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Particle swarm optimization (PSO) is a heuristic optimization technique which was
inspired by flocking and swarming behavior of birds and insects. Same as other swarm
intelligent methods, this algorithm also has its own disadvantages, such as premature
convergence and rapid loss of diversity. In this paper, a new optimization method based
on the combination of PSO and two novel operators is introduced in order to increase
the exploration capability of the PSO algorithm (HEPSO). The first operator is inspired by
the multi-crossover mechanism of the genetic algorithm, and the second operator uses
the bee colony mechanism to update the position of the particles. Various values for
probabilities are examined to find a trade-off for the PSO, multi-crossover formulation,
and bee colony operator. The performance of the hybrid algorithm is tested using several
well-known benchmark functions. The comparative study confirms that HEPSO is a
promising global optimization algorithm and superior to the recent variants of PSO in
terms of accuracy, speed, robustness, and efficiency.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The antiquity of optimization comes back to the year 300 B.C., when Euclid tried to find the minimum distance between a
point and a line. Nowadays, the importance of optimization in different branches of science, engineering, industry, com-
merce, etc. is clear to anyone. In general, optimization algorithms are divided into two major categories; deterministic
and stochastic. Deterministic optimization techniques use the strategy of successive search on the derivative of the objective
function. Hence, these techniques are suitable for continues, convex, and differentiable problems. However, the most of
optimization problems are non-continues, non-convex, and non-differentiable. To optimize such problems, the stochastic
optimization methods should be used. In recent decades, many researchers have returned their attention to stochastic
methods such as evolutionary algorithms. Particle Swarm Optimization (PSO) which belongs to the class of the evolutionary
algorithms is in the center of this attention.

PSO which is introduced by Kennedy and Eberhart is one of the modern heuristic algorithms and inspired by natural
flocking and swarming behavior of birds and fish [12]. It was developed through simulation of simplified social systems
and is robust to solve the optimization problems [2]. The PSO technique can generate a high-quality solution with short
calculation time and has more stable convergence characteristics in comparison with other evolutionary methods
[6,18,24,29]. In this algorithm, each particle has a memory that saves the personal best position and updates its position with
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the global best position until arrives at the optimum solution. The PSO algorithm and its variants have been recently used to
solve many problems such as engineering and statistical problems [3,9,23,28,30].

The original version of PSO suffers from trapping in local minima and premature convergence. In the recent years, several
approaches, such as HPSO-TVAC [22], FIPS [19], GPSO [26], LPSO [13], VPSO [14], DMS-PSO [15], CLPSO [16], and APSO [31],
have been proposed to modify the performance of PSO. In the self-organizing Hierarchical Particle Swarm Optimizer With
Time-Varying Acceleration Coefficients (HPSO-TVAC), two new strategies based on the Time-Varying Acceleration
Coefficients (TVAC) were proposed. The concept of mutation and self-organization hierarchical were introduced to the
PSO with TVAC. The time-varying acceleration coefficients and inertia weight factor were used to control the global search
and convergence to the global best solution [22]. In the Fully Informed Particle Swarm (FIPS), a particle was simply affected
by the knowledge of all its neighbors. In the other words, all neighbors were used to update the velocity instead of using the
global best position (gbest) and the particle best position (pbest). Fitness value and the neighborhood size were two impor-
tant factors to estimate the influence of each particle over its neighbors [19]. In the Dynamic Multi-Swarm Particle Swarm
Optimizer (DMS-PSO), the neighborhood topology was dynamic and randomly assigned. It means that the topological struc-
ture changes in a dynamic way to improve the performance of the original version of PSO [15]. Shi and Eberhart introduced a
linearly decreasing inertia weight to control the search ability of the algorithm [26,27]. Kennedy and Mendes investigated
various population topologies and proposed the Von Neumann topological structure. In comparison with other configura-
tions, the Von Neumann has shown a good performance [13,14]. In the Comprehensive Learning Particle Swarm Optimizer
(CLPSO), all other particles’ historical best information was used to update the particle’s velocity [16]. DMS-PSO [15] and
CLPSO [16] are to be well performed on multimodal problems. In the Adaptive Particle Swarm Optimizer (APSO), by devel-
oping a systematic design of the parameter adaption, the inertia weight and acceleration coefficients were controlled, and an
elitist learning strategy was applied. APSO could perform a global search over the entire search space with fast convergence
speed [31]. General speaking, many researchers have tried to modify the original version of PSO in order to achieve a better
accuracy and higher speed. Similarly, in this paper, the HEPSO algorithm is proposed to leap from local optima and also to
modify the converging process. Numerical results show that the proposed operators are valid methods and help the PSO
algorithm to find the global optimum, robustly.

