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us to the sustainable development
problem and initiated our interest
in stochastic predictive control.



Series Editors’ Foreword

The Advanced Textbooks in Control and Signal Processing series is designed as a
vehicle for the systematic textbook presentation of both fundamental and innovative
topics in the control and signal processing disciplines. It is hoped that prospective
authors will welcome the opportunity to publish a more rounded and structured
presentation of some of the newer emerging control and signal processing tech-
nologies in this textbook series. However, it is useful to note that there will always
be a place in the series for contemporary presentations of foundational material in
these important engineering areas.

In 1995, our monograph series Advances in Industrial Control published Model
Predictive Control in the Process Industries by Eduardo F. Camacho and Carlos
Bordons (ISBN 978-3-540-19924-3, 1995). The subject of model predictive control
in all its different varieties is a popular control technique and the original mono-
graph benefited from that popularity and consequently moved to the Advanced
Textbooks in Control and Signal Processing series. In 2004, it was republished in a
thoroughly updated second edition now simply entitled Model Predictive Control
(ISBN 978-1-85233-694-3, 2004). A decade on, the new edition is a successful and
well-received textbook within the textbook series.

As demonstrated by the continuing demand for Prof. Camacho and Prof.
Bordon’s textbook, the technique of model predictive control or “MPC” has been
startlingly successful in both the academic and industrial control communities. If
the reader considers the various concepts and principles that are combined in MPC,
the reasons for this success are not so difficult to identify.

“M * Model” From an early beginning with transfer-function models using the
Laplace transform through the 1960s’ revolution of state-space system descriptions
leading on to the science of system identification, the use of a system or process
model in control design is now very well accepted.

“P * Predictive” The art of looking forward from a current situation and
planning ahead to achieve an objective is simply a natural human activity. Thus,
once a system model is available it can be used to predict ahead from a currently
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measured position to anticipate the future and avoid constraints and other
restrictions.

“C * Control” This is the computation of the control action to be taken. The
enabling idea here is automated computation achieved using optimization.
A balance between output error and control effort used is captured in a cost function
that is usually quadratic for mathematical tractability.

There may be further reasons for its success connected with nonlinearities, the
future process output values to be attained, and any control signal restrictions; these
combine to require constrained optimization. In applying the forward-looking
control signal, the one-step-at-a-time receding-horizon principle is implemented.

Academic researchers have investigated so many theoretical aspects of MPC that
it is a staple ingredient of innumerable journal and conference papers, and mono-
graphs. However, looking at the industrial world, the two control techniques that
appear to find extensive real application seem to be PID control for simple appli-
cations and MPC for the more complicated situations. In common with the ubiq-
uitous PID controller, MPC has intuitive depth that makes it easily understood and
used by industrial control engineers. For these reasons alone, the study of PID
control and MPC cannot be omitted from today’s modern control course.

This is not to imply that all the theoretical or computational problems in MPC
have been solved or are even straightforward. But it is the adding in of more process
properties that leads to a need for a careful analysis of the MPC technique. This is
the approach of this Advanced Textbooks in Control and Signal Processing entry
entitled Predictive Control: Classical, Robust and Stochastic by Basil Kouvaritakis
and Mark Cannon. The authors’ work on predictive control at Oxford has been
carried out over a long period and they have been very influential in stimulating
interest in new algorithms for both linear and nonlinear systems.

Divided into three parts, the text considers linear system models subject to
process-output and control constraints. The three parts are as follows: “Classical”
refers to deterministic formulations, “Robust” incorporates uncertainty to the sys-
tem description and “Stochastic” considers system uncertainty that has probabilistic
properties. In the presence of constraints, the authors seek out conditions for
closed-loop system stability, control feasibility, convergence and algorithmic
computable control solutions. The series editors welcome this significant contri-
bution to the MPC textbook literature that is also a valuable entry to the Advanced
Textbooks in Control and Signal Processing series.

August 2015 Michael J. Grimble
Michael A. Johnson

Industrial Control Centre
Glasgow, Scotland, UK
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Preface

One of the motivations behind this book was to collect together the many results
of the Oxford University predictive control group. For this reason we have, rather
unashamedly, included a number of ideas that were developed at Oxford and in this
sense some of the discussions in the book are included as background material that
some readers may wish to skip on an initial reading. Elsewhere, however, the
preference for our own methodology is quite deliberate on account of the distinctive
nature of some of the Oxford results. Thus, for example, in Stochastic MPC our
attention is focussed on algorithms with guaranteed control theoretic properties,
including that of recurrent feasibility. On account of this, contrary to common
practice, we often eschew the normal distribution, which despite its mathematical
convenience neither lends itself to the proof of stability and feasibility, nor does it
allow accurate representations of model and measurement uncertainties, as these
rarely assume arbitrarily large values. On the other hand, we have clearly attempted
to incorporate all the major developments in the field, some of which are rather
recent and as yet may not be widely known. We apologise to colleagues whose
work did not get a mention in our account of the development of MPC; mostly this
is due to fact that we had to be selective of our material so as to give a fuller
description over a narrower range of concepts and techniques.

Over the past few decades the state of the art in MPC has come closer to the
optimum trade-off between computation and performance. But it is still nowhere
near close enough for many control problems. In this respect the field is wide open
for researchers to come up with fresh ideas that will help bridge the gap between
ideal performance and what is achievable in practice.

October 2014 Basil Kouvaritakis
Mark Cannon
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Chapter 1
Introduction

The benefits of feedback control have been known to mankind for more than 2,000
years and examples of its use can be found in ancient Greece, notably the float reg-
ulator of the water clock invented by Ktesibios in about 270 BC [1]. The formal
development of the field as a mathematical tool for the analysis of the behaviour
of dynamical systems is much more recent, beginning around 150 years ago when
Maxwell published his work on governors [2]. Since then the field has seen spectacu-
lar developments, promoted by thework ofmathematicians, engineers and physicists.
Laplace, Lyapunov, Kolmogorov, Wiener, Nyquist, Bode, Bellman are just a few of
the major contributors to the edifice of what is known today as control theory.

A development of particular interest, both from a theoretical point of view but
also one that has enjoyed considerable success in terms of practical applications, is
that of optimal control. Largely based on the work of Pontryagin [3] and Bellman [4],
optimal control theory is an extension of the calculus of variations [5, 6] addressing
the problem of optimizing a cost index that measures system performance through
the choice of system parameters that are designated as control inputs. The appeal
of this work from a control engineering perspective is obvious because it provides
a systematic approach to the design of strategies that achieve optimal performance.
Crucially, the optimal control solution has the particularly simple form of linear
state feedback for the case of linear systems and quadratic cost functions, and the
feedback gains can be computed by solving an equation known as the steady-state
Riccati equation [7]. This applies to both continuous time systems described by sets of
differential equations and to discrete time systems formulated in terms of difference
equationmodels. The latter description is, of course, of special importance tomodern
applications, which are almost entirely implemented using digital microprocessors.

The benefits of optimal control are, however, difficult to achieve in the case of
systems with nonlinear models and systems that are subject to constraints on input
variables or model states. For both these cases, in general, it is not possible to
derive analytic expressions for the optimal control solution. Given the continuing

© Springer International Publishing Switzerland 2016
B. Kouvaritakis and M. Cannon, Model Predictive Control,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-3-319-24853-0_1

1



2 1 Introduction

improvements in the processing power of inexpensive microprocessors, one might
hope that optimal solutions could be computed numerically. However, the associated
optimization problem is difficult to solve for all but the simplest cases, and hence it
is impracticable for the majority of realistic control problems. In the pursuit of opti-
mality one is therefore forced to consider approximate solutions, and this is perhaps
the single most important reason behind the phenomenal success of model predictive
control (MPC). MPC is arguably the most widely accepted modern control strategy
because it offers, through its receding horizon implementation, an eminently sensible
compromise between optimality and speed of computation.

The philosophy ofMPC can be described simply as follows. Predict future behav-
iour using a systemmodel, givenmeasurements or estimates of the current state of the
system and a hypothetical future input trajectory or feedback control policy. In this
framework future inputs are characterized by a finite number of degrees of freedom,
which are used to optimize a predicted cost. Only the first control input of the optimal
control sequence is implemented, and, to introduce feedback into this strategy, the
process is repeated at the next time instant using newly available information on the
system state. This repetition is instrumental in reducing the gap between the predicted
and the actual system response (in closed-loop operation). It also provides a certain
degree of inherent robustness to the uncertainty that can arise from imperfect knowl-
edge or unknown variations in the model parameters (referred to as multiplicative
uncertainty), as well as to model uncertainty in the form of disturbances appearing
additively in the system dynamics (referred to as additive uncertainty).

Many early MPC strategies took account of predicted system behaviour over a
finite horizon only and therefore lacked guarantees of nominal stability (i.e. closed-
loop stability in the absence of any uncertainty). This difficultywas initially overcome
by imposing additional conditions, known as equality terminal constraints, on the
predicted model states. Such conditions were chosen in order to ensure that the
desired steady state was reached at the end of a finite prediction horizon. The effect
of these constraints was to render a finite horizon equivalent to an infinite horizon,
thereby ensuring various stability and convergence properties.

Imposing the requirement that predicted behaviour reaches steady state over a
finite future horizon is in general an overly-stringent requirement, and furthermore
it presents computational challenges in the case of systems described by nonlinear
models. Instead it was proposed that a stabilizing feedback law could be used to
define the predicted control inputs at future times beyond the initial, finite prediction
horizon. This feedback law is known as a terminal control law, and is often taken to be
the optimal control law for the actual system dynamics in the absence of constraints
(if that is available), or otherwise can be chosen as the optimal control law for the
unconstrained, linearized dynamics about the desired steady state. To ensure that this
control law meets the system constraints, thereby ensuring the future feasibility of
the receding horizon strategy, additional constraints known as terminal constraints
are imposed. These typically require that the system state at the end of the initial
finite prediction horizon should belong to a subset of state space with the property
that once entered, the state of the constrained system will never leave it.
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We refer to the MPC algorithms that are derived from the collection of ideas
discussed above as Classical MPC. These cause the controlled system, in closed-
loop operation, to be stable, to meet constraints and to converge (asymptotically)
to the desired steady state. However, it is often of paramount importance that a
controller should have an acceptable degree of robustness to model uncertainty.
This constitutes a much more challenging control problem. We refer to the case in
which the uncertainty has known bounds but no further information is assumed as
RobustMPC (or RMPC), and to the case in whichmodel uncertainty is assumed to be
randomwith known probability distribution, and where some or all of the constraints
are probabilistic in nature, as Stochastic MPC (or SMPC).

Thus let the state model of a system be x+ = Ax + Bu + Dw, where x and x+
denote, respectively, the current model state and the successor state (i.e. the state at
the next time instant), u is the vector of control inputs and w represents an unknown
vector of external disturbance inputs. For such a model it may be the case that the
numerical values of the elements of the matrices A, B, D are not known (or indeed
knowable) precisely; this corresponds to the case of multiplicative uncertainty. The
model parameters may however be known to lie in particular intervals, whether they
are constant or vary with time, in which case the uncertainty is bounded by a known
set of values. Typically these uncertainty sets will be polytopic sets defined by known
vertices or by a number of linear inequalities. To give an example of this, consider
the payloads of a robotic arm that may differ from time to time, depending on the
task performed. This naturally leads to uncertainty which can be modelled (albeit
conservatively) as multiplicative bounded uncertainty in a linear model. Similarly,
the additive disturbance representing, for example, torques arising from static friction
in the robot arm system discussed above, though unknown, will lie in a bounded set
of additive uncertainty.

Such a problem would almost certainly be subject to constraints implied by max-
ima on possible applied motor torques, or consideration of safety and/or singularities
which impose limits on the angular positions of the various links of the robotic arm.
A general linear representation of such constraints, whether they apply only to the
control input, or to the state, or are mixed input and state constraints, is Fx + Bu ≤ 1.
The concern then for RMPC would be to guarantee stability, constraint satisfaction
and convergence of the state vector to a given steady-state condition or set of states,
for all possible realizations of uncertainty.

In a number of applications, however, uncertainty is subject to some statistical
regularity and can be modelled as random but with known probability distribution.
Thus consider the problemof controlling the pitch of the blades of awind turbinewith
the aim of maximizing electrical power generation while at the same time limiting
the fatigue damage to the turbine tower due to fore-and-aft movement caused by
fluctuations in the aerodynamic forces experienced by the blades. Although the wind
speed is subject to random variations, it can bemodelled in terms of given probability
distributions. Furthermore, fatigue damage occurs when tower movement exceeds
given limits frequently. Therefore the implied constraint is not that extreme tower
movement is not allowed but rather that it happens with a probability which is below
a given threshold. This situation cannot be described by a hard constraint such as
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Fx + Gu ≤ 1, but can more conveniently be modelled by probabilistic constraints
of the form Pr{Fx + Gu ≤ 1} ≤ p where p represents a given probability. It
is the object of Stochastic MPC to ensure that such constraints, together with any
additional hard constraints that may be present, are met in closed-loop operation, and
to simultaneously stabilize the system, for example by causing the state to converge
to a given steady-state set.

Classical, Robust and Stochastic MPC are the main topics of this book; the three
distinct parts of the book discuss each of these in turn. Our tendency has been in each
part of the book to start with backgroundmaterial that helps define the basic concepts
and then progressively present more sophisticated algorithms. By and large these are
capable of affording advantages over the earlier presented results in terms of ease of
computation, or breadth of applicability in terms of the size of their allowable set of
initial conditions or degree of optimality of performance. This in a way is a reflection
of the development of the field as a whole, which continuously aspires for optimality
tempered with ease of implementation.

This book only explicitly addresses systems with linear dynamics, but the reader
should be aware that most of the results presented have obvious extensions to the
nonlinear case, provided certain assumptions about convexity are satisfied. There are
clear implications of course in terms of ease of online computation, but the hope is
that with the increasing speed and storage capabilities of computing hardware for
control, this aspect will become less significant. Below, we give a brief description
of the salient features to be presented in each of the three parts of the book.

1.1 Classical MPC

The first part comprises a single chapter that describes developments concerning the
nominal case only, but simultaneously lays the foundations for the remainder of the
book by introducing key concepts (e.g. set invariance, recurrent feasibility, Lyapunov
stability, etc.). It begins with the problem definition and an unconventional derivation
of the optimal unconstrained control law; this is done deliberately so as to avoid
repeating the classical presentation of ideas of calculus of variations and Pontryagin’s
maximum principle. It then moves on to describe the dual mode prediction setting.
Some readersmay object to the use of the term “dualmode” here since it is sometimes
reserved to describe a control strategy that switches between two different control
laws (e.g. when the system state transitions into a particular region of state space
around the desired steady state). Our use of the term “dual mode” refers instead to the
split of the predicted control sequence into the control inputs at the first N predicted
time-steps (which are not predetermined) and those that apply to the remainder of
the prediction horizon (which are fixed by a terminal feedback law). The terms mode
1 and mode 2 constitute in our opinion a useful and intuitive shorthand for the two
modes of predicted operation.
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Discussion then turns to set invariance, which in the first instance is introduced
in connection with a terminal control law. Subsequently this is developed into the
concept of controlled invariance, which is a convenient concept for describing the
feasibility properties of the system constraints combined with terminal constraints.
Instrumental in this and in the attendant proof of stability is the idea of what we call,
for lack of a better descriptive terminology, the “tail”. This constitutes a method of
extending a future trajectory computed at any given time instant to a subsequent time
instant, and provides a convenient tool for establishing both recurrent feasibility and
a monotonic non-increasing property of the cost. The former relates to the property
that feasibility at current time implies feasibility at the next and subsequent instants,
whereas the latter can be used to establish closed-loop stability.

A formulation of interest concerns an alternative representation of the prediction
dynamics that makes use of a lifted autonomous state space model. Here the state is
augmented to include the degrees of freedom in the control sequence of mode 1; this
provides a framework that expedites many of the arguments presented in the subse-
quent parts of the book, and it also leads to a particularly efficient implementation
of nominal MPC. Moreover, it enables the design of prediction dynamics that can be
optimized, for example with the aim of maximizing the size of the set of allowable
initial conditions.

The chapter also considers aspects of computation and presents early MPC algo-
rithms, one of which enables the introduction of a Youla parameter into the MPC
problem.

1.2 Robust MPC

The presence of bounded uncertainty leads to a generally more challenging control
problem which is addressed by RMPC and is discussed in the second part of the
book. We begin by considering the case of additive disturbances, examining first a
class of MPC strategies that perform prediction optimization over open-loop input
trajectories. These are distinct from strategies employing optimization over control
policies, which in essence are closed-loop prediction strategies in that they take
account of future realizations of uncertaintywhich, thoughnot known to the controller
at current time, will be available when the control law is computed at a future time.

We begin our account by describing a state decomposition into nominal and uncer-
tain components. This, in conjunction with an augmented predicted state model,
enables the treatment of robust invariance and recursive feasibility and also suggests
convenient ways to define and compute maximal and minimal robust invariant sets.
Then, using the dual mode prediction paradigm and a nominal predicted cost, it is
possible to develop an RMPC strategy with guaranteed stability and convergence
properties.

Next we consider a game theoretic approach, a control strategy that is revisited
laterwhen the case ofmixed additive andmultiplicative uncertainty is examined. This
approach uses a min-max optimization in which the cost is defined so as to set up a



6 1 Introduction

dynamic game between the uncertainty, over whichRMPCperforms amaximization,
and the controller, which selects the control input by minimizing the maximum cost.
Over and above the usual control theoretic properties of recursive feasibility and
convergence to some steady-state set, this approach also provides a quantification of
the disturbance rejection properties of RMPC.

The exposition then moves on to the tube RMPC methodology that appears to
have dominated the relevant literature over the past 15 years or so. According to this,
constraints are enforced by inclusion conditions that ensure the uncertain future state
and input trajectories lie in sequences of sets, known as tubes, which are contained
entirely within sets in which constraints of the control problem are satisfied. The
sets defining the tubes were originally taken to be low-complexity polytopic sets
(i.e. affine transformations of hypercubes), but were later replaced by more general
sets which are either fixed or scalable. Such tubes can be used to guarantee recursive
feasibility through the use of suitably defined constraints. The topic of open-loop
strategies for the additive uncertainty case is brought to a close through a review of
some earlyTubeRMPCstrategies that deployed tubeswith low-complexity polytopic
cross sections as well as a review of an RMPC strategy that achieved recurrent
feasibility with respect to the entire class of additive uncertainty through an artificial
tightening of constraints.

Open-loop strategies are computationally convenient but can be conservative since
they ignore information about future uncertainty that, though not available at current
time, will be available to the controller. For a given prediction horizon and terminal
control law, the best possible performance and the largest set of admissible initial
conditions is obtained by optimizing a multistage min-max control problem over all
feedback policies. This problem, and its solution through the use of dynamic pro-
gramming (DP), is considered next in the book. The drawback of this approach and its
implementation within an MPC framework is that computation grows exponentially
with the prediction horizon and system dimension.

The optimal solution can be shown to be an affine function of the system state
which is dictated by the set of active constraints. Thus, in theory, one could poten-
tially compute this function offline at the regions of the state space defined by differ-
ent sets of active constraints. The number of such regions however typically grows
exponentially with the size of the system and therefore this approach is not practi-
cable for anything other than low order systems and short prediction horizons. To
avoid this problem it is possible to use an approach based on an online interpolation
between the current state and a state at which the optimal control law is known. The
active constraint set is updated during this interpolation and an equality constrained
optimization problem is solved at each active set change. Although this active set
dynamic programming approach can lead to significant reductions in online com-
putation, it still requires the offline computation of controllability sets which may
be computationally demanding. In such cases it may be preferable to perform the
optimization over a restricted class of control policies, since this may provide a good
approximation of the optimal solution at a fraction of the computational cost.

One such policy employs a feedback parameterization with an affine dependence
on past disturbance inputs, resulting in a convex optimization problem in a number
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of variables that grows quadratically with the prediction horizon. Through the use
of a separable prediction scheme with a triangular structure it is possible to pro-
vide disturbance feedback that is piecewise affine (rather than simply affine) in the
disturbance. The resulting RMPC algorithm, Parameterized Tube MPC (PTMPC),
provides a greater degree of optimality for a similar computational load, with the
number of optimization variables again depending quadratically on the prediction
horizon. Computation can be reduced by using a scheme with a striped triangular
structure (for which the dependence of the number of optimization variables on hori-
zon length is linear) rather than a triangular prediction scheme. With this approach it
is possible to outperform PTMPC since the effects of the striped prediction structure
are allowed to extend into mode 2, thus effectively replacing the fixed terminal law
by one that is optimized online.

We next consider RMPC in the presence of multiplicative uncertainty. Early work
on this topic used a parameterization of predicted control inputs in terms of a lin-
ear state feedback law in which the feedback gain is taken to be an optimization
variable computed online at each time instant. The approach uses quadratic con-
straints, expressed as linear matrix inequalities, to ensure that the predicted state
is contained in ellipsoids within which constraints are satisfied. These ellipsoidal
sets also guarantee a monotonic non-increasing property for the predicted cost for
a polytopic class of uncertainty. The prediction structure of this approach was sub-
sequently enriched by introducing additional optimization variables in the form of
a perturbation sequence applied to the predicted linear feedback law. However, this
increases the required online computation considerably, making it overly demanding
for high order systems or systems with many uncertain parameters. A very signifi-
cant reduction in online computation can be achieved by using a lifted autonomous
model for the prediction dynamics. This latter approach also enables the dynamics
defining the predicted state and input trajectories to be optimized through an offline
optimization, thus maximizing the volume of an ellipsoidal region of attraction.

As in the case of additive uncertainty, multiplicative uncertainty can be handled
conveniently through the introduction of tubes defining the evolution of the predicted
state and control trajectories. This is considered next, first with tubes consisting of
low-complexity polytopic sets, and then with general polytopic tube cross sections
through appropriate use of Farkas’ lemma. A combination of these ideas with the
lifted optimized dynamics is discussed for the derivation of a min-max RMPC algo-
rithm for the case of mixed additive and multiplicative uncertainty.

1.3 Stochastic MPC

The final part of this book is dedicated to SMPC which deals with the case when
uncertainty is random, with known probability distribution, rather than simply being
known to lie in a given set. This opens up the possibility of incorporating statistical
information in the definition of optimal performance, and of allowing some or all of
the constraints to be of a probabilistic nature. Early versions of SMPCwere concerned
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with the unconstrained case and considered the minimization of the one-step-ahead
variance or the expected value of a quadratic cost over a given prediction horizon.
However, use of only expected values removes much of the stochastic nature of the
problem, so these early algorithms, although historically important, cannot really be
classified as SMPC.

We begin our treatment of SMPC by defining the stochastic system models
together with the probabilistic constraints and discussing the basic assumption of
mean-square stability. Use is made of the dual mode prediction paradigm and the
unconstrained optimal control law is developed for a particular formof predicted cost.
This is then followed by the treatment of a mean-variance predicted cost SMPC. The
discussion is concluded by a review of some earlier stochastic predictive control
work, namely MinimumVariance Control andMPC through the use of moving aver-
age models in conjunction with chance constraints. Also included is a description of
earlier work based on a fully stochastic formulation in which both the constraints and
the cost are defined using the probabilistic information about the uncertainty. This
approach was developed in the context of a sustainable development problem which
is also discussed. Such a formulation appears to be eminently appropriate for a prob-
lem with such a strong stochastic element: it involves a prediction horizon, which
by definition has to be the inter-generational gap, and over which it is unrealistic to
model the uncertainties of world economy in a deterministic manner.

The following chapter presents useful tools for the construction of SMPC algo-
rithms such as recursive feasibility, supermartingale convergence analysis, proba-
bilistic invariance and Markov chain models. Using these ingredients, SMPC algo-
rithms are proposed using an expectation cost and a mean variance cost as well as
algorithms based on probabilistically invariant ellipsoids and algorithms based on
tubes with polytopic cross sections constructed on the basis ofMarkov chain models.

Our discussion of SMPC concludes by considering algorithms that use tubes with
polytopic and elliptical cross sections constructed on the basis of information on the
probability distributions of additive and multiplicative uncertainty. One feature of
these algorithms is that they achieve recursive feasibility by treating, at any predic-
tion time, the uncertainty up to the previous prediction time robustly. This is because,
at any given time, all earlier realizations of uncertainty will have already occurred
and will have taken any allowable value in the uncertainty class. We emphasize that
our preference is for uncertainty with finite support, despite the mathematical con-
venience of distributions such as the Gaussian distribution. In general uncertainty
distributions with infinite support do not accord well with realistic applications,
where model uncertainty never assumes arbitrarily large values. Moreover, assump-
tions of unboundedmodel uncertainty preclude the possibility of establishing control
theoretic properties such as stability and feasibility. Consideration is also given to
SMPC which addresses constraints on the average number of constraint violations.
The case of multiplicative uncertainty poses interesting problems in respect of the
online calculation of probability distributions of predicted states. We discuss how
this difficulty can be overcome through the use of techniques based on numerical
integration and random sampling.
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1.4 Concluding Remarks and Comments
on the Intended Readership

In summary, predictive control has experienced a phenomenal amount of develop-
ment, and this has been matched by wide acceptability in practice. Classical MPC is
now a mature research area in which further major developments are, in our opinion,
unlikely. The same however is certainly not true of RMPC, where the race is still
on for the development of approaches that provide an improved balance between
optimality and practicability of implementation. It is to be expected that fresh ideas
about the structure of predictions will emerge that will narrow the gap between what
can realistically be implemented and the ideal optimal solution. SMPC has itself
seen some significant advances but is still more in a state of flux, even in respect of
what its aims ought to be. This area will undoubtedly see in the future several major
stages of development. It is our hope that this book will seed some of the ideas that
will make this possible.

The levels of difficulty and technical detail of the book differ from chapter to
chapter. The intention is that Chap. 2 should be accessible to all undergraduates
specializing in control, whereas Chaps. 2, 3 and 5 should be of interest to graduate
students of control. With that in mind we have provided exercises (with solutions) to
these chapters in the hope that the students will be able to test their understanding by
solving the given problems. This can be done either as a paper-and-pencil exercise, or
with the aid ofmathematical software such asMATLAB. It is anticipated thatChaps. 4
and 6–8 would be read mostly by research students, researchers and academics. The
technical level here is more involved and testing one’s understanding could only
be attempted using rather sophisticated suites of (MATLAB) programs and for this
reason we have refrained from providing exercises for these chapters.
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Part I
Classical MPC



Chapter 2
MPC with No Model Uncertainty

2.1 Problem Description

This section provides a review of some of the key concepts and techniques in classical
MPC. Here the term “classical MPC” refers to a class of control problems involving
linear time invariant (LTI) systems whose dynamics are described by a discrete time
model that is not subject to any uncertainty, either in the form of unknown additive
disturbances or imprecise knowledge of the system parameters. In the first instance
the assumption will be made that the system dynamics can be described in terms of

the LTI state-space model

xk+1 = Axk + Buk (2.1a)

yk = Cxk (2.1b)

where xk ∈ R
nx , uk ∈ R

nu , yk ∈ R
ny are, respectively, the system state, the control

input and the system output, and k is the discrete time index. If the system to be con-
trolled is described by a model with continuous time dynamics (such as an ordinary
differential equation), then the implicit assumption is made here that the controller
can be implemented as a sampled data system and that (2.1a) defines the discrete
time dynamics relating the samples of the system state to those of its control inputs.

Assumption 2.1 Unless otherwise stated, the state xk of the system (2.1a) is assumed
to be measured and made available to the controller at each sampling instant k =
0, 1, . . .

The controlled system is also assumed to be subject to linear constraints. In gen-
eral these may involve both states and inputs and are expressed as a set of linear
inequalities

Fx + Gu ≤ 1 (2.2)
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14 2 MPC with No Model Uncertainty

where F ∈ R
nC ×nx , G ∈ R

nC ×nu and the inequality applies elementwise. We
denote by 1 a vector with elements equal to unity, the dimension of which is context
dependent, i.e. 1 = [1 · · · 1]T ∈ R

nC in (2.2). Setting F or G to zero results in
constraints on inputs or states alone. A feasible pair (xk, uk) or feasible sequence
{(x0, u0), (x1, u1), . . .} for (2.2) is any pair or sequence satisfying (2.2). The con-
straints in (2.2) are symmetric if (−xk,−uk) is feasible whenever (xk, uk) is feasible,
and non-symmetric otherwise. Although the form of (2.2) does not encompass con-
straints involving states or inputs at more than one sampling instant (such as, for
example rate constraints or more general dynamic constraints), these can be handled
through a suitable and obvious extension of the results to be presented.

The classical regulation problem is concerned with the design of a controller that
drives the system state to some desired reference point using an acceptable amount
of control effort. For the case that the state is to be steered to the origin, the controller
performance is quantified conveniently for this type of problem by a quadratic cost
index of the form

J (x0, {u0, u1, u2 . . .}) .=
∞∑

k=0

(
‖xk‖2Q + ‖uk‖2R

)
. (2.3)

Here ‖v‖2S denotes the quadratic form vT Sv for any v ∈ R
nv and S = ST ∈ R

nv×nv ,
and Q, R are weighting matrices that specify the emphasis placed on particular states
and inputs in the cost. We assume that R is a symmetric positive-definite matrix (i.e.
the eigenvalues of R are real and strictly positive, denoted R � 0) and that Q is
symmetric and positive semidefinite (all eigenvalues of Q are real and non-negative,
denoted Q � 0). This allows, for example, the choice Q = CT QyC for some
positive-definite matrix Qy , which corresponds to the case that the output vector, y,
rather than the state, x , is to be steered to the origin. At time k, the optimal value
of the cost (2.3) with respect to minimization over admissible control sequences
{uk, uk+1, uk+2, . . .} is denoted

J ∗(xk)
.= min

uk ,uk+1,uk+2,...
J
(
xk, {uk, uk+1, uk+2 . . .}).

This problem formulation leads to an optimal control problemwhereby the controller
is required to minimize at time k the performance cost (2.3) subject to the constraints
(2.2). To ensure that the optimal value of the cost is well defined, we assume that the
state of the model (2.1) is stabilizable and observable.

Assumption 2.2 In the system model (2.1) and cost (2.3), the pair (A, B) is stabi-
lizable, the pair (A, Q) is observable, and R is positive-definite.

Given the linear nature of the controlled system, the problem of setpoint tracking
(in which the output y is to be steered to a given constant setpoint) can be converted
into the regulation problem considered here by redefining the state of (2.1a) in terms
of the deviation from a desired steady-state value. The more general case of tracking
a time-varying setpoint (e.g. a ramp or sinusoidal signal) can also be tackled within
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the framework outlined here provided the setpoint can itself be generated by applying
a constant reference signal to a system with known LTI dynamics.

2.2 The Unconstrained Optimum

The problem of minimizing the quadratic cost of (2.3) in the unconstrained case
(i.e. when F = 0 and G = 0 in (2.2)) is addressed by Linear Quadratic (LQ)
optimal control, which forms an extension of the calculus of variations. The solution
is usually obtained either using Pontryagin’s Maximum Principle [1] or Dynamic
Programming and the recursive Bellman equation [2]. Rather than replicating these
solution methods, here we first characterize the optimal linear state feedback law that
minimizes the cost of (2.3), and later show (in Sect. 2.7) through a lifting formulation
that this control law is indeed optimal over all input sequences.

We first obtain an expression for the cost under linear feedback, u = K x , for an
arbitrary stabilizing gainmatrix K ∈ R

nu×nx , using the closed-loop systemdynamics

xk+1 = (A + BK )xk

to write xk = (A + BK )k x0 and uk = K (A + BK )k x0, for all k. Therefore J (x0) =
J (x0, {K x0, K x1, . . .}) is a quadratic function of x0,

J (x0) = xT
0 W x0, (2.4a)

W =
∞∑

k=0

(A + BK )k T
(Q + K T RK )(A + BK )k . (2.4b)

If A + BK is strictly stable (i.e. each eigenvalue of A + BK is strictly less than
unity in absolute value), then it can easily be shown that the elements of the matrix
W defined in (2.4b) are necessarily finite. Furthermore, if R is positive-definite and
(A, Q) is observable, then J (x0) is a positive-definite function of x0 (since then
J (x0) ≥ 0, for all x0, and J (x0) = 0 only if x0 = 0), which implies that W is a
positive-definite matrix.

The unique matrix W satisfying (2.4) can be obtained by solving a set of linear
equations rather than by evaluating the infinite sum in (2.4b). This is demonstrated
by the following result, which also shows that (A + BK ) is necessarily stable if W
in (2.4) exists.

Lemma 2.1 (Lyapunov matrix equation) Under Assumption 2.2, the matrix W in
(2.4) is the unique positive definite solution of the Lyapunov matrix equation

W = (A + BK )T W (A + BK ) + Q + K T RK (2.5)
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if and only if A + BK is strictly stable.

Proof Let Wn denote the sum of the first n terms in (2.4b), so that

Wn
.=

n−1∑

k=0

(A + BK )k T
(Q + K T RK )(A + BK )k .

Then W1 = Q + K T RK and Wn+1 = (A + BK )T Wn(A + BK )+ Q + K T RK for
all n > 0. Assuming that A + BK is strictly stable and taking the limit as n → ∞,
we obtain (2.5) with W = limn→∞ Wn . The uniqueness of W satisfying (2.5) is
implied by the uniqueness of Wn+1 in this recursion for each n > 0, and W � 0
follows from the positive-definiteness of J (x0).

If we relax the assumption that A + BK is strictly stable, then the existence of
W � 0 satisfying (2.5) implies that there exists a Lyapunov function demonstrat-
ing that the system xk+1 = (A + BK )xk is asymptotically stable, since (A, Q) is
observable and R � 0 by Assumption 2.2. Hence A + BK must be strictly stable if
(2.5) has a solution W � 0. �

The optimal unconstrained linear feedback control law is defined by the stabilizing
feedback gain K that minimizes the cost in (2.3) for all initial conditions x0 ∈ R

nx .
The conditions for an optimal solution to this problem can be obtained by considering
the effect of perturbing the value of K on the solution, W , of the Lyapunov equation
(2.5). Let W + δW denote the sum in (2.4b) when K is replaced by K + δK . Then
W + δW and K + δK satisfy the Lyapunov equation

W + δW = [
A + B(K + δK )

]T
(W + δW )

[
A + B(K + δK )

]

+ Q + (K + δK )T R(K + δK )

which, together with (2.5), implies that δW satisfies

δW = δK T [
BT W (A + BK ) + RK

] + [
(A + BK )T W B + K T R

]
δK

+ (A + BK )T δW (A + BK ) + δK T (BT W B + R)δK

+ δK T BT δW (A + BK ) + (A + BK )T δW B δK + δK T BT δW B δK .

(2.6)

For given δK1 ∈ R
nu×nx , consider a perturbation of the form

δK = ε δK1,

and consider the effect on δW of varying the scaling parameter ε ∈ R. Clearly
K is optimal if and only if xT

0 (W + δW )x0 ≥ xT
0 W x0, for all x0 ∈ R

nx , for all
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δK1 ∈ R
nu×nx and for all sufficiently small ε. It follows that K is optimal if and only

if the solution of (2.6) has the form

δW = ε2 δW2 + ε3 δW3 + · · ·

for all ε ∈ R, where δW2 is a positive semidefinite matrix. Considering terms in
(2.6) of order ε and order ε2, we thus obtain the following necessary and sufficient
conditions for optimality:

BT W (A + BK ) + RK = 0, (2.7a)

δW2 � 0, (2.7b)

δW2 = (A + BK )T δW2(A + BK ) + δK T
1 (BT W B + R)δK1. (2.7c)

Solving (2.7a) for K gives K = −(BT W B + R)−1BT W A as the optimal feedback
gain, whereas Lemma 2.1 and (2.7c) imply that

δW2 =
∞∑

k=0

(A + BK )k T
δK T

1 (BT W B + R)δK1(A + BK )k

and therefore (2.7b) is necessarily satisfied since A + BK is strictly stable and
BT W B + R is positive-definite.

These arguments are summarized by the following result.

Theorem 2.1 (Discrete time algebraic Riccati equation) The feedback gain matrix
K for which the control law

u = K x

minimizes the cost of (2.3) for any initial condition x0 under the dynamics of (2.1a)
is given by

K = −(BT W B + R)−1BT W A, (2.8)

where W � 0 is the unique solution of

W = AT W A + Q − AT W B(BT W B + R)−1BT W A. (2.9)

Under Assumption 2.2, A + BK is strictly stable whenever there exists W � 0
satisfying (2.9).
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Proof The optimality of (2.8) is a consequence of the necessity and sufficiency of the
optimality conditions in (2.7a), (2.7b) and (2.7c). Equation (2.9) (which is known
as the discrete time algebraic Riccati equation) is obtained by substituting K in
(2.8) into (2.5). From Lemma 2.1, we can conclude that, under Assumption 2.2, the
solution of (2.9) for W is unique and positive-definite if and only if A+ BK is strictly
stable. �

2.3 The Dual-Mode Prediction Paradigm

The control law that minimizes the cost (2.3) is not in general a linear feedback law
when constraints (2.2) are present.Moreover, it may not be computationally tractable
to determine theoptimal controller as an explicit state feedback law.Predictive control
strategies overcome this difficulty by minimizing, subject to constraints, a predicted
cost that is computed for a particular initial state, namely the current plant state. This
constrained minimization of the predicted cost is solved online at each time step in
order to derive a feedback control law. The predicted cost corresponding to (2.3) can
be expressed

J (xk, {u0|k, u1|k, . . .}) =
∞∑

i=0

(
‖xi |k‖2Q + ‖ui |k‖2R

)
(2.10)

where xi |k and ui |k denote the predicted values of the model state and input, respec-
tively, at time k + i based on the information that is available at time k, and where
x0|k = xk is assumed.

