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A B S T R A C T

This paper proposes a novel optimization algorithm, called Emperor Penguin Optimizer (EPO), which mimics the
huddling behavior of emperor penguins (Aptenodytes forsteri). The main steps of EPO are to generate the huddle
boundary, compute temperature around the huddle, calculate the distance, and find the effective mover. These
steps are mathematically modeled and implemented on 44 well-known benchmark test functions. It is compared
with eight state-of-the-art optimization algorithms. The paper also considers for solving six real-life constrained
and one unconstrained engineering design problems. The convergence and computational complexity are also
analyzed to ensure the applicability of proposed algorithm. The experimental results show that the proposed
algorithm is able to provide better results as compared to the other well-known metaheuristic algorithms.

1. Introduction

During the last few decades, various algorithms have been proposed
to solve the variety of real-life engineering optimization problems [1,2].
These optimization problems are very complex in nature because they
have more than one local optimum solution. These problems are di-
vided into various categories whether they are constrained or un-
constrained, discrete or continuous, static or dynamic, single or multi-
objective.

In order to increase the efficiency and accuracy of these problems,
researchers have encouraged to rely on metaheuristic optimization al-
gorithms [3]. Metaheuristics become more popular in various field
because they do not require gradient information, easy to implement,
and bypass the local optima problem.

Generally, metaheuristics are divided into two categories such as
single-solution and multiple-solution based problems.

In single-solution based algorithms the searching process starts with
one candidate solution whereas in multiple-solution based algorithm
the optimization performs using a set of solutions (i.e., population).
Multiple-solution or population based metaheuristics have advantages
over single-solution based metaheuristics. These are as follows:

• The searching process starts with random generated population i.e,
a set of multiple solutions.

• The multiple solutions can share the information between each
other around the search space and avoid local optimal solutions.

• The exploration capability of multiple-solution or population

based metaheuristics have better than the single-solution based
techniques.

Multiple-solution based metaheuristic algorithms are further clas-
sified into three categories such as evolutionary-based, physics-based,
and swarm-based methods. The first category is generic population
based metaheuristic which is inspired from biological evolution i.e.,
mutation, recombination, and selection. These methods do not make
any assumptions about the basic fitness landscape.

The second category is physics-based algorithms in which each
search agent can communicate and move throughout the search space
according to some physics rules such as gravitational force, electro-
magnetic force, inertia force, and many more.

The last category is swarm-based algorithms which are inspired by
the collective behavior of social creatures. This collective intelligence is
based on the interaction of swarm with each other. Swarm-based al-
gorithms are easier to implement than the evolutionary-based algo-
rithms due to include the less number of operators (i.e., selection,
crossover, mutation). Apart from this, there are some advantages of
swarm-based algorithms which are as follows:

• Swarm-based algorithms can maintain the information about the
search space during course of iterations whereas evolutionary-based
algorithms can eliminate the information of the previous genera-
tions.

• Swarm-based algorithms have few input parameters as compared to
the evolutionary techniques.
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• Swarm-based algorithms utilize less memory space for saving the
best optimal solutions.

The key phases of metaheuristic algorithms are exploration and
exploitation [4,5]. The exploration phase ensures that algorithm in-
vestigates the different promising regions in a given search space
whereas exploitation ensures the searching of optimal solutions around
the promising regions which is obtained in the exploration phase [6].
However, it is difficult to balance between these phases due to its sto-
chastic nature. Therefore, the fine tuning of these two phases is re-
quired to achieve the near optimal solutions for a given optimization
problem.

This is the one fact which can motivates us to develop a novel
metaheuristic algorithm for solving real-life optimization problems.
Another fact of our motivation is the set of given problem in which the
performance of one optimizer does not guarantee to solve other opti-
mization problem with different nature [7].

This paper presents a novel bio-inspired metaheuristic algorithm
named as Emperor Penguin Optimizer (EPO) for optimizing the both
constrained and unconstrained optimization problems. Emperor
Penguin Optimizer (EPO) is inspired by social huddling behavior of
emperor penguins to survive successfully in the depth of Antarctic
winter. The main steps of EPO are inspired by huddling behavior which
computes the huddling boundary, temperature, distance, and effective
mover around the huddle. The performance of EPO algorithm has been
evaluated on forty-four linear and non-linear benchmark test functions.
The proposed algorithm has also been tested on seven non-linear and
mixed integer structural optimization problems.

The rest of this paper is structured as follows: Section 2 presents the
related works of optimization problems. The proposed EPO algorithm is
discussed in Section 3. The experimental results and discussion is pre-
sented in Section 4. Section 5 focuses on the applications of EPO in
engineering problems. Finally, the conclusion and some future research
directions are given in Section 6.

2. Background

This section firstly describes the basic concepts of optimization. The
related works of various metaheuristics are then discussed. Finally, the
motivation of this work is provided.

2.1. Preliminaries

Many real-life problems need to achieve several objectives such as
minimize risks, minimize cost, maximize reliability, etc. The main aim of
single-objective optimization is to find the best optimal solution and deals
with only one objective which is to be minimized or maximized. The
mathematical formulation of single-objective optimization is as follows:

→ = →F z f zMinimize/Maximize: ( ) ( )1 (1)

Subject to:

→ ≥ = …g z j p( ) 0, 1, 2, ,j (2)

→ = = …h z j q( ) 0, 1, 2, ,j (3)

≤ ≤ = …lb z ub j r, 1, 2, , ,j j j (4)

where p is the number of inequality constraints, gj is the jth inequality
constraints, q is the number of equality constraints, hj is the jth equality
constraints, r is the number of variables, lbj is the lower bound and ubj is
the upper bound of the jth variable.

Therefore, the presence of local solutions in a given search region is
the main challenging task when solving optimization problems. In
single-objective optimization, there is only one best solution i.e., the
best objective value. However, there are many other solutions called as
local solutions, which may be closer than the obtained objective value.
Since these solutions are not considered as the global solution which
may causes the entrapment due to the presence of these local solutions.
It may occurs the stagnation problem due to assumes the local solutions
as the global optimum. Hence, an optimization algorithm should be
able to avoid such problem and determine the global optimum solution

Fig. 1. Classification of metaheuristic algorithms.
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efficiently.
The convergence is an another main challenge for any optimization

algorithm. It is not necessary that an algorithm which is able to avoid
local solutions, provides better convergence towards the global optima.

Therefore, these two conflict trade-offs are the main challenges of
an optimization algorithm to solve real-life problems.

2.2. Related works

Population based metaheuristic algorithms are classified into three
categories namely Physics-based, Evolutionary-based, and Swarm-
based methods. The broadly classification of metaheuristic optimization
algorithms is shown in Fig. 1.

Physics-based metaheuristic algorithms utilize the concepts of
physics such as electromagnetic force, inertia force, and gravitational
force, for the information sharing among search agents in the given
search space. The general mechanism of these algorithms is different
from the other approaches due to the strategy of search agents as per
physics rules. The well-known physics-based metaheuristic algorithms
are Simulated Annealing (SA) [8] and Gravitational Search Algorithm
(GSA) [9]. Simulated Annealing is inspired from annealing in me-
tallurgy that involves heating and controlled cooling attributes of a
material. These attributes depend on its thermodynamic free energy. SA
is advantageous in terms to deal with non-linear models and noisy data.
The main advantage of SA over other search methods is its ability to
search the global optimal solution. However, it suffers from high
computational time especially if the fitness function is very complex
and non-linear in nature. Gravitational Search Algorithm is based on
the law of gravity and mass interactions. The population solutions are
interact with each other through the gravity force and their perfor-
mance is measured by its mass. GSA requires only two input parameters
to adjust i.e., mass and velocity. It is easy to implement. The ability to
find near the global optimum solution makes the GSA differ from other
optimization algorithms. However, it suffers from computational time
and convergence problem if the initial population is not generated well.

Some of the other popular algorithms are: Big-Bang Big-Crunch (BBBC)
[10], Charged System Search (CSS) [11], Black Hole (BH) [12] algo-
rithm, Central Force Optimization (CFO) [13], Small-World Optimiza-
tion Algorithm (SWOA) [14], Artificial Chemical Reaction Optimization
Algorithm (ACROA) [15], Ray Optimization (RO) algorithm [16], Ga-
laxy-based Search Algorithm (GbSA) [17], and Curved Space Optimi-
zation (CSO) [18].

The second subclass of metaheuristic algorithms is evolutionary-
based algorithms. These algorithms are inspired by theory of natural
selection and biological evolution. These algorithms perform well to
find near optimal solutions because they do not make any belief about
the basic fitness landscape. The most popular evolutionary algorithm is
Genetic Algorithm (GA) [19]. The evolution starts with the randomly
generated individuals from a population. The fitness of each individual
is computed in each generation. The crossover and mutation operators
are applied on individual to create a new population. The best in-
dividuals can generate the new population during the course of itera-
tions. However, compared to other stochastic methods genetic algo-
rithm has the advantage that it can be parallelized with little effort and
not necessarily remain trapped in a sub-optimal local maximum or
minimum of the target function. GA may provides local minima of a
function that can steer the search in the wrong direction for some of the

Fig. 2. Generate huddle to conserve energy and movement of search agents
towards the best neighbor.

Fig. 3. Huddling behavior of emperor penguins.

Fig. 4. Collision avoidance between search agents.

Fig. 5. Updated positions of emperor penguins towards the best search agent.
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optimization problems.
Differential Evolution (DE) [20] is another evolutionary-based me-

taheuristic algorithm that optimizes a problem by maintaining a can-
didate solutions and creates new candidate solutions by combining the
existing ones. It can keep the candidate solution which has the best
fitness value for optimization problem. It has an ability to handle the
non-differentiable and non-linear cost functions. There are only few
parameters to steer the minimization problem. The parameter tuning is
a main challenge in DE because same parameters may not guarantee the

global optimum solution.
Apart from these, some of the other popular evolutionary-based

algorithms are Genetic Programming (GP) [21], Evolution Strategy (ES)
[22], and Biogeography-based Optimizer (BBO) [23].

