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Abstract 
Spatial econometrics has been criticized by some economists because some model 
specifications have been driven by data-analytic considerations rather than having a firm 
foundation in economic theory. In particular this applies to the so-called W matrix, which is 
integral to the structure of endogenous and exogenous spatial lags, and to spatial error 
processes, and which are almost the sine qua non of spatial econometrics. Moreover it has 
been suggested that the significance of a spatially lagged dependent variable involving W 
may be misleading, since it may be simply picking up the effects of omitted spatially 
dependent variables, incorrectly suggesting the existence of a spillover mechanism. In this 
paper we review the theoretical and empirical rationale for network dependence and spatial 
externalities as embodied in spatially lagged variables, arguing that failing to acknowledge 
their presence at least leads to biased inference, can be a cause of inconsistent estimation, and 
leads to an incorrect understanding of true causal processes. 
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1 INTRODUCTION

The critique of spatial econometrics emanating from some economists is, we assert at the outset,
based on imprecise and ill-informed perceptions of the sophistication and diversity of the work of
the spatial econometrics and wider academic community. The argument is that standard spatial
econometrics is typically applied in a mechanical fashion, variables are introduced simply because
they are signi�cant, without a priori rationale, spatial econometricians often work in isolation from
urban economists and other regional scientists, and overall there is a lack of theoretical justi�cation
for variables that characterize spatial econometric models.1 An engagement with the literature shows
this to be a misrepresentation. There are numerous examples of single equation cross-sectional spatial
econometric models, multiequation speci�cations, and panel models incorporating spatial e¤ects, in
which economic theory is fundamental to the speci�cation of the reduced form, including speci�cations
based on neoclassical growth theory (Ertur and Koch (2007), Fingleton and Lopez-Bazo (2006)),
urban economics (Fingleton (2006), Barde (2010)) and on the wage equation from new economic
geography (Fingleton (2003)). Almost invariably these speci�cations are elaborations of mainstream
theory incorporating externalities in the form of spatial spillovers, being characterized by the presence
of the trademark component of the spatial econometric model, namely the spatial lag, which can be
considered to be the sine qua non of spatial econometrics. While the theory underlying these models
is often exceptionally well established and well received, nevertheless it is also true that there are cases
in which spatial econometric work has been too casual in its attempt to base model speci�cations on
economic theory. Our �rst main contribution is to highlight this criticism. Often there is no attempt to
make theory testing a focal point of the research, and too often we see an emphasis on diagnostics and
empirical model validity as the most important criteria to be used to signify a good model, without any
attempt to relate to real or theorized economic processes and mechanisms. Most signi�cantly, when it
comes to the spatial lag, which is based on the so-calledW matrix of spatial weights, many economists
are skeptical, puzzled, or both. The values in the cells of W comprise an explicit hypothesis about
the strength of inter-location connection (typically towns, regions, or countries), and in many cases
the matrix product ofW and endogenous variable Y; namely the endogenous spatial lagWY, often
proves to be a highly signi�cant variable. It has been suggested by the skeptics that the signi�cance of
explanatory variableWY may be misleading, since it may be simply picking up the e¤ects of omitted
spatially dependent variables,WX, incorrectly suggesting the existence of a spillover mechanism.

One way out of the W matrix conundrum may appear to be via hierarchical modelling, which
has had only very limited exposure in the spatial economics literature (exceptions being Smith and
LeSage (2004), Parent and LeSage (2008)). Hierarchical models (also known as multilevel models) are
becoming increasingly popular across the range of the social sciences, as researchers come to appreciate
that observed outcomes depend on variables organized in a nested hierarchy.2 In regional science and
spatial economics, we can often envisage a hierarchy of e¤ects from cities, regions containing cities, and
countries containing regions. Failure to recognize these e¤ects emanating from di¤erent hierarchical
levels can lead to incorrect inference. The second major contribution of this paper is to point this out
and to show that something equivalent toW is very much a cognate part of a hierarchical approach,
with an enhancement to hierarchical modelling coming by way of incorporating spatial e¤ects viaW.

1The paper by Pinkse and Slade (2010) raises some additional di¢ cult-to-resolve problems arising from a limited and
somewhat atypical selection of the so-called �spatial econometrics�literature.

2Over the past decade there has been a development of methods which have enabled researchers to model hierarchical
data. Examples of these methods include multilevel models (see, for example, Goldstein (1998)), random coe¢ cient
models (Longford (1993)) and hierarchical multilevel models proposed by Goldstein (1986) based on iterative generalized
least squares (IGLS).
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We demonstrate that the inclusion of interdependence between groups in the form of spatial e¤ects,
WX; has two main advantages: (i) it avoids the omitted variable problem that may a ict models
with endogenous spatial lags and (ii) it introduces a source of exogenous variation that allows the
identi�cation of both endogenous and exogenous group e¤ects.

2 W WITHIN SPATIAL ECONOMETRIC SPECIFICATIONS

The square matrixW is of dimension N , where N is the number of nodes in a network, with the value
in typical cellWjh quantifying the hypothesized strength of interaction between nodes j and h. Here we
stress that nodes need not necessarily be places in order to draw on the wider literature that provides
additional support to the concept of network interaction. Typically all of the diagonal elements ofW
are zero, and I��W is non-singular. Also, following Kapoor, Kelejian, and Prucha (2007) and Kelejian
and Prucha (1998),W should be uniformly bounded in absolute value, meaning that a constant c exists
such that max1�j�N

PN
h=1 j Wjh j� c � 1 and max1�j�N

PN
h=1 j Wjh j� c � 1 so as to produce

asymptotic results required for consistent estimation.
In a single equation context, multiplying W by a N� 1 vector (dependent variable) Y, gives

the endogenous spatial lag WY, which is an integral component of numerous spatial econometric
models. However given the N � k matrix of variables X, additional spatially lagged variables can
be introduced, forming the columns of the matrixWX. Also we can add a hypothesis that the errors
may be spatially dependent. Following Anselin, Le Gallo, and Jayet (2007), who write from a spatial
panel data perspective, there are four ways we might wish to model spatial e¤ects operating through
the error term, namely i) direct representation, which originates from the geostatistical literature
(Cressie (2003)); as noted by Anselin (2003), this requires exact speci�cation of a smooth decay with
distance and a parameter space commensurate with a positive de�nite error variance-covariance matrix.
Alternatively, as in Conley (1999), a looser de�nition of the distance decay may be implemented,
leading to non-parametric estimation; ii) spatial error processes typi�ed by much work in spatial
econometrics (Anselin (1988)), based on a matrix, say M, which is N �N with similar properties to
W and which may or may not be the same asW; de�ning indirectly the spatial structure of the non-
zero elements of the error variance-covariance matrix. LikeW, theM matrix comprises non-negative
values representing the a priori assumption about interaction strength between location pairs de�ned
by speci�c rows and columns of M, normally with zeros on the main diagonal. iii) common factor
models originating from the time series literature (Hsiao and Pesaran (2008), Pesaran (2007), and
Kapetanios and Pesaran (2005)) and iv) spatial error components models (Kelejian and Robinson
(1995), Anselin and Moreno (2003)), which we consider subsequently.

Allowing endogenous and exogenous spatial lags, plus a spatial error process, and assuming nodes
are linked by network dependence matrixW for the lags and byM for the error process, and assum-
ing autoregressive processes, the typical single equation spatial econometric model speci�cation, the
SARAR(1,1) model, is

Y = �WY +X� +WX�x + " (1)

" = �M"+ � (2)

� � iid(0; �2I) (3)

In (1), � is a scalar coe¢ cient, � and �x are k � 1 vectors of coe¢ cients, and " is an N � 1 vector
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of disturbances. For the error process, we have the scalar � and the N �1 vector of innovations �
drawn from an iid distribution with variance �2:

We extend the scope of the spatial econometric models in two ways, �rst by introducing the time
dimension, thus allowing panel data models with network dependence, and secondly by considering
multilevel models (see Corrado and Fingleton (2010)).

Consider a simple random e¤ects panel speci�cation for time t = 1; :::; T and for individual i =
1; :::; N given by:

Yit = �0t + �1Xit + �it (4)

�0t = �0 + �i

with �it � iid(0; �2�) and �i � iid(0; �2�) which can be rewritten as:

Yit = �0 + �1Xit + �i + �it (5)

where Yit is individual i�s response at time t; Xit is the exogenous variable, �i is an error speci�c to
each individual and �it is a transient error component speci�c to each time and each individual. We
can introduce spatial e¤ects both as an endogenous spatial lag:

Yit = �0 + �WYit + �1Xit + �i + �it (6)

and as an autoregressive error process:

Yit = �0 + �WYit + �1Xit + eit (7)

eit = �Meit + �it

and generalizing to k regressors in the panel context this becomes:

Y = �(IT 
W)Y +X� + e (8)

in which Y is a TN � 1 vector of observations obtained by stacking Yit for i = 1:::N and t = 1 : : : T ,
X is a TN � k matrix of regressors and � is a k � 1 vector of coe¢ cients.

