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ABSTRACT 

 This paper presents a new method for learning and tuning a fuzzy logic controller automatically by means 

of a particle swarm optimization (PSO). The proposed self-learning fuzzy logic control that uses the PSO 

with adaptive abilities can learn the fuzzy conclusion tables, their corresponding membership functions and 

fitness value where the optimization only considers certain points of the membership functions. To exhibit 

the effectiveness of proposed algorithm, it is used to optimize the Gaussian membership functions of the 

fuzzy model of a nonlinear problem. Moreover, in order to design an effective adaptive fuzzy logic 

controller, an on line adaptive PSO based mechanism is presented to determine the parameters of the fuzzy 

mechanisms. Simulation results on two nonlinear problems are derived to demonstrate the powerful PSO 

learning algorithm and the proposed method is able to find good controllers better than neural controller 

and conventional controller for the target problem, cart pole type inverted pendulum system. 
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1. INTRODUCTION 

Fuzzy logic systems (FLSs) are fundamental methodologies to represent and process linguistic 

information, with mechanisms to deal with uncertainty and imprecision. With such remarkable 

attributes, FLSs have been widely and successfully applied to control [1]-[3], classification [4] 

and modeling problem and in a considerable number of applications [5]-[7]. The most of the 

FLSs are organized based on skilled knowledge that is in the form of rule base behavior derived 

from imprecise heuristic knowledge of experienced control engineers. Such conventional 

approach is very time-consuming as it requires trial and error method to generate fuzzy rules and 

membership functions (MFs). Moreover, conventional design does not guarantee generating 

optimal or near optimal fuzzy rules and MFs [8]-[9]. Clearly, there is a need for developing an 

automatic FLSs design procedure that would not involve any skilled knowledge base derived 

from heuristic knowledge of experienced control operators/engineers.  

The main factors to consider when designing the FLSs are to determine fuzzy rule bases, MFs of 
input/output variables, and input/output scaling factors. Many research approaches have been 
investigated to optimization for a better design, many efforts has been directed to the partial 
optimization, not the entire system. For example, some works optimize the parameters of MFs, 
while others optimize the input/output scaling factors. Bio-inspired intelligent computing has 
been successfully applied to solve the complex problem in recent years such as genetic algorithms 
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(GAs), tabu search (TS), particle swarm optimization (PSO) and self-organizing feature map 
(SOFM) can be used to improve the behavior of this parameter optimization problem [9] -[17]. 

GAs was used by Arslan and Kaya [12] in the determination of MFs of input and output 

variables. They applied GAs to design a fuzzy logic control system having a single input and 

output. Bagis [7] proposed a method based on TS algorithm for the determination of MFs. Bai 

and Chen [10] proposed an automatic method for students’ evaluation task. Its purpose was to 

automatically construct the grade MFs of lenient-type grades, strick-type grades, and normal-type 

grades of fuzzy rules, respectively.  The system performs fuzzy reasoning to infer the scores of 

students based on the constructed grade-MFs. Meredith et al. [16] presented an approach based on 

GAs to the tuning of MFs in a FLS for a helicopter. Wong et al. [11] applies PSO to determine 

appropriate MFs of the fuzzy system (FS) automatically and presented a motion control structure 

with a distance fuzzy controller and an angle fuzzy controller for the two-wheeled mobile robot. 

Yang and Bose [13] presented a method for generating fuzzy MFs with unsupervised learning 

using SOFM. The SOFM approach is a two-step procedure: firstly, generate the proper clusters 

and secondly, generate the fuzzy MFs according to the clusters in the first step. They applied this 

method to pattern recognition problems. Ramazan Coban [17] presented a method for designing a 

closed loop fuzzy logic controller based on the particle swarm optimization algorithm. The 

designed controller is used for controlling the power level of nuclear research reactors. In his 

controller, the control rules constructed from numerical experiments made by means of a 

computer code for the core dynamics calculation and from human operator's experience and 

knowledge. 