The third main category is swarm-based metaheuristic algorithms
which are based on the collective behavior of social creatures. These
algorithms are generally inspired from natural colonies, flock, herds,
and so on. The most popular algorithm is Particle Swarm Optimization
(PSO) which was proposed by Kennedy and Eberhart [24]. In PSO,
particles move around the search space using the combination of best
solutions [25]. The whole process is repeated until the termination
criterion is satisfied. The main advantage of PSO is that it has no
overlapping and mutation calculation. During simulation, the most
optimist particle can transmit information among the other particles.
However, it suffers from the stagnation problem.

Ant Colony Optimization (ACO) is another popular swarm in-
telligence algorithm which was proposed by Dorigo et al. [26]. The
main inspiration behind this algorithm is the social behavior of ants in
ant colony. The social intelligence of ants is to find the shortest path
between the source food and nest. ACO is able to solve the travelling
salesman and similar problems in an efficient way that can be ad-
vantageous of ACO over other approaches. The theoretical analysis of a
problem is very difficult using ACO because the computational cost is
high during convergence.

Bat-inspired Algorithm (BA) [27] is inspired by the echolocation
behavior of bats. The another well-known swarm-based metaheuristic is
Artificial Bee Colony (ABC) algorithm [28] which is inspired by the
collective behavior of bees to find the food sources. Spotted Hyena
Optimizer (SHO) [29] is a recently develop bio-inspired metaheuristic
algorithm that mimics the searching, hunting, and attacking behaviors
of spotted hyenas in nature. The main concept behind this technique is
the social relationship and collective behavior of spotted hyenas for
hunting strategy. Cuckoo Search (CS) [30] is inspired by the obligate
brood parasitism of cuckoo species. These species laying their eggs in
the nest of other species. Each egg and a cuckoo egg represent a solution
and a new solution, respectively.

The other well-known metaheuristic algorithms are Monkey Search
[31], Bacterial Foraging Optimization Algorithm [32], Firefly Algo-
rithm (FA) [33], Fruit fly Optimization Algorithm (FOA) [34–37],
Golden section line search algorithm [38], Fibonacci search method
[39], Bird Mating Optimizer (BMO) [40], Krill Herd (KH) [41], Artifi-
cial Fish-Swarm Algorithm (AFSA) [42], Dolphin Partner Optimization
(DPO) [43], Hunting Search (HS) [44], and Moth-flame Optimization
Algorithm (MFO) [45].

2.3. Motivation

It has been observed from the literature that multiple-solution or
population based algorithms are able for solving real-life optimization
problems [46–48]. They are able to avoid local optima problem, ex-
ploring throughout the search space, and exploit the global optimum.
However, population based techniques are more reliable than single-
solution based techniques because of more function evaluations [49].

According to No Free Lunch theorem [7], there is no optimization
algorithm which is able to solve all optimization problems. This fact
will attract the researchers of different fields to propose a new opti-
mization algorithm. Therefore, these two reasons are the main moti-
vation of this research work to propose a new population based meta-
heuristic algorithm.

3. Emperor Penguin Optimizer (EPO)

In this section, the inspiration and mathematical modeling of the
proposed algorithm are described in detail.

Fig. 6. Flowchart of the proposed EPO algorithm.
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3.1. Inspiration

The emperor penguin, scientifically named as Aptenodytes forsteri, is
the tallest and heaviest in all of the penguin species. The male and
female emperor penguins are very much similar in terms of plumage
and size. The dorsal side and head are black with white belly, pale
yellow breast, and bright yellow ear patches.

Emperor penguins spend their lives in open ice and breeds during
winter season. During the breeding season, emperor penguins come
ashore in huge colonies which includes hundreds of thousands of em-
peror penguins. Females lay a single egg and can travel 50 miles to
reach the ocean for hunting. The emperor penguin is a social like an-
imal by its foraging behavior and hunting together in a group.

In sea, emperor penguins can dive up to 1900 feet deeper and stay
under sea for more than 25 min. Emperor penguins are flightless like
other penguins species with stiffened and flattened wings.

Emperor penguins are the only species that huddles to survive
during the Antarctic winter. The huddling behavior of emperor pen-
guins is decomposed into four phases [50]:

• Generate and determine the huddle boundary of emperor penguins.

• Calculate the temperature profile around the huddle.

• Determine the distance between emperor penguins.

• Relocate the effective mover.

An important feature of this huddling behavior is that each penguin
has an equal opportunity to the warmth of huddle.

Fig. 3 shows the huddling behavior of emperor penguins. In this
figure, the emperor penguin (X*, Y*) can update its position towards
the positions of other emperor penguins and reaches different number
of places about the current position.

3.2. Mathematical model and optimization algorithm

In this section, the huddling behavior of emperor penguins is
mathematically modeled. The main aim of this model is to find an ef-
fective mover. The huddle is assumed to be situated on two dimensional
L-shape polygon plane. Firstly, emperor penguins generate the huddle
boundary randomly. Thereafter, the temperature profile around the
huddle is computed. The distance between emperor penguins is also
calculated which will be helpful for more exploration and exploitation.
Finally, the effective mover i.e., the best optimal solution is obtained
and recompute the boundary of huddle with updated positions of em-
peror penguins (or search agents). These steps are explained in the
preceding sections.

Fig. 7. L-shaped polygon huddling boundary of emperor penguins.

Fig. 8. Swarm behaviors of emperor penguins in two-dimensional environment.
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3.2.1. Generate and determine the huddle boundary
During huddling, emperor penguins generally position themselves on a

polygon shape grid boundary. The emperor penguins have at least two
neighbors which are chosen randomly in the huddle as shown in Fig. 3. The
wind flow around the huddle is determined to find the huddle boundary
around a polygon. However, the wind flow is faster than the movement of a
emperor penguin. The concepts of complex variables is used to describe the
randomly generated huddle boundary of emperor penguin.

Let Φ defines the wind velocity and Ψ be the gradient of Φ.

= ∇Ψ Φ (5)

Vector Ω is combined with Φ to generate the complex potential.

= +F iΦ Ω, (6)

where i denotes the imaginary constant and F is an analytical function
on the polygon plane. Fig. 3 shows the effect of Eq. (6) in two-dimen-
sional environment. In this figure, the emperor penguins can update
their position randomly towards the position of emperor penguin which
is to be situated at the center of L-shaped polygon region with highest
effective fitness rate during iteration process.

3.2.2. Temperature profile around the huddle
The emperor penguins generate huddle to conserve energy and

maximize the ambient temperature in the huddle (see Fig. 2). To
mathematically model this situation, we assume that the temperature
=T 0 when the radius of polygon R>1 and temperature =T 1 when

the radius becomes R<1. This temperature profile is responsible for
exploration and exploitation process for emperor penguins with dif-
ferent locations. The temperature profile around the huddle T′ is
computed as follows:

⎜ ⎟′ = ⎛
⎝

−
−

⎞
⎠

= ⎧
⎨⎩

>
<

T T Max
x Max

T R
R

0, if 1
1, if 1,

iteration

iteration

(7)

where x defines the current iteration, Maxiteration denotes the maximum
number of iterations, R is the radius, and T is the time for finding best
optimal solution in a search space.

3.2.3. Distance between emperor penguins
The distance between emperor penguin and best obtained optimal

solution is computed after the generation of huddle boundary. The
current best optimal solution is the solution whose fitness value is close
to the optimum. The other search agents (or emperor penguins) will

Fig. 9. Exploration and Exploitation phases of EPO on F2, F9, and F17 benchmark test functions.

Table 1
Parameter settings for algorithms.

# Algorithms Parameters Values

Search Agents 80
Temperature Profile (T′) [1, 1000]
⎯→⎯
A Constant [−1.5, 1.5]

1. Emperor Penguin Optimizer (EPO) Function S() [0, 1.5]
Parameter M 2
Parameter f [2, 3]
Parameter l [1.5, 2]
Number of Generations 1000
Search Agents 80

2. Spotted Hyena Optimizer (SHO) Control Parameter (
→
h ) [5, 0]

⎯→⎯
M Constant [0.5, 1]

Number of Generations 1000
Search Agents 80

3. Grey Wolf Optimizer (GWO) Control Parameter (→a ) [2, 0]

Number of Generations 1000
Number of Particles 80

4. Particle Swarm Optimization
(PSO)

Inertia Coefficient 0.75

Cognitive and Social
Coeff

1.8, 2

Number of Generations 1000
Search Agents 80

5. Multi-Verse Optimizer (MVO) Wormhole Existence
Prob.

[0.2, 1]

Travelling Distance Rate [0.6, 1]
Number of Generations 1000
Search Agents 80

6. Sine Cosine Algorithm (SCA) Number of Elites 2
Number of Generations 1000
Search Agents 80

7. Gravitational Search Algorithm
(GSA)

Gravitational Constant 100

Alpha Coefficient 20
Number of Generations 1000
Population Size 80

8. Genetic Algorithm (GA) Crossover and Mutation 0.9, 0.05
Number of Generations 1000
Harmony Memory 80
Harmony Rate 0.95

9. Harmony Search (HS) Neighbouring Value Rate 0.30
Discrete Set 17700
Fret Width 1
Number of Generations 1000
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update their positions according to current best optimal solution which
is mathematically defined as follows:

⎜ ⎟
⎯ →⎯⎯⎯

= ⎛
⎝

⎯→⎯ ⎯ →⎯⎯⎯⎯⎯
−
→ ⎯ →⎯⎯⎯⎯⎯⎯⎯ ⎞

⎠
D Abs S A P x C P x( )· ( ) · ( ) ,ep ep

(8)

where
⎯ →⎯⎯⎯
Dep represents the distance between the emperor penguin and

best fittest search agent (i.e., best emperor penguin whose fitness value
is less), x indicates the current iteration.

⎯→⎯
A and

→
C are used to avoid the

collision between neighbors (i.e., other emperor penguins) as shown in
Fig. 4.