In addition, given a TN � TN identity matrix with 1s, the NT � 1 vector e is

e = (INT � �IT 
M)�1� (9)

in which � is an NT � 1 vector of innovations, � is a scalar parameter and M is an N � N matrix
with similar properties to W. Regarding the error components in space-time, time dependency is
introduced into the innovations via the permanent individual error component �, thus:

� � iid(0; �2�) (10)

� � iid(0; �2�) (11)

� = (�T 
 IN )�+ � (12)
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so that � is an N � 1 vector of random e¤ects speci�c to each individual, � is the transient error
component comprising an NT � 1 vector of errors speci�c to each individual and time, �T is a T � 1
matrix with 1s , and �T 
 IN is a TN � N matrix equal to T stacked matrices. The result is that
the TN � TN innovations variance-covariance matrix 
� is nonspherical. Also �21 = �

2
� + T�

2
�: Note

that this di¤ers from the speci�cations given by Anselin (1988) and by Baltagi and Li (2006), where
the autoregressive error process is con�ned to �: In contrast the Kapoor, Kelejian, and Prucha (2007)
set-up assumes that the individual e¤ects � have the same autoregressive process.

3 PUTTING SOME ECONOMICS INTO W

The suggestion that spatial econometrics may have been somewhat �mechanical�in its application is
undoubtedly true in instances where little care has been taken regarding the theoretical basis of the
model speci�cation. In this section we seek to show that in many applications of spatial econometrics,
considerable attention has been given to specifying the matricesW andM in a rational manner that
attempts to represent as far as possible real social and economic processes. Hence we argue that in
many cases the presence of a spatial lag, sayWY, is necessary because it does re�ect a true interaction
and is not simply a surrogate for some omitted variables. In fact, it appears that an absence of detailed
consideration for the structure ofW; or indeed rejection of an approach based onW, has come from
analysts who are not particularly interested in the spatial processes per se, but see spatial dependence
as a something of a nuisance which, yes, has to be allowed for in modelling but which is not the focal
point of their research. In this case spatial error dependence can be treated in very general terms, say
by Spatial Heteroscedastic Autocorrelation Consistent estimation or by common factor approaches.

We �rst focus on the very basic form ofW matrix, which has close links with time series analysis.
In fact, it is easy to show that an autoregressive process in time has an equivalent to theW matrix,
as demonstrated in Fingleton (2009).

Consider the W� matrix , in which W �
jh = 1 if location pair i and j are close to each other in

space, and W �
jh = 0 otherwise. By close, we typically mean contiguous. For time series we have a

comparable contiguity matrix, let us call it H. To see the near equivalence of H andW�, consider a
data generating process for T periods,

Y (t) = �Y (t� 1) + "(t) (13)

"(1) = Y (1) = 0

� < 1; " � N(0; �2); t = 2; :::; T

This generates a stationary time series. In matrix terms an entirely equivalent data generating
process is given by

Y = �HY + " (14)

in which Y is a T � 1 vector, � is a scalar parameter, " is a T � 1 vector of disturbances and H is a T
� T matrix with row t designating the same time point as column t and 1s indicating time proximity.
In spatial series,W� is N � N , where N is the number of places or nodes on the network. Below we
show a typicalW� matrix for N = 10, and its time series counterpart H.
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H =

266666666666666664

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

377777777777777775
W� =

266666666666666664

0 0 0 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 1

0 0 1 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0 1

0 0 0 0 1 1 0 1 1 0

377777777777777775
Figures 1-3 show small hypothetical networks which can be represented as simple binary-valued

W� matrices.

W�
A =

26666666666664

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

37777777777775
W�

B =

266666664

0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 1

377777775
W�

C =

266666664

0 1 0 0 0 0

1 0 1 0 0 1

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 1 0 0 1 0

377777775

Typically in practice one would scale the matrix W�, say by the maximum eigenvalue, since this
clearly indicates �allowable�values that avoid singularities. One way to do this is by

W =
W�

max(eig)
(15)

in which max(eig) denotes the maximum eigenvalue of W�, where W� is such that real eigenvalues
can be obtained. Using this normalization, the maximum eigenvalue of W is 1, and the continuous
range for � in which (I � �W) is non-singular is 1

min(eig) < � < 1. An alternative to this, due to Ord
(1975), is

W = D�0:5W�D�0:5 (16)

in which the diagonal matrix D takes values equal to the row sums ofW�: Most applications in spatial
econometrics scale the individual rows (or columns) ofW� by the row totals, so that theW rows sum
to 1. In both these alternatives the same conditions apply for non-singularity. WithW thus de�ned,
the spatial data generating process is

Y = �WY + " (17)

which is identical to the time series data generating process, except thatW replaces H and � replaces
�. As � ! 1; we approach near unit root spatial autoregressive processes, with similar consequences
as in non-stationary time series.
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Figure 1: Star (A)

Figure 2: Complete Network (B)
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Figure 3: Nearest Neighbor (C)
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While we have given some emphasis to the similarity of the DGP for autoregressive time series and
spatial series, there are major dissimilarities on account of the multilateral nature of spatial interaction.
In contrast, with time there are only two directions, forward and backwards. One of the contributions
of Cli¤ and Ord (1973, 1981) was to extend the de�nition of the matrix W to accommodate the
distinctiveness of spatial processes. Spillovers have diverse origins, and therefore one would anticipate
that the way to model them takes on various forms. For instance, they may be the outcome of network
economics Goyal (2009), commuting,3 migration, displaced demand and supply e¤ects in the housing
market, input-output linkages, competition and coordination between �rms, localized information
�ows through social networks, strategic interaction between policy makers,4 tax competition between
local authorities, or even simply arbitrary boundaries causing spatial autocorrelation. We cannot deal
with all of these cases, so in the following paragraphs we focus on a selection, commencing with the
traditional distance-based unidimensional measures adopted in spatial econometrics (Anselin (1988))
and introduce other multidimensional measures based on various notions of social or economic distance.
Typically, isotropy is assumed, so that only distance between j and h is relevant, not the direction
j to h. These may provide the basis for direct or indirect estimation of the error variance-covariance
matrix, including the spillover in error components models.

Moving beyond crude measures of between-group spatial �distance�, such as the simple notions
of proximity and contiguity, leads us to slightly more elaborate speci�cations which nonetheless are
still based on the physical features of geographical units. For example Cli¤ and Ord (1973) combine
distance and length of the common border between contiguous spatial units thus:

Wjh = (djh)
a ��jh�b (18)

where djh denotes the distance between locations j and h and �jh is the proportion of the boundary of
j shared with h whereas a and b are parameters. More general distance measures include multidimen-
sional indicator functions. For example, Bodson and Peters (1975) use a general accessibility weight
(calibrated between 0 and 1) which combines in a logistic function several channels of communication
between regions such as railways, motorways etc.:

Wjh =

JX
j=1

pj (a=1 + b exp(�cjdjh)) (19)

where pj indicates the relative importance of the means of communication j: The sum is over the J
means of communication with djh equal to the distance from j to h; a; b and cj are parameters which
need to be estimated.

The above measures are less useful when the spatial interaction is determined by purely economic
variables which may have little to do with spatial con�guration of boundaries or geographical distance
per se. This introduces the notion of economic distance, and developments in the conceptualization of
economic distance have been surveyed in Greenhut, Norman, and Hung (1987). According to Fingleton
and Le Gallo (2008) �the spillover between areas will not simply be a function of spatial propinquity,
to the exclusion of other e¤ects�and �it is more realistic to base it on relative �economic distance�.
Big towns and cities are less remote than their geographical separation would imply, whereas very
small locations are often isolated from one another�. Hence economic distance re�ects the reduced

3For example, Holly, Pesaran, and Yamagata (2010) suggest a weighting matrix in a house price equation where
connections between London and other UK regions are based on the in�ow and out�ow of commuters.

4Bhattacharjee and Holly (2006) �nd evidence of strategic spillovers across the members of the Bank of England�s
Monetary Policy Committee in the way they vote on interest rate changes.
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transaction costs associated with �ows between geographically remote cities, which have better com-
munications infrastructure, lower costs of information gathering and uncertainty, and similar economic
and employment structures. Economic distance features in the work of Conley (1999), Pinkse, Slade,
and Brett (2002), Conley and Topa (2002), Conley and Ligon (2002) and Slade (2005). For example
Conley and Ligon (2002) estimate the costs of moving factors of production. Physical capital transport
costs are related to inter-country package delivery rates, and the cost of transporting embodied human
capital is based on airfares between capital cities (the correlations with great circle distances are not
perfect). In their analysis, for practical reasons, they con�ne their analysis to single distance metrics,
but they prefer multiple distance measures. Taking the wider perspective of the industrial organiza-
tion literature, distances may be in terms of trade openness space, regulatory space, commercial space,
industrial structure space or product characteristics space.

Formulation of a W matrix to re�ect relative economic distance has been considered by, among
others, Fingleton (2001), Fingleton (2008), LeSage and Pace (2008) and Fingleton and Le Gallo (2008).
For example, consider the unstandardized matrix

W �
jh = Q�h;0d

�
j;h j 6= h (20)

W �
jh = 0 j = h

in which Qh;0 is the level of output in economy h (at time 0) and dj;h is a measure of geographical
separation of locations j and h. There is no need to consider Qj;0 because it is nulli�ed by the process
of standardizing W � by dividing by row totals to obtainW. In the context to which this applies, the
use of start of period values for Q excludes feedback from other model variables, thus ensuring the
exogeneity ofW. The coe¢ cients � and  re�ect the weight attributed to Qh;0 and dj;h, with � = 0
corresponding to a pure distance e¤ect, and  = 0 corresponding to a pure economic size e¤ect. These
could be estimated alongside other model parameters, but because of the di¢ culty this would entail,
it makes practical sense to assign values to these coe¢ cients a priori.