The prediction horizon employed in (2.10) is infinite.Hence if every element of the
infinite sequence of predicted inputs {u0|k , u1|k, . . .}were considered to be a free vari-
able, then the constrained minimization of this cost would be an infinite-dimensional
optimization problem, which is in principle intractable. However predictive control
strategies provide effective approximations to the optimal control law that can be
computed efficiently and in real time. This is possible because of a parameterization
of predictions known as the dual-mode prediction paradigm, which enables theMPC
optimization to be specified as a finite-dimensional problem.

The dual-mode prediction paradigm divides the prediction horizon into two inter-
vals. Mode 1 refers to the predicted control inputs over the first N prediction time
steps for some finite horizon N (chosen by the designer), while mode 2 denotes the
control law over the subsequent infinite interval. The mode 2 predicted inputs are
specified by a fixed feedback law, which is usually taken to be the optimum for the
problem of minimizing the cost in the absence of constraints [3–6]. Therefore the
predicted cost (2.10) can be written as

J (xk, {u0|k, u1|k, . . .}) =
N−1∑

i=0

(
‖xi |k‖2Q + ‖ui |k‖2R

)
+ ‖xN |k‖2W (2.11)
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where, by Theorem 2.1, W is the solution of the Riccati equation (2.9). The term
‖xN |k‖2W is referred to as a terminal penalty term and accounts for the cost-to-go
after N prediction time steps under the mode 2 feedback law.

To simplify notation we express the predicted cost as an explicit function of the
initial state of the prediction model and the degrees of freedom in predictions. Hence
for the dual-mode prediction paradigm inwhich the control inputs over the prediction
horizon of mode 1 are optimization variables, we write (2.11) as

J (xk, uk) =
N−1∑

i=0

(
‖xi |k‖2Q + ‖ui |k‖2R

)
+ ‖xN |k‖2W . (2.12)

where uk = {u0|k, u1|k, . . . , uN−1|k}.
The receding horizon implementation ofMPC stipulates that at each time instant k

the optimal mode 1 control sequence u∗
k = {u∗

0|k, . . . , u∗
N−1|k} is computed, and only

the first element of this sequence is implemented, namely uk = u∗
0|k . Thus at each

time step the most up-to-date measurement information (embodied in the state xk)
is employed. This creates a feedback mechanism that provides some compensation
for any uncertainty present in the model of (2.1a). It also reduces the gap between
the optimal value of the predicted cost J (xk, uk) in (2.12) and the optimal cost for
the infinite-dimensional problem of minimizing (2.10) over the infinite sequence of
future inputs {u0|k, u1|k, . . .}.

The rationale behind the dual-mode prediction paradigm is as follows. Let
{u0

0|k, u0
1|k, . . .} denote the optimal control sequence for the problem of minimizing

the cost (2.10) over the infinite sequence {u0|k, u1|k, . . .} subject to the constraints
Fxi |k + Gui |k ≤ 1, for all i ≥ 0, for an initial condition x0|k = xk such that this
problem is feasible. If the weights Q and R satisfy Assumption 2.2, then this notional
optimal control sequence drives the predicted state of the model (2.1a) asymptoti-
cally to the origin, i.e. xi |k → 0 as i → ∞. Since (x, u) = (0, 0) is strictly feasible
for the constraints Fx + Gu ≤ 1, there exists a neighbourhood, S, of x = 0 with the
property that these constraints are satisfied at all times along trajectories of the model
(2.1a) under the unconstrained optimal feedback law, u = K x , starting from any ini-
tial condition in S. Hence there necessarily exists a horizon N∞ (which depends on
xk) such that xi |k ∈ S, for all i ≥ N∞. Since the optimal trajectory for i ≥ N∞ is
necessarily optimal for the problem with initial condition xN∞|k (by Bellman’s Prin-
ciple of Optimality [7]), the constrained optimal sequence must therefore coincide
with the unconstrained optimal feedback law, i.e. u0

i |k = K xi |k , for all i ≥ N∞.
It follows that if the mode 1 horizon is chosen to be sufficiently long, namely if
N ≥ N∞, then the mode 1 control sequence, u∗

k , that minimizes the cost of (2.12)
subject to the constraints Fxi |k +Gui |k ≤ 1 for i = 0, 1, . . . , N −1 must be equal to
the first N elements of the infinite sequence that minimizes the cost (2.10), namely
u∗

i |k = u0
i |k for i = 0, . . . , N − 1.

For completeness we next give a statement of this result; for a detailed proof and
further discussion we refer the interested reader to [4, 5].
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Theorem 2.2 There exists a finite horizon N∞, which depends on xk, with the prop-
erty that, whenever N ≥ N∞: (i). the sequence u∗

k that achieves the minimum
of J (xk, uk) in (2.12) subject to Fxi |k + Gui |k ≤ 1 for i = 0, 1, . . . , N − 1 is
equal to the first N terms of the infinite sequence {u0

0|k, u0
1|k, . . .} that minimizes

J (xk, {u0|k, u1|k, . . .}) in (2.10) subject to Fxi |k + Gui |k ≤ 1, for all i ≥ 0; and (ii).
J (xk, u∗

k) = J (xk, {u0
0|k, u0

1|k, . . .}).
It is generally convenient to consider the LQ optimal feedback law u = K x as

underlying both mode 1 and mode 2, and to introduce perturbations ci |k ∈ R
nu ,

i = 0, 1, . . . , N − 1 over the horizon of mode 1 in order to meet constraints. Then

the predicted sequence of control inputs is given by

ui |k = K xi |k + ci |k, i = 0, 1, . . . , N − 1 (2.13a)

ui |k = K xi |k, i = N , N + 1, . . . (2.13b)

with x0|k = xk . This prediction scheme is sometimes referred to as the closed-loop
paradigm because the term K x provides feedback in the horizons of both modes 1
and 2.

We argue in Sect. 3.1 (in the context of robustness tomodel uncertainty) that (2.13)
should be classified as an open-loop prediction scheme because K is fixed rather
than computed on the basis of measured information (namely xk). Nevertheless, the
feedback term K x forms a pre-stabilizing feedback loop around the dynamics of

(2.1a), which assume the form

xi+1|k = Φxi |k + Bci |k, i = 0, 1, . . . , N − 1 (2.14a)

xi+1|k = Φxi |k, i = N , N + 1, . . . (2.14b)

where Φ = A + BK , with x0|k = xk . The strict stability property of Φ prevents
numerical ill-conditioning that could arise in the prediction equations and the asso-
ciated MPC optimization problem in the case of open-loop unstable models [8].

For the closed-loop paradigm formulation in (2.13), the predicted state trajectory
can be generated by simulating (2.14a) forwards over the mode 1 prediction horizon,
giving

xk = Mx xk + Mcck, (2.14c)

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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where

xk
.=

⎡

⎢⎣
x1|k
...

xN |k

⎤

⎥⎦, ck
.=

⎡

⎢⎣
c0|k
...

cN−1|k

⎤

⎥⎦

Mx =

⎡

⎢⎢⎢⎣

Φ

Φ2

...

ΦN

⎤

⎥⎥⎥⎦, Mc =

⎡

⎢⎢⎢⎣

B 0 · · · 0
ΦB B · · · 0
...

...
. . .

...

ΦN−1B ΦN−2B · · · B

⎤

⎥⎥⎥⎦.

On the basis of these prediction equations and the fact that the predicted cost over
mode 2 is given by ‖xN |k‖2W (where W is the solution of the Lyapunov equation
(2.5)), the predicted cost of (2.11) can be written as a quadratic function of the
degrees of freedom, namely the vector of predicted perturbations ck . The details of
this computation are straightforward and will not be given here. Instead we derive an
equivalent but more convenient form for the predicted cost in Sect. 2.7. For simplicity
(but with a slight abuse of notation) in the following development, we denote the cost
of (2.11) evaluated along the predicted trajectories of (2.13a) and (2.14a) as J (xk , ck),
thus making explicit the dependence of the cost on the optimization variables ck .

2.4 Invariant Sets

The determination of the minimum prediction horizon N which ensures that the
predicted state and input trajectories in mode 2 meet constraints (2.2) is not a trivial
matter. Instead lower bounds for this horizon were proposed in [4, 5]. However such
bounds could be conservative, leading to the use of unnecessarily long prediction
horizons. This in turn could make the online optimization of the predicted cost
computationally intractable as a result of large numbers of free variables and large
numbers of constraints in theminimization of predicted cost. In such cases it becomes
necessary to use a shorter horizon N while retaining the guarantee that predictions
over mode 2 satisfy constraints on states and inputs. This can be done by imposing
a terminal constraint which requires that the state at the end of the mode 1 horizon
should lie in a set which is positively invariant under the dynamics defined by (2.13b)
and (2.14b) and under the constraints (2.2).

Definition 2.1 (Positively invariant set) A setX ⊆ R
nx is positively invariant under

the dynamics defined by (2.13b) and (2.14b) and the constraints (2.2) if and only if
(F + G K )x ≤ 1 and Φx ∈ X , for all x ∈ X .

The use of invariant sets within the dual prediction mode paradigm is illustrated
in Fig. 2.1 for a second-order system. The predicted state at the end of mode 1 is
constrained to lie in an invariant set XT via the constraint xN |k ∈ XT . Thereafter, in
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Fig. 2.1 The dual-mode prediction paradigmwith terminal constraint. The control inputs inmode 1
are chosen so as to satisfy the system constraints as well as the constraint that the N step ahead
predicted state should be inside the invariant set XT . Over the infinite mode 2 prediction horizon
the predicted state trajectory is dictated by the prescribed feedback control law u = K x

mode 2, the evolution of the state trajectory is that prescribed by the state feedback
control law uk = K xk .

In order to increase the applicability of the MPC algorithm, and in particular to
increase the size of the set of initial conditions x0|k for which the terminal condition
xN |k ∈ XT can be met, it is important to choose the maximal positively invariant set
as the terminal constraint set. This set is defined as follows.

Definition 2.2 (Maximal positively invariant set) The maximal positively invariant
(MPI) set under the dynamics of (2.13b) and (2.14b) and the constraints (2.2) is the
union of all sets that are positively invariant under these dynamics and constraints.

It was shown in [9] that, for the case of linear dynamics and linear constraints
considered here, the MPI set is defined by a finite number of linear inequalities. This
result is summarized next.

Theorem 2.3 ([9]) The MPI set for the dynamics defined by (2.13b) and (2.14b) and
the constraints (2.2) can be expressed

XMPI .= {x : (F + G K )Φ i x ≤ 1, i = 0, . . . , ν} (2.15)

where ν is the smallest positive integer such that (F + G K )Φν+1x ≤ 1, for all x
satisfying (F +G K )Φ i x ≤ 1, i = 0, . . . , ν. If Φ is strictly stable and (Φ, F +G K )

is observable, then ν is necessarily finite.

Proof Let X (n) = {x : (F + G K )Φ i x ≤ 1, i = 0, . . . , n} for n ≥ 0, then it can be
shown that (2.15) holds for some finite ν using Definition 2.2 to show that the MPI
set XMPI is equal to X (ν) for finite ν.
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In particular, if x0|k /∈ X (n) for given n, then the constraint (2.2) must be violated
under the dynamics of (2.13b) and (2.14b). By Definition 2.2 therefore, any x /∈ X (n)

cannot lie in XMPI, so X (n) must contain XMPI, for all n ≥ 0.
Furthermore, if (F + G K )Φν+1x ≤ 1, for all x ∈ X (ν), then Φx ∈ X (ν)

must hold whenever x ∈ X (ν) (since x ∈ X (ν) and (F + G K )Φν+1x ≤ 1 imply
(F + G K )Φ i (Φx) ≤ 1 for i = 0, . . . ν). But from the definition of X (ν) we have
(F + G K )x ≤ 1 for all x ∈ X (ν), and therefore X (ν) is positively invariant under
(2.13b), (2.14b) and (2.2). From Definition 2.2 it can be concluded that X (ν) is a
subset of, and therefore equal to XMPI.

Finally, for ν ≥ nx , the set X (ν) is necessarily bounded if (Φ, F + G K ) is
observable, and, since Φ is strictly stable, the set {x : (F + G K )Φ(ν+1)x ≤ 1}
must contain X (ν) for finite ν; therefore XMPI must be defined by (2.15) for some
finite ν. �

The value of ν satisfying the conditions of Theorem 2.3 can be computed by
solving at most νnC linear programs (LPs), namely

maximize
x

(F + G K ) jΦ
n+1x subject to (F + G K )Φ i x ≤ 1, i = 0, . . . , n

for j = 1, . . . , nC , n = 1, . . . , ν, where (F +G K ) j denotes the j th row of F +G K .
The value of ν clearly does not depend on the system state, and this procedure can
therefore be performed offline. In general ν ≥ nx , and (2.15) defines theMPI set as a
polytope. Therefore if XT is equal to the MPI set, the terminal constraint xN |k ∈ XT

can be invoked via linear inequalities on the degrees of freedom inmode1predictions.
It will be convenient to represent the terminal set XT in matrix form

XT = {x : VT x ≤ 1},

so that with XT chosen as the MPI set (2.15), VT is given by

VT =

⎡

⎢⎢⎢⎣

F + G K
(F + G K )Φ

...

(F + G K )Φν

⎤

⎥⎥⎥⎦ .

Example 2.1 Figure2.2 gives an illustration of theMPI set for a second-order system

with state-space matrices

A =
[
1.1 2
0 0.95

]
, B =

[
0

0.0787

]
, C = [−1 1

]
(2.16a)

and constraints −1 ≤ x/8 ≤ 1, −1 ≤ u ≤ 1, which correspond to the following
constraint matrices in (2.2),
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Fig. 2.2 Themaximal positively invariant (MPI) set,XMPI, for the system of (2.16a), (2.16b). Each
of the inequalities defining XMPI is represented by a straight line on the diagram

F =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1/8
1/8 0
0 −1/8

−1/8 0
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, G =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

−1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (2.16b)

The mode 2 feedback law is taken to be the optimal unconstrained linear feedback
law u = K x , with costweights Q = CT C and R = 1, forwhich K = − [

1.19 7.88
]
.

TheMPI set is given by (2.15) with ν = 5. After removing redundant constraints, this
set is defined by 10 inequalities corresponding to the 10 straight lines that intersect
the boundary of the MPI set, marked XMPI in Fig. 2.2. ♦

2.5 Controlled Invariant Sets and Recursive Feasibility

Collecting the ideas discussed in the previous sections we can state the following
MPC algorithm:

Algorithm 2.1 (MPC) At each time instant k = 0, 1, . . .:
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(i) Perform the optimization

minimize
ck

J (xk, ck) (2.17a)

subject to (F + G K )xi |k + Gci |k ≤ 1, i = 0, . . . , N − 1 (2.17b)

VT xN |k ≤ 1 (2.17c)

where J (xk, ck) is the cost of (2.11) evaluated for the predicted trajectories of
(2.13a) and (2.14a).

(ii) Apply the control law uk = K xk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal value of ck for problem (2.17). �

The terminal condition (2.17c) is sometimes referred to as a stability constraint
because it provides a means of guaranteeing the closed-loop stability of the MPC
law. It does this by ensuring that themode 2 predicted trajectories (2.13b) and (2.14b)
satisfy the constraint (F + G K )xi |k ≤ 1, thus ensuring that the predicted cost over
mode 2 is indeed given by ‖xN |k‖2W , and also by guaranteeing that Algorithm 2.1
is feasible at all time instants if it is feasible at initial time. The latter property of
recursive feasibility is a fundamental requirement for closed-loop stability since it
guarantees that the optimization problem (2.17) is solvable and hence that the control
law of Algorithm 2.1 is defined at every time instant if (2.17) is initially feasible.

Recall that the feasibility of predicted trajectories in mode 2 is ensured by con-
straining the terminal state to lie in a set which is positively invariant. The feasibility
of Algorithm 2.1 can be similarly ensured by requiring that the state xk lies in an
invariant set. However, since there are degrees of freedom in the predicted trajec-
tories of (2.13a) and (2.14a), the relevant form of invariance is controlled positive
invariance.

Definition 2.3 (Controlled positively invariant set) A set X ⊆ R
nx is controlled

positively invariant (CPI) for the dynamics of (2.1a) and constraints (2.2) if, for all
x ∈ X , there exists u ∈ R

nu such that Fx +Gu ≤ 1 and Ax + Bu ∈ X . Furthermore
X is the maximal controlled positively invariant (MCPI) set if it is CPI and contains
all other CPI sets.

To show that Algorithm 2.1 is recursively feasible, we demonstrate next that its
feasible set is a CPI set. Algorithm 2.1 is feasible whenever xk belongs to the feasible
set FN defined by

FN
.= {

xk : ∃ ck such that (F + G K )xi |k + Gci |k ≤ 1, i = 0, . . . , N − 1

and VT xN |k ≤ 1
}
. (2.18)
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Clearly this is the same as the set of states of (2.1a) that can be driven to the terminal
set XT = {x : VT x ≤ 1} in N steps subject to the constraints (2.2), and it therefore
has the following equivalent definition:

FN = {
x0 : ∃ {u0, . . . , uN−1} such that Fxi + Gui ≤ 1, i = 0, . . . , N − 1,

and xN ∈ XT
}
. (2.19)

Theorem 2.4 If XT in (2.19) is positively invariant for (2.13b), (2.14b) and (2.2),
then FN ⊆ FN+1, for all N > 0, and FN is a CPI set for the dynamics of (2.1a)
and constraints (2.2).

Proof If x0 ∈ FN , then by definition there exists a sequence {u0, . . . , uN−1} such
that Fxi + Gui ≤ 1, i = 0, . . . , N − 1 and xN ∈ XT . Also, since XT is positively
invariant, the choice uN = K xN would ensure FxN + GuN ≤ 1 and xN+1 ∈ XT ,
and this in turn implies x0 ∈ FN+1 whenever x0 ∈ FN . Furthermore if x0 ∈ FN ,
then by definition u0 exists such that Fx0 + Gu0 ≤ 1 and x1 ∈ FN−1, and since
FN−1 ⊂ FN , it follows that FN is CPI. �

Although the proof of Theorem 2.4 considers the sequence of control inputs
{u0, . . . , uN−1}, the same arguments apply to the optimization variables ck in (2.17),
since for each feasible uk , k = 0, . . . , N − 1, there exists a feasible ck such that
uk = K xk + ck . Therefore, the fact that FN is a CPI set for (2.1a) and (2.2) also
implies that FN is CPI for the dynamics (2.14a) and constraints (2.17b). Hence
for any xk ∈ FN there must exist ck such that (F + G K )xk + Gck ≤ 1 and
xk+1 = Φxk + Bck ∈ FN . Furthermore, the proof of Theorem 2.4 shows that if
ck = c∗

0|k (where c∗
k = (c∗

0|k, . . . , c∗
N−1|k) is the optimal value of ck in step (ii) of

Algorithm 2.1), then the sequence

ck+1 = (c∗
1|k, . . . , c∗

N−1|k, 0) (2.20)

is necessarily feasible for the optimization (2.17) at time k + 1, and therefore Algo-
rithm 2.1 is recursively feasible.

The candidate feasible sequence in (2.20) can be thought of as the extension to
time k + 1 of the optimal sequence at time k. It is in fact the sequence that generates,
via (2.13a), the input sequence

{u1|k, . . . , uN−1|k, K xN |k}

at time k + 1. For this reason, it is sometimes referred to as the tail of the solution of
the MPC optimization problem at time k, or simply the tail. As well as demonstrating
recursive feasibility, the tail is often used to construct a suboptimal solution at time
k + 1 based on the optimal solution at time k. This enables a comparison of the
optimal costs at successive time steps, which is instrumental in the analysis of the
closed-loop stability properties of MPC laws.
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Theorem 2.4 shows that the feasible sets corresponding to increasing values of N
are nested, so that the feasible setFN necessarily grows as N is increased. In practice
the length of the mode 1 horizon is likely to be limited by the growth in computation
that is required to solve Algorithm 2.1 (this is discussed in Sect. 2.8). However, given
that FN increases as N grows, the question arises as to whether there exists a finite
value of N such that FN is equal to the maximal feasible set defined by

F∞
.=

∞⋃

N=1

FN .

Here F∞ is defined as the set of initial conditions that can be steered to XT over an
infinite horizon subject to constraints. However, F∞ is independent of the choice of
XT ; this is a consequence of the fact that, for any bounded positively invariant set
XT , the system (2.1a) can be steered from any initial state inXT to the origin subject
to the constraints (2.2) in finite time, as demonstrated by the following result.

Theorem 2.5 Let F0
N

.= {
x0 : ∃ {u0, . . . , uN−1} such that Fxi + Gui ≤ 1, i =

0, . . . , N − 1, and xN = 0
}
. If XT in (2.19) is positively invariant for (2.13b),

(2.14b) and (2.2), where Φ is strictly stable and (Φ, F + G K ) is observable, then
F∞ = ⋃∞

N=1 FN = ⋃∞
N=1 F0

N .

Proof First, note that any positively invariant setXT must contain the origin because
Φ is strictly stable. Second, strict stability of Φ and boundedness of XT (which fol-
lows from observability of (Φ, F + G K )) also implies that, for any ε > 0, the
set Bε

.= {x : ‖x‖ ≤ ε} is reachable from any point in XT in a finite number of
steps (namely for all x0 ∈ XT there exists a sequence {u0, . . . , un−1} such that
Fxi + Gui ≤ 1 for i = 0, . . . , n − 1 and xn ∈ Bε) since ‖Φn x‖ ≤ ε, for all x ∈ XT

for some finite n. Third, since (A, B) is controllable and (0, 0) lies in the interior
of the constraint set {(x, u) : Fx + Gu ≤ 1}, there must exist ε > 0 such that the
origin is reachable in nx steps from any point in Bε, i.e. Bε ⊆ F0

nx
. Combining these

observations we obtain {0} ⊆ XT ⊆ F0
n+nx

and hence F0
N ⊆ FN ⊆ F0

n+nx +N
for some finite n and all N ≥ 0. From this we conclude that

⋃∞
N=1 FN =⋃∞

N=1 F0
N . �

A consequence of Theorem 2.5 is that replacing the terminal set XT by any
bounded positively invariant set (or in fact any CPI set) in (2.18) results in the same
setF∞. ThereforeF∞ is identical to themaximal CPI set or infinite time reachability
set [10, 11], which by definition is the largest possible feasible set for any stabilizing
control law for the dynamics (2.1a) and constraints (2.2). In general FN does not
necessarily tend to a finite limit1 as N → ∞, but the following result shows that
under certain conditions F∞ is equal to FN for finite N .

1If for example the system (2.1a) is open-loop stable and F = 0, then clearly the MCPI set is the
entire state space and FN grows without bound as N increases. In general the MCPI set is finite if
and only if the system (A, B, F, G), mapping input uk to output Fxk + Guk has no transmission
zeros inside the unit circle (see, e.g. [11, 12]).
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Theorem 2.6 If FN+1 = FN for finite N > 0, then F∞ = FN .

Proof An alternative definition of FN+1 (which is nonetheless equivalent to (2.18))
is that FN+1 is the set of states x for which there exists a control input u such that
Fx + Gu ≤ 1 and Ax + Bu ∈ FN . If FN+1 = FN , then it immediately follows
from this definition that FN+2 = FN+1. Applying this argument repeatedly we get
FN+i = FN , for all i = 1, 2, . . . and hence F∞ = FN . �

Example 2.2 Figure2.3 shows the feasible sets FN of Algorithm 2.1 for the system
model and constraints of Example 2.1, for a range of values of mode 1 horizon N .
Here the terminal set XT is the maximal positively invariant set XMPI of Fig. 2.2;
this is shown in Fig. 2.3 as the feasible set for N = 0. As expected the feasible
sets FN for increasing N are nested. For this example, the maximal CPI set is
given by F∞ = FN for N = 26 and the minimal description of F∞ involves 100
inequalities. ♦

Fig. 2.3 The feasible sets FN , N = 4, 8, 12, 16, 20, 24, 26 and the terminal set F0 = XT for the
example of (2.16a), (2.16b). The maximal controlled invariant set is F∞ = F26
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2.6 Stability and Convergence

This section introduces the main tools for analysing closed-loop stability under the
MPC law of Algorithm 2.1 for the ideal case of no model uncertainty or unmodeled
disturbances. The control law is nonlinear because of the inequality constraints in the
optimization (2.17), and the natural framework for the stability analysis is therefore
Lyapunov stability theory. Using the feasible but suboptimal tail sequence that was
introduced in Sect. 2.5, we show that the optimal value of the cost function in (2.17) is
non-increasing along trajectories of the closed-loop system. This provides guarantees
of asymptotic convergence of the state and Lyapunov stability under Assumption 2.2.
Where possible, we keep the discussion in this section non-technical and refer to the
literature on stability theory for technical details.

The feasibility of the tail of the optimal sequence c∗
k implies that the sequence

ck+1 defined in (2.20) is feasible but not necessarily an optimal solution of (2.17) at
time k +1. Using (2.20) it is easy to show that the corresponding cost J (xk+1, ck+1)

is equal to J ∗(xk) − ‖xk‖2Q − ‖uk‖2R . After optimization at time k + 1, we therefore
have

J ∗(xk+1) ≤ J ∗(xk) − ‖xk‖2Q − ‖uk‖2R . (2.21)

Summing both sides of this inequality over all k ≥ 0 gives the closed-loop perfor-
mance bound ∞∑

k=0

(‖xk‖2Q + ‖uk‖2R
) ≤ J ∗(x0) − lim

k→∞ J ∗(xk). (2.22)

The quantity appearing on the LHS of this inequality is the cost evaluated along the
closed-loop trajectories of (2.1) under Algorithm 2.1. Since J ∗(xk) is non-negative
for all k, the bound (2.22) implies that the closed-loop cost can be no greater than
the initial optimal cost value, J ∗(x0).

Given that the optimal cost is necessarily finite if (2.17) is feasible, and since each
term in the sum on the LHS of (2.22) is non-negative, the closed-loop performance
bound in (2.22) implies the following convergence result

lim
k→∞

(‖xk‖2Q + ‖uk‖2R
) = 0 (2.23)

along the trajectories of the closed-loop system. We now give the basic results con-
cerning closed-loop stability.

Theorem 2.7 If (2.17) feasible at k = 0, then the state and input trajectories of
(2.1a) under Algorithm 2.1 satisfy limk→∞(xk, uk) = (0, 0).

Proof This follows from (2.23) and Assumption 2.2 since R � 0 implies uk → 0 as
k → ∞; hence from the observability of (Q, A) and ‖xk‖Q → 0 we conclude that
xk → 0 as k → ∞. �
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Theorem 2.8 Under the control law of Algorithm 2.1, the origin x = 0 of the system
(2.1a) is asymptotically stable and its region of attraction is equal to the feasible set
FN . If Q � 0, then x = 0 is exponentially stable.

Proof The conditions on Q and R in Assumption 2.2 ensure that the optimal cost
J ∗(xk) is a positive-definite function of xk since J ∗(xk) = 0 if and only if xk = 0, and
J ∗(xk) > 0 whenever xk �= 0. Therefore (2.21) implies that J ∗(xk) is a Lyapunov
function which demonstrates that x = 0 is a stable equilibrium (in the sense of
Lyapunov) of the closed-loop system [13]. Combined with the convergence result of
Theorem 2.7, this shows that x = 0 is an asymptotically stable equilibrium point, and
since Theorem 2.7 applies to all feasible initial conditions, the region of attraction
is FN .

To show that the rate of convergence is exponential if Q � 0 we first note that
the optimal value of (2.17) is a continuous piecewise quadratic function of xk [14].
Therefore, J ∗(xk) can be bounded above and below for all xk ∈ FN by

α‖xk‖2 ≤ J ∗(xk) ≤ β‖xk‖2 (2.24)

where α and β are necessarily positive scalars since J ∗(xk) is positive-definite. If
the smallest eigenvalue of Q is λ(Q), then from (2.24) and (2.21) we get

‖xk‖2 ≤ 1

α

∣∣∣∣1 − λ(Q)

β

∣∣∣∣
k

J ∗(x0)

for all k = 0, 1, . . ., and hence x = 0 is exponentially stable. �

Example 2.3 For the same system dynamics, constraints and cost as in Example 2.1
the predicted and closed-loop state trajectories under the MPC law of Algorithm 2.1
with N = 6 and initial state x(0) = (−7.5, 0.5) are shown in Fig. 2.4. Figure2.5
gives the corresponding predicted and closed-loop input trajectories. The jump in
the predicted input trajectory at N = 6 is due to the switch to the mode 2 feedback
law at that time step.

Table2.1 gives the variation with mode 1 horizon N of predicted cost J ∗
0 and

closed-loop cost Jcl(x0)
.= ∑∞

k=0(‖xk‖2Q + ‖uk‖2R) for x(0) = (−7.5, 0.5). The
infinite-dimensional optimal performance is obtained with N = N∞, where N∞ =
11 for this initial condition, so there is no further decrease in predicted cost for values
of N > 11. However, because of the receding horizon implementation, the closed-
loop response of the MPC law for N = 6 is indistinguishable from the ideal optimal
response for this initial condition. ♦
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Fig. 2.4 Predicted and closed-loop state trajectories for Algorithm 2.1 with N = 6

Fig. 2.5 Predicted and closed-loop input trajectories for Algorithm 2.1 with N = 6
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Table 2.1 Variation of predicted and closed-loop cost with N for x0 = (−7.5, 0.5) in Example 2.3

N 6 7 8 11 >11

J ∗(x0) 364.2 357.0 356.3 356.0 356.0

Jcl(x0) 356.0 356.0 356.0 356.0 356.0

2.7 Autonomous Prediction Dynamics

The dual-mode prediction dynamics (2.14a) and (2.14b) can be expressed in a more
compact autonomous form that incorporates both prediction modes [15, 16]. This
alternative prediction model, which includes the degrees of freedom in predictions
within the state of an autonomous prediction system, enables the constraints on pre-
dicted trajectories to be formulated as constraints on the prediction system state at
the start of the prediction horizon. With this approach the feasible sets for the model
state and the degrees of freedom in predictions are determined simultaneously by
computing an invariant set (rather than a controlled invariant set) for the autonomous
system state. This can result in significant reductions in computation for the case
that the system model is uncertain since, as discussed in Chap. 5, it greatly sim-
plifies handling the the effects of uncertainty over the prediction horizon. In this
section we show that an autonomous formulation is also convenient in the case of
nominal MPC.

An autonomous prediction system that generates the predictions of (2.13a),
(2.13b) and (2.14a), (2.14b) can be expressed as

zi+1|k = �zi |k, i = 0, 1, . . . (2.25)

where the initial state z0|k ∈ R
nx +Nnu consists of the state xk of the model (2.1a)

appended by the vector ck of degrees of freedom,

z0|k =

⎡

⎢⎢⎢⎣

xk

c0|k
...

cN−1|k

⎤

⎥⎥⎥⎦.

The state transition matrix in (2.25) is given by

� =
[
Φ B E
0 M

]
(2.26a)

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Fig. 2.6 Block diagram representation of the autonomous prediction systems (2.25) and (2.26).
The free variables in the state and input predictions at time k are contained in the initial controller
state ck ; the signals marked x and u are the i steps ahead predicted state and control input, and x+,
c+ denote their successor states

where Φ = A + BK and

E = [
Inu 0 · · · 0] , M =

⎡

⎢⎢⎢⎢⎢⎣

0 Inu 0 · · · 0
0 0 Inu · · · 0
...

...
...

. . .
...

0 0 0 · · · Inu

0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦
. (2.26b)

The state and input predictions of (2.13a), (2.13b) and (2.14a), (2.14b) are then

given by

ui |k = [
K E

]
zi |k (2.27a)

xi |k = [
Inx 0

]
zi |k (2.27b)

for i = 0, 1, . . . . The prediction systems (2.25) and (2.26) can be interpreted as a
dynamic feedback law applied to (2.1a), with the controller state at the beginning of
the prediction horizon containing the degrees of freedom, ck , in predictions (Fig. 2.6).

2.7.1 Polytopic and Ellipsoidal Constraint Sets

The constraints (2.2) applied to the predictions of (2.27a), (2.27b) are equivalent to
the following constraints on the initial prediction system state zk = z0|k :

[
F + G K G E

]
� i zk ≤ 1, i = 0, 1, . . . (2.28)

Clearly this implies an infinite number of constraints that apply across an infi-
nite prediction horizon. However, analogously to the definition of terminal invari-
ant sets in Sect. 2.4, a feasible set for zk satisfying (2.28) can be constructed by
determining a positively invariant set for the dynamics zk+1 = �zk and constraints
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[
F + G K G E

]
zk ≤ 1. Theorem 2.3 shows that the maximal positively invariant set

for these dynamics and constraints is given by

Z .= {z : [
F + G K G E

]
� i z ≤ 1, i = 0, 1, . . . , νz} (2.29)

where νz is a positive integer such that
[
F + G K G E

]
�νz+1z ≤ 1, for all z satis-

fying
[
F + G K G E

]
� i z ≤ 1, i = 0, 1, . . . , νz . Since Z is the MPI set, every state

zk for which (2.28) is satisfied must lie inZ . Given that a mode 1 prediction horizon
of N steps is implicit in the augmented prediction dynamics (2.25), the projection of
Z onto the x-subspace is therefore equal to the feasible set FN defined in (2.18), i.e.

FN =
{

x : ∃ c such that
[
F + G K G E

]
� i

[
x
c

]
≤ 1, i = 0, 1, . . . , νz

}
.

The value of νz defining the MPI set in (2.29) grows as the mode 1 prediction
horizon N is increased. Furthermore, it can be seen from (2.26) that every eigenvalue
of� is equal either to 0 or to an eigenvalue ofΦ, so if one or more of the eigenvalues
ofΦ lies close to the unit circle in the complex plane, then νz in (2.29) could be large
even for short horizons N . The equivalence of (2.27a), (2.27b) with (2.13a), (2.13b)
and (2.14a), (2.14b) implies that the online MPC optimization in (2.17) is equivalent
to

minimize
ck

J (xk, ck) subject to

[
xk

ck

]
∈ Z. (2.30)

which is a quadratic programming problem with νznC constraints.
A large value of νz could therefore make the implementation of Algorithm 2.1

computationally demanding. If this is the case, and in particular for applications with
very high sampling rates, it may be advantageous to replace the polyhedral invariant
set Z with an ellipsoidal invariant set, Ez :

minimize
ck

J (xk, ck) subject to

[
xk

ck

]
∈ Ez . (2.31)

This represents a simplification of the online optimization to a problem that involves
just a single constraint, thus allowing for significant computational savings. Further-
more, using an ellipsoidal set that is positively invariant for the autonomous predic-
tion dynamics (2.25) and constraints

[
F + G K G E

]
z ≤ 1, the resulting MPC law

retains the recursive feasibility and stability properties of Algorithm 2.1. Approxi-
mating theMPI setZ (which is by definition maximal) using a smaller ellipsoidal set
necessarily introduces suboptimality into the resulting MPC law; but as discussed in
Sect. 2.8, the degree of suboptimality is in many cases negligible.

The invariant ellipsoidal set Ez can be computed offline by solving an appro-
priate convex optimization problem. The design of these sets is particularly con-
venient computationally because the conditions for invariance with respect to the
linear autonomous dynamics (2.25) and linear constraints

[
F + G K G E

]
zk ≤ 1
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may be written in terms of linear matrix inequalities (LMIs), which are necessar-
ily convex and can be handled using semidefinite programming (SDP) [17]. Linear
matrix inequalities and the offline optimization of Ez are considered in more detail
in Sect. 2.7.3; here we simply summarize the conditions for invariance of Ez in the
following theorem:

Theorem 2.9 The ellipsoidal set defined byEz
.= {z : zT Pzz ≤ 1} for Pz � 0 is posi-

tively invariant for the dynamics zk+1 = �zk and constraints
[
F + G K G E

]
zk ≤ 1

if and only if Pz satisfies

Pz − �T Pz� � 0 (2.32)

and

⎡

⎣
H

[
F + G K G E

]
[
(F + G K )T

(G E)T

]
Pz

⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, 2, . . . , nC (2.33)

for some symmetric matrix H, where ei is the i th column of the identity matrix.

Proof The inequality in (2.32) implies zT �T P�z ≤ zT Pz ≤ 1,which is a sufficient
condition for invariance of the ellipsoidal set Ez under zk+1 = �zk . Conversely,
(2.32) is also necessary for invariance since if Pz − �T Pz� � 0, then there would
exist z satisfying zT �T Pz�z > zT Pzz and zT Pzz = 1, which would imply that
�z /∈ Ez for some z ∈ Ez .

We next show that (2.33) provides necessary and sufficient conditions for satis-
faction of the constraints

[
F + G K G E

]
z ≤ 1, for all z ∈ Ez . To simplify notation,

let F̃
.= [

F + G K G E
]
and let F̃i denote the i th row of F̃ . Since

max
z

{
F̃i z subject to zT Pzz ≤ 1

} = (
F̃i P−1

z F̃ T
i

)1/2

it follows that F̃ x ≤ 1, for all x ∈ Ez if and only if F̃i P−1
z F̃ T

i ≤ 1 for each
row i = 1, . . . , nC . These conditions can be expressed equivalently in terms of a
condition on a positive-definite diagonal matrix:

⎡

⎢⎣
H1,1 − F̃1P−1

z F̃ T
1

. . .