→
P defines the best optimal solution (i.e., fittest emperor pen-

guin),
⎯→⎯⎯
Pep indicates the position vector of emperor penguin. S() defines

the social forces of emperor penguins that is responsible to move to-
wards the direction of best optimal search agent. The vectors

⎯→⎯
A and

→
C

are computed as follows:

⎯→⎯
= × ′ + × − ′A M T P Accuracy Rand T( ( ( )) ())grid (9)

=
→
−
⎯→⎯⎯

P Accuracy Abs P P( ) ( )grid ep (10)

→
=C Rand (), (11)

where M is the movement parameter that maintains a gap between
search agents for collision avoidance. The value of parameter M is set to
2. T′ is the temperature profile around the huddle, Pgrid(Accuracy) de-
fines the polygon grid accuracy by comparing the difference between
emperor penguins, and Rand() is a random function lies in the range of
[0, 1].

The function S() is calculated as follows:

⎯→⎯
= −− −S A f e e( ) ( · ) ,x l x/ 2

(12)

where e defines the expression function. f and l are control parameters
for better exploration and exploitation. The values of f and l lie in the
range of [2, 3] and [1.5, 2], respectively. Note that it has been observed
that the proposed algorithm provides better results between these
ranges. The sensitivity analysis of these parameters is described in
Section 4.6.

3.2.4. Relocate the mover
The positions of emperor penguins are updated according to the best

obtained optimal solution i.e., mover (see Fig. 5). This mover is re-
sponsible for changing the positions of other search agents in a given
search space and vacates its current position. The following equation is
proposed to update the next position of an emperor penguin:

⎯→⎯⎯
+ =

⎯ →⎯⎯⎯⎯⎯
−
⎯→⎯ ⎯ →⎯⎯⎯

P x P x A D( 1) ( ) · ,ep ep (13)

where
⎯→⎯⎯

+P x( 1)ep represents the next updated position of emperor
penguin. During iteration process, the huddling behavior of emperor
penguins is recomputed once the mover has been re-located.

The pseudo code of EPO algorithm is shown in Algorithm. There are
some interesting points about the proposed EPO algorithm which are
given below:

• The proposed algorithm saves the best solutions which is obtained
so far during the course of iterations.

• The proposed polygon grid mechanism defines a L-shaped polygon
grid around the solutions which can be extended to higher dimen-
sions as shown in Fig. 7.

• ⎯→⎯A and
→
C assist the candidate solutions to behave more randomly in

a search space and responsible to avoid the collisions between
search agents.

• The proposed distance method allows candidate solutions to locate
the possibly position of the best fittest emperor penguin.

• The convergence behaviors of common optimization algorithms
suggests that the exploitation tends to increase the speed of con-
vergence, while exploration tends to decrease the convergence rate
of the algorithm. Therefore, the possibility of better exploration and
exploitation is done by the adjusted values of vectors

⎯→⎯
A and

→
C .

These behaviors are shown in Fig. 9 which shows that half of
iterations are responsible for exploration and the other half are re-
sponsible for exploitation in a given search space.

• The swarm behavior of emperor penguins in a search region defines
the effectively collective behavior of EPO algorithm as shown in
Fig. 8.

Table 2
The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC 2015 benchmark test functions using different simulation
runs (i.e., 100, 500, 800, and 1000).

Functions

Iterations F1 F5 F11 F17 F23 F24 −CEC 1

100 2.71E−17 7.07E+00 3.21E−03 9.07E−01 −2.11E+00 3.53E+02 2.60E+06
500 5.44E−20 6.01E+00 1.20E−03 7.97E−01 −2.97E+00 3.15E+02 2.56E+05
800 4.00E−25 5.52E+00 7.22E−04 6.12E−01 −3.11E+00 2.95E+02 2.01E+05
1000 2.42E−29 5.04E+00 4.20E−05 3.88E−01 −3.47E+00 2.35E+02 1.50E+05

Fig. 10. Sensitivity analysis of proposed EPO algorithm for, (a) Number of iterations; (b) Number of search agents; (c) Control parameter M; (d) Control parameter f;
(e) Control parameter l.

G. Dhiman, V. Kumar Knowledge-Based Systems 159 (2018) 20–50

26



3.3. Steps and flowchart of proposed EPO algorithm

The steps and flowchart (see Fig. 6) of proposed EPO are summar-
ized as follows:

Step 1: Initialize the emperor penguins population
⎯ →⎯⎯⎯⎯⎯⎯⎯
P x( ) ,ep where

= …x n1, 2, , .
Step 2: Choose the initial parameters: ′ ⎯→⎯ →

T A C S R, , , (), , and

Maxiteration.
Step 3: Now, calculate the fitness value of each search agent.
Step 4: Determine the huddle boundary of emperor penguins using
Eqs. (5) and (6).
Step 5: Calculate the temperature profile T′ around the huddle using
Eq. (7).
Step 6: Compute the distance between the emperor penguins using
Eqs. (8)–(12).
Step 7: Update the positions of other search agents using Eq. (13).

Input: the emperor penguins population �Pep(x) (x← 1, 2, . . . , n)
Output: the best obtained search agent �P

1: procedure EPO
2: Initialize the parameters T ′, �A, �C, S (),R, and Maxiteration

3: while (x < MaxIteration) do
4: FITNESS(Pep) /* Compute the fitness of each search agent using FITNESS function*/
5: R← Rand() /* Generate random number in range [0, 1] */
6: if(R > 1)then
7: T ← 0
8: else
9: T ← 1

10: end if

11: T ′ ←
(
T − Maxiteration

x − Maxiteration

)
/* Compute the temperature profile around the huddle */

12: for i← 1 to n do
13: for j← 1 to n do
14: Compute the vectors �A and �C using Eqs. (9)–(11)
15: Compute the function S (�A) using Eq. (12)
16: Update the position of current agent using Eq. (13)
17: end for
18: end for
19: Update parameters T ′, �A, �C, and S ()
20: Amend search agent which goes beyond the region of search space
21: FITNESS(Pep) /* Again compute the fitness value of updated search agents using FITNESS function*/
22: Update �P if there is a better solution than previous optimal solution i.e., (FITbest)
23: x← x + 1
24: end while
25: return �P
26: end procedure

27: procedure FITNESS(Pep)
28: for i← 1 to n do
29: FIT [i]← FIT NES S _FUNCT ION(Pep) /* Compute the fitness of each individual */
30: end for
31: FITbest ← BEST(FIT []) /* Compute the best fitness value using BEST function */
32: return FITbest

33: end procedure

34: procedure BEST(FIT [])
35: best ← FIT [0]
36: for i← 1 to n do
37: if(FIT [i] < best) then
38: best ← FIT [i]
39: end if
40: end for
41: return best /* Return the best fitness value */
42: end procedure

Algorithm :. Emperor Penguin Optimizer.
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Step 8: Check whether any search agent goes beyond the boundary
in a given search space and then amend it.
Step 9: Calculate the updated search agent fitness value and update
the position of previously obtained optimal solution.
Step 10: The algorithm will be stopped until the stopping criterion
is satisfied. Otherwise, return to Step 5.
Step 11: Return the best optimal solution, after stopping criteria,
which is obtained so far.

3.4. Computational complexity

In this section, the computational complexity of proposed EPO al-
gorithm is discussed. Both the time and space complexities of the pro-
posed algorithm are given below.

3.4.1. Time complexity

1. Population initialization process requires O ×n d( ) time, where n
indicates the population size and d indicates the dimension of a
given problem.

2. The fitness of each agent requiresO × ×Max n d( )iteration time, where
Maxiteration is the maximum number of iteration to simulate the
proposed algorithm.

3. The function S() requires O N( ) time where N defines the social
forces of emperor penguins for better exploration and exploitation.

4. Steps 2 and 3 is repeated until the termination criteria is satisfied
which needs O k( ) time.

Hence, the total complexity of Steps 2 and 3 is
O × × ×n Max d N( )iteration . Therefore, the overall time complexity of
EPO algorithm is O × × × ×k n Max d N( )iteration .

Table 3
The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC 2015 benchmark test functions, where number of iterations
is fixed as 1000. The number of search agents are varied from 30 to 100.

Functions

Search agents F1 F5 F11 F17 F23 F24 −CEC 1

30 1.51E−16 7.01E+00 3.11E−03 5.27E−01 −2.53E+00 1.33E+02 2.86E+06
50 5.43E−19 6.31E+00 2.30E−03 7.20E−01 −2.80E+00 3.20E+02 2.22E+05
80 2.22E−28 5.00E+00 4.24E−05 3.22E−01 −3.49E+00 2.29E+02 1.47E+05
100 5.97E−23 5.42E+00 8.32E−04 6.18E−01 −3.13E+00 2.96E+02 2.18E+05

Table 4
The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC 2015 benchmark test
functions, where number of iterations and search agents are fixed as 1000 and 80, respectively. The parameter M is varied from [1, 2,
3, 4].

Functions

l F1 F5 F11 F17 F23 F24 −CEC 1

1 4.41E−17 6.10E+00 2.41E−04 5.76E−01 −2.21E+00 3.36E+02 2.53E+06
2 4.00E−22 5.13E+00 1.19E−06 4.87E−02 −3.50E+00 2.24E+02 1.47E+05
3 7.48E−17 7.83E+00 2.40E−03 5.26E−01 −2.93E+00 4.02E+02 3.43E+05
4 1.76E−19 7.02E+00 4.26E−04 5.49E−01 −3.08E+00 2.76E+02 2.19E+05

Table 5
The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC 2015 benchmark test functions, where number of iterations
and search agents are fixed as 1000 and 80, respectively. The parameter f is varied from [1, 2] to [4, 5].

Functions

f F1 F5 F11 F17 F23 F24 −CEC 1

[1, 2] 6.23E−18 7.05E+00 3.34E−03 8.79E−01 −2.14E+00 3.47E+02 2.53E+06
[2,3] 2.22E−29 5.03E+00 4.22E−05 3.85E−01 −3.50E+00 2.33E+02 1.48E+05
[3,4] 3.42E−19 6.00E+00 1.17E−03 7.86E−01 −2.89E+00 3.11E+02 2.50E+05
[4,5] 4.00E−23 5.60E+00 7.40E−04 6.10E−01 −3.17E+00 2.93E+02 2.07E+05

Table 6
The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC 2015 benchmark test functions, where number of iterations
and search agents are fixed as 1000 and 80, respectively. The parameter f is fixed as [2, 3]. The parameter l is varied from [0.5, 1] to [2, 2.5].