Data are important in deciding W, and since the spatial interaction we are attempting to model
using W, say as endogenous lag variable WY, is typically in economics a spillover or externality,
we conventionally look at where and to what extent spillovers are occurring. Typically, in the case of
knowledge spillovers, the main sources have been input-output tables, patent concordances, innovation
concordances, and proximity analysis. However this is sheer information, and we need to move closer to
a theory of network emergence, dynamics and possible equilibrium conditions to have a more satisfying
and coherent basis forW.

In order to obtain a closer representation of the spatial interaction process inWmatrix construction
choices, Anselin (2010) suggests greater focus on modelling agents involved in social and economic
interaction. Looking back in this context, Patuelli, Reggiani, Gorman, Nijkamp, and Bade (2007)
consider network interaction modelling with reference to earlier work on spatial interaction and discrete
choice behavior such as Wilson (1967, 1970) a on entropy maximization and McFadden (1974, 1979)
on the microeconomic basis of interaction models. Let us �rst consider W as a representation of a
network involving nodes (people or places) and links between nodes. These can be seen as dynamic
evolving entities, and we can envisage network development to be a response to costs and bene�ts in
being a node or a link on the network. Consequently some networks might be dynamic and ephemeral,
some networks in a stable equilibrium, and some network slowly evolving. Following Goyal (2009), we
envisage that ephemeral and dynamic networks occur when there are payo¤s. This leads to a theory
of network formation, thus �A game of network formation speci�es a set of players, the link formation
actions available to each player and the payo¤s to each player from the networks that arise out of
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individual linking decisions�, and �A network is said to be strategically stable or an equilibrium if
there are no incentives for individual players (either acting alone or in groups) to form or delete links
and thereby alter the network�(Goyal (2009)). A quasi-stable network is akin to what is normally
envisaged in the regional science literature, where typically a network will be a �xed or very slowly
evolving one, as a consequence of major investment in transport infrastructure which de�ne the inter-
nodal links. Assume that network formation and evolution is a consequence of decisions by network
providers (investors in infrastructures) on the one hand, and network users on the other. As a thought
experiment, let us consider how aW matrix might emerge and evolve. The network providers create,
maintain or develop the network according to the pro�t generated, where pro�t equals revenue minus
cost. The revenue comes from the number of network users and the prices they pay to use the network.
The cost depends on the extent of the network (miles of railway to maintain for example) and may
be divided between �xed costs and variable costs, which depend on network usage. The network users
choose links on the network according to the level of utility they provide, with the choice of whether
or not to use the network, and subsequently which network link to choose, modelled perhaps as a
multilevel random utility model. With a poor network, which in a commuting sense might mean
slow, unreliable and lengthy journeys, the level of utility will be low and users may prefer not to
such use links. Consequently, usage and pro�ts fall, although variable costs may also reduce. In
such circumstances it seems that a poorly used network or link might fall into decay, although poor
services may induce a reduction in prices, increase utility and usage, change pro�t levels, stimulate
investment and revive the network. Evidently users and providers are involved in a strategic game,
with a potential for equilibrium outcomes, and with dynamic changes to networks and user behavior
a possibility. The emerging literature on endogenous network dynamics involving dynamic stochastic
games of network formation could provide many insights into how the structure of theW matrix can
be placed on a more rational basis.

The potential for dynamic W matrices poses some problems for estimation, given the assertion
thatW is necessarily a �xed entity. While this may not be such an issue for cross-sectional approaches,
where at a given snapshot in time this may be a reasonable approximation, with the extension of spatial
econometrics to include panel data modeling it may be the case thatW is evolving, interacting with
the regression variables. Such an endogenous interaction is implied by Anselin (2010), who remarks
that �an endogenous spatial weights matrix would jointly determine who interacts (and why) and how
that interaction a¤ects the rest of the model. Much progress remains to be made...�. But we can have a
dynamicW matrix as part of a simulation, with no consequence for estimation, as in Fingleton (2001).

4 DO WE NEED W?

Let us now imagine that we have network dependence but we choose to ignore it. Assume that we
have explanatory variables comprising exogenous Xs and an endogenous spatial lagWY, so that the
data generating process is

Y = �WY +Xb+ " (21)

Y = (I� �W)�1(Xb+ ")

" � N(0;�2)
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and that X1;i = 1 for i = 1; :::; N , X2 = (I��x1W)�1u1; X3 = (I��x2W)�1u2;W is a standardized
N by N (Rook�s case)5 contiguity matrix, u1 and u2 are N by 1 vectors sampling from an N(0; 1)
distribution, and I is an N by 1 identity matrix. Vector " is N by 1 sampling from an N(0; �2I)
distribution. Also (I � �W); (I � �x1W) and (I � �x2W) are non-singular, � = 0:25; b1 = 1; b2 =

8; b3 = 2; �
2 = 1;and N = 121:

Given these data, we generate Y and estimate two models. One is the correctly speci�ed model
Y = �WY +Xb+ " estimated by maximum likelihood. The second is the (mis)speci�cationY = Xb+ "

estimated by OLS, which incorrectly assumes � = 0. Clearly, given spatial dependence in X2 and X3;
the OLS b estimates will be biased, as is apparent from the 100 replications summarised in Table 1 .

Table 1. Simulation Results
ML OLS

b var(b) mean bb meanbb�b
sqrt(var(b)) mean bb meanbb�b

sqrt(var(b))

�x1 = �x2 = 0

b1 1 0.0087 1.0121 0.1297 1.5522 5.9147
b2 8 0.0085 7.9966 -0.0365 7.9995 -0.0049
b3 2 0.0074 1.9948 -0.0600 2.0908 1.0536

�x1 = �x2 = 0:5

b1 1 0.0087 1.0019 0.0205 1.0729 0.7794
b2 8 0.0081 8.0146 0.1630 8.8903 9.9187
b3 2 0.0053 1.9948 -0.0711 2.3745 5.1567

Given that we often need W to obtain unbiased estimates of b, we also need it to obtain an
unbiased measure of the true e¤ect of a variable, which typically is not the same as b; as emphasized
by LeSage and Pace (2009). Given a SAR model of the form Y = �WY +Xb+ ", it is also the case
that the interpretation of the e¤ects on dependent variable Y of a unit change in an exogenous variable
Xj , the derivative @Y

@Xj
is not simply equal to the regression coe¢ cient bj . As pointed out by LeSage and

Pace (2009), the true derivative also takes account of the spatial interdependencies and simultaneous
feedback embodied in the model, leading to a total e¤ect that di¤ers somewhat (typically) from the
regression coe¢ cient estimate. It follows that

@Y

@Xj
= (I� �W)�1Ibj (22)

in which I is the N by N identity matrix and (I � �W)�1Ibj is an asymmetric N by N matrix, so
the derivative varies according to the cells of Xj and Y being considered. We can summarize these
di¤erentiated e¤ects by their mean, which is

N�1
NX
ir

@Yi
@Xrj

= N�1�0(I� �W)�1Ibj� (23)

In which � is an N by 1 vector of 1s. This is the average total e¤ect of a unit change in Xj . Also
we can partition the average total e¤ect of a unit change in all cells of Xj into a direct and an indirect

5Units are neighbors under Rook�s criterion if they share the same borders.
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component. The average direct e¤ect of a unit change in Xrj on Yr is given by the mean of the main
diagonal of the matrix, hence

N�1
NX
r

@Yr
@Xrj

= N�1trace[(I� �W)�1Ibj ] (24)

This direct e¤ect is somewhat di¤erent from bj because it also allows for the fact that a change in
Xrj a¤ects Yr which then a¤ects Ys(s 6= r) and so on, cascading through all areas and coming back
to produce an additional e¤ect on Yr. The di¤erence between the total e¤ect and the direct e¤ect
is the average indirect e¤ect of a variable. This is equal to the mean of the o¤-diagonal cells of the
matrix (I� �W)�1Ibj , hence

N�1
NX
r 6=s

@Yr
@Xsj

= N�1(�0(I� �W)�1Ibj�� trace[(I� �W)�1Ibj ]) (25)

Table 2 gives the mean total e¤ect of each ofX2 andX3 for the small simulation with �x1 = �x2 = 0,
�x1 = �x2 = 0:5 and with �x1 = �x2 = 0:95.

