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ith the promise of potentially unlimited power and 
scalability, cloud computing (especially infrastruc-
ture as a service [IaaS]) supports the deployment of 
reliable services across several application domains. 

In the Internet of Things (IoT), cloud solutions can improve the 
quality of service (QoS), fostering new business opportunities in 
multiple domains, such as healthcare, finance, traffic manage-
ment, and disaster management. Available mature solutions, such 
as Amazon IoT and Google Cloud Dataflow, demonstrate the suc-
cess of cloud-centric IoT programming models and resource or-
chestration techniques. However, recent technological advances 
have disrupted the current centralized cloud computing model, 
moving cloud resources close to users. 

This evolution is mainly required for the adapta-
tion of the cloud paradigm to the IoT phenomenon. 
The increasing need for supporting interaction be-
tween IoT and cloud computing systems has also led 
to the creation of the edge computing model, which 
aims to provide processing and storage capacity as 
an extension of available IoT devices, without need-
ing to move data/processing to a central cloud data-
center (such as Amazon Web Services). This reduces 
communication delays and the overall size of the 
data that needs to be migrated across the Internet 
and public and private datacenters.

Osmotic computing is a new paradigm that’s 
driven by the significant increase in resource capaci-
ty/capability at the network edge, along with support 
for data transfer protocols that enable such resourc-

es to interact more seamlessly with datacenter-based 
services. It aims at highly distributed and federated 
environments, and enables the automatic deploy-
ment of microservices that are composed and inter-
connected over both edge and cloud infrastructures.

In chemistry, “osmosis” represents the seamless 
diffusion of molecules from a higher to a lower con-
centration solution. We believe this process should 
represent how services can be migrated across data-
centers to the network edge. Hence, osmotic com-
puting implies the dynamic management of services 
and microservices across cloud and edge datacenters, 
addressing issues related to deployment, networking, 
and security, thus providing reliable IoT support with 
specified levels of QoS. Osmotic computing inherits 
challenges and issues related to elasticity in cloud 
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datacenters, but adds several features due to the 
heterogeneous nature of edge datacenters and cloud 
datacenters. Moreover, various stakeholders (cloud 
providers, edge providers, application providers, and 
so on) can contribute to the provisioning of IoT ser-
vice and applications in a federated environment. 

Motivations
The emerging availability and varying complexity and 
types of IoT devices, along with large data volumes that 
such devices (can potentially) generate, can have a sig-
nificant impact on our lives, fueling the development 
of critical next-generation services and applications in 
a variety of application domains (healthcare, finance, 
disaster management, and so on). Understanding how 
data from such devices can be more efficiently ana-
lyzed remains a challenge, with existing reliance on 
large-scale cloud computing systems becoming a bot-
tleneck over time. Transferring large datastreams to 
such centralized cloud datacenter environments, in a 
timely and reliable manner, is a key limitation of cur-
rent cloud-centric IoT programming models (such as 
Amazon IoT and Google cloud dataflow). These exist-
ing IoT programming models are considered inappro-
priate in the context of emerging IoT applications for 
the principal reason that they assume that the intel-
ligence and resource capacity necessary for data pro-
cessing reside predominantly in the cloud datacenter.

Thus, to implement complex IoT-oriented com-
puting systems, both cloud and edge resources should 
be exploited when setting up a hybrid virtual infra-
structure, as Figure 1 shows. Cloud and edge data-
centers will be managed in a federated environment, 
where different providers share their resources for IoT 
services and application support. The burden of data 
upload toward datacenters leads to inefficient use of 
communication bandwidth and energy consumption, 
and a recent study by Cisco (http://goo.gl/M09Ucj) 
shows that total datacenter traffic will triple by 2019, 
worsening the situation further. Store-and-process-
later approaches, which can save network bandwidth, 
undermine real-time decision making, which is often 
a necessary requirement behind IoT applications in 
the domains of disaster management and healthcare. 
On the contrary, edge computing aims to lay comput-
ing needs on the resource-constrained edge devices, 
as Figure 1 shows. Edge applications are highly time 
sensitive (for example, hazard warning applications 

for environmental conditions such as storms, land-
slides, and flooding) because they perform immediate 
analysis of, or response to, collected sensing data.