Functions

l F1 F5 F11 F17 F23 F24 −CEC 1

[0.5, 1] 5.46E−19 7.18E+00 3.42E−03 8.92E−01 −2.23E+00 3.40E+02 2.55E+06
[1, 1.5] 1.41E−21 5.86E+00 1.34E−03 7.76E−01 −2.94E+00 3.19E+02 2.75E+05
[1.5, 2] 2.28E−28 5.01E+00 4.13E−05 3.80E−01 −3.50E+00 2.31E+02 1.51E+05
[2, 2.5] 8.95E−24 5.55E+00 7.43E−04 6.00E−01 −3.07E+00 2.80E+02 2.00E+05
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3.4.2. Space complexity
The space complexity of EPO algorithm is the maximum amount of

space used at any one time which is considered during its initialization
process. Thus, the total space complexity of EPO algorithm isO ×n d( ).

4. Experimental results and discussion

This section describes the experimentation on forty-four standard
benchmark test functions to evaluate the performance of proposed al-
gorithm. The detailed description of these benchmarks are presented
below. Further, the results are compared with eight well-known meta-
heuristic algorithms.

4.1. Benchmark test functions

The forty-four benchmark test functions are applied on proposed
algorithm to demonstrate its applicability and efficiency. These func-
tions are divided into five main categories: Unimodal [51], Multimodal
[33], Fixed-dimension Multimodal [33,51], Composite functions [52],
and CEC 2015 functions [53]. These functions are tabulated in
Appendix A. In Appendix A, Dim and Range indicate the dimension of
the function and boundary of the search space, respectively whereas
fmin denotes the minimization function.

Appendices A.1–A.3 show the characteristics of unimodal, multi-
modal, and fixed-dimension multimodal benchmark test functions, re-
spectively. The detailed description of composite benchmark test
functions is tabulated in Table 10. Whereas, the detailed description of
CEC 2015 benchmark test functions is presented in Table 11. The seven
test functions ( −F F1 7) are included in the category of unimodal test
functions. These functions have only one global optimum.

The second category consists of six test functions ( −F F8 13) and
third category includes ten test functions ( −F F14 23). There are multiple
local solutions in these categories which are useful for examining the
local optima problem.

The fourth category comprises six composite test functions
( −F F24 29) which are the shifted, rotated, expanded, and combined
version of classical functions [54].

The fifth category consists of fifteen CEC 2015 test functions
( −CEC CEC1 15) which are shifted, rotated, hybrid, and composition
functions as described in Appendix A.

4.2. State-of-the-art algorithms for comparison

To validate the performance of the proposed EPO algorithm, the
eight well-known optimization algorithms are used for comparison.

• Spotted Hyena Optimizer (SHO) [29,55,56]: Spotted Hyena Optimizer
(SHO) is a recently developed bio-inspired based optimization al-
gorithm proposed by Dhiman and Kumar [29]. It mimics the
searching, encircling, and hunting behaviors of spotted hyena. The
main concept of this algorithm is the social relationship between the
spotted hyenas. In SHO, the search agents can update their positions
with a set of solutions (i.e., group or cluster of optimal solutions)
rather than one optimal solution. This algorithm was applied on
constrained as well as unconstrained real-life engineering problems
and well-known test functions.

• Grey Wolf Optimizer (GWO) [57]: Grey Wolf Optimizer (GWO) is a
very popular bio-inspired based algorithm for solving real-life con-
strained problems. Grey Wolf Optimizer (GWO) is inspired by the
behaviors of grey wolves. It mimics the leadership, hierarchy, and
hunting mechanisms of grey wolves. GWO employed four types of
grey wolves: alpha, beta, delta, and omega for optimization pro-
blems. The hunting, searching, encircling, and attacking mechan-
isms are also implemented. Further, to investigate the performance
of GWO algorithm, it was tested on well-known test functions and
classical engineering design problems.Ta
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• Particle Swarm Optimization (PSO) [24]: Particle Swarm Optimiza-
tion (PSO) is also another population based stochastic optimization
algorithm which is inspired by the social behavior of fish schooling
or bird flocking. Each particle can move through out the search
space with respect to global best solution and updates its current
position if it is better than previous best solution. The reason behind
the popularity of this algorithm is that there are only few parameters
to adjust.

• Multi-Verse Optimizer (MVO) [58]: Multi-verse Optimizer (MVO) is a
promising optimization algorithm proposed by Mirjalili et al. [58].
It is inspired by the theory of multi-verse in physics which consists
of three main concepts i.e., white hole, black hole, and worm hole.
The concepts of white hole and black hole are appropriate for ex-
ploration and worm hole helps for exploitation the search spaces.

• Sine Cosine Algorithm (SCA) [59]: Sine Cosine Algorithm (SCA) is
proposed by Mirjalili for solving numerical optimization problems.
The SCA generates multiple random solutions and fluctuate them
towards the best optimal solution using mathematical models such
as sine and cosine functions. The convergence speed of SCA is very
high which is helpful for local optima avoidance.

• Gravitational Search Algorithm (GSA) [9]: Gravitational Search Al-
gorithm (GSA) is proposed by Rashedi et al. [9] which is based on
the Newton’s law of gravitation and law of motion. In GSA, the
agent has four parameters: position, inertial mass, active gravita-
tional mass, and passive gravitational mass. Last few years, re-
searchers have applied the GSA algorithm on large scale problems
because it has an ability to find global optimum and requires only
two parameters which is far less as compared to other nature-in-
spired algorithms.

• Genetic Algorithm (GA) [60]: Genetic Algorithm (GA) is a evolu-
tionary algorithm inspired by the theory of natural selection. GA
evolves three operators such as selection, crossover, and mutation
which are frequently used to find the near optimal solutions. The
algorithm evolves better solutions over generations until the stop-
ping criterion is satisfied.

• Harmony Search (HS) [61]: The Harmony Search (HS) algorithm was
originally inspired by the process of Jazz musicians. HS is a popu-
lation based algorithm that maintains a set of solutions in the Har-
mony Memory (HM). It imposes only few mathematical require-
ments and less initial value settings of the decision variables. HS is
an efficient for finding a set of solutions in a large search region.

4.3. Experimental setup

The parameter settings of proposed EPO and competitor meta-
heuristic algorithms i.e., SHO, GWO, PSO, MVO, SCA, GSA, GA, and HS
are tabulated in the Table 1. The parameter values of these algorithms
are set as they are recommended in their original papers. The experi-
mentation has been done on Matlab R2014a (8.3.0.532) version in the
environment of Microsoft Windows 8.1 using 64 bit Core i-5 processor
with 2.40 GHz and 4 GB main memory. The average and standard de-
viation of the best optimal solution are mentioned in tables. For each
benchmark test function, EPO algorithm utilizes 30 independent runs in
which each run employs 1000 iterations.

4.4. Performance comparison

In order to demonstrate the effectiveness of proposed algorithm, it is
compared with eight well-known optimization algorithms on unimodal,
multimodal, fixed-dimension multimodal, composite, and CEC 2015
benchmark test functions.

4.4.1. Evaluation of test functions −F F1 7
The functions −F F1 7 are unimodal test problems that are used to

assess the exploitation capability of the metaheuristic algorithms.
Table 7 shows that EPO is very competitive as compared with other Ta
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competitor algorithms. The results reveal that EPO is able to determine
the optimal solution for functions F4, F5, F6, and F7. EPO has better
exploitation capability and able to find the best optimal solution very
efficiently.

4.4.2. Evaluation of test functions −F F8 23

Multimodal test functions have an ability to evaluate the explora-
tion of an optimization algorithm. Tables 8 and 9 depict the perfor-
mance of above-mentioned algorithms on multimodal test functions
( −F F8 13) and fixed-dimension multimodal test functions ( −F F14 23).
From these tables, it can be seen that EPO is able to find optimal so-
lution for nine test problems (i.e., F8, F10, F13, F14, F15, F17, F18, F19, and
F22) and also obtains competitive results in majority of test problems.
The results reveal that EPO algorithm has better exploration capability.

4.4.3. Evaluation of test functions −F F24 29

The composite benchmark functions is very challenging task be-
cause these functions require balance between exploration and ex-
ploitation. These test functions are shifted, rotated, expanded, and
combined version of classical functions. The local optima avoidance can
be observed in these test functions. Table 10 depicts that EPO algorithm
is an effective optimizer for F25, F26, and F27 test functions and very
competitive in other test cases.

4.4.4. Evaluation of CEC 2015 test functions (CEC1 - CEC15)
This special session is devoted to the real approaches and techniques

for solving single objective optimization problems. All of these test
functions are minimization problems which should be treated as black-
box problems with bound constraints. Table 11 shows the performance
of EPO and other algorithms on CEC 2015 test functions. It is observed
from Table 11 that proposed algorithm is efficient for

− − − − − −
− − − −

CEC CEC CEC CEC CEC CEC CEC
CEC CEC CEC

1, 3, 7, 8, 9, 10,
11, 12, 13, 14,

and

−CEC 15 test functions. Fig. 11 shows the box plot for the proposed
EPO and other competitor algorithms on CEC 2015 benchmark test
functions. It can be seen from this figure that EPO is the best efficient
optimizer for most of the benchmark test functions.

4.5. Convergence analysis

The main intention behind the convergence analysis is to under-
stand the behavior of proposed EPO algorithm. The search agents ex-
plore the whole search space and changes rapidly in the initial stage of
optimization process.

Fig. 12 shows the convergence curves of EPO and other metaheur-
istic algorithms. It is shown that EPO is very competitive over other
metaheuristic techniques. EPO has three different convergence beha-
viors.

In the initial stage of iterations, EPO converges more quickly in the
search space due to its adaptive mechanism. This behavior is shown in
test functions (i.e., F1, F9, F12, and F18).

In second step, EPO converges towards the optimum when final
iteration reaches which is shown in F23 and F27 test functions.