Table 2. Total, Direct and Indirect E¤ects (DGP with SAR Process).
�x1 = �x2 = 0 OLS ML Total Direct Indirect

b1 = 1 1.5795 0.9892 - - -
b2 = 8 8.1616 8.0119 10.7411 8.1628 2.5784
b3 = 2 2.0379 2.0109 2.6962 2.0488 0.6474
� = 0:25 - 0.2535 - - -

�x1 = �x2 = 0:5 OLS ML Total Direct Indirect

b1 = 1 1.1855 0.9921 - - -
b2 = 8 9.1596 7.9923 10.6748 8.1391 2.5357
b3 = 2 2.3908 2.0036 2.6759 2.0404 0.6355
� = 0:25 - 0.2511 - - -

�x1 = �x2 = 0:95 OLS ML Total Direct Indirect

b1 = 1 2.3287 1.0079 - - -
b2 = 8 10.1432 8.0042 10.6645 8.1489 2.5156
b3 = 2 2.4856 1.9998 2.6645 2.0359 0.6286
� = 0:25 - 0.2494 - - -

Consider next what happens if the true data generating process is

Y = Xb+ " (26)

" � N(0;�2)

and we (wrongly) �t the SAR model Y = �WY +Xb + ": Will it be the case that the presence of
WY biases the b estimates? This is a common criticism of spatial econometrics, that the signi�cance
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of the spatial lag is falsely interpreted as a true spatial spillover e¤ect. Indeed too many spatial
econometricians have been overenthusiastic in their adoption of the spatial lag without giving su¢ cient
consideration to the theoretical rationale for the model speci�cation. The consequences depend on the
context. If the spatial lagWY is simply an additional, unnecessary term in the model, then typically
� � 0;which is of no signi�cance. If however the SAR speci�cation excludes X3 = ((I � �x2W)�1u2;

then the outcome depends on whether �x2 = 0: Most importantly, with �x2 6= 0; the inference that
� 6= 0 may be simply due to the fact that �x2 6= 0. On the other hand with �x2 = 0; this means
that X3 is spatially random, and uncorrelated with the included variables, hence its absence does not
a¤ect the estimate obtained for �, in which case we should expect � � 0: Simply as an illustration, we
generate data via Y = Xb+ " reverting to X2 = ((I� �x1W)�1u1 and X3 = ((I� �x2W)�1u2. With
b1 = 1; b2 = 8; b3 = 2; �

2 = 1 and �x1 = 0:5; �x2 = 0; our two estimating equations give the following
mean estimates:

Table 3. Total, Direct and Indirect E¤ects (DGP without Spatial E¤ects)
�x1 = 0:5 �x2 = 0 OLS ML Total Direct Indirect

b1 = 1 1.0041 1.1144 - - -
b2 = 8 8.0107 7.9017 8.0802 7.9035 0.1767
b3 = 2 2.0012 - - - -
� = 0 - 0.0219 - - -

�x1 = 0:5 �x2 = 0:95 OLS ML Total Direct Indirect

b1 = 1 0.9910 0.6611 - - -
b2 = 8 8.0193 6.1322 12.6192 6.6749 5.9443
b3 = 2 1.9968 - - - -
� = 0 - 0.5137 - - -

Incorrectly omitting X3 when it is spatially dependent as a result of setting �x2 = 0:95 has a
signi�cant biasing e¤ect on the ML estimates. In particular the spatial lag is evidently picking up the
e¤ect of the spatially dependent omitted variable. With regard to the t ratios for �, the mean of 100
replications is 7.85. Likewise the outcome is a biased estimate of b2: Importantly, observe also that the
total, direct and indirect e¤ects of a variable will be incorrect when the speci�cation wrongly includes
the endogenous spatial lag. For example, in Table 3, the true e¤ect of X2 is given by b2 = 8:

However it turns out that we just might be able to use W to mitigate the bias arising from the
omission of spatially dependent regressors, for it has been shown by LeSage and Pace (2008) and Pace
and LeSage (2008) that �tting the so-called spatial Durbin model,

Y = �WY +Xb+WX�x + " (27)

eliminates coe¢ cient estimate bias, but this solution rests on the assumption that W is the correct
one for the omitted variable spatial autoregressive process: This is a topic which is explored and the
analysis extended in Fingleton and Le Gallo (2009), who �nd via Monte Carlo simulation that when
the omitted variable does not equate to a spatial autoregressive process inW, an augmented spatial

13



Durbin speci�cation, augmented to also includes an autoregressive error dependence process, produces
biased estimates, but ones that are less biased than those obtained by ignoring the existence of omitted
variables.

While we often need W, sometimes its presence is unnecessary and can be misleading. A second
note of caution also suggesting moderation of the emphasis by LeSage and Pace (2009) onW leading
to total, direct and indirect e¤ects, as the proper interpretation of the impact of exogenous variables
in the presence of a spatial lag, comes from the speci�cation

Y = �WY + b1(I� �W)X1 + b2X2 + " (28)

Following equation (22), @Y
@X2

= (I� �W)�1Ib2, but equation (22) does not apply with regard to X1;
and instead @Y

@X1
= b1. This type of speci�cation has been suggested by Fingleton (2003), Fingleton

(2006) and Barde (2010) as the reduced form resulting from the existence of an ancillary SAR process.
In the following example, log labour e¢ ciency (lnA) is assumed to depend on local exogenous

variables embodied in the N by k matrix X, on log labour e¢ ciency in �nearby�areas (W lnA), and
on random disturbances (�), hence lnA = Xb+�W lnA+ �; � � N(0;
2). It is convenient to specify
this with the exogenous variables on the right hand side, hence lnA =(I� �W)�1(Xb+ �): Starting
from an explicit economic theory with microfoundations, they assume wages w depend on employment
densityE and labour e¢ ciencyA in each area j; j = 1; :::; N; thus lnwj = k1+(�1) lnEj+(�1) lnAj .
Substituting and rearranging obtains

lnw = �W lnw + (I� �W)k1�+ ( � 1)(I� �W) lnE+( � 1)Xb+( � 1)� (29)

It is apparent that the partial derivative @ lnw@ lnE is simply equal to (�1); so despite the existence of the
spatial lagW lnw in our model, there is no need to interpret the e¤ect of this variable any di¤erently
from the normal interpretation.

This then leads us to the problem of inference and interpretation in a spatial econometric model that
is driven by underlying economic theory, as is the case in Fingleton (2003), Fingleton (2006) and Barde
(2010), compared with the inference and interpretation one would associate with a model speci�cation
that is governed entirely by empirical analysis. It is apparent that we could obtain misleading results
if empirical analysis suggests a model speci�cation that is contrary to the true speci�cation.

Consider the following simple example, in which the DGP is the above model, but instead the
following spatial Durbin speci�cation is �tted to the data

lnw = �W lnw + b0�+ b1lnE+b2W lnE+Xc+WXd+ � (30)

From this starting point, our best-�tting model would probably be a constrained version of this
speci�cation, but without knowledge of the underlying theory driving the DGP we would never consider
the true speci�cation among the set of optional models, and come to a false interpretation of the e¤ects
of the variables.

To illustrate this, consider the DGP based on an 11 by 11 lattice giving N = 121 observations of
variables w, E and X, with the 121 by 121 W matrix comprising a matrix of 1s and 0s according
to the Rook�s contiguity criterion, subsequently standardize to row totals of 1. The values of E and
X are respectively N by 1 and N by 2 matrices of pseudorandom numbers drawn from the standard
uniform distribution on the open interval (0; 1) excluding 0s. Given k1 = 1,  = 1:25, � = 0:15, c1 = 8,
c2 = 2, and ( � 1)2
2 = ( � 1)2, we generate lnw via
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lnw = k1�+ ( � 1)lnE+(I� �W)�1(Xc+	) (31)

	 �N(0;( � 1)2
2)

Typical outcomes of this DGP and model �tting exercise are given in Table 4. We also eliminate the
insigni�cant spatial lags (Model B).

Table 4. Spatial Autoregressive Model Estimates
Model A Model B

Coe¢ cient t Asymptotic z Coe¢ cient t Asymptotic z

b0 1.689 5.670 0.000 1.817 11.163 0.000
b1(lnE) 0.245 7.614 0.000 0.240 7.665 0.000
b2(W lnE) -0.022 -0.326 0.743 - - -
c1(x1) 7.993 633.3 0.000 7.999 846.2 0.000
c2(x2) 2.005 221.2 0.000 2.006 236.1 0.000
d1(Wx1) -0.153 -0.709 0.477 - - -
d2(Wx2) -0.036 -0.638 0.522 - - -
�(W lnw) 0.167 6.334 0.000 0.149 67.81 0.000

R2 0.999 0.999
�R2 0.999 0.999
�2 0.076 0.077
N 121 121
ll 25.14 24.88

These model estimates closely approximate those assumed in the DGP, but they give a misleading
indication of the true e¤ect of the variables. Using the equations given above, we would infer that the
average total e¤ect of lnE is N�1�0(I� �W)�1Ib1� = 0:3387 compared to the true value of 0.25.

5 CHOOSING W EMPIRICALLY

Consider next the question of which matrixW should be chosen given the obvious scope for numerous
competing weights matrices. While theory will in the best practice cases drive the structure ofW, it
nevertheless is true that there are a number of degrees of freedom in the exact W speci�cation, for
example does one adopt a negative exponential decay or a power function for the distance term in
equation 20. Harris, Mo¤at, and Kravtsova (2010) review some alternative approaches to constructing
W, such as trawling through data, perhaps designing W around the residuals from a �rst stage
regression, but this is atheoretical.

Burridge and Fingleton (2010) set out the history of the problem, commencing with Anselin (1986)
who considers the simple model,

Yi = �+ �
NX
j=1

WijYj + ui (32)
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where the N � N weight matrix, W, has three di¤erent forms, WA;WB and WC . Taking WA

to be the null hypothesis, Anselin considers J-type statistics in order to discriminate between these
alternatives, obtained by augmenting (32) by additional explanatory variables equal to the �tted values
from the model with weightsWB or from the model with weightsWC .