HnC ,nC − F̃nC P−1
z F̃ T

nC

⎤

⎥⎦ � 0

for some scalars Hi,i ≤ 1, i = 1, . . . , nC , and this in turn is equivalent to

H − F̃ P−1 F̃T � 0

for some symmetric matrix H with eT
i Hei ≤ 1, for all i . Using Schur complements

(as discussed in Sect. 2.7.3), this condition is equivalent to
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[
H F̃
F̃T Pz

]
� 0, eT

i Hei ≤ 1, i = 1, . . . , nC

which implies the necessity and sufficiency of (2.33). �

2.7.2 The Predicted Cost and MPC Algorithm

Given the autonomous form of the prediction dynamics of (2.25) it is possible to
use a Lyapunov equation similar to (2.5) to evaluate the predicted cost J (xk, ck) of
(2.11) along the predicted trajectories of (2.27a), (2.27b). The stage cost (namely the
part of the cost incurred at each prediction time step) has the general form

‖x‖2Q + ‖u‖2R = ‖x‖2Q + ‖K x + c‖2R = xT (Q + K T RK )x + cT ET REc

= ‖z‖2
Q̂
, Q̂ =

[
Q + K T RK K T RE

ET RK ET RE

]
.

Hence J (xk, ck) can be written as

J (xk, ck) =
∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R
) =

∞∑

i=0

‖zi |k‖2Q̂ = ‖z0|k‖2W

where, by Lemma 2.1, W is the (positive-definite) solution of the Lyapunov equation

W = �T W� + Q̂. (2.34)

The special structure of � and Q̂ in this Lyapunov equation implies that its solution
also has a specific structure, as we describe next.

Theorem 2.10 If K is the optimal unconstrained linear feedback gain for the dynam-
ics of (2.1a), then the cost (2.11) for the predicted trajectories of (2.27a), (2.27b)
can be written as

J (xk, ck) = xT
k Wx xk + cT

k Wcck

Wc =

⎡

⎢⎢⎢⎣

BT Wx B + R 0 · · · 0
0 BT Wx B + R · · · 0
...

...
. . .

0 0 BT Wx B + R

⎤

⎥⎥⎥⎦
(2.35)

where Wx is the solution of the Riccati equation (2.9).

Proof Let W =
[

Wx Wxc
Wcx Wc

]
, then substituting for W , � and Q̂ in (2.34) gives
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Wx = ΦT WxΦ + Q + K T RK (2.36a)

Wcx = MT WcxΦ + ET (BT WxΦ + RK ) (2.36b)

Wc = (B E)T Wx (B E) + (B E)T Wxc M + MT Wcx B E + MT Wc M + ET RE

(2.36c)

The predicted cost for ck = 0 is ‖xk‖2Wx
, and since K is the unconstrained opti-

mal linear feedback gain, it follows from (2.36a) and Theorem 2.1 that Wx is the
solution of the Riccati equation (2.9). Furthermore, from Theorem 2.1 we have
K = −(BT Wx B + R)−1BT Wx A, so that BT WxΦ + RK = 0 and hence (2.36b)
gives Wcx − MT WcxΦ = 0, which implies that Wcx = 0. Therefore,

W =
[

Wx 0
0 Wc

]
, (2.37)

and from (2.36c) we have Wc − MT Wc M = ET (BT Wx B + R)E . Hence from the
structure of M and E in (2.26b), Wc is given by (2.35). �

Corollary 2.1 The unconstrained LQ optimal control law is given by the feedback
law u = K x, where K = −(BT Wx B + R)−1BT Wx A and Wx is the solution of the
Riccati equation (2.9).

Proof Theorem 2.1 has already established that the unconstrained optimal linear
feedback gain is as given in the corollary. The question remains as to whether it is
possible to obtain a smaller cost by perturbing this feedback law. Equation (2.35)
implies that this cannot be the case because the minimum cost is obtained for ck = 0.
This argument applies for arbitrary N and hence for perturbation sequences of any
length. �

Using the autonomous prediction system formulation of this section, Algo-
rithm 2.1 can be restated as follows:

Algorithm 2.2 At each time instant k = 0, 1, . . .:

(i) Perform the optimization

minimize
ck

‖ck‖2Wc
subject to

[
xk

ck

]
∈ S (2.38)
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where S = Z defined in (2.29) (νznC linear constraints), or S = Ez defined by
the solution of (2.32) and (2.33) (a single quadratic constraint).

(ii) Apply the control law uk = K xk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal value of ck for problem (2.38). �

Theorem 2.11 Under the MPC law of Algorithm 2.2, the origin x = 0 of system
(2.1a) is an asymptotically stable equilibrium with a region of attraction equal to the
set of states that are feasible for the constraints in (2.38).

Proof The constraint set in (2.38) is by assumption positively invariant. Therefore,
the tail ck+1 = Mc∗

k provides a feasible but suboptimal solution for (2.38) at time
k + 1. Stability and asymptotic convergence of xk to the origin is then shown by
applying the arguments of the proofs of Theorems 2.7 and 2.8 to the optimal value
of the cost J (xk, c∗

k) at the solution of (2.38). �

2.7.3 Offline Computation of Ellipsoidal Invariant Sets

In order to determine the invariant ellipsoidal set Ez for the autonomous prediction
dynamics (2.25), the matrices Pz and H must be considered as variables in the con-
ditions of Theorem 2.9. These conditions then constitute Linear Matrix Inequalities
(LMIs) in the elements of Pz and H . Linear matrix inequalities are used extensively
throughout this book; for an introduction to the properties of LMIs and LMI-based
techniques that are commonly used in systems analysis and control design problems,
we refer the reader to [17].

In its most general form a linear matrix inequality is a condition on the pos-
itive definiteness of a linear combination of matrices, where the coefficients of
this combination are considered as variables. Thus a (strict) LMI in the variable
x

.= (x1, . . . , xn) ∈ R
n can be expressed

M(x)
.= M0 + M1x1 + . . . + Mn xn � 0 (2.39)

where M0, . . . , Mn are given matrices.2 The convenience of LMIs lies in the convex-
ity of (2.39) (see also Questions 1–3 on page 233). This property makes it possible to
include conditions, such as those defining an invariant ellipsoidal set in Theorem 2.9,
in convex optimization problems that can be solved efficiently using semidefinite
programming.

2A non-strict LMI is similarly defined by M(x) � 0. Any non-strict LMI can be expressed equiv-
alently as a combination of a linear equality constraint and a strict LMI (see, e.g. [17]). However,
none of the non-strict LMIs encountered in this chapter or in Chap.5 carry implicit equality con-
straints, and hence non-strict LMIs may be assumed to be either strictly feasible or infeasible. We
therefore make use of both strict and non-strict LMIs with the understanding that M(x) � 0 can be
replaced with M(x) � 0 for the purposes of numerical implementation.

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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A suitable criterion for selecting Pz is to maximize the region of attraction of
Algorithm 2.2, namely the feasible set for the constraint zT

k Pzzk ≤ 1. This region is
equal to the projection of Ez = {z : zT Pzz ≤ 1} onto the x-subspace:

{x : ∃ c such that xT Pxx x + 2cT Pcx x + cT Pccc ≤ 1}

where the matrices Pxx , Pxc, Pcx , Pcc are blocks of Pz partitioned according to

Pz =
[

Pxx Pxc

Pcx Pcc

]
. (2.40)

By considering the minimum value of zT Pzz over all c for given x , it is easy to show
that the projection of Ez onto the x-subspace is given by

Ex
.= {

x : xT (Pxx − Pxc P−1
cc Pxc)x ≤ 1

}
.

Inverting the partitioned matrix Pz we obtain

P−1
z = S

.=
[

Sxx Sxc

Scx Scc

]
,

where
Sxx = (

Pxx − Pxc P−1
cc Pxc

)−1
,

and hence the volume of the projected ellipsoidal set Ex is proportional to 1/ det(S−1
xx )

= det(Sxx ). The volume of the region of attraction of Algorithm 2.2 is therefore
maximized by the optimization

maximize
S,Pz ,H

det(Sxx ) subject to (2.32), (2.33) (2.41)

Maximizing the objective in (2.41) is equivalent to maximizing log det(Sxx ),
which is a concave function of the elements of S (see, e.g. [18]). But this is not yet
a semidefinite programming problem since (2.32) and (2.33) are LMIs in Pz rather
than S. These constraints can however be expressed as Linear Matrix Inequalities in
S using Schur complements.

In particular, the positive definiteness of a partitioned matrix

[
U V T

V W

]
� 0

where U, V, W are real matrices of conformal dimensions, is equivalent to positive
definiteness of the Schur complements
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U � 0 and W − V U−1V T � 0,

or
W � 0 and U − V T W −1V � 0

(the proof of this result is discussed in Question1 in Chap.5 on page 233). Therefore,
after pre- and post-multiplying (2.32) by S, using Schur complements we obtain the
following condition: [

S �S
S�T S

]
� 0, (2.42)

which is an LMI in S. Similarly, pre- and post-multiplying the matrix inequality in

(2.33) by
[

I 0
0 S

]
yields the condition

⎡

⎣
H

[
F + G K G E

]
S

S

[
(F + G K )T

(G E)T

]
S

⎤

⎦ � 0 (2.43)

which is an LMI in S and H . Therefore Ez can be computed by solving the SDP
problem

maximize
S,H

log det(Sxx ) subject to (2.42), (2.43)

and eT
i Hei ≤ 1, i = 1, . . . , nC .

(2.44)

Example 2.4 For the system model, constraints and cost of Example 2.1, Fig. 2.7
shows the ellipsoidal regions of attraction Ex of Algorithm 2.2 for values of N in the
range 5–40 and compares these with the polytopic feasible set FN for N = 10. As
expected, the ellipsoidal feasible sets are smaller than the polytopic feasible sets of
Fig. 2.3, but the difference in area is small; the area of Ex for N = 40 is 13.4 while
that of F10 is 13.6, a difference of only 1%. On the other hand 36 linear constraints
are needed to define the polytopic setZ for N = 10whereas Ez is a single (quadratic)
constraint.

Figure2.8 shows closed-loop state and input responses for Algorithm 2.2, com-
paring the responses obtained with the ellipsoidal constraint zk ∈ Ez against the
responses obtainedwith the linear constraint set zk ∈ Z for N = 10. The difference in
the closed-loop costs of the two controllers for the initial condition x0 = (−7.5, 0.5)
is 17%. ♦

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Fig. 2.7 The ellipsoidal regions of attraction of Algorithm 2.2 for N = 5, 10, 15, 20, 30, 40. The
polytopic sets F10 and XT are shown (dashed lines) for comparison

Fig. 2.8 Closed-loop responses of Algorithm 2.2 for the example of (2.16a), (2.16b) for the
quadratic constraint zk ∈ Ez with N = 20 (blue o) and the linear constraints zk ∈ Z with N = 10
(red +). Left state trajectories and the feasible set Ex for N = 20. Right control inputs
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2.8 Computational Issues

The optimization problem to be solved online inAlgorithm2.1 has a convex quadratic
objective function and linear constraints, and is therefore a convexQuadratic Program
(QP). Likewise if Algorithm 2.2 is formulated in terms of linear constraints, then this
also requires the online solution of a convex QP problem. A variety of general QP
solvers (basedon active setmethods [19] or interior pointmethods [20]), can therefore
be used to perform the online MPC optimization required by these algorithms.

However algorithms for general quadratic programming problems do not exploit
the special structure of the MPC problem considered here, and as a result their
computational demand may exceed allowable limits. In particular they may not
be applicable to problems with high sample rates, high-dimensional models, or
long prediction horizons. For example the computational load of both interior point
and active set methods grows approximately cubically with the mode 1 prediction
horizon N .

The rate of growth with N of the required computation can be reduced how-
ever if the predicted model states are considered to be optimization variables. Thus
redefining the vector of degrees of freedom as dk ∈ R

Nnx +Nnu :

dk = (c0|k, x1|k, c1|k, x2|k, . . . , cN−1|k, xN |k)

and introducing the predicted dynamics of (2.14) as equality constraints results in an
online optimization of the form

minimize
dk

dT
k Hddk subject to Dddk = hh, Ccdk ≤ hc.

Although the number of optimization variables has increased from Nnu to Nnu +
Nnx , the key benefit is that the matrices Hd , Dd , Cc are sparse and highly structured.
This structure can be exploited to reduce the online computation so that it grows only
linearly with N (e.g. see [19, 20]).

An alternative to reducing the online computation is to use multiparametric pro-
gramming to solve the optimization problem offline for initial conditions that lie
in different regions of the state space. Thus, given that xk is a known constant, the
minimization of the cost of (2.35) is equivalent to the minimization of

J (d) = dT H0d (2.45)

where for simplicity, the vector of degrees of freedom c has been substituted by d
and the cost is renamed as simply J . The minimization of J is subject to the linear
constraints implied by the dynamics (2.14) and systemconstraints (2.2), togetherwith
the terminal constraints of (2.35); the totality of these constraints can be written as

C0d ≤ h0 + V0x (2.46)
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Then adjoining the constraints (2.46) with the cost of (2.45) through the use of a
vector of Lagrange multipliers λ, we obtain the first-order Karush–Kuhn–Tucker

(KKT) conditions [19]

H0d + CT
0 λ = 0 (2.47a)

λT (C0d − h0 − V0x) = 0 (2.47b)

C0d ≤ h0 + V0x (2.47c)

λ ≥ 0 (2.47d)

Now suppose that at the given x only a subset of (2.46) is active, so that gathering all
these active constraints and the corresponding Lagrange multipliers we can write

C̃0d − h̃0 − Ṽ0x = 0 (2.48a)

λ̃ ≥ 0 (2.48b)

In addition, the Lagrange multipliers corresponding to inactive constraints will be
zero so that from (2.47) it follows that

d = −H−1
0 C̃T

0 λ̃. (2.49)

The solution for λ̃ can be derived by substituting (2.49) into (2.48a) as

λ̃ = −(C̃0H−1
0 C̃T )−1(h̃0 + Ṽ0x). (2.50)

and substituting this into (2.49) produces the optimal solution as

d = H−1
0 C̃T

0 − (C̃0H−1
0 C̃T

0 )−1(h̃0 + Ṽ0x). (2.51)

Thus for given active constraints, the optimal solution is a known affine function of
the state. Clearly the optimal solution must satisfy the constraints (2.46) as well as
the Lagrange multipliers of (2.50) must satisfy (2.48a):

Co[H−1
o C̃T

o − (C̃o H−1
o C̃T

o )−1(h̃o + Ṽox)] ≤ ho + Vox

and

−(C̃o H−1
o C̃T

o )−1(h̃o + Ṽox) > 0.
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These two conditions give a characterization of the polyhedral region in which x
must lie in order that (2.48a) is the active constraint set.

A procedure based on these considerations is given in [14] for partitioning the con-
trollable set of Algorithms 2.1 and 2.2 into the union of a number of non-overlapping
polyhedral regions. Then the MPC optimization can be implemented online by iden-
tifying the particular polyhedral region inwhich the current state lies. In this approach
the associated optimal solution (2.51) is then recovered from a lookup table, and the
first element of this is used to compute and implement the current optimal control
input.

A disadvantage of this multiparametric approach is that the number of regions
grows exponentially with the dimension of the state and the length of the mode 1
prediction horizon N , and this can make the approach impractical for anything other
than small-scale problems with small values of N . Indeed in most other cases, the
computational and storage demands of the multiparametric approach exceed those
required by the QP solvers that exploit the MPC structure described above. Methods
have been proposed (e.g. [21]) for improving the efficiencywithwhich the polyhedral
state-space partition is computed by merging regions that have the same control
law, however the complexity of the polyhedral partition remains prohibitive in this
approach.

Example 2.5 For the second-order system defined in (2.16a), (2.16b), with the cost
and terminal constraints of Example 2.3 the MPC optimization problem (2.17) can
be solved using multiparametric programming. For a mode 1 horizon of N = 10
this results in a partition of the state space into 243 polytopic regions (Fig. 2.9), each
of which corresponds to a different active constraint set at the solution of the MPC
optimization problem (2.17). ♦

A further alternative [15, 16] which results in significant reduction in the online
computation replaces the polytopic constraints zk ∈ Z defined (2.29) by the ellip-
soidal constraint zk ∈ Ez defined in (2.44) and thus addresses the optimization

minimize
ck

‖zk‖2W subject to zT
k Pzzk ≤ 1, zk =

[
xk

ck

]
(2.52)

As discussed in Sect. 2.7, this results in a certain degree of conservativeness because
the ellipsoidal constraint zk ∈ Ez gives an inner approximation to the polytopic
constraint zk ∈ Z of (2.29). The problem defined in (2.52) can be formulated as
a second-order cone program (SOCP) in Nnu + 1 variables.3 If a generic solution
method is employed, then this problem could turn out to be more computationally
demanding than the QP that arises when the constraints are linear. However, the
simple form of the cost and constraint in (2.38) allow for a particularly efficient
solution, which is to be discussed next.

3Second-order cone programs are convex optimization problems that can be solved using interior
point methods. See [22] for details and further applications of SOCP.



2.8 Computational Issues 45

Fig. 2.9 The partition of the state space of the system of Example 2.5 into regions in which different
constraint sets are active at the solution of the online MPC optimization problem

To exploit the structure of the cost and constraint in (2.52), we use the partitions of
(2.37) and (2.40) to write zT

k W zk = xT
k Wx x + cT

k Wcck and zT
k Pzzk = xT

k Pxx xk +
2cT

k Pcx xk + cT
k Pccck , where use has been made of the fact that Pxc = PT

cx . The
minimizing value of ck in (2.52) can only occur at a point at which the two ellipsoidal
boundaries, ∂EJ

.= {zk : zT
k W zk = α} and ∂Ez

.= {zk : zT
K Pzzk = 1}, are tangential

to one another for some constant α > 0, namely when the gradients (with respect to
c) are parallel, i.e.

Wcck = μ(Pcx xk + Pccck), μ ≤ 0 (2.53)

for some scalar μ, or equivalently

ck = μMμ Pcx xk, Mμ = (Wc − μPcc)
−1. (2.54)

At the solution therefore, the inequality constraint in (2.52) will hold with equality
so that μ can be obtained as the solution of xT

k Pxx xk + 2cT
k Pcx + cT

k Pccck = 1 ,
which after some algebraic manipulation gives μ as a root of

φ(μ) = xT
k Pxc

(
MμWc P−1

cc Wc Mμ − P−1
cc

)
Pcx xk + xT

k Pxx xk − 1 = 0. (2.55)
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Equation (2.55) is equivalent to a polynomial equation in μ which can be shown
(using straightforward algebra) to have 2N roots, all corresponding to points of
tangency of ∂EJ and ∂Ez . However (2.52) has a unique minimum, and it follows that
only one of these roots can be negative, as is required by (2.53).

By repeatedly differentiating φ(μ) with respect to μ it is easy to show that the
derivatives of this polynomial satisfy

drφ

dμr
> 0 ∀μ ≤ 0.

This implies that the Newton–Raphson method, when initialised at μ = 0, is guar-
anteed to converge to the unique negative root of (2.55), and that the rate of its
convergence is quadratic.

Thus the optimal solution to (2.52) is obtained extremely efficiently by substituting
the negative root of (2.55) into (2.54); in fact the computation required is equivalent
to solving a univariate polynomial with monotonic derivatives. The price that must
be paid for this gain in computational efficiency is a degree of suboptimality that
results from the use of the ellipsoidal constraint zk ∈ Ez , which provides only an
inner approximation to the actual polytopic constraint of (2.29). However, simulation
results [16] show that in most cases the degree of suboptimality is not significant.
Furthermore predicted performance can be improved by a subsequent univariate
search over α ∈ [0, 1] with zk = (xk,αc∗

k) where c∗
k is the solution of (2.52). To

retain the guarantee of closed-loop stability this is performed subject to the constraints
that the vector �zk defining the tail of the predicted sequence at time k should lie
in the ellipsoid Ez and subject to the constraint Fxk + Guk ≤ 1. This modification
requires negligible additional computation.

2.9 Optimized Prediction Dynamics

The MPC algorithms described thus far parameterize the predicted inputs in terms
of a projection onto the standard basis vectors ei , so, for example

ck =
N−1∑

i=0

ci |kei+1

in the case that if nu = 1. As a consequence the degrees of freedom have a direct
effect on the predictions only over the N -step mode 1 prediction horizon, which
therefore has to be taken to be sufficiently long to ensure that constraints are met
during the transients of the prediction system response. Combinedwith the additional
requirement that the terminal constraint is met at the end of the mode 1 horizon for as
large a set of initial conditions as possible, this places demands on N that can make
the computational load ofMPC prohibitive for applications with high sampling rates.
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To overcome this problem an extra mode can be introduced into the predicted
control trajectories, as is done for example in triple mode MPC [23]. This additional
mode introduces degrees of freedom into predictions after the end of the mode 1
horizon but allows efficient handling of the constraints at these prediction instants,
thus allowing the mode 1 horizon to be shortened without adversely affecting opti-
mality and the size of the feasible set. Alternatively in the context of dual-mode
predictions it is possible to consider parameterizing predicted control trajectories as
an expansion over a finite set of basis functions. Exponential basis functions, which
allow the use of arguments based on the tail for analysing stability and convergence
(e.g. [24]), are most commonly employed in MPC, a special case being expansion
over Laguerre functions (e.g. [25]).

A framework that encompasses projection onto a general set of exponential basis
functions was developed in [26]. In this approach, the matrices E and M appearing in
the transition matrix � of the augmented prediction dynamics (2.25) are not chosen
as prescribed by (2.26b), but instead are replaced by variables, denoted Ac and Cc

that are optimized offline as we discuss later in this section. With this modification

the prediction dynamics are given by

zi+1|k = �zi |k, i = 0, 1, . . . (2.56a)

where

z0|k =
[

xk

ck

]
, � =

[
Φ BCc

0 Ac

]
(2.56b)

and the predicted state and control trajectories are generated by

ui |k = [
K Cc

]
zi |k (2.56c)

xi |k = [
I 0

]
zi |k . (2.56d)

As in Sect. 2.7, the predicted control law of (2.56c) has the form of a dynamic
feedback controller, the initial state of which is given by ck . However in Sect. 2.7 the
matrix M of (2.26) is nilpotent, so that M N ck = 0 and hence ui |k = K xi |k , for all
i = N , N + 1, . . .. For the general case considered in (2.56), Ac is not necessarily
nilpotent, which implies that the direct effect of the elements of ck can extend beyond
the initial N steps of the prediction horizon in this setting.

Following a development analogous to that of Sect. 2.7, the predicted cost (2.11)
can be expressed as J (xk, ck) = ‖z0|k‖2W where W satisfies the Lyapunov matrix
equation

W = �T W� + Q̂, Q̂ =
[

Q + K T RK K T RCc

CT
c RK CT

c RCc

]
. (2.57)
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By examining the partitioned blocks of this equation, it can be shown (using the same
approach as the proof of Theorem 2.10) that its solution is block diagonal

W =
[

Wx 0
0 Wc

]

whenever K is the unconstrained optimal feedback gain. Here Wx is the solution of
the Riccati equation (2.9) and Wc is the solution of the Lyapunov equation Wc =
AT

c W Ac +CT
c (BT Wx B + R)Cc. By Lemma 2.1, the solution is unique and satisfies

Wc � 0 whenever Ac is strictly stable.
The constraints (2.2) applied to the predictions of (2.56) require that z0|k lies in

the polytopic set

Z = {z : [
F + G K GCc

]
� i z ≤ 1, i = 0, 1, . . . , νz}, (2.58)

where
[
F + G K GCc

]
�νz+1z ≤ 1, for all z satisfying

[
F + G K GCc

]
� i z ≤ 1,

i = 0, 1, . . . , νz . By Theorem 2.3 this is the MPI set for the dynamics of (2.56) and
constraints (2.2), and its projection onto the x-subspace is therefore equal to the feasi-
ble set for xk for the prediction system (2.56) and constraints

[
F + G K GCc

]
z ≤ 1.

The MPC law of Algorithm 2.2 with the cost matrix W defined in (2.57) and con-
straint set Z defined in (2.58) has the stability and convergence properties stated in
Theorem 2.11.

Alternatively, and similarly to the discussion in Sect. 2.7, it is possible to replace
the linear constraints z0|k ∈ Z by a single quadratic constraint z0|k ∈ Ez in order to
reduce the online computational load of Algorithm 2.2. As in Sect. 2.7, we require
that Ez = {z : zT Pzz ≤ 1} is positively invariant for the dynamics zk+1 = �zk and
constraints

[
F + G K GCc

]
zk ≤ 1, which by Theorem 2.9 requires that there exists

a symmetric matrix H such that Pz , Ac and Cc satisfy

Pz − �T Pz� � 0 (2.59a)
⎡

⎣
H

[
F + G K GCc

]
[
(F + G K )T

(GCc)
T

]
Pz

⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, . . . nC . (2.59b)

Under these conditions the stability and convergence properties specified by Theo-
rem 2.11 again apply.

Using Ez as the constraint set in the online optimization in place of Z reduces
the region of attraction of the MPC law. However, to compensate for this effect it is
possible to design the prediction system parameters Ac and Cc so as to maximize the
projection of Ez onto the x-subspace. Analogously to (2.44), this is achieved by max-
imizing the determinant of [Inx 0]P−1

z [Inx 0]T subject to (2.59a), (2.59b). Unlike
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the case considered in Sect. 2.7, this is performed with Ac and Cc as optimization
variables. Viewed as inequalities in these variables, (2.59a), (2.59b) represent non-
convex constraints. The problem can however be convexified provided the dimension
of ck is at least as large as that of nx [26] using a technique introduced by [27] in the
context of H∞ control, as we discuss next.

Introducing variables U, V ∈ R
nx ×νc (where νc is the length of ck), � ∈ R

nx ×nx ,
� ∈ R

nu×nx and symmetric X, Y ∈ R
nx ×nx , we re-parameterize the problem by

defining

Pz =
[

X−1 X−1U
U T X−1 •

]
P−1

z =
[

Y V
V T •

]
, � = U AcV T , � = CcV T

(2.60)
(where • indicates blocks of Pz and P−1

z that are determined uniquely by X, Y, U, V ).
Since Pz P−1

z = I , we also require that

U V T = X − Y. (2.61)

The constraints (2.59a), (2.59b) can then be expressed as LMIs in �, �, X and Y .
Specifically, using Schur complements, (2.59a) is equivalent to

[
Pz Pz�

�T Pz Pz

]
� 0,

and multiplying the LHS of this inequality by diag{�T ,�T } on the left and

diag{�,�} on the right, where � =
[

Y X
V T 0

]
, yields the equivalent condition

⎡

⎢⎢⎣

[
Y X
X X

] [
ΦY + B� Φ X

� + ΦY + B� Φ X

]

�

[
Y X
X X

]

⎤

⎥⎥⎦ � 0 (2.62a)

(where the block marked � is omitted as the matrix is symmetric). Similarly, pre-
and post-multiplying thematrix inequality in (2.59b) by diag{I,�T } and diag{I,�},
respectively, yields

⎡

⎣
H

[
(F + G K )Y + G� (F + G K )X

]

�

[
Y X
X X

]
⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, . . . , nC .

(2.62b)

Therefore matrices Pz , Ac and Cc can exist satisfying (2.59a), (2.59b) only if the
conditions (2.62a), (2.62b) are feasible.Moreover, (2.62a), (2.62b) are both necessary
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and sufficient for feasibility of (2.59a), (2.59b) if νc ≥ nx since (2.61) then imposes
no additional constraints on X and Y (in the sense that U and V then exist satisfying
(2.61), for all X, Y ∈ R

nx ×nx ). Thevolumeof the projection ofEz onto the x-subspace
is proportional to det(Y ), which is maximized by solving the convex optimization:

maximize
�,�,X,Y

log det(Y ) subject to (2.62a), (2.62b). (2.63)

Finally, we note that the conditions (2.62a), (2.62b) do not depend on the value of
νc, and since there is no advantage to be gained using a larger value, we set νc = nx .
From the solution of (2.63), Ac and Cc are given uniquely by

Ac = U−1�V −T , Cc = �V −T .

while Pz can be recovered from (2.60).
A remarkable property of the optimized prediction dynamics is that the maximal

projection of Ez onto the x-subspace is as large as the maximal positively invariant
ellipsoidal set under any linear state feedback control law [26]. The importance of this
is that it overcomes the trade-off that exists in the conventional MPC formulations
of Sects. 2.7 and 2.5 between performance and the size of the feasible set. Thus,
in the interests of enlarging the terminal invariant set (and hence the overall region
of attraction), it may be tempting to de-tune the terminal control law. But this has
an adverse effect on predicted performance, and potentially also reduces closed-
loop performance. Such loss of performance is however avoided if the optimized
prediction dynamics are used since K can be chosen to be the unconstrained LQ
optimal gain, without any detriment to the size of the region of attraction.

Example 2.6 The maximal ellipsoidal region of attraction of Algorithm 2.2 for the
same system model, constraints and cost as Example 2.1 is shown in Fig. 2.10. Since
this is obtained by optimizing the prediction dynamics using (2.63), the number
of degrees of freedom in the resulting prediction system (i.e. the length of ck in
(2.56)) is the same as nx , which here is 2. The area of this maximal ellipsoid is 13.5,
whereas the area of the ellipsoidal region of attraction obtained from (2.44) for the
non-optimized prediction system (2.25) and the same number of degrees of freedom
in predictions (i.e. N = 2) is just 2.3.

Figure2.10 also shows the polytopic feasible set for xk in Algorithm 2.2 when
the optimized prediction dynamics are used to define the polytopic constraint set
Z in (2.58). Despite having only 2 degrees of freedom, the optimized prediction
dynamics result in a polytopic feasible set covering 97% of the area of the maximal
feasible set F∞, which for this example is equal to the polytopic feasible set for the
non-optimized dynamics with N = 26 degrees of freedom (also shown in Fig. 2.10).
For the initial condition x0 = (−7.5, 0.5), the closed-loop cost of Algorithm 2.2 with
the optimized prediction dynamics containing 2 degrees of freedom and polytopic
constraint set Z is 357.7, which from Table2.1 is only 0.5% suboptimal relative to
the ideal optimal cost with N = 11. ♦
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Fig. 2.10 Ellipsoidal region of attraction for optimized dynamics (with 2 degrees of freedom) and
ellipsoidal region of attraction for N = 2. Also shown are themaximal polytopic region of attraction
(F26) and the polytopic region of attraction for the optimized dynamics

2.10 Early MPC Algorithms

Perhaps the earliest reference to MPC strategies is [28], although the ideas of rolling
horizons and decision making based on forecasts had been used earlier in different
contexts (e.g. production scheduling). There have since been thousands of MPC
papers published in the open literature, including a plethora of reports on applications
ofMPC to industrial problems. Early contributions (e.g. [29, 30])were based onfinite
horizon predictive costs and as such did not carry guarantees of closed-loop stability.

The most cited of the early papers on predictive control is the seminal work
[31, 32] on Generalized Predictive Control (GPC). This uses an input–output model
to express the vector of output predictions as an affine function of the vector of
predicted inputs

yk =
⎡

⎢⎣
y1|k
...

yN |k

⎤

⎥⎦ = CGΔuk + y f
k , Δuk =

⎡

⎢⎣
Δu0|k

...

ΔuNu−1|k

⎤

⎥⎦

Here Nu denotes an input prediction horizon which is chosen to be less than or equal
to the prediction horizon N . The matrix CG is the block striped (Toeplitz) lower
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triangular matrix comprising the coefficients of the system step response, CGΔuk

denotes the predicted forced response at time k, and y f
k denotes the free response

at time k due to non-zero initial conditions. The notation Δu is used to denote the
control increments (i.e. Δui |k = ui |k − ui−1|k). Posing the problem in terms of
control increments implies the automatic inclusion in the feedback loop of integral
action which rejects (in the steady state) constant additive disturbances.

The GPC algorithm minimizes a cost, subject to constraints, which penalizes
predicted output errors (deviations from a constant reference vector r ) and predicted
control increments

Jk = (r − yk)
T Q̂(r − yk) + ΔuT

k R̂Δuk (2.64)

where r = [r T · · · r T ]T , Q̂ = diag{Q, . . . , Q} and R̂ = diag{R, . . . , R}. By
setting the derivative of this cost with respect toΔuk equal to zero, the unconstrained
optimum vector of predicted control increments can be derived as

Δuk =
(

CT
G Q̂CG + R̂

)−1
CT

G Q̂(r − y f
k ) (2.65)

The optimal current control move Δu0|k is then computed from the first element of
this vector, and the control input uk = Δu0|k + uk−1 is applied to the plant.

GPC has proven effective in a wide range of applications and is the basis of a
number of commercially successful MPC algorithms. There are several reasons for
the success of the approach, principal among these are: the simplicity and generality
of the plant model, and the lack of sensitivity of the controller to variable or unknown
plant dead time and unknown model order; the fact that the approach lends itself
to self-tuning and adaptive control, output feedback control and stochastic control
problems; and the ability of GPC to approximate various well-known control laws
through appropriate definition of the cost (2.64), for example LQ optimal control,
minimumvariance and dead-beat control laws. For further discussion of these aspects
of GPC and its industrial applications we refer the reader to [31–34].

Althoughwidely used in industry, the original formulation of GPC did not guaran-
tee closed-loop stability except in limiting cases of the input and output horizons (for
example, in the limit as both the prediction and control horizons tend to infinity, or
when the control horizon is Nu = 1, the prediction horizon is N = ∞ and the open-
loop system is stable). However, the missing stability guarantee can be established
by imposing a suitable terminal constraint on predictions.

Terminal equality constraints that force the predicted tracking errors to be zero at
all prediction times beyond the N -step prediction horizon were proposed for reced-
ing horizon controllers in the context of continuous time, time-varying unconstrained
systems in [35], time invariant discrete time unconstrained systems [36], and non-
linear constrained systems [37]. This constraint effectively turns the cost of (2.64)
into an infinite horizon cost which can be shown to be monotonically non-increasing
using an argument based on the prediction tail. As a result it can be shown that
tracking errors are steered asymptotically to zero. The terminal equality constraint
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need only to be applied over nx prediction steps after the end of an initial N -step
horizon. Under the assumption that N > nx , the general solution of the equality
constraints will contain, implicitly, (N − nx )nu degrees of freedom and these can be
used to minimize the resulting predicted cost (i.e. the cost of (2.64) after the expres-
sion for the general solution of the equality constraints has been substituted into
(2.64)). A closely related algorithm to GPC that addresses the case of constrained
systems is StableGPC (SGPC) [38], which establishes closed-loop stability by ensur-
ing that optimal predicted cost is a Lyapunov function for the closed-loop system.
Related approaches [36, 39] use terminal equality constraints explicitly, however
SGPC implements the equality constraints implicitly while preserving an explicit
representation of the degrees of freedom in predictions.

The decision variables in the SGPC predicted control trajectories appear as per-
turbations of a stabilizing feedback law, and in terms of a left factorization of transfer
function matrices, the predicted control sequence is given by

uk = Ỹ −1(z−1)
(

ck − z−1 X̃(z−1)yk+1

)
. (2.66)

Here z is the z-transform variable (z−1 can be thought of as the backward shift
operator, namely z−1 fk = fk−1), and X̃(z−1), Ỹ (z−1) are polynomial solutions
(expressed in powers of z−1) of the matrix Bezout identity

Ỹ (z−1)A(z−1) + z−1 X̃(z−1)B(z−1) = I. (2.67)

For simplicity, we use uk instead of Δuk and consider the regulation rather than
the setpoint tracking problem (i.e. we take r = 0). Here B(z−1), A(z−1) are the
polynomial matrices (in powers of z−1) defining right coprime factors of the system
transfer function matrix, G(z−1), where

yk+1 = G(z−1)uk = B(z−1)A−1(z−1)uk (2.68)

The determination of the coprime factors can be achieved through the compu-
tation of the Smith–McMillan form of the transfer function matrix, G(z−1) =
L(z−1)S(z−1)R(z−1) where S(z−1) = E(z−1)�−1(z−1) with both E(z−1) and
�(z−1) being diagonal polynomialmatrix functions of z−1. The right coprime factors
can then be chosen as B(z−1) = L(z−1)E(z−1), A(z−1) = R−1(z−1)�(z−1). Alter-
natively, B(z−1), A(z−1) can be computed through an iterative procedure, which we
describe now.

Assuming that G(z−1) is given as

G(z−1) = 1

d
(
z−1

) N (z−1)
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we need to find the solution, A(z−1), B(z−1), of the Bezout identity

N (z−1)A(z−1) = B(z−1)d(z−1) (2.69)

for which (2.67) admits a solution for X̃(z−1), Ỹ (z−1). This solution can be shown
to be unique under the assumption that the coefficient of z0 in A(z−1) is the identity,
and that A(z−1) and B(z−1) are of minimal degree. Equation (2.69) defines a set of
under-determined linear conditions on the coefficients of B(z−1), A(z−1). Thus the
coefficients of B(z−1), A(z−1) can be expressed as an affine function of a matrix,
say R, where R defines the degrees of freedom which are to be given up so that
(2.67) admits a solution. The determination of R constitutes a nonlinear problem
which, nevertheless, can be solved to any desired degree of accuracy by solving
(2.67) iteratively. The iteration consists of using the least squares solution for R of
(2.67) to update the choice for the coefficients of A(z−1), B(z−1); these updated
values are then used in (2.67) to update the solution for Ỹ (z−1), X̃(z−1), and so on.
Each cycle of this iteration reduces the norm of the error in the solution of (2.67)
and the iterative process can be terminated when the norm of the error is below a
practically desirable threshold.

Substituting (2.68) into (2.66), pre-multiplying by Ỹ (z−1) and using the Bezout
identity (2.67) provides the prediction model:

yk+1 = B(z−1)ck + y f
k+1

uk = A(z−1)ck + u f
k .