The rest of this paper is organized as follows: Section 2 gives a brief review on the PSO algorithm. In Section 3, the pro-
posed operators are introduced. Section 4 introduces the combination of PSO and new operators in details. Experimental re-
sults and comparison studies to verify the capability of proposed algorithm are shown in Section 5. Finally, Section 6
concludes the paper.

2. Particle swarm optimization

Particle swarm optimization is a population-based evolutionary algorithm and motivated by the simulation of social
behavior instead of survival of the fittest [12]. PSO was initially used for balancing weights in the neural networks [5]
and rapidly became a very popular global optimizer [7,8].

In the PSO method, each candidate solution is associated with a velocity [5]. The candidate solutions are called particles,
and the position of each particle is changed according to its own experience and that of its neighbors (velocity). It is expected
that the particles will move toward better solution areas. Mathematically, the particles are manipulated according to the fol-
lowing equations:
Please
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~v iðt þ 1Þ ¼ w~v iðtÞ þ C1r1ð~xpbesti
�~xiðtÞÞ þ C2r2ð~xgbest �~xiðtÞÞ ð1Þ

~xiðt þ 1Þ ¼~xiðtÞ þ~v iðt þ 1Þ ð2Þ
where~xðtÞ and ~v iðtÞ denote the position and velocity of particle i at iteration (time step) t. r1, r2 2 [0, 1] are random values. C1

is the cognitive learning factor and represents the attraction of a particle toward its own success. C2 is the social learning
factor and represents the attraction of a particle toward the success of the entire swarm. w is the inertia weight which is
employed to control the impact of the previous history of velocities on the current velocity of particle i. The personal best
position of particle i is ~xpbesti

, and~xgbest is the position of the best particle of the entire swarm.
With a large value of C1 and a small value of C2, particles are allowed to move around their personal best position~xpbesti

.
With a small value of C1 and a large value of C2, particles converge to the best particle of the entire swarm~xgbest . The previous
researches showed that the best solutions were determined when C1 is linearly decreased and C2 is linearly increased over
the iterations [22] as below:
C1 ¼ C1i � ðC1i � C1f Þ
t

max iteration

� �
ð3Þ

C2 ¼ C2i � ðC2i � C2f Þ
t

max iteration

� �
ð4Þ
C1i and C2i are the initial values of the learning factors C1 and C2, respectively. C1f and C2f are the final values of the learning
factors C1 and C2, respectively. t is the current iteration number, and max iteration is the maximum number of allowable
iterations.
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Fig. 1. A schematic diagram of the proposed multi-crossover model.
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The inertia weight regulates the impact of the previous history of velocities on the current velocity of a particle [6]. A large
inertia weight facilitates a global search while a small inertia weight makes possible a local search. By changing the inertia
weight dynamically, the search ability is dynamically adjusted. Here, the adaptive inertia weight proposed in [31] is used
which is given in Eq. (5).
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Wðf Þ ¼ 1
1þ 1:5e�2:6f

2 ½0:4; 0:9� ð5Þ
where 0.4 and 0.9 are the initial and final values of the inertia weight, respectively. The evolutionary factor f is defined by Eq.
(6).
f ¼ dg � dmin

dmax � dmin
2 ½0;1� ð6Þ

di ¼
1

N � 1

XN

j¼1;j–i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

k¼1
ðxk

i � xk
j Þ

2
r

ð7Þ
where di is the mean distance of particle i to all other particles that can be measured using an Euclidian metric via Eq. (7). N
and D are the population size and the number of dimensions, respectively. di for the global best particle is shown as dg. Also,
by comparing all di ’s, the maximum and minimum distances (dmax and dmin) will be determine.