Moreover, many researchers have explored the use of optimization algorithms to tune FLC’s key 

factors. The key factors are the membership function parameters, the scaling factors and the fuzzy 

control rule parameters for the design of FLCs. These methods differ mostly in the order or the 

selection of the different MF shapes, width and distribution on the performance of a FLC. 

Moreover, differences between the previous methods lie mainly in the type of coding and the way 

rule set and the shape and width of membership functions are optimized. 

In this paper, we proposed a new adaptive method for nonlinear control strategy based on the 

combination of fuzzy logic and particle swarm optimization techniques. The purpose is to develop 

a nonlinear control strategy delivers better performance with respect to pendulums angle. The 

PSO algorithm is used as an adaptive method for tuning the MFs as well as fuzzy control rules 

with the aim of minimizing the output error measures or maximizing performance indexes. The 

results obtained from the simulations clearly show that the PSO-FLS control strategy gives a 

satisfactory performance with respect to the functional changes of the process. Furthermore, fuzzy 

based structure strategy gives more flexibility, higher robustness and precise behavior in control 

action in comparison to the well-known reinforcement learning method called SANE (Symbiotic, 

Adaptive Neuro-Evolution)[18]. 

The remaining of the paper is organized as follows: In section II, describe the literature relevant 

to the fuzzy logic systems. In Section III, the dynamic model of the cart pole type inverted 

pendulum is described. In Section IV, the new adaptive PSO-FLSs are demonstrated and learning 

algorithms for PSO-FLSs are discussed in this section as well. In Section V, Experiment results 

that demonstrate the efficiency of the proposed methodology are given. Finally, in Section VI, 

some concluding remarks are stated. 

2. FUZZY LOGIC SYSTEMS (FLS) 

An FLS comprises four components, which are fuzzifier, knowledge base consisting of rule base 

(RB) and database (DB), fuzzy inference engine, and defuzzifier as depicted in Fig.1. The FLS 

works as follows, the crisp inputs are first fuzzified into, in general, input fuzzy sets (however, we 
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will consider only non-singleton fuzzification) which then activate the inference engine and the 

knowledge base to produce output fuzzy sets. The defuzzifier can then defuzzify fuzzy outputs 

from the inference engine in order to produce crisp outputs. A brief description of each of the 

FLSs components is given in the following subsections. 

 
2.2. Fuzzifier 

Since the input is in crisp normalized values, a fuzzification operator  is used to fuzzify it in 

fuzzy form. The fuzzifier maps a crisp input vector with p inputs 

 into input fuzzy set, In Non-singleton fuzzifier: 

realizes maximum value 1 at and decrease from 1 to 0 while moving away from . In 

this study we use singleton fuzzifier, the singleton fuzzifier of the input variable x is defined as: 
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2.3. Fuzzy Inference Engine 

The fuzzy inference engine combines rules and gives a mapping from fuzzy sets in the input 

universe of discourse to fuzzy sets in the output universe of discourse based on the 

fuzzy logic principle. In the inference engine, multiple antecedents in the rules are connected 

using AND operation, and  the degree of membership in the input sets are combined using those 

in the output sets using sub-star composition. Multiple rules are then combined by using a join 

operation.  

2.4. Defuzzifier 

The defuzzifier performs a mapping from the fuzzy sets in  to crisp points in . It involves the 

selection, from the output fuzzy set, the numerical value which can be considered as the best 

representative element of the fuzzy output set. Maximum defuzzifier produces a numerical value 

which exhibits the highest degree of membership.  The most frequently used center of gravity 

(COG) defuzzifier takes output as the COG of the fuzzy output. The expression generally used for 

a discrete fuzzy set is as follows:   

 

where denotes the center of gravity (COG) of the consequent label of the rule ,  is 

the firing strength of this rule, and p is the number of rules. 