(2.70)

Here y f
k and u f

k denote the components of the predicted output and input trajectories
corresponding to the free response of the model due to non-zero initial conditions.
Consider now the dual coprime factorizations B(z−1)A−1(z−1) = Ã−1(z−1)B̃(z−1),
X (z−1)Y −1(z−1) = Ỹ −1(z−1)X̃(z−1) satisfying the Bezout identity

[
z−1 X̃(z−1) Ỹ (z−1)

Ã(z−1) −B̃(z−1)

] [
B(z−1) Y (z−1)

A(z−1) −z−1X (z−1)

]
=

[
I 0
0 I

]
(2.71)

Detailed calculation, based on simulating forward in time the relationships Ỹ (z−1)uk

= ck − z−1 X̃(z−1)yk+1 and Ã(z−1)yk+1 = B̃(z−1)uk , leads to the following
affine relationship from the vector of predicted controller perturbations, ck =
(c0|k, . . . , cN−1|k) (with ci |k = 0, for all i ≥ ν), to the vectors of predicted out-
puts, yk = (y1|k, . . . , yN |k), and inputs, uk = (u0|k, . . . , uN−1|k):

[
Cz−1 X̃ CỸ

CÃ −CB̃

] [
yk

uk

]
=

[
ck

0

]
−

[
Hz−1 X̃ CỸ

HÃ −HB̃

] [
yp

k
up

k

]
(2.72)

where N = ν + n A, yp
k = (yk−nX −1, . . . , yk) and up

k = (uk−nY , . . . , uk−1)

denote vectors of past input and output values and n A, nX , nY are the degrees
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of the polynomials A(z−1), X (z−1), Y (z−1). The C and H matrices are block
Toeplitz convolution matrices, which are defined for any given matrix polynomial
F(z−1) = F0 + F1z−1 + · · · + Fm z−m by

CF
.=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 0 · · · 0 0 · · · 0
F1 F0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

Fm Fm−1 · · · F0 0 · · · 0
0 Fm · · · F1 F0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · Fm Fm−1 · · · F0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, HF
.=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fm Fm−1 · · · F1
0 Fm · · · F2
...

...
. . .

...

0 0 · · · Fm

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the row-blocks of CF and HF consist, respectively, of N and m blocks.
The solution of (2.72) for the vectors, yk and uk , of output and input predictions

is affine in the vector of the degrees of freedom ck , and hence the predicted cost is
quadratic in ck . In particular the Bezout identity (2.71) implies an explicit expression
for the inverse of the matrix on the LHS of (2.72), which in turn implies the solution

[
yk

uk

]
=

[
CB

CA

]
ck −

[
CB CY

CA −Cz−1X

] [
Hz−1 X̃ HỸ

HÃ −HB̃

] [
yp

k
up

k

]
.

The second term on the RHS of this expression corresponds to the free responses of
the output and input predictions, and, on account of the structure of the convolution
matrices in (2.72) and the Bezout identity (2.71), these free responses are zero at the
end of the prediction horizon consisting of N = ν + NA steps. From this observation
and the finite impulse response of the filters B(z−1) and A(z−1) in (2.70), it follows
that SGPC imposes an implicit terminal equality constraint, namely that both the
predicted input and output vectors reach the steady value of zero at the end of the
horizon of N = ν+NA prediction time steps, and this gives the algorithm a guarantee
of closed-loop stability.

Equality terminal constraints can be overly stringent but it is possible to modify
SGPC so that the predicted control law of (2.66) imitates what is obtained using the
predicted control law, ui |k = K xi |k + ci |k , of the closed-loop paradigm. This can be
achieved through the use of the Bezout identity

Ỹ (z−1)A(z−1) + z−1 X̃(z−1)B(z−1) = Acl(z
−1) (2.73)

where Acl(z−1) is such that B(z−1) and Acl(z−1) define right coprime factors of the
closed-loop transfer function matrix (under the control law u = K x + c). The fact
that the same B(z−1) can be used for both the open and closed-loop transfer function
matrices can be argued as follows. Let B̂(z−1), Â(z−1) be the right coprime factors
of (z I − A)−1B such that B Â(z−1) = (z I − A)B̂(z−1). The consistency condition
for this equation is N (z I − A)B̂(z−1) = 0 where N is the full-rank left annihilator
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of B (satisfying the condition N B = 0). This is however is also the consistency
condition for the equation

B Acl(z
−1) = (z I − A − BK )−1 B̂(z−1),

which implies that B̂(z−1) can also be used in the right coprime factorization of
(z I − A−BK )−1B. Thus the same B(z−1) = C B̂(z−1) can be used for both the open
and closed-loop transfer function matrices given that these transfer function matrices
are obtained by the pre-multiplication byC of (z I − A)−1B and (z I − A− BK )−1B,
respectively. The property that a common B(z−1) can be used in the factorization of
the open and closed-loop transfer function matrices can also be used to prove that the
control law of (2.66) guarantees the internal stability of the closed-loop system [40]
(when Ỹ (z−1), X̃(z−1) satisfy either of (2.67) or (2.73)).

SGPC introduced a Youla parameter into the MPC problem and this provides
an alternative way to that described in Sect. 2.9 to endow the prediction structure
with control dynamics. This can be achieved by replacing the polynomial matrices
Ỹ (z−1), X̃(z−1), respectively by

M̃(z−1) = Ỹ (z−1) − z−1Q(z−1)B(z−1)

Ñ (z−1) = X̃(z−1) + A(z−1)Q(z−1)

where Q(z−1) represents a free parameter (which can be chosen to be any polynomial
matrix, or stable transfer function matrix). If Ỹ (z−1) and X̃(z−1) satisfy the Bezout
identity (either (2.67) or (2.73)), then so will M̃(z−1) and Ñ (z−1), which therefore
can be used in the control law of (2.66) in place of Ỹ (z−1) and X̃(z−1). The advantage
of this is that the degrees of freedom in Q(z−1) can be used to enhance the robustness
of the closed-loop system to model parameter uncertainty or to enlarge the region of
attraction of the algorithm [38].

At first sight it may appear that the relationships above will not hold in the
presence of constraints. However this is not so, because the perturbations ck have
been introduced in order to ensure that constraints are respected and therefore
the predicted trajectories are generated by the system operating within its linear
range. These prediction equations can be used to express the vector of predicted
outputs and inputs as functions of the vector of predicted degrees of freedom,
ck = (c0k, . . . , cN−1|k, c∞, c∞, . . .)where c∞ denotes the constant value of c which
ensures that the steady-state predicted output is equal to the desired setpoint vector r
and the vector ck contains Nnu degrees of freedom. Clearly for a regulation problem
with r = 0, c∞ would be chosen to be zero. SGPC then proceeds to minimize the
cost of (2.65) over the degrees of freedom (c0k, . . . , cN−1|k) subject to constraints
and implements the control move indicated by (2.66).
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The algorithms discussed in this section are based on output feedback and are
appropriate in caseswhere the assumption that the states aremeasurable and available
for the purposes of feedback does not hold true. In instances like this one can, instead,
revert to a state-space system representation constructed using current and past inputs
and outputs as states (e.g. [41]) or a state-space description of the combination of
the system dynamics together with the dynamics of a state observer (e.g. [42], which
established invariance using low-complexity polytopes, namely polytopes with 2nx

vertices).

2.11 Exercises

1 A first-order system with the discrete time model

xk+1 = 1.5xk + uk

is to be controlled using a predictive controller that minimizes the predicted perfor-
mance index

J (xk, u0|k, u1|k) =
1∑

i=0

(
x2i |k + 10u2

i |k
)

+ qx22|k

where q is a positive constant.

(a) Show that the unconstrained predictive control law is uk = −0.35xk if q = 1.
(b) The unconstrained optimal control law with respect to the infinite horizon cost∑∞

k=0(x2k + 10u2
k) is uk = −0.88xk . Determine the value of q so that the

unconstrained predictive control law coincides with this LQ optimal control
law.

(c) The predicted cost is to be minimized subject to input constraints

−0.5 ≤ ui |k ≤ 1.

If the predicted inputs are defined as ui |k = −0.88xi |k , for all i ≥ 2, show that
the MPC optimization problem is guaranteed to be recursively feasible if ui |k
satisfies these constraints for i = 0, 1 and 2.

2 (a) A discrete time system is defined by

xk+1 =
[
0 1
0 α

]
xk, yk = [

1 0
]

xk

where α is a constant. Show that −1 ≤ yk ≤ 1, for all k ≥ 0 if and only if
|α| < 1 and
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[−1
−1

]
≤ x0 ≤

[
1
1

]
.

(b) A model predictive control strategy is to be designed for the system

xk+1 =
[
β 1
0 α

]
xk +

[
1
0

]
uk, yk = [

1 0
]

xk, −1 ≤ uk ≤ 1

where α and β are constants, with |α| < 1. Assuming that, for i ≥ N , the i steps
ahead predicted input is defined as

ui |k = [−β 0
]

xi |k,

show that:

(i)
∞∑

i=0

(y2i |k + u2
i |k) =

N−1∑

i=0

(y2i |k + u2
i |k) + (β2 + 1)xT

N |k
[
1 0
0 1

1−α2

]
xN |k .

(ii) −1 ≤ ui |k ≤ 1 for all i ≥ N if

[−1
−1

]
≤ |β| xN |k ≤

[
1
1

]
.

(c) Comment on the suggestion that an MPC law based on minimizing the cost in
(b)(i) subject to −1 ≤ ui |k ≤ 1 for i = 0, . . . , N −1 and the terminal constraint
xN |k = 0 would be stable. Why would it be preferable to use the terminal
inequality constraints of (b)(ii) instead of this terminal equality constraint.

3 A system has the model

xk+1 =
[
0 1

−1 0

]
xk + 1

2

[−1
1

]
uk, yk = 1√

2

[
1 1

]
xk .

(a) Show that, if uk = 1√
2

yk , then

∞∑

k=0

1
2

(
y2k + u2

k

)
= ‖x0‖2.

(b) A predictive control law is defined at each time step k by uk = u∗
0|k , where

(u∗
0|k, . . . , u∗

N−1|k) is the minimizing argument of

min
u0|k ,...,uN−1|k

N−1∑

i=0

1
2

(
y2i |k + u2

i |k
)

+ ‖xN |k‖2.

Show that the closed-loop system is stable.
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(c) The system is now subject to the constraint −1 ≤ yk ≤ 1, for all k. Will the
closed-loop system necessarily be stable if the optimization in part (b) includes
the constraints −1 ≤ yi |k ≤ 1, for i = 1, 2, . . . , N + 1?

4 A discrete time system is described by the model xk+1 = Axk + Buk with

A =
[
0.3 −0.9

−0.4 −2.1

]
, B =

[
0.5
1

]

where uk = K xk for K = [
0.244 1.751

]
, and for all k = 0, 1 . . . the state xk is

subject to the constraints ∣∣[1 −1
]

xk
∣∣ ≤ 1.

(a) Describe a procedure based on linear programming for determining the largest
invariant set compatible with constraints |[1 −1

]
x | ≤ 1.

(b) Demonstrate by solving a linear program that the maximal invariant set is
defined by

{x : Fx ≤ 1 and FΦx ≤ 1},

where F =
[
1 −1

−1 1

]
and Φ =

[
0.42 −0.025

−0.16 −0.35

]
.

5 Consider the system of Question 4 with the cost
∑∞

k=0

(‖xk‖2Q + ‖uk‖2R
)
, with

Q = I and R = 1.

(a) For K = [
0.244 1.751

]
, solve the Lyapunovmatrix equation (2.5) to findW and

hence verify using Theorem 2.1 that K is the optimal unconstrained feedback
gain.

(b) Use the maximal invariant set given in Question 4(b) to prove that xi |k =[
I 0

]
� i zk satisfies the constraints |[1 −1

]
xi |k | ≤ 1, for all i ≥ 0 if

[
F 0

]
� i zk

≤ 1 for i = 0, 1, . . . , N + 1, where

F =
[
1 −1

−1 1

]
, � =

[
A + BK B E

0 M

]
, zk =

[
xk

ck

]

E = [
1 0 · · · 0] ∈ R

1×N , M =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎦
∈ R

N×N .

(c) Show that the predicted cost is given by

J (xk, ck) = ‖xk‖2W + ρ‖ck‖2, W =
[
1.33 0.58
0.58 4.64

]
, ρ = 6.56.
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(d) For the initial condition x0 = (3.8, 3.8), the optimal predicted cost,

J ∗
N (x0)

.= min
c∈RN

J (x0, c) subject to
[
F 0

]
� i

[
x0
c

]
≤ 1, i = 1, . . . , N + 1

varies with N as follows:

N 8 9 10 11
J ∗

N (x0) ∞ 826.6 826.6 826.6

(the problem is infeasible for N ≤ 8). Suggestwhy J ∗
N (x0) is likely to be equal to

826.6, for all N > 9 and state the likely value of the infinite horizon cost for the
closed loop state and control sequence starting from x0 under uk = K xk + c∗

0|k
if N = 9.

6 For the system and constraints of Question 4 with K = [
0.244 1.751

]
:

(a) Taking N = 2, solve the optimization (2.41) to determine, for the prediction
dynamics zk+1 = �zk , the ellipsoidal invariant set {z : zT Pzz ≤ 1} that has
the maximum area projection onto the x-subspace. Hence show that the greatest
scalar α such that x0 = (α,α) satisfies zT

0 Pzz0 ≤ 1 for z0 = (x0, c0), for some
c0 ∈ R

2, is α = 1.79.
(b) Show that, for N = 2, the greatest α such that x0 = (α,α) is feasible for the

constraints
[
F 0

]
� i z0 ≤ 1, i = 0, . . . , N + 1, for z0 = (x0, c0), for some

c0 ∈ R
2, is α = 2.41. Explain why this value is necessarily greater than the

value of α in (a).
(c) Determine the optimized prediction dynamics by solving (2.63) and verify that

Cc = [−1.22 −0.45
]
, Ac =

[
0.96 0.32

−0.015 −0.063

]
,

and also that the maximum scaling α such that x0 = (α,α) is feasible for
zT
0 Pzz0 ≤ 1 for z0 = (x0, c0), for some c0 ∈ R

2, is α = 2.32.
(d) Using the optimized prediction dynamics computed in part (c), define

�̂ =
[

A + BK BCc

0 Ac

]

and show that xi |k = [
I 0

]
�̂ i zk satisfies constraints |[1 −1

]
xi |k | ≤ 1, for all

i ≥ 0 if
[
F 0

]
�̂ i zk ≤ 1 for i = 0, . . . , 5. Hence show that the maximum

scaling α such that x0 = (α,α) satisfies these constraints for some c0 ∈ R
2 is

α = 3.82.
(e) Show that the optimal value of the predicted cost for the prediction dynamics

and constraints determined in (d) with x0 = (3.8, 3.8) is J ∗(x0) = 1686.
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Explain why this value is greater than the predicted cost in Question 5(d) for
N = 9.What is the advantage of theMPC law based on the optimized prediction
dynamics?

7 With K = [
0.067 2

]
, the model of Question 4 gives

A + BK =
[
0.33 0.1

−0.33 −0.1

]
.

(a) Explain the significance of this for the size of the feasible initial condition set
of an MPC law which is subject to the state constraints |[1 1

]
x | ≤ 1 rather than

the constraints of Question 4?
(b) Explain why the feasible set of the MPC algorithm in Question 5(d) (which is

subject to the constraints |[1 −1
]

x | ≤ 1) is finite for all N .

8 GPC can be cast in terms of state-space models, through which the predicted
output sequence yk = (y1|k, . . . , yN |k) can be expressed as an affine function of
the predicted input sequence uk = (u0|k, . . . , uNu−1|k) as yk = Cx xk + Cuuk .
Using this expression show that the unconstrained optimum for the minimization
of the regulation cost Jk = yT

k Q̂yk + uT
k R̂uk , with Q̂ = diag{Q, . . . , Q} and

R̂ = diag{R, . . . , R}, is given by

u∗
k = −

(
R̂ + CT

u Q̂Cu

)−1
CT

u Q̂Cx xk .

Hence show that for

A =
[
0.83 −0.46

−0.05 0.86

]
, B =

[
0.26
0.55

]
, C = [

0.67 0.71
]
,

and in the absence of constraints, GPC results in an unstable closed loop system for
all prediction horizons N ≤ 9 and input horizons Nu ≤ N . Confirm that the open-
loop system is stable but that its zero is non-minimum phase. Construct an argument
which explains the instability observed above.

9 (a) Compute the transfer function of the system of Question 8 and show that the
polynomials

X̃(z−1) = 21.0529z−1 − 32.2308, Ỹ (z−1) = 19.8907z−1 + 1

are solutions of the Bezout identity (2.67).
(b) It is proposed to use SGPC to regulate the system of part (a) about the origin

(i.e. the reference setpoint is taken to be r = 0) using two degrees of freedom,
ck = (c0|k, c1|k), in the predicted state and input sequences, the implicit assump-
tion being that ci |k = 0, for all i ≥ 2. Form the 4×4 convolutionmatricesCz−1 X̃ ,
CỸ , CÃ, CB̃ and confirm that
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[
Cz−1 X̃ CỸ

CÃ −CB̃

]−1

=
[

CA CY

CB −Cz−1X

]
.

Hence show that the prediction equation giving the vectors of predicted outputs
yk = (y1|k, . . . , y4|k) and inputs uk = (u0|k, . . . , u3|k) is

[
yk

uk

]
=

[
CB

CA

] [
ck

02×1

]
−

⎡

⎢⎢⎢⎢⎣

12.6 −19.9 11.9
03×3

21.1 −32.2 19.9
−13.31 21.1 −12.6

02×3

⎤

⎥⎥⎥⎥⎦

[
yp

k
up

k

]
.

(c) Show that the predicted sequences in (b) implicitly satisfy a terminal constraint.
Hence explain why the closed-loop system under SGPC is necessarily stable.

10 For the data of Question 9 plot the frequency response of the modulus of
K (z−1)/

(
1 + G(z−1)K (z−1)

)
where

K (z−1) = X̃(z−1) + A(z−1)Q(z−1)

Ỹ (z−1) − z−1B(z−1)Q(z−1)

for the following two cases:

(a) Q(z−1) = 0
(b) Q(z−1) = −11.7z−1 + 43

Hence suggest what might be the benefit of introducing aYoula parameter into SGPC
in terms of robustness to additive uncertainty in the system transfer function.
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Part II
Robust MPC



Chapter 3
Open-Loop Optimization Strategies
for Additive Uncertainty

The essential components of the classical predictive control algorithms considered
in Chap.2 also underpin the design of algorithms for robust MPC. Guarantees of
closed-loop properties such as stability and convergence rely on appropriately defined
terminal control laws, terminal sets and cost functions. Likewise, to ensure that
constraints can be met in the future, the initial plant state must belong to a suitable
controllable set. However the design of these constituents and the analysis of their
effects on the performance of MPC algorithms becomes more complex in the case
where the system dynamics are subject to uncertainty. The main difficulty is that
properties such as invariance, controlled invariance (including recursive feasibility)
andmonotonicity of the predicted costmust be guaranteed for all possible uncertainty
realizations. In many cases this leads to computation which grows rapidly with the
problem size and the prediction horizon.

Uncertainty is a ubiquitous feature of control applications. It can arise as a result
of the presence of additive disturbances in the system model and can also be multi-
plicative in nature, for example as a result of an imprecise knowledge of the model
parameters. In either case it is essential that certain properties (including closed-loop
stability and performance) are preserved despite the presence of uncertainty, and this
is the main preoccupation of robust MPC (RMPC). In this chapter and in Chap.4,
consideration will be given to the additive case, whereas the multiplicative case will
be examined in Chap.5. These topics will be re-examined in later chapters in the
context of stochastic MPC.

Within the range of approaches that have been proposed for robust MPC, there is
a fundamental difference between strategies in which optimization is performed over
open-loop prediction strategies and those that optimize the parameters of predicted
feedback laws. This chapter discusses open-loop optimization algorithms; these are
often conceptually simpler and generally have lower computational complexity than
their counterparts employing closed-loop strategies. However the techniques intro-
duced here for determining feasibility of robust constraints and closed-loop stability
analysis carry over to the closed-loop strategies considered in Chap.4. The chapter
begins with a discussion of robust constraint handling, then describes cost functions
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68 3 Open-Loop Optimization Strategies for Additive Uncertainty

and stability analyses, before continuing to describe alternative approaches based
on the online optimization of tubes that bound predicted state and input trajectories.
The chapter concludes with a discussion of early robust MPC algorithms.

3.1 The Control Problem

We consider the system model that is obtained when a disturbance term representing
additive model uncertainty is introduced into the linear dynamics of (2.1):

xk+1 = Axk + Buk + Dwk . (3.1)

Here D is a matrix of known parameters and wk ∈ R
nw is a vector of disturbance

inputs, unknown at time k.
As in Chap.2, the system matrices A, B are assumed known, uk ∈ R

nu is the
control input at time k and the state xk ∈ R

nx is known at time k. The disturbancewk

is assumed to belong to a known setW , namely, at each time instant k, we require that

wk ∈ W.

The disturbance set W is assumed to be full dimensional (i.e. not restricted to a
subspace of Rnw ) and D is assumed to be full rank, with rank(D) = nw. We also
assume that W contains the origin in its interior. Clearly, if the origin did not lie in
the interior of W , then the model uncertainty in (3.1) could be represented as the
sum of a known, constant disturbance and an unknown, time-varying disturbance
belonging to a known disturbance set that does contain the origin in its interior.
A constant disturbance would result in a constant offset in the evolution of the state
of (3.1), which could be accounted for by a translation of the origin of state space;
with this modification it can always be assumed that the origin lies in the interior of
W .

The disturbance set W is further assumed to be a convex polytopic set. Any
compact convex polytope may be represented by its vertices, for example

W = Co{w( j), j = 1, . . . , m}, (3.2)

where w( j), j = 1, . . . , m are the vertices (extreme points) ofW and Co{·} denotes
the convex hull. An alternative description in terms of linear inequalities is given by

W = {w : V w ≤ 1}, (3.3)

for some matrix V ∈ R
nV ×nw that specifies the hyperplanes boundingW . Here V is

assumed to be minimal in the sense that nV is the smallest number hyperplanes that
define the boundary ofW . The linear inequality representation (3.3) is usually more
parsimonious than the vertex representation (3.2). This is because the number, m,

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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of vertices of W must be at least as large as the minimal number, nV , of rows of V
becauseW is by assumption full dimensional, and m is typically much greater than
nV . However both representations are employed in different RMPC formulations,
and depending on the context we will make use of either (3.2) or (3.3).

In this chapter, we introduce some notation specific to sets.

• The Minkowski sum of a pair of sets X ,Y ⊆ R
n is denoted X ⊕ Y , and is defined

as the set (see Fig. 3.1)

X ⊕ Y .= {z ∈ R
n : z = x + y, for any x ∈ X and y ∈ Y}.

• The Pontryagin difference of two sets X ,Y ⊂ R
n , denoted X � Y , is the set

X � Y = {z ∈ R
n : z + y ∈ X , for all y ∈ Y},

so that Z = X � Y if and only if X = Y ⊕ Z .
• The image of X ⊂ R

n under a matrix H ∈ R
m×n is defined as the set

HX .= {z ∈ R
m : z = H x, for any x ∈ X }.

Thus, for example HX = Co{H x ( j), j = 1, . . . , q} if X is a compact convex
polytope described in terms of its vertices as X = Co{x ( j), j = 1, . . . , q}.

• For a closed set X ⊂ R
n and F ∈ R

m×n, h ∈ R
m , we use FX ≤ h to denote the

conditions
max
x∈X

Fx ≤ h.

Here and throughout this chapter the maximization of a vector-valued function is
to be performed elementwise, so that maxx∈X Fx denotes the vector in R

m with
i th element equal to maxx∈X Fi x , where Fi is the i th row of the matrix F .

As in Chap.2 the system is assumed to be subject to mixed constraints on the
states and control inputs

Fxk + Guk ≤ 1 (3.4)

and performance is again judged in terms of a quadratic cost of the form of (2.3).
However, in the uncertain case considered here, the quantity

∞∑

i=0

(‖xk+i‖2Q + ‖uk+i‖2R
)

(3.5)

evaluated along trajectories of (3.1) is uncertain at time k since it depends on the
disturbance sequence {wk, wk+1, . . .}, which is unknown at time k.

To account for this, we consider two alternative definitions of the cost when
evaluating predicted performance: the nominal cost corresponding to the case of no
model uncertainty (i.e. wk = 0 for all k); and the worst-case cost over all admissible

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Fig. 3.1 A graphical representation of the Minkowski sum X ⊕ Y of a pair of closed convex
polytopic sets X , Y , and of the linear constraint Fi x ≤ 1 applied to X ⊕ Y . If Z = X ⊕ Y , then
FiZ ≤ 1 is equivalent to FiX ≤ 1 − hi for hi = maxy∈Y FiY

disturbance sequences (wk ∈ W for all k). In the latter case, we introduce into the
stage cost of (3.5) an additional quadratic term which is negative definite in wk to
ensure a finite worst-case cost; this results in theH∞ cost of classical robust control.

Robust MPC algorithms employing open-loop and closed-loop optimization
strategies possess fundamentally different properties. To make this distinction clear
we introduce the following definition.

Definition 3.1 (Open-loop and closed-loop strategies) In an open-loop optimiza-
tion strategy the sequence of control inputs, {u0|k, u1|k, . . .}, predicted at time k is
independent of the realization of the disturbance sequence {w0|k, w1|k, . . .}. In a
closed-loop optimization strategy the predicted control sequence {u0|k, u1|k, . . .} is
a function of the realization of the disturbance sequence {w0|k, w1|k, . . .}.

By a slight abuse of terminology, we refer to the closed-loop paradigm introduced
in Sect. 2.3 as an open-loop optimization strategy when it is used in the context of
RMPC. In (2.13) the control inputs predicted at time k are specified by the closed-loop
paradigm for i = 0, 1, . . . as

ui |k = K xi |k + ci |k (3.6)

where K is a fixed stabilizing feedback gain, and ci |k for i = 0, . . . , N − 1 are
optimization variables with ci |k = 0 for i ≥ N . Clearly ui |k depends on the state
xi |k and hence on the realization of w0|k, . . . , wi−1|k . Strictly speaking therefore
(3.6) is a closed-loop strategy. However the optimization variables c0|k, . . . , cN−1|k
do not depend on the realization of future uncertainty and hence they appear in the
state predictions generated by (3.1) as an open-loop control sequence applied to
pre-stabilized dynamics:

xi+1|k = Φxi |k + Bci |k + Dwi |k (3.7)

for i = 0, 1, . . ., whereΦ = A + BK . Therefore the closed-loop paradigm is equiv-
alent to an open-loop strategy applied to this system. Throughout this chapter, as in

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Chap.2, we assume that K is the optimal feedback gain in the absence of inequality
constraints on the system states and control inputs.

A closed-loop optimization strategy optimizes predicted performance over a class
of feedback policies which is parameterized by the degrees of freedom in the opti-
mization problem. The approach benefits from information on future disturbances
which, though unknown to an observer at current time, will be available to the con-
troller when the future control input is applied to the plant. We note here that robust
MPC based on closed-loop optimization has the distinct advantage that it can pro-
vide the optimal achievable performance in respect of both the region of attraction
and the worst-case performance objective. Closed-loop optimization strategies are
considered in detail in Chap.4 and their advantages over open-loop strategies are
discussed in Sect. 4.1.

3.2 State Decomposition and Constraint Handling

The future values of the state of the system (3.1) are uncertain because of the unknown
future disturbances acting on the system. However, given knowledge of a set con-
taining all realizations of the disturbance input, sequences of sets can be determined
that necessarily contain the future state and control input, and this is the basis of
methods for guaranteeing robust satisfaction of constraints. Because of the linear-
ity of the model (3.1), the component of the predicted state that is generated by the
disturbance input evolves independently of the optimization variables when an open-
loop optimization strategy is employed. Since the constraints (3.4) are also linear,
the worst-case disturbances with respect to these constraints do not depend on the
optimization variables and can therefore be determined offline. This leads to a com-
putationally convenient method of handling constraints for open-loop optimization
strategies. In fact the resulting constraints on predicted states and inputs are of the
same form as those of the nominal (uncertainty-free) MPC problem, and are simply
tightened to account for the uncertainty in predictions.

This section discusses the application of the constraints (3.4) to the predictions of
the model (3.1) under the open-loop strategy (3.6). We first decompose the predicted
state into nominal and uncertain components, denoted s and e, respectively. Thus,
let xi |k = si |k + ei |k , where the nominal and uncertain components evolve for i =
0, 1, . . . according to

si+1|k = Φsi |k + Bci |k, (3.8a)

ei+1|k = Φei |k + Dwi |k, (3.8b)

with initial conditions e0|k = 0 and s0|k = xk .
As in Sect. 2.7, it is convenient to augment the predicted model state with the

degrees of freedom in predictions by defining an augmented state variable z ∈ R
nz ,

nz = nx + Nnu ,

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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z =
[

s
c

]
,

where c is the vector of optimization variables,with ck = (c0|k, . . . , cN−1|k) at time k.
Then the nominal predicted state is given by si |k = [

Inx 0
]

zi |k , where zi+1|k evolves
for i = 0, 1, . . . according to the autonomous dynamics

zi+1|k = Ψ zi |k . (3.9)

Here, the matrix Ψ and the initial condition z0|k are defined by

Ψ =
[
Φ B E
0 M

]
and z0|k =

[
xk

ck

]

with E and M given by (2.26b). In terms of the augmented state zi |k we obtain the
predicted future values of the state and control input generated by (3.6) and (3.7) as

xi |k = [
I 0

]
zi |k + ei |k (3.10a)

ui |k = [
K E

]
zi |k + K ei |k . (3.10b)

The predicted state and input sequences in (3.10) satisfy the constraints (3.4) if
and only if the following condition is satisfied for all i = 0, 1, . . .,

Fxi |k + Gui |k ≤ 1 ∀{w0|k, . . . , wi−1|k} ∈ W × · · · × W.

Therefore the constraints (3.4) are equivalent to the following conditions

F̄Ψ i z0|k ≤ 1 − hi , i = 0, 1, . . . (3.11)

where

F̄ = [
F + G K G E

]

and the vectors hi are defined for all i ≥ 0 by

h0
.= 0 (3.12a)

hi
.= max

{w0|k ,...,wi−1|k }∈W×···×W
(F + G K )ei |k, i = 1, 2, . . . (3.12b)

From (3.8b) we obtain ei |k = wi−1|k + · · · + Φ i−2w1|k + Φ i−1w0|k , and hence hi

in (3.12b) can be expressed

hi =
i−1∑

j=0

max
w j ∈W

(F + G K )Φ j Dw j , i = 1, 2, . . . (3.13)

http://dx.doi.org/10.1007/978-3-319-24853-0_2


3.2 State Decomposition and Constraint Handling 73

or equivalently by the recursion

hi = hi−1 + max
w∈W

(F + G K )Φ i−1Dw, i = 1, 2, . . .

Since the maximization in this expression applies elementwise, hi is determined by
the solution of inu linear programs, each of which determines the maximizing value
of w for an element of an individual term in (3.13).

Comparing (3.11) with (2.28) it can be seen that the robust constraints for additive
model uncertainty are almost identical to the constraints for the case of no uncertainty
that was considered in Chap.2. The difference between these two cases is the vector
hi appearing in (3.11). The definition of hi in (3.12) implies that this term simply
tightens the constraint set by the minimum that is required to accommodate the
worst-case value of ei |k , namely the worst-case future uncertainty with respect to the
constraints.

3.2.1 Robustly Invariant Sets and Recursive Feasibility

The conditions in (3.11) are given in terms of an infinite number of constraints,
and from (3.13) these depend on the solution of an infinite number of linear pro-
grams. Clearly, this infinite set of conditions is not implementable, and it is nec-
essary to consider whether (3.11) can be equivalently stated in terms of a finite
number of constraints. A further question relates to recursive feasibility of (3.11).
Specifically, whether there necessarily exists ck+1 so that, if the conditions of (3.11)
are satisfied by z0|k = (xk, ck), then they will also hold when z0|k is replaced by
z0|k+1 = (xk+1, ck+1).

Both of these issues can be addressed using the concept of robust positive invari-
ance.We define this in the context of the uncertain dynamics and constraints given by

zi+1 = Ψ zi + D̄wi , wi ∈ W (3.14a)

F̄ zi ≤ 1, i = 0, 1, . . . (3.14b)

Note that the constraints of (3.11) are satisfied if and only if (3.14b) holds for all
wi ∈ W , i = 0, 1, . . ., if D̄ is defined as

D̄ =
[

D
0

]
.

Definition 3.2 (Robustly positively invariant set) A set Z ⊂ R
nz is robustly posi-

tively invariant (RPI) under the dynamics (3.14a) and constraints (3.14b) if and only
if F̄ z ≤ 1 and Ψ z + D̄w ∈ Z for all w ∈ W , for all z ∈ Z .

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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It is often desirable to determine the largest possible RPI set for a given sys-
tem. This is defined analogously to the case of systems with no model uncertainty
considered in Sect. 2.4.

Definition 3.3 (Maximal robustly positively invariant set) The maximal robustly
positively invariant (MRPI) set under (3.14a) and (3.14b) is the union of all RPI sets
under these dynamics and constraints.

Unlike the case of no model uncertainty, for which the maximal invariant set is
necessarily non-empty ifΦ is strictly stable, theMRPI set for (3.14a) and (3.14b)will
be empty whenever the disturbance setW is sufficiently large. Since the constraints
(3.14b) are equivalent to (3.11), it is clear that theMRPI set can be non-empty only if
the constraint tightening parameters hi defined in (3.12) satisfy hi < 1 for all i . From
the expression for hi in (3.13), where Φ is by assumption a stable matrix (i.e. all of
its eigenvalues lie inside the unit circle), it follows that hi has a limit as i → ∞ and
hence, we require that

lim
i→∞ hi < 1. (3.15)

The conditions under which this inequality holds will be examined in Sect. 3.2.2.
Assuming that (3.15) is satisfied, the following theorem (which is a simplified version
of a result from [1]) shows that the MRPI set is defined in terms of a finite number
of linear inequalities.

Theorem 3.1 If (3.15) holds, then the MRPI set ZMRPI for the dynamics defined by
(3.14a) and the constraints (3.14b) can be expressed

ZMRPI = {z : F̄Ψ i z ≤ 1 − hi , i = 0, . . . , ν} (3.16)

where ν is the smallest positive integer such that F̄Ψ ν+1z ≤ 1 − hν+1 for all z
satisfying F̄Ψ i z ≤ 1 − hi , i = 0, . . . , ν. Furthermore ν is necessarily finite if Ψ is
strictly stable and (Ψ, F̄) is observable.

Proof For any nonnegative integer n, let Z(n) denote the set

Z(n) .= {z : F̄Ψ i z ≤ 1 − hi , i = 0, . . . , n}.

If F̄Ψ ν+1z ≤ 1 − hν+1 for all z ∈ Z(ν), then, since hi+1 ≥ hi + F̄Ψ i D̄w for all
w ∈ W , the following conditions hold for all z ∈ Z(ν),

(a) F̄Ψ i (Ψ z + D̄w) ≤ 1 − hi for all w ∈ W , for i = 0, . . . , ν,
(b) F̄ z ≤ 1.

These conditions imply that Z(ν) is RPI under the dynamics (3.14a) and constraints
(3.14b), and hence Z(ν) ⊆ ZMRPI. Furthermore ZMRPI must be a subset of Z(n) for
all n ≥ 0, since if z /∈ Z(n), then z cannot belong to any set that is RPI under (3.14a)
and (3.14b). Hence ZMRPI = Z(ν) if F̄Ψ ν+1z ≤ 1 − hν+1 for all z ∈ Z(ν).

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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It can moreover be concluded thatZMRPI = Z(ν) for some finite ν sinceZMRPI is
necessarily bounded given that (Ψ, F̄) is observable, and because Z(n+1) = Z(n) ∩
{z : F̄Ψ (n+1)z ≤ 1 − hn+1}, where {z : F̄Ψ (ν+1)z ≤ 1 − hν+1} must contain any
bounded set for some finite n since Ψ is strictly stable and since (3.15) implies that
the elements of hn are strictly less than unity for all n ≥ 0. �

Since the conditions (3.11) hold if and only if (3.14b) holds for all wi ∈ W ,
i = 0, 1, . . ., Theorem 3.1 implies that the constraints of (3.11) are equivalent to the
condition that z0|k ∈ ZMRPI, which is determined by a finite set of linear constraints.
In addition, theMRPI set for the lifted dynamics provides the largest possible feasible
set for the open-loop strategy (3.6) applied to (3.7). To see this, consider for example
the projection of ZMRPI in (3.16) onto the x-subspace,

FN
.=

{
x : ∃ c such that F̄Ψ i

[
x
c

]
≤ 1 − hi , i = 0, . . . , ν

}
. (3.17)

Analogously to the case of no model uncertainty considered in Sect. 2.7.1,FN has an
interpretation as the set of all feasible initial conditions for the predictions generated
by (3.6) and (3.7) subject to constraints (3.4):

FN =
{

x0 : ∃ {c0, . . . , cN−1}
such that (F + G K )xi + Gci ≤ 1, i = 0, . . . , N − 1,

and xN ∈ XT , ∀{w0, . . . , wN−1} ∈ W × · · · × W
}
. (3.18)

(Here the use of an open-loop strategy means that, for given x0, the sequence
c = {c0, . . . , cN−1} must ensure that the constraints are satisfied for all possible dis-
turbance sequences {w0, . . . , wN−1} ∈ W × · · · × W .) This interpretation of FN

implies that the predicted state N steps ahead must lie in a terminal set, XT , which
is RPI for (3.1) under uk = K xk . Furthermore, from (3.17) and the definition of Ψ ,
the terminal set XT must be the intersection of ZMRPI with the subspace on which
c = 0, so that

XT =
{

x : [
(F + G K ) G E

]
Ψ i

[
x
0

]
≤ 1 − hi , i = 0, 1, . . .