Numerical results show that the accelerating coefficients and inertia weight are major factors to achieve the good accu-
racy [22,31]. Nevertheless, combining PSO with other search techniques can also improve the algorithm ability [16]. For
example, to increase the diversity of the population and to escape from local minimum, some evolutionary operators such
as selection, crossover, and mutation have been combined with PSO [2,17,24]. Hence, in this paper, two evolutionary oper-
ators are used to improve the performance of the original version of PSO.

3. Proposed operators

In this section, two new formulae are introduced in which the first operator is based on multi-crossover [4], and the
second performs similar to the bee colony mechanism [1]. These operators are used to improve the converging process
and escape from local minima.

� Operator 1. The multi-crossover genetic algorithm was originally proposed by Chang as a novel method [4]. He used this
algorithm for an especial case, to determine some parameters in a controller design problem. The multi-crossover genetic
algorithm uses three parent chromosomes (H1, H2, H3) unlike the classical crossover that uses only two chromosomes. If
chromosome H1 has the smallest fitness value, then it would be selected as the premier parent, and Eq. (8) would be used
to generate new chromosome H01.
H01 ¼ H1 þ rð2H1 �H2 �H3Þ ð8Þ
where r 2 [0, 1] is a random value.
Here, we use this idea and propose a new operator that uses the best position of the group (~xgbest) as the premier parent

and the personal best position (~xpbesti
) as the second parent. Hence, the following operator will generate the new velocity for

the selected particle~xiðtÞ at random.
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Fig. 2. Flowchart of the HEPSO algorithm.
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~v iðt þ 1Þ ¼ r
C2

2
~xgbestðtÞ �~xpbesti

ðtÞ �~xiðtÞ
� �

ð9Þ
C2 is the social learning factor (Eq. (4)),~xpbesti
is the personal best position,~xgbest is the global best position, and r 2 [0, 1] is a

random value. A schematic diagram of the proposed multi-crossover model is sketched in Fig. 1.
� Operator 2. The Artificial Bee Colony (ABC) algorithm proposed by Karaboga in 2005 is inspired by the forage behavior of

the bee colony [11]. Employed, onlooker, and scout bees are simulated in the ABC algorithm. Each employed bee is
associated with one food source site. The employed bee whose food source has been abandoned becomes a scout, and
onlooker bees wait in the hive and decide on a food source to exploit based on the information shared by the employed
bees [1,25]. The ABC algorithm has five steps; the first step; producing initial food source sites randomly. The second step;
sending employed bees to the food source sites. An employed bee changes her position via local information and finds a
cite this article in press as: M.J. Mahmoodabadi et al., HEPSO: High exploration particle swarm optimization, Inform. Sci. (2014),
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Fig. 3. Pseudo code of the HEPSO algorithm.
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neighboring food source. In fact, the fitness of the position is evaluated and if it has a better fitness, then it will be replaced
with the old position. The third step; calculating probability values involved in probabilistic selection that it depends on
the fitness values of the solutions in the population. Food source site selection by onlookers based on the information
which is provided by employed bees is done in the fourth step; and in the final step, the abandonment criteria (limit
and scout production) is checked [1].
Here, the food source finding operator of the ABC algorithm is used for the selected particles in the PSO strategy. New

position xi(t + 1) will be created by change in dth dimension of the randomly selected particle xi(t).
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xd
i ðt þ 1Þ ¼ xd

i ðtÞ þ ð2r � 1Þðxd
i ðtÞ � xd

j ðtÞÞ ð10Þ
r 2 [0, 1] is a random value. d is a integer random number in the range [1, dimension]. j is a integer random number in the
range [1, number of particles]. After calculation of Eq. (10), the superior between ~xiðtÞ and~xiðt þ 1Þ should be selected.
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Fig. 4. The position of the particles observed in six stages of the HEPSO process for Sphere function, dimension = 2, and population = 50.

Table 1
Un-rotated unimodal and multimodal optimization test functions.