However, even if cloud-based programming 
models can’t support the desired degree of sensitiv-
ity for IoT applications, they can strongly increase 
computation and storage availability whenever nec-
essary. As a result, the prevailing cloud-centric IoT 
programming model needs to be revised into some-
thing that’s more adaptable and decentralized to 
meet the needs of emerging IoT applications.

Osmotic Computing
Osmotic computing aims to decompose applications 
into microservices and perform dynamic tailoring of mi-
croservices in smart environments exploiting resources 
in edge and cloud infrastructures. Application delivery 
follows an osmotic behavior where microservices in 
containers are deployed opportunistically in cloud and 
edge systems. Like the movement of solvent molecules 
through a semipermeable membrane into a region of 
higher solute concentration to equalize the solute con-
centrations on the two sides of the membrane—that is, 
osmosis (in the context of chemistry)—in osmotic com-
puting, the dynamic management of resources in cloud 
and edge datacenters evolves toward the balanced 
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FIGURE 1. Edge and cloud computing for the Internet of Things.
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deployment of microservices satisfying well-defined 
low-level constrains and high-level needs, as Figure 2 
shows. However, unlike the chemical osmotic process, 
osmotic computing allows a tunable configuration of 
the resource involvement, following resource availabil-
ity and application requirements (see Figure 3). This is 
an important distinction—that is, how the difference 
in configuration (very much infrastructure and applica-
tion dependent) can determine whether microservices 
should migrate from cloud to edge or vice versa.

Osmotic computing goes beyond simple elastic 
management of deployed resources, because deploy-
ment strategies are related to requirements of both 
infrastructure (such as load balancing, reliability, 
and availability) and applications (such as sensing/ac-
tuation capabilities, context awareness, proximity, and 
QoS) requirements, and they can also change over 
time. Because of the high heterogeneity of physical 
resources, the microservice deployment task needs to 
adapt the virtual environment to the involved hard-
ware equipment. Thus, a bidirectional flow of adapted 
microservices from cloud to edge (and vice versa) must 
be managed. Moreover, the migration of microservices 
in the edge/cloud system implies the need for dynamic 
and efficient management of virtual network issues to 
avoid application breakdown or degradation of QoS.

A breakthrough approach to address these is-
sues is to decouple the management of user data 
and applications from the management of network-
ing and security services. Osmotic computing moves 
in this direction, providing a flexible infrastructure 
by offering an automatic and secure microservice 
deployment solution. Specifically, osmotic comput-
ing is based on an innovative application-agnostic 
approach, exploiting lightweight container-based 
virtualization technologies (such as Docker and Ku-
bernetes), for the deployment of microservices in 
heterogeneous edge and cloud datacenters.

Osmotic Ecosystem
As Figure 4 shows, osmotic computing spans two 
main infrastructure layers. The L1 layer consists of 
cloud datacenters, which provide several types of 
services and microservices. For osmotic computing 
purposes, at this layer, microservices are composed 
according to users’ high-level requirements. The L2 
layer identifies the edge computing environment, 
which includes data capture points and gateway 
nodes, able to perform operations (average, min, max, 
filtering, aggregation, and so on) on local data. These 
devices capture data with a predefined frequency (of-
ten dictated by the rate of change of the phenomenon 
being observed), depending on the device’s capacity 
to record or collect data and on the specific system re-
quirements needing to be satisfied. Devices at L2 can 
perform various more advanced operations on the raw 
data collected in the environment, such as encryption 
of an incoming datastream or encoding/transcoding 
operations before forwarding this data for subsequent 
analysis to L1. Due to different properties of systems 
at L1 and L2, we envision a distributed heteroge-
neous cloud composed of different types of resources 
located at each of the two layers. Understanding how 
a microservice hosted on a cloud at L1 can interact 
and coordinate with a microservice in L2 is a key re-
search challenge in such systems. Each level has its 
own objective functionalities that influence the types 
of operations performed. For instance, L2 generally 
consists of resource-constrained devices (limited bat-
tery power, network range, and so on) and network 
elements, which must perform tasks without over-
loading available resources.