}

= {
x0 : (F + G K )xi ≤ 1 − hi , xi+1 = Φxi , i = 0, 1, . . .

}
.

It follows that XT is the maximal RPI set for (3.1) under uk = K xk subject to (3.4).
Therefore FN contains all initial conditions for which the constraints (3.4) can be
satisfied over an infinite horizon with the open-loop strategy (3.6) and with ci |k = 0
for all i ≥ N .

Having established that the conditions in (3.11) can be expressed in terms of a
finite number of constraints, and that these constraints allow the largest possible set
of initial conditions x0|k under the open-loop strategy (3.6), we next show that these

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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conditions are recursively feasible. This property, which is essential for ensuring
the stability of a robust MPC strategy incorporating (3.11), can be established by
defining a candidate vector ck+1 of optimization variables at time k + 1 in terms of
a vector ck which satisfies, by assumption, the constraints (3.11) at time k. As in
Sects. 2.5 and 2.7.2, we define, this candidate as ck+1 = Mck , so that

ci |k+1 =
{

ci+1|k, i = 0, . . . , N − 2

0 i ≥ N − 1

Since uk = K xk + c0|k implies xk+1 = Φxk + Bc0|k + Dwk , we then obtain

si |k+1 = si |k + Φ i−1Dwk, i = 0, 1, . . .

and hence
z0|k+1 = Ψ z0|k + D̄wk .

But ck satisfies (3.11) at time k if and only if z0|k ∈ ZMRPI, so the requirement that
ck+1 = Mck should satisfy constraints at time k + 1 is equivalent to requiring Ψ z +
D̄w ∈ ZMRPI for allw ∈ W and all z ∈ ZMRPI. This is ensured by the robust positive
invariance ofZMRPI under (3.14a) and (3.14b). It follows that there necessarily exists
ck+1 such that z0|k+1 ∈ ZMRPI whenever z0|k ∈ ZMRPI, and hence this constraint set
is recursively feasible.

3.2.2 Interpretation in Terms of Tubes

Tubes provides an intuitive geometric interpretation of robust constraint handling
and are convenient for analysing the asymptotic behaviour of uncertain systems. In
particular, a tube formulation allows the condition (3.15) on the infinite sequence
of constraint tightening parameters hi to be checked by solving a finite number of
linear programs. Because of the model uncertainty in (3.7), the predicted states are
described by a tube comprising a sequence of sets, each of which contains the state
at a given future time instant for all realizations of future uncertainty. The use of
tubes in control is not new (e.g. see [2, 3]), and they have been used in the context
of MPC for a couple of decades (e.g. [4, 5]); their use in MPC has led to specialized
techniques such as Tube MPC (TMPC) (e.g. [6]) which are discussed in more detail
in Sect. 3.5.

Denoting the tube containing the predicted states as the sequence of sets
{X0|k,X1|k, . . .}, where xi |k = si |k + ei |k ∈ Xi |k , i = 0, 1, . . ., and using the decom-
position (3.8) yields

Xi |k = {si |k} ⊕ Ei |k

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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where ei |k ∈ Ei |k for all i . Here the Minkowski sum {si |k} ⊕ Ei |k simply trans-
lates each element ei |k of the set Ei |k to si |k + ei |k . The sets that form the tube
{E0|k, E1|k, . . .} evolve, by (3.8b), according to

Ei+1|k = ΦEi |k ⊕ DW (3.19)

for all i ≥ 0, with initial condition E0|k = {0}. Thus Ei |k can be expressed

Ei |k = DW ⊕ ΦDW ⊕ · · · ⊕ Φ i−1DW =
i−1⊕

j=0

Φ j DW. (3.20)

The state tube {X0|k,X1|k, . . .} implies a tube for the predicted control input,
{U0|k,U1|k, . . .}, where ui |k ∈ Ui |k for all i . In accordance with (3.6), Ui |k is given
for i = 0, 1, . . . by

Ui |k = {K si |k + ci |k} ⊕ KEi |k .

In this setting, the constraints (3.4) are therefore equivalent to

F̄
(
{Ψ i z0|k} ⊕

[
I
0

]
Ei |k

)
≤ 1, i = 0, 1, . . . (3.21)

Comparing (3.21) with (3.11) it can be seen that the amount by which the constraints
on the nominal predictions zi |k must be tightened in order that the constraints (3.4)
are satisfied for all uncertainty realizations is

hi = max
ei |k∈Ei |k

(F + G K )ei |k,

which is in agreement with (3.13). This is illustrated in Fig. 3.2.
A consequence of (3.21) is that the requirement, which must be met in order for

the MRPI set to be non-empty, that hi ≤ (1 − ε)1 for all i ≥ 0 and some ε > 0 is
equivalent to

(F + G K )Ei |k ≤ (1 − ε)1, i = 0, 1, . . . (3.22)

for some ε > 0. However (3.20) implies that Ei+1|k = Ei |k ⊕ Φ i DW and hence Ei |k
is necessarily a subset of Ei+1|k . Therefore the conditions in (3.22) are satisfied if
and only if they hold asymptotically as i → ∞. This motivates the consideration of
the minimal robust invariant set, which defines the asymptotic behaviour of Ei |k as
i → ∞.

Definition 3.4 (Minimal robustly positively invariant set) The minimal robustly
invariant (mRPI) set under (3.8b) is the RPI set contained in every closed RPI
set of (3.8b).
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Fig. 3.2 An illustration of the state tube and constraints for the case that G = 0 and x is
2-dimensional

Because of the linearity of the dynamics in (3.8b), each set Ei |k , i = 0, 1, . . .
generated by (3.19) with initial condition E0|k = {0} must be contained in an RPI set
of (3.8b). Given also that Ei |k ⊂ Ei+1|k and that, in the limit as i → ∞, Ei |k in (3.20)
is clearly RPI, the mRPI set for (3.8b) is given by

XmRPI .=
∞⊕

j=0

Φ j DW. (3.23)

Unfortunately, unlike the maximal RPI set, the minimal RPI cannot generally be
expressed either in terms of a finite number of linear inequalities or as the convex
hull of a finite number of vertices. This is a consequence of the fact that, unlessΦ i = 0
for some finite i , Ei |k is a proper subset of Ei+1|k for all i ≥ 0. As a result it is not in
general possible either to compute XmRPI or to obtain an exact asymptotic value for
hi as i → ∞. Instead it is necessary to characterize the asymptotic behaviour of Ei |k
by finding an outer bound, X̂mRPI, satisfying X̂mRPI ⊇ XmRPI. Given a bounding set
X̂mRPI, a corresponding upper bound, ĥ∞, can be computed that satisfies ĥ∞ ≥ hi

for all i , thus providing a sufficient condition for (3.15).
The bound ĥ∞ can be computed using several different approaches, however

the method presented here is based on the mRPI set approximation of [7]. This
approximation is derived from the observation that, if there exist a positive integer r
and scalar ρ ∈ [0, 1) satisfying

Φr DW ⊆ ρDW (3.24)

then
∞⊕

j=0

Φ j DW ⊆
r−1⊕

j=0

Φ j DW ⊕ ρ

r−1⊕

j=0

Φ j DW ⊕ ρ2
r−1⊕

j=0

Φ j DW · · ·
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But
⊕r−1

j=0 Φ j DW is necessarily convex (since W is by assumption convex and

hence Φ j DW is also convex), and for any convex set X and scalar α > 0 we have
X ⊕ αX = (1 + α)X . It therefore follows that

∞⊕

j=0

Φ j DW ⊆ (1 + ρ + ρ2 + · · · )
r−1⊕

j=0

Φ j DW

= 1

1 − ρ

r−1⊕

j=0

Φ j DW

Defining

X̂mRPI .= 1

1 − ρ

r−1⊕

j=0

Φ j DW (3.25)

it can be concluded that XmRPI ⊆ X̂mRPI.
The mRPI set approximation given by (3.25) has the desirable properties that it

approaches the actual mRPI set arbitrarily closely if ρ is chosen to be sufficiently
small. In addition, for any ρ > 0 there necessarily exists a finite r satisfying (3.24)
sinceΦ is strictly stable by assumption. Most importantly, X̂mRPI is defined in terms
of a finite number of inequalities (or vertices), and this allows the corresponding
bound ĥ∞ to be determined as

ĥ∞
.= 1

1 − ρ

r−1∑

j=0

max
w j ∈W

(F + G K )Φ jw j = 1

1 − ρ
hr

which gives a sufficient condition for (3.15) as

ĥ∞ = 1

1 − ρ
hr < 1, (3.26)

for any r and ρ satisfying (3.24).
In order to check whether the condition (3.24) is satisfied by a given disturbance

set W = {w : V w ≤ 1}, matrix Φ and scalars r and ρ, note that θ ∈ ρDW if and
only if V D†θ ≤ ρ1, where D† is the Moore-Penrose pseudoinverse of D (i.e. D† .=
(DT D)−1DT ). Therefore (3.24) is equivalent to

max
w∈W

V D†Φr Dw ≤ ρ1. (3.27)

This can be checked by solving nV linear programs.

Example 3.1 A simple supply chain model contains a supplier, a production facility
and a distributor (Fig. 3.3). At the beginning of the kth discrete-time interval, a
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Fig. 3.3 A simple supply
chain model

quantity uk of raw material is delivered by the supplier to the manufacturer. Of this
material, an amount w1,k is transferred to other manufacturers, and the remainder is
added to the amount x1,k held in storage by the manufacturer. A fraction, αx1,k of
this is converted into product and transferred to the distributor, who stores an amount
x2,k and supplies w2,k to customers. The value α = 0.5 is assumed to be known,
while the demand quantities w1,k and w2,k are unknown at time k but have known
bounds.

The system can be represented by a model of the form (3.1) with state xk =
(x1,k, x2,k), control input uk and disturbance input wk = (w1,k, w2,k). As a result
of limits on the supply rate, the storage capacities and the demand, we obtain the
following input, state and disturbance constraints:

0 ≤ uk ≤ 0.5, (0, 0) ≤ xk ≤ (1, 1), (0.1, 0.1) ≤ wk ≤ (0.2, 0.2).

The viability with respect to these constraints of the control strategy (3.6) can be
determined using the robust invariant sets discussed in Sect. 3.2.1. To this end, we
first determine a (non-zero) setpoint about which to regulate xk . Given that only
bounds on wk are available, and in the absence of any statistical information on w,
it is reasonable to define the setpoint in terms of the equilibrium values of states
and inputs (denoted x0 and u0) that correspond to a constant disturbance (w0) at the
centroid of the disturbance set. Therefore, defining

w0 = (0.15, 0.15), u0 = 0.3, x0 = (0.3, 0.5),

the systemmodel canbe expressed in termsof the transformedvariables xδ = x − x0,
uδ = u − u0 and wδ = w − w0 as xδ

k+1 = Axδ
k + Buδ

k + Dwδ
k with

A =
[
0.5 0
0.5 1

]
, B =

[
1
0

]
, D =

[−1 0
0 −1

]
,

and with constraints

− 0.3 ≤ uδ
k ≤ 0.2, (−0.3,−0.5) ≤ xδ

k ≤ (0.7, 0.5)

(−0.05,−0.05) ≤ wδ
k ≤ (0.05, 0.05).

(3.28)
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Fig. 3.4 The elements of the constraint tightening parameters hi , for i = 0, . . . , 6 (circles) and the
elements of ĥ∞ = (1 − ρ)−1hr (dashed lines) with r = 6 and ρ = 0.127 in Example 3.1. The solid
lines show the evolution of hi for i > 6 to give an indication of the asymptotic value, h∞
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Fig. 3.5 The setsEi in Example 3.1 for i = 1, 2, 3, 4, 5, 6 (black lines); theminimal robust invariant
set approximation X̂mRPI = (1 − ρ)−1Er for r = 6, ρ = 0.127 (red line); and the constraint set
{e : (F + GK )e ≤ 1} (green line)
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Using the open-loop strategy (3.6), with K chosen as the unconstrained LQ-optimal
feedback gain for the nominal system and the cost (3.5) with Q = I and R = 0.01,
we obtain K = [−0.89−0.78], which fixes the eigenvalues ofΦ = A + BK at 0.61
and 0.005.

To determine whether the set of feasible initial conditions is non-empty, we first
check whether (3.15) is satisfied by checking the sufficient condition (3.26). We
therefore need values of r and ρ < 1 such that Φr DW ⊆ ρDW; these can be found
by computing the minimum value of ρ that satisfies (3.27) for a given value of r ,
and then increasing r until ρ is judged to be sufficiently small. Here it is expected
that a value of ρ around 0.1 will be small enough for ĥ∞ to provide an accurate
estimate of h∞. Taking r = 6, for which the minimum value of ρ satisfying (3.27) is
ρ = 0.127,weobtain ĥ∞ = (0.72, 0.31, 0.52, 0.52, 0.38, 0.56) (Fig. 3.4)—note that
hi is a 6-dimensional vector because there are nC = 6 individual constraints in (3.28).
Hence ĥ∞ < 1, which implies that the minimal RPI set approximation X̂mRPI is a
proper subset of {e : (F + G K )e ≤ 1} (as shown in Fig. 3.5). Theorem 3.1 therefore
indicates that the maximal RPI set defined in (3.16) is non-empty for all N ≥ 0.

The MRPI sets ZMRPI for this system under the open-loop strategy (3.6) can be
computed for given N usingTheorem3.1. The setFN of all feasible initial conditions,
which by (3.18) is equal to the projection of the corresponding MRPI set onto the
x-subspace, is shown in Fig. 3.6 for a range of values of N . For this example there
is no increase in the x-subspace projection of the MRPI set for N > 4, since F4 is
equal to the maximal stabilizable set F∞. ♦
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Fig. 3.6 The feasible initial condition sets FN , N = 0, 1, 3, 4, for Example 3.1; also shown are
the sets {x : (F + GK )(x − x0) ≤ 1} (dashed line) and X̂mRPI ⊕ {x0} (dotted line)
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3.3 Nominal Predicted Cost: Stability and Convergence

When faced with the problem of defining a performance objective for robust MPC
given only the knowledge of a nominal value and a bounding set for the model
uncertainty, a nominal cost is a simple and obvious choice that can provide desirable
closed-loop stability properties. This section defines a robust MPC strategy that
combines a nominal cost with the robust constraints formulated in Sect. 3.2. We
analyse closed-loop stability and convergence using a technique based on l2 stability
theory.

We use the term nominal cost when referring to a predicted performance index
evaluated along the predicted trajectories that are obtained when the model uncer-
tainty is equal to its nominal value. As in Sect. 3.2, the nominal value of the additive
uncertaintyw in the model (3.1) is taken to bew = 0. Then, assuming the open-loop
strategy (3.6) and a quadratic cost index of the form (2.10), the nominal predicted
cost J (s0|k, {c0|k, . . . , cN−1|k}) = J (s0|k, ck) is defined as

J (s0|k, ck)
.=

∞∑

i=0

(‖si |k‖2Q + ‖vi |k‖2R
)
. (3.29)

where {si |k , i = 0, 1, . . .} is the nominal predicted state trajectory governed by (3.8a)
with s0|k = xk , and vi |k = K si |k + ci |k . Throughout this section K is assumed to be
the optimal unconstrained feedback gain for the nominal cost (3.29). However the
methods discussed here are also applicable to the case that K is non-optimal but
A + BK is stable (see Question 4 on p. 114).

Expressing si |k in terms of the augmented model state employed in Sect. 3.2, we
obtain si |k = [I 0]zi |k , where zi |k is generated by the autonomous dynamics (3.9)
in an identical manner to the autonomous prediction system considered in Sect. 2.7.
Therefore, using Theorem 2.10, the cost (3.29) is given by

J (s0|k, ck) =
∞∑

i=0

‖zi |k‖2Q̂ = ‖z0|k‖2W (3.30a)

Q̂ =
[

Q + K T RK K T RE
ET RK ET RE

]
, (3.30b)

and, by Lemma 2.1, the matrix W in the expression for J (s0|k, ck) can be determined
by solving the Lyapunov equation (2.34). Furthermore, given that K is the uncon-
strained optimal feedback gain, Theorem 2.10 implies that W is block diagonal and
hence

J (s0|k, ck) = ‖s0|k‖2Wx
+ ‖ck‖2Wc

,

where Wx is the solution of the Riccati equation (2.9), and where Wc is block diag-
onal: Wc = diag{BT Wx B + R, . . . , BT Wx B + R}. Combining the nominal pre-
dicted cost with the constraints constructed in Sect. 3.2 we obtain the following

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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robust MPC strategy, which requires the online solution of a quadratic program with
Nnu variables and nC (ν + 1) constraints.

Algorithm 3.1 At each time instant k = 0, 1, . . .:

(i) Perform the optimization

minimize
ck

‖ck‖2Wc
subject to F̄Ψ i

[
xk

ck

]
≤ 1 − hi , i = 0, . . . , ν (3.31)

where ν satisfies the conditions of Theorem 3.1.
(ii) Apply the control law uk = K xk + c∗

0|k , where c∗
k = (c∗

0|k, . . . , c∗
N−1|k) is the

optimal value of ck for problem (3.31). �

The assumption in step (i) that ν satisfies the conditions of Theorem 3.1 implies
that the constraint set {z = (xk, ck) : F̄Ψ i z ≤ 1 − hi , i = 0, . . . , ν} is robustly posi-
tive invariant, and, as discussed in Sect. 3.2.1, this ensures that the optimization (3.31)
is recursively feasible. Therefore c∗

0|k exists for all k and the state of the closed-loop
system under Algorithm 3.1 is governed for k = 0, 1, . . . by

xk+1 = Φxk + Bc∗
0|k + Dwk . (3.32)

However the MPC optimization (3.31) is equivalent to the minimization of the nom-
inal cost (3.29) and, unlike the case in which there is no model uncertainty, there is
no guarantee that the optimal value J ∗

k will be monotonically non-increasing when
the system is subject to unknown disturbances.

We therefore use an alternative method of analysing closed-loop stability. First
we demonstrate that the sequence {‖c∗

0|k‖, ‖c∗
1|k‖, . . .} is square-summable, and we

then use l2 stability theory to show that the closed-loop system imposes a finite l2
gain between the disturbance sequence {w0, w1, . . .} and the sequence {x0, x1, . . .}
of closed-loop plant states. Finally, we use this result to conclude that xk converges
asymptotically to the minimal RPI set XmRPI.

The discussion of recursive feasibility in Sect. 3.2.1 demonstrates that ck+1 =
Mc∗

k is feasible but suboptimal for (3.31). Therefore c∗
k+1 necessarily satisfies

‖c∗
k+1‖Wc ≤ ‖Mc∗

k‖Wc , which, from the definitions of M and Wc implies that

‖c∗
k+1‖2Wc

≤ ‖c∗
k‖2Wc

− ‖c∗
0|k‖2R+BT Wx B . (3.33)

From this bound we obtain the following result.

Lemma 3.1 Let λ(R) denote the smallest eigenvalue of R in the cost (3.29), then

∞∑

k=0

‖c∗
0|k‖2 ≤ 1

λ(R)
‖c∗

0‖2Wc
. (3.34)
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Proof Summing both the sides of (3.33) over k = 0, 1, . . . and using the bound
‖c‖2

R+BT Wx B
≥ λ(R)‖c‖2, where λ(R) > 0 due to R � 0, yields (3.34). �

We next give a version of a result from l2 stability theory which states that the l2
gains from the inputs c∗

0|k and wk to the state of the closed-loop system (3.32) are
necessarily finite since Φ is assumed to be strictly stable.

Lemma 3.2 All trajectories of the closed-loop system (3.32) satisfy the bound

∞∑

k=0

‖xk‖2 ≤ ‖x0‖2P + γ2
1

∞∑

k=0

‖c∗
0|k‖2 + γ2

2

∞∑

k=0

‖wk‖2 (3.35)

for some matrix P � 0 and some scalars γ1, γ2, provided Φ is strictly stable.

Proof There necessarily exists P � 0 satisfying P − ΦT PΦ � Inx since Φ is
strictly stable (see, e.g. [8], Sect. 5.9). Using Schur complements it follows that
there exists P � 0 and positive scalars γ1, γ2 satisfying

[
P ΦT P

PΦ P

]
−

[
0 0

PB P D

] [
γ−2
1 Inu 0
0 γ−2

2 Inw

] [
0 BT P
0 DT P

]
�

[
Inx 0
0 0

]
.

Using Schur complements again, we therefore have

⎡

⎣
P 0 0
0 γ2

1 Inu 0
0 0 γ2

2 Inw

⎤

⎦ −
⎡

⎣
ΦT

BT

DT

⎤

⎦ P
[
Φ B D

] �
⎡

⎣
Inx 0 0
0 0 0
0 0 0

⎤

⎦ .

Pre- and post-multiplying both sides of this inequality by (xk, c∗
0|k, wk) and using

(3.32) we obtain

‖xk‖2P + γ2
1‖c∗

0|k‖2 + γ2
2‖wk‖2 − ‖xk+1‖2P ≥ ‖xk‖2,

and summing both sides of this inequality over k = 0, 1, . . . gives (3.35). �

A consequence of inequalities (3.34) and (3.35) is that the closed-loop system
under Algorithm 3.1 inherits the bound on the l2 gain from w to x that is imposed by
the linear feedback law u = K x in the absence of constraints. These inequalities can
also be used to analyse the asymptotic convergence of xk . Thus, let xk = sk + ek ,
where sk and ek are the components of the state of the closed-loop system (3.32) that
satisfy

sk+1 = Φsk + Bc∗
0|k (3.36a)

ek+1 = Φek + Dwk (3.36b)

with s0 = x0 and e0 = 0. Then from (3.35) and Lemma 3.2 applied to (3.36a) we
obtain
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∞∑

k=0

‖sk‖2 ≤ ‖x0‖2P + γ2
1

λ(R)
‖c∗

0‖2Wc
(3.37)

and it follows that sk → 0 as k → ∞. Moreover, since xk = sk + ek where ek lies
for all k in the mRPI set XmRPI defined in (3.23), the asymptotic convergence of sk

can be used to demonstrate convergence of xk toXmRPI. This final point is explained
in more detail in the proof of Theorem 3.2, which summarizes the results of this
section.

Theorem 3.2 For the system (3.1) with the control law of Algorithm 3.1:

(a) the feasible set FN defined in (3.18) is robustly positively invariant;
(b) for any x0 ∈ FN , the closed-loop evolution of the state of (3.1) satisfies

∞∑

k=0

‖xk‖2 ≤ ‖x0‖2P + γ2
1

λ(R)
‖c∗

0‖2Wc
+ γ2

2

∞∑

k=0

‖wk‖2 (3.38)

for some matrix P � 0 and scalars γ1, γ2;
(c) xk converges asymptotically to the minimal RPI set XmRPI of (3.23).

Proof The RPI property of the feasible set FN follows from the definition of the
constraint set in (3.31) as a RPI set, whereas the bound (3.38) is a direct consequence
of bounds (3.34) and (3.35). Furthermore, by (3.37) ‖sk‖ is square-summable, so for
any given ε > 0 there must exist finite n such that sk ∈ Bε = {s : ‖s‖ ≤ ε} for all
k ≥ n, and therefore

xk ∈ Ek ⊕ Bε, ∀k ≥ n,

where Ek is the bounding set for ek defined by Ek+1 = ΦEk ⊕ DW with E0 = {0}.
Since Ek ⊆ XmRPI for all k, we have

xk ∈ XmRPI ⊕ Bε, ∀k ≥ n,

and it can be concluded that xk converges to XmRPI as k → ∞. �

3.4 A Game Theoretic Approach

Robustly stabilizing controllers that guarantee limits on the response to additive
disturbances can be designed using the linear quadratic game theory of optimal con-
trol [9, 10]. By choosing the control input so as to minimize a predicted cost that
assumes the worst-case future model uncertainty, this approach is able to impose a
specified bound on the l2 gain from the disturbance input to a given system output.
This strategy has its roots in game theory [11], which interprets the control input and
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the disturbance input as opposing players, each ofwhich seeks to influence the behav-
iour of the system, one by minimizing and the other maximizing the performance
index. For this reason it is also known as a min-max approach [12].

The idea has been exploited in unconstrained MPC (e.g. [13, 14]) but the concern
here is with the linear discrete-time constrained case [15, 16]. Control laws that aim
to optimize the worst-case performance with respect to model uncertainty can be
overly cautious. On the other hand, game theoretic approaches to MPC based on
the minimization of worst case predicted performance can avoid the possibility of
poor sensitivity to disturbances which could be exhibited by MPC laws based on
the nominal cost considered in Sect. 3.3. At the same time, the approach retains the
feasibility and asymptotic convergence properties of robust MPC.

According to the game theoretic approach, the cost of (2.3) is replaced by

J̌ (x0, {u0, u1, . . .}) .= max{w0,w1,...}

∞∑

i=0

(‖xi‖2Q + ‖ui‖2R − γ2‖wi‖2
)
. (3.39)

The scalar parameterγ appearing in this cost limits the l2 gain between thedisturbance
inputw and the output y = (Q1/2x, R1/2u) to γ. If there are no constraints on inputs
and states, then the maximizing feedback law for w in (3.39) and the feedback law
for u that minimizes J̌ are given by [17]

u = K x, w = Lx (3.40)

where

[
K
L

]
= −

([
BT

DT

]
W̌x

[
B D

] +
[

R 0
0 −γ2 I

])−1 [
BT

DT

]
W̌x A (3.41)

and W̌x is the unique positive definite solution of the Riccati equation

W̌x = AT W̌x A + Q

− AT W̌x
[
B D

] ([
BT

DT

]
W̌x

[
B D

] +
[

R 0
0 −γ2 I

])−1 [
BT

DT

]
W̌x A.

(3.42)

This result can be derived in a similar manner to the Riccati equation and optimal
feedback gain for the unconstrained linear quadratic control problem with no model
uncertainty in Theorem 2.1.

Under some mild assumptions on the system model (3.1) and the cost weights
in (3.39) (see, e.g. [17] for details), the solution to the Riccati equation (3.42) exists
whenever γ is sufficiently large that γ2 I − DT W̌x D is positive-definite, and more-
over the resulting closed-loop systemmatrixΦ = A + BK is strictly stable. Clearly,
it is important to have knowledge of the corresponding lower limit on γ2, and it may

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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therefore be more convenient to compute W̌x simultaneously with the minimum
value of γ2 using semidefinite programming. For example, minimizing γ2 subject to
the LMI

⎡

⎢⎢⎣

[
S 0
� γ2 I

] [
(AS + BY )T

DT

] [
SQ1/2 Y TR1/2

0 0

]

� S 0
� � I

⎤

⎥⎥⎦ � 0 (3.43)

in variables S,Y andγ2, yields the corresponding solutions for W̌x = S−1, K = Y W̌x

and L = (γ2 I − DT W̌x D)−1DT W̌x (A + BK ). Throughout this section we assume
that γ2 I − DT W̌x D � 0 holds.

In order to formulate a predictive control law based on the cost (3.39), we adopt
the open-loop strategy (3.6), with K defined via (3.41) as the optimal unconstrained
state feedback gain for (3.39). By determining the maximizing disturbance sequence
for any given xk and optimization variables ck , the predicted cost, which we denote
as J̌ (xk, ck), along trajectories of (3.7) can be obtained as an explicit function of
xk and ck . This is consistent with the definition of an open-loop optimization strat-
egy because it enables the entire sequence ck = {c0|k, . . . , cN−1|k} that achieves the
minimum worst-case cost to be determined as a function of xk .

The following lemma expresses J̌ (xk, ck) as a quadratic function of xk and ck by
considering the worst-case unconstrained disturbances in (3.39). Clearly, the result-
ing worst-case cost may be conservative since it ignores the information that the
disturbance wk lies in W . An alternative cost definition that accounts for the con-
straints on the disturbancew by introducing extra optimization variables is discussed
at the end of this section.

Lemma 3.3 The worst-case cost (3.39) for the open-loop strategy (3.6) is given by

J̌ (xk, ck) = ‖xk‖2W̌x
+ ‖ck‖2W̌c

(3.44)

where W̌x is the solution of the Riccati equation (3.42) and W̌c is block diagonal:

W̌c =
⎡

⎢⎣
BT W̌ ′

x B + R 0
. . .

0 BT W̌ ′
x B + R

⎤

⎥⎦ (3.45a)

W̌ ′
x = W̌x + W̌x D(γ2 I − DT W̌x D)−1DT W̌x . (3.45b)

Proof Let z0|k = (xk, ck) and consider evaluating the cost (3.39) along the predicted
trajectories generated by the dynamics zi+1|k = Ψ zi |k + D̄wi |k , i = 0, 1, . . .Clearly
the cost (3.39) must be quadratic in (xk, ck). Furthermore, the minimizing control
law and maximizing disturbance are given by the linear feedback laws (3.40) in the
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absence of constraints and so J̌ (0, 0) = 0 must be the minimum value of J̌ (x, c)
over all x and c. Therefore the cost must have the form J̌ (xk, ck) = ‖z0|k‖2W̌ for

some matrix W̌ , and hence

‖z0|k‖2W̌ = max{w0|k ,w1|k ,...}

∞∑

i=0

(‖zi |k‖2Q̂ − γ2‖wi |k‖2
)

= max
w0|k

{
‖z0|k‖2Q̂ − γ2‖w0|k‖2 + max{w1|k ,w2|k ,...}

∞∑

i=1

(‖zi |k‖2Q̂ − γ2‖wi |k‖2
)}

= ‖z0|k‖2Q̂ + max
w0|k

{‖Ψ z0|k + D̄w0|k‖2W̌ − γ2‖w0|k‖2
}

(3.46)

with Q̂ defined as in (3.30b). The maximizing disturbance is therefore w0|k =
(γ2 I − D̄T W̌ D̄)−1 D̄T W̌Ψ z0|k , so that ‖z0|k‖2W̌ = zT

0|k(Q̂ + Ψ T W̌ ′Ψ )z0|k where

W̌ ′ = W̌ + W̌ D̄(γ2 I − D̄T W̌ D̄)−1 D̄T W̌ .

Invoking (3.46) for all z0|k then gives

W̌ = Ψ T W̌ ′Ψ + Q̂,

and the block-diagonal form of W̌ together with the expressions for its diagonal
blocks in (3.45a, 3.45b) then follow from the definition of Ψ in terms of the uncon-
strained optimal feedback gain K . �

The cost of Lemma 3.3 can be used to form the objective of a min-max RMPC
algorithm based on an open-loop optimization strategy. As in Algorithm 3.1, we use
the set ZMRPI constructed in Sect. 3.2.1 to invoke constraints robustly and to guar-
antee recursive feasibility. Given the linearity of these constraints and the quadratic
nature of the cost (3.44), the online optimization is again a quadratic programming
problem with Nnu variables and nC (ν + 1) constraints.

Algorithm 3.2 At each time instant k = 0, 1, . . .:

(i) Perform the optimization

minimize
ck

‖ck‖2W̌c
subject to F̄Ψ i

[
xk

ck

]
≤ 1 − hi , i = 0, . . . , ν (3.47)

where ν satisfies the conditions of Theorem 3.1.
(ii) Apply the control law uk = K xk + c∗

0|k , where c∗
k = (c∗

0|k, . . . , c∗
N−1|k) is the

optimal value of ck for problem (3.47). �
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The control theoretic properties of the nominal robust MPC law of Algorithm 3.1
apply to thismin-max robustMPC strategy since the samemethod is used to construct
the constraint set in each case, and because their respective cost matrices Wc and W̌c

have the same structure. These properties can be summarized as follows.

Corollary 3.1 (a) Recursive feasibility of the optimization (3.47) is ensured by
robust invariance of ZMRPI under the dynamics z0|k+1 = Ψ z0|k + D̄wk ,
wk ∈ W .

(b) The bound (3.34) (with Wc replaced by W̌c) holds along closed-loop trajectories
of (3.1) under Algorithm 3.2 as a result of the block-diagonal structure of W̌c.

(c) Lemma 3.2 applies to the closed-loop trajectories under Algorithm 3.2. since
Φ = A + BK is by assumption strictly stable.

(d) From (a)–(c) it follows that the conclusions of Theorem 3.2 apply to Algo-
rithm 3.2; thus the state of (3.1) converges asymptotically to the minimal RPI
set XmRPI (3.23) associated with the control law that is defined by the solution
of the Riccati equation (3.42).

In addition to these properties, the closed-loop system has a disturbance l2 gain
that is bounded from above by γ, as we show next.

Theorem 3.3 For x0 ∈ FN and any nonnegative integer n, the control law of Algo-
rithm 3.2 guarantees that the closed-loop trajectories of (3.1) satisfy

n∑

k=0

(‖xk‖2Q + ‖uk‖2R
) ≤ ‖x0‖2W̌x

+ ‖c∗
0‖2W̌c

+ γ2
n∑

k=0

‖wk‖2. (3.48)

Proof The effect of the actual disturbance at time k on the optimal value of the cost
can be no greater than the worst case value predicted at time k:

J̌ (xk, c∗
k) = max{wi |k ,wi+1|k ,...}

∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R − γ2‖wi |k‖2
)

≥ ‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2

+ max{wi+1|k ,wi+2|k ,...}

∞∑

i=0

(
‖xi |k+1‖2Q + ‖ui |k+1‖2R − γ2‖wi+1|k‖2

)

where ui |k+1 = K xi |k+1 + c∗
i+1|k for all i = 0, 1, . . . Hence

J̌ (xk, c∗
k) ≥ ‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2 + J̌ (xk+1, Mc∗

k),

and since (xk+1, Mc∗
k) is feasible for (3.47), the minimization (3.47) at k + 1 ensures

that J̌ (xk+1, Mc∗
k) ≥ J̌ (xk+1, c∗

k+1). For all k we therefore obtain
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J̌ ∗
k ≥ ‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2 + J̌ ∗

k+1

where J̌ ∗
k

.= J̌ (xk, c∗
k). Summing this inequality over k = 0, 1, . . . , n yields the

bound (3.48) since W̌x and W̌c are positive-definite matrices. �

In essence (3.48) defines an achievable upper bound on the inducedH∞ norm of
the response of the output y = (Q1/2x, R1/2u) to additive disturbances. This aspect
will be revisited in a more general setting in Chap.5, where consideration is given
to the case in which both additive and multiplicative uncertainty are present in the
model.

Example 3.2 Applying the min-max approach of Algorithm 3.2 to the supply chain
model of Example 3.1 we find that, for cost weights Q = I and R = 0.01, the
minimum achievable disturbance l2 gain is γ2 = 8.15. Setting γ2 = 10 in (3.39)
results in the optimal unconstrained feedback gain K = [−1.27 −1.55]. This places
the eigenvalues ofΦ at 0.22 and 0.005, which indicates that the auxiliary control law
u = K x is more aggressive than its counterpart for the nominal cost in Example 3.1.
As a result, for r = 6, the minimum value of ρ satisfying (3.27) is considerably
smaller at ρ = 1.3 × 10−3, and the minimal RPI set and its outer approximation
are also smaller (Fig. 3.7). The areas of XmRPI and X̂mRPI are 0.0594 and 0.0595,
respectively; for comparison the areas for Example 3.1 are 0.073 and 0.096.

The more aggressive feedback gain K for the min-max approach is more likely to
conflict with the input constraints of this example, and this is reflected in the maxi-
mum element of ĥ∞ being closer to unity (here ĥ∞ = (0.67, 0.29, 0.29, 0.29, 0.29,
0.61, 0.91)). As a consequence, the feasible set given by the projection, FN , of the
maximal RPI set ZMRPI onto the x-subspace is smaller than the feasible set for the
same horizon N in Example 3.1. This can be seen by comparing Figs. 3.6 and 3.7.
Figure3.7 also indicates that a horizon of N = 18 is required in order to achieve the
maximal feasible set F∞, whereas the maximal feasible set (which for this example
is identical for the nominal and min-max approaches) is obtained with N = 4 in
Example 3.1. ♦

To account for the disturbance constraints (3.3) in the definition of the MPC
performance index, we replace the worst-case cost (3.39) with

J̌ (x0, {u0, u1, . . .}) = max
wi ∈W

i=0,...,N−1

N−1∑

i=0

(‖xi‖2Q + ‖ui‖2R − γ2‖wi‖2
) + ‖xN ‖2

W̌x
.

(3.49)

Given the definition of W̌x in (3.42), the cost (3.49) is equivalent to an infinite
horizon worst-case cost in which the maximization is performed subject to wi ∈ W
for i = 0, . . . , N − 1 and without constraints on wi for i ≥ N . With the definitions

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Fig. 3.7 The feasible initial condition setsFN , N = 0, 1, . . . , 18, for Example 3.2; also shown are
the sets {x : (F + GK )(x − x0) ≤ 1} (dashed line) and X̂mRPI ⊕ {x0} (dotted line)

Cxx =

⎡

⎢⎢⎢⎢⎢⎣

I
Φ

...

ΦN−1

ΦN

⎤

⎥⎥⎥⎥⎥⎦
, Cxc =

⎡

⎢⎢⎢⎢⎢⎣

0 · · · 0 0
B · · · 0 0
...

. . .
...

...

ΦN−2B · · · B 0
ΦN−1B · · · Φ B B

⎤

⎥⎥⎥⎥⎥⎦
, Cxw =

⎡

⎢⎢⎢⎢⎢⎣

0 · · · 0 0
D · · · 0 0
...

. . .
...

...

ΦN−2D · · · D 0
ΦN−1D · · · Φ D D

⎤

⎥⎥⎥⎥⎥⎦
,

Cux =
⎡

⎢⎣
K 0

. . .
...