The last step shows the express convergence from the initial step of
iterations which is shown in F5 and F15 test functions. These results
reveal that EPO algorithm maintains a proper balance between ex-
ploration and exploitation to find the global optimum.

Hence, the results disclose different behaviors of EPO algorithm
which show that the success rate of EPO is better than the other com-
petitor algorithms for solving optimization problems.

Fig. 11. Boxplot obtained from proposed EPO and other competitor algorithms on CEC 2015 benchmark test functions.
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4.6. Sensitivity analysis

The proposed EPO algorithm involves four parameters: maximum
number of iterations, number of search agents, parameter f, and para-
meter l. The sensitivity investigation of these parameters has been
discussed by varying their values and keeping other parameters fixed as
mentioned in Section 4.3 and Table 1.

1. Maximum number of iterations: EPO algorithm was run for different
number of iterations. The values of Maxiteration used in experi-
mentation are 100, 500, 800, and 1000. Table 2 and Fig. 10(a) show
the effect of number of iterations over benchmark test functions. The
results show that EPO converges towards the optimum when the
number of iterations is increased.

2. Number of search agents: To investigate the effect of number of
search agents on benchmark test functions, EPO algorithm was
executed for 30, 50, 80, and 100. Table 3 and Fig. 10(b) show the
effect of number of search agents on benchmark test functions. The
results show that EPO provides best optimal solutions when the
number of search agent is set to 80.

3. Variation in parameter M: The proposed EPO was executed for dif-
ferent values of M keeping other parameters fixed i.e., maximum
number of iterations and number of search agents. The values of
parameter M are varied from [1, 2, 3, 4]. Table 4 and Fig. 10(c)
show the effect of M over different benchmark test functions. The
results demonstrate that EPO achieves near optimal solutions when
the value of M is set to 2.

4. Variation in parameter f: EPO algorithm was run for different values
of f keeping other parameters fixed i.e., maximum number of
iterations and number of search agents. The values of f used in

experimentation are lies in the ranges of [1, 2], [2, 3], [3, 4], and [4,
5]. Table 5 and Fig. 10(d) show the effect of f over benchmark test
functions. The results reveal that EPO provides better results when
the value of f is set between the range of [2, 3].

5. Variation in parameter l: The values used in experimentation for l
are lie between the ranges of [0.5, 1], [1, 1.5], [1.5, 2], and [2, 2.5].
Table 6 and Fig. 10(e) show the effect of l on different benchmark
test functions. It is been observed that EPO provides optimal results
when the value of l is fixed between the range of [1.5, 2].

4.7. Scalability study

This section describes the effect of scalability on various test func-
tions using proposed EPO. The dimensionality of the test functions
varies from 30 to 50, 50 to 80, and 80 to 100. Fig. 13 shows the per-
formance of EPO algorithm on scalable benchmark test functions. It is
observed that the performance of EPO is not too degraded when the
dimensionality of search space is increased. The results reveal that the
performance of EPO is least affected with the increase in dimensionality
of search space.

4.8. Statistical testing

Apart from standard statistical analysis such as mean and standard
deviation, ANOVA test has been conducted. The ANOVA test is used to
determine whether the results obtained from proposed algorithm are
different from other competitor algorithms in a statistically significant
way. The sample size for ANOVA test is 30 with 95% confidence of
interval. The results of ANOVA test are tabulated in Table 12 which
shows that EPO is statistically significant from other algorithms for all

Fig. 12. Convergence analysis between the proposed EPO and other competitive algorithms on benchmark test problems.
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benchmark test functions.

5. EPO For engineering design problems

In this section, the proposed EPO algorithm has been applied on six
constrained and one unconstrained non-linear engineering design pro-
blems. These are pressure vessel, speed reducer, welded beam, tension/
compression spring, 25-bar truss, rolling element bearing, and dis-
placement of loaded structure. All of these optimization problems have
different constraints with different nature. There are different types of
penalty functions to handle these problems [62]: Static penalty,

Dynamic penalty, Annealing penalty, Adaptive penalty, Co-evolu-
tionary penalty, and Death penalty. However, death penalty function
handles the solution which can violate the constraints and assigns zero
fitness value to discard the infeasible solutions during optimization.
Therefore, this function does not employ any information of infeasible
solutions. Due to its simplicity and low computational complexity, EPO
algorithm is equipped with death penalty function to handle both
constrained and unconstrained design problems.

Fig. 13. Effect of scalability on the performance of EPO algorithm.
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5.1. Constrained design problems

This section describes the six constrained real-life engineering de-
sign problems and compared it with other algorithms. The statistical
analysis of these problems are also done to validate the performance of
proposed algorithm.

5.1.1. Pressure vessel design
This problem was first proposed by Kannan and Kramer [63] to

minimize the total fabrication cost. Fig. 26 shows the schematic view of
pressure vessel which are capped at both ends by hemispherical heads.
There are four variables in this problem:

• Ts (z1, thickness of the shell).

• Th (z2, thickness of the head).

• R (z3, inner radius).

• L (z4, length of the cylindrical section without considering the head).

Among these four design variables, R and L are continuous vari-
ables. Ts and Th are integer values which are multiples of 0.0625 in. The
mathematical formulation of this problem is given below:

→ = =
→ = + + +

→ = − + ≤
→ = − + ≤
→ = − − + ≤

→ = − ≤

× ≤ ≤ × ≤ ≤

z z z z z T T RL
f z z z z z z z z z z

g z z z

g z z z

g z πz z πz

g z z

z z z z

Consider [ ] [ ],
Minimize ( ) 0.6224 1.7781 3.1661 19.84 ,
Subject to:

( ) 0.0193 0,

( ) 0.00954 0,

( ) 4
3

1, 296, 000 0,

( ) 240 0,
where,
1 0.0625 , 99 0.0625, 10.0 , 200.0.

s h1 2 3 4

1 3 4 2 3
2

1
2

4 1
2

3

1 1 3

2 3 3

3 3
2

4 3
3

4 4

1 2 3 4

(14)

Table 13 shows the comparison of best obtained optimal solution
from EPO and other algorithms such as SHO, GWO, PSO, MVO, SCA,
GSA, GA, and HS. The proposed EPO provides optimal solution at
=z* (0.778099, 0.383241, 40.315121, 200.00000) with corresponding fit-

ness value equal to =f z( *) 5880.0700. From this table, it can be con-
cluded that, EPO is able to find best optimal design with minimum cost.

The statistical results of pressure vessel design problem are pre-
sented in Table 14. The results reveal that EPO performs better than the
other competitor algorithms in terms of best mean, and median. Fig. 15
shows the convergence behavior of optimal solution obtained from
EPO.

5.1.2. Speed reducer design problem
The speed reducer design problem is a challenging benchmark due

to its seven design variables [64] as shown in Fig. 16. The main ob-
jective of this problem is to minimize the weight of speed reducer with
subject to constraints [65]:

• Bending stress of the gear teeth.

• Surface stress.

Table 13
Comparison results for pressure vessel design problem.

Algorithms Optimum variables Optimum cost

Ts Th R L

EPO 0.778099 0.383241 40.315121 200.00000 5880.0700
SHO 0.778210 0.384889 40.315040 200.00000 5885.5773
GWO 0.779035 0.384660 40.327793 199.65029 5889.3689
PSO 0.778961 0.384683 40.320913 200.00000 5891.3879
MVO 0.845719 0.418564 43.816270 156.38164 6011.5148
SCA 0.817577 0.417932 41.74939 183.57270 6137.3724
GSA 1.085800 0.949614 49.345231 169.48741 11550.2976
GA 0.752362 0.399540 40.452514 198.00268 5890.3279
HS 1.099523 0.906579 44.456397 179.65887 6550.0230

Table 14
Statistical results obtained from different algorithms for pressure vessel design
problem.

Algorithms Best Mean Worst Std. Dev. Median

EPO 5880.0700 5884.1401 5891.3099 024.341 5883.5153
SHO 5885.5773 5887.4441 5892.3207 002.893 5886.2282
GWO 5889.3689 5891.5247 5894.6238 013.910 5890.6497
PSO 5891.3879 6531.5032 7394.5879 534.119 6416.1138
MVO 6011.5148 6477.3050 7250.9170 327.007 6397.4805
SCA 6137.3724 6326.7606 6512.3541 126.609 6318.3179
GSA 11550.2976 23342.2909 33226.2526 5790.625 24010.0415
GA 5890.3279 6264.0053 7005.7500 496.128 6112.6899
HS 6550.0230 6643.9870 8005.4397 657.523 7586.0085

Fig. 14. Schematic view of pressure vessel problem.

Fig. 15. Convergence analysis of EPO for pressure vessel design problem.

Fig. 16. Schematic view of speed reducer problem.
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• Transverse deflections of the shafts.

• Stresses in the shafts.

There are seven design variables ( −z z1 7) which can represent as the
face width (b), module of teeth (m), number of teeth in the pinion (p),
length of the first shaft between bearings (l1), length of the second shaft
between bearings (l2), the diameter of first (d1) shafts, and the diameter
of second shafts (d2). The third variable i.e., number of teeth in the
pinion (p) is of integer values.

The comparison of the best obtained optimal solution with various
optimization algorithms is given in Table 15. The proposed EPO pro-
vides optimal solution at =z* (3.50123, 0.7, 17, 7.3, 7.8, 3.33421, 5.26536)
with corresponding fitness value equal to =f z( *) 2994.2472. However,
the statistical results of proposed and eight competitive optimization
algorithms including SHO, GWO, PSO, MVO, SCA, GSA, GA, and HS are

given in Table 16.
The mathematical formulation of this problem is formulated as

follows:

→ = =
→ = + −
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Minimize ( ) 0.7854 (3.3333 14.9334 43.0934)
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The results indicate that EPO outperforms than other competitor
algorithms. Fig. 17 shows that EPO algorithm converges towards the
best optimal solution for speed reducer problem.

