Decne. ex
Boiss.
The exact location not
mentioned (Semnan Prov.)
0.3
GC/MS
20 (99.5%)
Elemicine (65.0%), linalyl acetate
(11.0%),
β-caryophyllene (7.4%)
311
15- P. spinosa
Decne. ex
Boiss. var .
spinosa *
Isfahan (Isfahan Prov.)
0.1
GC and
GC/MS
33 (85.7%)
Geranyl isovalerate (14.9%),
caryophyllene oxide (10.6%),
α-cudesmol (9.2%)
β-citronellol (7.2%),
elemicin (6.8%)
312
16- P. spinosa
Decne. ex
Boiss. *
Isfahan
University campus
(Isfahan Prov.)
0.1
GC and
GC/MS
20 (77.2%)
Isopantanoate (14.4%), caryo-
phyllene oxide (10.6%),
β-eudesmol (9.2%), citronellol
(7.2%),
elemicin (6.8%)
313
17- P. spinosa
Decne. ex
Boiss. *
Isfahan
University campus
(Isfahan Prov.)
Not stated
GC and
GC/MS
34
(Not stated)
Caryoph yllen oxide (2.7-5.9%),
α-cadinol (1.0-5.6%),
β-eudesmol (1.9-9.2%)
314
1The percentages are described as v/w, otherwise specified as w/w, 2fruit, 3seeds, *endemic to Iran
70 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Table 53. Rhabdosciadium species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- R. aucheri
Boiss.*
Zarshoran village, Takab
(Azerbaijan Prov.)
0.1 (w/w)
GC and
GC/MS
29 (93.1%)
β-Pinene (34.0 %),
β-elemene (13.4%),
limonene (6.5%),
γ-elemene (5.1%)
315
2- R. petiola re
Boiss. &
Hausskn. ex
Boiss.*
Awalan Mountain, Sanan-
daj (Kurdistan Prov.)
0.6 (w/w)
GC and
GC/MS
17 (88.7%)
Germacrene D
(48.6%)
29
3- R. straussii
Hausskn. ex
Bornm.*
Oshtorankuh Mountains
(Lurestan Prov.)
0.2 (w/w)
GC and
GC/MS
42 (97.5%)
β-Elemene (37.9%),
germacrene-D (32.2%)
316
*endemic to Iran
Table 54. Scaligera species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main compo nents
Ref.
1- S. assyriaca
Freyn & Bornm.1
Esfarayen
(Khorasan Prov.)
0.1
GC and
GC/MS
23 (96.9%)
Germacrene D
(21.2%),
β-caryophyllene (13.4%),
α-copaene (10.2%),
β-sesquiph elland-rene (10%),
kessan (7.4%),
myristicin (6.6%)
317
2- S. assyriaca
Freyn &
Bornm.2
Esfarayen
(Khorasan Prov.)
0.1
GC and
GC/MS
32 (97.4%)
Myristicin (24.3%), germacrene
D
(13.7%), ellemicine (11.0%),
kessan
(9.5%),
β-sesquiph elland-
rene (8.7%),
β-caryophyllene (6.9%)
317
1leaves, 2fruit
1.55. Scaligera DC.
Scaligera genus, having 4 species distributed in the Mediterra-
nean region to southwest Asia, is a biennial or perennial herb with a
rhizome, tuber, or fusiform root and without a fibrous collar. Basal
leaves are undivided, ternate, or up to 4-pinnate. Inflorescence is in
the form of umbels and branched. Bracts and bracteoles are absent,
or up to 6, and linear. Flowers are hermaphrodite; sepals are incon-
spicuous, and petals are white. Fruit is globose and smooth.
Valleculae have 1-3 large vittae in the middle of the pericarp;
commissures have 2 or numerous, slender, and interrupted vittae [4]
[12]. Four species of the genus are found in Iran [7]. A summ ary of
the composition of the oils of Iranian Rhabdosciadium species can
be seen in Table 54.
1.56. Semenovia Regel & Herder
Semenovia is a perennial herb, growing in high mountains, with
a fibrous collar. Stems are either subscapose with few branches, or
dichotomously branched forming a bush-like, or sometimes cush-
ionlike habitat. This genus has 18 species distributed in Asia.
Leaves are pinnate or bipinnate, with long petioles and indurated
sheaths. Umb els have few unequal rays, compound, and rarely sim-
ple. Bracts and bracteoles are present. Sepals are present, but in
many species inconspicuous. Petals are white or yellowish-white,
obcordate-emarginate, inflexed at the apex, and hairy at the outer
surface. Fruits are strongly adpressed dorsally, with inconspicuous
ridges. Mericarps have a single dorsal and 2 commissural vittae [4]
[12]. Five sp ecies of the genus are found in Iran, of which 4 species
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 71
of them is endemic to the country [1] [7]. A summary of the com-
position of the oils of Iranian Semenovia species can be seen in
Table 55.
1.57. Serotinocarpum Mozaff.
Serotinocarpum is an invalid name of Opsicarpium Mozaff.
(see Opsicarpium Mozaff.). A summary of the composition of the
oils of Iranian Serotinocarpum species can be seen in T able 56.
1.58. Seseli L.
Seseli genus has 100 to 120 species distributed from Europe to
central Asia and north of tropical Africa. This genus is a perennial
or biennial, occasionally monocarpic plant, with or without a fi-
brous collar. Leaves are 1-4-pinnate. Bracts might be present or
absent. Bracteoles are present, free or united at the base. Sepals are
small or absent. Petals ar e white, rarely yellow or ± violet, not radi-
ant. Fruit is oblong to ovoid, glabrous or pubescent, and scarcely
compressed. Prim ary ridges are conspicuous while the secondary
Table 55. Semeno via species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- S. dicho toma
(Boiss.)
Manden.*
Ahmadkouh, Dena Moun-
tains (Kohgiluyeh va Boyr
Ahmad Prov.)
0.1
GC and
GC/MS
26 (82.0%)
Caryoph yllene oxide (25 .5%),
β-pinene (10.9%)
41
2- S. frigida
(Boiss. &
Hausskn.)
Manden.2*
Shahre kord ,
(Chaharmahalva Bakhtiari
Prov.)
0.2 (w/w)
GC and
GC/MS
37 (90.6%)
Neryl acetate (16.2%),
spathulenol (14.5%) , citronellol
(13.8%), hexadecanoic acid
(5.5%),
β-eudesmol (5.3 %)
71
3- S. suffrutic osa
(Freyn &.
Bornm.)
Manden.*
Shirkouh (Yazd Prov.)
0.2
GC and
GC/MS
23 (73.6%)
Linalool (13.9%),
lavandulyl acetate (11.5 %),
(E)-β-ocimene (8.6%),
terpinen-4-ol (7.7%),
lavandulol (6.6%)
318
4- S. suffruticosa
(Freyn &.
Bornm.) Manden.*
Taftan Mountains (Sistan
va Baluchestan Prov.)
0.4
GC/MS
63 (69.3%)
cis-β-Ocimene (12.9%), linalool
(9.5%), γ-terpinene (9.0%), α-
terpinolene (7.4%)
319
5- S. tragio ides
(Boiss.)
Manden.
Anjirak (Sistanva Balu-
chestan Prov.)
0.6
GC, GC/MS,
1H-NMR
21 (70.6%)
ρ-Cymene (20.5%), (Z)-β-
ocimene (9.7%),
cinnamyl isovalerate (9.4%)
64
6- S. tragio ides
(Boiss.)
Manden.
Kamoo, Kashan ( Isfahan
Prov.)
0.6
GC and
GC/MS
17 (99.4%)
Lavandulyl acetate (25.5%),
geranyl acetate
(12.5%),
trans-β-ocimene (8.8%),
ρ-cymene (7.7%),
γ-terpinene (7.4%),
neryl acetate (7.0%),
linalool (5.7%)
320
1The percentages are described as v/w, otherwise specified as w/w, 2aerial parts, *endemic to Iran
Table 56. Serotinocarpum species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- S. insign is
Mozaff.*
Gardaneh Khan, Baneh
(Kurdistan Prov.)
0.6 (w/w)
GC/MS
19 (93.3%)
Limonene (36.9%), β-pinene
(17.4%),
myrcene (15.8%)
257
*endemic to Iran
72 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
one is absent. V ittae are 1-3. Stylopodium is conical in fruit. Styles
are persistent [4] [11] [12]. Five species of the genus are found in
Iran, of which 3 species and a subsp ecies of one of them are en-
demic to the country [1] [7]. A summary of the composition of the
oils of Iranian Seseli L. species can be seen in Table 57.
1.59. Smyrniopsis Boiss.
Smyrniopsis most probably is a monotypic genus. This genus,
being endemic to southwest Asia, consists of perennial, monocar-
pic, and sturdy plants with fusiform roots, tall and branched stems
ended to nearly round synflorescens. Leaves are decurrent, with tw o
to three transect, and lanceolate segments. Bracts are unequal. Um-
bels have 7-15 rays. Bracteoles are very small or absent. Calyx has
very small sepals. Petals are yellow, incurved at the apex, more or
less entire. Fruits are elliptic, slightly compressed laterally, includ-
ing two mericarps with 5 equal, prominent, and undulate ridges.
Vittae are 5 in valleculae, 2-3 on commissure [4] [11] [12]. One
species of the genu s is found in Iran [7]. A sum mary of the compo-
sition of the oils of Iranian Smyrniopsis species can be seen in Ta-
ble 58.
1.60. Smyrnium L.
Smyrnium is a b iennial herb with a fusiform taproot, not
crowned by a fibrous collar. The genus has 7 species distributed in
Europe and the Mediterranean region. Basal leaves are 2-4-ternate-
pinnate. Upper leaves are alternate or opposite. Inflorescence is
much-branched; bracts and bracteoles are usually absent. Flowers
are hermaphrodite; sepals are obsolete; petals are yellow. Fruit is ±
ovoid. Mericarps are subdidymous, curved from the apex to the
base, dark brown to black; three dorsal ridges are ± prominent;
valleculae and commissures have many vittae [4] [11] [12]. One
species of the genu s is found in Iran [7]. A sum mary of the compo-
sition of the oils of Iranian Smyrnium species can be seen in Table
59.
1.61. Stenotaenia Boiss.
Stenotaenia genus has 5 or 6 species distributed in the south-
west of Asia. This genus is a subscapose herb with well developed
vertical caudex, restricted to high-apines, which come into maturity
very late in the growing season. Stems are few branched, covered
by short hairs. Leaves are numerous, basal, pinnate with ovate seg-
ments. Umbels are compound, unequally with 2-3 rays, with rudi-
mentary bracts and bracteoles or rarely with 1-2 bracteoles. Flowers
are regular. Sepals are rudimentary. Petals are brownish-yellow in
dried material, nearly round to elliptic, inflexed at the apex, hairy at
the outer surface. Fruits are strongly adpressed dorsally, short-hairy,
with inconspicuous ridges, and winged. Mericarps have 3 unequal
dorsal and 3 equal commissural vittae [4] [11] [12]. Four species of
the genu s are found in Iran, of which all of them are endemic to the
country [1] [7]. A summ ary of the composition of the oils of Iranian
Stenotaenia species can be seen in Table 60.
1.62. Tetrataenium (DC.) Manden. Basionym : Heracleum L.
sect. Tetrataenium DC.
Tetrataenium is a perennial and often tall herb that has 7 or 8
species distributed in the southwest to central Asia. Basal and lower
stem leaves are long-petiolate, simple or bipinnatisect, ternate, pal-
matisect, or rarely entire or sulubate. Stem leaves become gradually
smaller upward. Bracts and bracteoles are often present and persis-
tent. Flowers are polygamous; terminal umbels are hermaphrodite
while the lateral ones are sometimes male. Sepals are small
and conspicuous. Petals are yellow or greenish-yellow, or white,
obovate, inflexed at the apex, rarely obcordate. Stylopodium is
Table 57. Seseli species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- S. libanotis
(L.) W.
D.J.Koch var.
armeniacum
Bordz.
Yosh-Chalou s road
(Mazadaran Prov.)
0.1 (w/w)
GC and
GC/MS
25 (90.6% )
Aacorenone (35.5%)
82
2- S. tortuo sum
L. subsp. kiabii
Akhani*
Gorgan, (Golestan Prov.)
0.6 (w/w)
GC/MS
30 (93.6% )
α-Pinene (21.2%), β-
phellandrene (14.9%),
β-pinene (14.2%),
sabinen e (13.4%)
321
*endemic to Iran
Table 58. Smyrnio psis species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- S. aucheri
Boiss.
Khoramaba d (Lur estan
Prov.)
0.6 (w/w)
GC and
GC/MS
14 (81.2)
ρ-Cymene (26.1%), caryo-
phyllene oxide (12.0%),
spathulenol (11.1 %)
322
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 73
Table 59. Smyrni um species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- S. cordifo lium
Boiss.
Poldokhtar ( Lurestan
Prov.)
0.6
GC and
GC/MS
9 (91.1%)
Curzerenone (49 .4%),
curzerene (32.5%)
323
2- S. cordifo lium
Boiss.
Poldokhtar ( Lurestan
Prov.)
0.9
GC and
GC/MS
13 (92.7%)
Curzerenone (33 .8%),
curzerene (16.9%), germacrene-D
(13.0%), isopimarol (10.9%),
phyllocladanol (8.8%)
323
3- S. cordifolium
Boiss.
Poldokhtar ( Lurestan
Prov.)
0.1
GC and
GC/MS
11 (92.8%)
Curzerenone (35 .6%), cu rzeren e
(17.6%), germacrene-D (15.6%),
isopimarol (10.9%),
phyllocladanol (8.7%)
323
4- S. cordifo lium
Boiss.
Poldokhtar ( Lurestan
Prov.)
0.4
GC and
GC/MS
11 (89.2%)
Curzerene (39.4 %), curzerenone
(28.4%), isopimarol (9.7%)
phyllocladanol (7.6%)
323
5- S. cordifo lium
Boiss.
Poldokhtar ( Lurestan
Prov.)
0.3
GC and
GC/MS
14 (86.9%)
Curzerene (34.2 %), curzerenone
(26.8%), isopimarol (9.7%),
phyllocladanol (7.6%)
323
6- S. cordifo lium
Boiss.2
Khoramabad (Lurestan
Prov.)
0.4 (w/w)
GC and
GC/MS
13 (89.4%)
Curzerenone (33 .8%), Hex ade-
canoic acid (18.7%),
curzerene (16.9%),
spathulenol (7.7%)
324
7- S. cordifo lium
Boiss.
Khoramabad (Lurestan
Prov.)
0.5
GC and
GC/MS
14 (93.0%)
Curzerenone (33 .8%), cu rzeren e
(16.9%), germacrene-D (13.0%),
isopimarol (10.9%),
phyllocladanol (8.7%)
325
8- S. cordifo lium
Boiss.3
Khoramabad (Lurestan
Prov.)
0.1 (w/w)
GC and
GC/MS
11 (89.8%)
Curzerene (45.7 %),
curzerenone (23.9%)
325
9- S. cordifolium
Boiss.4
Khoramabad (Lurestan
Prov.)
0.8 (w/w)
GC and
GC/MS
17 (90.0)
Curzerenone (56 .6%),
curzerene (18.7%)
325
10- S. cordifolium
Boiss.5
Khoramabad (Lurestan
Prov.)
0.6 (w/w)
GC and
GC/MS
20 (92.7%)
Curzerene (22.7 %), curzerenone
(19.2%), hexadecanoicacid
(13.6%)
325
11- S. cordifolium
Boiss. 6
Alshtar (Lurestan Prov.)
0.4 (w/w)
GC and
GC/MS
13 (92.2%)
Curzerenone (39 .3%),
curzerene (18.5%), isopimarol
(9.0%), germacrene-D (7.3%),
phyllocladanol (5.6%)
326
12- S. cordifolium
Boiss.7
Alshtar (Lurestan Prov.)
0.3 (w/w)
GC and
GC/MS
14 (91.8%)
Curzerene (36.9 %), curzerenone
(22.3%), germacrene-D (10.9%),
isopimarol (7.2%),
phyllocladanol (5.4%)
326
13- S. cordifolium
Boiss.8
Alshtar (Lurestan Prov.)
0.7 (w/w)
GC and
GC/MS
11 (86.9%)
Curzerenone (44.5%),
curzerene (27.1%)
326
1The percentages are described as v/w, otherwise specified as w/w, 2leaf, 3fruit, 4root, 5stem, 6flowering stage, 7preflowering stage, 8ripened fruits
74 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Table 60. Stenotaenia species oils.
Species
Sample origin
Oil yield (%)
Method( s) of
analysis
Identified
Main components
Ref.
1- S. nudtca ulis
Boiss.*
Takab
(Azerbaijan Prov.)
0.1 (w/w)
GC and
GC/MS
57 (93.0%)
β-Sesquiphellandrene (25.3%), hexyl
butyrate (15.7%)
and patchouli
alcohol (10.3%)
327
*endemic to Iran
Table 61. Tetrataenium species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- T. lasiopetalum
(Boiss.)
Manden.
Oshtoran Kuh, Doroud
(Lurestan Prov.)
0.1 (w/w)
GC and
GC/MS
40 (94.3%)
Germacrene-D (27.0%), 2-ethyl
hexyl acetate
(11.0%),
α-zingiberene (8.8%)
328
Table 62. Thecocarpus species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- T. meifolious Boiss*1
Shahrekord (Ch aharma-
halva Bakhtiari
Prov.)
0.1
(w/w)
GC and
GC/MS
40 (96.2%)
Spathulenol (30.7%),
caryophyllene oxide (11.1%),
germacrene-D (7.0%),
octanal (5.5%)
329
2- T. meifolious Boiss*2
Chahar mahalva Ba khtiari
province
0.6%
(w/w)
GC and
GC/MS
30 (97.5%)
Spathulenol (20.5%), camphor
(10.2%),
caryophyllene oxide (10.4%)
329
1aerial parts, 2leaves, *endemic to Iran
conical. Style is filiform. Mericarps are adpressed dorsally, with a
single dorsal and 2-4 (-6) commissural vittae [4] [11] [12]. Two
species of the genus are found in Iran, of which 1 sp ecies of th em is
endemic to the country [1] [7]. A summary of the composition of
the oils of Iranian Tetrataenium species can be seen in Table 61.
1.63. Thecocarpus Boiss.
Thecocarpus is a monotypic genus and endemic to Iran [7]. The
genus includes biennial or perennial and glabrous plants with pin-
nate leaves and falling bracts. Umbels include unequal pedicels,
not-hardened bracteoles, hermaphrodite central, and usually mar-
ginal florets. When fruits start to ripen, pedicels of marginal florets
in each umbel unit start coalescing and growing together to form a
nut-shaped formation with one or two carpels externally covered
with pedicels of outer florets. Bracteoles are connected to the base
of the fruit [11] [12]. This genus has a single species in the southern
and central parts of Iran [7] (Table 62).
1.64. Torilis Adans.
Torilis is an annual or rarely biennial herb, wh ich has 15 spe-
cies distributed from the Canary Islands and the Mediterranean
region to East Asia and tropical regions of South Africa. Stems are
erect, often branched, retrorsely setose, or scabrous. Leaves are 1 -2-
pinnate and the ultimate segments are entire or toothed. Umbels are
terminal or leaf-opposed. Petals are white to pinkish, with inflexed
apices, usually small, and sometimes radiant. Fruits are linear-
cylindric to ovoid, and spiny with spines arranged along the secon-
dary ridges, though this is not clear in some species when examined
with a lens or with the naked eye. Fruits are monomorphic or meri-
carps, and som etimes heteromorphic [4] [11] [12]. Nine species of
the genus are found in Iran [7]. A summary of the composition of
the oils of Iranian Torilis species can b e seen in Table 63.
1.65. Xanthogalum Avé-Lall.
Xanthogalum genus has three species distributed in the Iberian
Peninsula, Turkey, Caucasia, and Iran. This genus is a sturdy gla-
brous herb with thick, 1-2 (-4) m height, and fistular, sulcate, and
verticillated branched stems. Leaves are decurrent, 2-3-pinnate,
with an ovate-acuminate ultimate segment. Flowers are hermaphro-
dite or polygamous. Sepals are persistent in fruit, small, and erect.
Bracts are absent. Bracteoles are present and early deciduous. Petals
are greenish-yellow, nearly round, and incurved at apex. F ruits are
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 75
ovoid and very adpressed dorsally; mericarps have 3 dorsal wings,
with 1 dorsal and 2 commissural vittae [4] [11] [12]. Only one spe-
cies of the genus is found in Iran [7]. A summary of the composi-
tion of the oils of Iranian Xanthogalum Ave-Lall. species can be
seen in Table 64.
1.66. Zeravschania Korovin
Zeravschania is a perennial polycarpic herb that is totally gla-
brous, with a single or few terete or fistular and steriate stems. The
plant is crowned by a fibrous collar. This genus has six species
distributed from Southwest to Central Asia. Leaves are often basal
and up to 4 times ternatisect, with slightly fleshy, ovate or ovate-
oblong, rarely lanceolate, incised-dentate ultimate segments; stem
leaves are similar but smaller; and upper stem leaves are reduced to
a membranaceous sheath. Umbels have 3-12 rays. Bracts and brac-
teoles are ovate, white-membranaceous, and acuminate. Petals are
white or yellowish, obovate, and incurved at the apex. Fruit is ellip-
soid or obovate in outline, and glabrous and adpressed dorsally [4]
[12]. Three species of the genus are found in Iran, of which all of
them are endemic to the country [1 ] [7]. A summary of the compo-
sition of the oils of Iranian Zeravschania species can be seen in
Table 65.
Table 65. Zeravschania species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- Z. membranacea
(Boiss.)
Pimenov *
Zanjan to
Mianeh (Zanjan Prov.)
0.1
GC/MS
35 (83.3%)
Thymohydroquin -one dimeth-
ylether (16.7%),
trans-methyl iso
eugenol (7.7%),
linalool (7.4%),
α-terpenyl acetate (6.6%),
carvacrol (6.0%)
331
2- Z. membranacea
(Boiss.)
Pimenov *
Lordegan (Shirmard
mountain) (Cheharmahal
va Bakhtiari
Prov.)
1.6
GC and
GC/MS
36 (89.9%)
cis-β-Ocimene (30.8%),
sabinen e (18.8%),
α-pinene (15.5%)
332
Table 65 . contd…
Table 63. Torilis species oils.
Species
Sample origin
Oil yield
(%)
Method( s) of
analysis
Identified
Main components
Ref.
1- T. arvensis
(Huds.) Link.
Khojir Park,
Tehran
(Tehran Prov.)
0.3 (w/w)
GC/MS
22 (80.0%)
(E)-β-Farnesene
(27.7%),
ar-curcumene (19.5%)
330
2- T. leptophylla
(L.) Reichenb.*
Mehran
(Ilam Prov.)
0.20 (w/w)
GC and
GC/MS
60 (91.3%)
Spathulenol (15.7%), trans-α-
bergamotene (10.4%),
germacrene D (8.9%)
33
*endemic to Iran
Table 64. Xanthogalum species oils.
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
1- X. purpu rascens
Avé-Lall.
Chaloos (Mazandaran
Prov.)
0.2
GC and
GC/MS
26 (83.0%)
β-Phellandrene (2 0.1%),
β-caryophyllene (11.3%)
133
2- X. purpu rascens
Avé-Lall.
Haraz Road
(Mazandaran Prov.)
0.18
GC and
GC/MS
59 (89.8%)
1,8-Cineol (17 .6%), cis-muurol-
5-
en-4a-ol (5.7%),
neryl acetate (5.3%), E-anethol
(5.2%)
33
76 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w
Method( s) of
analysis
Identified
Main components
Ref.
3- Z. membranacea
(Boiss.)
Pimenov *
Farsan (Saldar an moun-
tain) (Chaharmahal-va
Bakhtiari
Prov.)
1.2
GC and
GC/MS
39 (67.2%)
Sabinene (15 .8%),
γ-terpinene (13.6%),
2-methoxy-4-methyl-1-(1-
methylethyl)-benzene (12.8%),
cis-β-ocimene (8.3%),
linalyl acetate
(5.3%)
332
4- Z. membranacea
(Boiss.)
Pimenov *
Lordegan (Chenr-
Mahmoodi mountain)
(Chaharmahal-va Bakhtiari
Prov.)
1.3
GC and
GC/MS
40 (80.4%)
cis-β-Ocimene (27.9%),
α-terpinolene (10.3%), sabinene
(8.6%),
β-pinene (8.4%), α-pinene (6.9%)
332
5- Z. membranacea
(Boiss.)
Pimenov *
Lordegan (Rig mountain)
(Chaharmahal-va Bakhtiari
Prov.)