Name (comment) Formula Threshold Search range

f1: Sphere (unimodal) FðxÞ ¼
PD

i¼1x2
i

0.01 [�100, 100]n

f2: Schwefel (unimodal) FðxÞ ¼
PD

i¼1jxij þ
QD

i¼1jxij 0.01 [�10, 10]n

f3: Quadric (unimodal) FðxÞ ¼
PD

i¼1ð
Pi

j¼1xjÞ
2 100 [�100, 100]n

f4: Rosenbrock (unimodal) FðxÞ ¼
PD�1

i¼1 b100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2c 100 [�10, 10]n

f5: Step (unimodal) FðxÞ ¼
PD

i¼1ðbxi þ 0:5cÞ2 0 [�100, 100]n

f6: Quadric noise (unimodal) FðxÞ ¼
PD

i¼1ix4
i þ random½0;1Þ 0.01 [�1.28, 1.28]n

f7: Rastrigin (multimodal) FðxÞ ¼
PD

i¼1½x2
i � 10 cosð2pxiÞ þ 10� 50 [�5.12, 5.12]n

f8: Ackley (multimodal)
FðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D

PD
i¼1x2

i

q� �

� exp 1=D
PD

i¼1 cosð2pxiÞ
� �

þ 20þ e

0.01 [�32, 32]n

f9: Griewank (multimodal) FðxÞ ¼ 1=4000
PD

i¼1x2
i �

QD
i¼1 cosðxi=

ffiffi
i
p
Þ þ 1 0.01 [�600, 600]n
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4. Hybrid of PSO and proposed operators

It is now possible to present a novel PSO (HEPSO) which is improved by utilizing two proposed operators to update the
particle positions. Initially, the particles which form the population are randomly generated. In each iteration, the inertia
weight (w) and the learning factors (C1 and C2) are calculated. Also, after calculation of the fitness values of all particles,
~xpbesti

and~xgbest will be determined. Then, for each particle, two random numbers q1, q1 2 [0, 1] would be allocated. If a par-

ticle does not have q1 > ðstandard deviation fitness valuesÞ or q2 <
PB�t

max iterations, then a new particle will be produced by the bee
colony operator (Eq. (10)). PB is the bee colony probability, t is the current iteration, and max iterations is the maximum num-
ber of allowable iterations. For each particle that is not chosen for the previous operation, another random number # 2 [0, 1]
would be allocated. If a particle has # < PC, then the multi-crossover operator would generate a velocity for new particle (Eq.
(9)). PC is the multi-crossover probability. Other particles that are not selected for the bee colony or multi-crossover oper-
ations will be enhanced by PSO (Eqs. (1) and (2)). This cycle should be repeated until the user-defined stopping criterion
is satisfied. At the end, ~xgbest would be determined as the best found solution. The flowchart and pseudo code of this
Please cite this article in press as: M.J. Mahmoodabadi et al., HEPSO: High exploration particle swarm optimization, Inform. Sci. (2014),
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Table 2
Rotated unimodal and multimodal test functions.

Name (comment) Formula Optimum point Search range

f10: Shifted Sphere (Unimodal) FðxÞ ¼
PD

i¼1z2
i þ f bias

z = x � o, x = [x1, x2, . . . , xD], o = [o1, o2, . . . , oD]

x� = o, F(x�) = f_bias = �450 x 2 [�100, 100]D

f11: Shifted Schwefel (Unimodal) FðxÞ ¼
PD

i¼1ð
Pi

j¼1zjÞ
2
þ f bias

z ¼ x� o; x ¼ ½x1; x2; . . . ; xD�; o ¼ ½o1; o2; . . . ; oD�

x� = o, F(x�) = f_bias = �450 x 2 [�100, 100]D

f12: Shifted Rosenbrock (Unimodal) FðxÞ ¼
PD�1

i¼1 ð100ðz2
i � ziþ1Þ

2 þ ðzi � 1Þ2Þ þ f bias
z ¼ x� o; x ¼ ½x1; x2; . . . ; xD�; o ¼ ½o1; o2; . . . ; oD�

x� = o, F(x�) = f_bias = 390 x 2 [�100, 100]D

f13: Shifted Rastrigen (Multimodal) FðxÞ ¼
PD

i¼1ðz2
i � 10 cosð2pziÞ þ 10Þ þ f bias

z ¼ x� o; x ¼ ½x1; x2; . . . ; xD�; o ¼ ½o1; o2; . . . ; oD�
x� = o, F(x�) = f_bias = �330 x 2 [�5, 5]D

f14: Shifted Rotated Ackley (Multimodal)
FðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D