K 0

⎤

⎥⎦, Q̄ =

⎡

⎢⎢⎢⎣

Q
. . .

Q
W̌x

⎤

⎥⎥⎥⎦, R̄ =
⎡

⎢⎣
R

. . .

R

⎤

⎥⎦, V̄ =
⎡

⎢⎣
V

. . .

V

⎤

⎥⎦,

the sequences of predicted states xk = (x0|k, . . . , xN |k) and inputs uk = (u0|k, . . . ,
uN−1|k) for the open-loop strategy (3.6) can be written explicitly in terms of xk , ck

and the disturbance sequence wk = (w0|k, . . . , wN−1|k) as

xk = Cxx xk + Cxcck + Cxwwk,

uk = Cux xk + ck,
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and the cost (3.49) for the open-loop strategy (3.6) at time k can be expressed

J̌ (xk, ck) = max
wk∈{w: V̄ w≤1}

{
‖Cxx xk + Cxcck + Cxwwk‖2Q̄

+ ‖Cux (Cxx xk + Cxcck + Cxwwk) + c‖2
R̄

− γ2‖wk‖2
}
. (3.50)

This maximization problem is a quadratic program, and it is convex if the matrix

Δ
.= γ2 I − CT

xw(Q̄ + CT
ux R̄Cux )Cxw (3.51)

is positive-definite. Assuming that Δ � 0, a more convenient but equivalent mini-
mization can be derived from (3.50) using convex programming duality. This is based
on the fact that, for G � 0, the optimal value of the QP:

max
x∈{x : Ax≤b} gT x − 1

2 xT Gx (3.52)

is equal to the optimal value of the dual problem defined by the QP:

min
λ∈{λ:λ≥0}

bT λ + 1
2 (g − AT λ)T G−1(g − AT λ), (3.53)

(see e.g. [18] for a proof of this result).

Lemma 3.4 For Δ � 0, the worst-case cost (3.49) for the open-loop strategy (3.6)
is equal to

J̌ (xk, ck) = min
μ∈{μ:μ≥0}

[
xk

ck

]T [
W̌x 0
0 W̌c

] [
xk

ck

]
− 2μT W̌μz

[
xk

ck

]

+ 2μT 1 + μT W̌μμμ (3.54)

where W̌x satisfies the Riccati equation (3.42), W̌c is defined in (3.45), and

W̌μz = V̄ Δ−1CT
xw

(
(Q̄ + CT

ux R̄Cux )
[
Cxx Cxc

] + CT
ux R̄

[
0 I

])

W̌μμ = V̄ Δ−1V̄ T .

Proof This follows from (3.50) and the equivalence of (3.52) and (3.53). �

To use the worst-case cost (3.54) as the objective of the MPC optimization, we
replace the optimization (3.47) in step (i) of Algorithm 3.2 by the following problem
in N (nu + nV ) variables and nC (ν + 1) + NnV constraints.

minimize
ck ,μ

[
xk
ck

]T [
W̌x 0
0 W̌c

] [
xk
ck

]
− 2μT W̌μz

[
xk
ck

]
+ 2μT 1 + μT W̌μμμ

subject to F̄Ψ i
[

xk
ck

]
≤ 1 − hi , i = 0, . . . , ν

μ ≥ 0

(3.55)
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With this modification the online MPC optimization remains a convex quadratic
program; note however that it involves a larger number of variables and constraints
than the online optimization (3.47).

The presence of disturbance constraints implies that (3.54) gives a tighter boundon
the worst-case performance of the MPC algorithm in closed loop operation than the
cost of (3.44); hence the optimization (3.55) is likely to result in improved worst-case
performanceof theMPC law.However, although the guarantee of recursive feasibility
is not affected, the stability and convergence results in (b)–(d) of Corollary 3.1 no
longer applywhen (3.47) is replaced by (3.55) inAlgorithm3.2. This is to be expected
of course, since the presence of the disturbance constraints (3.3) in the definition of
the worst-case cost (3.49) implies that u = K x is not necessarily optimal for this
cost, even when the constraints on x and u in (3.4) are inactive. Therefore, in the
general case of persistent disturbances, the MPC law will not necessarily converge
asymptotically to this linear feedback law.

On the other hand a bound on the disturbance l2 gain similar to (3.48) does
hold for the closed-loop system when (3.55) replaces the optimization in step (i) of
Algorithm 3.2. This can be shown by an extension of the argument that was used in
the proof of Theorem 3.3.

Theorem 3.4 If x0 ∈ FN and Δ � 0, Algorithm 3.2 with (3.55) in place of (3.47)
satisfies, for all n ≥ 0, the bound:

n∑

k=0

(‖xk‖2Q + ‖uk‖2R
) ≤ J̌ (x0, c∗

0) + γ2
n∑

k=0

‖wk‖2. (3.56)

Proof From Lemma 3.4 the optimal value of the objective in (3.55) is equal to

J̌ (xk, c∗
k) = max

wi |k∈W
i=0,...,N−1

N−1∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R − γ2‖wi |k‖2
) + ‖xN |k‖2W̌x

,

but‖xN |k‖2W̌x
= maxwN |k (‖xN |k‖2Q + ‖uN |k‖2R − γ2‖wN |k‖2 + ‖xN+1|k‖2W̌x

) so that

J̌ (xk, c∗
k) ≥ max

wi |k∈W
i=0,...,N

N∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R − γ2‖wi |k‖2
) + ‖xN+1|k‖2W̌x

≥ ‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2

+ max
wi |k∈W
i=1,...,N

N−1∑

i=0

(‖xi |k+1‖2Q + ‖ui |k+1‖2R − γ2‖wi |k+1‖2
) + ‖xN |k+1‖2W̌x
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where ui |k+1 = K xi |k+1 + c∗
i+1|k for all i = 0, 1, . . . It follows that

J̌ (xk, c∗
k) ≥ ‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2 + J̌ (xk+1, Mc∗

k)

≥ ‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2 + J̌ (xk+1, c∗
k+1),

and hence

n∑

k=0

(‖xk‖2Q + ‖uk‖2R
) ≤ J̌ (x0, c∗

0) − J̌ (xn+1, c∗
n+1) + γ2

n∑

k=0

‖wk‖2.

which implies the bound (3.56) since J̌ (x, c) ≥ 0 for all (x, c). The conclusion here
that J̌ (x, c) is nonnegative follows from the convexity of J̌ (x, c) and from the fact that
the optimal unconstrained feedback laws given by (3.40) are feasible for sufficiently
small x ; thus J̌ (0, 0) = 0 is the global minimum of J̌ (x, c). Note also that J̌ (x, c) is
necessarily convex whenever Δ � 0 because the expression maximized on the RHS
of (3.50) is convex in (x, c) for any given w, and since the pointwise maximum of
convex functions is convex [19]. �

A numerical example comparing the minmaxMPC strategies defined by the alter-
native online optimizations of (3.47) and (3.55) is provided in Question 7 on p. 116.

3.5 Rigid and Homothetic Tubes

The focus of this chapter has so far been on robust MPC laws with constraints
derived from the decomposition (3.8) with initial conditions s0|k = xk and e0|k = 0
for the nominal and uncertain components of the predicted state. In this section,
we consider alternative definitions of the nominal state and uncertainty tube that can
provide alternative, potentially stronger, stability guarantees. The stability properties
of the nominal cost and game theoretic approaches of Sects. 3.3 and 3.4 were stated
in terms of a finite l2 gain from the disturbance input to the state and control input
in closed-loop operation, as well as a guarantee of asymptotic convergence of the
system state to the mRPI set for the unconstrained optimal feedback law. Instead,
by relaxing the requirement that s0|k = xk and e0|k = 0, the tube MPC approaches
of this section, which are based on [6, 20], ensure exponential stability of an outer
approximation of the mRPI set.

The guarantee of exponential stability of a given limit set for the closed-loop
system state comes at a price. This is because the initial condition E0|k = {0} in the
uncertainty tube dynamics (3.19) results in an uncertainty tube {E0|k, E1|k, . . .}which
is minimal in the sense that Ei |k is the smallest set that contains the uncertain compo-
nent of the predicted state given the disturbance bounds. Consequently, if e0|k �= 0,
so that the initial set E0|k contains more points than just the origin, then the amount
by which the constraints on the nominal predicted trajectories must be tightened in
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order to ensure that constraints are satisfied for all realizations of uncertainty will
be overestimated. This leads to smaller sets of feasible initial conditions than are
obtained using the methods of Sects. 3.3 and 3.4.

However the flexibility afforded by allowing non-zero initial conditions for the
uncertainty tube enables the algorithms of this section to reduce the potential conser-
vativeness of their constraint handling. This possibility is developed here by combin-
ing different linear feedback laws in the definition of the predicted input trajectories.
For a robust MPC algorithm employing the open-loop strategy (3.6), the size of the
feasible set of states depends on the sizes of the MPI set for the nominal model and
the mRPI set in the presence of disturbances, both of which depend on the feed-
back gain K . For a small mRPI set we require good disturbance rejection, whereas
a large MPI set for the nominal dynamics requires good tracking performance in the
presence of constraints. These can be conflicting requirements, thus motivating the
consideration of closed-loop strategies for which the uncertainty tube {E0|k, E1|k, . . .}
may depend explicitly on the future state and constraints. Within the framework of
open-loop strategies however, this issue can be addressed by incorporating different
linear feedback gains in the nominal and uncertain components of the dynamics (3.8).

To this end, let xi |k = si |k + ei |k , and

ui |k = K si |k + Keei |k + ci |k, (3.57a)

si+1|k = Φsi |k + Bci |k, (3.57b)

ei+1|k = Φeei |k + Dwi |k, wi |k ∈ W (3.57c)

where Φ = A + BK and Φe = A + BKe. The freedom to choose different gains
Ke and K can allow for improved disturbance rejection without adversely affecting
the MPI set for the nominal state. However, in this framework, the initial conditions
e0|k = 0 and s0|k = xk cannot be assumed because there is no single value of c0|k+1
that makes u1|k = K s1|k + Kee1|k + c1|k equal to u0|k+1 = K xk+1 + c0|k+1 for all
wk ∈ W . Therefore the method described in Sect. 3.2.1 for ensuring recursive fea-
sibility of an open-loop strategy would fail with this parameterization. However, if
E0|k is permitted to contain more points than just the origin, then it is possible to con-
struct a feasible but suboptimal trajectory at time k + 1 by choosing si |k+1 = si+1|k ,
ei |k+1 = ei+1|k and ci |k+1 = ci+1|k for i = 0, 1, . . . This is the case for tube MPC
algorithms considered in this section that allow non-singleton initial uncertainty sets.
Note that in this context, and throughout the current section, the term “nominal state”
does not have the usual meaning (namely the state of the disturbance-free model)
because s0|k is not necessarily chosen to coincide with the current state x0|k = xk .

3.5.1 Rigid Tube MPC

The convenience of the decomposition (3.57) is that, if s0|k is chosen so that e0|k =
x0|k − s0|k belongs to a set S that is RPI for (3.57c), namely if
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ΦeS ⊕ DW ⊆ S, (3.58)

then ei |k must also lie in S for all i = 1, 2, . . . It is assumed that S is compact, convex
and polytopic, and is described by nS linear inequalities:

S = {e : VSe ≤ 1}.

Under these circumstances the predicted trajectory {e0|k, e1|k, . . .} lies in a tube
of fixed cross section S. Such tubes were used in [6]; we refer to them as rigid tubes
to distinguish them from homothetic tubes [20] which allow for variable scaling of
the tube cross sections.

This strategy simplifies the problem of ensuring robust satisfaction of the con-
straints (3.4). Applying these constraints to the predicted trajectories of (3.57)
requires that

F̄Ψ i z0|k ≤ 1 − hS , i = 0, 1, . . . (3.59)

where z0|k = (s0|k, ck) is the initial state of the autonomous dynamics (3.9) and the
vector hS can be computed offline by solving a set of linear programs:

hS = max
e∈S

(F + G Ke)e.

The RHS of each constraint in (3.59) is independent of the time index i . By Theo-
rem 2.3 therefore, the infinite sequence of inequalities in (3.59) can be reduced to an
equivalent constraint set described by a finite number of inequalities: z0|k ∈ ZMPI.
Under the necessary assumption that hS < 1, ZMPI is defined by

ZMPI .= {z : F̄Ψ i z ≤ 1 − hS , i = 0, . . . , ν},

where ν is the (necessarily finite) integer that satisfies the conditions of Theorem 2.3
with the RHS of (2.15) replaced by 1 − hS .

Using rigid tubes to represent the evolution of the uncertain component of the
predicted state of (3.1) causes the uncertainty in predicted trajectories to be overes-
timated, especially in the early part of the prediction horizon. This results in smaller
feasible sets of initial conditions than the exact approach described in Sect. 3.2.1.
Clearly S can be no smaller than the minimal RPI set for (3.57c), and to reduce the
degree of conservatism it is therefore advantageous to define S as a close approxi-
mation of the minimal RPI. For example

S .= 1

1 − ρ

r−1⊕

j=0

Φ
j

e DW (3.60)

where r and ρ ∈ [0, 1) satisfy Φr
e DW ⊆ ρDW . The following lemma shows that

this choice of S meets the condition (3.58) for robust positive invariance.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Lemma 3.5 The set S in (3.60) satisfies (3.58) and hence is RPI for (3.57c).

Proof Under the assumption that Φr
e DW ⊆ ρDW , we obtain

ΦeS ⊕ DW = 1

1 − ρ

r−1⊕

j=1

Φ
j

e DW ⊕ 1

1 − ρ
Φr

e DW ⊕ DW

⊆ 1

1 − ρ

r−1⊕

j=1

Φ
j

e DW ⊕ ρ

1 − ρ
DW ⊕ DW

= 1

1 − ρ

r−1⊕

j=0

Φ
j

e DW = S.

�

The final ingredient needed for the definition of a robust MPC algorithm is the
choice of the cost function. This is taken to be the nominal cost of (3.29), with
si |k defined as the nominal predicted trajectory generated by (3.57b) and with vi |k =
K si |k + ci |k for all i . Therefore,we set J (s0|k, ck)

.= ‖z0|k‖2W whereW is the solution
of the Lyapunov equation (2.34), and by Theorem 2.10 we obtain

J (s0|k, ck) = ‖s0|k‖2Wx
+ ‖ck‖2Wc

.

Unlike the nominal cost of Sect. 3.3, the initial condition, s0|k , from which this cost
is computed is not necessarily equal to the plant state xk , but is instead treated as an
optimization variable subject to the constraint that e0|k = xk − s0|k ∈ S. This choice
of cost is justified by the argument that the primary objective of the MPC law is to
steer the plant state into or close to the mRPI set associated with the linear feedback
law u = Kex (which by assumption has been designed to provide good disturbance
rejection), and that xk necessarily converges to the mRPI approximation S if s0|k
converges to zero. Since the aim is to enforce convergence of s0|k , the cost weights
Q and R in (3.29) are taken to be positive-definite matrices [6, 20].

The resulting online optimization problem is a quadratic program in Nnu + nx

variables and nC (ν + 1) + nS constraints.

Algorithm 3.3 At each time instant k = 0, 1, . . .:

(i) Perform the optimization

minimize
s0|k ,ck

‖s0|k‖2Wx
+ ‖ck‖2Wc

subject to F̄Ψ i
[

s0|k
ck

]
≤ 1 − hS , i = 0, . . . , ν

xk − s0|k ∈ S

(3.61)

where ν satisfies the conditions of Theorem 2.3 with the RHS of (2.15) replaced
by 1 − hS .

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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(ii) Apply the control law uk = K s∗
0|k + Ke(xk − s∗

0|k) + c∗
0|k , where (s∗

0|k, c∗
k) is the

optimizer of problem (3.61), and c∗
k = (c∗

0|k, . . . , c∗
N−1|k). �

To determine the feasible set for the state xk in (3.61), let F s
N denote the feasible

set for s0|k in the optimization (3.61):

F s
N

.=
{

s : ∃c such that F̄Ψ i
[

s
c

]
≤ 1 − hS , i = 0, . . . , ν

}
.

Then, given that any feasible state xk must satisfy xk = s0|k + e0|k for some e0|k ∈ S,
the set of feasible initial conditions for Algorithm 3.3 can be expressed as

FN = F s
N ⊕ S.

Theorem 3.5 For the system (3.1) with the control law of Algorithm 3.3, the feasible
set FN is RPI, and S is exponentially stable with region of attraction equal to FN if
Q � 0 and R � 0 in (3.29).

Proof Todemonstrate thatFN isRPI, suppose that xk ∈ FN so that (s∗
0|k, c∗

k) ∈ ZMPI

and xk − s∗
0|k ∈ S. Let s0|k+1 = Φs∗

0|k + B Ec∗
k and ck+1 = Mc∗

k , then since ZMPI

is an invariant set for the autonomous dynamics (3.9) and S is RPI for (3.57) it
follows that (s0|k+1, ck+1) ∈ ZMPI and xk+1 − s0|k+1 = Φe(xk − s0|k) + Dwk ∈ S
for any disturbancewk ∈ W; therefore (s0|k+1, ck+1) is feasible for (3.61), implying
xk+1 ∈ FN .

The exponential stability of S follows from the definition (3.29) of the cost in
(3.61), which implies the bound

J (s∗
0|k+1, c∗

k+1) ≤ J (s∗
0|k, c∗

k) − (‖s0|k‖2Q + ‖K s0|k + c∗
k‖2R).

Therefore, by the same argument as was used the proof of Theorem 2.8, the closed-
loop application of Algorithm 3.3 gives, for any x0 ∈ FN and all k > 0,

‖s∗
0|k‖2 ≤ b

a

∣∣∣∣1 − λ(Q)

b

∣∣∣∣
k

‖s∗
0|0‖2,

for some constants a, b > 0 satisfying a‖s0|k‖2 ≤ J (s∗
0|k, c∗

k) ≤ b‖s0|k‖2 for any
xk ∈ FN , and where λ(Q) is the smallest eigenvalue of Q. The constraint s∗

0|k =
xk − e for e ∈ S implies that mine∈S ‖xk − e‖ ≤ ‖s∗

0|k‖; hence the distance of xk

from S is upper-bounded by an exponentially decaying function of time. �

Example 3.3 Considering again the supply chain model of Example 3.1, K and
Ke are initially chosen to be equal, with K = Ke = [−0.89 −0.78], which is the
unconstrainedLQ-optimal feedback gain for the nominal costwith Q = I , R = 0.01.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Fig. 3.8 The feasible initial condition sets FN , N = 0, 1, 2, 3, 4 for Algorithm 3.3 with Ke = K
chosen as the unconstrained LQ-optimal feedback gain (black lines). Also shown are the maximal
feasible set for Algorithm 3.1 (solid red line) and the maximal feasible set for Algorithm 3.3 with
Ke equal to the unconstrained min-max optimal feedback gain of Example 3.2 (solid blue line),
and the mRPI sets for the unconstrained LQ-optimal and unconstrained min-max optimal feedback
gains (dotted red line and dotted blue line, respectively)

The set S is taken to be the mRPI set approximation (3.60) for r = 6, ρ = 0.127, so
that hS is equal to the value of ĥ∞ in Example 3.1. The feasible initial condition sets,
FN , N = 0, 1, 2, 3, 4, forAlgorithm3.3 are shown in Fig. 3.8; for these choices of K ,
Ke and S, the largest possible feasible set for Algorithm 3.3 is obtained with N = 4.
For comparison, the figure shows the maximal feasible set of states for Algorithm 3.1
(which is also obtained for N = 4). This contains and extends outside the feasible
set for rigid tube MPC as a result of the conservative definition of the uncertainty
tube in Algorithm 3.3. For this example, and for all values of N , Algorithm 3.1 has
6(N + 2) constraints whereas Algorithm 3.3 has 6(N + 2) + 8 constraints.

Replacing S with a smaller mRPI set approximation reduces the degree of con-
servativeness of the constraints in Algorithm 3.3. In fact Fig. 3.8 shows that almost
all of the discrepancy between the maximal feasible sets of Algorithms 3.1 and 3.3
disappears if Ke = [−1.27 −1.55] (which is the unconstrained min-max optimal
feedback gain for γ2 = 10) and, as before, K = [−0.89 −0.78]. However, the max-
imal set is then obtained for a larger value of N ; here N = 20 is needed to achieve
the maximal feasible set. ♦
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3.5.2 Homothetic Tube MPC

The rigid tube MPC described in Sect. 3.5.1 assumes that uncertainty in the error
state e is uniform through the prediction horizon. This however is conservative given
that e could initially be small (indeed e0|k = 0 if s0|k = xk), and the set containing
the uncertain component of the predicted future state only approaches the mRPI set
asymptotically. Rather than tightening constraints on the nominal predicted trajecto-
ries by considering theworst case ei |k ∈ S as is done in rigid tubeMPC, it is therefore
more reasonable to assume that

ei |k ∈ αi |kS0 (3.62)

for positive scalars αi |k , i = 0, 1, . . . that are taken to be variables in the online
optimization, and where the set

S0 = {e : V 0
Se ≤ 1} (3.63)

is determined offline. This replaces the rigid tube {S,S, . . .} that is used in rigid tube
MPC to bound the uncertainty tube {E0|k, E1|k, . . .} with an uncertainty tube given
by {α0|kS0,α1|kS0, . . .}. The sets αi |kS0 in this expression are homothetic to S0,
and hence, the approach is known as homothetic tube MPC [20].

The presence of the scalar variables αi |k implies that S0 (unlike S) need not
be RPI for the error dynamics (3.57c). Instead it is assumed that S0 is compact
and satisfies the invariance condition ΦeS0 ⊆ S0. A convenient way to invoke the
inclusion condition (3.62) is through a recursion relating αi+1|k to αi |k so as to
ensure that ei+1|k ∈ αi+1|kS0 whenever ei |k ∈ αi |kS0. The required condition1 can
be expressed as

Φeαi |kS0 ⊕ DW ⊆ αi+1|kS0, (3.64)

or equivalently, given the representation (3.63), as

αi |k max
e∈S0

V 0
SΦee + max

w∈W
V 0
S Dw ≤ αi+1|k1. (3.65)

This condition is equivalent to

αi |k ē + w̄ ≤ αi+1|k1 (3.66)

1This is a simplified version of the more general inclusion condition that is considered in [20]:
{Φsi |k + Bci |k} ⊕ Φeαi |kS0 ⊕ DW ⊆ {si+1|k} ⊕ αi+1|kS0.
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where the vectors ē and w̄ can be computed offline by solving a pair of linear pro-
grams:

ē
.= max

e
V 0
SΦee subject to V 0

Se ≤ 1

w̄
.= max

w
V 0
S Dw subject to V w ≤ 1.

Given that the condition (3.66) ensures that ei |k ∈ αi |kS0 throughout the predic-
tion horizon, the constraints (3.4) can be invoked as

F̄Ψ i z0|k + αi |kh0
S ≤ 1, i = 0, 1, . . . (3.67)

where z0|k = (s0|k, ck) is the initial state of the autonomous dynamics (3.9) and
where the vector h0

S can be computed offline by solving a linear program:

h0
S

.= max
e

(F + G Ke)e subject to V 0
Se ≤ 1.

Hence, robust satisfaction of the constraints (3.4) by the predicted trajectories of
(3.57) is ensured by conditions (3.66) and (3.67), which are linear in the variables
s0|k , ck = (c0|k, . . . , cN−1|k) and αi |k , i = 0, 1, . . .

To restrict the sequence {α0|k, i = 0, 1, . . .} to a finite number of degrees of
freedom, we invoke (3.66) for i ≥ N by the sufficient condition

αi+1|k = λαi |k + μ, i = N , N + 1, . . . (3.68)

where λ
.= ‖ē‖∞ and μ

.= ‖w̄‖∞. For simplicity we assume here that the condition
(3.68) is to be imposed after a horizon equal to N , but in general this could be replaced
by any finite horizon. Under the necessary assumption that λ < 1 the dynamics of
(3.68) are stable and converge to the limit

ᾱ = 1

1 − λ
μ

Thus, for i ≥ N , αi |k is given in terms of αN |k by

αi |k = λi−N (αN |k − ᾱ) + ᾱ,

and (3.66), (3.67) therefore constitute an infinite set of linear constraints in a finite
number of variables: s0|k , ck = (c0|k, . . . , cN−1|k) and {α0|k, . . . ,αN−1|k}. These
constraints are equivalent to a finite number of linear conditions by the following
result, the proof of which is similar to the proof of Theorem 2.3.

Corollary 3.2 Let ν be the smallest integer greater than or equal to N such that

F̄Ψ ν+1z + (
λν+1−N (αN − ᾱ) + ᾱ

)
h0
S ≤ 1

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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for all z and {α0, . . . ,αN } satisfying

F̄Ψ i z ≤
{

1 − αi h0
S , i = 0, . . . , N − 1

1 − (
λi−N (αN − ᾱ) + ᾱ

)
h0
S , i = N , . . . , ν

αi ē + w̄ ≤ αi+11, i = 0, . . . , N − 1

then (3.67) holds for all i = 0, 1, . . . Furthermore ν is necessarily finite if Ψ is
strictly stable and (Ψ, F̄) is observable.

The definition of an online predicted cost is needed before an algorithm can be
stated. This is taken to be the same as the cost (3.29) employed by rigid tube MPC,
but with the addition of terms that penalize the deviation of αi |k from the asymptotic
value ᾱ,

J (s0|k, ck,αk) = ‖s0|k‖2Wx
+ ‖ck‖2Wc

+
N−1∑

i=0

qα(αi |k − ᾱ)2 + pα(αN |k − ᾱ)2,

(3.69)
whereαk = (α0|k, . . . ,αN |k). In order to ensure themonotonic non-increasing prop-
erty of the optimized cost, we assume that the weights pα, qα > 0 satisfy the condi-
tion

pα ≥ (1 − λ2)−1qα. (3.70)

This results in an online optimization consisting of a quadratic program in
Nnu + nx + N + 1 variables and nC (ν + 1) + N + nS0 constraints, where nS0 is
the number of rows of V 0

S .

Algorithm 3.4 At each time instant k = 0, 1, . . .:

(i) Perform the optimization

minimize
s0|k ,ck ,αk

‖s0|k‖2Wx
+ ‖ck‖2Wc

+
N−1∑

i=0

qα(αi |k − ᾱ)2 + pα(αN |k − ᾱ)2

subject to F̄Ψ i
[

s0|k
ck

]
≤ 1 − αi |kh0

S , i = 0, . . . , ν

αi |k ē + w̄ ≤ αi+1|k1, i = 0, . . . , N − 1

αi |k = λi−N (αN |k − ᾱ) + ᾱ i = N , . . . , ν

xk − s0|k ∈ α0|kS0

(3.71)
where ν satisfies the conditions of Corollary 3.2.

(ii) Apply the control law uk = K s∗
0|k + Ke(xk − s∗

0|k) + c∗
0|k , where (s∗

0|k, c∗
k ,α

∗
k)

is the optimizer of (3.71), and c∗
k = (c∗

0|k, . . . , c∗
N−1|k). �
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Theorem 3.6 For the system (3.1) and control law of Algorithm 3.4, the set FN of
feasible states xk for (3.71) is RPI, and ᾱS0 is exponentially stable with region of
attraction equal to FN if Q, R � 0 and qα > 0 in (3.69).

Proof The recursive feasibility of the optimization (3.71) is demonstrated by the
argument that was used to show recursive feasibility in the proof of Theorem 3.5.
The exponential stability of ᾱS0 can be shown using the feasible but suboptimal
values for the optimization variables in (3.71) at time k + 1 that are given by

s0|k+1 = Φs∗
0|k + B Ec∗

0|k, ck+1 = Mc∗
k ,

αk+1 = (
α∗
1|k, . . . ,α∗

N |k,λ(α∗
N |k − ᾱ) + ᾱ

)
.

These allow the optimal value of the cost in (3.71) at time k + 1, denoted J ∗
k+1

.=
J (s∗

0|k+1, c∗
k+1,α

∗
k+1), to be bounded as follows,

J ∗
k+1 ≤ ‖Φs∗

0|k +B Ec∗
0|k‖2Wx

+ ‖Mc∗
k‖2Wc

+
N∑

i=1

qα(α∗
i |k − ᾱ)2+ pαλ2(α∗

N |k − ᾱ)2

≤ ‖Φs∗
0|k +B Ec∗

0|k‖2Wx
+ ‖Mc∗

k‖2Wc
+

N−1∑

i=1

qα(α∗
i |k − ᾱ)2+ pα(α∗

N |k − ᾱ)2

≤ J ∗
k − (‖s∗

0|k‖2Q + ‖K s∗
0|k + c∗

k‖2R) − qα(α∗
0|k − ᾱ)2,

where (3.70) has been used. By the argument of the proof of Theorem 2.8 therefore,
for any initial condition x0 in the feasible set FN for (3.71), we obtain, for all k > 0,

‖s∗
0|k‖2 + |α∗

0|k − ᾱ|2 ≤ b

a

∣∣∣∣1 − min{λ(Q), qα}
b

∣∣∣∣
k(‖s∗

0|0‖2 + |α∗
0|0 − ᾱ|2), (3.72)

where a, b > 0 are constants such that, for all xk ∈ FN ,

a
(‖s0|k‖2 + |α0|k − ᾱ|2) ≤ J (s∗

0|k, c∗
k) ≤ b

(‖s0|k‖2 + |α0|k − ᾱ|2).

Since xk − e∗
0|k = s∗

0|k and e∗
0|k ∈ α∗

0|kS0, the minimum Euclidean distance from xk

to any point in ᾱS0 is bounded by

min
e∈ᾱS0

‖xk − e‖ ≤
∥∥∥xk − ᾱ

α∗
0|k

e∗
0|k

∥∥∥ ≤ ‖s∗
0|k‖ + |α∗

0|k − ᾱ|
α∗
0|k

max
e∈α∗

0|kS0
‖e‖

= ‖s∗
0|k‖ + β|α∗

0|k − ᾱ| (3.73)

where β = maxe∈ᾱS0 ‖e‖/ᾱ is a constant, and it follows from (3.72) and (3.73) that
the distance of xk from ᾱS0 is upper-bounded by an exponential decay. �

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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The cost and constraints of the HTMPC optimization (3.71) can be simplified (as
discussed in Question 9 on p. 117) if the set S0 is robustly invariant for the error
dynamics (3.57c). We note also that it is possible to relax the constraints of this
approach using the equi-normalization technique described in [21]. This is achieved
through exact scaling of the set S0, allowing for an expansion of the region attraction
of Algorithm 3.4. Further improvements in the size of the feasible initial condition
set can be achieved by formulating the degrees of freedom αi |k as vectors rather
than the scalars that, in Algorithm 3.4, scale the set S0 equally in all directions.
This is possible through an appropriate use of Farkas’ Lemma, and is discussed in
detail in Chap. 5.

3.6 Early Robust MPC for Additive Uncertainty

To conclude this chapter we describe two of the main precursors of the robust MPC
techniques described in Sects. 3.2, 3.3 and 3.5. The first of these is concerned with a
robust extension of SGPC for systems with additive disturbances [22]. This approach
imposes tightened constraints on nominal predicted trajectories to ensure robust-
ness, and it also provides conditions for recursive feasibility analogous to those of
Sect. 3.2.1, but in the context of input-output discrete time models and equality ter-
minal constraints. We then discuss the tube MPC algorithms of [4, 23]. These use
low-complexity polytopes to bound predicted trajectories, treating the parameters
defining these sets as variables in the online MPC optimization. Similarly to the
homothetic tubes considered in Sect. 3.5.2, the condition that these tubes should
contain the predicted trajectories of the uncertain plant model is invoked through a
recursive sequence of constraints.

3.6.1 Constraint Tightening

This section describes a formulation of robust MPC for the case of additive distur-
bances which is based on the SGPC algorithm described in Sect. 2.10. As in Sect. 3.3,
a nominal cost is assumed. This is computed under the assumption that the nominal
disturbance input is zero, and is therefore equal to the predicted costwhen there are no
future disturbances. In the constant setpoint problem considered in Sect. 2.10, SGPC
with integral action steers the state asymptotically to a reference state (which for
simplicity is taken to be zero in this section) whenever the future disturbance reaches
a steady state. However, this presupposes recursive feasibility which is achieved
in [22] through constraint tightening. The tightened constraints are derived in two
stages, the first of which achieves an a posteriori feasibility that ensures the feasi-
bility of predictions, and the second invokes feasibility a priori so that feasibility is

http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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retained recursively. The terms a posteriori and a priori are used in the sense that the
former involves conditions based on past information whereas the latter anticipates
the future in an attempt to ensure recursive feasibility.

To simplify presentation we consider here the case of a single-input single-output
system. The convenience of the SGPC approach is that, for the disturbance-free
case, it develops prediction dynamics which involve transfer functions described by
finite impulse response (FIR) filters. Hence, a terminal (equality) stability constraint
can be imposed on predicted trajectories implicitly, without the need to invoke any
terminal constraints. This convenience can be preserved for the casewhen an additive
disturbance is introduced into the system model (2.68):

yk = z−1b(z−1)

a(z−1)
uk + 1

a(z−1)
ζk

= z−1b(z−1)

α(z−1)
Δuk + 1

α(z−1)
ξk (3.74)

where α(z−1) = Δ(z−1)a(z−1), Δ(z−1) = 1 − z−1 and ζk = 1
Δ(z−1)

ξk with ξk

denoting a zero mean white noise process, and where the polynomial matrices
A(z−1), B(z−1) in (2.68) are replaced by polynomials a(z−1), b(z−1) for the single-
input single-output case considered here. As explained in Chap.2, consideration is
given to the control increments, Δuk (rather than the values of the control input, uk),
as a means of introducing integral action into the feedback loop.

Similarly to the decomposition of predicted trajectories inSect. 3.2,wedecompose
the z-transforms, y(z−1), u(z−1), of the predicted output and control input sequences
according to

y(z−1) = y(1)(z−1) + y(2)(z−1), u(z−1) = u(1)(z−1) + u(2)(z−1).

Here, y(1), u(1) denote nominal predicted output and input sequences that corre-
spond to the disturbance-free case, while y(2), u(2) model the effects of the addi-
tive disturbance in (3.74). Following the development of Sect. 2.10, the control
law Δu(1)(z−1) = (

c(z−1) − z−1N (z−1)y(1)(z−1)
)
/M(z−1) for some polynomials

N (z−1) and M(z−1), results in predictions

y(1)(z−1) = z−1b(z−1)c(z−1) + y f (z) (3.75a)

Δu(1)(z−1) = α(z−1)c(z−1) + Δu f (z) (3.75b)

provided that N (z−1) and M(z−1) satisfy the Bezout identity

α(z−1)M(z−1) + z−1b(z−1)N (z−1) = 1. (3.76)

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Note that y f (z) and Δu f (z) in (3.75) are polynomials in positive powers of z that
relate to past values of outputs and control increments, thereby taking account of
non-zero initial conditions.

In the absence of disturbances, a terminal equality constraint requiring the nominal
predicted outputs and inputs to be identically zero after a finite initial prediction
horizon is imposed implicitly by setting Δu(z−1) = Δu(1)(z−1). The case of non-
zero disturbances can also be handled through use of the Bezout identity (3.76).
From (3.74), Δu(2)(z−1) and y(2)(z−1) are related by

α(z−1)y(2)(z−1) − z−1b(z−1)Δu(2)(z−1) = ξ(z−1),

and (3.76) therefore implies that the transfer functions from ξ(z−1) to y(2)(z−1) and
Δu(2)(z−1) have the formof FIRfilters if the predicted control increments are defined
by Δu(z−1) = (

c(z−1) − z−1N (z−1)y(z−1)
)
/M(z−1) since from (3.75b) we then

obtain

y(2)(z−1) = M(z−1)ξ(z−1) (3.77a)

Δu(2)(z−1) = −z−1N (z−1)ξ(z−1). (3.77b)

The fixed order polynomials M(z−1), z−1N (z−1) appearing in these expressions
enable the worst-case values of the predicted values for y(2), Δu(2) to be computed
conveniently and thus allow constraints to be applied robustly, for all allowable
disturbance sequences ξ(z−1).

To illustrate this point, consider the case where the system is subject to rate
constraints only:

|Δui |k | ≤ R, i = 0, 1, . . .

Then the implied constraints on the nominal control sequence must be tightened to
give

|Δu(1)
i |k | ≤ R − R#

i , i = 0, 1, . . . (3.78)

where R#
i denotes the prediction i steps ahead of the worst-case absolute value of

Δu(2) in (3.77b). To determine this, some assumption as to the size of uncertainty has
to be made, and (analogously to the disturbance set (3.3)) a bound can be imposed
through ζi |k , which would in practice be limited as

|ζi |k | ≤ d, i = 0, 1, . . . .