0.7
GC and
GC/MS
35 (73.7%)
cis-β-Ocimene (24.1%),
α-pinene (12.8%),
γ-terpinene (11.0%), sabinene
(10.2%),
2-methoxy-4-methyl-1-(1-
methylethyl)-benzene (8.2%)
332
6- Z. membranacea
(Boiss.)
Pimenov *
Ardal (Sabzekoh Moun-
tain) (Chaharmahal-va
Bakhtiari
Prov.)
0.6
GC and
GC/MS
38 (86.7%)
cis-β-Ocimene (27.3%), sabinene
(19.2%),
α-pinene (11.2%),
trans-β-ocimene (5.1%)
332
7- Z. membranacea
(Boiss.)
Pimenov *
Yasuj (Paznan Mountain)
(Kohgiluyeh va Boyr
Ahmad Prov.)
0.7
GC and
GC/MS
32 (88.0%)
cis-β-Ocimene (54.8%), trans-β-
ocimene (12.4%),
α-pinene (8.6%)
332
8- Z. membranacea
(Boiss.)
Pimenov *
Daran (Olya
Mountain) (Isfahan Prov.)
0.9
GC and
GC/MS
35 (84.0%)
cis-β-Ocimene (21.2%),
trans-β-ocimene (18.5%),
sabinen e (9.4%),
α-pinene (8.4%),
β-phellandrene
(5.8%),
linalyl acetate (5.5%)
332
9- Z. pastina cifolia
(Boiss. &
Hausskn.)
Salimian &
Akhani *
The exact location not
mentioned (Central Iran)
0.7
GC/MS
33 (96.8%)
β-Bisabolen e (37.3%),
3,1-butyl-1, 2-dimethoxy benzene
(14.9%),
10,11-dimethylbicyclo [6.3.0]
undec-(8)
-en-9-one (12.9%),
4-t-buty l-1, 2-dimethoxy benzene
(6.8%),
(E)-methyl eugenol (5.6%),
(E)-asarone (5.1%)
232
*endemic to Iran
1.67. Zosima Hoffm.
Zosima genus has 4 species distributed in the southwest of Asia.
This genus is a cinereous perennial herb, with a thick rootstock,
crowned by a fibrous collar. Basal leaves are 3-pinnate, ultimate
segments narrowly elliptic; upper stem leaves are similar but
smaller. Umbels are mostly terminal; rays are 10-25. Bracts and
bracteoles are numerous, and linear-lanceolate. Sepals are absent.
Petals are whitish. Fruit is obovate, strongly compressed dorsally,
and cinereous; ridges are narrow, exterior forming the inflated mar-
gin; valleculae are 1-vittate, commissures are 2-vittate [4] [11] [12].
Two species of the genus are found in Iran, of which one of them is
endemic to the country [1] [7]. A summary of the composition of
the oils of Iranian Zosima species can be seen in T able 66.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 77
Table 66. Zosima species oils.
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
1- Z. absinth ifolia
(Vent.) Link
Lanbar, Khalkhal (Ardabil
Prov.)
0.3
GC/MS
21 (96.0%)
Octyl acetate
(24.7%),
β-caryophyllene
(22.2%),
(Z)-β-ocimen (8.9%)
333
2- Z. absinth ifolia
(Vent.) Link
Lanbar, Khalkhal (Ardabil
Prov.)
0.2
GC and
GC/MS
21 (96.0%)
Octyl acetate
(24.7%),
β-caryophyllene
(22.2%), cis-β-
ocimene (8.9 %),
α-pinene (5.3 %), clovane (5.3%)
334
3- Z. absinth ifolia
(Vent.) Link2
Lanbar, Khalkhal (Arda-
bilProv.)
0.7
GC and
GC/MS
16 (95.1%)
Butyl octanoat e
(31.4%), octyl
acetate (29.7%),
6-methoxy-1- indanone (12.2%)
334
4- Z. absinth ifolia
(Vent.) Link
Firozabad (Fars Prov.)
0.1 (w/w)
GC and
GC/MS
61 (91.3%)
Octyl butyrate
(19.2%),
β-caryophyllene (13.9%), octanol
(9.6%), geranyl
valerate (9.6%), caryophyllene
oxide (5.7%)
335
5- Z. absinth ifolia
(Vent.) Link3
Alashtar (Lurestan Prov.)
0.4 (w/w)
GC and
GC/MS
47 (93.4%)
GermacreneD (15.9%),
β-caryophyllene
(11.3%),
n-octanol (10.0%),
α-pinene (6.5%),
limonene (5.7%)
336
6- Z. absinth ifolia
(Vent.) Link4
Alashtar (Lurestan Prov.)
0.7 (w/w)
GC and
GC/MS
38 (92.1%)
n-Octanol (32.8%),
germacrene D
(10.9%),
n-octanal (10.6%)
octyl acetate
(6.2%),
limonene (5.7%)
336
7- Z. absinth ifolia
(Vent.) Link5
Alashtar (Lurestan Prov.)
0.8 (w/w)
GC and
GC/MS
37 (87.8%)
n-Octanol (27.1%),
limonene (9.8%),
β-caryophyllene
(8.7%),
octyl acetate
(7.9%),
caryophyllene
oxide (6.1%)
336
Table 66 . contd…
78 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Species
Sample origin
Oil yield
(%) v/w1
Method( s) of
analysis
Identified
Main components
Ref.
8- Z. absinth ifolia
(Vent.) Link
Khoramabad (Lurestan
Prov.)
0.5 (w/w)
GC and
GC/MS
22 (90.3%)
Germacrene D
(20.7%),
β-caryophyllene
(14.6%),
octyl acetate
(12.2%)
322
9- Z. absinth ifolia
(Vent.) Link
Vanyar
(Azerbaijan Prov.)
2.4
GC and
GC/MS
24 (100%)
Octyl acetate
(87.5%),
octyl octanoate
(5.0%)
337
10-Z. absinthifolia
(Vent.) Link
Marand (Mishow-Dagh
mountain, (Azerbaijan
Prov.)
0.15
GC/MS
19 (98.2%)
Octyl acetate (47.29%), n-octanol
(25.79%), octyl butyra te
(10.15%),
octanoic acid octyl ester (7.9%)
338
11- Z. radian s
Boiss. and
Hohen*
Khor
(Tehran Prov.)
0.6 (w/w)
GC and
GC/MS
39 (95.7%)
Citrone llyl acetate
(16.3%),
octyl butyrate
(15.0%),
3-octenyl acetate
(12.8%), geranyl
butyrate (11.0%), octyl acetate
(9.1%)
339
1The percentages are described as v/w, otherwise specified as w/w, 2n-hexane extracts 3before flowering stage, 4at flowering stage, 5after flowering stage, *endemic to I ran
CONCLUSION
Essential oils have wide applications in both pharmaceutical
and food industries. From the industrial standpoint, essential oils
are widely used in making perfumes, fragran ces and food flavors.
In medicine, these oils are mainly used as anti-inflammato ry and
anti-microbial agents.
In the present review, the essential oil composition of 141 na-
tive (93, 65.96%) and endemic (48, 34.04%) Apiaceae species
found in Iran was investigated (Tables 68, 69). Plants belonging to
the Apiaceae family are ri ch in essential oils containing volatile
ingredients with diverse structures (Figs. 2, 4-8). In Iran, th e
Apiaceae family consists of about 121 genera and 352 species. In
this study, 63 genera and 141 species are discussed (Table 68) (Fig.
3).
Fig. (2). Abundance of different types of volatile components from the
essential oil of Iranian Apiaceae.
Several studies have reported the chemical composition of the
essential oils from the m embers of Iranian Apiaceae. Investigations
showed that oil composition depends on the genus, species, variety,
growing site, climatic conditions and analytical method and the
method used for obtaining essential oil. The yield of the essential
oils is very variable in different genera of this family (0.07-18).
Essential oil ingredients can be categorized into six groups of
monoterpenes, monoterpenoids (Fig. 4), sesquiterpenes (Fig. 5),
sesquiterpenoids (Fig. 6), phenylpropanoids (Fig. 7), and miscella-
neous compounds (Fig. 8) (Table 67). As listed in the Figs. (4-8),
different molecules with various structures have been identified in
the essential oils of Iranian Apiaceae. While monoterpenes and
monoterpenoids constitute the major components (36%), monoter-
penoids (23%) are more dominant than monoterpenes. In the case
of sesquiterpenes (28%), the pattern is different and hydrocarbons
are slightly more abundant th an sesquiterpenoids (15%) (Figs. 2, 3).
Various types of monoterpenes including linear, cyclic (mono-, di-,
and tri-cyclic) and aromatic monoterpenes have been reported from
different genera of the studied plants. Menthan, fenchan, pinan,
caran, and thujan are the main cyclic monoterpene backbones re-
ported (Figs. 1-8).
Fig. (3). Abundance of the studied endemic and native species of Iranian
Apiaceae.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 79
a-terpinene trans-thujene
a-phellandrene limonene
myrcene
a-pinene
b-pinene sabinenea-copaene
ocimene
b-phellandrene terpinolene
g-terpinene o-cymene
r-cymene
thujadiene
tricyclene carene
allo-ocimene
H
H
d-2-carene
limonene r-mentha-1, 3, 8-triene
OH
thymol
O H
cuminaldehyde
OH O
O
cuminyl acetate
HO
carvacrol
OH
r-cymene-8-olcuminyl alcohol
O
carvone
O
a-terpinene-7-al
O H
H
phellandral
O
perillaldehyde
O
dihydrocarvone
O
trans-dihydrocarvone
O
1,8-cineol
OH
cis-carveol
Fig. (4). The identified oxygenated and hydrocarbon monoterpenes from the essential oil of Iranian Apiaceae.
80 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
HO
cis-pinene hydrate
OH
4-terpineol
O
dill ether
O
O
fenchyl acetate
O
O
bornyl acetate
HO
linalool
O
safranal
O
ocimenone
O
H
b-cyclocitral
O
O
terpinyl acetate
O
Z-ocimenone E-ocimenone
O
O
O
geranyl propionate
O
O
neryl acetate
O
O
geranyl acetate
O
O
geranyl 2-methyl butanoate
O
O
linalyl acetate
O
O
geranyl isovalerate
HO
b-citronellol
O
O
geranyl valerate
O
O
geranyl butyrate
O
O
nerolidol acetate
O
O
lavandulyl acetate
OH
lavandulol
O
O
chrysanthenyl acetate
O
O
citronellyl acetate
O
O
citronellyl propanoate
HO
linalool
O
ocimenone
O
Z-ocimenone E-ocimenone
O
Fig. (4). Cont.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 81
a-humulene
H
H
g-muurolene
a-guaiene
H
a-selinene
trans-a-bergamotene
aromadendrene
8, 9-dehydro-isolongifolene
daucene
H
H
a-cadinene
H
b-selinene
H H
caryophyllene
germacrene D germacrene B
H
d-cadinene
valencene
H
H
H
bicyclogermacrene
H
H
HH
b-gurjunene
g-bisabolene
H
H
a-muurolene
geijerene
isogeijerene elemene b-elemene g-elemene
H
a-zingibrene
b-sesquiphellandrene curcumene
b-sesquiphellandrene
E,E-a-farnesene
E-b-farnesene
b-farnesene
Fig. (5). The identified hydrocarbon sesquiterpenes from the essential oil of Iranian Apiaceae.
82 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
OH
Z-b-santalol
O
caryophyllene oxide
O
germacrone
H
H
viridiflorene
HO
E-sesquilavandulol
HO
cis-cadin-4-en-7-ol
OH
H
H
H
H
viridiflorol
O
O
cinnamyl tiglate
OH
cubenol
H
H
HO
epi-a-cadinol
OH
glubulol spathulenol
HO
HO
falcarinol
OHH
a-eudesmol
OH
H
10-epi-g-eudesmol
H
HO
a-bisabolol
HO
nerolidol
O
O
H
guiol acetate
OH
H
guiol
H
H
HO
a-cadinol
H
H
a-cadinene
H
H
HO
epi-a-cadinol
O
O
curzerenone
O
curzerene
O
acorenone
HO
elemol
Fig. (6). The identified oxygen ated sesquiterpenes from the essential oil of Iranian Apiaceae.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 83
O
2-Me-3-phenyl-propanal
OH
phenylpropanol
O
O
O
isoelemicin
O
O
O
elemicin
O
O
Me-eugenol
O
E-foeniculin
O
O
safrole
O
O
trans-Me-isoeugenol
O
O
cinnamyl isovalerate
OO
O
asarone
O
O
O
O
dillapiol
O
cis-anethol
O
trans-anethol
O
O
anisaldehyde
H
O
2-Me-3-phenylpropanal
O
O
O
O
allyltetramethoxybenzene
Fig. (7). The identified phenyl propanoids from the essential oil of Iranian Apiaceae.
O
cyclohexanone
O
benzaldehyde
OH
benzenmethanol 1-Me-benzene
O
O
g-decalactone
O
2, 4, 5-tri-Me-benzaldehyde
O
O
Z-ligustilide
O
O
3-E-butyldiene phthalide
O
O
E-3-butylidene phthalide
O
O
E-ligustilide
O
mesitaaldehyde
H
H
H
H
b-bourbonene
O
anisol
HO
a-Me-benzenemethanol
O
OH
4-hydroxy-3-methylacetophenone
Fig. (8). Contd…
84 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
S
2, 3, 4-tri-Me-thiophene
S
S S
di-Me-trisulphide
S
SS
S
di-Me tetrasulphide
SS
(E)-1-propenyl sec-butyl disulfide
SS
(Z)-1-propenyl sec-butyl disulfide
S
S S
S
Me-pentyl tetrasulfide
S
S
propenyl-s-butyl disulfide
H
HO
OH
sclareol
O
O
hexyl isobutyrate
O
(E, E)-2, 4-decadienal
O
O
hexyl 3-Me-butyrate
O
O
hexyl butyrate hexyl butyrate
O
O
octyl acetate
O
O
2-octen-1-ol acetate
O
(E, Z)-2, 4-decadienal
O
decanal
O
dodecanal
O
tetradecanal
O
O
hexyl butyrate
O
O
hexyl-2-Me-butanoate
O
O
octyl acetate
Fig. (8). The identified miscellaneous compounds from the essential oil of Iranian Apiaceae.
From a pharmacological point of view, the reported compounds
have diverse biological activities with important and valuable
therapeutic potential. For instance, monoterp enes α- and β-pinene
have been reported to possess several activities including antibiotic
resistance modulation, anticoagulative, antitumor, gastroprotective,
anxiolytic, n europrotective, cytoprotective, antimicrobial, antima-
larial, anti-leishmanial, anticonvulsant, anti-inflammatory, analge-
sic, insecticidal and larvicidal effects [340]. Table 70 shows the
pharmacological activities of the most important compounds with
respect to pharmaceutical activities. Oxygenated monoterpenes
particularly in acetate and alcohol forms, aromatic terpenoids like
thymol and carvacrole, and phenylpropanoids play important roles
in the pharmacological effects of essen tial oils. Ou r study reveals
that the volatile oils of the Iranian Apiaceae are rich in these types
of compounds.
Taken together, Apiaceae encompasses a wide diversity of
plants, of which numerous species are endemic to Iran. Thus, a
considerable further research on the species belonging to this family
is encouraged.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 85
Table 67. The relative abundance (%) of oxygenated monoterpenes (OM), hydrocarbon monoterpenes (HM), oxygenated sesquiterpenes (OS), hy-
drocar bon sesquiterpenes (H S), phenylpropanoids (Ph.P), and other volatile compounds (Others) reported i n different s pecies of the fam-
ily Apiaceae.
Plant
OM (%)
HM (%)
OS (%)
HS (%)
PhP (%)
Others (%)
Alococa rpum erianthum
56.6
Amirkab iria odoratissima
82.1
Ammi copticum
51.6
40.1
4.7
23.7
A. visnag a
57.3
14.7
Anethum graveolen s
49.4
30.7
3.3
Angelica urumiensi s
7.5
18.1
52.7
Anisosciad ium orientale
43.5
33.6
Apium graveolens
8.6
76.4
8.1
Artedia sq uamata
79.9
Astrodaucus orienta lis
22.3
28.3
1.6
2.3
5.4
A. persic us
14.9
52.2
17.6
10.8
Azilia eryng ioides
23.65
76.2
Bunium caroides
5.9
26.6
17.7
B. cylindric um
17.3
6.5
23.8
31.9
B. elegan s
62.1
17.7
B. persic um
36.3
43.7
1.3
1.2
B. rectang ulum
19.4
72.5
Bupleurum exalta tum
12.9
43.1
Carum ca rvi
37.1
29.7
4.4
C. coptic um
42.6
43.9
1.47
0.9
0.1
Chaerop hyllum bulbosum
23.9
6.6
22.3
17.1
C. crinitum
50.5
C. macropodum
13.8
40.3
C. macrospermum
70.8
5.05
C. macropodum
4
51.5
1.8
1.7
22.7
Conium maculatum
71.5
Coriandrum sativum
58.8
2.6
18.4
Cuminum cy minum
33.8
37.9
16.2
Daucus carota
23.5
14.5
D. littoralis
31.6
24.3
6.1
Dicyclophora persica
51.65
Diplotaenia cachrydifolia
0.7
46.8
3.2
29.45
D. damavandica
39.3
7.5
Dorema ammoniacum
7.9
9.3
18.1
10.8
1.7
9.8
D. aucheri
31.2
10.9
D. glabrum
6.3
5.4
26
Ducrosia anethifolia
1.5
8.7
1.4
59.1
Table 67 . contd…
86 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Plant
OM (%)
HM (%)
OS (%)
HS (%)
PhP (%)
Others (%)
D. assadii
6.2
1
70.1
Echinophora cinere a
74.5
E. platyloba
1.3
54.8
2.4
E. sibthorp iana
55
33.65
Eryngium b illardieri
70.9
E. bungei
39.1
15
5.2
E. caeruleum
52.45
4
31.8
E. platyloba
76.8
Falcaria falca rioides
67.9
F. vulgaris
18.5
46.1
3.9
6.8
Ferula assa -foetida
1.6
10.2
2.2
7.1
42.9
F. badra kema
56.7
F. behbo udiana
75.3
16.1
F. cupularis
15.1
36.5
F. diversivi ttata
69.5
6.2
F. flabe lliloba
10.5
21.6
7.1
6.2
F. foetid a
8.1
76.5
F. galba niflua
1.5
74
1.3
F. gummo sa
0.6
75.3
3.4
1.2
F. hezarlalehzarica
77
F. hirtella
10
12.65
21.6
F. latisecta
21.4
5.3
42
F. macrocolea
35.5
7.4
F. microco lea
2.2
43.6
2.8
12.6
F. oopoda
73.3
19.8
F. orientalis
13.2
65
F. ovina
4.2
57.8
2
F. persica
1.3
30.2
3.5
1.3
18
6.4
F. stenoc arpa
76.2
F. szowitsia na
18.6
30.9
7.6
Ferulago angula ta
5.3
55.4
1.1
3.4
F. bernard ii
5.8
33.1
2.5
10.6
F. carduch orum
59.7
F. contrac ta
4.8
46.6
11.9
3.5
F. macrocarpa
40.8
6.9
5.1
9
F. phialo carpa
64.7
F. stella te
68.6
F. subvelutina
66.15
Foeniculum vulgare
12.2
13.1
58.8
0.5
Froriepia subpinna ta
24.8
43
Table 67 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 87
Plant
OM (%)
HM (%)
OS (%)
HS (%)
PhP (%)
Others (%)
Fuernrohria setifo lia
10.2
68.5
10.9
Grammosciadium platycarpum
63.4
3.2
10.8
10.1
G. scabridum
7.8
49.7
1.1
1.8
3.9
11.7
Haussknechtia elymaitica
5.1
2.5
29.5
53.6
Heptaptera anisoptera
48.8
17.6
7.9
Heracleum gorganicum
68.8
H. persicum
12.4
35.7
26.9
H. rechingeri
6.1
6.4
9.3
23.1
29.5
Hippomarathrum microcarpum
6.3
10
12.5
23
Johrenia ramosissima
36.8
Johreniopsis seseloides
9.8
19.5
8.4
6.6
Kelussia odoratissima
1.4
3.9
60
Laser trilobum
32.1
29.6
Leutea elbursensis
73.4
L.glaucopruinosa
50.4
Levisticum officinale
34.6
23.7
3.9
Lomatopodium khorassanicum
53.7
L. staurophyllum
70.2
Malabaila secacul
33.5
22.5
Mozaffariania insignis
54.2
41.1
Oliveria decumbens
42.5
42.4
4.3
Opsicarpium insignis
4
35.4
39.9
7.6
Petroselinum hortense
14.8
24.6
37.8
1.5
Peucedanum cervariifolium
55.6
P. officinale
29.8
27
P. petiolare
15.7
45.8
7.9
9.3
P. ruthenicum
22.2
3.3
9.9
8.2
P. scoparium
73
Physospermum cornubiense
32
27.5
Pimpinella affinis
17
20.5
45.3
0.7
0.4
P. anisactis
48.6
P. anisum
89.1
P. aurea
2
3.8
23
45
0.9
P. barbata
0.9
51.5
2.7
10.8
26.1
P. deverroides
4.2
54.1
1.5
6.9
1.3
P. eriocarpa
63.4
70.4
P. kotschyana
1.9
15.5
58.6
P. olivierioides
32.4
P. puberula
76.2
12.5
P. saxifraga
41
Table 67 . contd…
88 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Plant
OM (%)
HM (%)
OS (%)
HS (%)
PhP (%)
Others (%)
P. tragioides
29
49.1
2.9
P. tragium
5.3
23
32.7
3.4
Prangos acaulis
37.4
6
1
22
P. asperula
52.4
4.4
6.1
P. crenata
48.8
17.6
7.9
P. ferulacea
62.8
1.6
0.8
0.5
P. latiloba
4.85
33.7
11.2
17.7
P. pabularia
18.5
10.1
P. scabra
21.2
34.2
P. uloptera
1.1
22.3
13.9
14.4
11.2
2.9
Psammogeton canescens
13.1
25.5
26.3
Pycnocycla aucheriana
3.3
41.9
7.7
15.4
P. bashagardiana
33
33.9
P. caespitosa
12
20.3
13.2
P. flabellifolia
82.5
P. musiformis
53.5
10.7
P. nodiflora
45.4
9.8
3.8
P. spinosa
6.3
16.9
1.8
19.6
3.6
Rhabdo sciadium aucheri
40.5
18.5
R. petiolare
48.6
R. straussi i
70.1
Scaligera assyria ca
13.5
36.9
20.9
Semenovia dichotoma
10.9
25.5
S. frigida
30
19.8
5.5
S. suffruticosa
24.6
18.9
S. tragioides
23.8
27
6.2
Serotinocarpum insignis
70.1
Seseli libanotis
35.5
S. tortuosum
63.7
Smyrniopsis aucheri
26.1
23.1
Smyrnium cordifo lium
61.5
4.6
10.8
Stenotaenia nudtcaulis
10.3
25.3
15.7
Tetrataenium lasiopetalum
35.8
11
Thecocarpus meifolious
5.1
36.3
3.5
2.7
Torilis arvensis
47.2
T. leptophylla
15.7
19.3
Xanthog alum purp urascens
11.4
10
2.8
5.6
2.6
Zeravschania membranacea
5.9
53.1
1
2.6
Z. pastinacifolia
37.3
10.7
34.6
Zosima absinthifolia
1.5
4.6
2.9
13.3
43
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 89
Table 68. Studied Irania n species belo nging to the A piaceae family.
No.
Species
Endemic
No.
Species
Endemic
1
Alococa rpum eria nthum
*
73
G. platycarpum
-
2
Amirkab iria odora tissima
*
74
Heptaptera anisoptera
-
3
Ammi copticum
-
75
Heracleum persicum
-
4
A. visnaga
-
76
H. rechingeri
*
5
Anethum graveolen s
-
77
Hippomarathrum microcarpum
-
6
Angelica urumiensis
*
78
Johrenia ramosissim a
*
7
Apium graveolens
-
79
Johreniopsis seseloides
-
8
Artedia sq uamata
-
80
Kelussia odoratissima
*
9
Astrodaucus orientalis
-
81
Laser trilobum
-
10
A. persicus
*
82
Leutea elbursensis
*
11
Azilia eryngioides
*
83
L. glaucopruinosa
*
12
Bunium caroides
-
84
Levisticum officinale
-
13
B. cylindricum
-
85
Lomatopodium khorassanicum
-
14
B. elegans
-
86
L. staurophyllu m
*
15
B. persicum
-
87
Malabaila secacul
-
16
B. rectangulum
-
88
Mozaffariania insignis
*
17
B. cylindricum
-
89
Oliveria decumbens
-
18
Bupleurum exaltatum
-
90
Opsicarpium
-
19
Carum carvi
-
91
Petroselinum hortense
-
20
C. coptic um
-
92
Peucedanum cervariifolium
-
21
Chaerop hyllum crinitum
-
93
P. scoparium
-
22
C. macrop odum
-
94
P. petiolare
-
23
Conium maculatum
-
95
P. officinale
-
24
Coriandrum sativum
-
96
P. ruthenicum
-
25
Cuminum cyminum
-
97
Physospermum cornubiense
-
26
Daucus carota
-
98
Pimpinella affinis
-
27
Dicyclophora persica
*
99
P. anisactis
*
28
Diplotaenia cachrydifolia
-
100
P. anisum
-
29
D. damavandica
*
101
P. aurea
-
30
Dorema ammoniacum
*
102
P. barbata
-
31
D. aucheri
*
103
P. deverroides
*
32
Ducrosia anethifolia
-
104
P. eriocarpa
-
33
D. assadii
*
105
P. puberula
-
34
Echinophora cinerea
*
106
P. saxifraga
-
35
E. platyloba
*
107
P. tragioides
*
36
E. sibthorpiana
-
108
P. tragium
-
37
Eryngium billardieri
-
109
Prangos acaulis
-
38
E. bungei
-
110
P. asperula
-
39
E. caeruleum
-
111
P. ferulacea
-
Table 68 . contd…
90 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
No.