2.5. Fuzzy Rule Base 

The general form of a fuzzy rule used in most FLCs is as follows: 
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Each fuzzy IF-THEN rule has a premise (or IF) part containing several preconditions and the 

conclusion (THEN) part describing the output action. The premise and conclusion parts are 

characterized by some fuzzy sets (or MFs). Suppose that we need to design a multiple-input-

multiple-output (MIMO) FLC having p inputs  and c outputs 

 with i-th fuzzy rule of the form: 

 

Where  and are the antecedent and consequent MFs associated with the 

linguistic p input variables and c output variables, respectively; and M is the number of rules in 

the rule base. 

3. PROBLEM STATEMENT: INVERTED PENDULUM SYSTEMS 

The inverted pendulum control problem is a standard test application for complex control 

approaches, with its complexity originating from the non-linear nature of the problem [19]. Being 

an under-actuated mechanical system and inherently open loop unstable with highly non-linear 

dynamics, the inverted pendulum system is a perfect test-bed for the design of a wide range of 

classical and contemporary control techniques.The cart pole balancing problem is a popular 

demonstration of using feedback control to stabilize an open-loop unstable system with fewer 

control inputs than the degrees of freedom. The cart-pole task involves a balancing pole hinged to 

a motion less cart that travels left or right along a straight bounded track as shown in Fig. 2.  The 

pole is free to rotate only in the vertical plane of the cart and track. There are no sidelong resultant 

forces on the pole and it remains balanced as shown in Fig 2. 

 

The control objective is to apply a sequence of left or right forces of fixed magnitude to the 

wheeled cart so that it swings up the pendulum from its natural pendant position and stabilizes in 

the inverted position; once it reaches the upright equilibrium point (Fig.3).The cart must also be 

homed to a reference position on the rail. Here, the system state is specified by four real-valued 

variables: x-the horizontal position of the cart; x∆ -the velocity of the cart (rate at which the error 

of position changes); θ, the angle of the pole/shaft with respect to the vertical line; θ∆ , the 

angular velocity of the pole/shaft. The force F∈ [-10, 10] newton’s is applied to the cart and a 

zero magnitude force is not permitted. The dynamics of the cart-pole system are modeled by the 

following non-linear differential equations: 
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where g (acceleration due to gravity) is 9.8 m/s2, M (mass of cart) is1 kg, m (mass of pole) is 0.5 

kg. if we linearized the above equation then we get the following equation: 
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From the above, we can find the state equation as follows: 
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Where 1x is θ  and 2x is θθ

.

∆= and U is the control force F. Our control objective here is to 

balance the pole without regard to the cart’s position and velocity. 

 

 

 

4. INTEGRATED ARCHITECTURE: PSO AND FLSS 

PSO is an optimization method that finds the optimal solution using a population of particles [20] 

developed by  Dr. Kennedy and Dr. Eberhart in 1995, inspired by social behavior of bird flocking 

or fish schooling [15],[21]. 

4.1. The standard particle swarm optimization algorithm 

The notation and operators used in the PSO algorithm is described as follows: 

 

4.1.1. Particle (xt)   

Each individual in the swarm is represented as particle, contains the parameters of velocity and 

position. All particles actunder the same conditions and principles: finding the best personal and 

best overall location while constantly checking the value of its current location. The particle is 
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represented a candidate solution, m-dimensional real valued vector, where m is the number of 

optimized parameters.  The particle xt is: 

)(),.......(),()( 21 txtxtxtx n=  

4.1.2. Particle velocity and Position 

Each particle has a position vector (Pi) and a velocity vector (Vi) in the search space. At every 

learning cycle, each particle’s position and velocity are updated by the two best positions. The 

new velocity and position of particle are calculating by the following two equations:  

))()(())()(()()1( 2211 tPtPrctPtPrctwVtV igbestipbestiii −+−+=+  

)1()()1( ++=+ tVtPtP iii
 

Where (pbesti) is the ith particle’s best solution that has achieved so far, (gbest) is the overall best 

value from all particles in current generation, 221 == cc are acceleration constant, 1r and 2r are the 

two normally distributed random numbers between 0 or 1.  