5.1.3. Welded beam design
The objective of this design problem is to minimize the fabrication

cost of welded beam (see Fig. 18). The optimization constraints of
welded beam are shear stress (τ) and bending stress (θ) in the beam,
buckling load (Pc) on the bar, end deflection (δ) of the beam. There are
four design variables of this problem such as

• Thickness of weld (h)

• Length of the clamped bar (l)

• Height of the bar (t)

Table 15
Comparison results for speed reducer design problem.

Algorithms Optimum variables Optimum cost

b m p l1 l2 d1 d2

EPO 3.50123 0.7 17 7.3 7.8 3.33421 5.26536 2994.2472
SHO 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507
GWO 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288
PSO 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763
MVO 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928
SCA 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
GA 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561
HS 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002

Table 16
Statistical results obtained from different algorithms for speed reducer design
problem.

Algorithms Best Mean Worst Std. Dev. Median

EPO 2994.2472 2997.482 2999.092 1.78091 2996.318
SHO 2998.5507 2999.640 3003.889 1.93193 2999.187
GWO 3001.288 3005.845 3008.752 5.83794 3004.519
PSO 3005.763 3105.252 3211.174 79.6381 3105.252
MVO 3002.928 3028.841 3060.958 13.0186 3027.031
SCA 3030.563 3065.917 3104.779 18.0742 3065.609
GSA 3051.120 3170.334 3363.873 92.5726 3156.752
GA 3067.561 3186.523 3313.199 17.1186 3198.187
HS 3029.002 3295.329 3619.465 57.0235 3288.657

Fig. 17. Convergence analysis of EPO for speed reducer design problem.
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• Thickness of the bar (b)

The mathematical formulation is described as follows:
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Consider [ ] [ ],
Minimize ( ) 1.10471 0.04811 (14.0 ),
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The comparison for best solution obtained from proposed EPO and
other algorithms is presented in Table 17. Among other algorithms, the
proposed EPO provides optimal solution at
=z* (0.205411, 3.472341, 9.035215, 0.201153) with corresponding fitness

value equal to =f z( *) 1.723589. The results indicate that EPO con-
verges towards the best design. The statistical comparison of the pro-
posed algorithm with other competitor algorithms is depicted in
Table 18. It is observed from Table 18 that EPO surpassed other algo-
rithms for providing the best solution in terms of best, mean, and
median.

Fig. 19 shows the convergence analysis of best optimal solution
obtained from EPO.

5.1.4. Tension/compression spring design problem
The main objective of this problem is to minimize the tension/

compression spring weight as shown in Fig. 20. The optimization con-
straints of this problem are described as follows:

Table 18
Statistical results obtained from different algorithms for welded beam design
problem.

Algorithms Best Mean Worst Std. Dev. Median

EPO 1.723589 1.725124 1.727211 0.004325 1.724399
SHO 1.725661 1.725828 1.726064 0.000287 1.725787
GWO 1.726995 1.727128 1.727564 0.001157 1.727087
PSO 1.820395 2.230310 3.048231 0.324525 2.244663
MVO 1.725472 1.729680 1.741651 0.004866 1.727420
SCA 1.759173 1.817657 1.873408 0.027543 1.820128
GSA 2.172858 2.544239 3.003657 0.255859 2.495114
GA 1.873971 2.119240 2.320125 0.034820 2.097048
HS 1.836250 1.363527 2.035247 0.139485 1.9357485

Fig. 18. Schematic view of welded beam problem.

Table 17
Comparison results for welded beam design problem.

Algorithms Optimum variables Optimum cost

h l t b

EPO 0.205411 3.472341 9.035215 0.201153 1.723589
SHO 0.205563 3.474846 9.035799 0.205811 1.725661
GWO 0.205678 3.475403 9.036964 0.206229 1.726995
PSO 0.197411 3.315061 10.00000 0.201395 1.820395
MVO 0.205611 3.472103 9.040931 0.205709 1.725472
SCA 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858
GA 0.164171 4.032541 10.00000 0.223647 1.873971
HS 0.206487 3.635872 10.00000 0.203249 1.836250

Fig. 19. Convergence analysis of EPO for welded beam design problem.

Fig. 20. Schematic view of tension/compression spring problem.
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• Shear stress.

• Surge frequency.

• Minimum deflection.

There are three design variables such as wire diameter (d), mean
coil diameter (D), and the number of active coils (P). The mathematical
representation of this problem is described as follows:

→ = =
→ = +

z z z z dDP
f z z z z
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The comparison for the best solution obtained from the proposed
EPO and other competitor algorithms is presented in Table 19. The best
solution was obtained by EPO at design variables
=z* (0.051087, 0.342908, 12.0898) with an objective function value of
=f z( *) 0.012656987. The results reveal that EPO again performs better

than the other optimization algorithms. The statistical results of ten-
sion/compression spring design are compared and tabulated in
Table 20. From Table 20, it can be seen that provides better statistical
results than the other algorithms in terms of best, mean, and median.

The convergence analysis of best optimal solution obtained from
EPO is shown in Fig. 21.

5.1.5. 25-bar truss design
The truss design problem is a popular optimization problem as

shown in Fig. 25. There are 10 nodes which are fixed and 25 bars cross-
sectional members which are grouped into eight categories.

• Group 1: A1

• Group 2: A2, A3, A4, A5

• Group 3: A6, A7, A8, A9

• Group 4: A10, A11

• Group 5: A12, A13

• Group 6: A14, A15, A17

• Group 7: A18, A19, A20, A21

• Group 8: A22, A23, A24, A25

The other variables which affects on this problem are as follows:

• p = 0.0272 N/cm3 (0.1 lb/in.3)

• E = 68947MPa (10000 Ksi)

• Displacement limitation = 0.35 in.

• Maximum displacement = 0.3504 in.

• Design variable set = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6,
2.8, 3.0, 3.2, 3.4 }

Table 21 shows the member stress limitations for this truss problem.
The loading conditions for 25-bar truss is presented in Table 22. The
comparison of best solutions among several algorithms is provided in
Table 23. The proposed EPO is better than other competitor algorithms
in terms of best, average, and standard deviation. EPO converges very
efficiently to optimize this problem as shown in Fig. 22.

5.1.6. Rolling element bearing design problem
The objective of this problem is to maximize the dynamic load

carrying capacity of a rolling element bearing as demonstrated in
Fig. 23. There are 10 decision variables such as pitch diameter (Dm),
ball diameter (Db), number of balls (Z), inner (fi) and outer (fo) raceway
curvature coefficients, KDmin, KDmax, ε, e, and ζ (see Fig. 23). The
mathematical representation of this problem is given below:

= ⎧
⎨⎩

≤
= >

C
f Z D if D mm
C f Z D if D mm

Maximize
, 25.4

3.647 , 25.4
d

c b

d c b

2/3 1.8

2/3 1.4

Table 19
Comparison results for tension/compression spring design problem.

Algorithms Optimum variables Optimum cost

d D P

EPO 0.051087 0.342908 12.0898 0.012656987
SHO 0.051144 0.343751 12.0955 0.012674000
GWO 0.050178 0.341541 12.07349 0.012678321
PSO 0.05000 0.310414 15.0000 0.013192580
MVO 0.05000 0.315956 14.22623 0.012816930
SCA 0.050780 0.334779 12.72269 0.012709667
GSA 0.05000 0.317312 14.22867 0.012873881
GA 0.05010 0.310111 14.0000 0.013036251
HS 0.05025 0.316351 15.23960 0.012776352

Table 20
Statistical results obtained from different algorithms for tension/compression spring design problem.

Algorithms Best Mean Worst Std. Dev. Median

EPO 0.012656987 0.012678903 0.012667902 0.001021 0.012676002
SHO 0.012674000 0.012684106 0.012715185 0.000027 0.012687293
GWO 0.012678321 0.012697116 0.012720757 0.000041 0.012699686
PSO 0.013192580 0.014817181 0.017862507 0.002272 0.013192580
MVO 0.012816930 0.014464372 0.017839737 0.001622 0.014021237
SCA 0.012709667 0.012839637 0.012998448 0.000078 0.012844664
GSA 0.012873881 0.013438871 0.014211731 0.000287 0.013367888
GA 0.013036251 0.014036254 0.016251423 0.002073 0.013002365
HS 0.012776352 0.013069872 0.015214230 0.000375 0.012952142
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Table 24 shows the performance comparison of best optimal solu-
tion obtained from several algorithms. The proposed EPO provides
optimal solution at =z* (125, 21.41890, 10.94113, 0.515, 0.515, 0.4, 0.7,
0.3, 0.02, 0.6) with corresponding fitness value equal to

=f z( *) 85067.983. The statistical results obtained for rolling element
bearing design problem are compared and shown in Table 25.

Fig. 24 shows the convergence analysis of EPO algorithm. It reveals
that EPO is capable to achieve a best optimal solution.

Table 22
Two loading conditions for the 25-bar truss design problem.

Node Case 1 Case 2

PxKips(kN) PyKips(kN) PzKips(kN) PxKips
(kN)

PyKips(kN) PzKips
(kN)

1 0.0 20.0 (89) −5.0
(22.25)

1.0 (4.45) 10.0
(44.5)

−5.0
(22.25)

2 0.0 −20.0 (89) −5.0
(22.25)

0.0 10.0
(44.5)

−5.0
(22.25)

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0
6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Table 23
Statistical results obtained from different algorithms for 25-bar truss design
problem.

Groups EPO ACO[66] PSO[67] CSS[68] BB-BC[69]

A1 0.01 0.01 0.01 0.01 0.01
−A A2 5 1.850 2.042 2.052 2.003 1.993
−A A6 9 3.001 3.001 3.001 3.007 3.056
−A A10 11 0.01 0.01 0.01 0.01 0.01
−A A12 13 0.01 0.01 0.01 0.01 0.01
−A A14 17 0.660 0.684 0.684 0.687 0.665
−A A18 21 1.621 1.625 1.616 1.655 1.642
−A A22 25 2.671 2.672 2.673 2.66 2.679

Best weight 544.92 545.03 545.21 545.10 545.16
Average weight 545.13 545.74 546.84 545.58 545.66
Std. dev. 0.397 0.94 1.478 0.412 0.491

Table 24
Comparison results for Rolling element bearing design problem.