PD
i¼1z2

i

q� �

� expð1=D
PD

i¼1 cosð2pziÞÞ þ 20þ eþ f bias
z ¼ ðx� oÞ �M; x ¼ ½x1; x2; . . . ; xD �; o ¼ ½o1; o2; . . . ; oD �

x� = o, F(x�) = f_bias = �140 x 2 [�32, 32]D

f15: Shifted Rotated Griewank (Multimodal) FðxÞ ¼
PD

i¼1
z2

i
4000��

QD
i¼1 cosð ziffi

i
p Þ þ 1þ f bias

z ¼ ðx� oÞ �M; x ¼ ½x1; x2; . . . ; xD �; o ¼ ½o1; o2; . . . ; oD �

x� = o, F(x�) = f_bias = �180 x 2 [0, 600]D

Table 3
Results comparison for original PSO, PSO with multi-crossover, PSO with bee colony, and HEPSO.

Function Original PSO PSO with bee colony PSO with multi-crossover HEPSO

f1 Mean 6.95 � 10+3 1.63 � 10�6 0 0
Std. dev. 2.71 � 10+3 2.93 � 10�6 0 0

f2 Mean 3.2 � 10 5.51 � 10�2 1.16 � 10�162 1.01 � 10�162

Std. dev. 1.96 4.72 � 10�2 0 0

f4 Mean 4.30 � 10+4 8.13 � 10�2 1.97 � 10+1 5.29
Std. dev. 3.22 � 10+4 7.24 � 10�2 2.28 6.01

f5 Mean 4.63 � 10+3 0 0 0
Std. dev. 1.84 � 10+3 0 0 0

f6 Mean 2.12 9.84 � 10�2 6.16 � 10�5 5.58 � 10�5

Std. dev. 9.5 � 10�1 3.15 � 10�2 1.05 � 10�4 6.80 � 10�5

f8 Mean 1.26 � 10 5.46 � 10�3 1.60 � 10�15 1.60 � 10�15

Std. dev. 1.23 � 10�2 5.52 � 10�3 1.59 � 10�15 1.59 � 10�15

f9 Mean 5.55 � 10 8.02 � 10�2 0 0
Std. dev. 1.92 � 10 9.34 � 10�2 0 0

Note: The bold values indicate the best results.

Table 4
The comparison of the probabilities to achieve the best performance of the HEPSO algorithm.

Bee colony probability (PB) 0.02 0.04 0.05 0.06

Rosenbrock
Mean 5.29 6.61 6.65 10.72
Std. dev. 6.01 9.79 6.65 12.91

Rastrrigen
Mean 2.92 � 10�9 1.41 1.40 1.59
Std. dev. 6.52 � 10�9 2.62 1.35 3.56

Note: The bold values indicate the best results.
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algorithm are shown in Figs. 2 and 3, respectively. The positions of the particles observed in six stages of the HEPSO process
for the Sphere function (Table 1) with dimension 2 and population 50 are shown in Fig. 4. This figure shows that the pop-
ulation is distributed in the initial iterations. After 20 iterations, the particles gather round to the position of the best particle.
At the end, in about 60 iterations, all particles can find the best solution.

5. Numerical results for the proposed algorithm

In this section, after introduce the un-rotated and rotated test functions, the new operators and the effects of its proba-
bilities are analyzed. Then, the solution accuracy and the convergence speed of the algorithm are compared with those of the
advanced evolutionary algorithms from the literature. For the proposed algorithm, C1 is linearly decreased from C1i = 2.5 to
Please cite this article in press as: M.J. Mahmoodabadi et al., HEPSO: High exploration particle swarm optimization, Inform. Sci. (2014),
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Table 5
Results comparison on the algorithm accuracy for the un-rotated benchmark functions.