 

4.1.3. Inertia Weight  

The inertia weight is used as a control parameter in PSO to control the impact of the previous 

velocities on the current velocity. In this study we used the inertia weight that linearly decreasing 

from a relatively large value to a small value through the course of the PSO run to improve the 

performance of PSO. It can be expressed as: 
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genww
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Where w is the inertia weight, wmax = 0.8 and wmin = 0.4, gen is the evolutionary generation number. 

Initially w is set to 0.8 and w decreases while the evolutionary generation number increases. In the 

beginning, the particle swarm has the capability of global searching and at the end it has local 

searching capability. In PSO, there is no crossover and mutation operator; hence it is very easy to 

be realized.  

4.2. Tuning of MFs distribution and Fuzzy control rules 

The approach of using a PSO for control rules and their corresponding MFs tuning in FLSs is 
shown in Fig. 4. In order to achieve the desired level of robust performance for a controller, exact 
tuning of the membership functions is very important. Thus, to reduce the design effort and find a 
better fuzzy system control, membership functions are designed automatically by PSO 
algorithms.  The control algorithms consist of the following basic steps:  

Step-1: Firstly, select the general structure of the fuzzy logic controller according to the purpose 
of control and dynamics of the process. 
Step-2: Define the number of fuzzy sets (Number of membership functions) for each fuzzy 
variable and set up initial fuzzy control rules. 
Step-3: We set the initial individuals of PSO for the control parameters of fuzzy logic controller.  
Step-4: Here, all control parameters of fuzzy logic controllers are tuned through PSO algorithms. 

In the proposed PSO process, each particle is shaped to represent the fuzzy control rules and their 
corresponding MFs parameters of the FLC’s inputs and outputs. Each particle represents a 
potential solution. The parameters are the center (a) value and width (b) of each fuzzy MFs as 
shown in Fig. 5.These parameters are used to define the particles of PSO algorithm and looking 
for the global best fitness.  
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4.3. Encoding Schema 

One of the most attractive problems in PSO is coding the solution space. There are two 

parameters to define the membership functions (a and b parameters) according to Fig. 5. A 

chromosome represents a candidate solution of the control problem. In this method, a solution 

candidate is expressed by real coding. Consequently, the a and b parameters for the input and 

output membership are expressed in terms of strings consisting real numbers as shown in Fig. 6.  

In this study represents the fuzzy rule base and their corresponding MFs with appropriate 

chromosome. For PSO, each particle represents a fuzzy rule base and their corresponding MFs. 

The number of active rules in a rule base and the parameters of rule base should be contained in 

the fuzzy rule base.  
 

 
Assume that the chromosome contains n MFs then a potential solution to it is encoded as a 2n-
dimensional real-valued vector, as demonstrated in Fig. 6. 

 

 

 

 

Figure 5.  Fuzzy Sets defining parameter  
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4.4. Evolutionary Strategy 

As a PSO is computationally expensive, this optimization is carried out off-line, for a 20 input 

scenarios selected at random. Once the optimized FLS is obtained, it can be used for making on-

line prediction of the outputs. The proposed algorithm, evolutionary strategy works as follows 

(Fig. 7):  

 

(i) The algorithm starts by setting the initial set of parameters. In this case, generate 

randomly m particles. It becomes an initial swarm. At the same time, initial positions 

and velocities of all particles are generated randomly within constrains in [-v
max

,v
max

]. 

(ii) Each particle represented potential FLCs. The initial set of parameter is used to build 

the potential FLSs. Then the potential FLCs are evaluated through the objective 

function. Search for the best value of the objective function pbest. In initial pbest, 

gbest is set as the best value of the objective function. If the control system 

performance satisfied the termination criteria then stop and get the optimal fuzzy set 

values. Otherwise go to step (iii). 

(iii) Update the fuzzy set parameter value through the optimization algorithm. In this way 

get the new parameters of control rules and their corresponding (MFs). PSO doing 

this update by calculating the inertia weight and velocity of the particle. At the same 

time check the maximum velocity of particle.  

(iv) Then the updated parameter is used to evaluate the performance of fuzzy control 

system. If the control systemsperformance satisfied the termination criteria then stop 

and get the optimal fuzzy set values. Otherwise go to step    (iii). 