Species
Endemic
No.
Species
Endemic
40
E. platyloba
-
112
P. latiloba
-
41
E. caeruleum
-
113
P. scabra
-
42
Falcaria falcarioides
-
114
P. uloptera
-
43
F. vulgaris
-
115
Psammogeton canescens
-
44
Ferula assa-foetida
*
116
Pycnocycla aucheriana
-
45
F. badrakema
-
117
P. flabellifolia
-
46
F. behboudiana
*
118
P. musiformis
*
47
F. diversivittata
-
119
P. nodiflora
-
48
F. flabelliloba
*
120
P. spinosa
-
49
F. foetida
-
121
P. spinosa var. spinosa
*
50
F. galbaniflua
-
122
Rhabdo sciadium aucheri
*
51
F. gummosa
-
123
R. petiolare
*
52
F. hezarlalehzarica
*
124
R. straussii
*
53
F. hirtella
*
125
Scaligera assyriaca
-
54
F. latisecta
*
126
Semenovia dichotoma
*
55
F. macrocolea
*
127
S. suffruticosa
*
56
F. microcolea
*
128
S. tragioides
-
57
F. oopoda
-
129
Serotinocarpum insignis
*
58
F. orientalis
-
130
Seseli libanotis
-
59
F. ovina
-
131
S. tortuosum
*
60
F. persica
*
132
Smyrniopsis aucheri
-
61
F. stenocarpa
*
133
Smyrnium cordifolium
-
62
F. szowitsiana
-
134
Stenotaenia nudtc aulis
*
63
Ferulago angula ta
-
135
Tetrataenium lasiopetalum
-
64
F. bernardii
-
136
Torilis arvensis
-
65
F. carduchorum
*
137
Xanthog alum purpurascens
-
66
F. contracta
*
138
Zeravschania membranacea
*
67
F. phialocarpa
*
139
Z. pastinacifo lia
*
68
F. subvelutina
-
140
Zosima absinthifolia
-
69
Foeniculum vulgare
-
141
Z. radians
*
70
Froriepia subpinnata
-
71
Fuernrohria setifolia
-
72
Grammosciadium scabrid um
-
Table 69. The basionyms of the studied Iranian species belonging to the Apiaceae family.
Basionym
Species
No.
Basionym
Species
No.
Ferula seseloides C.A.Mey.
Johreniopsis seseloides
(C.A.Mey.) Pimenov
27
Cachrys eriantha DC.
Alococarpum erianthum (DC.) H. Riedl
& Kuber
1
Laserpitium trilob um L.
Laser trilobu m (L.) Borkh. ex
Gaertn
28
Daucus visnaga L.
Ammi visnaga (L.) Drude
2
Table 69 . contd…
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 91
Basionym
Species
No.
Basionym
Species
No.
Peucedanum glaucopruinosum
Rech.f.
Leutea glauco pruinosa
(Rech.f.) Akhani & Salimian
29
Caucalis orienta lis L.
Astrodaucus orientalis (L.) Drude
3
Seseli staurophyllum Rech.f.
Lomatopodiu m staurophyllum
(Rech. f.) Rech. f.
30
Daucus persicus Boiss.
Astrodaucus persicus (Boiss.) Drude
4
Tordylium secacul Mill.
Malabaila secacul (Mill.)
Boiss.
31
Prangos eryngioides Pau
Azilia ryngioides (Pau) Hedge &
Lamond
5
Ferula petiolaris DC.
Peucedanum petiolare (DC.)
Boiss.
32
Elwendia caroides Boiss.
Bunium caroides (Boiss.) Hausskn. ex
Bornm.
6
Johrenia scoparia Boiss.
Peucedanum scoparium
(Boiss.) Boiss.
33
Carum cylindricu m Boiss. &
Hohen.
Bunium cylindricum (Boiss. & Hohen.)
Drude
7
Ligusticum cornubiense L.
Physospermum cornubiense
(L.) DC.
34
Carum ele gans Fen zl
Bunium elegans (Fenzl) Freyn
8
Ptychotis barbata DC.
Pimpinella barbata (DC.)
Boiss.
35
Carum pe rsicum Boiss .
Bunium persicum (Boiss.) B. Fedtsch
9
Reutera deverroides Boiss.
Pimpinella deverroides Boiss
(Boiss.)
36
Ammi copticum L.
Carum co pticum (L.) C. B. Clarke in
Benth. & Hook.f .
10
Ptychotis puberula DC.
Pimpinella puberula (DC.)
Boiss.
37
Myrrhis clavata Spreng.
Chaerop hyllum macrospermum
(Spreng.) Fisch. & C.A. Mey.
11
Reutera tragioides Boiss.
Pimpinella tragioides (Boiss.)
Benth. & Hook. f. ex Drude
38
Daucus carota v ar. sativus Hoffm.
Daucus carota L. subsp. sativus
(Hoffm.) Arcang.
12
Cachrys a caulis DC.
Prangos acaulis (DC.) Bornm.
39
Zosima aneth ifolia DC.
Ducrosia anethifolia (DC.) Boiss.
13
Prangos haussknechtii Boiss.
Prangos asperula Boiss. subsp.
haussknechtii (Boiss.) Herrnst.
& Heyn
40
Ferulago cinerea Boiss.
Echinophora cinerea (Boiss.) Hedge &
Lamond
14
Anisopleura crenata Fenzl
Prangos crenata (Fenzl.) Hiroe
41
Pimpinella falcarioides Bornm. &
Wolff
Falcaria falcarioides (Bornm.&Wolff)
Wolff
15
Laserpitium ferula ceum L.
Prangos ferulacea (L.) Lindl.
42
Smyrniopsis behboudiana Rech.fil.
& Esfand.
Ferula behboudiana (Rech. f. & Es-
fand.) Chamberlain
16
Athamantha canescens DC.
Psammogeton canescens (DC.)
Vatke
43
Scorodosma foetidum Bunge
Ferula foetida (Bunge) Regel
17
Echinophora flabellifolia
Boiss.
Pycnocycla flabellifolia (Boiss.)
Boiss.
44
Peucedanum macrocoleum Boiss.
Ferula macrocolea (Boiss.) Boiss.
18
Zosima dicho toma Boiss.
Semenovia dichotoma (Boiss.)
Manden.
45
Peucedanum microcoleum Boiss.
Ferula microcolea (Boiss.) Boiss.
19
Zozimia frigida Boiss. &
Hausskn.
Semenovia frigida (Boiss. &
Hausskn.) Manden.
46
Peucedanum oopodum Boiss. &
Buhse
Ferula oopoda (Boiss. & Buhse) Boiss.
20
Zosima suffrutico sa Freyn &
Bornm.
Semenovia suffrutico sa (Freyn
&. Bornm.) Manden.
47
Peucedanum ovinum Boiss.
Ferula ovina (Boiss.) Boiss.
21
Zosima tragioides Boiss.
Semenovia tragioides (Boiss.)
Manden.
48
Ferula angulata Schltdl.
Ferulago angulata (Schlecht.)Bo iss.
22
Heracleum lasiopetalum Boiss.
Tetrataenium lasiopetalum
(Boiss.) Manden.
49
Uloptera macrocarpa Fenzl
Ferulago macrocarpa (Fenzl) Boiss.
23
Caucalis arvensis Huds.
Torilis arvensis (Huds.) Link.
50
Bupleurum subpinnatum Ledeb.
Froriepia subpinnata (Ledeb.) Baill.
24
Caucalis leptoph ylla L.
Torilis leptoph ylla (L.)
Reichen b.
51
Prangos anisoptera DC.
Heptaptera anisoptera (DC.) Tutin
25
Peucedanum membranaceum
Boiss.
Zeravschania membranacea
(Boiss.) Pimenov
52
Cachrys microcarp a M.Bieb.
Hippomarathrum microcarpum (M.
Bieb.) B. Fedtsch.
26
92 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
Table 70. The biological activities of the most important compounds identified in Iranian endemic and native Apiaceae.
Compd. Class
Compd. Name
Activity
Ref.
Anti-inflammatory
341
Carvon e
Anti-bacterial, anti-cancer
342
Anti-bacterial
343
Anti-rhinosinusitis
344
1,8-Cineol
Anti-virus
345
Neuroprotective
346
Anti-tumor and anti-inflammatory
347
Anti-protozoal
348
Anti-microbial
349
Antihyperlipidemic
350
Antinoceptive and analgesic
350
Linalool
Anxiolytic, antidepressant, and neuroprotective
350
4-Terpineol
Anti-cancer
351
Antihypertensive
352
Anti-oxidant
352
Anticancer
352
Anti-nociceptive
352
Anti-ulcer
352
Anti-convulsant and sedative
352
Anti-bronchitis
353
Oxygenated Monoterpenes
α-Terpineol
Anti-bacterial, anti-cancer
342
Wound healing
353
Carvacr ol
Anti- microbial
354
Wound healing
353
Anti- bacteria l
355
Aromatic Terpenoids
Thymol
Anti-cancer
356
Anti-inflammatory and an tinociceptive
357
Antioxidant
358
Anti-microbial, anti-fungal activity, antihelmintic and insecticidal
358
Secretolytic and expectorant
358
Spasmolytic
358
Estrogenic
358
Reprodu ctive
358
Gastroprotective
358
trans-Anethol
Sedative
358
Anti-inflammatory
359
Phenylpropan oids
Dillapiol
Anti-microbial
360
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 93
CONSENT FOR PUBLICATION
Not applicable.
FUNDING
None.
CONFLICT OF INTEREST
The au th ors declare no conflict of interest, financial or oth-
erwis e.
ACKNOWLEDGEMENTS
The authors would like to thank the authorities in Mashhad
University of Medical Sciences (MUMS) Research council, School
of pharmacy, Pharmaceutical Research Center, Biotechnology Re-
search C enter of M ashhad University of Medical Sciences (MUMS)
for their supports. They also wish to express sincere gratitude to the
following people whom they help in providing some of the refer-
ences:
Dr. M. Abedi (Tarbiat Modares University Tehran, Iran)
Dr. H. Akhlaghi (Azad University, Sabzevar Branch, Iran)
Dr. Gh. Asghari (Faculty of Pharmacy, Isfahan University of
Medical Sciences, Shiraz, Iran)
Prof. A. Ashnagar (Pasteur Institute of Iran, Tehran, Iran)
Dr. A. Delazar (School of Pharmacy, Tabriz University of
Medical Sciences, Tabriz, Iran)
Dr. A.H. Jamshidi (School of Traditional Medicine, Iran Uni-
versity of Medical Sciences, Tehran, Iran)
Dr. K. Javidnia (Faculty of Pharmacy, Shiraz University of
Medical Sciences, Shiraz, Iran)
Dr. A. Mohagheghzadeh (Faculty of Pharmacy, Shiraz Univer-
sity of Medical Sciences, Shiraz, Iran )
Dr. A. Mostafavi (Department of Chemistry, Shahid Bahonar
University of Kerman, Kerman, Iran)
Dr. B. Nickavar (School of Pharmacy, Shahid Beheshti Univer-
sity of Medical Sciences, Tehran, Iran)
Dr. I. Rasooli ( Department of Biology, Shahed University of
Medical Sciences, Tehran, Iran)
Prof. A. Rustaiyan (Islamic Azad University, Tehran, Iran)
Dr. S. E. Sajjadi (School of Pharmacy and Pharmaceutical Sci-
ences, Isfahan University of M edical Sciences, Isfahan, Iran)
Dr. A. Sonboli (Medicinal Plants Research Centre, Shahid Be-
heshti University, Tehran, Iran)
Dr. M. H. Tayarani-Najaran (University of Hertfordshire, Hat-
field, Hertfordshire United Kingdom)
Dr. N. Yassa (School of Pharmacy, Tehran University of Medi-
cal Sciences, Tehran, Iran)
REFERENCES
[1] Emami, S.A.; Aghazari, F. Les Phanerogames ende miques de la flo re d’Iran;
Tehran University Publication: Téhran, 2011, pp. 313-352.
[2] Ghahreman, A.; Attar, F. Biodiversity of Plant Species in Iran; Tehran Un i-
versity Publication: Tehran, 1999, pp. 375-378 .
[3] Judd, W.S.; Campbell, C.S.; K ellogg, E.A.; Stevens, P.F.; Donoghue, M.J.
Plant Systematics, A Phylogenetic Approach, 3rd ed.; Sinauer Associates, Inc.
Publisher: Sunderland, 2008, pp. 495 -499.
[4] Mabberley, D.J. The Plant-Book, 3rd ed.; Cambridge University Press: Cam-
bridge, 2008, pp. 31 37, 4 6, 55, 69, 78, 84, 128, 155, 171 , 212, 217 , 237, 257,
270, 279, 286, 291, 296, 317, 332, 335, 341, 346, 347, 401, 408, 444, 468,
487, 488, 515, 561, 600, 652, 698, 719, 733, 791, 802, 863, 884-885, 913,
922, 924.
[5] Simpson, M.G. Plant Systematics; Academic Press: Cambridge, 2006, pp.
322.
[6] Evans, W.C. Trease and Evans Pharmacognosy, 16th ed.; Elsevier: Edin-
burgh, 2009, pp. 34.
[7] Mozaffarian, V. Flora of Iran, No. 54 (Umbelliferae); Research Institute of
Forests and Rangelands: Tehran, 2007, p p. 33-53, 58-89, 91-93, 100 -123,
125-127, 137-144, 152-166, 175-190, 199-203, 207-211, 220-240, 242-247,
254-272, 277-280, 296-305, 308-310, 312-341, 346-348, 348-351, 360-425,
431-447, 451-460, 463-497, 501-506.
[8] https://sco.wikipedia.org/wiki/Leet_o_ceeties_in_Iran
[9] Rahmani, B.; Shiraz, N.Z,; Masna badi, N.; Masoud i, S.; Mon fared, A.;
Larijani, K.; Rustaiyan, A. Volatile constituents of Alococarpum erianthum
(DC.) H. Riedl & Kuber., Ferula ovina (Boiss.) Boiss. and Pimpinella affinis
Ledeb. Three u mbelliferae herbs growing wild in Iran. J. Essent. Oil Res.,
2008, 20(3), 232-235.
http://dx.doi.org/10.1080/10412905.2008.9700000
[10] Asgary, S.; Naderi, G.H.; Jafariyan, A.; Askary, N.; Behagh, A.R. Fib ri-
nolytic activity of Amirkabiria odoratissima Mozaffarian. Faslnamah-i Gi-
yahan-i Daruyi, 2005, 4(13) , 19-25.
[11] Davis, P.H. Flora of Turkey and the East Aegean Islands; Edinburgh Univer-
sity Press: Edinburgh, 1972, Vol. 4, pp. 292-, 306, 311, 312, 318 , 330, 331,
333-334, 337, 342, 347, 352, 367, 376, 377, 378, 380, 382, 390-391, 420,
421, 423, 425, 426, 427, 430, 431, 432, 434, 440, 453, 473, 484, 488, 502,
503, 513, 518, 523-524, 531, 536-537.
http://dx.doi.org/10.2307/280 6606
[12] Hedge, I.C.; Lamond, J.M.; Rechinger, K.H.; Alava, R.; Chamberlin, D.F.;
Engstrand, L.; Herrnstadt, I.; Heyn, C.C.; Leute, G.H.; Mandenova, I.; Peev,
D.; Pimenov, M.G.; Snogerup , S.; Tam amschian, S.G. Flora Iranica.
Reching er, K.H. (ed.) No. 162 (Umbell iferae).Akade mische Druck-u. Ver-
lagsantalt: Graz, , 1987, p. 45-46, 67, 68 , 86, 96, 72 -73, 101-102, 112, 121,
136, 140-141, 160-163, 170, 190-191, 209, 217, 263, 297, 298, 300, 306,
309, 310, 311, 345-347, 349, 355, 372, 379, 387-388, 427-428, 439, 442,
445, 454, 457-458, 468, 473-474, 479-480, 492, 502, 507, 516, 519, 522,
523..
[13] Naseri, N.G.; Ashnagar, A.; Nouzari, M. Isolation and identification of the
major chemical components of the medicinal plant Trachyspermum co pticum
(Ammi copticum) grown in Fars Prov. of Iran. Asian J. Chem., 2007, 19(2),
954-960.
[14] Rasooli, I.; Fak oor, M.H.; Yadegarinia, D.; Gachk ar, L.; Allameh, A.;
Rezaei, M .B. Antimycotoxigeni c chara cteristics of Rosmarinus officinalis
and Trachysp ermum copticum L. essential oils. Int. J. Food Microbiol., 2008,
122(1-2), 135-139.
http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.048 PMID: 18190993
[15] Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial
activity of Satureja hortensis and Trachyspermum copticum essential oil.
Iran. J. Microbiol., 2011, 3(4), 194-200.
PMID: 2253008 8
[16] Akhlaghi, H.; Mahdavi, B.; Rezaei, H. Character ization of chemical compo-
sition and antioxidan t proper ties of Trachyspermu m ammi seed as a potential
medicinal plant. J. Chem. Health Risks, 2014, 4(4), 9-16.
http://dx.doi.org/10.22034/JCHR.2018.544079
[17] Vitali, L.A.; Beghelli, D.; Nya, P.C.B.; Bistoni, O.; Cappellacci, L. ; Dami-
ano, S.; Lupidi, G.; Maggi, F.; Orsomando, G.; Papa, F.; Petrelli, D.; Petrelli,
R.; Quassinti, L .; So rci, L.; Majd Zadeh, M.; Brammuci, M. Div erse bi ologi-
cal effects of the essential oil from Iranian Tra chyspermum ammi. Arab. J.
Chem., 2016, 9(6), 775-786.
http://dx.doi.org/10.1016/j.arabjc.2015.06.002
[18] Mohammadpour, G.; Tahmasbpour, R.; Rahmani, A.; Esfahani, A.A. Chemi-
cal compounds, in vitro antitumor and antibacterial activities of Trachysper-
mum copticum L. essential oil. Iran. J. Pharmacol. Ther., 2018, 16, 1-6.
[19] Rasooli, I.; Tag hizade h, M.; Astaneh , S.D.A.; Reza ei, M.B.; Ja imand, K.
Phytobiolog ical properties of Ammi visnaga L. and Lavandula angustifolia
Mill. essential oils. Int. J. Essen. Oil Ther., 2007, 1(2), 72-78.
[20] Yazdani, D.; Jamshidi, A.H.; Rezazadeh, S.; Mojab, F.; Shahnazi, S. Vari-
aion of essential oil percentage and constituent at different growth stages of
dill (Anethum graveolens L.). Faslnamah-i Giyahan-i Daruyi, 2004, 11 , 38-
41.
[21] Golezani, K.G.; Andalibi, B.; Salmasi, S.Z.; Saba, J. Effects of water stress
during vegetative and reproductive stages on seed yield and essential oil con-
tent of dill (Anethum graveolens L.). J. Food Agric. Environ., 2008, 6(3-4),
282-284.
[22] Rafii, F.; Shahve rdi, A.R. Compar ison o f essential oils fro m three plants for
enhancement of antimicrobial activity of nitrofurantoin against enterobacte-
ria. Chemotherapy, 2007, 53(1), 21-25.
http://dx.doi.org/10.1159/000098246 PMID: 17192709
[23] Sefidkon, F. Essential oil composition of the Anethums graveolens L. Iran
Med. Arom. Plant Res., 2001, 8, 45-62.
[24] Ayoughi, F.; Barzeg ar, M.; Shahri, M.A. NaghdiBadi, H. Antioxidant effect
of dill (Anethum g raveolens Boiss.) oil in crude soybean oil and comparison
with ch emical an tioxidants. Faslnamah-i Giyahan-i Daruyi, 2009, 8(2), 71-
83.
94 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
[25] Taher, M.; Ghanadi, A.R.; Karimian, R. Effects of volatile oil extracts of
Anethum graveolens L. and Apium grav eolen s L. seeds o n activity of liver
enzymes in rat. J. Qazvin Uni. Medic. Sci., 2007, 11(43), 8-12.
[26] Mozaffarian, V. Two new species and two new records of Apiaceae from
Iran. Rostaniha, 2013, 14(1), 36-42.
http://dx.doi.org/10.22092/BOTANY.2013.101307
[27] Mohammadi, M.; Yousefi, M.; Habibi, Z. Essential oils from stem and leaves
of Angelica urumiensis (Mozaffarian) from Iran. Nat. Pro d. Re s., 2010,
24(14) , 1347-1351.
http://dx.doi.org/10.1080/14786410903421438 PMID: 20803379
[28] Rowshan, V.; Hat ami, A.; Bahm anzadegan, A.; Yazd ani, M. Chemical
constituents of the essential oil from aerial parts and fruit of An isosciad ium
orientale. Nat. Prod . Commun ., 2012, 7(1), 79-80.
http://dx.doi.org/10.1177/1934578X1200700127 PMID: 22428252
[29] Habibi, Z.; Aghaie, H.R.; Ghahremanzadeh, R.; Masoudi, S.; Rustaiyan, A.
Compo sition of the essential oils of Ferula szowitsiana DC., Artedia squa-
mata L. and Rhabdosciadium petiolare Boiss. & Hausskn. ex Boiss. thre e
umbelliferae herbs growing wild in Iran. J. Essent. Oil Res., 2006, 18(5),
503-505.
http://dx.doi.org /10.1080/10412905.2006.9699153
[30] Mirza, M.; Nik, Z.B.; Dini, M. Chemical composition of the essential oils of
Astrodaucus orientalis (L.) Drude leaves and seeds. Flav. Frags. J., 2003,
18(3), 2 05-206.
http://dx.doi.org/10.1002/ffj.1184
[31] Mazloomifar, H.; Bigdeli, M.; Tehrani, M.S.; Rustaiyan, A.; Masoudi, S.
Essential oil of Astrodaucus orientalis (L.). Drude. J. Essent. Oil. Res., 2003,
15(4), 2 54-255.
http://dx.doi.org/10.1080/10412905.2003.9712133
[32] Nazemiyeh, H.; Razavi, S.M.; Delazar, A .; Asnaashar i, S.; Khoi, N.S.; Dan i-
ali, S.; Naharand, L.; Sarker, S.D. Distribution profile of volatile constituents
in different parts of Astrodaucus orientalis (L.). Drude. Rec. Nat. Prod.,
2009, 3(3), 126-130.
[33] Masoudi, A.; Fathollahi, R.; Taherkhani, M.; Valadkhani, Z.; Baradari, T.;
Cherag hi, M.; Rustaiyan, A. Volatile constituents of the aerial parts of Torilis
leptophylla (L.) Reichenb., Thecocarpus meifolious Boiss., leaves of Xan-
thogalum purpurascens Ave. Lall. and flowers of Astrodaucus orieintalis
(L.) Drude. four Umbelliferae herbs from Iran. J. Essent. Oil Bear. Plan t.,
2013, 15(6), 934-942.
http://dx.doi.org/10.1080/0972060X.2012.10662596
[34] Taherkhani, M.; Masoudi, S.; Rustaiyan, A. Volatile constituents of the aerial
parts of Torilis leptophylla (L.) Reichenb., Thecoca rpus meifolious Boiss.,
leaves of Xanthoga lum purpurascens Ave. Lall. and flowers of Astrodaucus
orieintalis (L.) Drude. four Umbelliferae herbs from Iran. Asian J. Chem.,
2012, 24(4), 1596-1600.
http://dx.doi.org/10.1080/0972060X.2012.10662596
[35] Bazargan i, Y.T.; Almasirad , A.; Amin, G.; Shafiee , A. Ch emical compo si-
tion of the essential o ils of Astrodaucus persicus (Boiss.) Drude root,
stem/leav es and flowers/fruits. Flav. Frags. J., 2006, 21(2), 294-296.
http://dx.doi.org/10.1002/ffj.1589
[36] Bigdeli, M.; Rustaiyan, A.; Ameri, N.; Masoudi, S. Essential oil of Astro-
daucus persicus (Boiss.) Drude. from Iran. J. Essent. Oil Res ., 2004, 16(5),
420-421.
http://dx.doi.org/10.1080/10412905.2004.9698760
[37] Goodarzi, S.; Hadjiakhoondi, A.; Yassa, N.; Khanavi, M.; Tofighi, Z. Essen-
tial oils chem ical compo sition, antioxidant activities and total ph enols of As-
trodaucus persicus. Iran. J. Basic Med. Sci., 2016, 19(2), 159 -165.