Datacenters at L1 and microdatacenters at L2 
can belong to different providers. However, in a 
federated scenario, providers can establish relation-
ships and cooperate to share resources and servic-
es, thus increasing their business opportunities.1,2 
In this scenario, an osmotic computing framework 
is application agnostic, offering user applications 
with runtime environments working in a distributed 
and secure way. Thus, the main types of microser-
vices that the osmotic computing framework must 
orchestrate and deploy into cloud and edge infra-
structure are general-purpose microservices, which 
are strictly related to the specific applicative goal; 
microservices for network management for setting 
up virtual networks among microservices deployed 
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FIGURE 2. Basic concepts of osmotic computing.
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in the distributed and federated cloud/edge system; 
and microservices for security management to sup-
port cross-platform development of security-enabled 
microservices.

The microservice provisioning solution can ben-
efit from aggregating different types of resources in 
the L1 and L2 deployment environments. Under-
standing how these systems could be aggregated to 
support application requirements (particularly non-
functional requirements, such as latency, throughput, 
security, and budget) remains an important chal-
lenge. In particular, the proposed solution follows an 
advanced approach where microservices are oppor-
tunistically deployed in virtual components, called 
containers. Container-based virtualization technolo-
gies (for example, Linux Containers, Docker, Preboot 
Execution Environment, Google Container, and Am-
azon Compute Cloud Container) have emerged as a 
lightweight alternative to hypervisor-based approach-
es (such as Xen and Microsoft Hyper-V) used in the 
cloud. A container permits only well-defined soft-
ware components (such as a database server) to be 
encapsulated, which leads to significant reduction 
of deployment overhead and much higher instance 
density on a single device than a hypervisor. Hence, 
the new container-based approaches permit deploy-
ment of lightweight microservices on resource-
constrained and programmable smart devices on the 
network edge such as gateways (Raspberry Pi, and 
Arduino), network switches (HP OpenFlow), and 
routers (such as Cisco IOx), but also increase perfor-
mance in the dynamic management of microservices 
in cloud datacenters.

Osmotic computing attempts to characterize 
how composed microservices must be automati-
cally adapted to the deployment sites, considering 
deployment location and context, since containers 
are strictly related to the physical host’s capabilities. 
In addition, a decision maker must map microser-
vices to the relevant location. Such a decision is 
influenced by constraints identified by the specific 
application and the infrastructure provider, such as 
utilization of specialist resources (such as a GPU 
cluster), improving revenue or reducing manage-
ment overheads (for example, system administration 
and/or energy costs). Adaptation of microservices to 
fluctuations in the computing environment must be 
performed over time, during the execution of mi-

croservices. Therefore, a feedback-driven orchestra-
tion is necessary to detect changes in infrastructure 
performance and QoS metrics.

Research Directions
To make most effective use of the osmotic comput-
ing paradigm, we propose the following research 
directions.

Microservice Configuration
Existing work in the cloud datacenter context sup-
ports provider evaluation methods but lacks mi-
croservice and edge datacenter configuration support. 
Multiple approaches have applied optimization3 and 
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performance measurement techniques4 for select-
ing cloud datacenter resources for deploying virtual 
machine (VM) images according to QoS criteria 
(throughput, availability, cost, reputation, and so 
on). While doing so, existing configuration selec-
tion techniques have largely ignored the need for 
VM images and a migration process with transpar-
ent decision support and adaptability to custom 
criteria; hence, for example, they lack flexibility in 
terms of selection constraints and objectives that 
can model configurations of edge cloud resources 
and microservices. However, the configurations and 
QoS criteria for selecting and ranking microservices 
and datacenter resources on the network edge differ 
from VM deployment on cloud datacenters.

In osmotic computing, it’s necessary to develop 
holistic decision-making frameworks that automate 
configuration selection across microservices and 
resources in cloud and edge datacenters to meet 
QoS constraints. To this end, novel decision-making 
techniques based on multicriteria optimization (for 
example, genetic algorithms) and multicriteria deci-
sion making (for example, analytic network process) 
techniques should be investigated.

Microservice Networking
Osmotic computing is based on an abstraction of 
networks that spawn from cloud to edge and vice 

versa for improving the performance of the commu-
nication among microservices.

The network here represents an enabler that al-
lows us to dynamically adjust the overall microser-
vices behavior according to user requirements. Both 
software-defined networking (SDN) and network 
function virtualization (NFV)5 offer useful solutions 
for supporting in-network/in-transit processing of 
data (between edge and datacenter) and providing 
network management abstraction independent of the 
underlying technology.