Algorithms Optimum variables Opt. cost

Dm Db Z fi fo KDmin KDmax ε e ζ

EPO 125 21.41890 10.94113 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85067.983
SHO 125 21.40732 10.93268 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85054.532
GWO 125.6199 21.35129 10.98781 0.515 0.515 0.5 0.68807 0.300151 0.03254 0.62701 84807.111
PSO 125 20.75388 11.17342 0.515 0.515000 0.5 0.61503 0.300000 0.05161 0.60000 81691.202
MVO 125.6002 21.32250 10.97338 0.515 0.515000 0.5 0.68782 0.301348 0.03617 0.61061 84491.266
SCA 125 21.14834 10.96928 0.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83431.117
GSA 125 20.85417 11.14989 0.515 0.517746 0.5 0.61827 0.304068 0.02000 0.624638 82276.941
GA 125 20.77562 11.01247 0.515 0.515000 0.5 0.61397 0.300000 0.05004 0.610001 82773.982
HS 125 20.87123 11.16697 0.515 0.516000 0.5 0.61951 0.301128 0.05024 0.614531 81569.527

Table 21
Member stress limitations for 25-bar truss design problem.

Element group Compressive stress limitations
Ksi (MPa)

Tensile stress limitations Ksi
(MPa)

Group 1 35.092 (241.96) 40.0 (275.80)
Group 2 11.590 (79.913) 40.0 (275.80)
Group 3 17.305 (119.31) 40.0 (275.80)
Group 4 35.092 (241.96) 40.0 (275.80)
Group 5 35.092 (241.96) 40.0 (275.80)
Group 6 6.759 (46.603) 40.0 (275.80)
Group 7 6.959 (47.982) 40.0 (275.80)
Group 8 11.082 (76.410) 40.0 (275.80)
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5.2. Unconstrained design problem

Unconstrained optimization problems are such problems that de-
pends on the real variable without any restrictions on their values. This

section describes the unconstrained displacement of loaded structure
design problem to minimize the potential energy.

5.2.1. Displacement of loaded structure
A displacement is a vector which defines the shortest distance be-

tween the initial and the final position of a given point.
The main objective of this problem is to minimize the potential

energy for reducing the excess load of structure. Fig. 14 shows the
loaded structure that should have minimum potential energy ( →f z( )).
The problem can be stated as follows:

→ =

= + − −

= = = =

= + − − = + + −

f z π

π K u K u F z F z

K N cm K N cm F N F N

u z z u z z

( ) Minimize
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Table 26 shows the comparison of best optimal solution obtained
from EPO and other competitor approaches such as SHO, GWO, PSO,
MVO, SCA, GSA, GA, and HS. The proposed EPO provides best optimum
cost at =π 168.8231. The results reveal that EPO is able to minimize the
potential energy for loaded structure problem.

Table 25
Statistical results obtained from different algorithms for Rolling element
bearing design problem.

Algorithms Best Mean Worst Std. Dev. Median

EPO 85067.983 85042.352 86551.599 1877.09 85056.095
SHO 85054.532 85024.858 85853.876 0186.68 85040.241
GWO 84807.111 84791.613 84517.923 0137.186 84960.147
PSO 81691.202 50435.017 32761.546 13962.150 42287.581
MVO 84491.266 84353.685 84100.834 0392.431 84398.601
SCA 83431.117 81005.232 77992.482 1710.777 81035.109
GSA 82276.941 78002.107 71043.110 3119.904 78398.853
GA 82773.982 81198.753 80687.239 1679.367 8439.728
HS 81569.527 80397.998 79412.779 1756.902 8347.009

Fig. 21. Convergence analysis of EPO for tension/compression spring design
problem.

Fig. 22. Convergence analysis of EPO for 25-bar truss design problem.

Fig. 23. Schematic view of rolling element bearing problem.

Fig. 24. Convergence analysis of EPO for rolling element bearing design pro-
blem.
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Fig. 25. Schematic view of 25-bar truss problem.

Fig. 26. Schematic view of displacement of loaded structure.

Table 28
Shekel’s Foxholes Function F14.

( =a i, 1, 2ij and = …j 1, 2, , 25)

i\j 1 2 3 4 5 6 ... 25
1 −32 −16 0 16 32 −32 ... 32
2 −32 −32 −32 −32 −32 −16 ... 32

Table 26
Comparison results for displacement of loaded structure
problem.

Algorithms Optimum cost (π)

EPO 168.8231
SHO 168.8889
GWO 170.3645
PSO 170.5960
MVO 169.3023
SCA 169.0032
GSA 176.3697
GA 171.3674
HS 172.0324

Table 27
Statistical results obtained from different algorithms for displacement of loaded
structure problem.

Algorithms Best Mean Worst Std. Dev. Median

EPO 168.8231 170.1309 230.9721 211.861 169.4214
SHO 168.8889 170.3659 173.6357 023.697 169.6710
GWO 170.3645 171.3694 174.3970 196.037 173.3694
PSO 170.5960 174.6354 175.3602 236.036 173.9634
MVO 169.3023 171.0034 174.3047 202.753 170.0032
SCA 169.0032 171.7530 174.4527 129.047 170.3647
GSA 176.3697 178.7521 179.5637 113.037 174.367
GA 171.3674 172.0374 174.0098 212.703 172.0097
HS 172.0324 173.4327 174.0399 080.111 171.3697

Table 29
Hartman function F19.

i ( =a j, 1, 2, 3ij ) ci ( =p j, 1, 2, 3ij )

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.038150 0.5743 0.8828
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The statistical results for the reported algorithms are depicted in
Table 27. From Table 27, it is noticed that the results obtained from
EPO are far better than the other algorithms in terms of best, mean, and
median.

Fig. 27 shows the convergence analysis of best solution obtained
from EPO.

In summary, these results reveal that EPO is an effective optimizer
for solving both constrained and unconstrained engineering design
problems with low computational cost and fast convergence speed.

6. Conclusion

This paper presents a novel swarm-based metaheuristic algorithm
called Emperor Penguin Optimizer (EPO). The fundamental concept
behind this algorithm is the huddling behavior of emperor penguins.
The proposed EPO algorithm has been tested on forty-four benchmark
test functions. Moreover, seven real-life engineering design problems
are employed to further determine the efficiency of proposed algorithm.
The results reveal that EPO provides very competitive results as com-
pared with other well-known metaheuristics such as SHO, GWO, PSO,
MVO, SCA, GSA, GA, and HS. Despite, the computational complexity

has also been analyzed in terms of time and space complexity. The
statistical results, based on the comparison of proposed algorithm
against other optimization approaches, show that EPO handles various
types of constraints very efficiently and provides better solutions.

The results on the unimodal and multimodal test functions shows
the superior exploitation and exploration capability of EPO algorithm,
respectively. The results of the composite benchmark functions shows
the high local optima avoidance of proposed algorithm. Finally, the
algorithm is tested on very challenging special session with bound
constraints CEC 2015 benchmark test functions.

Moreover, the proposed algorithm is applicable on seven real-life
optimization problems to show its efficiency in a given search space.

There are several research directions which can be recommended
for future works. The binary version of EPO algorithm can be seen as a
future contribution. Also, to extend this algorithm for solving multi-
objective as well as many-objective real-life optimization problems.

Table 31
Hartman Function F20.

i ( = …a j, 1, 2, , 6ij ) ci ( = …p j, 1, 2, , 6ij )

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table 30
Shekel Foxholes Functions F21, F22, F23.

i ( =a j, 1, 2, 3, 4ij ) ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Fig. 27. Convergence analysis of EPO for displacement of loaded structure
problem.
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Appendix A. Unimodal, Multimodal, and Fixed-dimension multimodal benchmark test functions.

A1. Unimodal benchmark test functions

A1.1. Sphere model
= ∑=F z z( ) i i1 1

30 2

− ≤ ≤ = =z f Dim100 100, 0, 30i min

A1.2. Schwefel’S problem 2.22
= ∑ +∏= =F z z z( ) i i i i2 1

30
1

30

− ≤ ≤ = =z f Dim10 10, 0, 30i min

A1.3. Schwefel’S problem 1.2

⎜ ⎟= ∑ ⎛
⎝
∑ ⎞

⎠
= =F z z( ) i j

i
j3 1

30
1

2

− ≤ ≤ = =z f Dim100 100, 0, 30i min

A1.4. Schwefel’S problem 2.21
= ≤ ≤F z max z i( ) { , 1 30}i i4 − ≤ ≤ = =z f Dim100 100, 0, 30i min

A1.5. Generalized Rosenbrock’s function
= ∑ − + −= +F z z z z( ) [100( ) ( 1) ]i i i i5 1

29
1

2 2 2 − ≤ ≤ = =z f Dim30 30, 0, 30i min

A1.6. Step function
= ∑ ⌊ + ⌋=F z z( ) ( 0.5 )i i6 1

30 2 − ≤ ≤ = =z f Dim100 100, 0, 30i min

A1.7. Quartic function
= ∑ +=F z iz random( ) [0, 1]i i7 1

30 4 − ≤ ≤ = =z f Dim1.28 1.28, 0, 30i min

A2. Multimodal benchmark test functions

A2.1. Generalized Schwefel’s problem 2.26
= ∑ −=F z z z( ) sin( )i i i8 1

30 − ≤ ≤ = − =z f Dim500 500, 12569.5, 30i min

A2.2. Generalized Rastrigin’s function
= ∑ − +=F z z cos πz( ) [ 10 (2 ) 10]i i i9 1