PMID: 2708146 0
[38] Masoudi, S.; Ameri, N.; Rustaiyan, A.; Moradalizadeh, M.; Azar, P.A .
Volatile constituents o f three u mbelliferae herbs: Azilia eryngioedes (Pau)
Hedge et Lamond, La ser trilobum (L.) borkh. and Falcaria falcarloides
(Bornm. et Wolff) growing wild in Iran. J. Essent. Oil Res., 2005, 17(1), 98-
100.
http://dx.doi.org/10.1080/10412905 .2005.9698843
[39] Sefidkon, F.; Abdoli, M. Essential oil composition of Azilia Eryngiodes
(Pau) Hedge et Lamond from Iran. J. Essent. Oil Res., 2004, 16(2), 103 -104.
http://dx.doi.org/10.1080/10412905.2004.9698662
[40] Jassbi, A.R.; Mehrdad, M.; Soleim ani, M.; Mirzaeian, M.; Sonboli, A.
Chemica l composition of the essential oils of Bunium elegans and Bunium
caroides. Chem. Nat. Compd ., 2005, 41(4), 415-417.
http://dx.doi.org/10.1007/s10600-005-0165-0
[41] Masoudi, S.; Monfared, A.; Rustaiyan, A .; Chalabian, F. Composition and
antibacterial activity of the essential oils of Semenovia dichotoma (Boiss.)
manden., Johreniopsis seseloides (C. A. Mey.) m. Pimen. and Bunium cylin-
dricum (Boiss. et Hohen.) drude., three umbelliferae herbs growing wild in
Iran. J. Essent. Oil Res., 2005, 17(6), 691-694.
http://dx.doi.org/10.1080/10412905.2005.9699034
[42] Babakanlou, P.; Mirza, M.; Sefidkon , F.; Ahmadi, L.; Barazandeh , M.M .;
Askari, F. Chemical composition of the essential oils of Bunium persicum
(Boiss.). Med. Arom. Pla nt Res., 1999, 1, 28-37.
[43] Salehi, P.; Moham madi, F.; Asghari, B. Seed essentia l oil analysis of Bunium
persicum by hydrodistillation- headspace solvent microextraction. Chem.
Nat. Comp d., 2008, 44(1), 111-11 3.
http://dx.doi.org/10.1007/s10600-008-0033-9
[44] Foroumad i, A.; As adipo ur, A.; Arab pour, F.; A manza deh, Y. Composition o f
the essential oil of Bunium persicum (Boiss.) B. Fedtsch. from Iran. J. Es-
sent. Oil Res., 2002, 14(3), 161-16 2.
http://dx.doi.org/10.1080/10412905.2002.9699810
[45] Azizi, M.; Dav areenejad, G.; Bos, R.; Woerdenbag, H.J.; Kayser, O. Essen-
tial o il co ntent and constituen ts of black zira (Buni um pers icum [Boiss.] B.
Fedtsch.) from Iran during field cultivation (domestication). J. Essent. Oil
Res., 2009, 21(1), 78-82.
http://dx.doi.org/10.1080/10412905.2009.97001 17
[46] Omidbaigi, R.; Arvin, M.J. Effect of growing locations on the essential oil
content and chemical compositions of Bunium persicum Boiss. wild growing
in Iran. J. Essent. Oil Bear. Plants, 2009, 12(1), 34-40.
http://dx.doi.org/10.1080/0972060X.2009 .10643 688
[47] Shahsavari, N.; Bar zegar, M.; Sah ari, M.A.; Naghd ibadi, H. Antiox idant
activity and chemical characterization of essential oil of Bunium persicum.
Plant Foods Hum. Nutr., 2008, 63(4), 183-188.
http://dx.doi.org/10.1007/s11130-008-0091-y PMID: 18810640
[48] Pourmortazavi, S.M.; Ghadiri, M.; Hajimirsadeg hi, S.S. Supercritical fluid
extraction of volatile components from Bunium persicum Boiss. (black
cumin) and Mesp ilus germanica L. (medlar) seeds. J. Food Compos. Anal.,
2005, 18(5), 439-446.
http://dx.doi.org/10.1016/j.jfca.2004.01.003
[49] Pourmortazavi, S.M.; Ghadiri, M.; Hajimirsad egi, S.S. Supercritical fluid
extraction of volatile components fro m Bunium persicum Boiss. (Black
Cumin) an d Mesp ilus germa nica L. (Medlar) seeds. J. Food Compos. Anal.,
2004, 17(2), 439-446.
http://dx.doi.org/10.1016/j.jfca.2004.01.003
[50] Oroujalian, F.; Kermanshahi, R.K.; Azizi, M.; Basami, M.R. Ph ytochemical
composition of the essential o ils from three Apiaceae species and their anti-
bacterial effects on food-borne pathogens. Food Chem., 2010, 120(3), 765-
770.
http://dx.doi.org/10.1016/j.foodchem.2009.11.008
[51] Oroujalian, F.; Kermanshahi, R.K.; Azizi, M.; Basami, M.R. Synergistic
antibacterial activity of the essential oils from three medicinal plants against
some importan t f ood-born e pathogens by microd ilution m ethod. Iran Med.
Arom. Plant Res., 2010, 26(2), 133 -146.
[52] Moghtader, M.; Mansori, A.I.; Salari, H.; Farahmand, A. Chemical composi-
tion and antimicrobial activity of th e essential oil of Bunium persicum Boiss.
seed. Iran Med. Arom. Plant Res., 2009, 25(1), 20-28.
[53] Hajhashemi, V.; Sajjadi, S.E.; Zomorodkia, M. Antinociceptive and anti-
inflammatory activities of Bunium persicum essential oil, hydroalcoholic and
polyphenolic extracts in animal models. Pharm. Biol., 2011, 49(2), 146-151.
http://dx.doi.org/10.3109/13880209.2010.504966 PMID: 20942602
[54] Chizzola, R.; Saeid nejad, A.H.; Azizi, M.; Oroo jalian, F.; Mardani, H.
Bunium persicum: variability in essential oil and antioxidants activity of
fruits from different Iranian wild populations. Genet. Resour. Crop Evol.,
2014, 61, 1621-1631.
http://dx.doi.org/10.1007/s10722-014-0158-6
[55] Sefidkon, F.; Bahmanzadegan, A.; Golipo ur, M.; Mozaffaria n, V.; Me shki-
zadeh, S. Identification and comparison of chemical composition of the es-
sential oi ls of Bunium cylindricum (Boiss. & Hohen.) Durde an d Bunium rec-
tangulum Boiss. & Hausskn. Iran Med. Arom. Plant Res., 2010, 26(3 ), 30 0-
316.
[56] Sajjadi, S.E. Chem ical composition of the essential oil o f Bupleurum exal-
tatum M. B. growing wild in Iran. J. Essent. Oil Bear. Plan ts, 2008, 11(6),
638-642.
http://dx.doi.org/10.1080/0972060X.2008.10643680
[57] Abyaneh, M.R.; Ghahfarokhi, M.S.; Rezaee, M.B.; Jaim and, K.; Alinezhad,
S.; Saber i, R.; Yoshinari, T. Chemical composition and antiaflatoxigenic ac-
tivity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential
oils. Food Control, 2009, 20, 1018-1024.
http://dx.doi.org/10.1016/j.foodcont.2008.12.007
[58] Heravi, M.J.; Zekavat, B.; Sereshti, H. Use of gas chromatography-mass
spectrometry combined with resolution methods to characterize the essential
oil components of Iranian cumin and caraway. J. Chromatogr. A, 2007,
1143(1-2), 215-226.
http://dx.doi.org/10.1016/j.chroma.2007.01.042 PMID: 17258753
[59] Ahmadi, L. Composition of the essential oil from Carum carvi grown in
Ardebil. Iran Med. Arom. Plant Res., 2001, 8, 121-133.
[60] Behravan , J.; Ramezani, M.; Hassanzade h, M.K.; Ebadi, S. Eva luation of
antibacterial activity of the essential oils of Zata ria multiflora, Carum copti-
cum and Thymus vulgaris by a thin layer chromatography-bioautography
method. J. Essent. Oil Bear. Plants, 2007, 10(3), 259-264.
http://dx.doi.org/10.1080/0972060X.2007.10643551
[61] Mohagheghzadeh, A.; Faridi, P.; Ghasemi, Y. Carum coptic um Benth. &
Hook., essential oil chemotypes. Food Chem., 2007, 100(3), 1217-1219.
http://dx.doi.org/10.1016/j.foodchem.2005.12.002
[62] Khajeh, M.; Yam ini, Y.; Sefidkon, F.; Bahramifar, N. Comparison of essen-
tial oil comp osition of Ca rum co pticum obtained by supercritical carbon di-
oxide extraction and hydrodistillation methods. Food Chem., 2004, 86(4),
587-591.
http://dx.doi.org/10.1016/j.foodchem.2003.09.041
[63] Sahaf, B.Z.; Moharram ipour, S.; Meshkatalsadat, M.H. Chemical constitu-
ents and fumigant toxicity of essential oil from Carum cop ticum against two
stored p roduct beetles. Insect Sci., 2007, 14(3), 2 13-218.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 95
http://dx.doi.org/10.1111/j.1744-7917.200 7.001 46.x
[64] Masoudi, S.; Rustaiyan, A.; Ameri, N.; Monfared, A.; Komeilizadeh, H.;
Kamalinejad, M.; Jami-Roodi, J. Volatile o ils o f Ca rum cop ticum (L.) C. B.
Clarke in Benth. et Hook. and Semenovia tragioides (Boiss.) Manden. from
Iran. J. Essent. Oil Res., 2002, 14(4), 288-289.
http://dx.doi.org/10.1080/10412905.2002.9699857
[65] Davazdahemami, S.; Sefidkon, F.; Jahansooz, M.R.; Mazaheri, D. Evaluation
of water salinity effects on yield and essential oil content and composition of
Carum co pticum L. J. Med. Aromat. Plants, 2010, 25(4) , 504-512.
[66] Lockwood, G.B.; Asghari, G.; Hakimi, B. Production of essential oil con-
stituents by cultured cells of Carum coptic um L. Flav. Frags. J., 2002, 17(6),
456-458.
http://dx.doi.org/10.1002/ffj.1129
[67] Zarshenas, M.M.; Samani, S.M.; Petramfar, P.; Moein, M. Analysis of the
essential oil components from different Ca rum co pticum L. samples from
Iran. Pharmacognosy Res., 2014, 6(1), 62-66.
http://dx.doi.org/10.4103/0974-8490.122920 PMID: 24497745
[68] Kazemi, O. R.; Behravan, J.; Ramezani, M. Chemical composition, antimi-
crobial activity and antiviral activity of essential oil of Carum copticum from
Iran. Avicenna J. Phytomed., 2011, 1(2), 8 3-90.
[69] Zomorodian, K.; Moein, M.R.; Rahimi, M.J.; Pakshir, K.; Ghasemi, Y.;
Abedi, S.; Sharbatfar, S. Possible application and chemical compositions o f
Carum co pticum essential oils against food borne and nosocomial pathogens.
Middle East J. S ci. Res., 2011, 9(2), 239-245.
[70] Zeinali, T.; Khanzadi, S.; Jamshidi, A.; Azizzadeh, M. Growth response and
modeling the effects of Carum copticum essential oil, pH, inoculum level
and temperature on Escherichia coli O157: H7. Afr. J. Microbiol. Res., 2012,
6(28), 5736-5744.
http://dx.doi.org/10.5897/AJMR11.506
[71] Taherkhani, M.; Masoudi, S.; Rustaiyan, A. Chemical composition and
antibacterial activity of the essential oils of Semenovia frigida and Chaero-
phyllum bulbosum from Iran. Asian J. Chem., 2012, 24(4), 1587-1590.
[72] Nematollahi, F.; Akhgar, M.R.; Larijani, K.; Rustaiyan, A.; Masoudi, S.
Essential oils of Chaerophyllum ma cropodum Boiss. and Chaerop hyllum
crinitum Boiss. from Iran. J. Essent. Oil Res., 2005, 17(1), 71-72.
http://dx.doi.org/10.1080/10412905.2005.9698834
[73] Sefidkon, F.; Ab doli, M. Essential oil composition of Chaerophyllum ma c-
rospermum from Ir an. J. Essent. Oil Res., 2005, 17(3), 249-250.
http://dx.doi.org/10.1080/10412905.2005.9698891
[74] Rustaiyan , A.; Neekpoor, N.; Rabani, M.; Komeiliza deh, H.; Masoudi, S.;
Monfared, A. Composition of the essential oil of Chaerop hyllum macros-
permum (Spreng.) Fisch. and C. A. Mey. from Iran. J. Essent. Oil Res., 2002,
14(3), 2 16-217.
http://dx.doi.org/10.1080/10412905.2002.9699826
[75] Shafaghat, A.; Akhlaghi, H.; Motavalizad ehKakhky, A.; Larijani, K.; Rustai-
yan, A. Comparison of essential oil composition of root and aerial part of
Chaerop hyllum macropod um L. from Iran. J. Med. Arom. Plants, 2008,
24(2), 2 44-252.
[76] Shafaghat, A. Chemical composition of the essential oil from the roots of
Chaerophyllum macropodum Boiss. from Iran. J. Essent. O il Bear. Plants,
2009, 12(5), 615-619.
http://dx.doi.org/10.1080/0972060X.2009.10643764
[77] Shafaghat, A. Antibacterial activity and composition of essential oils from
flower, leaf and stem of Chaerop hyllum macropodum Boiss. from Iran. Na t.
Prod. Commun., 2009, 4(6), 861-864.
http://dx.doi.org/10.1177/1934578X0900400625 PMID: 19634338
[78] Shafaghat, A. Volatile co nstituents of the leaf o il of Chaeroph yllum macro-
podum Boiss. from Iran. J. Essent. Oil Res., 2010, 22(6), 531-533.
http://dx.doi.org/10.1080/10412905.2010.9700391
[79] Ghannadi, A.; Sajjadi, S.E.; Kukhedan, A.J.; Mortazavian, S.M. Volatile
constituents of flowering aerial parts of Chaerophyllum macro podum Bo iss.
from Iran. J. Essent. Oil Bea r. Plants, 2011, 14(4), 408-412.
http://dx.doi.org/10.1080/0972060X.2011.10643594
[80] Amiri, H. Essential oil composition and secretory structurs of Chaerophyl-
lum macropod um Boiss. from Iran. J. Essent. Oil Bear. Plants,, 2014, 14(4),
408-412.
[81] Masoudi, S.; Esamaeili, A.; Khalilzadeh, M.A.; Rustaiyan, A.; Moazami, N.;
Akhgar, M.R.; Varavipoor, M. Volatile constituents of Dorema aucheri
Boiss., Seseli libanotis (L.) W. D. Koch var. armeniacum Bordz. and Conium
maculatum L. t hree Umbelliferae herbs gr owing wild in I ran. Flav. Frags. J.,
2006, 21(5), 801-804.
http://dx.doi.org/10.1002/ffj.1722
[82] Sefidkon, F. Essential oil of aeria l perts an d fruits of Coria ndrum Sa tivum L.
Iran Med. Arom. Plant Res., 2001, 7, 71-87.
[83] Eykani, M.H.; Mohammad, F.G.; Zamir, S.R. Supercritical water extraction
of essential oils from coriander seeds (Coriandrum sativum L.). J. Food
Eng., 2007, 80, 735-740.
http://dx.doi.org/10.1016/j.jfoodeng.2006.05.015
[84] Sourmaghi, M.H.; Kiaee, G.; Golfakh rabadi, F.; Jamalifar, H.; Khanavi, M.
Compar ison of essen tial oil composition and antimicrobial activity of Cori-
andrum sativum L. extracted by hydrodistillation and microwave-assisted
hydrodistillation. J. Food Sci. Technol., 2015, 52(4), 2 452-2457.
http://dx.doi.org/10.1007/s13197-014-1286-x PMID: 25829632
[85] Zarrinzadeh, J.; Mirza, M.; Alyar i, H. The effect o f plant ation da te and
irrigation on essential oil content and composition o f Cuminum cyminum L.
Iran Med. Arom. Plant Res., 2007, 23, 140.
[86] Ahmadi, L. Study on chemical composition of the essential oil from seeds o f
Cuminum cyminum L. Iran Med. Arom. Plant Res., 2000, 6, 97-113.
[87] Ahmadi, L.; Mirza, M.; Kalirad, A. Effect of dry farmingdate on yield and
chemical composition of cumin oil. Iran Med. Arom. Plant Res., 2001, 7, 89-
100.
[88] Marjanlo, A.A.; Mostofi, Y.; Shoeibi, S.; Fattahi, M. Effect of cum in essen-
tial oil on po stharvest decay and some quality factors of strawberry. Fasl-
namah-i Giyahan-i Daruyi, 2009 , 8(3), 25-43.
[89] Sadeghi, E.; Basti, A.A.; Misaghi, A.; Salehi, T.Z.; Osgo ii, S.B. Evaluation
of effects on Cuminum cyminum and probiotic on Staphylococcus in Feta
chesse. Faslnamah-i Giyahan-i Daruyi, 2010, 9, 131-141.
[90] Eykani, M.H.; Goudarznia, I.; Mirza, A.M. Supercritical carbon dioxide
extraction of Cumin seeds (Cumi num cyminum L.). Flav. Frags. J., 1999,
14(1), 2 9-31.
http://dx.doi.org/10.1002/(SICI)1099-1026(19990 1/02)1 4:1<29 ::AID-
FFJ765>3.0.CO;2-G
[91] Hashemian, N.; Pirbalouti, A.G.; Hashemi, M.; Golparvar , A.; Ham edi, B.
Diversity in chemical composition and antibacterial activity of essential oils
of cumin (Cuminum cyminum L.) diverse from northeast of Iran. Au st. J .
Crop Sci., 2013, 7(11), 1752-1760.
[92] Haghiroalsadat, F.; Vahidi, A.; Sabou r, M.; Azimzadeh, M.; Kalantar, M.;
Sharafadini, M. The indigenou s Cuminum cyminum L. of Yazd province:
chemical assessment and evaluation of its antioxidant effects. J. Shahid. Sa-
doughi. Univ. Med. Sci., 2011, 19(4), 472 -481.
[93] Mojab, F.; Hamedi, A.; Nickavar, B.; Javidnia, K. Hydrodistilled volatile
constituents of the leaves of Daucus carota L. subsp. sativus (Hoffman.) Ar-
cang. (Apiaceae) from Iran. J. Essent. Oil Bear. Plants, 2008, 11(3), 271-
277.
http://dx.doi.org/10.1080/0972060X.2008.10643630
[94] Yousefbeyk, F.; Gohari, A.R.; Sourmagh i, M.H.S.; Amini, M.; Jamalifar, H.;
Amin, M.; Golfakhrabadi, F.; Ramezani, N.; Amin, G. Chemical composi-
tion and antimicrobial activity of essential oils from different parts of Daucus
littoralis Smith subsp. hyrcanicus Rech. f. J. Essent. Oil. Bear. Plants, 2014,
17(4), 5 70-576.
http://dx.doi.org/10.1080/0972060X.2014.901610
[95] Javidnia, K.; Miri, R.; Soltani, M .; Khosrav i, A.R. Constituents of the essen-
tial o il o f Dicyclophora persica Boiss. from Iran. J. Essent. Oil Res., 2007,
19(6), 5 43-544.
http://dx.doi.org/10.1080/10412905.2007.9699326
[96] Salehi, P.; Sonb oli, A.; Mohamm adi, F. Composition and antimicrobial
activity of the essential oil of Dicyclophora persica Boiss. from Iran. Z. Nat-
forsch. C J. Biosci., 2006, 61(5-6), 315-318.
http://dx.doi.org/10.1515/znc-2006-5-602 PM ID: 168 69485
[97] Sefidkon, F.; Alay ha, M.; Meshk izadeh, S. Quan titative and q ualitative
variation of the essential oil of Diplotaenia cachrydifolia in different stage of
plant growth. Faslnamah-i Giyahan-i Daruyi, 2004, 11, 31-37.
[98] Bazgir, A.; Shaaban i, A.; Sefidkon, F. Compositio n of the essential oil of
Diplotaenia cachrydifolia Boiss. from Iran. J. Essent. Oil Res., 2005, 17(5),
525-526.
http://dx.doi.org/10.1080/10412905.2005.9698983
[99] Javidnia, K.; Miri, R.; Kamalinejad, M.; Mehdipour, A.R. Composition of
the essential o il of Diplotaenia cachrydifolia Boiss. From Iran . J. Essent. Oil
Res., 2006, 18(1), 86-87.
http://dx.doi.org/10.1080/10412905.2006.9699393
[100] Azarnivand, H.; Asl, M.A.; Arzani, H.; Amin, G.; Jafari, M.; Mo usavi, S.S.
The variations of oil content and composition of Diplotaenia cachrydifolia
Boiss. in green and dr y states as a forage anti-quality f actor . Iran Med. Arom.
Plant Res., 2009, 25(1), 85-91.
[101] Khajeh, M. Optimisation of supercritical fluid extraction of essential oil
components of Diplotaenia cachrydifolia: Box-Behnken design. Nat. Prod .
Res., 2012, 26(20), 1926-1930.
http://dx.doi.org/10.1080/14786419.2011.616506 PMID: 22017585
[102] Eftekhar, F.; Yousefzadi, M.; Azizian, D.; Sonboli, A.; Salehi, P. Essential
oil composition and antimicrobial activity of Diplotaenia damavandica. Z.
Natforsch . C J. Biosc i., 2005, 60(11-12), 821-825.
http://dx.doi.org/10.1515/znc-2005-11-1202 PMID: 16402540
[103] Mirza, M.; Dini, M. The volatile constituents of Diplotaenia damavandica
mozaffarian, Hudge & Lamond. Iran Med. Arom. Plant Res., 2001, 8, 91-
102.
[104] Yousefzadi, M.; Mirjalili, M.H.; Alnajar, N.; Zeinali, A.; Parsa, M. Composi-
tion and in vitro antimicrobial activity of the essential oil of Dorem a ammo-
niacum D. Don. fruit f rom Iran. J. Serb. Chem. Soc., 2011, 76(6), 8 57-863.
http://dx.doi.org/10.2298/JSC100830074Y
[105] Batooli, H.; E brahimabadi, A.H.; Mahmodi, B.; Mazochi, A. Comparison of
essential oil chemical composition of vegetative and reproductive organs of
Dorema ammoniacum D. Don. In Shahsavaran, Kashan, Iran. J. Med. Aroma.
Pl., 2014, 30(5), 746 -755.
[106] Masoudi, S.; Kakavand, S. Volatile constituents of the aerial parts of Ter-
ataenium lasiopentalum (Boiss.) Manden., stems and leaves of Dorema am-
moniacum D. Don. and leaves, fruits and stems of Leutea petiolare (DC.) M.
pimen. from Iran. J. Chil. Chem. Soc., 2017, 62, 3311-3314.
http://dx.doi.org/10.40 67/S071 7-97072017000100001
96 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
[107] Asnaashari, S.; Dadizadeh, E.; Talebpour, A.H.; Eskandani, M.; Nazemiyeh,
H. Free radical scavenging potential and essential oil composition of the
Dorema glabrum Fisch. C.A. Mey roots from Iran. Bioimpacts, 2011, 1(4),
241-244.
http://dx.doi.org/10.5681/bi.2011.035 PMID: 23678435
[108] Babakanlou , P.; Mirza, M.; Sefidkon, F.; Ahmadi, L.; Barazandeh, M.M.;
Askari, F. Chemical composition of the essential oils of Ducrosia anthifolia
(DC.). Boiss. Med. Arom. Plant Res., 1999, 1, 55-69.
[109] Mostafavi, A.; Afzali, D.; Mirtadzadini, S.M. Chemical compo sition of the
essential oil of Ducrosia anethifolia (DC.) Boiss. from Kerman Prov. in Iran.