Function GPSO LPSO VPSO FIPS HPSO-TVAC DMS-PSO CLPSO APSO HEPSO

f1 Mean 1.98 � 10�53 4.77 � 10�29 5.11 � 10�38 3.21 � 10�30 3.38 � 10�41 3.85 � 10�54 1.89 � 10�19 1.45 � 10�150 0
Std. dev. 7.08 � 10�53 1.13 � 10�28 1.91 � 10�37 3.60 � 10�30 8.50 � 10�41 1.75 � 10�53 1.49 � 10�19 5.73 � 10�150 0

f2 Mean 2.51 � 10�34 2.03 � 10�20 6.29 � 10�27 1.32 � 10�17 6.9 � 10�23 2.61 � 10�29 1.01 � 10�13 5.15 � 10�84 1.04 � 10�162

Std. dev. 5.84 � 10�34 2.89 � 10�20 8.68 � 10�27 7.86 � 10�18 6.89 � 10�23 6.6 � 10�29 6.51 � 10�14 1.44 � 10�83 0

f3 Mean 6.45 � 10�2 18.60 1.44 0.77 2.89 � 10�7 47.5 395 1.0 � 10�10 8.76 � 10�52

Std. dev. 9.46 � 10�2 30.71 1.55 0.86 2.97 � 10�7 56.4 142 2.13 � 10�10 4.8 � 10�51

f4 Mean 28.1 21.8627 37.6469 22.5387 13 32.3 11 2.84 0.0736
Std. dev. 24.6 11.1593 24.9378 0.310182 16.5 24.1 14.5 3.27 0.084

f5 Mean 0 0 0 0 0 0 0 0 0
Std. dev. 0 0 0 0 0 0 0 0 0

f6 Mean 7.77 � 10�3 1.49 � 10�2 1.08 � 10�2 2.55 � 10�3 5.54 � 10�2 1.1 � 10�2 3.92 � 10�3 4.66 � 10�3 3.51 � 10�5

Std. dev. 2.42 � 10�3 5.66 � 10�3 3.24 � 10�3 6.25 � 10�4 2.08 � 10�2 3.94 � 10�3 1.14 � 10�3 1.7 � 10�3 4.84 � 10�5

f7 Mean 30.7 34.90 34.09 29.98 2.39 28.1 2.57 � 10�11 5.8 � 10�15 0
Std. dev. 8.64 7.25 8.07 10.92 3.71 6.42 6.64 � 10�11 1.01 � 10�14 0

f8 Mean 1.15 � 10�14 1.85 � 10�14 1.4 � 10�14 7.68 � 10�15 2.06 � 10�10 8.52 � 10�15 2.01 � 10�12 1.11 � 10�14 1.13 � 10�15

Std. dev. 2.27 � 10�15 4.80 � 10�15 3.48 � 10�15 9.33 � 10�16 9.45 � 10�10 1.79 � 10�15 9.22 � 10�13 3.55 � 10�15 9.01 � 10�16

f9 Mean 2.37 � 10�2 1.10 � 10�2 1.31 � 10�2 9.04 � 10�4 1.07 � 10�2 1.31 � 10�2 6.45 � 10�13 1.67 � 10�2 0
Std. dev. 2.57 � 10�2 1.60 � 10�2 1.35 � 10�2 2.78 � 10�3 1.14 � 10�2 1.73 � 10�2 2.07 � 10�12 2.41 � 10�2 0

Note: The bold values indicate the best results.
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C1f = 0.5, while C1 is linearly increased from C2i = 0.5 to C2f = 2.5 over iteration. It can be noted that the calculations are per-
formed in the environment of MATLAB software with accuracy of 10�330.

5.1. Test functions

In Table 1, nine un-rotated benchmark functions are introduced. These benchmark functions are divided into two groups;
unimodal and multimodal. Unimodal functions have only one global optimum without any local optimum but multimodal
functions have a global minimum with numerous local minima.

The best solution for the test functions of Table 1 fmin = 0 when xi ¼ 0ði ¼ 1;2; . . . ;nÞ, except to Rosenbrock function. In
this test function, if xi ¼ 1ði ¼ 1;2; . . . ;nÞ, then the best solution fmin = 0. Furthermore, in order to provide a more accurate
assessment of the performance of HEPSO, six rotated benchmark functions are implemented. The definitions of these test
functions are summarized in Table 2. The test functions should be minimized, and a strong algorithm can escape from local
minima, and its particles are able to move to the global optimum or to the nearest position of the global optimum.