To further illustrate this, we follow Kelejian (2008) and Burridge and Fingleton (2010) and consider
the more elaborate SARAR model, in which the choice of theW matrix is accompanied by the question
of which matrix M to adopt, the latter de�ning the autoregressive spatial error dependence in the
SARAR(1,1) model, thus

Y = X0b0+�0W0Y+u0 (33)

u0 = �0M0u0+v0:

Here, the N�k0 matrix of exogenous variables, X0; and the N�1 vector for the dependent variable, Y;
are each measured without error, the two N �N weight matrices,W0 andM0 are �xed a priori, and
the unobserved shock vector, v0 � iid(0; �20IN ) is independent of the exogenous regressors, X0. The
parameters to be estimated are the slope coe¢ cients, b0; the spatial lag and error coe¢ cients, �0 and
�0; and the variance, �20: The su¢ x 0 denotes that this speci�cation is one of (at least) two competing
non-nested hypotheses. Under the alternative, the data are generated by a similar structure, hence

Y = X1b1+�1W1Y+u1 (34)

u1 = �1M1u1+v1:

Kelejian (2008) considers the tests of these competing models, extending the problem by allowing > 2
non-nested alternatives. Among the hypotheses that can be tested, Burridge and Fingleton (2010)
assume the explanatory variables, X0 andX1 are the same in the two models, but the spatial structures
di¤er, so thatW1 6=W0 and M1 6=M0; but for simplicity they set M0 =W0 and M1 =W1 6=W0:

One alternative to the J-type statistics is to use an information criterion, thus avoiding several
model comparisons, as suggested by Leenders (2002). However �..unfortunately di¤erent information
criteria will in general lead to the selection of di¤erent models, so that the uniqueness of the cho-
sen model relies on the investigator �rst selecting which criterion to adopt�(Burridge and Fingleton
(2010)).

Related approaches use Bayesian model averaging (LeSage and Parent (2007), LeSage and Fischer
(2008)). While parameter uncertainty is well known, model uncertainty involving the unknown true
structure of the W matrix is less well explored. However, �nding the true W may involve searching
through a very large number of competing speci�cations, which may include the true speci�cation,
rather than being decided on theoretical grounds.

6 ALTERNATIVES TO W

It is evident that the speci�cation of W is fundamental and that for some the problems this poses,
either from the perspective of logic, theory or empirics, poses a signi�cant hurdle (McMillen (2010a)).
Some have advocated rejecting the traditional a priori �xedW matrix approach in favour of potentially
less problematic ways of introducing spatial interaction in spatial econometric models (Harris, Mo¤at,
and Kravtsova (2010), Folmer and Oud (2008)). Thus instead of constructingW, they suggest directly
entering variables in the regression model that proxy spillovers (Harris, Mo¤at, and Kravtsova (2010)).
This is the approach adopted by Paci and Usai (2009). As Harris, Mo¤at, and Kravtsova (2010)
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observe, �the essential di¤erence between this and the standard approach using W is that spillovers
are not entered through the interaction between regions of the dependent or other (state) variables
in the model, weighted by W, but rather through constructing �stand alone� proxies for spatial
spillovers�. However we argue that such an approach itself requires strong identifying assumptions and
therefore possesses no real advantage compared to employing aW matrix. In other words, this type of
approach also typically involves some form of a priori variable selection and weighting usually in the
form of a geographical proximity measure, and so does not really represent a complete departure from
theW matrix approach, and even if weighting can be avoided it introduces additional complexities of
(arbitrary) variable de�nition.

With time series and panel data, we have more scope for a more re�ned approach. Seemingly
unrelated regression (SUR) probably provides the most complete break from theW matrix approach,
because it estimates the error variance-covariance matrix on the basis of location-speci�c time series,
thus, according to Anselin (1988), �the spatial dependence is not expressed in terms of a particular
parameterized function, but left unspeci�ed as a general covariance�, and, �in spatial econometrics,
this model has been suggested as an alternative to the use of spatial weights�. Other time-series
related alternatives in the form of vector autoregressions, which attempt to pick up spatial interaction
via the presence of (any number of) lagged variables from �neighboring� regions are an interesting
alternative, but with a large number of regions ultimately collapse under the weight of a large number
of parameters to estimate and interpret. However these problems may not always be fatal. One
way out of this problem is via the Bayesian approach of LeSage and Krivelyova (1999), and Chang
and Coulson (2001) successfully use a structural vector autoregression to model spatial spillovers.
Another approach that has been advocated (Kelejian and Prucha (2007)) is spatial non-parametric
heteroscedasticity and autocorrelation consistent estimation (SHAC). This gives consistent estimates of
the error covariance matrix under rather general assumptions, allowing various patterns of correlation
and heteroscedasticity, including spatial ARMA(p; q) errors. Kelejian and Prucha (2007) assume that
the disturbance vector e is:

e = R�

where R is an non-stochastic matrix with unknown elements. The asymptotic distribution of IV
estimators implies that the variance-covariance matrix is

	 = n�1~z
0
�~z

in which � = f�ijg is the variance-covariance matrix of e and ~z is a full column rank matrix of
instruments. The (r; s)th element is:

	rs = n
�1

nX
i=1

nX
j=1

~zir~zjsêiêjK(dij=dn)

where êi is the IV residual for observation i, dij is the distance between locations i and j, dn is the
bandwidth and K(:) is a kernel function. Among the alternatives, we might opt for the Parzen kernel
as given by Andrews (1991).

K(x) =

8><>:
1� 6x2 + 6 jxj3 for 0 � jxj � 1

2

2(1� jxj)3 for 12 < jxj � 1
0 otherwise

9>=>;
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From this it is evident that this approach is not assumption-free. Alternative kernels, such as the
Bartlett, Tukey-Hanning and Quadratic spectral kernels, each put di¤erent weights on the lagged
covariances. Additionally, di¤erent bandwidth or lag truncation parameter options exist. This is
also the case of semi-parametric approach proposed by McMillen (2010b), which uses a Cubic kernel
transformation of the covariate, X, as a function of geographical distance, f (X(d)), in a relationship
which su¤ers from missing variables and incorrect functional form. Smoothing over space adds a
variable that is correlated with the omitted variable, which is also correlated with space, and so adds
signi�cant explanatory power to the model. In addition the use of the nonlinear spline function resolves
the functional form misspeci�cation. In practice these choices are essentially data driven, and the
choices made drive the performance of both (S)HAC and semiparametric estimators. Evidently SHAC
and semiparametric estimators provide no obvious advantage to the �exibility inherent in a data-driven,
potentially asymmetric,W matrix approach, which of course may be applied (perhaps using di¤erent
Ws) not only to the error process, but also to endogenous and exogenous variables. Moreover, rather
than neutralizing spatial dependence as a nuisance phenomenon, where spatial econometrics takes a
lead is in its ability to identify and test theory relating to explicit spatial dependence mechanisms, as
embodied in the parameterization of aW matrix. Of course this demands a speci�c functional form,
and values assigned to parameters, but careful data analysis may help to identify the most appropriate
speci�cation, in ways that parallel how optimal HAC estimators are obtained.

It is apparent that while alternatives have been advocated which attempt to model spatial de-
pendence, ultimately their application also calls for some simplifying and operational assumptions, so
that they do not, except for SUR modelling, represent a complete break from what is also required by
the traditionalW matrix approach. However, there is one outstanding approach to modeling spatial
e¤ects which has had very little attention in the spatial econometrics literature, namely hierarchical
modeling. At �rst glance this seems to also be a way to allow spatial e¤ects without having to resort
to aW matrix as a convenient and practicable option. However, as we demonstrate for the �rst time,
theW matrix is also embodied within this approach.

7 HIERARCHICAL MODELS

Hierarchical models are becoming increasingly popular across the range of the social sciences, as
researchers come to appreciate that observed outcomes depend on variables organized in a nested
hierarchy. We see many applications of multilevel modelling in educational research where there exist
a number of well de�ned groups organized within a hierarchical structure. In economic geography,
with a hierarchy of local, regional and national e¤ects typically in�uencing outcomes, the obvious
starting point is multilevel modelling, in which individual level cross-sectional (spatial) data within
the same local administrative area, for example, are subject to an e¤ect because of their common
location. Perhaps local property taxes are di¤erent across local administrative units, and properties,
which are the units of observation, have prices partly re�ecting these local tax di¤erences. Additional
spatial e¤ects may arise at di¤erent levels of a nested hierarchy; for instance we may wish also to
control for the e¤ects of being located within the same region, perhaps because policy instruments
having an e¤ect on property prices are applied at the regional level and are di¤erent from the e¤ects
of local tax di¤erentiation.

Recognition of the di¤erent form of interactions between variables which a¤ect each individual
unit of the system and the groups they belong to has important empirical implications. In fact,
regardless of spatial autocorrelation, the assumption of independence is usually incorrect when data
are drawn from a population with a grouped structure since this adds a common element to otherwise
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independent errors, thereby inducing correlated within group errors. Moulton (1986) �nds that it
is usually necessary to account for the grouping either in the error term or in the speci�cation of
the regressors. Apart from within-group errors, it is also possible that errors between groups will be
correlated. For example, if the groups are geographical regions then regions that are neighbors might
display greater similarity than regions that are distant. Again, Moulton (1990) shows that even with
a small level of correlation, the use of Ordinary Least Squares (OLS), will lead to standard errors with
downward bias and to erroneous conclusions of statistical signi�cance.