J. Essent. Oil Res., 2008, 20(6), 509 -512.
http://dx.doi.org/10.1080/10412905.2008.9700073
[110] Sefidkon, F.; Jav idtash, I. Essential oil comp osition of Ducrosia anethifolia
(DC.) Boiss. from Iran. J. Essent. Oil Res., 2002, 14(4), 278-279.
http://dx.doi.org/10.1080/10412905.2002.9699853
[111] Hajhashemi, V.; Rabbani, M.; Ghan adi, A.; Davari, E. Evaluation of
antianxiety and sedative effects of essential oil of Ducrosia anethifolia in
mice. Clinics (São P aulo), 2010, 65(10 ), 1037-1042 .
http://dx.doi.org/10.1590/S1807-59322010001000020 PMID: 21120308
[112] Shahabipour, S.; Fir uzi, O.; Asadollahi, M.; Faghih mirzaei, E.; Javidnia, K.
Essential oil composition and cytotoxic activity of Ducrosia anethifolia and
Ducrosia flabellifolia from Iran. J. Essent. Oil Res., 2013, 25(20), 160-163.
http://dx.doi.org/10.1080/10412905.2013.773656
[113] Rustaiyan, A.; Mazloomifar, H.; Masoudi, S.; Aghjani, Z. Volatile oils of
Ducrosia assadii Alava. and Prangos acaulis (DC.) Bornm. from Iran. J. Es-
sent. Oil Res., 2006, 18(6), 682-68 4.
http://dx.doi.org/10.1080/10412905.2006.9699205
[114] Mostafavi, A.; Shamspur, T.; Afazali, D.; Mirtadzadini, S.M. Chemical
composition of the essential oil of Ducrosia assadii Alava. from Kerman
Province in Iran. J. Essent. Oil Res., 2010, 22(4), 300-302.
http://dx.doi.org/10.1080/10412905.2010.9700329
[115] Assadipour, A.; Sharififar, F.; Robati, M.; Samzadeh, V.; Esmaeilpour, K.
Compo sition and antioxidant effect of the e ssential oils of the f lowers and
fruits of Ducrosia assadii Alava., A unique endemic plant from Iran. J. Biol.
Sci., 2013, 13(4), 288-292.
http://dx.doi.org/10.3923/jbs.2013.288.292
[116] Ahmadi, L.; Mirza, M.; Khorram, M.T. Essential oil of Echinopho ra cinerea
(Boiss.) Hedge & Lamond from Iran. J. Essent. Oil Res., 2001, 13(2), 82-83.
http://dx.doi.org/10.1080/10412905.2001.9699619
[117] Hashemi, P.; Abolghasemi, M.M.; Gh iasvand, A.R.; Ahmadi, S.; Hassan-
vand, H.; Yarahmadi, A.A. Comparative study of hydrodistillation and hy-
drodistillation-solvent microextrac tion methods for identification of volatile
components of Echinophora cinerea. Chro matographia, 2009, 69(1-2), 179-
182.
http://dx.doi.org/10.1365/s10337-008-0817-x
[118] Ghasemi Pirbalouti, A.; Gholipour, Z. Chemical comp osition, an timicrobial
and antioxidant activities of essential oil from Echinophora cinerea har-
vested at two phenological stages. J. Essent. Oil Bear. Plants, 2016, 28, 501-
511.
http://dx.doi.org/10.1080/10412905.2016.1155506
[119] Asghari, G.; Abedi, D.; Jalali, M.; Farsi, S. Antimicrobial activities and
phytochemical composition of Echinophora platyloba DC. essential oils
from Isfahan. J. Essent. Oil Bear. Plants, 2007, 10(1), 76-82.
http://dx.doi.org/10.1080/097 2060X.2007.10643522
[120] Babakanlou , P.; Mirza, M.; Sefidkon, F.; Ahmadi, L.; Barazandeh, M.M.;
Askari, F. Chemical composition of the essential oils of Echinophora platy-
loba DC. Med. Aro m. Plant Res., 1999, 1, 63 -37.
[121] Mazloomifar, H.; Tehrani, M.S.; Rustaiyan, A.; Masoudi, S. Constituents of
the essential oil of Echinophora platyloba DC. growing wild in Iran. J. Es-
sent. Oil Res., 2004, 16(4), 284-28 5.
http://dx.doi.org/10.1080/10412905.2004.9698722
[122] Nasrabadi, M.R.; Gholivand, M.B.; Niasari, M.; Vatanara, A. Chemical
composition of the essential oil from aerial parts of Echinophora platyloba
DC. from Iran. Faslnamah-i Giyahan-i Daruyi, 2009, 9, 53-56.
[123] Asghari, G.; Sajadi, S.E.; Sadraei, H.; Yaghobei, K.H. Essntial oil constitu-
ents of Echinophora platyloba DC. J. Res. Med. Sci., 2003, 7, 97-99.
[124] Asghari, G.; Sajadi, S.E.; Sadraei, H.; Yagho bei, K.H. Essential oil constitu-
ents of Echinophora platyloba DC. Iran. J. Pharm. Res., 2003, 2, 185-186.
[125] Gholivand, M.B.; Nasrabadi, M.R.; Mehraban, E.; Niasari, M.; Batooli, H.
Determination of the chemical composition and in vitro antioxidant activities
of essential oil and methanol extracts of Echinophora platy loba DC. Nat.
Prod. Res., 2011, 25(17), 1585-1595.
http://dx.doi.org/10.1080/14786419.2010.490915 PMID: 21644173
[126] Hassanpouraghdam, M.B.; Shalamzari, M.S.; Sepehri, N. GC/MS an alysis of
Echinophora platyloba DC. essential oil from Northwest Iran: a potential
source o f (Z)-β-ocimene and α-phellandr ene. Chemija, 2009, 20(2), 120-123.
[127] Ahmad, V.U.; Jassbi, A.R.; Pannahi, M.S.C. Analysis o f the essential oil of
Echinophora sibthorpiana Guss. by means of GC, GC/MS and 13C-NMR
techniques. J. Essent. Oil Res., 1999, 11(1), 107 -108.
http://dx.doi.org/10.1080/10412905.1999.9701084
[128] Sefidkon, F. Extraction and identification of volatile components of Echino-
phora sibthorpiana Guss. Iran Med. Arom . Plant Res., 2004, 20, 149-158.
[129] Sefidkon, F.; Dabiri, M .; Alamshahi, A. Chemical composition of the essen-
tial oil of Eryngium billardieri F. Delaroche from Iran. J. Essent. Oil Res.,
2004, 16(1), 42-43.
http://dx.doi.org/10.1080/10412905.2004.9698648
[130] Semnani, K.M. Essential oil composition of Eryngium bungei Boiss. J.
Essent. Oil Res., 2005, 17(5), 485-486.
http://dx.doi.org/10.1080/10412905.2005.9698972
[131] Morteza-Semnani, K.; Azadbak ht, M.; Houshmand, A. Compo sition of the
essential oils of aerial parts of Eryngium bungei Boiss. and Eryngium caer-
uleum M. B. Pharm. Sci., 2003, 1, 43-48.
[132] Dehghanzadeh, N.; Ketabchi, S.; Alizadeh, A. Essential oil composition and
antibacterial activity of Eryngium caeruleum grown wild in Iran. J. Essent.
Oil. Bear. Pl., 2014, 17(3), 486-492.
http://dx.doi.org/10.1080/0972060X.2014.895186
[133] Assadian, F.; Masoudi, S.; Nematollahi, F.; Rustaiyan, A.; Larijani, K.;
Mazloomifar, H. Volatile constituents of Xanthogalum purpurascens Ave-
Lall., Eryngium caeruleum M. B. and Pimpinella aurea DC. three umbellif-
erae herbs growing in Iran. J. Essent. Oil Res., 2005, 17(3) , 243-245.
http://dx.doi.org/10.1080/10412905.2005.9698889
[134] Ahmadi, M.K.; Shahrezaei, F. Study on chemical constituents of the essential
oil of Falcaria vulgaris Bernh. Faslnamah-i Giyahan-i Daruyi, 2007, 23, 52-
57.
[135] Shafaghat, A. Free radical scavenging and an tibacterial activities, and
GC/MS analysis of essential oils from different parts of Falcaria vulgaris
from two regions. Nat. Prod. Co mmun., 2010, 5(6), 981-984.
http://dx.doi.org/10.1177/1934578X1000500636 PMID: 20614839
[136] Shafaghat, A. Volatile oil constituents and antibacterial activity of different
parts of Falc aria vulga ris Bernh. growing wild in two localities from Iran.
Nat. Prod . Res., 2011, 25(4), 368-373.
http://dx.doi.org/10.1080/14786411003774312 PMID: 20544497
[137] Kanani, M.R.; Rahiminejad, M.R.; Sonboli, A.; Mozaffarian, V.; Osaloo,
S.K.; Ebrahimi, S.N. Chemotaxo nomic significance of the essential o ils of 18
Ferula species (Apiaceae) from Iran. Chem. Biodivers., 2011, 8(3), 503-517.
http://dx.doi.org/10.1002/cbdv.201000148 PMID: 21404434
[138] Khajeh, M.; Yamini, Y.; Bahramifar, N.; Sefidkon, F.; Pirmoradei, M.R.
Compar ison of essential oils compositions of Ferula assa-foetida obtained
by supercritical carbon dioxide extraction and hydrodistillation methods.
Food Chem., 2005, 91(4), 6 39-644.
http://dx.doi.org/10.1016/j.foodchem.2004.06.033
[139] Sadraei, H.; Gh annadi, A.; Maleksha hi, K. Composition o f the essential oil
of asa-foetida and its spasmolytic action. Saudi Pharm. J., 2003, 11(3), 136-
140.
[140] Askari, F. Essential oil composition of Ferula assa-foetida from Iran. Med.
Arom. Plant Res., 1999, 3, 59-76.
[141] Bamoniri, A.; Mazoochi, A. Determi nation of bioactive and fr agrant mole-
cules from leaves and fruits of Ferula assa-foetida l. growing in central Iran
by nano scale injection. Dig. J. Nanomater. Biostruct., 2009, 4, 323-328.
[142] Asili, J.; Sah ebkar, A.; Bazzaz, B.S.F.; Sharifi, S.; Iranshah i, M. Identifica-
tion o f essential oil components of Ferula badrakema fruits by GC-MS and
13C-NMR methods and evaluation of its antimicrobial activity. J. Essent.
Oil. Bear. Plants., 2009, 12(1), 7-15.
http://dx.doi.org/10.1080/0972060X.2009.10643685
[143] Alipour, Z.; Taheri, P.; Samadi, N . Chemical composition and an tibacterial
activity of the essential oils from flower, leaf and stem of Ferula cupularis
growing wild in Iran. Pharm. Biol., 2015, 53(4), 483-487.
http://dx.doi.org/10.3109/13880209.2014.924149 PMID: 25471700
[144] Iranshahi, M.; Khayyat, M.H.; Sahebkar, A.; Famili, A. Chemical composi-
tion o f the fruit oil of Ferula flabelliloba. J. Essent. Oil. Bear. Plants., 2008,
11(2), 1 43-147.
http://dx.doi.org/10.1080/0972060X.2008.10643610
[145] Rustaiyan, A.; Monf ared, A.; M asoudi, S. The essen tial oil of Ferula flabel-
liloba Rech. f . et Aellen. J. Essent. Oil Res., 2001, 13(6), 403-404.
http://dx.doi.org/10.1080/10412905.2001.9699706
[146] Rustaiyan, A.; Monfare d, A. Essential oils of the stem and root of Ferula
galbaniflua Boiss. et Buhse. fr om Iran. J. Essent. Oil Res., 2002, 14(4), 286-
287.
http://dx.doi.org/10.1080/10412905.2002.9699856
[147] Jahansooz, F.; Ebrahimzade h, H.; Najafi, A.A.; Naghavi, M.R.; Kouyakh i,
E.T.; Farzaneh, H. Composition and antifungal activity of the oil of Ferula
gummosa samples from Iran. J. Essent. Oil Bear. Plants, 2008, 11(3), 284-
291.
http://dx.doi.org/10.1080/0972060X.2008.10643632
[148] Sadraei, H.; Asgh ari, G.R.; Hajhashemi, V.; Kolagar, A.; Eb rahimi, M.
Spasmolytic activity of essential oil and variou s extracts of Ferula gummosa
Boiss. on ileum co ntractions. Phytomedicine, 2001, 8(5), 370-37 6.
http://dx.doi.org/10.1078/0944-7113-00052 PMID: 11695880
[149] Ghannadi, A.; Amree, S. Volatile oil constituents of Ferula g ummosa Boiss.
from Kashan, Iran. J. Essent. Oil Res., 2002, 14(6), 420-421.
http://dx.doi.org/10.1080/10412905.2002.9699908
[150] Ghasemi, Y.; Faridi, P.; Mehregan, I.; Mohagheghzadeh, A. Ferula gummosa
fruits: an aromatic antimicrobial agent. Chem. Nat. Compd., 2005, 41(3),
311-314.
http://dx.doi.org/10.1007/s10600-005-0138-3
[151] Rezaee, M .B.; Berna rd, F.; Da rabi, S.A.S. Ferula gummosa. Iran Med .
Arom. Plant Res., 2003, 17, 1-73.
[152] Sayyah, M.; Kamalinejad, M.; Hidage, R.B.; Rustaiyan, A. Antiepileptic
potential and composition of the fruit essential oil of Ferula gummosa Boiss.
Iran. Biomed. J., 2001, 5, 69-72.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 97
[153] Mortazaienezhad, F.; Sadeghian, M.M. Investigation of compounds from
galbanum (Ferula gummosa) Boiss. Asian J. Plant Sci., 2006, 5(5), 905-906.
http://dx.doi.org/10.3923/ajps.2006.905.906
[154] Akhgar, M.R.; Rustaiyan, A.; Masoudi, S.; Bigdeli, M. Essential oils of
Ferula microcolea (Boiss.) Boiss. an d Ferula hirtella Boiss. from Iran. J. Es-
sent. Oil Res., 2005, 17(3), 2 37-238.
http://dx.doi.org/10.1080/10412905.2005.9698887
[155] Habibi, Z.; Salehi, P.; Yousefi, M.; Hejazi, Y.; Laleh, A.; Mozaffarian, V.;
Masoudi, S.; Rustaiyan, A. Chemical composition and antimicrobial activity
of the essential oils of Ferula latisecta and Mozaffariania insignis from Iran.
Chem. Nat. Compd., 2006, 42(6), 689-692.
http://dx.doi.org/10.1007/s10600-006-0253-9
[156] Iranshahi, M.; Yazdi, M.C.; Khayyat, M.H.; Sahebkar, A. Sulfur containing
compounds in the volatile oil of Ferula latisecta Rech. f. & Aellen Leaves. J.
Essent. Oil. Bear. Plants, 2009, 12(1), 6 4-68.
http://dx.doi.org/10.1080/0972060X.2009.10643693
[157] Iranshahi, M.; Khayat, M.H.; Bazzaz, B.S.F.; Sabeti, Z.; Enayati, F. High
content of polysulphides in the volatile oil of Ferula latisecta Rech. f. et Ael-
len fruits and antimicrobial activ ity of the oil. J. Essent. Oil Res., 2008,
20(2), 1 83-185.
http://dx.doi.org/10.1080/10412905.2008.9699986
[158] Rustaiyan, A.; Nadimi, M.; Mazloomif ar, H.; Massudi, S. Composition of the
essential oil of Ferula macrocolea (Boiss.) Boiss. from Iran. J. Essent. Oil
Res., 2005, 17(1), 55-56.
http://dx.doi.org/10.1080/10412905.2005.9698829
[159] Amiri, H. Chemical compo sition and antioxidant activity of essential oil and
methanolic extracts of Ferula microcolea (Boiss.) Boiss (Apiaceae). Int. J.
Food Prop., 2014, 17(4), 7 22-730.
http://dx.doi.org/10.1080/10942912.2012.665403
[160] Ghannadi, A.; Sajjadi, S.E.; Beigihasan, A. Composition of the essential oil
of Ferula ovina (Boiss.) Boiss. from Iran. Daru, 200 2, 10(4), 165-167.
[161] Taherkhani, M.; Rustaiyan, A.; Masoidi, S. Volatile constituents of the aerial
parts of Ferulago subvelutina Rech. f., Ferulago stellata Boiss., leaves and
flowers of Prangos ferulacea (L.) Lindle. and leav es of Ferula ovina (Boiss.)
Boiss.: f our Umbelliferae herbs from Iran. Asian J. Chem., 2012, 24(4),
1601-1606.
[162] Javidnia, K.; Miri, R.; Kamalinejad, M.; Ed raki, N. Chem ical comp osition of
Ferula persica Wild. essen tial oil from Iran. Flav. Frags. J., 2005, 20(6),
605-606.
http://dx.doi.org/10.1002/ffj.1496
[163] Iranshahi, M.; Amin, G.H.; Sourmaghi, M.S.; Shafiee, A.; Hadjiakhoondi, A.
Sulphur-containing compounds in the essential oil of the root of Ferula per-
sica Willd. var. persica. Flav. Frags. J., 2006, 21(2), 260-261.
http://dx.doi.org/10.1002/ffj.1574
[164] Rustaiyan, A.; Assad ian, F.; Monfar ed, A.; M asoudi , S.; Yari, M. Com posi-
tion of the volatile oil of Ferula stenocarpa Boiss. &. Hausskn. J. Essent.
Oil. Res., 2001, 13(3), 181-182.
http://dx.doi.org/10.1080/10412905.2001.9699654
[165] Dehghan, G.; Solaimanian, R .; Shahverdi, A.R.; Amin, G.; Abdollahi, M.;
Shafiee, A. Ch emical composition and antimicrobial activ ity o f essential oil
of Ferula szowitsiana DC. Flav. Frags. J., 2007, 22(3), 224 -227.
http://dx.doi.org/10.1002/ffj.1789
[166] Akhlaghi, H. The essential o ils from flower s, stems and leaves of Ferulago
angulata from Iran. Chem. Na t. Compd ., 2008, 44(3), 396-397 .
http://dx.doi.org/10.1007/s10600-008-9076-1
[167] Akhlaghi, H. Chemical composition o f the essential oil from the aerial parts
of Ferulago angulata (Schlecht.) Boiss. from Northeast Iran. J. Essent. Oil
Bear. Plants, 2008, 11(5), 544-547.
http://dx.doi.org/10.1080/0972060X.2008.10643664
[168] Rezazadeh, S.; Yazdan i, D.; Shahnazi, S. Chem ical composition of the
essential oil of Ferulago angulata Boiss. in florescence from west of Iran.
Faslnamah-i Giyahan-i Daruyi, 2003, 2(7), 49-52.
[169] Ghasempour, H.R.; Shirinpour, E.; Heidari, H. The constituents of essential
oils of Ferulago angulata (schlecht.) Boiss. at two different habitats,
Nevakoh and Shahoo, zagross mountain, western Iran. Iran. J. Sci. Tech.,
2007, 31(3), 309-312.
[170] Ghasempour, H.R.; Shirinpour, E.; Heidari, H.; Reza, G.H.; Ebrahim, S.;
Hossien, H. Analysis by gas chromatography-mass spectrometry of essential
oil from seeds and aerial parts of Ferulago angulata (Schlecht.) Boiss. gath-
ered in Nevakoh and Shahoo, Zagross Mountain, West of Iran. Pakistan. J.
Biol. Sci., 2007, 10(5), 814-817.
[171] Rustaiyan, A.; Sedaghat, S.; Lar ijani, K.; Kh ossravi, M.; Masoudi, S. Com-
position of the essential oil of Ferulago angulata (Schlecht.) Boiss. from
Iran. J. Essent. Oil Res., 2002, 14(6), 447-448.
http://dx.doi.org/10.1080/10412905.2002.9699917
[172] Javidnia, K.; Miri, R.; Edrak i, N.; Khoshneviszad eh, M.; Javidnia, A. Con-
stituents o f the vo latile oil of Ferulago angulata (Schlecht.) Boiss. from Ir an.
J. Essent. Oil Res., 2006, 18(5), 548 -550.
http://dx.doi.org/10.1080/10412905.2006.9699163
[173] Razavi, S.M.; Ravan salar, A.; Mirin ejad, S. The investigation o n phy to-
chemicals from Ferulago angulata (Schlecht) Boiss, indigenous to central
parts of Iran. Nat. Prod. Res., 2015, 29(21), 2037-2040.
http://dx.doi.org/10.1080/14786419.2015.1017725 PMID: 25743037
[174] Sodeifian, G.; Ansar i, K.; Bamoniri, A.; Mirjalilic, B.F. Study of chemical
composition of the essential oil of Ferulago angulata (schelcht) boiss. from
Iran using supercritical fluid extraction and nano scale injection. Dig. J.
Nanoma ter. Biost ruct., 2011, 6, 161-16 8.
[175] Taran, M.; Ghasempour, H.R.; Shirinpour, E. Antimicrobial activity of
essential oils of Ferulago angulata subsp. carduchorum. Jundishapur J. Mi-
crobiol., 2010, 3(1), 10-14.
[176] Shahbazi, Y.; Sh avisi, N.; Mo darresi, M.; Karami, N. Ch emical composition,
antibacterial and antioxidant activities of essential oils from the aerial parts
of Ferulago angulata (Schlecht.) Boiss. and Ferulago bernardii Tomk. & M.
Pimen. from different parts of Iran. J. Essent. Oil Bear. Plants, 2016, 19,
1627-1638.
http://dx.doi.org/10.1080/0972060X.2015.1107513
[177] Shahbazi, Y. Variatio n in chemical compositio n of essential oil of Ferulago
angulata collected from west parts of Iran. Pharm. Sci., 2016, 22, 16-21.
http://dx.doi.org/10.15171/PS.2016.04
[178] Mollaei, S.; Sedighi, F.; Habibi, B.; Hazrati, S.; Asghari, P. Extraction of
essential oils of Ferulago angulata with microwave-assisted hydrodistilla-
tion. Ind. Crops Prod., 2019, 137, 43-51.
http://dx.doi.org/10.1016/j.indcrop.2019.05.015
[179] Sigaroodi, F.K.; Hadjiak hoondi, A.; Shahverdi, A.R.; Mo zaffarian , V.A.;
Shafiee, A. Chem ical composition and an timicrobial activity of the essential
oil of Ferulago bernardii Tomk. and M. Pimen. Daru, 2005, 13(3), 100-104.
[180] Samiee, K.; Akhgar, M.R.; Rustaiyan, A.; Masoudi, S. Com position of the
volatiles of Ferulago carduchorum Boiss. et Hausskn. and Levisticum offici-
nale Koch. obtained by hydrodistillation and extraction. J. Essent. Oil Res.,
2006, 18(1), 19-22.
http://dx.doi.org/10.1080/10412905.2006.9699374
[181] Golfakhrabadi, F.; Khanavi, M.; Ostad, S.N.; Saeidn ia, S.; Vatandoost, H.;
Abai, M.R.; Hafizi, M.; Yousefbeyk, F.; Rad, Y.R.; Baghenegadian, A.;
Ardekani, M.R. Biological activities and composition of Ferulago carducho-
rum essential oil. J. Arthropod Borne Dis., 2014, 9(1), 1 04-115.
PMID: 2611414 8
[182] Rustaiyan, A.; Yari, M.; Ma soudi, S.; Ag hjani, Z . Chemical c onstituents of
the essential o il of Ferulago contracta Boiss. et Hausskn., a species endemic
to Iran. J. Essent. Oil Res., 1999, 11(5), 609-610.
http://dx.doi.org/10.1080/10412905.1999.9701223
[183] Mohebat, R.; Mosslemin, M.H.; Masoudi, S.; Dad, V.; Rustaiyan, A. Com-
position and antibacterial activity of the essential oils from aerial par ts,
stems, flowers and leaves of Ferulago contracta from Iran. J. Essent. Oil.
Bear. Plants, 2010, 13(5), 607-614.
http://dx.doi.org/10.1080/0972060X.2010.10643870
[184] Sajjadi, S.E.; Shok oohinia, Y.; Jamali, M. Ch emical composition of essential
oil of Ferulago macrocarpa (Fenzl) Boiss. fruits. Res. Pharm. Sci., 2012,
7(3), 197-200.
PMID: 2318109 8
[185] Masoudi, S.; Rustaiyan, A.; Ameri, N. Volatile oils of Ferulago phialocarpa
Rech. f. et H. Reidl. and Leutea elbursensis M ozaffar ian from I ran. J. Essent.
Oil Res., 2004, 16(2), 143-144.
http://dx.doi.org/10.1080/10412905.2004.9698678
[186] Chalabian, F.; Monfa red, A.; Larijani, K.; Saldoosi, S. Compar ison of the
essential oils of Chenopodium botrys L., Ferulago subvelutina Rech. f., Rosa
gallica L. and antimicrobial activity of the oils against some microbes. Iran.
Med. Arom. Plan t Res., 2006, 22, 146-154 .