Given this limit it is straightforward to compute R#
i , by writing (3.77b) in terms of

ζ(z−1) as
Δu(2)(z−1) = −z−1N (z−1)[Δ(z−1)ζ(z−1) − ζk],
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and then extracting the worst-case value of the coefficient of z−i in Δu(2)(z−1)

over the allowable range of values of coefficients of ζ(z−1). Given that M(z−1) and
Δu(1)

i |k (z−1) are both finite-degree polynomials in z−1, it is clear that only a finite

number of terms: R#
i , i = 0, 1, . . . , ν, for finite ν, need to be evaluated in order to

invoke the constraints (3.78) over an infinite prediction horizon.
Condition (3.78), imposed on the degrees of freedom in (3.75b), namely the

coefficients of c(z−1), defines the a posteriori conditions that ensure the feasibility
of the control input increments, given the current measurements. However, this is not
enough to guarantee recursive feasibility, as can be seen by considering the tail at time
k + 1 of a trajectory that was feasible at time k. This tail is generated by replacing the
c(z−1) polynomial in (3.75) with z

(
c(z−1) − c0|k

)
. In the absence of disturbances,

such a tail would necessarily be feasible, but through the initial conditions term,
Δu f , of (3.75b), the effect on the sequence of predictions for Δu(1) at time k + 1
due to non-zero ζ will be the addition of a term which can be shown to be

fΔu(ζk, ζk+1) = −N (z−1)(ζk+1 − ζk),

This termmust be accommodated by the tightened constraints when they are applied
at the next time instant, k + 1. Thus application of (3.78) at time k + 1 must ensure
that for each prediction step i , R#

i − R#
i+1 is at least as large as the modulus of

the corresponding element of fΔu(ζk, ζk+1). Detailed calculation shows that this is
indeed the case if the tightening parameters are

R#
1 = 0, R#

i+1 = R#
i + 2d|Ni−1|, i = 1, . . . ,μ − 1 (3.79)

whereμ denotes the sum of the degrees ofα(z−1) and c(z−1) and Ni is the coefficient
of z−i in N (z−1). The constraint (3.78) with (3.79) defines the a priori feasibility
conditions which also satisfy the a posteriori conditions and are in fact the least
conservative constraint tightening bounds that provide the guarantees of recursive
feasibility.

The development presented in this section has obvious extensions to absolute
input (rather than rate) constraints as well as mixed input/output constraints. Indeed,
as shown in Sects. 3.3 and 3.5, a similar constraint tightening approach can also be
extended to state space models and to algorithms other than SGPC. What makes
the approach described here convenient is the fact that, by using the Bezout iden-
tity (3.76), the uncertainty tube converges to the mRPI set in a finite number of steps.
This ensures that the sequence of constraint tightening parameters R#

1 , R#
2 , . . . con-

verges to a limit in a finite number of steps, without the need for the more general, but
computationally more demanding, theoretical framework of Sects. 3.2.1 and 3.2.2.

3.6.2 Early Tube MPC

Uncertainty tubes that are parameterized explicitly in terms of optimization vari-
ables were proposed in the robust MPC algorithms of [4, 24]. Although similar in
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this respect to the homothetic tubes of [20], the tubes of [4, 24] allow more variation
between the shapes of the sets defining the tube cross section than simple transla-
tion and scaling of a given set. To avoid the need for large numbers of optimization
variables, attention is restricted to tube cross sections defined as low-complexity
polytopes. The approach is explained in this section within the context of additive
model uncertainty; the application of low-complexity polytopes to the case of multi-
plicative model uncertainty (which was proposed in [4, 23]) is discussed in Chap.5.

A low-complexity polytope is a linearly transformed hypercube. Let Si |k denote
the low-complexity polytope defined by

Si |k
.= {x : αi |k ≤ VS x ≤ αi |k} (3.80)

where VS ∈ R
nx ×nx is non-singular andαi |k,αi |k ∈ R

nx . Then the condition that the
state x ∈ R

nx of (3.1) belongs to Si |k can be expressed as 2nx linear inequalities. It
is convenient to define a transformed state vector as

ξ = VS x .

In terms of this transformed state, the open-loop strategy of (3.6) and the correspond-
ing prediction dynamics (3.7) can be re-written as

ui |k = K̃ ξi |k + ci |k, (3.81a)

ξi |k = Φ̃ξi |k + B̃ci |k + D̃wi |k, (3.81b)

where Φ̃ = VSΦV −1
S , B̃ = VS B, D̃ = VS D and K̃ = K V −1

S . As before,we assume
that ci |k = 0 for all i ≥ N , where N is the mode 1 prediction horizon, and K is
assumed to be the unconstrained LQ-optimal feedback gain.

Low-complexity polytopic tubes provide a compact and efficient means of bound-
ing the predicted state as a function of the degrees of freedom (c0|k, . . . , cN−1|k) in
(3.81b), the initial state ξ0|k = VS xk , and the disturbance setW . This can be achieved
by propagating the tube cross sections recursively using the following result.

Lemma 3.6 For A ∈ R
n A×ny , let A+ .= max{A, 0} and A− .= max{−A, 0}, then

y ≤ y ≤ ȳ implies

A+y − A− ȳ ≤ Ay ≤ A+ ȳ − A−y, (3.82)

and, for each of the 2n A elementwise bounds in (3.82), there exists y satisfying
y ≤ y ≤ ȳ such that the bound holds with equality.

Consider the conditions on αi |k , αi |k , ci |k andW in order that xi |k ∈ Si |k implies
that xi+1|k ∈ Si+1|k . If we define

wD
.= min

w∈W
D̃w, w̄D

.= max
w∈W

D̃w,

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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then, given that xi |k ∈ Si |k , the elements of ξi+1|k are bounded according toαi+1|k ≤
ξi+1|k ≤ αi+1|k where

αi+1|k ≤ Φ̃+αi |k − Φ̃−αi |k + B̃ci |k + wD (3.83a)

Φ̃+αi |k − Φ̃−αi |k + B̃ci |k + w̄D ≤ αi |k . (3.83b)

Therefore the tube {S0|k, . . . ,SN |k} contains the predicted state trajectories of (3.1) if
and only if these conditions hold for i = 0, . . . , N − 1, starting from α0|k = α0|k =
VS xk .

Under the control law of (3.81a), the constraints of (3.4), expressed in terms of
F̃ = FV −1

S and K̃ , can be written as

(F̃ + G K̃ )ξi |k + Gci |k ≤ 1. (3.84)

These constraints are satisfied for all ξi |k ∈ Si |k if and only if

(F̃ + G K̃ )+αi |k − (F̃ + G K̃ )−αi |k + Gci |k ≤ 1 (3.85)

This takes care of constraints for i = 0, . . . , N − 1,whereas the constraints for i ≥ N
are accounted for by imposing the condition that the terminal tube cross section
should lie in a terminal set, ST , which is RPI. To allow for a guarantee of recursive
feasibility, [4, 24] proposed a low-complexity polytopic terminal set:

{x : |VS x | ≤ αT } (3.86)

where the absolute value and inequality sign in (3.86) apply on an element by element
basis. This terminal set is invariant under the dynamics of (3.81b) and the constraints
of (3.84) for ci |k = 0 if and only if

|Φ̃|αT + max{w̄D,−wD} ≤ αT , (3.87)

and

|F̃ + G K̃ |αT ≤ 1 (3.88)

The conditions (3.87) and (3.88) follow from the fact that, for |ξ| ≤ αT , the achievable
maximum (elementwise) values of Φ̃ξ and (F̃ + G K̃ )ξ are |Φ̃|αT and |F̃ + G K̃ |αT

respectively.
Combining the robust constraint handling of this section with the nominal cost

of Sect. 3.3 gives the following online optimization problem which is a quadratic
program in N (nu + 2nx ) variables and 2(N + 1)nx + NnC constraints.
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minimize
ck ,αi |k ,αi |k ,i=0,...,N

‖ck‖2Wc

subject to (3.83), (3.85) for i = 0, . . . , N − 1,

αN |k ≥ −αT , αN |k ≤ αT

α0|k = α0|k = VS xk

(3.89)

The optimal value of ck for this problem is clearly also optimal for the problem
of minimizing, subject to the constraints of (3.89), the nominal cost J (xk, ck) =
‖xk‖2Wx

+ ‖ck‖2Wc
defined in (3.29). Hence the stability analysis of Sect. 3.3 applies

to theMPC law uk = K xk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the optimal value
of ck for problem (3.89). In particular, recursive feasibility is implied by the feasibility
of the following values for the variables in (3.89) at time k + 1:

ck+1 = Mc∗
k

αi |k+1 = α∗
i+1|k, αi |k+1 = α∗

i+1|k, i = 0, . . . , N − 1

αN |k+1 = ξT , αN |k+1 = −ξT .

where c∗
k andα∗

i |k ,α∗
i |k , i = 0, . . . , N are optimal for (3.89) at time k. The constraints

of (3.89) must therefore be feasible at times k = 1, 2, . . . if the initial condition x0
lies in the feasible set for (3.89) at k = 0. In addition, the quadratic bound (3.38)
holds for the closed-loop system, and asymptotic convergence of xk to the minimal
RPI set XmRPI defined in (3.23) follow from Lemmas 3.1, 3.2 and the bound (3.37).

We close this section by noting that the offline computation that is required so that
the MPC optimization (3.89) can be performed online concerns the selection of VS
and αT defining the terminal set in (3.86). Since this terminal set must be invariant,
a convenient choice for VS is provided by the eigenvector matrix of Φ with the
columns of VS that correspond to complex conjugate eigenvalues of Φ replaced by
the real and imaginary parts of the corresponding eigenvectors. With this choice of
VS , a necessary and sufficient condition for existence of αT satisfying (3.87) is that
the eigenvalues of Φ should lie inside the box in the complex plane with corners at
±1 and ± j (Fig. 3.9). Having defined VS , the elements of α can be determined so
as to maximize the volume of the terminal set subject to (3.88) through the solution
of a convex optimization problem.

Despite their computational convenience, the relatively inflexible geometry of
low-complexity polytopes makes them rather restrictive. For this reason Chap. 5
replaces low-complexity polytopes with general polytopic sets through an appropri-
ate use of Farkas’ Lemma (see [25] or [26]).

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Fig. 3.9 The box in the
complex plane with vertices
at ±1 and ± j (shaded
region)

3.7 Exercises

1 A production planning problem requires the quantity uk of product made in week
k, for k = 0, 1, . . . to be optimized. The quantitywk of product that is sold in week k
is unknown in advance but lies in the interval 0 ≤ wk ≤ W and has a nominal value
of ŵ. The quantity xk+1 remaining unsold at the start of week k + 1 is governed by

xk+1 = xk + uk − wk, k = 0, 1, . . .

Limits on storage and manufacturing capacities imply that x and u can only take
values in the intervals

0 ≤ xk ≤ X, 0 ≤ uk ≤ U.

The desired level of x in storage is x0, and the planned values u0|k, u1|k, . . . are to
be optimized at the beginning of week k given a measurement of xk .

(a) What are the advantages of using a receding horizon control strategy that is
recomputed at k = 0, 1, . . . in this application instead of an open-loop control
sequence computed at k = 0?
Let the planned production at time k be ui |k = ŵ − (xi |k − x0) + ci |k for i =
0, 1, . . ., where (c0|k, . . . , cN−1|k) = ck is a vector of optimization variables at
time k, ci |k = 0 for i ≥ N , and xi |k is a prediction of xk+i .

(b) Let si |k be the nominal value of xi |k − x0 (namely the value that would be
obtained if wi |k = ŵ for all i ≥ 0, with s0|k = xk − x0). Show that the nominal
cost J (xk, ck)

.= ∑∞
i=0 s2i |k is given by
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J (xk, ck) = (xk − x0)2 + ‖ck‖2.

(c) If si |k + ei |k = xi |k − x0, verify that ei |k ∈ [ŵ − W, ŵ] for all i ≥ 1. Hence
show that ui |k ∈ [0, U ] and xi |k ∈ [0, X ] for all wi |k ∈ [0, W ] and all i ≥ 0
if and only if the following conditions hold,

ci |k + ŵ + x0 ∈ [W, X ] i = 0, . . . , N − 1

ci |k − ci−1|k ∈ [0, U − W ] i = 1, . . . , N − 1

c0|k + ŵ + x0 − xk ∈ [0, U − W ]
cN−1|k ∈ [−(U − W ), 0]

and state the conditions on X, U, W that are required in order that the feasible
set for x0 is non-empty.

(d) Let c∗
k be the minimizer of the cost in (b) subject to the constraints in (c) at time

k, and define the MPC law as uk = ŵ − (xk − x0) + c∗
0|k , where c∗

0|k is the first
element of c∗

k . Show that the constraints of (c) are recursively feasible and that
c∗
0|k converges to zero as k → ∞.

(e) Explain why x0 ≤ ŵ + x0 is needed for feasibility of the constraints of (c) at
k = 0. How might this condition be relaxed?

2 If Φ is a nilpotent matrix, with Φn = 0 for some integer n > 0, and Ψ is defined
by

Ψ =
[
Φ Γ

0 M

]
, M =

⎡

⎢⎢⎢⎢⎢⎣

0 Inu 0 · · · 0
0 0 Inu · · · 0
...

...
...

...

0 0 0 · · · Inu

0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦
∈ R

Nnu×Nnu

for a given matrix Γ , prove that Ψ is nilpotent with Ψ m = 0 for m = n + N .
Use this property to write down expressions for:

(a) the minimal RPI set for the dynamics ek+1 = Φek + Dwk ,
(b) the set of inequalities defining themaximal RPI set for the system zk+1 = Ψ zk +

D̄wk and constraints F̄ zk ≤ 1,
(c) the conditions under which the set of feasible initial states for the system zk+1 =

Ψ zk + D̄wk and constraints F̄ zk ≤ 1 is non-empty,

where wk lies in a compact polytopic setW for all k and D̄ =
[

D
0

]
.



114 3 Open-Loop Optimization Strategies for Additive Uncertainty

3 A system has dynamics xk+1 = Axk + Buk + wk and state constraints Fx ≤ 1,
with

A =
[ −1 0.2
−0.25 0.65

]
, B =

[
1

−0.5

]
, F =

[
I

−I

]

where the disturbance input wk is unknown at time k and satisfies, for all k ≥ 0

wk ∈ σW0, W0
.=

{
w :

[−1
−1

]
≤

[
1 1
1 −1

]
w ≤

[
1
1

]}

for some constant scalar parameter σ > 0.
Verify that Φ = A + BK is nilpotent if K = [

0.5 0.3
]
. Hence determine the

maximal RPI set,ZMRPI(σ), for the system zk+1 = Ψ zk + D̄wk , wk ∈ σW0, where
Ψ is defined as in Question 2, with N = 2 and Γ = B

[
1 0

]
. Show that ZMRPI(σ)

is non-empty if and only if σ ≤ 2
3 .

4 For the system considered inQuestion 3 anMPC law is defined at each time instant
k = 0, 1, . . . as uk = K xk + c∗

0|k , where c∗
k = (c∗

0|k, c∗
1|k) is the solution of the QP:

c∗
k = argmin

ck
‖ck‖2 subject to

[
xk

ck

]
∈ ZMRPI(σ)

and where K and ZMRPI(σ) are as defined in Question 3. The controller is designed
to operate with any σ in the interval [0, 2

3 ), and σ can be assumed to be known and
constant when the controller is in operation.

(a) Show that the closed-loop system is stable if the MPC optimization is feasible
at time k = 0. What limit set will the closed-loop state converge to?

(b) Comment on the suggestion that better performance would be obtained with
respect to the cost

∑∞
k=0(‖xk‖2Q + u2

k), for a given matrix Q � 0, if the MPC
optimization at time k was defined

c∗
k = argmin

ck

∥∥∥∥

[
xk

ck

]∥∥∥∥
2

W
subject to

[
xk

ck

]
∈ ZMRPI(0.5),

where W is the solution of the Lyapunov equation

W − Ψ T WΨ = Q̂, Q̂ =
⎡

⎣
Q + K T K K T 0

K 0 0
0 0 0

⎤

⎦ .
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5 (a) A matrix Φ and a compact convex polytopic set W satisfy the inclusion
condition

ΦrW ⊆ ρW

for some integer r and ρ ∈ [0, 1). Show that h∞ ≤ ĥ∞, where

h∞
.=

∞∑

j=0

max
w j ∈W

FΦ jw j , ĥ∞
.= 1

1 − ρ

r−1∑

j=0

max
w j ∈W

FΦ jw j

and prove that the fractional error, (ĥ∞ − h∞)/h∞, in this bound is no greater
than ρ/(1 − ρ).

(b) For (A, B) and W0 as defined in Question 3 and K = [
0.479 0.108

]
, use the

bounds in (a) to determine h∞ to an accuracy of 1% when Φ = A + BK and
W .= 0.1W0.

(c) Suggest an over-bounding approximation of the minimal RPI set for the system
ek+1 = (A + BK )ek + wk , wk ∈ W which is based on the inclusion condition
in (a). What can be said about the accuracy of this approximation?

6 A robust MPC law is to be designed for the system xk+1 = Axk + Buk + wk with
the state constraints Fx ≤ 1 and disturbance bounds wk ∈ 0.5W , where (A, B), F
and W0 are as defined in Question 3. The predicted control sequence is parame-
terized as ui |k = K xi |k + ci |k with K = [

0.479 0.108
]
, where ci |k for i < N are

optimization variables and ci |k = 0 for all i ≥ N .

(a) For N = 1, construct matrices Ψ , D̄ and F̄ such that Fxi |k = F̄ zi |k for all
i ≥ 0,where zi+1|k = Ψ zi |k + D̄wk+i and hence determine the constraint set for
zk = (xk, ck) that gives the largest possible feasible set for xk for this prediction
system.

(b) Determine the matrix Wz defining the nominal cost

∞∑

i=0

(‖si |k‖2 + v2i |k) = zT
k Wzzk

for the nominal predictions si+1|k = (A + BK )si |k + Bci |k and vi |k = K si |k +
ci |k , with s0|k = xk . Verify that for x0 = (0, 1) the minimal value of this cost
subject to the constraints computed in (a) is 1.707.

(c) Starting from the initial condition x0 = (0, 1), simulate the closed-loop system
under the MPC law uk = K xk + c∗

0|k , assuming that the disturbance sequence
(which is unknown to the controller) is given by

{w0, w1, w2, w3, . . .} =
{[

0.5
0

]
,

[−0.5
0

]
,

[
0
0.5

]
,

[
0

−0.5

]}
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and verify that the closed-loop state and control sequences satisfy

3∑

k=0

(‖xk‖2 + u2
k

) = 4.49.

7 The worst case predicted cost:

J̌ (xk, ck) = max{wk ,wk+1,...}

∞∑

i=0

(‖xi |k‖2 + u2
i |k − γ2‖wk+i‖2

)

is to be used to define a robust MPC law for the system with the model, distur-
bance bounds and state constraints of Question 6, with N = 1 and γ2 = 3.3. For this
value of γ2 the unconstrained optimal feedback gain is K = [

0.540 0.249
]
and the

corresponding Riccati equation has the solution

W̌x =
[
2.336 −0.904

−0.904 2.103

]
.

(a) Determine Wx and Wc so that J̌ (xk, ck) = ‖xk‖2Wx
+ ‖ck‖2Wc

.

(b) Find the smallest integer ν such that F̄Ψ ν+1z ≤ 1 − hν+1 for all z satisfying
F̄Ψ i z ≤ 1 − hi , for i = 0, . . . , ν. Hence, solve the MPC optimization (3.47) at
k = 0 for x0 = (0, 1), and verify that the optimal solution is c∗

0 = 0.051 and that
J̌ ∗(x0) = 2.294.

(c) Consider the alternative worst-case cost defined by

J̌ (xk, ck) = max
wk+i ∈W

i=0,...,N−1

N−1∑

i=0

(‖xi |k‖2 + u2
i |k − γ2‖wk+i‖2

) + ‖xN |k‖2W̌x
.

and determine the matrices Wμz , Wμμ in the online MPC optimization of (3.55).
Hence verify that the optimum c∗

0 is unchanged but J̌ ∗(x0) = 2.222.
(d) Why is the predicted cost smaller in (c) than (b)? What are the advantages of (c)

relative to (b), and what are the possible disadvantages?

8 In this problem the rigid tube MPC strategy (Sect. 3.5.1) is applied to the sys-
tem with model xk+1 = Axk + Buk + wk , state constraints Fxk ≤ 1 and distur-
bance bounds wk ∈ W ,W .= 0.4W0, with A, B, F andW0 as given in Question 3,
and feedback gain K = Ke = [

0.479 0.108
]
, which is optimal for the nominal cost∑∞

k=0(‖xk‖2 + u2
k) in the absence of constraints.

(a) For r = 2 and Φ = A + BK find the smallest scalar ρ such that ΦrW ⊆ ρW
and compute hS

.= maxe∈S Fe where
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S = 1

1 − ρ
(W ⊕ ΦW).

(b) For predictions ui |k = K xi |k + ci |k , with ci |k = 0 for i ≥ N and N = 1, verify
that the maximal invariant set for the dynamics zk+1 = Ψ zk and constraints
F̄ zk ≤ 1 − hS , k = 0, 1, . . . is

ZMPI = {z : F̄Ψ i z ≤ 1 − hS , i = 0, 1, 2}

where F̄ = [
F 0

]
and Ψ =

[
Φ B E
0 M

]
.

(c) The onlineMPC optimization is performed subject to the constraints (s0|k, ck) ∈
ZMPI and xk − s0|k ∈ S. Explain the function of the optimization variable s0|k
and the reason for including the constraint xk − s0|k ∈ S. How can this constraint
be expressed in terms of linear conditions on the optimization variables?

(d) Determine the matrices Wx , Wc that define the nominal predicted cost

∞∑

i=0

(‖si |k‖2 + v2i |k
) = ‖s0|k‖2Wx

+ ‖ck‖2Wc

where si+1|k = Asi |k + Bvi |k , vi |k = K si |k + ci |k . Solve the MPC optimization
for x0 = (0, 1) and verify that the optimal value of the objective function is
‖s∗

0|0‖2Wx
+ ‖c∗

0‖2Wc
= 0.122.

(e) What is the advantage of using a different feedback gain Ke in the definition of
S and implementing the controller as uk = K s∗

0|k + Ke(xk − s∗
0|k) + c∗

0|k?

9 The homothetic tube MPC strategy of Sect. 3.5.2 does not require the set S0 to
be robustly invariant for the dynamics, ek+1 = Φek + wk , wk ∈ W , of the uncertain
component of the predicted state. This question concerns a simplification of the
online HTMPC optimization that becomes possible when S0 is replaced by a set,
S = {s : VSs ≤ 1}, which is robustly invariant for these dynamics.

(a) Show that, if ΦS ⊕ W ⊆ S, then ē + w̄ ≤ 1 where

ē = max
e∈S

VSΦe w̄ = max
w∈W

VSw.

(b) Show that, if ν ≥ N − 1 is an integer such that F̄Ψ ν+1z ≤ 1 − hS (where
hS = maxe∈S Fe, and Ψ , F̄ are as defined in Question 8(b)) for all z and
(α0, . . . ,αN−1) satisfying

F̄Ψ i z ≤ 1 − αi hS , i = 0, . . . , ν
αi ē + w̄ ≤ αi+11, i = 0, . . . , N − 1
αi = 1, i ≥ N ,
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then, for the system xk+1 = Axk + Buk + wk , wk ∈ W and control law uk =
K xk + c0|k , there exists (s0|k, ck,αk) satisfying the following constraints for all
k > 0 if they are feasible at k = 0:

F̄Ψ i zk ≤ 1 − αi |khS , i = 0, . . . , ν
αi |k ē + w̄ ≤ αi+1|k1, i = 0, . . . , N − 1
αi |k = 1, i ≥ N
xk − s0|k ∈ α0|kS

with zk = (s0|k, ck), ck = (c0|k, . . . , cN−1|k), αk = (α0|k, . . . ,αN−1|k).
(c) Let c∗

k = (c∗
0|k, . . . , c∗

N−1|k) be optimal for the problem of minimizing the pre-
dicted cost at time k:

J (s0|k, ck,αk) = ‖s0|k‖2Wx
+ ‖ck‖2Wc

+
N−1∑

i=0

qα(αi |k − 1)2,

over (s0|k, ck,αk) subject to the recursively feasible constraints of part (b),where
Wx satisfies the Riccati equation (2.9) for Q, R � 0, Wc = diag{BT Wx B +
R, . . . , BT Wx B + R} and qα is any nonnegative scalar.
Show that, if this minimization is feasible at k = 0, then for any disturbance
sequence with wk ∈ W for all k ≥ 0, the closed-loop system xk+1 = Axk +
Buk + wk under theMPC law uk = K xk + c∗

0|k satisfies the constraints Fxk ≤ 1
for all k ≥ 0, and its state converges asymptotically to the set S.

10 This question considers the design and implementation of the homothetic tube
MPC strategy ofQuestion 9 for the systemmodel, disturbance bounds and constraints
of Question 8.

(a) Using the set S determined in Question 8, namely

S = 1

1 − ρ
(W ⊕ ΦW)

where ρ is the smallest scalar such thatΦ2W ⊆ ρW , determine ē and w̄ defined
in Question 9(a). Verify that, for N = 1, the smallest integer ν satisfying the
conditions of Question 9(b) is ν = 2.

(b) Taking qα = 1 solve the MPC optimization defined in Question 9(c) for x0 =
(0, 1) and N = 1. Why is the optimal solution for c0 in this problem equal to
the optimum for rigid tube MPC computed for the same x0 in Question 8(d)?

(c) Compare HTMPC in terms of its closed-loop performance and the size of its
feasible initial condition set with: (i) the robust MPC algorithm of Question 6
and (ii) the rigid tube MPC algorithm of Question 8.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Chapter 4
Closed-Loop Optimization Strategies
for Additive Uncertainty

The performance and constraint handling capabilities of a robust predictive con-
trol law are limited by the amount of information on future model uncertainty that
is made available to the controller. However, the manner in which the controller
uses this information is equally important. Although the realization of future model
uncertainty is by definition unknown when a predicted future control trajectory is
optimized, this information may be available to the controller at the future instant of
time when the control law is implemented. For example, the prediction, ui |k , at time
k of the control input i steps into the future should ideally depend on the predicted
model state i steps ahead, but this is unknown at time k because of the unknownmodel
uncertainty at times k, . . . , k + i − 1, even though the state xk+i is, by assumption,
available to the controller at time k + i. In order to fully exploit the potential benefits
of this information, a closed-loop optimization strategy is needed that allows the
degrees of freedom over which the predicted trajectories are optimized to depend on
the realization of future model uncertainty.

This chapter considers again the control problem defined in terms of a linear
system model in Sect. 3.1, which is restated here for convenience:

xk+1 = Axk + Buk + Dwk . (4.1)

The matrices A, B, D are known, the state xk is known when the control input uk is
chosen, and wk is an unknown additive disturbance input at time k. As in Chap.3,
w is assumed to lie in a compact convex polytopic set W containing the origin,
described either by its vertices:

W = Co{w( j), j = 1, . . . , m}, (4.2)

or by the intersection of half-spaces:

W = {w : V w ≤ 1}, (4.3)
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and the state and control input of (4.1) are subject to linear constraints:

Fxk + Guk ≤ 1, k = 0, 1, . . . (4.4)

for given matrices F ∈ R
nc×nx and G ∈ R

nc×nu .
The control objective is to steer the system state into a prescribed target set under

any possible realization of model uncertainty, while minimizing an appropriately
defined performance cost. Consideration is given to general class of control laws,
and hence we remove the restriction to open-loop strategies that was imposed in
Chap.3.

A predictive control law that employs a closed-loop optimization strategy opti-
mizes predicted performance over parameters that define predicted future feedback
policies. In its most general setting, the problem can be solved using dynamic pro-
gramming, and the first part of this chapter gives a brief overview of this technique
and its application to robust MPC for systems with additive disturbances. In prac-
tice, the computation required by dynamic programming is often prohibitive. To
render computation tractable, it may therefore be necessary to restrict the class of
control policies considered in the MPC optimization, and the later sections of this
chapter consider approaches that optimize over restricted classes of feedback poli-
cies in order to reduce computation. We discuss policies with affine dependence on
disturbances, and then consider more general piecewise affine parameterizations. As
in Chap.3, the emphasis is on the tradeoff that can be achieved between computa-
tional tractability and performance while ensuring satisfaction of constraints for all
uncertainty realizations.

4.1 General Feedback Strategies

Robust optimal control laws for constrained systems subject to unknowndisturbances
were proposed in [1–4]. The essence of these approaches is to construct a robust
controller as a feedback solution to the problem of minimizing a worst-case (min-
max) performance objective over all admissible realizations of model uncertainty.
The description of model uncertainty in terms of sets of allowable parameter values
leads naturally to set theoretic methods for robust constraint handling (e.g. [3, 4]).
This is the starting point for this chapter’s discussion of closed-loop optimization
strategies for the system (4.1) with disturbance sets and constraints of the form of
(4.3) and (4.4).

Multistagemin-max control problems can be solved usingDynamic Programming
(DP) techniques [5, 6]. In principle, the approach is able to determine the optimal
feedback strategy in a very general setting, i.e. given only the performance objective,
the system dynamics, the constraints on states and control and disturbance inputs,
and knowledge of the information that is available to the controller at each time step.
Consider for example the problem of robustly steering the state of (4.1) from an
initial condition x0, which belongs to an allowable set of initial conditions that is to

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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be made as large as possible, to a pre-specified target set,XT , over N time steps. This
problem can be formulated (see e.g. [4]) as an optimal control problem involving a
terminal cost I(xN ) defined by

I(xN )
.=
{
0 if xN ∈ XT

1 otherwise

From the model (4.1) and the assumptions on the information that is available to
the controller, it follows that the maximizing disturbance at time i depends on the
control input ui , whereas the minimizing control input must be computed without
knowledge of the realization of the disturbance wi at time i . Therefore the optimal
sequence of feedback laws u∗

i (x), i = 0, . . . , N − 1 can be obtained by solving the
sequential min-max problem:

I∗
N (x0)

.= min
u0

Fx0+Gu0≤1

max
w0

w0∈W
· · · min

uN−1
FxN−1+GuN−1≤1

max
wN−1

wN−1∈W
I(xN ). (4.5)

Dynamic programming solves this problem by recursively determining the opti-
mal costs and control laws for successive stages. Thus let m = N − i , where i is the
time index and m denotes the number of stages to go until the target set is reached.
Then set I∗

0 (x)
.= I(x) and, for m = 1, . . . , N , solve:

w∗
i (x, u) = arg max

w
w∈W

I∗
m−1(Ax + Bu + Dw) (4.6a)

u∗
i (x) = arg min

u
Fx+Gu≤1

I∗
m−1

(
Ax + Bu + Dw∗

i (x, u)
)

(4.6b)

with
I∗

m(x)
.= I∗

m−1

(
Ax + Bu∗

i (x) + Dw∗
i

(
x, u∗

i (x)
))

(4.6c)

The sequence of feedback laws u∗
i (xi ), i = 0, . . . , N − 1 satisfying (4.6b) neces-

sarily steers the state of (4.1) into XT over N steps, whenever this is possible for the
given constraints, disturbance set and initial condition. The set of initial conditions
from which XT can be reached in N steps is referred to as the N -step controllable
set to XT .

Definition 4.1 (Controllable set) The N -step controllable set to XT is the set of
all states x0 of (4.1) for which there exists a sequence of feedback laws u∗

i (x), i =
0, . . . , N − 1 such that, for any admissible disturbance sequence {w0, . . . , wN−1} ∈
W × · · · × W , we obtain Fxi + Gui ≤ 1, i = 0, . . . , N − 1 and xN ∈ XT along
trajectories of (4.1) under ui = u∗

i (xi ).

In (4.6), the problem of computing the N -step controllable set is split into N
subproblems, each ofwhich requires the computation of a 1-step controllable set. The
conceptual description of the procedure given by (4.6) has the following geometric
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interpretation [4]. Let X (m) denote the m-step controllable set to XT . Then clearly
X (1) is the set of states x such that there exists u satisfying Fx + Gu ≤ 1 and
Ax + Bu + Dw ∈ XT for all w ∈ W , i.e.

X (1) = {x : ∃u such that Fx + Gu ≤ 1, and Ax + Bu ∈ XT � DW}.

By (4.6), the m-step controllable set X (m) is defined in terms of X (m−1) for m =
1, 2, . . . , N by

X (m) = {x : ∃u such that Fx + Gu ≤ 1 and Ax + Bu ∈ X (m−1) � DW}

with X (0) = XT . Given the polytopic uncertainty description (4.2) and the linearity
of the dynamics (4.1) and constraints (4.4), X (m) is therefore convex and poly-
topic whenever it is non-empty. Hence, given the representation X (m−1) = {x :
H (m−1)x ≤ 1}, X (m) can be determined for m = 1, 2, . . . , N using the following
procedure.

Algorithm 4.1 (Controllable sets) Set X (0) = XT . For m = 1, 2, . . . , N :

(i) Compute X̂ (m−1) .= X (m−1) � DW . SinceX (m−1) = {x : H (m−1)x ≤ 1}, this
is given by X̂ (m−1) = {x : H (m−1)x ≤ 1 − hm−1}where each element of hm−1
is the solution of a linear program, namely

hm−1 = max
w∈W

H (m−1)w.

(ii) Define Y(m−1) ⊆ R
nx +nu as the set

Y(m−1) .=
{
(x, u) :

[
H (m−1) A H (m−1) B

F G

] [
x
u

]
≤ 1 −

[
hm−1
0

]}
.

(iii) Compute X (m) as the projection of Y(m−1) onto the x-subspace:

X (m) = {x : ∃u such that (x, u) ∈ Y(m−1)}.

and determine H (m) such that {x : H (m)x ≤ 1} = X (m). �
In applications of dynamic programming to receding horizon control problems,

the target setXT is usually chosen as a robustly controlled positively invariant (RCPI)
set, i.e. XT is robustly positively invariant for (4.1) and (4.4) under some feedback
law. In this case, it is easy to show that the controllable sets X (m), m = 1, . . . , N are
themselves RCPI and nested:

X (N ) ⊇ X (N−1) ⊇ · · · ⊇ X (1) ⊇ XT .

This nested property necessarily holds because, under the assumption that XT is
RCPI, XT must lie in m-step controllable set to XT for m = 1, 2, . . . It follows
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that XT ⊆ X (1) and hence X (1) is itself RCPI. By the same argument therefore,
X (m) ⊆ X (m+1), and hence X (m) is RCPI for m = 1, 2, . . ..

To illustrate the procedure of Algorithm4.1, we next consider its application to a
first-order system. For this simple example, the controllable set can be determined by
straightforward algebra, providing some additional insight into each step of Algo-
rithm4.1. We also compare the controllable set for a general closed-loop strategy
with the sets of initial conditions from which a given terminal set can be reached
under either a fixed feedback law or an open-loop strategy.

Example 4.1 A first-order system with control and disturbance inputs is described
by the dynamics

xk+1 = xk + uk − wk .

The state x , control input u and disturbance input w are scalars that are constrained
to lie in intervals:

x ∈ [0, X ], u ∈ [0, U ], w ∈ [0, W ].

The control objective is to steer the state into a target set XT = [x (0), x̄ (0)].
In this example, X (m), the m-step controllable set to XT , is equal to an interval

on the real line, i.e. for each m = 1, . . . , N we have

X (m) = [x (m), x̄ (m)].

It is therefore straightforward to determine the recursion relating the (m − 1)-step
controllable set to the m-step set without using Algorithm4.1. Consider first the
conditions defining the upper limit of X (m) in terms of x̄ (m−1). By linearity, x̄ (m−1)

must be the 1-step ahead state from x̄ (m) for some control input u and disturbancew.
Since u ≥ 0 and w ≥ 0, the maximum over u of the minimum over w of x̄ (m) =
x̄ (m−1) − u + w is obtained with u = w = 0. Similarly, for the lower limit of X (m),
the worst case value of w (in the sense of maximizing x (m) = x (m−1) − u + w) is
W , while the minimizing value of u is U . Taking into account the constraint that
0 ≤ x (m) ≤ x̄ (m) ≤ X , we therefore obtain

x (m) = max{0, x (m−1) + W − U }, x̄ (m) = min{X, x̄ (m−1)}. (4.7)

We can verify this result using Algorithm4.1: X̂ (m−1) = X (m−1) � [−W, 0] in
step (i) yields

X̂ (m−1) = [x (m−1) + W, x̄ (m−1)],

so the conditions defining Y(m−1) in step (ii) are

0 ≤ x ≤ X, x (m−1) + W ≤ x + u ≤ x̄ (m−1), 0 ≤ u ≤ U,
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and, performing step (iii) by eliminating u using

x + u ≥ x (m−1) + W ∀u ∈ [0, U ] if and only if x ≥ x (m−1) + W − U

x + u ≤ x̄ (m−1) ∀u ∈ [0, U ] if and only if x ≤ x̄ (m−1)

we therefore obtain X (m) = [x (m), x̄ (m)] as defined in (4.7).
To demonstrate the improvement in the size of controllable set that is achievable

using a general feedback law rather than a particular linear feedback law or open-loop
control, consider a specific example with the constraints

x ∈ [0, 5], u ∈ [0, 1], w ∈ [0, 1
2 ],

and target set
XT = [x (0), x̄ (0)] = [3, 4].

In this case the control input can exert a greater influence on the state than the
disturbance input since U > W , and it is therefore to be expected that the m-step
controllable set converges for finitem to themaximal controllable set for any horizon.
Figure4.1 shows that X (m) for m ≥ 6 is equal to the maximal set X (∞) = [0, 4].
(Note that the upper limit of X (m) cannot exceed the upper limit x̄ (0) = 4 of the
target interval because u is constrained to be non-negative.)

With an open-loop control law such as

u = ŵ, ŵ = W/2 = 1
4 ,

wegetX (m) = [x (m−1) + W − ŵ, x̄ (m−1) − ŵ] = [x (m−1) + 1
4 , x̄ (m−1) − 1

4 ]. Con-
sequently the set of states from which XT can be reached in m steps necessarily
shrinks as m increases and is in fact empty for m > 2 (Fig. 4.1).