(v)  Optimal parameter for building the optimal FLCs : The particle that generates the 

latest gbestis an optimal parameter and represented the optimal parameter of FLCs.  

 

In the PSO-FLS process each particle is formed according to the MFs parameters of the FLC’s 

inputs and outputs. The parameters that define the MFs are the mean value m and the standard 

deviation of each MF. The MFs is defined as: 

Figure 7. Flow chart of the proposed algorithm for designing the FLSs 

Start 

No 

Yes 

Initialization 

Evaluate the initial Particles to 

get pbest and gbest 

Termination 

Criteria? 

Get the Optimal fuzzy set value 

Get particle position 

Rule base 

Data base 

Evolution 

Module 

End 

Rule base 

Data base 

Evolution 

Module 

Evaluate the initial Particles to 

get pbest and gbest 

Update the fuzzy set 

parameter to build fuzzy 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.1, January 2013 

45 

22

2)(

)( σ

mx

mf
exf

−
−

=
 

 

Compared to other optimization algorithms [19-21], the PSO algorithm is easy to implement, 

there are few parameters to adjust and exhibits stable convergence. Compared to other traditional 

optimization techniques the advantages of PSO can be summarized as follows: 

 

(a) PSO to be less susceptible to being trapped in local minima due to the implicit 

parallelism. 

(b) To guide the search in the search space, the PSO algorithm uses performance index or 

objective function. For this reason PSO algorithm can easily deal with nonlinear and non-

differentiable objective functions.  

(c) PSO algorithms use probabilistic rather than deterministic transition rules. Hence PSO 

algorithms are a kind of stochastic optimization. This makes PSO algorithms more 

flexible and robust than traditional optimization techniques. 

Table 1: Optimized Fuzzy Control rules 
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4.5. Objective function 

Selecting the objective function is the one of the main factor of the PSO algorithm. The purpose 

of the algorithm is to improve the control system performance. Any function that can achieve this 

goal may be selected as the objective function. Different objective functions promote different 

PSO behaviors, which generate fitness values providing a performance measure of the problem 

considered. The PSO algorithm is to minimize the control error of the FLSs; the objective 

function of PSO is defined as:   

∑
=

=
ft

t

kxf
0

2))(( ε  

where
f

t is the total running time of the FLC, ε is the control error. 

 

5. SIMULATION RESULTS AND EVALUATION 

To demonstrate the efficiency of the proposed adaptive algorithm we carried out a series of 

simulations and simulation results are presented for the cart pole type inverted pendulum system 

described earlier in this section.In order to get an accurate result as well as a fast convergence of 

the algorithm, the values of the aforementioned parameters are considered as follows: the number 

of particles 50, searching iterations 100, inertia weight 0.75 and velocity 1. We prove the stability 

of the fuzzy logic controller in time occurs with the tuning fuzzy control rule sets obtained by the 

proposed approach.  

5.1. Fuzzy control rules  

PSO are powerful nonlinear optimization algorithms. However, sometimes the powerful 

performance is obtained at the cost of expensive computational complexity and much time. To 

overcome this type of problem, first, we have selected the several initial angular positions over 

the working space and obtained the auto tuned control parameters by means of PSO algorithms   

according to the change of each selected initial angular positions, then we obtained the desirable 

fuzzy control rules as shown in table-1, this optimized fuzzy rule is very important in the 

development of fuzzy control systems, which are usually decided upon subjectively. These 

control rules makes an interface between the inputs and outputs and is used to control the inverted 

pendulum angle.  

5.2. Membership Functions 

In our simulations of this paper, we used five antecedent and consequent fuzzysets “Negative 

High”, “Negative Low”, “Zero”, “Positive Low” and “Positive High” in. Fig 8.  In this study, the 

fine-learning process is introduced to optimize parameters in the membership functions since 

those parameters are only decided by experience control engineers/operators previously, and 

different sets of membership functions parameters would have a tremendous different impact on 

the final control effect. The designed fuzzy logic controller coupled the point-valued MAX–MIN 

fuzzy inference engine product rule to combine the membership values for each rule (Mamdani 

type), and the centre of area (COA) defuzzifier scheme to obtain the crisp value. 