[187] Omidbaigi, R.; Sadraee, K.; Sefidkon, F. Effect of sowing date in the produc-
tivity of fennel (Foeniculum vulgare) CV. Soroksari. Med. Arom. Plant Res.,
2006, 21, 465-479.
[188] Salehi, P.; Asghari, B.; Mohammadi, F. Hydrodistillation-headspace solvent
microextraction: an efficient method for analysis of the essential oil from the
seeds of Foeniculum vulgare Mill. Chromatographia, 2007, 65(1-2), 119-
122.
http://dx.doi.org/10.1365/s10337-006-0102-9
[189] Jamshidi, A.H .; Arda kani, M.R.S.; Hadj iakhon di, A.; Abdi, K. The influence
of distillation conditions on the essential oil composition of fennel (Foenicu-
lum vulgare Mill.). Faslnamah-i Giyahan-i Daruyi, 2004, 3(11), 68-72.
[190] Yamini, Y.; Sefidkon, F.; Pourmortazavi, S.M. Comparison of essential o il
composition of Iranian fennel (Foeniculum vulgare) obtained by supercritical
carbon dioxide extraction and hydrodistillation methods. Flav. Frags. J.,
2002, 17(5), 345-348.
http://dx.doi.org/10.1002/ffj.1117
[191] Mojab, F.; Javidnia, K.; Nickavar, B.; Yazdani, D. GC-MS analysis of the
essential oils of roots and leaves of Fo eniculum vu lgare Mill. J. Essent. Oil
Bear. Plants, 2007, 10(1), 36-40.
http://dx.doi.org/10.1080/0972060X.2007.10643516
[192] Jaffary, F.; Gh annad i, A.; Najafzadeh, H. Evaluation of the prophylactic
effect of fennel essential oil on experimental o steoporosis model in rats. Int.
J. Pharmacol., 2006, 2(5), 588-592.
http://dx.doi.org/10.3923/ijp.2006.588.592
[193] Shams Ardekani, M.R.; Hadjiakhoondi, A.; Jamshidi, A.H.; Abdi, K.H. The
study of vo latile oil of Foeniculum vulgare Mill. In their tissue culture and
comparison with the whole plant. Fas lnam ah-i Giyahan-i Daru yi, 2005,
4(15), 73-80.
[194] Sefidkon, F. Essential oil content and chemical composition of Foeniculum
vulgare Mill. at different stages of plant growth. Iran Me d. Arom. Plant Res.,
2001, 10, 58-104.
98 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al .
[195] Rezaee, M. B.; Jai mand, K.; Majd, A.; Madda h, M. Effect of harve sting time
on quality and quantity of essential oil from d ifferent organs of fennel (Foe-
niculum vulgare Mill.). Iran. Med. Arom. Plant Res., 2002, 11, 11 -23.
[196] Rezaee, M .B.; Jaimand, K.; Ashorabad i, E.S.; Maddah, M.; Majd, A. Study
of the effect of ultraviolet radiation on quality and quantity of essential oils
of fennel (Foe niculu m vu lgare Mill.) in vegetative phases. Iran Med. Arom.
Plant Res., 2002, 12, 1-27.
[197] Ashourabadi, E.S.; Amin, G.R.; Mirza, M.; Rezvani, M. Effect of plant
nutrition systems (Chemical, intermediate and organic systems) on quality of
fennel (Foe niculum vulgar e Mill). Pajouhesh-Va-Sazandegh i, 2003, 15, 78-
87. [in Persian].
[198] Brazandeh , M.M.; Reza ei, M.B.; Jay mand, K.; Madah , M. The effect of
extraction method on the essential oil yields and composition of the six popu-
lations of Foeniculum vulgare Mill. ssp. Capilaceum from Iran. Pajouhesh-
va-Sazand egi, 2002, 15, 90-95.
[199] Saharkhiz, M.J.; Tarakeme, A. Essential oil content and composition of
fennel (Foe niculum vulgar e L.) fruits at different stages of development. J.
Essent. Oil. Bear. Plants, 2011, 14(5), 605-609.
http://dx.doi.org/10.1080/0972060X.2011.10643978
[200] Rahimmalek , M.; Maghsoudi , H.; Sabza lian, M.R .; Pirb alouti, A.G. Variab il-
ity of essential oil content an d compo sition of different Iranian Fennel (Foe-
niculum vulgare Mill.) accessions in relation to some morphological and
climatic factors. J. Agric. Sci. Technol., 2014, 16, 1365-1374.
[201] Ghasemian, A.A.; Al-Marzoqi, A.; Mostafavi, S.K.S.; A lghanimi, Y.K.;
Teimouri, M. Chemical composition and antimicrobial and cytotoxic activi-
ties o f Foeniculum vulgare Mill essential oils. J. Gastric Cancer, 2019, 51,
260-266.
http://dx.doi.org/10.1007/s12029-019-00241-w
[202] Rustaiyan, A.; Mo jab, R.; Piersar a, M.K .; Bigd eli, M.; Maso udi, S.; Yar i, M.
Essential oil of Froriepia subpinnata (Ledeb.) Baill. from Iran. J. Essent. Oil
Res., 2001, 13(6), 405-406.
http://dx.doi.org/10.1080/10412905.2001.9699707
[203] Semnani, K.M.; Saeedi, M. ; Akbarzade h, M. The essential o il composition of
Froriepia subpinnata (Led eb.). Baill. J. Essent. Oil. Res., 2009, 21(2), 127-
128.
http://dx.doi.org/10.1080/10412905.2009.9700129
[204] Mirzania, F.; Sarrafi, Y.; Moridi Farimani, M. Comparative evaluation o f
chemical compositions and biological activities of wild and cu ltivated
Froriepia subpinnata L. essential oils. J. Agric. Sci. Technol., 2019, 21, 331-
340.
[205] Sonboli, A.; Salehi, P.; Vala, M.M. Essential oil analysis of Fuernrohria
setifolia K . Koch from Iran. J. Essent. Oil Res., 2007, 19(1), 47-48.
http://dx.doi.org/10.1080/10412905.2007.9699228
[206] Sonboli, A.; Eftekhar, F.; Yousefzadi, M.; Kanani, M.R. Antibacter ial activ-
ity and chemical composition of the essential oil of Grammosciadium platy-
carpum Boiss. fro m Iran. Z. Natforsch. C J. Biosci., 2005, 60(1-2), 30-34.
http://dx.doi.org/10.1515/znc-2005-1-206 PM ID: 157 87240
[207] Nickavar, B.; Kamalinejad, M.; Mohandesi, S. Comparison of the compo-
nents of the essential oils from leaves and fruits of Grammo sciadium platy-
carpum. Chem. Nat. Co mpd., 2006, 42(6), 6 86-688.
http://dx.doi.org/10.1007/s10600-006-0252-x
[208] Nazemiyeh, H.; Delazar, A.; Movahedin, N.; Jodari, M.; Imani, Y.; Ghahra-
mani, M.A.; Nahar, L.; Sarker, S.D. Free radical scavengers from the aerial
parts of Grammosciadium platycarpum Boiss. & Hausskn. (Apiaceae) and
GC-MS analysis of the essential oils from its fruits. Rev. Bras. Farmacogn.,
2009, 19(4), 914-918.
http://dx.doi.org/10.1590/S0102-695X2010005000004
[209] Sonboli, A.; Salehi, P.; Kanani, M.R.; Ebrahimi, S.N. Antibacter ial and
antioxidant activity and essential oil composition of Grammosciadium
scabridu m Boiss. from Iran. Z. Natforsch. C J . Biosci., 2005, 60(7-8), 534-
538.
http://dx.doi.org/10.1515/znc-2005-7-804 PM ID: 161 63825
[210] Shargh, D.N.; Raftari, S.; Deyhimi, F. Analysis of the essential oil Gram-
mosciadium scabridum Bo iss. from Iran. Flav. Frags. J., 2007, 22(5), 350-
351.
http://dx.doi.org/10.1002/ffj.1803
[211] Amiri, H. Essential oil composition and secretory structures of Grammos-
ciadium scabrid ium Boiss. in f ruitin g stage. J. Appl. Biol., 2019, 31, 9-11.
[212] Mehregani, I.; Ghannadi, A. Essential oil analysis of Haussknechtia ely-
maitica Boiss fr uits, an endemic plant from Iran . Rev. Chim. Bucharest.,
2013, 64(1), 81-82.
[213] Nickavar, B.; Mojab, F.; Rahro, N.; Madani, S.S.; Nejad, M.K.; Meh regan,
H. Identification of substances in the essential oil and antibacterial activities
of Heptaptera anisoptera (DC.) Tur in. J. Med. Plant., 2011, 4(40), 26-32.
[214] Mirza, M.; Najafpour Navaei, M. Comparative study on chemical composi-
tion of fruit essential oil of He racleum g organicum Rech. F. in different alti-
tudes. Iran. J. Med. Aroma. Plant., 2012, 28(2), 324-329.
[215] Mojab, F.; Rustaiyan, A.H.; Jasbi, A.R. Essential oils of Heracleum Per-
sicum Desf. e x Fischer leaves. Daru, 2002, 10, 6-8.
[216] Taherpour, A.; Yousefirad, M.; Karimzadeh, R. Chemical composition of the
essential oil o f Heracleum persicum seeds of Iran. Asian J. Chem., 2008,
20(5), 3 345-3348.
[217] Rasooli, I.; Rezaee, M. Heracleum persicum Desf. Pajouhesh-Va-
Sazandeghi, 2000, 49, 130-135.
[218] Sefidkon, F.; Dabiri, M.; Mohammad, N. Analysis of the oil of Heracleum
persicum L. (leaves and flow ers). J. Essent. Oil Res., 2002, 14(4), 295-297.
http://dx.doi.org/10.1080/10412905.2002.9699860
[219] Sefidkon, F.; Dabiri, M.; Mohammad, N. Analysis of the oil of Heracleum
persicum L. (seeds an d stems). J. Essent. Oil Res., 2004, 16(4), 296-298.
http://dx.doi.org/10.1080/10412905.2004.9698725
[220] Babakanlou , P.; Mirza, M.; Sefidkon, F.; Ahmadi, L.; Barazandeh, M.M.;
Askari, F. Chemical composition of the essential oils of Heracleum persicum
Desf. Med. Arom. Plant Res., 1999, 1, 83-92. [in Persian].
[221] Radjabian, T.; Salimi, A.; Rah mani, N.; Shockravi, A.; Mozaffarian, V.
Essential oil composition of some wild populations of Heracleum persicum
Desf. Ex Fischer gro wing in Iran. J. Essent. Oil. Bear. Plants, 2013, 16(6),
841-849.
http://dx.doi.org/10.1080/0972060X.2013.862078
[222] Hajhashemi, V.; Sajjadi, S.E.; Heshmati, M. Anti-inflammatory an d analg e-
sic prop erties of Heracleum persicum essential oil an d hydr oalcoholic extract
in animal models. J. Ethnopharmacol., 2009, 124(3), 475-480.
http://dx.doi.org/10.1016/j.jep.2009.05.012 PMID: 19467316
[223] Habibi, Z.; Eshaghi, R.; Moh ammadi, M.; Yousefi, M. Chemical composi-
tion an d antibacterial activity of essential oil of Heracleum rechingeri Man-
den from Iran. Nat. Prod . Res., 2010, 24(11), 1013-1017.
http://dx.doi.org/10.1080/14786410902885138 PMID: 20552523
[224] Najafabadi, R.E.; Mohammadi, M.; Yousefi, M.; Habibi, Z . Chemical com-
position and antibacterial activity of essential oils from flowers, seeds and
stems of Heracleum rechingeri (Manden) from Iran. J. Essent. Oil. Bear.
Plants, 2011, 14(6), 746-75 0.
http://dx.doi.org/10.1080/0972060X.2011.10643998
[225] Khalilzadeh, M.A.; Tajbakhsh, M.; Gholami, F.A.; Hosseinzadeh, M.; Das-
toorani, P.; Norouzi, M.; Dabiri, H.A. Com position of the essential oils of
Hippomarathrum microcarpum (M. Bieb.) B. Fedtsch. and Physospermum
cornubiense (L.) DC. fro m Iran. J. Essent. Oil Res., 2007, 19(6), 5 67-568.
http://dx.doi.org/10.1080/10412905.2007.9699333
[226] Sefidkon, F.; Shaabani, A. Analysis of the oil of Hippo marathrum microcar-
pum (M. B.) B. Fedtsch. from Iran. J. Essent. Oil Res., 2003, 15(4), 261 -262.
http://dx.doi.org/10.1080/10412905.2003.9712136
[227] Habibi, Z.; Monfared, A.; Masoudi, S.; Rustaiyan, A. Essential oil of Jo hre-
nia ramosissima Mozaffarian from Iran. J. Essent. Oil Res., 2004, 16(5),
395-396.
http://dx.doi.org/10.1080/10412905 .2004.9698752
[228] Fouladi, F.; Mirtaher, M.; Yassa, N. Com parison of essential oils composi-
tion of Johreniopsis seseloides from Iran, population Tehran and Kurdistan.
Daru, 2006, 14(2), 75-77.
[229] Salimian, M.; Eb rahimi, A.; Shojaee Asadieh, Z.; Saei Dehkordi, S.S. Essen-
tial oil com position of Kelussia od oratissim a Mozaff. Iran. Med. Arom. Plant
Res., 2010, 26(2), 147-156. [i n Persian].
[230] Sajjadi, S.E.; Shokooh inia, Y.; Mehramiri, P. Isolation a nd characterizatio n
of steroids, phthalide and essential oil of the fruits of Kelu ssia o doratissima
Mozaff., an endemic mountain celery. Res. Pharm. Sci., 2013, 8(1), 35-41.
PMID: 2445947 4
[231] Raeisi, S .; Mirjalili, M.H.; Nad jafi, F.; Hadian, J. Variability in the essential
oil content and composition in different plant organs of Kelussia odoratis-
sima Mozaff. (Apiaceae) growing wild in Iran. J. Essent. Oil Res., 2015,
27(4), 2 83-288.
http://dx.doi.org/10.1080/10412905.2015.1025917
[232] Momtazi, A.A.; Khorasgani, O.A.; Abdollahi, E.; Aliabadi, H.S.; Mortazae-
inezhad, F.; Sahebkar, A. Phytochemical analysis and cytotoxicity evaluation
of Kelu ssia odora tissima Mozaff. J. Acupunct. Meridia n Stu d., 2017, 10(3),
180-186.
http://dx.doi.org/10.1016/j.jams.2017.02.002 PMID: 28712477
[233] Vahdat, M.; Eslami, B.; Dabiri, H.; Khalilzadeh, M.; Tajbakhsh, M.; Lari-
jani, K. Essential oil composition of La ser t rilob um (L.) Borkh. Umbelliferae
herbs growing wild in Iran. J. Sci., 2006, 16, 20-23.
[234] Yassa, N.; Akhani, H.; Aqaahmadi, M.; Salimian , M. Essential oils from two
endemic species of Apiaceae from Iran. Z. Natforsch. C J. Biosci., 2003,
58(7-8), 4 59-463.
http://dx.doi.org/10.1515/znc-2003-7-802 PM ID: 129 39027
[235] Miran, M.; Esfahani, H.M.; Farimani, M.M .; Ahmadi, A.A.; Eb rahimi, S.N.
Essential oil composition and antibacterial activity of Levisticum officinale
Koch at different developmental stages. J. Essent. Oil Bear. Plants, 2018, 21,
1051-1055.
http://dx.doi.org/10.1080/0972060X.2018.1507759
[236] Sedghat, S.; Rustaiyan, A.; Kh osravi, M.; Masoudi, S. Chemical constituents
of the essential oil of Lomatopodium khorassanicum Mozaffarian-A species
endemic to Iran. J. Essent. Oil Res., 2003, 15(6), 416-417.
http://dx.doi.org/10.1080/10412905.2003.9698627
[237] Sefidkon, F.; Khajav i, M.S.; Mirza, M. Essential oil of Lomatopodium
staurop hyllum (Rech . f.) Rech. f. J. Essent. Oil Res., 1997, 9(4), 471 -472.
http://dx.doi.org/10.1080/10412905.1997.9700753
[238] Sefidkon, F. Essential oil Lomatopodium staurophyllum (Rech. f.) Rech. f.
Iran. Med. Arom. Plant Res., 2002, 11, 73-85. [in Persia n].
[239] Yari, M.; Aghjani, Z.; Masoudi, S.; Monfared, A.; Rustaiyan, A. Essential oil
of Pycnocycla flabellifolia. Boiss. and Malabalia secacule (Mill.) Boiss.
from Iran. Daru, 1999, 7(3), 1 -2.
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 99
[240] Akhlaghi, H. Chemical composition of the essential oil from stems and
flowers of Malab aila seca cul (Miller) Boiss. from Northeast Iran. J. Essent.
Oil. Bear. Plants, 2010, 13(1), 135-138.
http://dx.doi.org/10.1080/0972060X.2010.10643802
[241] Pimenov, M.G.; Maassoumi, A.A. Mozaffariana, a new genus of Um bellif-
erae from Iran. Bot. Z., 2002, 87(11), 95-101.
[242] Mahboubi, M.; Feizabadi, M.M.; Haghi, G.; Hosseini, H. Antimicrobial
activity and chemical composition of essential oil from Oliveria decumbens
Vent. Iran Med. Arom. Plant Res., 2008, 24(1), 5 6.
[243] Mirza, M.; Navaei, M.N. Essential oil of Oliveria decumbens Vent. Iran
Med. Arom. Plant Res., 2003, 15, 23-31.
[244] Hajimehdipoor, H.; Samadi, N.; Mozaff arian, V.; Rahimifard , N.; Sheibi, S.;
Pirali Hamadan i, M. Chemical com position an d antimicrobial activity of
Oliveria decu mbens volatile oil from west of Iran. Faslnamah-i Giyahan-i
Daruyi, 2010, 9, 39-44.
[245] Amiri, H.; Lari Yazdi, H.; Dosti, B.; Samsamnia, F. Essential oil composi-
tion and and anatomical study of Oliveria decumbens Vent. Iran Med. Aro m.
Plant Res., 2010, 26(4), 513-520.
[246] Mirzaei, H.H.; Faraji, R.; Hooshidari, F.; Bigdelo, M.; Rezaei, K. Evaluation
of phytochemical composition of Opsicarpium insignis Mozaff. from Iran by
nano scale injection techniques. Int. J. Chemtech Res., 2013, 5(4), 1911-
1914.
[247] Amin, G.H.; Sormaghi, M.H.S.; Nickavar, B.; Dorr aj, G. Study on micro-
scopical characteristic and composition of the volatile oil of fruit of Pet-
roselinum hortense Hoffm. Faslnamah-i Giyahan-i Daruyi, 200 7, 6(21) , 6 1-
66. [in Persian].
[248] Hassanpouraghdam, M.B. GC/EI-MS investigation of cultivated Pet-
roselinum hortense Hoffm. Fruit volatile oil from Northwest Iran. Chemija,
2010, 21(2-4), 12 3-126.
[249] Nickavar, B. Essential o il composition of fr uits and leaves of Petroselinum
hortense from Iran. J. Essent. Oil. Bear. Plants, 2008, 11(6), 603-608.
http://dx.doi.org/10.1080/0972060X .2008.1 0643674
[250] Bazgir, A.; Shaabani, A.; Sefidk on, F. Composition of the essential oil of
Peucedanum cervariifolium C. A. Mey. from Iran. J. Essent. Oil Res., 2005,
17(4), 3 80-381.
http://dx.doi.org/10.1080/10412905.2005.9698936
[251] Jaimand, K.; Ashorabadi, E.S.; Dini, M. Chemical constituents of the leaf
and seed oils of Peucedanum officinale L. cultivated in Iran. J. Essent. Oil
Res., 2006, 18(6), 670-671.
http://dx.doi.org/10.1080/10412905.2006.9699200
[252] Rustaiyan, A.; Ko meilizad eh, H.; Mojab, F.; Khazaie, A.; Masoudi, S.; Yari,
M. Essential oil composition of Peucedanum petiolare (DC) Boiss. from
Iran. J. Essent. Oil Res., 2001, 13(1), 49-50.
http://dx.doi.org/10.1080/10412905.2001.9699603
[253] Mirza, M.; Navaei, M.N.; Dini, M. Chemical composition of the essential
oils from the rhizome, leaf and seed of Peucedanum petiolare (DC.). Boiss.
Flav. Frags. J., 2005, 20(2), 196 -198.
http://dx.doi.org/10.1002/ffj.1400
[254] Alavi, S.H.R.; Yassa, N.; Fazeli, M.R.; Fouladi, F.; Salimi, L.; Ajani, Y. Th e
chemical constituents and antibacterial activity of essential oil of Peuceda-
num ruthenicum (M. Bieb.) Rochel (Umbelliferae) leaf. Faslnamah-i Giya-
han-i Daruyi, 2007, 6, 33-38.
[255] Alavi, S.H.R.; Yassa, N.; Fouladi, F.; Salimi, L.; Shafieei, A. Chemical
composition of the essential oils of Peucedanum ruthenicum (M. Bieb.)
leaves, flowers and fruits. Iran. J. Pharm. Res., 2006, 2, 143-147.
[256] Alavi, S.H.R.; Yassa, N.; Fazeli, M. R. Chemical constitution and antibacte-
rial activity of essential oil of Peucedanum ruthenicum M. Bieb. fruits. Iran.
J. Pharm. Res., 2005, 1(4), 213-218.
[257] Masoudi, S.; Akhgar, M.R.; Rustaiyan, A. Essential Oils of Peucedanum
scopariu m (Boiss.) Boiss. and Serotinocarpum insignis Mozaffarian. from
Iran. J. Essent. Oil Res., 2004, 16(2), 117-119.
http://dx.doi.org/10.1080/10412905.2004.9698667
[258] Askari, F.; Sefidkon, F.; Ahmadi, S.H. Introduction of one Iranian
Pimpinella species as a natural source for trans-α-bergamotene production.
Iran Med. Arom. Plant Res., 2006, 22, 121-127.
[259] Askari, F.; Sefidkon, F. Essential oil composition of Pimpinella affinis Le-
deb. from two localities in Iran. Flav. Frags. J., 2006, 21(5), 7 54-756.
http://dx.doi.org/10.1002/ffj.1619
[260] Verdian-rizi, M. Chemical composition and antimicrobial activity of
Pimpinella affinis Ledeb. essential oil growing in Iran. Int. J. Green. Pharm.,
2008, 2, 138-140.
http://dx.doi.org/10.4103/0973-8258.42728
[261] Masoudi, S.; Rustaiyan, A.; Mazloomifar, H. Composition of the essential
oils of Pimpinella anisactis Rech. f. and Pimpinella saxifraga L. from Iran.
J. Essent. Oi l Res., 2009, 21(2) , 146-148.
http://dx.doi.org/10.1080/10412905.2009.9700135
[262] Yamini, Y.; Bahramifar, N.; Sefidkon, F.; Saharkhiz, M.J.; Salamifar, E.
Extraction of essential oil from Pimpinella anisum using supercritical carbon
dioxide and comparison with hyd rodistillatio n. Na t. Prod. Res., 2008, 22(3),
212-218.
http://dx.doi.org/10.1080/14786410601130349 PMID: 18266149
[263] Askari, F.; Sefidkon, F.; Mirza, M. Quantitative and qualitative of essential
oil Pimpinella anisum. Res Recons., 1998, 38, 70-73.
[264] Askari, F. Investigasion of o il quantity and quality of Pimpinella anisum L.
from Fars and Isfahan Prov. Med. Arom. Plant Res., 1999, 1, 137-165.
[265] Delazar, A.; Biglari, F.; Esnaashari, S.; Nazemiyeh, H.; Talebpour, A.H.;
Nahar, L.; Sarker, S.D. GC-MS analysis of the essential oils, and the isola-
tion of phenylpropanoid derivatives from the aerial parts of Pimpinella
aurea. Phytochemistry, 2006, 67(19), 2176-2181.
http://dx.doi.org/10.1016/j.phytochem.2006.06.012 PMID: 16857219
[266] Askari, F.; Sefidkon, F.; M ozafarian, V. Essential oil composition of
Pimpinella aurea DC. from Iran. Flav. Frags. J., 2005, 20(2), 115-117.
http://dx.doi.org/10.1002/ffj.1416
[267] Asgari, F.; Sefidkon, F.; Mirza, M.; Meshkizadeh, S. Essential oil composi-
tion of Pimpinella aurea DC. from two locality in Tehran provinces. Iran
Med. Arom. Plan t Res., 2003, 19(3), 239-254.