5.2. Examination of the new operators

In this section, four algorithms (Original PSO, PSO with multi-crossover, PSO with bee colony, and HEPSO) are compared
to illustrate the individuals and combined effects of the proposed operators. The population size, maximum iteration, and
dimension are set at 20, 5500, and 30, respectively. In PSO with multi-crossover, the bee colony operator is neglected and
the multi-crossover probability is set at PC = 0.95. Similarly, in PSO with bee colony, the multi-crossover operator is neglected
and the bee colony probability is set at PB = 0.02. The results are summarized in Table 3 (the bold values indicate the best
results), and it can be understand from this table that the incorporation of these operators can greatly improve the perfor-
mance of the original version of PSO.

5.3. Analysis of the effects of the probabilities

In this section, to find a trade-off for the percent usage of the PSO, multi-crossover formula, and bee colony operator, sev-
eral possibilities have been examined. Furthermore, the PSO and multi-crossover formula have 95 and 2 percent probabil-
ities, respectively. The mean and standard deviation fitness of the best particle for thirty independent runs are shown in
Table 4 (the bold values indicate the best results). The experiences illustrated that the best solutions would be found, if
the bee colony operator is used in the initial iterations.

5.4. Analysis of the solution accuracy of the algorithm

This section starts with the results comparison on the test functions of Table 1. Then, the convergence trajectories of the
algorithms are compared. Furthermore, a comparative study between HEPSO and various evolutionary algorithms that are
representative of the state-of-the-arts is conducted on the rotated benchmark functions.
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Fig. 5. The convergence trajectory of nine PSO algorithms on (a) Sphere, (b) Schwefel, (c) Quadric, (d) Rastrigin, (e) Ackley, and (f) Griwank functions.
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The mean and standard deviation fitness of the best particles for thirty runs are summarized in Table 5. The population
size, maximum iteration, and dimension are set at 20, 10,000, and 30, respectively. It can be observed from Table 5 that the
proposed method has a very good performance. The convergence performance of the nine PSOs algorithms in the nine
benchmark functions are shown in Fig. 5. Results in Table 5 and Fig. 5 illustrate the ability of HEPSO to find the global opti-
mum in comparison with other well-known and recent algorithms.

Fig. 6 reinforces the results of Fig. 5 and Table 5, and shows the ability of HEPSO to achieve the global optimum for Rosen-
brock function (the bold values indicate the best results). This figure shows when HEPSO finds the best particle, the algo-
rithm continues searching to find the better answer; if it could not find a better answer, the old answer would be saved
and used as global optimum.

A statistics comparison between HEPSO and six famous evolutionary algorithms (original PSO, SS-BLX [10], SS-Arith [10],
DE-Exp [20], DE-Bin [20], SaDE [21]) on the six rotated functions listed in Table 2 is shown in Table 6. These test functions are
Please cite this article in press as: M.J. Mahmoodabadi et al., HEPSO: High exploration particle swarm optimization, Inform. Sci. (2014),
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Fig. 6. The convergence trajectory of HEPSO on Rosenbrock function. (a) Mean fitness, (b) minimum fitness, and (c) best fitness in each iteration.

Table 6
Obtained results for the rotated benchmark functions.

Function Original PSO SS-BLX SS-Arith DE-Exp DE-Bin SaDE HEPSO

f10 1.27 � 10+03 3.40 � 10 1.06 8.26 � 10�9 7.71 � 10�9 8.41 � 10�9 0
f11 6.61 � 10+03 1.73 5.28 8.18 � 10�9 8.34 � 10�9 8.20 � 10�9 4.02 � 10�04

f12 1.32 � 10+07 1.14 � 10+02 4.94 � 10+02 8.39 � 10�9 7.95 � 10�9 1.61 � 10�2 4.86 � 10�03

f13 0.87 � 10 4.19 5.96 8.15 � 10�9 4.54 8.33 � 10�9 2.37 � 10�9

f14 2.13 � 10 2.03 � 10 2.03 � 10 2.03 � 10 2.03 � 10 2.03 � 10 2.14 � 10
f15 2.81 � 10 1.96 � 10+03 1.90 � 10+03 1.26 � 10+03 1.26 � 10+03 1.26 � 10+03 6.18 � 10�01

Note: The bold values indicate the best results.