One way of incorporating the group e¤ect in a multilevel framework is to evaluate the impact of
higher level variables which measure one or more aspects of the composition of the group to which an
individual belongs. Bryk and Raudenbush (1992) consider di¤erent ways of doing this, such as using
a simple mean covariate over the higher level units as an explanatory variable. The mean covariate
characterizes group e¤ects which are measurable and in this respect di¤ers advantageously from the
use of dummy variables which capture the net e¤ect of several omitted variables. Note that it is
possible that having controlled for these measurable compositional e¤ects there are still unobservable
spatial e¤ects.

Such correlated unobservables can be modeled either as �xed or random e¤ects. If we have data
grouped by geographic area with all the areas represented in the sample then a �xed e¤ects speci�cation
is appropriate. When only some of the areas are represented in the sample or there is a pattern of
dependence involving unknown spatial e¤ects, we might opt for random e¤ects in a hierarchical model
operating through the error term. This is achieved by way of an unrestricted non-diagonal covariance
matrix. As with unconditional ANOVA this will provide the decomposition of the variance for the
random e¤ect into an individual component and a group component. Under a spatial dependence
process acting at the level of random group e¤ects, the random components are typically a¤ected
by those of neighboring groups. This assumption is usually a relaxation of the main hypothesis in
hierarchical modelling, i.e. independence between groups. As we have seen, especially when the
groups are geographical areas, this might often be unrealistic.

Figure 4 is a diagrammatic representation of a hierarchical structure, with r denoting the top level,
g the second level, and I the individual level. There is a varying number of individuals per second level
group, and varying numbers of second level groups in each category at the top level of the hierarchy. In
the context of spatial data we might consider a geographical grouping of individuals with the highest
level being regions (r) each of which nests smaller geographical sub-regions (g): These sub-regions
may be either speci�c areas of residence or some other relevant geographical units. Located within
each sub-region there are individuals (I) with a varying number of individuals per sub-region. We
associate with each individual a response Yi which is dependent upon a set of covariates Xi. However,
in assessing whether we might assign any causal relationships between one or more covariates in Xi
and the individual response Yi, it is necessary to consider the hierarchical structure of the data, and
in particular within- and between-group e¤ects.

There are a number of advantages in taking a multilevel approach. First, in standard unilevel
OLS estimation the presence of nested groups of observations may be dealt with by the use of dummy
variables. However, a large number of levels result in a dramatic reduction in degrees of freedom.
Second, a multilevel approach helps us to analyze the e¤ect of heterogenous groups in the small sample
situation. In fact with unbalanced data, while OLS estimates of the coe¢ cients give equal weights to
each cluster, the preferred model acknowledges the fact that estimates for the �xed coe¢ cients can
change according to the cluster size. It is therefore possible to adjust both the estimates and the
inference according to the precision associated with each group, which is determined by the number of
individuals in each group (this is technically referred to as shrinkage). In most applications, shrinkage
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is desirable so that clusters that provide little information have little in�uence in estimation. The
hierarchical multilevel method, which is sample size dependent, seems to have a distinct edge over
other methods in eliminating bias.

Compared to other approaches such as Clustered-Standard-Error OLS, Hierarchical Modelling
(HLM) has some advantages: �rst, while CSE techniques treat the random variation as a simple
nuisance, the objective of HLM is to estimate and decompose the total random variation in an in-
dividual component and a group component. Second, while CSE only adjusts standard errors for
non-independence, HLM provides us with estimates of the variance components at each level and
these a¤ect point estimates also. In turn, variances and covariances constitute valuable information
on the contribution of non-observable factors at each level to the variation of the dependent variable
(Aslam and Corrado (2007)).
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Figure 4: A Hierarchical Structure

8 MODELLING SPATIAL EFFECTS THROUGH THE ERROR
TERM

In the random coe¢ cient model the level of the individual response varies according to location. For
example, individuals�income levels, controlling for individual level covariates (X) such as educational
attainment, might vary if they reside in di¤erent areas. Part of the reason could be the e¤ect of, say,
�xed level two contextual factors (Z), and partly because of level two speci�c random e¤ects fujg.
However these �xed and random e¤ects, while jointly accounting for heterogeneity across residential
areas, are not spatially correlated, a topic we address subsequently. With this in mind, the speci�cation
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of a multilevel model is:
Y = �0 +X�1 + Z + " (35)

where Z = fZijg is a set of contextual factors at level-two, Y = fYijg ; X = fXijg and " = feijg+ fujg.
The dimension of Y and X and Z are (N � 1), (N � k) and (N � q ) respectively. The vectors �0;
�1 and  denote the vectors of �xed e¤ect coe¢ cients. The additive error term " is composed of
an idiosyncratic random error term eij for the ith unit belonging to level j and a random e¤ect uj
accounting for some level 2 heterogeneity. We make the following assumptions:

eij jXij � N(0; �e) Cov(eij ; ei0j) = 0; 8i 6= i0
uj jXij � N(0; �u) Cov(uj ; eij) = 0

(36)

If we let �2e (�
2
u) denote the variance of eij (uj) such that for cov(eij ; uj) = 0, then �

2
" = �

2
e + �

2
u

represents the sum, respectively of the within- and between-group variances. Based upon the above,
the (equicorrelated) intra-class correlation is:

� =
�2u

�2u + �
2
e

: (37)

This correlation measures the proportion of the variance explained at the group level. In single-level
models �2u = 0 and �

2
" = �

2
e becomes the standard single level residual variance.

In order to accommodate spatial e¤ects operating via the error term we can rewrite the composite
error term as:

"ij = eij +
X
j 6=h

ujWjh; (38)

whereW = fWjhg allows us to specify the way neighboring areas a¤ect uj : The matrix W is a matrix
of distances between the G entities as discussed below. The intra-class correlation is now given by:

� =
�2uP

j 6=h �
2
uW

2
jh + �

2
e

: (39)

Trivially if W = I; where I is the identity matrix, then we have the standard random e¤ects model
ignoring any between group e¤ect.

If uj are treated as �xed e¤ects then we need to assume that cov(eij ; uj) = �eu = 0, that is
transient individual-level random e¤ects are uncorrelated with, say, a level 2 variable such as the area
of residence. If uj and eij are not independent the Generalized Least Squares (GLS) estimator would
be biased and inconsistent. If uj are random e¤ects we also assume independence between these and
the covariates such that cov(Xij ; uj) = �ux = 0 (Blundell and Windmeijer (1997)).

If we �rst rewrite (35) in compact form as:

Y = J�+ �"" (40)

where J is (N � (k + q +1)) and � is ((k + q + 1) � 1) and �" is the design matrix of the random
parameters that is used in the estimation to derive the estimates for b�2e and b�2u: The hierarchical
two-stage method for estimating the �xed and random parameters (the variance and covariances of
the random coe¢ cients) originally proposed by Goldstein (1986),6 is based upon an Iterative Least
Squares (IGLS) method that results in consistent and asymptotically e¢ cient estimates of �:

6The method is currently implemented in the software MLwiN.
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As Goldstein (1989) has stressed, the IGLS used in the context of random multilevel modelling
is equivalent to a maximum likelihood method under multivariate normality which in turn may lead
to biased estimates. To produce unbiased estimates a Restricted Iterative Generalized Least Squares
(RIGLS) method may be used which, after the convergence is achieved, turns out to be equivalent to
a Restricted Maximum Likelihood Estimate (REML). One advantage of the latter method is that, in
contrast to IGLS, estimates of the variance components via RIGLS/REML take into account the loss
of the degrees of freedom resulting from the estimation of the regression parameters. Hence, while
the IGLS estimates for the variance components have a downward bias, the RIGLS/REML estimates
don�t.

9 LINKING SPATIAL MODELS TO HIERARCHICAL MODELS
WITH INTERACTION EFFECTS

With the emergence of interaction-based models (Manski (2000), Brock and Durlauf (2001), Akerlof
(1997)) research has gradually moved from a pure spatial de�nition of neighborhood towards a multidi-
mensional measure based on di¤erent forms of social distance and spillovers (Anselin and Cho (2002),
Anselin (1999)). In this setting multilevel models with group e¤ects are generally de�ned as economic
environments where the payo¤ function of a given agent takes as direct arguments the choice of other
agents (Brock and Durlauf (2001)). A typical example is the emergence of social networks where it
is often observed that people belonging to the same group tend to behave similarly (Manski (2000)).
The propensity that a person behaves in a certain way varies positively with the dominant behavior
in the group (Bernheim (1994), Kandori (1992)).7

We consider how multilevel models can be linked to spatial models and generalize them to incor-
porate more general forms of network dependence involving individuals belonging to the same group.
We start by assuming a speci�c form of spatial dependence where the dependent variable, Y, depends
on its spatial lag as in traditional spatial autoregressive (SAR) models:

Y = �0 + �WY +X�1+Z + u+ e (41)

whereW is an N�N matrix with G groups/areas each containing wj individuals so that
PG
j=1wj = N

and Z is a (N�q )matrix of contextual variables de�ning group characteristics. Let�s start by assuming
thatW is a block matrix:

W = Diag(W1; :::;WG) (42)

Wj =
1

wj
(�wj�

0
wj ) j = 1; :::; G

where �wj is the wj-dimensional column vector of ones. Elements in matrixW indicate that individuals
within a group are a¤ected by the (average) behavior of other individuals residing in the same location,
in other words by other members of the same group. Figure 5 depicts a situation resembling a complete
network, as described in Section 3, where each unit Iij i = 1; :::; wj j = 1; :::; G interacts in the same
way with all the other units in the group.