[268] Ghomi, J.S.; Bidgoli, Z.D.; Batooli, H. Study of the oil constituents extracted
from aerial parts of Pimpinella aurea DC. from central Iran. J. Essent. Oil
Res., 2009, 21(5), 435-437.
http://dx.doi.org/10.1080/10412905.2009.9700211
[269] Fakhari, A.R.; Sonboli, A. Essen tial oil compo sition of Pimpinella barbata
(DC.) Boiss. from Iran. J. Essent. Oil Res., 2006, 18(6), 679-681.
http://dx.doi.org/10.1080/10412905.2006.9699204
[270] Askari, F.; Sefidkon, F.; Teimo uri, M. Essential oil composition of the dif-
ferent parts of Pimpinella barbata (DC.) Boiss. in Iran. J. Essent. Oil Res.,
2010, 22(6), 605-608.
http://dx.doi.org/10.1080/10412905.2010.9700411
[271] Mozaffarian, V. Two new genera of Iranian Umbelliferae. Bo t. Z., 2003,
88(2), 8 8-94.
[272] Mirza, M.; Navaei, M.N.; Khoram, M.T. Chemical composition of the essen-
tial o ils of Pimpinella deverroides Boiss. (Boiss.,) from Iran. J. Essent. Oil.
Bear. Plants, 2007, 10(5), 386-390.
http://dx.doi.org/10.1080/0972060X.2007.10643571
[273] Askari, A.; Ahmadi, S. meshkinzadeh , S.; Naderi, M.; Jahromi, A.B. Chemi-
cal composition of Pimpinella dverroides (Boiss.) Boiss. Essential oil at dif-
ferent stages of growth. Iran Med. Arom. Plant Res., 2010, 26(1), 64-73.
[274] Asgari, F.; Sefidk on, F.; Meshkizadeh, S. Essential oil composition of
Pimpinella eriocarpa Banks & Soland. Iran Med. Arom. Plant Res., 2005,
21(1), 5 1-63.
[275] Askari, F.; Sefidk on, F.; Meshkizadeh, S. Essential oil composition of
Pimpinella eriocarpa Banks & Soland from Iran. Iran. J. Pharm. Res., 2004,
3, 81-82.
[276] Askari, F.; Teimouri, M.; Sefidkon, F. Chemical com position and antimicro-
bial activity of Pimpinella kotschyana boiss. oil in Iran. J. Essent. Oil Bea r.
Plants, 2011, 14(1), 124-13 0.
http://dx.doi.org/10.10 80/0972060X.2011.10643911
[277] Askari, F.; Ahmadi, Sh. Study of chem ical composition of the Pimpinella
olivierioides Boiss. & Hausskn. essential oils from Iran. Iran J. Med. Aroma.
Pl., 2017, 33, 185-195.
[278] Askari, F.; Sefidkon, F.; Teimo uri, M.; Nanaei, S.Y. Chemical composition
and antimicrobial activity o f the essential oil of Pimpinella puberula (DC.).
Boiss. J. Agr. Sci. Tech., 2009, 11, 431-438.
[279] Askari, F.; Sefidkon, F. Essential oil composition of Pimpinella tragioides
(Boiss.) Benth. et Hook, from Iran. J. Essent. Oil Res., 2007, 19(1), 54-56.
http://dx.doi.org/10.1080/10412905.2007.9699231
[280] Askari, F.; Sefidkon, F. Volatile components of Pimpinella tragium Vill.
from Iran Iran. J. Pharm. Res., 2005, 2, 117-120.
[281] Meshkatalsadat, M.H.; Mirzaei, H.H. Chemical compositions of the essential
oils of stems, leaves and flowers of Prangos acaulis (Dc) Bornm. Pak. J.
Biol. Sci., 2007, 10(16), 2775-2777.
http://dx.doi.org/10.3923/pjbs.2007.2775.2777 PMID: 19070103
[282] Mirzaei, H.H.; Meshkatalsadat, M.H.; Soheilivand, S.D. Determination of
essential oil composition of Prangos acaulis (DC) Bornm. obtained by hy-
drodistillation and supercritical fluid extraction methods. J. Appl. Sci., 2007,
7(17), 2535-2538.
http://dx.doi.org/10.3923/jas.2007.2535.2538
[283] Meshkatalsadat, M.H.; Bamoniri, A.; Batooli, H. The bioactive and volatile
constituents of Prangos acaulis (DC) Bornm extracted using hydrodistilla-
tion and nano scale injection tech niques. Dig. J. Nanomater. Biostruct, 2010,
5(1), 263-266.
[284] Mirzaei, H.H.; Ramezani, Z. Volatile components of the essential oil of
Prangos asperula from West of Iran. Asian J. Chem., 2008, 20(5), 3763-
3766.
[285] Sajjadi, S.E.; Mehrega n, I. Chemical co mposition of the essential oil of
Prangos asperula Boiss. subsp. h aussknechtii (Boiss.) H errnst. et Heyn
fruits. Daru, 2003, 11(2), 79-81.
[286] Sajjadi, S.E.; Zeinvand, H.; Shokoohinia, Y. Isolation and identification of
osthol from the fruits and essential oil composition of the leaves of Prangos
asperula Boiss. Res. Pharm. Sci., 2009, 4(1), 19-23.
[287] Amiri, H. Essential oil variation of Prangos ferulacea Lindl. in different
stage of plant gro wth. Iran Med. Arom. Pla nt Res., 2007, 23, 12 1-127.
[288] Sefidkon, F. Essential oil composition of Prangos ferulacea (L.) Lindl.
(Aerial parts and seeds). Iran Med. Arom. Plant R es., 2000, 5, 47-60.
[289] Sefidkon, F.; Khajavi, M.S .; Malack pour, B. An alysis o f the oil of Prangos
ferulacea (L.) . Lindl. J. Essent. Oil. Res., 1998, 10(1), 81-82.
http://dx.doi.org/10.1080/10412905.1998.9700845
[290] Massumi, M.A.; Fazeli, M.R.; Alavi, S.H.R.; A jani, Y. Chemical constitu-
ents and antibacterial activity of essential oil of Prangos ferulacea (L.) Lindl.
Fruits. Iran. J. Pharm. Sci., 2007, 3(3), 171-176.
100 Current Organic Chemistry, 2020, Vol. 24, No. 00 Akaberi et al.
[291] Amiri, H. Chemical composition and antibacterial activity of essential oil o f
Prangos ferulacea (L.). Lin dl. J. Med. Plants, 2007, 21, 36-41.
[292] Razavi, S.M.; Nazemiyeh , H.; Zarrin i, G.; Asha rii, S.A.; Deh ghan, G.
Chemica l co mpositi on an d antimic robial activity of essential oil of Prangos
ferulaceae (L .) Lindl from Iran. Nat . Prod. Res., 2010, 24(6), 530-533.
http://dx.doi.org/10.1080/14786410802379539 PMID: 19452346
[293] Masoudi, S.; Aghjani, Z.; Yari, M.; Rustaiyan, A. Volatile constituents of
Prangos latiloba Korovin. J. Essent. Oil Res., 1999, 11(6), 767-768.
http://dx.doi.org/10.1080/10412905.1999.97120 16
[294] Akhlaghi, S.H.; Hashemi, P . Chemical compositions of the essential oils of
stems, lea ves, and roots of Prangos latiloba. Chem. Nat. Compd., 2005,
41(5), 5 42-544.
http://dx.doi.org/10.1007/s10600-005-0201-0
[295] Razavi, S.M. Chem ical and allelopathic analyses of essential oils of Prangos
pabularia Lindl. from Iran. Nat. Prod. R es., 2012, 26(22), 2148-2151.
PMID: 2211710 9
[296] Nazemiyeh, H.; Razavi, S.M.; Hajiboland, R.; Delazar, A.; Asharii, S.E.;
Bamdad , R.; Nahar, L.; Sarker, S.D. Compo sition of the essenti al oils of
Prangos scabra fruits and inflorescence from Iran. Chem. Nat. Com pd.,
2007, 43(6), 736-737.
http://dx.doi.org/10.1007/s10600-007-0251-6
[297] Mazloomifar, H.; Bigdeli, M.; Tehrani, M.S.; Rustaiyan, A.; Masoudi, S.;
Ameri, N. Essential oil of Prangos uloptera DC. from Iran. J. Essent. Oil
Res., 2004, 16(5), 415-416.
http://dx.doi.org/10.1080/10412905.2004.9698758
[298] Sefidkon, F.; Navaii, M.N. Chemical comp osition of the oil of Prangos
uloptera DC. J. Essent. Oil Res., 2001, 13(2), 84-85.
http://dx.doi.org/10.10 80/10412905.2 001.96 99620
[299] Nazemiyeh, H.; Razavi, S.M.; Delazar, A .; Hajiboland , R.; Mozaffarian, V.;
Nahar, L.; Sarker, S.D. Essential oil composition o f the umbels and f ruit of
Prangos uloptera DC. Nat. Prod. Commun., 2007, 2(1), 89-91.
http://dx.doi.org/10.1177/1934578X0700200118
[300] Razavi, S.M.; Nazemiyeh, H.; Delazar, A.; Asnaashari, S.; Hajiboland , R.;
Sarker, S.D.; Om idi, Y. Chem ical variation of the essential oil of Prangos
uloptera DC. at different stages of growth. Nat. Prod . Res., 2011, 25(7 ), 663-
668.
http://dx.doi.org/10.1080/14786410802270811 PMID: 19606386
[301] Rahimi-Nasrabadi, M.; Gholivan, M.B.; Batooli, H.; Vatanara, A. Chemical
compositin of the essential oil from leaves and flowering aerial parts of
Psammogeton canesens (CD.) Vake from Iran. Faslnamah-i Giyahan-i Da-
ruyi, 2009, 8(3) , 82-86. [in Persian].
[302] Gholivand, M.B.; Rahimi-Nasrabadi, M.; Batooli, H.; Ebrahimabadi, A.H.
Chemica l com position and antioxid ant activities of the essent ial oil and
methanol extracts of Psammogeton canescens. Food Chem. Toxicol., 20 10,
48(1), 2 4-28.
http://dx.doi.org/10.1016/j.fct.2009.09.007 PMID: 19748545
[303] Bamoniri, A.; M azooch i, A.; Mirjalili, B.F. Study of the bioactiv e and fra-
grant constituents extracted from leaves and aerial parts of Psammogeton
canescens (DC.) Vatke from central Iran by nano scale injection. Dig. J.
Nanoma ter. Biost ruct., 2009, 4(3) , 411-414.
[304] Teimouri, M.B.; Shaabani, A.; Sefidkon, F. Composition of the essential oils
of Pycnocycla aucherana Decne. ex Boiss. var. aucherana and Pycnocycla
musiformis Hedge et Lamond from Iran. J. Essent. Oil Res., 2005, 17(5),
473-474.
http://dx.doi.org/10.1080/10412905.2005.9698967
[305] Alimirzaloo, F.; Asgarpanah, J.; Asgarpanah, J. Chemical composition of the
volatile oils from the fruits and seeds of the medicinal plant Pycnocycla
aucherana Decne. ex Boiss. from Iran. Farmacia, 2017, 65(4), 591-595.
[306] Abbasi, E.; Ghorban Dadr as, O.; Asgarpanah, J. Essential oil composition of
the endemic species Pycnocycla bashagardiana Mozaff. J. Essent. Oil Res.,
2014, 26(5), 363-366.
http://dx.doi.org/10.1080/10412905.2014.917338
[307] Alizadeh, A.; Abdollahzadeh, H. Essential oil constituents and antimicrobial
activity of Pycnocycla bashagardiana Mozaff. from Iran. Nat. Prod. Res.,
2017, 31(17), 2081-2084.
http://dx.doi.org/10.1080/14786419.2016.1274890 PMID: 28092983
[308] Asgarpanah, J.; Karbalaei Mohammad, N.; Behbahani, P. Essential oil com-
position of the endemic species of Pycnocycla caespitosa Boiss. & Hausskn.
J. Essent. Oil. Bear. Plants, 2014, 17(4), 633-637.
http://dx.doi.org/10.10 80/0972060X.2014.884764
[309] Javidnia, K.; Miri, R.; Soltani, M .; Khosravi, A.R. Constitu ents of the essen-
tial oil of Pycnocycla nodiflora Decne. ex Boiss. From Iran. J. Essent. Oil
Res., 2008, 20(6), 502-504.
http://dx.doi.org/10.1080/10412905.2008.9700070
[310] Nasr, M.; Asgarpanah, J. Volatile constituents of the seeds and fruit of
Pycnocycla nodiflora. Nat. Prod . Commun ., 2014, 9(12) , 1781-1782.
http://dx.doi.org/10.1177/1934578X1400901231 PMID: 25632484
[311] Ahmadi, L.; Mirza, M. Volatile constituents of the essential oil of Pycnocy-
cla spinosa Decne. & Boiss. from I ran. J. Essent. Oil Res., 1998, 10(2), 197-
198.
http://dx.doi.org/10.1080/10412905.1998.9700878
[312] Asghari, G.; Houshfar, G.; Mahmoudi, Z. Composition o f the essential oil of
Pycnocycla spinosa decne. ex. Boiss. From Isfahan. Daru, 2001, 9(3-4), 28-
29.
[313] Sadraei, H.; Asghari, G.; Naddafi, A. Relaxant effect of essential oil and
hydro-alcoholic extract of Pycnocycla spinosa Decne. ex. Boiss. on ileum
contractions. Phytother. Res., 2003, 17(6), 645-649.
http://dx.doi.org/10.1002/ptr.1217 PMID: 12820233
[314] Asghari, G.; Houshfar, G.; Mahmoudi, Z. Seasonal variation of mono- and
sesquiter penes in th e essential oil of Pycnocycla spinosa Decne. Ex. Boiss.
Iran. J. Pharm. Res., 2002, 1, 61-63.
[315] Eghtesadi, F.; Mehrdad, M.; Sonboli, A. Essential oil composition of Rhab-
dosciadium aucheri from Iran . Chem. Nat. Co mpd., 2006, 42(4), 4 89-490.
http://dx.doi.org/10.1007/s10600-006-0189-0
[316] Fakhari, A.R.; Sonboli, A.; Hey dari, R. Composition of the essential oil of
Rhabdosciadium stra usii from Iran. Chem. Nat. Compd., 2005, 41(4), 413-
414.
http://dx.doi.org/10.1007/s10600-005-0164-1
[317] Navaei, M.N.; Mirza, M. Chemical composition of the essential oils from
fruits and leaves of Scaligeria assyriaca Freyn & Bornm. J. Med. Arom.
Plants, 2009, 25(3), 398-40 2.
[318] Rustaiyan, A.; Maso udi, S.; Aghjani, Z. The essential oil of Semenovia
suffrutico sa (Freyn et Bornm.). Manden. J. Essent. Oil. Res., 1999, 11(3),
365-366.
http://dx.doi.org/10.1080/10412905.1999.9701156
[319] Mottaghipisheh, J.; Moghaddam, M.A.; Valizadeh, J.; Maghsoudlou, M.T.;
Iriti, M. Essential oil constituents and biological activities of leaf extracts of
Semenovia suffruticosa from Iran. Rec. Nat. Prod., 2017, 11, 395-400.
[320] Bamoniri, A.; Ebrah imabadi, A.H.; Mazo ochi, A.; Behpour, M.; Jookar
Kashi, F.; Batooli, H. Antioxidant and antimicrobial activity evaluation and
essential oil analysis of Semenovia tragioides Boiss. from Iran. Food Chem.,
2010, 122(3), 553-558.
http://dx.doi.org/10.1016/j.foodchem.2010.03.009
[321] Habibi, Z.; Masoudi, S.; Rustaiyan, A. Chemical composition of the essential
oil of Seseli tortuosum L. ssp. Kiabii Akhani. from Iran. J. Essent. Oil Res.,
2003, 15(6), 412-413.
http://dx.doi.org/10.1080/10412905.2003.9698625
[322] Esmaili, A.; Amiri, H.; Rustaiyan, A.; Masoudi, S.; Anarak i, M.T. The
essential oils of two umbelliferae, Zosimia absinthifolia (Vent.) Link. and
Smyrniopsis aucheri Boiss. gr woing wild in Iran. J. Essent. Oil Bear. Plants,
2010, 13(1), 73-77.
http://dx.doi.org/10.1080/0972060X.2010.10643793
[323] Esmaili, A.; Amiri, H. The study of quantitative and qualitative changes of
essential oil from Smyrnium cordifolium Boiss. in Lurestan Prov. Fasl-
namah-i Giyahan-i Daruyi, 200 6, 5(20), 36-41.
[324] Amiri, H.; Nejad, R.A.K.; Rustaiyan, A. Chemical composition of essential
oil and the study of secretory anatomy from Smyrnium cordifolium Boiss.
Pajouhesh-Va-Sazand eghi, 2007, 74, 11-16.
[325] Amiri, H.; Nejad, R.A.K.; Masou d, S.; Chalabian , F.; Rustaiyan, A. Compo-
sition and antimicrobial activity of the essential oil from stems, leaves, fruits
and roots of Smyrnium cordifolium Boiss. from I ran. J. Essent. Oil Res.,
2006, 18(5), 574-577.
http://dx.doi.org/10.1080/10412905.2006.9699172
[326] Amiri, H.; Nejad, R.A.K.; Rustaiyan, A.; Meshk atalsadat, M.H. The study of
quantitative and qualitative changes of essential oil from Smyrnium cordifo-
lium Boiss . in different growth stages. Pajouhesh-Va-Sazandegh i, 2007, 73,
195-199.
[327] Salehi, P.; Nejad-Ebrahimi, S.; Sefidkon, F. Essential oil composition of
Stenotaenia nudicaulis Boiss. from Iran. J. Essent. Oil Res., 2006, 18 (2),
162-163.
http://dx.doi.org/10.1080/10412905.2006.9699054
[328] Sonboli, A.; Azizian, D.; Yousefzadi, M.; Kan ani, M.R.; Mehrabian, A.R.
Volatile constituents and antimicrobial activity of the essential oil of
Tetrataenium lasiopetalum (Apiaceae) from Iran. Flav. Frags. J., 2007,
22(2), 1 19-122.
http://dx.doi.org/10.1002/ffj.1767
[329] Taherkhani, M.; Rustaiyan, A. Chemical constituents, antimicrobial activity,
antioxidant and total ph enolic content within the leaves of Thecocarpus mei-
folious Boiss., Umbelliferae herbs growing wild in Iran. Asian J. Chem.,
2013, 25(13), 7173-7176.
http://dx.doi.org/10.14233/ajchem.2013.14492
[330] Bigdeli, M.; Rusta iyan, A.; Masoud i, S. Composition of t he essential oil of
Torilis arvensis (Huds.) link, from Iran. J. Essent. Oil Res., 2004, 16(6), 526-
527.
http://dx.doi.org/10.1080/10412905.2004.9698788
[331] Yassa, N.; Golestani, R.; Khaniki, G.B. Identification of chemical com-
pounds in essential oil of Zeravsch ania membranacea (Boiss.). M. Pimenov.
J. Med. Plants, 2005, 4(14), 7-11.
[332] Pirbaloutia, A.G.; Hossaynia, I.; Shirm ardic, H. Essential oil variatio n,
antioxidant and antibacterial activity of mountain fennel (Zaravschanica
membranacea (Boiss.) M . Pimen.). Ind. Crops Prod., 2013, 50, 443-448.
http://dx.doi.org/10.1016/j.indcrop.2013.07.053
[333] Shafaghat, A. Chemical constituents of the essential o il of Zosima a bsinthifo-
lia (Vent.) . Link. J. Med. Plants, 2007, 6(22), 34-38.
[334] Shafaghat, A. Comparison of chemical composition of essential o il and N-
hexane extracts of Zosimia absinthifolia (Vent.). Link. J. Essent. Oil. Bear.
Plants, 2011, 14(4), 490-49 3.
http://dx.doi.org/10.1080/0972060X.2011.10643606
Review of the Esse ntial Oil Compo sition of Iranian Endemic Curre nt Organic Chem istry, 2020, Vol. 24 , No. 00 101
[335] Javidnia, K.; Miri, R.; Soltani, M.; Khosra vi, A.R. Co nstituen ts of the oil of
Zosima absinthifolia (Vent.) Link. from I ran. J. Essent. Oil Res., 2008, 20(2),
114-116.
http://dx.doi.org/10.1080/10412905.2008.9699968
[336] Amiri, H. Quantitative and qualitative changes of essential oil of Zomeria
absinthifolia (Vent.) Link. In different phonological statages. Iran. J. Med.
Arom. Plan ts, 2008, 24(2), 217-224.
[337] Razavi, S.M.; Ebrahimi, S.N. Chemica l co mpositi on, allelop atic and antimi-
crobial potentials of the essential oil of Zosima absinthifolia (Vent.) Link
fruits from Iran. Nat. Prod. R es., 2010, 24(12) , 1125-1130.
http://dx.doi.org/10.1080/14786 4109027261 42 PMID: 19 606381
[338] Heshmati Afshar, F.; Bakhshandeh, M.M.; Mohamadzadeh, M.; Asnaashari,
S.; Khodaie, L. Chemical compositio n and an tibacterial activity of th e essen-
tial oil of Zosimia absinthifolia growing in east Azerbaijan (Iran). Pharm.
Sci., 2017, 23, 324-329.
http://dx.doi.org/10.15171/PS.2017.47
[339] Kazemizadeh, Z.; Yousefzadi, M.; Son boli, A. Volatile constituents of
Zosimia rad ians Boiss. and Hohen from Iran. Nat. Prod. Res., 2011, 25(1 0),
1004-1007.
http://dx.doi.org/10.1080/14786419.2010.534736 PMID: 21644181
[340] Salehi, B.; Upadh yay, S.; Orhan, I.E.; Jugran , A.K.; Jayaweera, S.L.D.; Dias,
D.A.; Sharopov, F.; T aheri, Y.; Martins, N.; Baghalpour, N.; Cho, W.C.;
Rad, J.S. Th erapeu tic poten tial of α- and β-pinene: a miracle gift of nature.
Biomolecules, 2019, 9(11), 738.
http://dx.doi.org/10.3390/biom9110738 PMID: 31739596
[341] Zhao, M.; Du, J. Anti-inflamm atory and p rotective effects of D-carvone o n
lipopolysaccharide (LPS)-induced acute lung injury in mice. J. King Saud
Univ. Sci., 2020, 32, 1592-1596.
http://dx.doi.org/10.1016/j.jksus.2019.12.016
[342] Kozioł, A.; Stryjewska, A.; Librowski, T.; Sałat, K.; Gaweł, M.;
Moniczewski, A.; Lochyński, S. An overview of the pharmacological proper-
ties and po tential applications of natural monoterpenes. Mini Rev. Med.
Chem., 2014, 14(14), 11 56-1168.
http://dx.doi.org/10.2174/1389557514666141127145820 PMID: 25429661
[343] Schürmann, M.; Oppel, F.; Gottschalk , M.; Büker, B.; Jantos, C.A.; Knabb e,
C.; Hütten , A.; Kaltschmidt, B.; Ka ltschmid t, C.; Sudhoff, H. The therapeutic
effect of 1,8-cineol on pathogenic bacteria species pre sent in chronic rhinosi-
nusitis. Front. Microbiol., 2019, 10, 2325.
http://dx.doi.org/10.3389/fmicb.2019.02325 PMID: 31708879
[344] Bruchhage, K.L.; Koen necke, M.; Drenckhan , M.; Martin, K.P.; Pries, R.;
Wollenb erg, B. 1,8-cineol inhibits the Wnt/β-catenin signaling pathway
through GSK-3 dephosphorylation in nasal polyps of chronic rhinosinusitis
patients. Eur. J. Pharmacol., 2018, 835, 140-146.
http://dx.doi.org/10.1016/j.ejphar.2018.07.060 PMID: 30081034
[345] Li, Y.; Lai, Y.; Wang, Y.; Liu, N.; Zhang, F.; Xu, P. 1, 8-Cineol protect
against influenza-virus-induced pneumon ia in mice. Inflammation, 2016,
39(4), 1 582-1593.
http://dx.doi.org/10.1007/s10753-016-0394-3 PMID: 27351430
[346] de Lucena, J.D.; Filho, C.V.J.G.; da Costa, R.O.; de Araújo, D.P.; Lima,
F.A.V. Neves, K.R.T.; Viana, G.S.B. L-linalol exerts a neuroprotective ac-
tion on hemiparkinsonian rats. Naunyn Schmiedebergs Arch. Pharma col.,
2020, 2020, 1-12.
http://dx.doi.org/10.1007/s00210-019-01793-1
[347] Kim, M.G.; Kim, S.M.; Min, J.H.; Kwon, O.K.; Park, M.H.; Park, J.W.; Ahn,
H.I.; Hwang, J.Y.; Oh, S.R.; Lee, J.W.; Ahn, K.S. Anti-inf lammatory effects
of linalool on ovalbumin-induced pulmonary inflammation. Int. Immuno-
pharmacol., 2019, 74105706
http://dx.doi.org/10.1016/j.intimp.2019.105706 PMID: 31254955
[348] Youssefi, M.R.; Moghaddas, E.; Tabari, M.A.; Moghadamnia, A.A.;
Hosseini, S.M.; Farash, B.R.H.; Ebrahimi, M.A.; Mousavi, N.N.; Fata, A.;
Maggi, F.; Petrelli, R.; Dall’Acqua, S.; Benelli, G.; Sut, S. In vitro and in
vivo effectiveness of carvacrol, thymol and linalool against Leish mania in-
fantum. Molecules, 2019, 24(11) , 24.
http://dx.doi.org/10.3390/molecules24112072 PMID: 31151304
[349] Prakash, A.; Vadivel, V.; Rubini, D.; Nithyanand, P. Antibacterial and anti-
biofilm activities of linalol nanoemulsions against Salmonella typhimurium.