Table 7
Results comparison of the algorithm convergence speed on nine benchmark functions listed in Table 1. ‘–’ shows that the algorithm could not reach to
acceptable solutions. FEs states the Function Evaluations.

Function GPSO LPSO VPSO DMS-PSO CLPSO HEPSO

f1 Mean FEs 105,695 118,197 112,408 91,496 72,081 18,204
Ratio% 100 100 100 100 100 100

f2 Mean FEs 103,077 115,441 109,849 91,354 66,525 15,067
Ratio% 100 100 100 100 100 100

f3 Mean FEs 137,985 162,196 147,133 185,588 – 78,011
Ratio% 100 96.7 100 86.7 0.0 100

f4 Mean FEs 101,579 102,259 103,643 87,518 74,815 16,115
Ratio% 100 100 100 100 100 100

f5 Mean FEs 93,147 107,315 100,389 76,975 39,296 30,000
Ratio% 100 100 100 100 100 100

f6 Mean FEs 165,599 161,784 170,675 180,352 99,795 12,292
Ratio% 80.0 26.7 43.3 40.0 100 100

f7 Mean FEs 94,379 99,074 98,742 127,423 53,416 7701
Ratio% 96.7 96.7 100 100 100 100

f8 Mean FEs 110,844 125,543 118,926 100,000 76,646 29,757
Ratio% 100 100 100 100 100 100

f9 Mean FEs 111,733 125,777 117,946 97,213 81,422 18,394
Ratio% 40.0 60.0 46.7 56.7 100 100

Mean reliability 90.7% 86.67% 87.7% 87.04% 88.88% 100%

Note: The bold values indicate the best results.
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evaluated with 10 dimensions and 10 particles. All algorithms are independently run fifty times for each test function. Each
run stops when the maximum number of evaluations 100,000 is reached. Results in Table 6 illustrate the capability of HEPSO
to find the global optimum on the rotated test functions.
5.5. Analysis of the convergence speed of the algorithm

This section provides a statistics comparison on the convergence speed of the algorithms. The algorithms are executed in
thirty independent runs and the mean number of function evaluations which is needed to the reach threshold (acceptable
Please cite this article in press as: M.J. Mahmoodabadi et al., HEPSO: High exploration particle swarm optimization, Inform. Sci. (2014),
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solution) is shown in Table 2. Thresholds are fixed, if the algorithm reaches these values, then it will exit from running and
the accuracy speed of the algorithm is evaluated. Mean number of function evaluations (multiply maximum number of iter-
ations by number of particles) needed to reach the acceptable solution are shown in Table 7. This table shows that HEPSO
algorithm has a faster convergence speed than DMS-PSO [15], CLPSO [16], LPSO [13], VPSO [14], and GPSO [26]. Also, this
table illustrates that HEPSO in comparison with others displays the highest percentage of reaching to the acceptable solu-
tions on these test functions. For the mean reliability of all test functions, HEPSO exhibits the highest reliability of 100%.

6. Conclusion

In recent years, particle swarm optimization has appeared as a new and popular optimization algorithm due to its sim-
plicity and efficiency. Nevertheless, according to the searching behavior of particle swarm optimization, this algorithm suf-
fers from the premature convergence problem which results in a low optimization precision or even failure. To overcome this
fault, in this paper, the HEPSO algorithm is introduced that is based on the combination of PSO with two new operators. The
adaptive inertia weight and linear acceleration coefficients are implemented to help the particles that explore more areas in
the solution space. Both un-rotated and rotated benchmark functions are applied to challenge the abilities of the proposed
algorithm. Numerical results show that HEPSO performs very better in terms of convergence speed, global optimality, solu-
tion accuracy, and algorithm reliability, in comparison with well-known and recent evolutionary algorithms.
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