7Other in�uences are the so called peer in�uence e¤ects which have been extensively examined both in education (Bén-
abou (1993)), in the psychology literature (Brown (1990) and Brown, Clasen, and Eicher (1986)) and in the occurrence
of social pathologies (Bauman and Fisher (1986); Krosnick and Judd (1982); Jones (1994)).
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Figure 5: A Hierarchical Structure: Complete Network within Groups
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We can envisage many di¤erent form of interactions among members of the same groups. Figure
6 illustrates a situation where individuals in the same group are a¤ected by individual I3 without
in�uencing each other. We can clearly generalize this analysis to other forms of network interactions,
such as the nearest neighbor scenario introduced in Section 3 and described by the weight matrixWC ,
in which case the block diagonal matrix is:

WC = Diag(WC
1 ;W

C
1 ; ::;W

C
G)

Finally we could also introduce di¤erent type of network structures across groups, further general-
izing the structure of the block diagonal matrixWC .

To illustrate the implication of group dependence for spatial models we focus on the hierarchical
complete network structure shown in Figure 5. The speci�cation (41) together with the assumption
of group dependence implied by (42) allow us to examine the particular case of a hierarchical model
where, for ease of exposition, we assume for the moment that individuals (�rms etc) within the same
group are a¤ected in the same way by all the other members of the group.

Focussing on within-group e¤ects we therefore assume that �Yj = 1
wj

Pwj
i=1 Yij so that each individual

within group j has the same weight. This means that, somewhat di¤erently from conventional spatial
econometrics, the inter-individual interactions do not spill across group boundaries, and within groups
no account is taken of di¤erential location leading to di¤erent weights according to distance between
individuals. We will consider the implication of group spillovers in a hierarchical setting in the following
section and show how introducing such externalities between groups is crucial for the identi�cation of
network interaction e¤ects.

With this assumption, we can rewrite (41) as:

Yij = �0 + �1 �Yj + �1Xij + Zj + eij + uj (43)

Following Manski (1993), �1 gives the e¤ect of individual level characteristics Xij , �1 captures the
strength of endogenous group e¤ects �Yj ,  quanti�es the exogenous or contextual e¤ect Zj , uj are
random group e¤ects and eij is an individual speci�c random component capturing other unmodelled
sources of variation in Yij . The problem here is the identi�cation of the parameters in the presence
of what Manski calls re�ection, something which we address below. Of course, identi�cation only
becomes a problem in linear-in-means models, and any nonlinearity, for instance as in an expanded
spatial Durbin model (see Gibbons and Overman (2010)), automatically solves the problem.

As an example, consider workers within companies, with wages Yij dependent on individual worker
attributes, Xij ; and on company level contextual e¤ects Zj (such as sector, company wages policy,
level of research and development activity, investment etc.). In addition other unmeasured causes of
individual wage variation are represented by random group (company) e¤ects uj and by individual
random e¤ects eij ; and with �1 6= 0 wages may also be endogenously determined so that a higher wage
level achieved by one worker spills over (via �Yj) to other workers in the �rm.

Taking group means of both sides of (43) and solving for �Yj (assuming �1 6= 1) results in the
between group regression:

�Yj =
�0

1� �1
+

�1
1� �1

�Xj +


1� �1
Zj + u

0
j (44)

where u
0
j =

�ej+uj
1��1

.8 If �Xj = Zj (re�ection), putting together (44) in (43) and centering, we obtain:9

8See Snijders and Bosker (1999, page 53) for the derivation of the between group regression in a multilevel setting.
9Technical Appendix A with the proof of equation (45) is available at http://sites.google.com/site/ luisacor-
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Yij=
�0

1� �1
+
�1 + 

1� �1
�Xj+�1(Xij � �Xj) + eij+u

00
j (45)

with u
00
j = uj + �1u

0
j . This is an example of Manski�s re�ection problem: in situations where group

average characteristics, �Xj , directly a¤ect the individual outcome, Yij ; the parameters in the structural
model are not identi�ed. In this case the number of coe¢ cients in the reduced form (45) is not
su¢ cient to identify the coe¢ cients in the structural equation (43). We have four parameters to
identify in the structural equation (43) but only three estimated coe¢ cients in (45). Note that without
group e¤ects (�1 =  = 0) the reduced form simpli�es to the basic one-way error component model
Yij = �0 + �1Xij + uj + eij . In other words group e¤ects generate excess between group variance by
introducing mean peer characteristics, �Xj ; as an e¤ect on outcomes.10

In the following section we will show how the connection between spatial models and multilevel
models with group interactions (�1 6= 0;  6= 0), allows parameter identi�cation using simple instru-
ments for the endogenous e¤ects, �Yj .

9.1 Spatial E¤ects and Identi�cation

Extending the work by Cohen-Cole (2006) to the area of modelling interaction e¤ects in a multilevel
setting (see Corrado (2009)) we can rewrite (43) in a way that takes into account possible interdepen-
dencies not only within groups but also across groups, where a group may be those living in a speci�c
district or region. We assume intra-group e¤ects �Yj = 1

wj

Pwj
i=1 Yij where �Yj is an average of all wj unit

responses within group j and, importantly we now introduce out-group e¤ects �Yl which are equal to an
average of the responses across all �neighboring�groups, except group j. Typically we might consider
�Yl to be based only on those groups that are spatially or socially proximate. Note that thus far the
literature has assumed that all surrounding groups enter with the same weight, but in this paper we
introduce the innovation of di¤erential weighting. Similarly we introduce out-group contextual e¤ects
�Zl; thus leading to the model:

Yij = �0 + �1 �Yj + �2( �Yj � �Yl) + �1Xij+(Zj � �Zl) + eij + uj ; (46)

in which the outcome of individual i in group j, Yij ; depends on the average outcome of group j, where
the implicit assumption is that unit i is a¤ected equally by all other units in j.

We also assume that the individual outcome depends on the average outcome, �Yl; and average
contextual e¤ects, �Zl; of other groups �surrounding�group j: We represent the endogenous out-groups
spillover variable in deviation form, as the mean within the group minus the mean in regions �nearby�,
hence the variable is �Yj � �Yl. Likewise the contextual spillover variable is speci�ed as Zj � �Zl: In order
to identify all the relevant parameters in the model we consider the average relationship derived from
(46):

�Yj =
1

1� �1 � �2
�
�0 + �1 �Xj+(Zj � �Zl)� �2 �Yl

�
+ u

0
j (47)

rado/publications.
10By allowing for the possibility that the conditional mean of group e¤ect and the individual e¤ect vary with group size,

Graham (2008) also allows for the possibility that peer-group e¤ects may di¤er according to class size, being stronger in
bigger classes. A way to detect the presence of group e¤ects in this case is to measure the excess between-group variance

de�ned as the ratio of unconditional (scaled) between-group and within group variances EV =
E[wj(Y j��y)2]

E
h
(wj�1)

�1Pwj
i=1(Yij�Y j)

2
i :
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where u
0
j =

�ej+uj
1��1��2

.11

Putting together (47) in (46) and assuming re�ection so that Zj = �Xj :

Yij =
�0

1� �1 � �2
+ �1Xij +

�1(�1 + �2) + 

1� �1 � �2
�Xj (48)

� �2
1� �1 � �2

�Yl �


1� �1 � �2
�Zl + eij + u

00
j

where u
00
j = uj + (�1 + �2)u

0
j . It is clear from (48) that we can identify all the parameters in the

structural equation (46) if the number of level-one units (typically number of individual people) exceeds
the number of groups and @Yij

@ �Yl
6= 0;

@Yij
@ �Zl

6= 0 i.e. if for some j 6= l agents in one group are a¤ected
by the value of Y or by contextual e¤ects Z in other surrounding groups. Hence one could use outer
groups�behaviour as instruments to identify the endogenous e¤ects, �Yj : For example, in the wage
equation one could use as instruments wage and company characteristics in neighbouring companies,
in other sectors, or at di¤erent geographical/hierarchical levels.

One important issue is collinearity, but the collinearity between Xij and �Xj can be nulli�ed by
centering the variables. Reparameterizing, we obtain an equivalent hierarchical model:12

Yij =
�0

1� �1 � �2
+ (Xij � �Xj)
within-group exogenous

�1 + (49)

� �2
1� �1 � �2

out-group endogenous

�Yl +
 + �1

1� �1 � �2
between-group exogenous

�Xj �


1� �1 � �2
out-group contextual

�Zl + eij + u
00
j

So we �nd that if we have an HLM model speci�cation that includes out-group e¤ects �Yl and �Zl , then
this facilitates identi�cation (c.f. Manski, 1993) of the model parameters in equation (46) because we
can use �Yl; �Zl and �Xj as instruments for the endogenous variable �Yj . In doing this we assume that
our instruments are not weak, and are orthogonal to Y.