Food Biosci., 2019, 28, 57-65.
http://dx.doi.org/10.1016/j.fbio.2019.01.018
[350] Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; So uto, E.B. Linalool
bioactive properties and potential applicability in drug delivery systems. Col-
loids Surf. B Biointerfa ces, 2018, 171, 566-57 8.
http://dx.doi.org/10.1016/j.colsurfb.2018.08.001 PMID: 30098535
[351] Liu, S.; Zhao, Y.; Cui, H. F.; Cao, C.Y.; Zhang, Y.B. 4-Terpineol exhibits
potent in vitro and in vivo anticancer eff ects in Hep-G2 h epatocellular carci-
noma cells by suppressing cell migration and inducing apoptosis and sub-G1
cell cycle arrest. J. BUON, 2016, 21(5), 1195 -1202.
PMID: 2783762 3
[352] Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene:
a review of its biological properties. Open Chem., 2018, 16, 349-361.
http://dx.doi.org/10.1515/chem-2018-0040
[353] Costa, M.F.; Durço, A.O.; Rabelo, T.K.; Barreto, R.S.S.; Guimarã es, A.G.
Effects of Carvacrol, Thymol and essential oils conta ining such mono terpe-
nes on wound healing: a systematic review. J. Pharm. Pharmacol., 2019,
71(2), 1 41-155.
http://dx.doi.org/10.1111/jphp.13054 PMID: 30537169
[354] Memar, M.; Raei, P.; Alizadeh, N.; Aghdam, M.A.; Kafil, H. Carvacrol and
thymol: strong antimicrobial agents against resistant isolates. Rev. Med. Mi-
crobiol., 2017, 28(2), 63 -68.
http://dx.doi.org/10.1097/MRM.0000000000000100
[355] Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers,
carvacrol and thymol. Crit. Rev. Food Sci. Nutr., 2019, 2019, 1-12.
http://dx.doi.org/10.1080/10408398.2019.1675585
[356] Islam, M.T.; Khalipha, A.B.R.; Bagchi, R.; Mondal, M.; Smrity, S.Z.; Uddin,
S.J.; Shilpi, J.A.; Rouf, R. Anticancer activity of thymol: a literature-based
review and docking study with emphasis on its anticancer mechanisms.
IUBMB Life, 2019, 71(1), 9-19.
http://dx.doi.org/10.1002/iub.1935 PMID: 30308112
[357] Moradi, J.; Abbasipour, F.; Zaring halam, J.; Maleki, B.; Ziaee, N.; Kho-
dadoustan, A.; Janahmadi, M. Anethole, a medicinal plant compound, de-
creases the production of pro-In flamm atory TNF-alpha and IL-1beta in a rat
model of LPS-induced periodontitis. Iran. J. Pharm. Res., 2014, 13(4), 1319-
1325.
PMID: 2558732 1
[358] Marinov, V.; Kuzmanova, S.V. Review on the pharmacological activities of
anethole. Scripta Scientifica Pharmaceutica, 2015, 2, 14.
http://dx.doi.org/10.14748/ssp.v2i2.1141
[359] Filho, R.P.; Pastrello, M.; Camerlingo, C.E.P.; Si lva, G.J.; Agostinho, L.A.;
de Souza, T.; Magri, F.M.M.; Ribeiro, R.R.; Brandt, C.A.; Polli, M.C. The
anti-inflammatory activity of dillap iole and some semisynthetic analogues.
Pharm. Biol., 2011, 49(11), 1173-1179.
http://dx.doi.org/10.3109/13880209.2011.575793 PMID: 22014265
[360] Kwon, Y.S.; Choi, W.G.; Kim, W.J.; Kim, W.K.; Kim, M.J.; Kang, W.H.;
Kim, C.M. Antimicrobial constituents of Foeniculum vulgare. Arch. Pharm.
Res., 2002, 25(2), 154-157.
http://dx.doi.org/10.1007/BF02976556 PMID: 12009028
DISCLAIMER: The above article has been published in Epub (ahead of print) on the basis of the materials provided by the author. The Edito-
rial Department reserves the right to make minor modifications for further imp rovement of the manuscript.
... Apiaceae plants are known for their production of aromatic compounds, particularly volatile oils, which contribute to their distinctive flavours and medicinal properties. These volatile oils are often rich in compounds such as terpenes, phenylpropanoids, and flavonoids, which have been extensively studied for their pharmacological activities (Amiri and Joharchi, 2016;Bahmankar et al., 2019;Mohammadhosseini et al., 2019;Akaberi et al., 2020). Furthermore, Apiaceae plants have significant ethnobotanical importance, being traditionally used by various ethnic groups for culinary, medicinal, and ritualistic purposes, and several species are consumed as wild vegetables or spices due to their high nutritional and medicinal value (Li et al., 2018). ...
Article
Full-text available
Introduction Ferula is a traditional, edible, and important medicinal plant with high economic value. The distinction between edible and non-edible Ferula remains unclear. Methods In this study, headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) non-targeted metabolomics techniques were used to systematically and comprehensively analyse secondary metabolites in the leaves and roots of four species of Ferula, considering their edibility. Results A total of 166 leaf volatile organic compounds (VOCs) and 1,079 root metabolites were identified. Additionally, 42 potential VOCs and 62 differential root metabolites were screened to distinguish between edible and non-edible Ferula. Twelve volatile metabolites were specific to F. feurlaeoides, and eight compounds were specific to the three edible Ferula species. The results showed that compounds containing sulphur, aldehydes, and ketones, which produce pungent odours, were the primary sources of the strong odour of Ferula. The root differential metabolites include 13 categories, among which the high concentration group is organic acids, amino acids, terpenoids and fatty acids. The bioactive metabolites and VOCs in the roots exhibited species-specific characteristics. VOCs with various odors were linked to the distribution of root metabolites in both edible and non-edible Ferula plants. The screened root markers may contribute to the formation of characteristic VOCs. Discussion This study identified the difference in flavour between edible and non-edible Ferula plants and, for the first time, demonstrated the contribution of the efficacy of Ferula root to the unique flavour of the above-ground parts of Ferula. These results provide a theoretical basis for selecting Ferula for consumption and help evaluate the quality of different species of Ferula. Our findings may facilitate food processing and the further development of Ferula.
... It has a worldwide distribution and includes economically important members such as food, medicinal plants, herbs, and spices. The Apiaceae family has a distinctive pungent or aromatic smell, which is attributed to the presence of essential oils or oleoresins (Amiri and Joharchi, 2016;Mohammadhosseini et al., 2019;Akaberi et al., 2020). The genus Ferula is derived from the Latin means rod and belongs to the aromatic plant family Apiaceae (Umbelliferae) (Fernch, 1971). ...
... Several s tudies have inve s tigated the essential oil composition of D. anethifolia revealing that the long chain oxygenated hydrocarbons such as decanal, dodecanal, and decanol con s titute the major compounds in the essential oil. In addition, monoterpenes including α-pinene, α-thujene, linalool, cis-citronellyl acetate, and oxygenated sesquiterpenes such as chrysanthenyl acetate have been reported as the main con s tituents of the essential oil [7]. In Iranian traditional medicine, the aerial parts of D. anethifolia have been used to relieve various pains such as headaches, back pain, and colic pain. ...
Article
Full-text available
Ducrosia anethifolia (Apiaceae) is a medicinal aromatic plant distributed in Iran and Afghanistan. This research aims to investigate the composition of the plant essential oil, determine the total flavonoid and phenolic contents, and evaluate its antioxidant activities after ethanol foliar feeding. For this purpose, 0, 10, 20, 40, and 80% v/v of aqueous ethanol solutions were sprayed on different batches of the plants. Then, the essential oils were obtained using water distillation. Compounds were analyzed by Gas chromatography-mass spectrometry technique(GC-MS) using a validated method. The method was validated as per the ICH guidelines for linearity, precision, accuracy, robustness, LOD, and LOQ. The total contents of phenols and flavonoids were measured using spectrophotometric methods. The antioxidant activity was evaluated using DPPH and FRAP assays. The results showed that n-decanal, cis-verbenyl acetate and dodecanal were the major compounds in all treatments. However, alcohol could cause significant differences in the essential oils qualitatively and quantitatively. The results showed that 40% ethanol could increase the number of phenolics and flavonoids and consequently the antioxidant activity. Thus, ethanol foliar feeding can be used as an appropriate approach to increase the essential oil of D. anethifolia as well as its phenolic and flavonoid contents.
... As part of a phytochemical project of the endemic Iranian plants and their screening for new antibacterial natural products, we investigated an n-hexane and methanolic extracts from the roots of F. haussknechtii. The terpenoid compounds from F. haussknechtii ( Figure 1) were purified and identified and finally their antibacterial effects on Gram-positive and Gram-negative bacteria were measured (Akaberi et al. 2020;Mohammadhosseini et al. 2021). ...
Article
The roots of F. haussknechtii are used by local people in order to treat wounds and urinary infections. Ferula species are rich in bioactive compounds with biological effects. In line with our previous studies about screening antibacterial natural products, five terpenoid derivatives were purified from Ferula haussknechtii. The separation and purification were performed by column chromatography. Their structures were determined by 1 D and 2 D NMR as hawraman 8-p-hydroxybenzoyl-tovarol (1), ferutinin (2), lancerotriol 6-(p-hydroxybenzoate) (3), chimganin (4), and chimgin (5). Then, the antibacterial effects of the purified compounds were evaluated by measuring their MIC values against Gram-positive and Gram-negative bacteria. The results showed that compound (1) had the most antibacterial effect on Bacillus cereus (MIC = 16 µg/mL). The antibacterial effects of F. haussknechtii compounds are in line with their local application and it is suggested that further studies should be conducted to determine their mechanism of action.
... In the unprocessed parts of the plant the high content of essential oil in the seed stage, and stems in seeding stage, is due to plant growth and development, and the increased essential oil synthesis ability and enhancement adoption of survival mechanisms in the late stages of growth, as mentioned above, did not occur during the seedling and stem stages. As seen in plants of the Apiaceae family, the essential oil content is higher in the seeds 25 . ...
Article
Full-text available
Ducrosia anethifolia L., an aromatic plant of the Apiaceae family, is traditionally used in Iran to improve the odor of foods and drinks. Different biological activities have been reported for this plant such as antibacterial, cytotoxic, antiproliferative, antianxiety, and sedative. The essential oil profile of D. anethifolia was investigated in different plant situations (phenological stages, stalks and fresh aerial parts in seed stage, and powdered and non-powdered seeds in 2018 and 2019). The essential oil was isolated by hydro-distillation using a Clevenger apparatus and was analyzed by gas chromatography. Decanal was the main compound of essential oil in floral-budding stage (40.26%). However, through plant growth and development, its amount decreased and the amount of 2-dodecenal-E increased (up to 64.51% in fresh seed stages). In the seeds, chrysanthenyl acetate was the major ingredient of the essential oil (49.11%), especially in aged and powdered seeds. The maximum and minimum essential oil content (w/v) was obtained from powdered seeds of 2019 (1.95%) and floral-budding stage (0.34%), respectively. Interestingly, principle component analyses (PCA) based on 15 main combinations of the essential oil scattered the studied samples in ordered arrangement from the floral-budding stage to the aged seeds. Briefly, obvious fluctuations were observed in the essential oil of D. anethifolia under various circumstances; flavorous decanal in floral budding, anticonvulsant 2-dodecenal-E in stems, and sedative chrysanthenyl acetate in powdered seeds. It seems this overlooked plant is proving worthy as a new nutraceutical, in any situations.
Article
Full-text available
Linalool (LIN) is a monoterpene, responsible for the aroma of essential oils in some species. It presents a sedative and anxiolytic potential, enhancing GABAergic currents and behaving as a benzodiazepine-type of drug. The objectives of the present work were to study the neuroprotective effects of LIN on a model of Parkinson's disease. For that, male Wistar rats were divided into the following groups: sham-operated (SO), 6-OHDA-lesioned, and 6-OHDA-lesioned and treated with LIN (25, 50, and 100 mg/kg, p.o.) for 2 weeks. Afterwards, the animals were subjected to behavioral tests (apomorphine-induced rotations, open field, and forced swimming tests). Then, the animals were euthanized, and the striatum, hippocampus, and prefrontal cortex were processed for neurochemistry (nitrite and lipoperoxidation measurements) and immunohistochemistry (TH and DAT) assays. The results were analyzed by ANOVA and Tukey's test for multiple comparisons and considered significant at p < 0.05. LIN significantly improved the behavioral alterations of the 6-OHDA-lesioned group, as evaluated by the apomorphine-induced rotations, open field, and forced swimming tests. In addition, LIN partially reversed the decreased DA, DOPAC, and HVA contents observed in the 6-OHDA-lesioned striatum. The untreated 6-OHDA group presented increased nitrite contents and lipoperoxidation in all the brain areas studied, and these changes were completely reversed after LIN treatments. Finally, LIN significantly prevented the reduction in TH and DAT expressions demonstrated in the right 6-OHDA-lesioned striatum. All these data strongly suggest that LIN presents a neuroprotective action in hemiparkinsonian rats, probably related to the drug anti-inflammatory and antioxidant activities.
Article
Full-text available
Lung inflammation is a common cause of health problem and death among adults and children. Antioxidant compounds have the capability to overcome this complication. This study targets to examine the anti-inflammatory and defensive role of D-carvone on lipopolysaccharide (LPS)-initiated lung damage in mice. Male BALB/c mice (n = 8) received intragastric feeding of D-carvone (25 and 50 mg/kg b.w.) or dexamethasone (5 mg/kg b.w.) an hour before intranasal instillation of LPS (20 µg). Seven hours after LPS instillation, the bronchoalveolar lavage fluid (BALF), blood serum, and tissue samples of lung were studied for the levels of inflammatory cells, antioxidant enzymes, pro-inflammatory cytokines, and histopathological changes. D-carvone significantly alleviated (p < 0.05) the lung damage caused by LPS by reducing the lung wet-to-dry (W/D) ratio along with the amount of total cells, macrophages, and neutrophils in BALF (p < 0.05). The serum TNF-α, IL-1β, and IL-6 were remarkably reduced (p < 0.05) in D-carvone treated mice. Histopathological derangements because of LPS-initiated lung damage were altered by D-carvone. The results of D-carvone were comparable with the positive control dexamethasone. Pre-treatment of D-carvone significantly provided anti-inflammatory and protective effect in LPS-instigated lung damage. Together, these findings acknowledge the use of D-carvone as preventive agent for lung damage and inflammation. Further research on the pharmacokinetics, pathway and mechanism of action of D-carvone are necessary to promote D-carvone as a commercial anti-inflammatory drug.
Article
Full-text available
α- and β-pinene are well-known representatives of the monoterpenes group, and are found in many plants’ essential oils. A wide range of pharmacological activities have been reported, including antibiotic resistance modulation, anticoagulant, antitumor, antimicrobial, antimalarial, antioxidant, anti-inflammatory, anti-Leishmania, and analgesic effects. This article aims to summarize the most prominent effects of α- and β-pinene, namely their cytogenetic, gastroprotective, anxiolytic, cytoprotective, anticonvulsant, and neuroprotective effects, as well as their effects against H2O2-stimulated oxidative stress, pancreatitis, stress-stimulated hyperthermia, and pulpal pain. Finally, we will also discuss the bioavailability, administration, as well as their biological activity and clinical applications.
Article
Full-text available
Chronic rhinosinusitis (CRS) is marked by an inflamed mucosa of sinuses and is accompanied by a significantly reduced quality of live. Since no guidelines for the treatment of CRS are available, long lasting clinical histories with health care costs adding up to dozens of billion $ annually are caused by CRS. The progression of CRS is often induced by bacterial infections and/or a shift in microbiome as well as biofilm formation. The exact microbiome alterations are still unclear and the impenetrable biofilm renders the treatment with common antibiotics ineffective. This study focuses on characterizing the microbiome changes in CRS and investigating the inhibition of biofilm growth by 1,8-Cineol, a small, non-polar and hence biofilm penetrating molecule with known antimicrobial potential. We performed MALDI-TOF MS based characterization of the microbiomes of healthy individuals and CRS patients (n = 50). The microbiome in our test group was shifted to pathogens (Staphylococcus aureus, Escherichia coli, and Moraxella catarrhalis). In contrast to published studies, solely based on cell culture techniques, we could not verify the abundance of Pseudomonas aeruginosa in CRS. The inhibition of bacterial proliferation and biofilm growth by 1,8-Cineol was measured for these three pathogens. Interestingly, S. aureus, the most prominent germ in CRS, showed a biofilm inhibition not simply correlated to its inhibition of proliferation. RT-qPCR confirmed that this was due to the downregulations of major key players in biofilm generation (agrA, SarA and σB) by 1,8-Cineol. Furthermore we verified this high biofilm inhibition potential in a model host system consisting out of S. aureus biofilm grown on mature respiratory epithelium. A second host model, comprising organotypic slices, was utilized to investigate the reaction of the innate immune system present in the nasal mucosa upon biofilm formation and treatment with 1,8-Cineol. Interestingly Staphylococcus epidermidis, the cause of very common catheter infections, possesses a biofilm generation pathway very similar to S. aureus and might be treatable in a similar fashion. The two presented in vitro model systems might be transferred to combinations of every biofilm forming bacterial with most kind of epithelium and mucosa.
Article
Full-text available
Background: One of the most important causative agents of visceral leishmaniasis (VL) is Leishmania infantum, which is mainly spread by Phlebotomus and Lutzomyia sandflies in the Old and New World, respectively. Novel and effective drugs to manage this neglected vector-borne disease are urgently required. In this study, we evaluated the toxicity of carvacrol, thymol and linalool, three common essential oil constituents, on amastigotes and promastigotes of L. infantum. Methods: in vitro experiments were performed by 24 h MTT assay. Carvacrol, thymol and linalool at concentrations ranging from 1.3 to 10 μg/mL were tested on promastigotes of L. infantum. For in vivo test, two groups of hamsters (Mesocricetus auratus) received 100 mg/kg of body weight/day of carvacrol and thymol as intraperitoneal injection on day 7 post-infection, followed by a 48 h later injection. The third group was treated with the glucantime as standard drug (500 mg/kg) and the last group (control) just received normal saline. On the 16th day, the number of parasites and histopathological changes in liver and spleen were investigated. Results: 24 h MTT assay showed promising antileishmanial activity of thymol and carvacrol, with IC50 values of 7.2 (48 μM) and 9.8 μg/mL (65 μM), respectively. Linalool at all concentrations did not affect L. infantum promastigote viability. In vivo toxicity data of carvacrol and thymol showed that the former at 100 mg/kg was the safest and most effective treatment with little side effects on the liver. Conclusions: Overall, thymol and carvacrol are highly promising candidates for the development of effective and safe drugs in the fight against VL.
Article
Full-text available
Background and aim Foeniculum vulgare (F. vulgare) Mill, commonly known as fennel, belongs to the Umbelliferae (Apiaceae) family, biennial or perennial herbs disseminated in Mediterranean region and central Europe. This herbal medicine (HM) is considered as a traditional HM, and its parts have been studied. Methods In this survey, essential oils from seeds collected from three various regions (Kerman, Golestan, and East Azerbaijan Provinces) of Iran were prepared with hydro-distillation and their components were analyzed with gas chromatography (GC) and chromatography time-of-flight mass spectrometry (GC/MS). Antimicrobial and cytotoxic activities of the essential oils were examined with disk-diffusion method on Muller–Hinton agar and Subaru-dextrose Agar, respectively. Additionally, the MTT assay was assessed on breast cancer cell line (MCF-7). The expression of apoptosis-related genes, Bax and Bcl2, was determined using quantitative real-time PCR (RT-qPCR). Results The major fractions of essential oils identified by GC and GC/MS included trans-anethole (78.47%, 49.64%, 78.68%), fenchone (10.5%, 8.4%, and 10.2%), and limonene (5.9%, 6.70%, and 5.6%), respectively. Fennel oil collected from three various places exerted inhibitory effects on the bacterial growth and higher cytotoxic effects on MCF-7 cancer cell line. In addition, the essential oil increased the expression of Bax, but decreased Bcl2 gene expression significantly (P < 0.001). Conclusion According to our findings, F. vulgare essential oil can be considered as a promising agent opening venues for novel antimicrobial and anticancer therapies. Owing to side effects and expensiveness of chemotherapy approaches, HM is a new remarkable insight for future therapies.
Article
Most of the antibacterial activities of essential oils from the Lamiaceae herbaceous plant family thyme and oregano are attributed to their bioactive isomeric monoterpenoid constituents, carvacrol and thymol. Commercially available antibiotics of thymol or carvacrol have not yet been developed but health products have incorporated thymol into their formulations for their antimicrobial properties. Carvacrol and thymol are generally considered safe for consumption and they have been used in dental applications, approved as food flavorings and have been considered as antibacterial additives in food and feed. Many studies have demonstrated that carvacrol and thymol are potent antibacterial agents against both Gram-positive and Gram-negative bacteria. The most frequently reported mechanism of antibacterial action of both isomers involves the disruption of bacterial membrane leading to bacterial lysis and leakage of intracellular contents resulting in death. Other proposed mechanisms of antibacterial action include the inhibition of efflux pumps, prevention in the formation and disruption of preformed biofilms, inhibition of bacterial motility, and inhibition of membrane ATPases. In addition, both isomers have been found to act additively or synergistically with conventional antibiotics important in overcoming the problem of bacteria resistance in food and disease.
Article
Linalool is a natural product present in fruits and aromatic plants with biological activities. Researchers have reported that the inhalation of linalool exerts anti-inflammatory activities. In this study, we examined the therapeutic effects of linalool on airway inflammation and mucus overproduction in mice with allergic asthma. Oral administration of linalool significantly inhibited the levels of eosinophil numbers, Th2 cytokines and immunoglobulin E (IgE) caused by ovalbumin (OVA) exposure. Linalool exerted preventive effects against the influx of inflammatory cells and mucus hypersecretion in the lung tissues. Linalool also dose-dependently decreased the levels of inducible nitric oxide synthase (iNOS) expression and protein kinase B (AKT) activation in the lung tissues. Linalool effectively downregulated the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) caused by OVA exposure. Furthermore, linalool exerted inhibitory effect on OVA-induced airway hyperresponsiveness (AHR). In the in vitro study, the increased secretion of MCP-1 was attenuated with linalool treatment in lipopolysaccharide (LPS)-stimulated H292 airway epithelial cells. In conclusion, linalool effectively exerts a protective role in OVA-induced airway inflammation and mucus hypersecretion, and its protective effects are closely related to the downregulation of inflammatory mediators and MAPKs/NF-κB signaling.
Article
Ferulago angulata (Apiaceae), an important medicinal plant of Iran, has been considered to have different therapeutical effects and are widely used in the perfume and pharmacological industries. Considering capability of F. angulata essential oils, the present study was conducted to optimized microwave-assisted hydrodistillation (MAHD)method for F. angulata fruit in order to improve the yield and biological activities of essential oils. Optimization of the yield was done through central composite design (CCD)of the response surface methodology (RSM)using three variable factors (hydrodistillation time, irradiation power and plant/liquid ratio). Based on the RSM results, the maximum essential oil yield was obtained with the microwave power of 980 W and plant/liquid ratio of 2 (g/100 mL)at 72 min. The results revealed that MAHD of F. angulata produced the highest essential oil yield (6.50%)as compared with essential oil prepared with hydrodistillation (HD)(2.65%). The essential oils extracted by MAHD and HD were analyzed by gas chromatography–mass spectroscopy (GC–MS)and indicated the main constituents of them were limonene, α-Pinene, ß-Phellandrene, α-Phellandrene, and Terpinolene. The antioxidant study revealed that MAHD essential oil had higher antioxidant activity than the HD essential oil. Furthermore, the essential oil obtained by MAHD demonstrated potent anti-proliferative activity against MCF-7 with IC 50 8.51 μg/mL. This research revealed that MAHD could be an effective method for hydrodistillation of essential oil in F. angulata in terms of shortening hydrodistillation time, reduction of energy consumption and increasing biological activities compared with the HD method.