Future network management advances in osmot-
ic computing should include the development of an 
interoperability layer enabling interdomain, federated 
networks for remote orchestration of heterogeneous 
edge devices (for example, exploiting SDN and NFV 
capabilities) accessible through an API. Moreover, 
the characterization of federated networks in the do-
main of cloud and edge is missing from the scientific 
literature. In osmotic computing, a specific metadata 
ontology for overcoming this issue should be assessed.

Microservice Security
A previous “Blue Skies” column outlined the security 
challenges and threats of integrating edge computing 
devices (IoT devices, in transit network devices) with 
a cloud datacenter.6 An osmotic computing frame-
work needs a coherent security policy that’s supported 
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within both a cloud datacenter and an edge comput-
ing environment to enable microservice execution 
and migration. Ensuring that the same security con-
siderations are observed for a particular microser-
vice across both environments remains a challenge. 
Such security features will enable self-identification 
processes that will make the deployment of microser-
vices inside cloud and edge devices easier and more 
secure, also facilitating the wide adoption of osmotic 
computing technology. In addition, another objective 
of osmotic computing is to add security capabilities 
to the container engine to enable the secure deploy-
ment of containers including microservices on IoT 
devices. More specifically, an osmotic computing 
framework should allow developers to build chains of 
trust involving both edge devices and cloud systems 
by means of a transversal security process. 

Edge Computing
Recent efforts to create an open source “IoTCloud” 
(providing sensors-as-a-service) and middleware-
oriented efforts in the European Open IoT project 
indicate significant interest in this area from the aca-
demic community. In the same context, HTTP/REST-
based APIs, such as Xively, Open Sen.se, and Think 
Speak, indicate strong commercial interest, in appli-
cations ranging from smart cities to intelligent homes. 
This also aligns with the fog computing efforts involv-
ing cloudlets (from Cisco), which involve small clouds 
that are geographically scattered across a network and 
act as small datacenters at the network edge.7

The related approach of “mobile offloading” is 
centered on the need to offload complex and long-
running tasks from mobile devices to cloud-based 
datacenters.8 To reduce potential battery power 
consumption and application delay due to intermit-
tent network connectivity, tasks from mobile devices 
(which generally have lower computation and stor-
age capabilities than a datacenter) are executed at 
a datacenter, with periodic synchronization between 
the edge device and the datacenter. An alternative 
approach (to achieve the same outcome) involves 
creating a mobile device clone within a datacenter as 
a VM. Examples include CloneCloud9 and Moitree.

Our osmotic computing approach suggests the 
need to combine mobile offloading with datacenter 
offloading—that is, we offload computation initially 
carried out within a datacenter to a mobile device. 

This “reverse” offloading enables computation to be 
undertaken closer to the phenomenon being mea-
sured (overcoming latency and data transfer costs). 
The osmotic computing approach therefore focuses 
on understanding the types of microservices that 
would be more relevant to execute at the edge than 
within a datacenter environment, and vice versa.

Microservice Workload Contention and 
Interference Evaluation
Recently, research activities in cloud-based solu-
tions for IoT and edge devices presented container-
based virtualization as an alternative to VMs in the 
cloud.10 For example, Docker Swarm (https://docs 
.docker.com/swarm) provides a native orchestration 
framework (container engine) for multiple Docker 
deployments, and Kubernetes (http://kubernetes 
.io/v1.1/docs/user-guide/horizontal-pod-autoscaler 
.html) is an open source system for automating de-
ployment, operations, and management of clusters 
of containerized microservices on edge devices and 
cloud datacenter resources. However, codeployed, 
containerized microservices leads to workload con-
tention. Workload (generated by containerized mi-
croservices) resource consumption and QoS aren’t 
additive, so understanding the nature of their com-
position is critical to deciding which microservices 
can be deployed together (that is, can coexist). Re-
cent work has investigated several approaches to 
minimize the impact of workload interference on 
the QoS of hosted applications on cloud datacenters.

Hardware-based approaches add complexity to 
the processor architecture and are difficult to man-
age over time. Sriram Govindan and his colleagues 
developed a scheme to quantify the effects of cache 
contention between consolidated workloads.11 How-
ever, these techniques focus on the contention issues 
of only one hardware resource type (that is, cache) 
while ignoring others. Mohammad Nathuji and his 
colleagues present a control theory-based approach 
to consolidation that mitigates the effects of cache, 
memory, and hardware prefetching contention of 
coexisting workloads.12 However, they consider only 
CPU-bound or compute-intensive applications.