30 2 − ≤ ≤ = =z f Dim5.12 5.12, 0, 30i min

A2.3. Ackley’s function

⎜ ⎟= − ⎛
⎝
− ∑ ⎞

⎠
− ⎛

⎝
∑ ⎞

⎠
+ += =F z exp z πz e( ) 20 0.2 1

30
exp 1

30
cos(2 ) 20i i i i10 1

30 2
1

30 − ≤ ≤ = =z f Dim32 32, 0, 30i min

A2.4. Generalized griewank function

⎜ ⎟= ∑ − ∏ ⎛
⎝

⎞
⎠
+= =F z z z

i
( ) 1

4000
cos 1i i i

i
11 1

30 2
1

30 − ≤ ≤ = =z f Dim600 600, 0, 30i min

A2.5. Generalized penalized functions

• = + ∑ − + + −

+ ∑

= +

=

F z π sin πx x sin πx x

u z

( )
30

{10 ( ) ( 1) [1 10 ( )] ( 1) }

( , 10, 100, 4)

i i i n

i i

12 1 1
29 2 2

1
2

1
30

− ≤ ≤ = =z f Dim50 50, 0, 30i min

• = + ∑ − + +

+ − + + ∑
=

=

F z sin πz z πz

z πz u z

( ) 0.1{ (3 ) ( 1) [1 sin (3 1)]

( 1) [1 sin (2 )]} ( , 5, 100, 4)
i i i

n i
N

i

13
2

1 1
29 2 2

2 2
30 1

− ≤ ≤ = =z f Dim50 50, 0, 30i min

where, = + +x z1 1
4i

i

=
⎧

⎨
⎩

− >
− < <

− − < −
u z a k m

k z a z a
a z a

k z a z a
( , , , )

( )
0

( )
i

i
m

i

i

i
m

i

A3. Fixed-dimension multimodal benchmark test functions

A3.1. Shekel’s foxholes function

= ⎛

⎝
⎜ + ∑

+ ∑ −
⎞

⎠
⎟=

=

−

F z
j z a

( ) 1
500

1
( )j

i i ij
14 1

25

1
2 6

1

− ≤ ≤ ≈ =z f Dim65.536 65.536, 1, 2i min

A3.2. Kowalik’s function

= ∑ ⎡
⎣⎢

−
+

+ +
⎤
⎦⎥

=F z a
z b b z

b b z z
( )

( )
i i

i i

i i
15 1

11 1
2

2
2

3 4

2

− ≤ ≤ ≈ =z f Dim5 5, 0.0003075, 4i min

G. Dhiman, V. Kumar Knowledge-Based Systems 159 (2018) 20–50

46



A3.3. Six-Hump camel-Back function

= − + + − +F z z z z z z z z( ) 4 2.1 1
3

4 416 1
2

1
4

1
6

1 2 2
2

2
4 − ≤ ≤ = − =z f Dim5 5, 1.0316285, 2i min

A3.4. Branin function

= ⎛
⎝

− + − ⎞
⎠
+ ⎛

⎝
− ⎞

⎠
+F z z

π
z

π
z

π
cosz( ) 5.1

4
5 6 10 1 1

8
1017 2 2 1

2
1

2

1

− ≤ ≤ ≤ ≤ = =z z f Dim5 10, 0 15, 0.398, 2min1 2

A3.5. Goldstein-price function
= + + + − + − + +

× + − × − + + −

+

F z z z z z z z z z

z z z z z z z

z

( ) [1 ( 1) (19 14 3 14 6 3 )]

[30 (2 3 ) (18 32 12 48 36

27 )]

18 1 2
2

1 1
2

2 1 2 2
2

1 2
2

1 1
2

2 1 2

2
2

− ≤ ≤ = =z f Dim2 2, 3, 2i min

A3.6. Hartman’s family

• ⎜ ⎟= −∑ ⎛
⎝
−∑ − ⎞

⎠
= =F z c a z p( ) exp ( )i i j ij j ij19 1

4
1

3 2 ≤ ≤ = − =z f Dim0 1, 3.86, 3j min

• ⎜ ⎟= −∑ ⎛
⎝
−∑ − ⎞

⎠
= =F z c a z p( ) exp ( )i i j ij j ij20 1

4
1

6 2 ≤ ≤ = − =z f Dim0 1, 3.32, 6j min

A3.7. Shekel’s foxholes function

• = −∑ − − +=
−F z X a X a c( ) [( )( ) ]i i i

T
i21 1

5 1

≤ ≤ = − =z f Dim0 10, 10.1532, 4i min

• = −∑ − − +=
−F z X a X a c( ) [( )( ) ]i i i

T
i22 1

7 1

≤ ≤ = − =z f Dim0 10, 10.4028, 4i min

• = −∑ − − +=
−F z X a X a c( ) [( )( ) ]i i i

T
i23 1

10 1

≤ ≤ = − =z f Dim0 10, 10.536, 4i min

A4. Basic composite benchmark test functions

A4.1. Weierstrass function
= ∑ ∑ +

− ∑ ×
= =

=

F z π z

π

( ) ( [0. 5 cos(2 3 ( 0.5))])

30 [0. 5 cos(2 3 0.5)]
i k

k k
i

k
k k

1
30

0
20

0
20

Note that the Sphere, Rastrigin’s, Griewank’s, and Ackley’s functions in composite benchmark suite are same as above mentioned F1, F9, F11, and
F10 benchmark test functions.

A5. Basic CEC 2015 benchmark test functions

A5.1. Bent cigar function
=F z( ) + ∑=z z10 i i1

2 6
2

30 2

A5.2. Discus function
=F z( ) + ∑=z z10 i i

6
1
2

2
30 2

A5.3. Modified Schwefel’s function
=F z( ) × − ∑ = + += g y y z e418.9829 30 ( ), 4.209687462275036 002i i i i1

30

=

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

≤

− − −
−
×

>

− − −
+
×

< −

g y

y y
where, if y

mod y sin mod y
y

where, ify

mod y sin mod y
y

where, ify

( )

sin( )
500,

(500 ( , 500)) ( 500 ( , 500) )
( 500)
10000 30

500,

( ( , 500) 500) ( ( , 500) 500 )
( 500)
10000 30

500

i

i i

i

i i
i

i

i i
i

i

1/2

2

2

A5.4. Katsuura function

⎜ ⎟= ∏ ⎛
⎝
+ ∑

− ⎞
⎠

−= =F z i z round z( ) 10
30

1 2 (2 )
2

10
30 10

30i j

j
i

j
i

j2 1
30

1
32 1.2

2

A5.5. Happycat function
= ∑ − + ∑ + ∑ += = =F z z z z( ) 30 (0.5 )/30 0.5i i i i i i1

30 2 1/4
1

30 2
1

30

G. Dhiman, V. Kumar Knowledge-Based Systems 159 (2018) 20–50

47



A5.6. HGBat Function
= ∑ − ∑ + ∑ + ∑ += = = =F z z z z z( ) ( ) ( ) (0.5 )/30 0.5i i i i i i i i1

30 2 2
1

30 2 1/2
1

30 2
1

30

A5.7. Expanded Griewank’s plus Rosenbrock’s function
= + + …+F z F F z z F F z z F F z z( ) ( ( , )) ( ( , )) ( ( , ))39 38 1 2 39 38 2 3 39 38 30 1

A5.8. Expanded Scaffer’s F6 function
Scaffer’s F6 Function:

= + + −
+ +

g z x sin z x
z x

( , ) 0.5 ( ( ) 0.5)
(1 0.001( ))

2 2 2

2 2 2 = + + …+F z g z z g z z g z z( ) ( , ) ( , ) ( , )1 2 2 3 30 1

A5.9. High conditioned elliptic function

= ∑
−
−=F z

i
z( ) (10 )

1
30 1i i1

30 6 2

Note that the Weierstrass, Rosenbrock’s, Griewank’s, Rastrigin’s, and Ackley’s functions in CEC 2015 benchmark test suite are same as above
mentioned Weierstrass, F5, F11, F9, and F10 benchmark test functions.

A.4 Composite benchmark functions

The detailed description of six well-known composite benchmark test functions ( −F F24 29) are mentioned in Table 10.

Table A.4
Composite benchmark test functions.

Functions Dim Range fmin

F24(CF1):
… =f f f f, , , , Sphere Function1 2 3 10
… = …α α α α[ , , , , ] [1, 1, 1, , 1]1 2 3 10
… = …β β β β[ , , , , ] [5/100, 5/100, 5/100, , 5/100]1 2 3 10 10 [−5, 5] 0

F25(CF2):
… =f f f f, , , , Griewank"s Function1 2 3 10
… = …α α α α[ , , , , ] [1, 1, 1, , 1]1 2 3 10
… = …β β β β[ , , , , ] [5/100, 5/100, 5/100, , 5/100]1 2 3 10 10 [−5, 5] 0

F26(CF3):
… =f f f f, , , , Griewank"s Function1 2 3 10
… = …α α α α[ , , , , ] [1, 1, 1, , 1]1 2 3 10
… = …β β β β[ , , , , ] [1, 1, 1, , 1]1 2 3 10 10 [−5, 5] 0

F27(CF4):
=f f, Ackley"s Function1 2
=f f, Rastrigin"s Function3 4
=f f, Weierstras"s Function5 6
=f f, Griewank"s Function7 8
=f f, Sphere Function9 10

… = …α α α α[ , , , , ] [1, 1, 1, , 1]1 2 3 10
… =β β β β[ , , , , ] [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]1 2 3 10 10 [−5, 5] 0

F28(CF5):
=f f, Rastrigin"s Function1 2
=f f, Weierstras"s Function3 4
=f f, Griewank"s Function5 6
=f f, Ackley"s Function7 8
=f f, Sphere Function9 10

… = …α α α α[ , , , , ] [1, 1, 1, , 1]1 2 3 10
… =β β β β[ , , , , ] [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]1 2 3 10 10 [−5, 5] 0

F29(CF6):
=f f, Rastrigin"s Function1 2
=f f, Weierstras"s Function3 4
=f f, Griewank"s Function5 6
=f f, Ackley"s Function7 8
=f f, Sphere Function9 10

… =α α α α[ , , , , ] [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]1 2 3 10
… =β β β β[ , , , , ]1 2 3 10

[0.1*1/5, 0.2*1/5, 0.3*5/0.5, 0.4*5/0.5, 0.5*5/100, 0.6*5/100, 0.7*5/32, 0.8*5/32, 0.9*5/100, 1*5/100] 10 [−5, 5] 0
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A.5. CEC 2015 benchmark test functions

The detailed description of fifteen well-known CEC 2015 benchmark test functions ( −CEC CEC1 15) are mentioned in Table A.5.
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