5.3. Controller Response 

Based on the obtained controller, the tracking control of the inverted pendulum is demonstrated in 

Fig. 9, and an excellent tracking performance is also achieved. The control algorithm has been 

tested for this nonlinear control problem on the following initial angles: +200, -200, 150, -150, 50 

and -5
0 

degrees. Figure 9 shows the angular displacement responses of the proposed controller. 

From this Fig. 9, we have shown that from any starting pendulum angle the inverted pendulum 

goes to the desired angle 0
0
. These results further reflect that the generated adaptive controller 

through PSO algorithms could drive the system toward an implicit equilibrium position and 
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velocity. In the proposed controller, the nonlinearity of the controlled object can be compensated 

by the PSO algorithms. 

 

 
Figure 9. The dynamics of output of the system controlled by optimized controller during 

switching from swing-up to stabilization 

 

5.4. Control Surface  

Control signals have been generated by the adaptive fuzzy controller based on the rules base and 

membership functions presented above. Fuzzy logic control toolbox generated smooth nonlinear 

control surface, which is presented in Fig. 10.  From this control surface, we conclude that the 

output of the optimized fuzzy logic controller is the smooth function of its input variables as long 

as the neighboring MFs in the antecedent have enough overlap. This smooth nonlinear control 

surface controls the reactor with satisfying results. The nonlinear property of the control surface is 

essential to achieve the good performance. Note that the Fuzzy controller comes with a significant 

nonlinear mapping between the inputs and output. 
 

 
Figure 10. Control Surface (input-output relationship) generated by proposed controller 

 

For this PSO based optimization technique, Fig. 11 shows the average and best fitness 
corresponding to the number of iterations (or generations) that has passed through for the PSO 
approaches. This clearly highlights very good convergence performance of PSO for this inverted 
pendulum problem. 

5.5. Evaluating our work 

In order to evaluate our new PSO-FLS approach, we compare it against well-known 
reinforcement learning method called SANE (Symbiotic, Adaptive Neuro-Evolution)[15]. SANE 
is evolutionary neural networks based cooperative model that has been applied to cart pole type 
inverted pendulum system with very promising results [15]. The closer inspection of the study in 
[15] reveals that the system is stabilized within 46 time steps for the best case and 4461 for the 
worst cases from initial pole angles ±150 degrees and random cart positions ±2.4 meters. For the 

-25

-20

-15

-10

-5

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46

P
e
n
d
u
lu

m
 A

n
g
le

Time Step



International Journal of Artificial Intelligence & Applications (IJAIA), Vol.4, No.1, January 2013 

48 

same initial condition, the number of time steps required to stabilize the cart-pole system is 29 for 
best case and 2964 is for the worst case while using our proposed approach. The time steps 
required for cart and pole stabilization were computed over 20 simulations for each method. The 
advantage of using this PSO-FLSs structure is that the number of rules used in the fuzzy 
knowledge base has been reduced substantially also. 

 
Figure 11. Convergence characteristics of PSO on the average and best Fitness in finding the 

solution 
 

6. CONCLUSION 

An adaptive evolutional particle swarm optimization is proposed to design fuzzy rule base with 

their corresponding MFs automatically. To reduce fuzzy system effort and increase cost saving, a 

PSO has been used to tune the fuzzy control rules and their corresponding membership functions. 

PSO is able to generate an optimal set of parameter concerning the fuzzy controller including the 

fuzzy membership functions automatic adjustment and then the adjusted fuzzy system achieves 

better performance for inverted pendulum problem. It is verified that the Fuzzy–PSO controller 

has better control performance inverted pendulum system. Furthermore, implementation of the 

FLC tuning with PSO is much easier than the conventional methods because there is need neither 

derivative knowledge nor complex mathematical equations. Finally, the simulation results reveal 

that the PSO algorithm has stable convergence with good computational efficiency while 

comparing the SANE [15]. 
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