To the best of our knowledge, none of the exist-
ing academic approaches or the container engines 
such as Open-Shift Origin, Amazon EC2 Con-
tainer Service, Docker Swarm, and Kubernetes can 
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automatically detect and handle resource conten-
tions among codeployed microservices across cloud 
and edge datacenter resources. Hence, research in 
osmotic computing should focus on novel microser-
vice consolidation techniques that can dynamically 
detect and resolve resource contention via microser-
vice performance characterization, workload priori-
tization, and coordinated deployment. 

Monitoring
Much of the difficulty in monitoring activities origi-
nates from the inherent scale and complexity of the 
infrastructure considered by the osmotic comput-
ing paradigm for deployment of microservices. This 
infrastructure includes hardware resources in the 
datacenter (CPU, storage, and network), in-transit 
network (SDN/NFV-enabled routers and switches), 
and resources on the network edge (for example, gate-
ways). In such microservice deployment scenarios, 
detecting problems (for example, in end-to-end re-
quest processing latency) and pinpointing the prob-
lem to one or more culprit components (microservice 
or datacenter resources or in-transit network) is dif-
ficult in such complex systems. The heterogeneity and 
scale of microservices and infrastructure resources 
(datacenter, in-transit, and network edge) make it dif-
ficult to implement robust monitoring techniques for 
diagnosing the root cause of QoS degradation.

Monitoring frameworks and techniques used by 
Amazon Container Service (Amazon CloudWatch) and 
Kubernetes (Heapster) typically monitor CPU, mem-
ory, filesystem, and network usage statistics, so they 
can’t monitor microservice-level QoS metrics (query 
processing latency of database microserver, through-
put of data compression microserver, and so on).

To the best of our knowledge, none of the ap-
proaches proposed in academic literature and com-
mercial monitoring tools/frameworks can monitor 
and instrument data (workload input and QoS met-
rics, disruptive event) across microservices, cloud 
datacenter, in-transit network, and edge datacenter, 
or detect root causes of QoS violations and failures 
across the infrastructure based on workload and QoS 
metrics logs. Researchers should investigate scalable 
methods (based on self-balanced trees) to monitor 
QoS and security metrics across multiple-levels of os-
motic computing, including microservices and cloud 
and edge datacenters.

Microservice Orchestration and Elasticity 
Control
The runtime orchestration of microservices in a 
scalable edge/cloud system is a complex research 
problem due to the difficulty of estimating microser-
vice workload behavior in terms of data volume to 
be analyzed, data arrival rate, query types, data pro-
cessing time distributions, query processing time 
distributions, I/O system behavior, and number of 
users connecting to different types and mixes of mi-
croservices. Without knowing the workload behav-
iors of microservices, it’s difficult to make decisions 
about the types and scale of cloud and edge data-
center resources to be provisioned to microservices 
at any given time. Kubernetes and OpenShift Origin 
(www.openshift.org) offer a microservice container 
reconfiguration feature, which scales by observing 
CPU usage (“scaling is agnostic to the workload 
behavior and QoS targets of a microservice”). Ama-
zon’s autoscaling service (https://aws.amazon.com/
autoscaling) employs simple threshold-based rules 
or scheduled actions based on a timetable to regu-
late infrastructural resources (for example, if the 
average CPU usage is above 40 percent, use an ad-
ditional microservice container).

Osmotic computing should extend the tradi-
tional notion of runtime control and reconfigura-
tion that only considers resources hosted in cloud 
datacenters to resources that are deployed and avail-
able at the edge. Researchers should investigate ma-
chine learning techniques for developing predictive 
models to forecast workload input and performance 
metrics across multiple, collocated microservices on 
cloud and edge datacenter resources. Additionally, 
intelligent, QoS-aware, and contention-aware re-
source orchestration algorithms should be developed 
based on the described models, monitoring systems, 
and configuration selection techniques.

hereas significant emphasis has been placed 
on (mobile) cloud offloading (whereby soft-

ware applications can be offloaded from a mobile 
device to a datacenter), there’s also a need for re-
verse offloading—that is, movement of functionality 
from the cloud to the edge devices, to counter for 
latency-sensitive applications and to minimize data 
sizes that must be transferred over a network. Os-
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motic computing provides a useful basis for provid-
ing a unifying paradigm for this purpose.
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