9.2 Estimating Group Spillovers in Hierarchical Models

The speci�cations developed thus far in fact embody speci�c W matrix assumptions (as described
below). Given these, we could envisage a generalization of (49) in order to incorporate more general
forms of group interaction e¤ects:

Y = (I� (�1 + �2)W)�1 (�0��2WlY +WX(�1 + )�WlZ) + (X�WX)�1 + u
00
+e (50)

which resembles the spatial Durbin speci�cation (30) in Section 4 whereW is the matrix which de�nes
the within-group e¤ects andWl the out-group e¤ects. Hence, when estimating the simpler speci�cation
whereWlZ =WlY = 0 not only we are unable to identify both endogenous and exogenous interaction
e¤ects, we also face an omitted variable problem. In this case unobserved (omitted) covariates would
be correlated with the observed (included) covariates. Since the observed covariates also include the
endogenous spatial lag parameter �2, its signi�cance would be misleading, since it would pick up the
e¤ects of the omitted variables WlZ and WlY. This occurrence is particularly problematic when

11Spatial autocorrelation in the error term exists because Yij depends on uj which also a¤ects �Yj and ( �Yj� �Yl) through
the coe¢ cients �1 and �2.
12Technical Appendix B with the proof of equation (49) is available at http://sites.google.com/site/ luisacor-

rado/publications.
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estimating models with random e¤ects since the maintained assumptions are that both the individual
and the group error components should be uncorrelated with the regressors Cov (u;X) = 0 and
Cov (e;X) = 0: This assumption is of course the same as for random e¤ects panel models, as would
typically be tested by means of a Hausman test of parameter consistency. This involves comparison of
�xed and random e¤ects estimates, assuming the �xed e¤ects are consistent by being independent of
the idiosyncratic disturbances. In the hierarchical case omitting spatial e¤ects forX and Z will likewise
create inconsistent estimators since the error components will be correlated with the regressors.

While we do not have a test that is equivalent to the Hausman test, we do have a way of avoiding
inconsistency resulting from omitted variables. This is by means of the inclusion of spatial e¤ects
WlZ and WlY: In fact these play a dual role: (i) of avoiding the omitted variable problem that may
a ict models with endogenous spatial lags and (ii) of introducing a source of exogenous variation that
helps to identify both endogenous and exogenous group e¤ects, which seems to be vital to most of the
empirical work on network interactions. In the context of model (50) estimation of both the observed
and unobserved components is achieved via RIGLS/REML, as mentioned in Section 9, given WlY;

WlZ andWX.
We now consider a simulation exercise. The basis of this is the group set-up. Groups can be

unequal in size, and the weights do not have to be equal as in equation (42), so that group members
can carry di¤erential weights, for example, for a 4 member group:

W1 =

264 a b c d

a b c d

a b c d

375 (51)

in which a + b + c + d = 1. Thus W1 can have a di¤erent number of members and di¤erent weights
(also summing to 1 across rows), compared withW2,...,WG where G is the number of groups.

This leads to our square diagonalW matrix, which is

W =

266666664

W1 0 0 0 0 0

0 W2 0 0 0 0

0 0 : 0 0 0

0 0 0 : 0 0

0 0 0 0 : 0

0 0 0 0 0 WG

377777775
in which 0 stands for a sub-matrix of 0s of appropriate dimension.

The spatial lagging matrix Wl identi�es the location and strength of spillovers between groups,
such as for example:

Wl =

266666664

0 W2 0 0 : 0 0

W1 0 0 0 : 0 0

0 0 0 W4 : 0 0

0 0 W3 0 : 0 0

0 0 0 0 : 0 WG

0 0 0 0 : WG�1 0

377777775
Given this, we start by considering a generalization of the structural equation (46):

Y = �0�+�1WY+�2(WY �WlY) +X�1 + (Z�WlZ) + u+ e (52)
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We can therefore simulate our data from the following process for Y:13

Y = (I� (�1 + �2)W+�2Wl)
�1 (�0�+X�1 + (Z�WlZ) + u+ e) (54)

We assume that we have 8 groups composed of six members each so that G = 8, N = 6 and the
matrices of interactions within each group are assumed to take the form of (51) with values for row
totals summing to one. Given the matrices W1;W2;...,W8 we therefore de�ne the block matrices
of within and between group interactions W and Wl. The value of Y is assumed to depend on an
exogenous variableX, on the contextual variable Z; and on the random disturbances e � N(0;
2e); and
u � N(0;
2u) while I is an identity matrix of dimension N . The values of the N by one vectors Z and
X are set exogenously; e and u are N by 1 vectors of normally distributed pseudorandom numbers for
the individual and the group random e¤ects which are independent of the exogenous regressors. Given
�0 = 0:5; �1 = 0:6;  = 0:5; �1 = 0:5 and �2 = 0:9 we generate Y via (54). We ensure throughout that
(I� (�1 + �2)W+�2Wl) is non-singular.14

Table 5. Hierarchical Model Estimates for Simulated Data
(RIGLS/REML)

Model A Model B
Coe¢ cient s:e: Coe¢ cient s:e:

�0 = 0:5 -0.045 0.275 -6.028 0.146
�1 = 0:6 0.589 0.007 0.589 0.000
 = 0:5 0.479 0.011 -0.114 0.065
�1 = 0:5 0.507 0.010 0.761 0.000
�2 = 0:9 0.873 0.021 - -

�2u 0.129 0.092 41.11 26.02
�2e 0.008 0.001 0.008 0.001
N 48 48
ll 13.05 1.388

Having generated Y using (54), we estimate two models. One is the correctly speci�ed model (52),
denoted model A in Table 5, and the second, model B, is the misspeci�ed model which omits the
spatially dependent variableWlY; since �2 = 0; and the out group e¤ect,WlZ. Thus:

Y = �0�+�1WY+�1X+ Z+ u+ e (55)

The estimation via REML reported in Table 5 shows that when we incorrectly �t a DGP omitting
the out-group e¤ectsWlY andWlZ, this causes us to overstate the e¤ect of the endogenous lagWY

as is apparent in the upwardly biased estimate of �1. In addition the in�ated value of the estimated
random e¤ects parameter �2u might also be because it is also capturing an omitted variable, so that

13Note that the same result can also be obtained by simulating Y from the reduced from (50):

Y = (I� (�1 + �2)W+�2Wl)
�1 ��0�+WX(�1 + )�WlZ

�
+ (X�WX)�1 + u

00
+e (53)

where u
00
= u+ ((�1 + �2)W��2Wl)u

0
and u

0
= (I� (�1 + �2)W+�2Wl)

�1 (We+ u) :
14The code to generate the data for the estimations in Table 5 is available at http://personal.strath.ac.uk/

bernard.�ngleton/.
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it is not a truly (unobserved) group e¤ect. Therefore care must be taken in HLM estimation when
assuming group independence.

10 CONCLUSIONS

We ask the question, �Where is the economics in spatial econometrics?�. Our answer is that economic
theory is to be found underpinning many spatial econometric models, but it is evident that when it
comes to the so-calledW matrix, the economic foundation of many models is at its weakest. Modeling
spatial interaction in the economic context means in many cases modelling externalities and spillovers.
These are elusive and di¢ cult to pin down, which is probably why we have considerable di¢ culties in
de�ning the structure ofW unambiguously. The di¢ culty of detecting and measuring spatial spillover
phenomena was recognized by Krugman (1991), who famously remarked that knowledge �ows �leave no
paper trail by which they can be measured or tracked, and there is nothing to prevent the theorist from
assuming anything about them that she likes�. We have called for a stronger more theoretical basis
forW to supplement the very signi�cant atheoretical empirical foundations that dominate, something
that might emerge from current work on games, network formation, dynamics and equilibria that is
occurring within the social science, notably within the economics of networks. We have attempted to
show that the concept of theW matrix is however undeniably necessary in one form or another and
is in any case almost inescapable. It �rst comes to our attention as a convenient, useful and succinct
representation of spatial interaction, either in the form of endogenous or exogenous lagged variables,
and/or as part of an explicit error process.

However we also �nd that the W matrix has a pervasive presence extending far beyond cross-
sectional models to multi-equation models and panel data models. The denial ofW does not completely
eliminate it, merely suppresses it only to reappear as assumptions about distance and interaction in
competing or complementary approaches, with a few exceptions, such as seemingly unrelated regres-
sion, vector autoregressions and vector error correction models applied to multivariate time series.
Moreover, we have shown that it exists not only trivially in implied form in autoregressive time series
processes, but is, we now discover, a cognate part of hierarchical models. We have considered in some
detail the connection between hierarchical models and the standard spatial econometric speci�cations,
because hierarchical models are almost completely absent from the spatial econometrics literature, and
represent one major alternative way of capturing spatial e¤ects, focussing on the multilevel aspects
of causation that are a reality of many spatial processes. Our contribution in this regard is to show
thatW appears also in a speci�c form as part of the structure of hierarchical models. This highlights
the limitations of much of current hierarchical modelling, which should bene�t from cross-fertilization
from the spatial econometrics literature, with the prospect of a whole new research agenda embodying
di¤erential spatial dependence within and between groups in the multilevel context.
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