Consider next the maximal controllable sets that can be obtained with a linear
feedback law. A solution of (4.6b) for the optimal feedback is given by

u = min
{
U, max{0, K (x − x̄ (0))}}

with K = −1 for all m, and it can moreover be shown that any control law capable
of generating the m-step controllable set for m > 2 must depend nonlinearly on
x . However it is possible to approximate the m-step controllable set using a linear
feedback law. Thus, for example

u = K (x − x̄ (0))

ensures u = 0 for x = x̄ (0) = 4, which maximizes the upper limit of the set of initial
conditions that can be driven in m steps to XT under linear feedback. The gain must
satisfy K < −0.5 in order that the lower limit of the m-step set to XT extends below
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Fig. 4.1 The m-step controllable sets for Example4.1 with m ≤ 8 for general feedback laws
(marked with ©). Also shown are the sets of states that can be steered toXT = [3, 4] inm steps under
the linear feedback law u = −0.51(x − 4) (marked 
), and open-loop control u = ŵ (marked �)

x (0) = 3, and for this range of gains, the asymptotic size of the m-step set for large
m is limited by the constraint u ≤ 1. Hence the asymptotic m-step set under this
linear feedback law necessarily increases as |K | decreases, while the number of
steps needed for convergence to this set increases as |K | decreases. For a horizon
N = 8, the 8-step set is maximized with K = −0.51 (to 2 decimal places); this is
shown in Fig. 4.1. ♦

In addition to its uses in computing robust controllable sets, dynamic programming
can also be used to solve problems involving theminimization of performance indices
consisting of sums of stage costs over a horizon. For example, the optimal value of
the quadratic min-max cost with horizon N considered in Sect. 3.4:

J̌ ∗
N (x0)

.= min
u0

Fx0+Gu0≤1

max
w0

w0∈W
· · ·

min
uN−1

FxN−1+GuN−1≤1
xN ∈XT

max
wN−1

wN−1∈W

N−1∑

i=0

(‖xi‖2Q + ‖ui‖2R − γ2‖wi‖2) + ‖xN ‖2
W̌x

(4.8)

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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can be rewritten, using the fact that the optimal values of ui and wi depend, respec-
tively, on xi and (xi , ui ), as

J̌∗
N (x0) = min

u0
Fx0+Gu0≤1

max
w0

w0∈W

{
‖x0‖2Q +‖u0‖2R −γ2‖w0‖2 + · · · + min

uN−1
FxN−1+GuN−1≤1

xN ∈XT

max
wN−1

wN−1∈W

{
‖xN−1‖2Q +‖uN−1‖2R −γ2‖wN−1‖2+‖xN ‖2

W̌x

}}
.

This exposes the structure of the optimal control problem as a sequence of subprob-
lems. Each subproblem involves the optimization, over the control and disturbance
inputs at a given time step, of a single stage of the cost plus the remaining cost-to-go.
Therefore, analogously to (4.6a–4.6c), the optimal closed-loop strategy at time i is
given by the solution of

(
u∗

i (x), w∗
i (x, u)

) = arg min
u

Fx+Gu≤1

max
w

w∈W
J̌N−i (x, u, w)

subject to Ax + Bu ∈ X (N−i−1) � DW,

(4.9a)

where X (m) is the m-step controllable set to a given target set XT , and where m =
N − i is the number of time steps until the end of the N -step horizon. The cost with
m steps to go, J̌m , is defined for m = 1, 2, . . . , N by the dynamic programming
recursion

J̌m(x, u, w) = ‖x‖2Q + ‖u‖2R − γ2‖w‖2 + J̌ ∗
m−1(Ax + Bu + Dw) (4.9b)

with
J̌ ∗

N−i (x) = J̌N−i

(
x, u∗

i (x), w∗
i

(
x, u∗

i (x)
))

(4.9c)

and the terminal conditions:

J̌ ∗
0 (x) = ‖x‖2

W̌x
, (4.9d)

X (0) = XT . (4.9e)

The corresponding receding horizon control law for a prediction horizon of N time
steps is given by u = u∗

N (x).
The decomposition of (4.8) into a sequence of single-stage min-max problems

in (4.9a–4.9e) enables the optimal feedback law to be determined without imposing
a suboptimal controller parameterization on the problem. However, (4.9) shows an
obvious difficulty with this approach, namely that at each stage m = 1, 2, . . . , N the
function J̌ ∗

m−1(x) giving the optimal cost for m − 1 stages must be known in order
to be able to determine the optimal cost and control law for the m-stage problem.
Conventional implementations of dynamic programming for this problem therefore
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require the optimal control problem to be solved globally, for all admissible states.
This makes the method computationally intensive and, crucially, it results in poor
scalability of the approach because the computational demand grows exponentially
with the dimensions of the state and input variables.

Predictive controllers aim to avoid such computational difficulties by optimizing
the predicted trajectories that emanate from a particular model state rather than
globally, and this is the focus of the remainder of this chapter. We next describe two
general feedback strategies before discussing parameterized feedback strategies that
optimize over restricted classes of feedback law. The remainder of this chapter uses
the following example problem to illustrate and compare robust control laws.

Example 4.2 A triple integrator with control and disturbance inputs is given by (4.1)
with

A =
⎡

⎣
1 1 0
0 1 1
0 0 1

⎤

⎦, B =
⎡

⎣
0
0
1

⎤

⎦, D =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦.

The disturbance input w is constrained to lie in the setW defined by

W =
⎧
⎨

⎩w :
⎡

⎣
−0.25
−0.25
−0.25

⎤

⎦ ≤ w ≤
⎡

⎣
0.25
0.25
0.25

⎤

⎦

⎫
⎬

⎭

and the state x and control input u are subject to constraints

−500 ≤ [1 0 0
]

x ≤ 5, −4 ≤ u ≤ 4

so that the constraints take the form of (4.4) with

F =

⎡

⎢⎢⎣

0.2 0 0
−0.002 0 0

0 0 0
0 0 0

⎤

⎥⎥⎦, G =

⎡

⎢⎢⎣

0
0

0.25
−0.25

⎤

⎥⎥⎦.

The cost is defined by (4.8) with the weights

Q =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ , R = 0.1, γ2 = 50,

and the terminal weighting matrix W̌x is defined as the solution of the Riccati equa-
tion (3.42). The terminal set XT is defined as the maximal RPI set for (4.1) and (4.4)
under u = K x , where K = [−0.77 −2.40 − 2.59] is the optimal feedback gain for
the infinite horizon cost (3.39).

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Fig. 4.2 The projections onto the plane {x : [0 1 0]x = 0} of the terminal set XT and the mRPI set
XmRPI under u = K x

Figure4.2 shows the projection of the terminal set XT onto the plane on which
[0 1 0]x = 0. For comparison, the projection of the minimal RPI set under u = K x
is also shown in this figure. The projections of the N -step controllable sets to XT

onto the plane [0 1 0]x = 0, for 4 ≤ N ≤ 10, are shown in Fig. 4.3. ♦

4.1.1 Active Set Dynamic Programming for Min-Max
Receding Horizon Control

At each stage of the min-max problem defined in (4.9a–4.9e), the optimal control
and worst case disturbance inputs are piecewise affine functions of the model state at
that stage. This is a consequence of the quadratic nature of the cost and the linearity
of the constraints, and it implies that the optimal control law for the full N -stage
problem (4.8) is a piecewise affine function of the initial state x0. Each constituent
affine feedback law of this function depends on which of the inequality constraints
are active (namelywhich constraints holdwith equality) at the solution, and it follows
that the regions of state space within which the optimal control law is given by a
particular affine state feedback law are convex and polytopic.

A possible solution method consists of computing offline all of these polytopic
regions and their associated affine feedback laws, in a similar manner to the multi-
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Fig. 4.3 The projections onto the plane {x : [0 1 0]x = 0} of the N -step controllable sets to XT
for N = 4, 5, . . . , 10 and the terminal set XT

parametric approach considered in Sect. 2.8. The optimal feedback law could then
be determined online by identifying which region of state space contains the cur-
rent state. This approach is described in the context of linear systems with unknown
disturbances and piecewise linear cost indices in [7]. However, as in the case of no
model uncertainty, the approach suffers from poor scalability of its computational
requirements with the dimension of the state and the horizon length. An illustration
of this is given in Example4.3, where, for a horizon of N = 4 the number of affine
functions and polytopic regions defining the optimal control law for (4.9a–4.9e) is
around 100 (Fig. 4.4). For N = 10, the number of regions increases to around 10,000
(Fig. 4.5), implying a large increase in the online computation that is required to deter-
mine which region contains the current state, as well as large increases in the offline
computation and storage requirements of the controller.

To avoid computing the optimal feedback law at all points in state space, it is
possible instead to use knowledge of the solution of (4.9a–4.9e) at a particular point
in state space to determine the optimal control law at the current plant state. This is
themotivation behind the homotopy-basedmethods for constrained receding horizon
control proposed for uncertainty-free control problems in [8, 9] and developed sub-
sequently for min-max robust control problems with bounded additive disturbances
in [10, 11].

Algorithms based on homotopy track the changes in the optimal control and worst
case disturbance inputs as the system state varies in state space. For the problem

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Fig. 4.4 Active set regions in the plane {x : [0 1 0]x = 0} for N = 4 (74 regions). The dashed
lines show the intersection of the terminal set XT with this plane

Fig. 4.5 Active set regions in the plane {x : [0 1 0]x = 0} for N = 10 (6352 regions). The dashed
lines show the intersection of the terminal set XT with this plane
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(4.9a–4.9e), this is done by determining, for a given set of active constraints, the
optimal feedback laws at each stage of the problem and hence the optimal state,
control and worst case disturbance trajectories as functions of the initial model state.
As the initial model state x0 moves along a search path in state space towards the
location of the current plant state, a change in the active set is detected by determining
the point at which any inactive constraint becomes active, or any active constraint
becomes inactive. This information allows the active set to be updated, and a new
piecewise affine control law to be determined, thus enabling the initial model state to
move into a new region of state space while continuing to track the optimal solution.

With the search path for the initial model state x0 defined as a straight line in state
space, the detection of an active set change becomes a univariate feasibility problem
with linear constraints. Furthermore the computational requirement of updating the
optimal solution after an active set change scales linearly with the horizon length
and polynomially with state and input dimensions. Clearly this is not the whole story
because the overall computation also depends on the number of active set changes,
and, as is usual for an active set solver for a constrained optimization problem, upper
bounds on this grow exponentially with the problem size. In practice, however, the
number of active set changes is likely to be small, and, when used in a receding
horizon control setting, the algorithm can be initialized using knowledge of the
active set corresponding to the optimal solution at a previous sampling instant.

A summary of the method is as follows. Suppose the optimal cost for the sub-
problem (4.9a) with N − i − 1 stages to go is given by

J̌ ∗
N−i−1(x) = xT Pi x + 2xT

i qi + ri (4.10)

for some matrix Pi , vector qi and scalar ri , and let the active constraints in problem
(4.9a) be given by

Ei (Ax + Bu) = 1 (4.11a)

Fi x + Gi u = 1 (4.11b)

Viw = 1 (4.11c)

(where Ei (Ax + Bu) = 1 represents the active constraints in the condition Ax +
Bu ∈ X N−i−1 � DW). The first-order optimality conditions defining the maximiz-
ing function w∗

i (x, u) are given by

[
γ2 I − DT Pi D V T

i
Vi 0

] [
wi

ηi

]
=
[

DT Pi

0

]
(Ax + Bu) +

[
DT qi

1

]
,

where ηi is a vector of Lagrange multipliers for the constraints (4.11c). Under the
assumption that γ is sufficiently large that the maximization subproblem in (4.9a) is
concave, namely that

V T
i,⊥
(
γ2 I − DT Pi D

)
Vi,⊥ � 0,
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where the columns of Vi,⊥ span the kernel of Vi , the maximizer w∗
i (x, u) is unique

and is given by [
w∗

i (x, u)

η∗
i (x, u)

]
= Mi (Ax + Bu) + mi

for some matrix Mi and vector mi . Similarly, for the minimization subproblem in
(4.9a), let [

P̂i q̂i
] = [Pi qi

]+ [Pi D 0
] [

Mi mi
]
.

Then the first-order optimality conditions defining the minimimizing function u∗
i (x)

are given by

⎡

⎣
R + BT P̂i B BT ET

i GT
i

Ei B 0 0
Gi 0 0

⎤

⎦

⎡

⎣
ui

νi

μi

⎤

⎦ = −
⎡

⎣
BT P̂i A

Ei A
Fi

⎤

⎦ xk +
⎡

⎣
−BT q̂k

1
1

⎤

⎦,

where νi , ηi are, respectively, Lagrange multipliers for the constraints (4.11a),
(4.11b). Assuming convexity of the minimization in (4.9a), or equivalently

[
BT ET

i GT
i

]
⊥ (R + BT P̂i B)

[
Ei B
Gi

]

⊥
� 0

where the columns of
[Ei B

Gi

]

⊥ span the kernel of
[Ei B

Gi

]
, then

⎡

⎣
u∗

i (x)

ν∗
i (x)

μ∗
i (x)

⎤

⎦ = Li x + li ,

for some matrix Li and vector li .
The affine forms of u∗

i (x) and w∗
i (x, u) imply that the optimal cost J̌ ∗

N−i (x) for
N − i stages to go is quadratic, justifying by induction the quadratic form assumed
in (4.10). Furthermore, having determined Mi , mi , Li , li for each i = 0, . . . , N − 1
for a given active set, it is possible to express as functions of x0 the sequences of
minimizing control inputs and maximizing disturbance inputs

u(x0) = {u∗
0, . . . , u∗

N−1}, w(x0) = {w∗
0, . . . , w

∗
N−1},

and the corresponding multiplier sequences

η(x0) = {η∗
0 , . . . , η

∗
N−1}, ν(x0) = {ν∗

0 , . . . , ν
∗
N−1}, μ(x0) = {μ∗

0, . . . ,μ
∗
N−1}.

If u(x0) and w(x0) satisfy the constraints of (4.9a–4.9e) and if the multipliers satisfy
η(x0) ≥ 0, ν(x0) ≥ 0, μ(x0) ≥ 0, then these sequences are optimal for the N -stage
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problem (4.8) provided the constraints in (4.9a–4.9e) are linearly dependent. The
affine form of each of these functions implies that x0 must lie in a convex polytopic
set, which for a given active constraint set, denoted by A, we denote asR(A).

Algorithm 4.2 (Online active set DP)
Offline: compute the controllable sets X (1),X (2), . . . ,X (N ) to XT .
Online, at each time instant k = 0, 1, . . .:

(i) Set x = xk and initialize the solver with x (0)
0 and an active set A(0) such that

x (0)
0 ∈ R(A(0)). At each iteration j = 0, 1, . . .:

(a) Determine Mi , mi , Li , li for i = N − 1, N − 2, . . . , 0, and hence deter-
mine u(x0), w(x0), η(x0), ν(x0), μ(x0).

(b) Perform the line search:

α( j) = max
α≤1

α subject to x ( j)
0 + α(x − x ( j)

0 ) ∈ R(A(0)).

(c) If α( j) < 1, set x ( j+1)
0 = x ( j)

0 + α( j)(x − x ( j)
0 ) and use the active boundary

of R(A( j)) to determine A( j+1) from A( j).
Otherwise set A∗

k = A( j) and proceed to (ii).

(ii) Apply the control law uk = u∗
0(x). �

If the constraints of (4.9a) are linearly dependent, the optimalmultiplier sequences
may be non-unique [12]. This situation can be handled by introducing into the prob-
lem additional equality constraints that enforce compatibility of the linearly depen-
dent constraints. The first-order optimality conditions can then be used to relate the
multipliers of these additional constraints to the free variables appearing in the solu-
tions for the multipliers of linearly dependent constraints. Furthermore the degrees
of freedom in the optimal multiplier sequences can be chosen so as to ensure that
the multipliers are continuous when the active set changes. With this approach, the
sequences of primal and dual variables are again determined uniquely as functions
of x0, and the continuity of these sequences at the boundaries of R(A) in x0-space
is preserved (see [11] for details).

The optimization in step (i) of Algorithm4.2 can be initialized with a cold start by
setting x (0)

0 = 0 andA(0) = ∅, since by assumption the origin lies inside the minimal
RPI set for the unconstrained optimal feedback law u = K x , and hence all constraints
are inactive for this choice of x0. Alternatively, if the previous optimal solution is
known, then it can be warm started by setting x (0)

0 at time k equal to the plant state
xk−1 at the previous time step and setting A(0) equal to the corresponding optimal
active set A∗

k−1. Convergence of the optimization in step (i) in a finite number of
iterations is guaranteed since the active setA( j+1) is uniquely defined at each iteration
and since there are a finite number of possible active sets.
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Finally it can be shown that the control law of Algorithm4.2 is recursively fea-
sible and robustly stabilizing for the system (4.1), for all initial conditions in the
N -step controllability set, X (N ), to XT . Recursive feasibility follows from the con-
straints of (4.9a–4.9e) since these ensure that, at each time k, xk+1 will necessarily
be steered intoX (N−1). Closed-loop stability for all initial conditions x0 ∈ X (N ) can
be demonstrated using an identical argument to the proof of Theorem3.4 to show
that the bound:

n∑

k=0

(‖xk‖2Q + ‖uk‖2R
) ≤ J̌ ∗(x0) + γ2

n∑

k=0

‖wk‖2 (4.12)

holds for all n ≥ 0 along closed-loop trajectories under Algorithm4.2.

Example 4.3 For the triple integrator of Example4.2, Figs. 4.4 and 4.5 show regions
of state space within which the optimal control law for problem (4.8) is given by a
single affine feedback law, for horizons of N = 4 and N = 10, respectively. Since
this is a third-order system, figures show the intersection of these regions with the
plane {x : [0 1 0]x = 0}. As expected, for any given active set A, the region R(A)

is a convex polytope, and the union of all regions covers the N -step controllable
set. The terminal set XT is contained in the region R(∅), within which the solution
of (4.8) coincides with the unconstrained optimal feedback law, u = K x . Note that
R(∅) is not necessarily invariant under u = K x , and henceR(∅) extends beyond the
boundaries of XT even though XT is the maximal RPI set for u = K x . Comparing
Figs. 4.4 and 4.5, it can be seen that the number of active set regions increases rapidly
with N .

To illustrate how the online computational requirement of Algorithm4.2 varies
with horizon length for this system, the optimization in step (i) was solved for
50 values of the model state randomly selected on the boundary of X (N ) for
N = 1, 2, . . . , 20. Each optimization was cold started (initialized with x (0)

0 = 0 and
A(0) = ∅). Figure4.6 shows that the average, maximum and minimum execution
times per iteration1 for the chosen set of initial conditions depend approximately
linearly on N . This is in agreement with the expectation that the computation per
iteration should depend approximately linearly on horizon length. Despite expo-
nential growth of the total number of active set regions with N , the number of
iterations required is a polynomial function of N for this example. This is illustrated
by Fig. 4.7, which shows that the average number of iterations grows approximately
as O(0.25N 2). For N = 20, the average total execution time was 0.58s and the
maximum execution time 2.23s. ♦

1The execution times in Fig. 4.6 provide an indication of how computation scales with horizon
length—Algorithm4.2 was implemented in Matlab without being fully optimized for speed.

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Fig. 4.6 Computation per iteration of the optimization in step (i) of Algorithm4.2 for Example4.3
with varying horizon N ; average execution time (solid line), andminimum andmaximum execution
times (dotted lines)

Fig. 4.7 Number of iterations of the optimization in step (i) of Algorithm4.2 for Example4.3 with
varying horizon N ; average (solid line) and maximum (dashed line)

4.1.2 MPC with General Feedback Laws

As stated previously, dynamic programming methods that provide global solutions
are often computationally prohibitive, particularly for problems in which the optimal
control is only required locally in a particular operating region of the state space.
Although the approach of Sect. 4.1.1 reduces computation using active sets that apply
locally within regions of state space, the approach requires prior knowledge of the
controllable sets. However, even when performed offline, the computation of these
controllable sets can be challenging, and this is a particular concern for problems
with long horizons and for systems with many states and input variables.
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A major advantage of MPC, and perhaps its defining feature, is that it determines
an optimal control input locally, usually for a particular value of the system state, by
propagating input and state sequences forwards in time. Since the constraints (4.4)
are linear and the disturbance set W is polytopic, it should not be surprising that
each vertex of the controllable set to a convex polytopic target set is determined by a
particular maximizing sequence of vertices ofW in (4.5). Therefore, to allow for the
full generality of future feedback laws that is needed to achieve the largest possible
set of feasible initial conditions, a predictive control strategy must assign a control
sequence to each possible sequence of future disturbance inputs [13]. The approach,
which is described in this section, leads to an optimization problem with computa-
tion that grows exponentially with horizon length. As a result it is computationally
intractable for the vast majority of control applications and is mainly of interest from
a conceptual point of view. However the approach provides important motivation for
the computationally viable MPC strategies that are discussed in Sect. 4.2.

Consider a sequence of disturbance inputs, each of which is equal in value to one
of the vertices w( j), j = 1, . . . , m, of the disturbance set W in (4.3):

{w( j1), w( j2), . . .}.

As before we assume that the plant state xi is known to the controller at the i th
time step and a causal control law is assumed; thus ui depends on xi but cannot
depend on xi+1, xi+2, . . . If {w0, . . . , wi−1} = {w( j1), . . . , w( ji )}, then it follows
that ui is a function of x0 and ( j1, . . . , ji ). Hence we denote the control sequence
as {u0, u( j1), u( j1, j2), . . .} and denote {x0, x ( j1), x ( j1, j2), . . .} as the corresponding
sequence of states, which evolve according to the model (4.1):

x ( j1) = Ax0 + Bu0 + Dw( j1) (4.13a)

and for i = 1, 2, . . .,

x ( j1,..., ji , ji+1) = Ax ( j1,..., ji ) + Bu( j1,..., ji ) + Dw( ji+1). (4.13b)

In this prediction scheme, the mi distinct disturbance sequences {w( j1), . . . w( ji )},
in which jr ∈ {1, . . . , m} for r = 1, . . . , i , generate mi state and control sequences
with the tree structure shown in Fig. 4.8.

The linearity of the dynamics (4.1) implies that the convex hull of x ( j1,..., ji+1) for
jr ∈ {1, . . . , m}, r = 1, . . . , i + 1 contains the model state xi+1 under any convex
combination of control sequences {u0, u( j1), . . . , u( j1,..., ji )}. To show this, let X0 =
{x0}, U0 = {u0}, and for i = 1, 2, . . . define the sets

Xi = Co{x ( j1,..., ji ), ( j1, . . . , ji ) ∈ Li }, (4.14a)

Ui = Co{u( j1,..., ji ), ( j1, . . . , ji ) ∈ Li }, (4.14b)



4.1 General Feedback Strategies 139

Fig. 4.8 The tree structure of predicted input and state sequences when each element of the distur-
bance sequence is equal to one of the m vertices of the disturbance setW , shown here for a horizon
of N = 3

where Li denotes the set of all possible values of the sequence { j1, . . . , ji }:

Li = {( j1, . . . , ji ) : jr ∈ {1, . . . , m}, r = 1, . . . , i},

for any positive integer i . Then, for any given xi ∈ Xi , there necessarily exists
ui ∈ Ui such that xi+1 ∈ Xi+1 for all wi ∈ W . In particular xi ∈ Xi implies xi =∑

( j1,..., ji )∈Li
λ( j1,..., ji )x

( j1,..., ji ), where λ( j1,..., ji ) are non-negative scalars satisfying∑
( j1,..., ji )∈Li

λ( j1,..., ji ) = 1. Therefore setting

ui =
∑

( j1,..., ji )∈Li

λ( j1,..., ji )u
( j1,..., ji )

gives
Axi + Bui ∈ Co{Ax ( j1,..., ji ) + Bu( j1,..., ji ), ( j1, . . . , ji ) ∈ Li },

but from (4.13a, 4.13b) and from the definition of Xi in (4.14a) we have

Co{Ax ( j1,..., ji ) + Bu( j1,..., ji ), ( j1, . . . , ji ) ∈ Li } ⊕ W = Xi+1, (4.15)
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and it follows that the tubes {X0, X1, . . .} and {U0, U1, . . .} necessarily contain the
state and control trajectories of (4.1) for any disturbance sequence {w0, w1, . . .}with
wi ∈ W for all i = 0, 1, . . ..

Consider now a set of input and state trajectories predicted at time k in response to
disturbance sequences, {w0|k, . . . , wi−1|k} = {w( j1), . . . , w( ji )}, consisting entirely

of vertices of W . In order that the state and control trajectories {x0|k, x ( j1)
k ,

x ( j1, j2)
k , . . .} and {u0|k, u( j1)

k , u( j1, j2)
k , . . .} generated by the model:

x ( j1)
k = Axk + Bu0|k + Dw( j1) (4.16a)

x ( j1,..., jk , ji+1)

k = Ax ( j1,..., ji )
k + Bu( j1,..., ji )

k + Dw( ji+1), i = 1, 2, . . . (4.16b)

satisfy the constraints (4.4) for all ( j1, . . . , ji ) ∈ Li , we require that

Fxk + Gu0|k ≤ 1 (4.17a)

and, for i = 1, 2, . . .,

Fx ( j1,..., ji )
k + Gu( j1,..., ji )

k ≤ 1, for all ( j1, . . . , ji ) ∈ Li . (4.17b)

These constraints are imposed over an infinite future horizon if (4.17a, 4.17b) are
invoked for i = 1, . . . , N − 1 together with a terminal constraint of the form

x ( j1,..., jN )
k ∈ XT , for all ( j1, . . . , jN ) ∈ LN , (4.18)

where XT is a robustly positively invariant set for (4.1) and (4.4) under a particular
feedback law. Assuming for convenience that this control law is linear, e.g. u = K x ,
XT can be defined as the maximal RPI set and determined using the method of
Theorem3.1.

LetFN denote the set of feasible initial conditions xk for (4.17a, 4.17b) and (4.18),
i.e.

FN =
{

xk : ∃{u0|k, u( j1)
k , . . . , u( j1,..., jN−1)

k } for ( j1, . . . , jN−1) ∈ LN−1

such that {xk, x ( j1)
k , . . . , x ( j1,..., jN )

k } satisfies
(4.16a, b), (4.17a, b) for i = 1, . . . , N − 1, and (4.18)

}
. (4.19)

Theorem 4.1 FN is identical to X (N ), the N-step controllable set to XT for the
system (4.1) subject to the constraints (4.4), defined in Definition4.1.

Proof From (4.14a, 4.14b) and (4.15), constraints (4.17a, 4.17b) and (4.18) ensure
that every point x0 ∈ FN belongs to X (N ). To show that FN is in fact equal to X (N ),
note that, if XT = {x : VT x ≤ 1}, then X (N ) can be expressed as {x : fT (x) ≤ 1}

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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where fT (·) is the solution of a sequential min-max problem:

fT (x0)
.= min

u0
Fx0+Gu0≤1

max
w0

w0∈W
· · · min

uN−1
FxN−1+GuN−1≤1

max
wN−1

wN−1∈W
max

r∈{1,...,nV } VT,r xN ,

(4.20)
in which VT,r is the r th row of VT . Each stage of this problem can be expressed
as a linear program, and hence the sequence of maximizing disturbance inputs
is {w( j1), . . . , w( jN )} for some sequence ( j1, . . . , jN ) of vertices of W . There-
fore x0 ∈ X (N ) if and only if the optimal control sequence for this problem
is {u0, u( j1), . . . , u( j1,..., jN−1)} such that VT x ( j1,..., jN ) ≤ 1. Since x0 ∈ FN if VT

x ( j1,..., jN ) ≤ 1 for some sequence {u0, u( j1), . . . , u( j1,..., jN−1)}, for each ( j1, . . . , jN )

∈ LN , it follows that every point x0 ∈ X (N ) also belongs to FN . �

The following lemma shows that FN is robustly positively invariant under the
control law uk = u0|k .

Lemma 4.1 For any N > 0, FN is RPI for the dynamics (4.1), disturbance set (4.2)
and constraints (4.4) if uk = u0|k .

Proof Since wk ∈ W , there exist non-negative scalars λ j , j = 1, . . . , m, such that∑m
j=1 λ j = 1 and

wk =
m∑

j=1

λ jw
( j).

Therefore, for any given {xk, x ( j1)
k , x ( j1, j2)

k , . . .} and {u0|k, u( j1)
k , u( j1, j2)

k , . . .} satis-
fying (4.16a, 4.16b), (4.17a, 4.17b) and (4.18), the trajectories defined by

u0|k+1 =
m∑

j=1

λ j u
( j)
k , u( j1,..., ji )

k+1 =
m∑

j=1

λ j u
( j, j1,..., ji )
k , i = 1, . . . , N − 2,

x ( j1,..., ji )
k+1 =

m∑

j=1

λ j x ( j, j1,..., ji )
k , i = 1, . . . , N − 1,

for all ( j1, . . . , ji ) ∈ Li , and

u( j1,..., jN−1)

k+1 = K x ( j1,..., jN−1)

k+1 , for all ( j1, . . . , jN−1) ∈ LN−1

x ( j1,..., jN−1, jN )

k+1 = Φx ( j1,..., jN−1)

k+1 + Dw( jN ), for all ( j1, . . . , jN ) ∈ LN

satisfy, at time k + 1, the constraints of (4.16a, 4.16b) (by linearity), (4.17a, 4.17b)
(by convexity), and (4.18) since x ( j1,..., jN−1)

k+1 ∈ XT and XT is RPI for (4.1) and (4.4)
if u = K x . �
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Theorem4.1 shows that x0 lies in the N -step controllable set to a given target set
if and only if a set of linear constraints is satisfied in the variables {u0, u( j1), . . . ,

u( j1,..., jN−1)}, ( j1, . . . , jN−1) ∈ LN−1. This feasibility problem could be combined
with any chosen performance index to define an optimal control law with a set
of feasible initial conditions equal to the controllable set for the given target set
and horion. Furthermore, by Lemma4.1, a receding horizon implementation of any
such strategy would necessarily be recursively feasible, and hence could form basis
of a robust MPC law. However, the feasible set FN is defined in (4.19) in terms
of the vertices of the predicted tubes for states and control inputs. In general, the
optimal predictions with respect to a quadratic cost will be convex combinations of
these vertices, and hence additional optimization variables would be needed in the
MPC optimization if a quadratic performance index were used. With this in mind,
a linear min-max cost is employed in [13], the cost index being defined as the sum
of stage costs that depend linearly on the future state and control input. This choice
of cost has the convenient property that the optimal control sequence is given by
{u0|k, u j1

k , . . . , u j1,..., jN−1
k } for some ( j1, . . . , jN−1) ∈ LN−1.

Linear or piecewise linear stage costs have the disadvantage that the uncon-
strained optimal is not straightforward to determine, and in [13] the terminal con-
trol law is restricted to one that enforces finite time convergence of the state (i.e.
“deadbeat” control) in order that the cost is finite over an infinite prediction hori-
zon. Instead we illustrate the MPC strategy here using a performance index sim-
ilar to the nominal cost employed in Sect. 3.3. In this setting, we first reparame-
terize the predicted control input trajectories in terms of optimization variables
c(l)

k = {c0|k, c( j1)
k , . . . , c( j1,..., jN−1)

k } for l = ( j1, . . . , jN−1) ∈ LN−1, so that

u0|k = K xk + c0|k

u( j1,..., ji )
k =

{
K x ( j1,..., ji )

k + c( j1,..., ji )
k , i = 1, . . . , N − 1

K x ( j1,..., ji )
k , i = N , N + 1, . . .

(4.21)

Next define a set of nominal state and control trajectories, one for each sequence
l = ( j1, . . . , jN−1) ∈ LN−1, as follows

v
(l)
i |k = K s(l)

1|k + c(l)
i |k, s(l)

i+1|k = Φs(l)
i |k + Bc(l)

i |k, i = 0, 1, . . . , N − 1

v
(l)
i |k = K s(l)

1|k, s(l)
i+1|k = Φs(l)

i |k, i = N , N + 1, . . .

where c(l)
i |k is the i th element of the sequence c(l)

k for each l ∈ LN−1, namely c(l)
i |k = c0|k

for i = 0 and c(l)
i |k = c( j1,..., ji )

k for i = 1, . . . , N − 1. Finally, we define the worst case
quadratic cost over these nominal predicted sequences as

J
(
s0|k, {c(l)

k , l ∈ LN−1}
) = max

l∈LN−1

∞∑

i=0

(‖s(l)
i |k‖2Q + ‖v(l)

i |k‖2R
)

(4.22)

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Assuming for convenience that K is the unconstrained LQ-optimal feedback gain,
Theorem2.10 gives

J
(
s0|k, {c(l)

k , l ∈ LN−1}
) = ‖s0|k‖2Wx

+ max
l∈LN−1

‖c(l)
k ‖2Wc

,

where Wx is the solution of the Riccati equation (2.9), and where Wc is block
diagonal, Wc = diag{BT Wx B + R, . . . , BT Wx B + R}. Hence the problem of min-
imizing J (s0|k, {c(l)

k }) is equivalent to the minimization of ‖s0|k‖2Wx
+ α2 subject to

α2 ≥ ‖c(l)
k ‖2Wc

for all l ∈ LN−1. This is a convex optimization problem that can be
formulated as a second-order cone program (SOCP) [14].

By combining the cost of (4.22) with the linear constraints definingFN , we obtain
the following MPC algorithm.

Algorithm 4.3 (General feedback MPC) At each time k = 0, 1, . . .:

(i) Perform the optimization

minimize
{c(l)

k , l∈LN−1}
max

l∈LN−1

‖c(l)
k ‖2Wc

subject to (4.16a, b), (4.17a, b),i = 1, . . . , N − 1,

(4.18) and (4.21).

(4.23)

(ii) Apply the control law uk = K xk + c∗
0|k , where ‖cl∗

k ‖2Wc
is the optimal value of

the objective in (4.23) and c(l)∗
k = {c∗

0|k, . . . , c( j1,..., jN−1)∗
k ). �

The online optimization in step (i) can be formulated as a SOCP in nu(m N −
1)/(m − 1) variables, nc(m N − 1)/(m − 1) + nT m N linear inequality constraints
and m N + 1 second-order cone constraints, where nT is the number of constraints
definingXT . Furthermore Algorithm4.3 is recursively feasible and enforces conver-
gence to the minimal RPI set associated with u = K x , as we now discuss.

The feasibility of (4.23) at all times given initial feasibility (i.e. x0 ∈ FN ) is
implied byLemma4.1. Therefore, defining c0|k+1 and c( j1,..., ji )

k+1 for i = 1, . . . , N − 1

analogously to the definitions of u0|k+1 and u( j1,..., ji )
k+1 in the proof of Lemma4.1 gives

c0|k+1 =
m∑

j=1

λ j c
( j)∗
k

c( j1,..., ji )
k+1 =

m∑

j=1

λ j c
( j, j1,..., ji )∗
k , i = 1, . . . , N − 2

c( j1,..., jN−1)

k+1 = 0

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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for each l = ( j1, . . . , jN−1) ∈ LN−1, and hence by convexity we have ‖c(l)
k+1‖2Wc

≤
‖cl∗

k ‖2Wc
− ‖c∗

0|k‖2R+BT Wx B
for all l = ( j1, . . . , jN−1) ∈ LN−1. The optimization of

(4.23) at time k + 1 therefore gives

‖c(l)∗
k ‖2Wc

− ‖c(l)∗
k+1‖2Wc

≥ ‖c∗
0|k‖2R+BT Wx B

which implies (by Lemma3.1) that c∗
0|k → 0 as k → ∞. From Theorem3.2, it

follows that the l2 gain from the disturbance input w to the state x is upper bounded
by the l2 bound for the unconstrained system under u = K x , and furthermore
xk → XmRPI as k → ∞, where XmRPI is the minimal RPI for (4.1) under u = K x .

Finally note that the control law of Algorithm4.3 can also guarantee exponen-
tial convergence to an outer approximation, S, of XmRPI if s0|k is retained as an
optimization variable in (4.23). Specifically, replacing the objective of (4.23) with
J (s0|k, {c(l)

k , l ∈ LN−1}) and including xk − s0|k ∈ S as an additional constraint in
(4.23) ensures, by an argument similar to the proof of Theorem3.5, that the opti-
mal value J (s∗

0|k, c(l)∗
k ) converges exponentially to zero and hence that S is expo-

nentially stable with region of attraction equal to FN . This argument relies on the
existence of constants a, b satisfying a‖s∗

0|k‖2 ≤ J (s∗
0|k, c(l)∗

k ) ≤ b‖s∗
0|k‖2, which is

ensured by the continuity [14] of the optimal objective of (4.23) and by the fact that
J (s∗

0|k, c(l)∗
k ) ≥ 0, whereas J (s∗

0|k, c(l)∗
k ) = 0 if and only if x0|k lies in S.

Example 4.4 Although the general feedback MPC law of Algorithm4.3 and the
active set DP approach of Algorithm4.2 are both feasible for all initial conditions
in the N -step controllable set X (N ), their computational requirements are very dif-
ferent. The exponential growth in the numbers of variables and constraints of the
optimization in step (i) of Algorithm4.3 implies that its computation grows very
rapidly with N . For the system of Example4.2, we have nu = 1, nc = 4, m = 8,

Fig. 4.9 Numbers of variables and linear inequality constraints for Algorithm4.3 in Example4.4

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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nT = 11, and the number of optimization variables and linear inequality constraints
grow with N as shown in Fig. 4.9. Even this simple third-order problem is limited to
short horizons in order that the optimization (4.23) remains manageable; for exam-
ple, if the number of optimization variables is required to be less than 1000, then N
must be no greater than 4. ♦

4.2 Parameterized Feedback Strategies

Dynamic programming and MPC laws based on general feedback strategies have
the definite advantages that they can provide optimal performance and the maximum
achievable region of attraction. However, as discussed in Sect. 4.1.2 for the case of
min-max robust control (and as also discussed in [15, 16] for stochastic problems),
the computation of optimal control laws for these approaches often suffers from
poor scalability with the problem size and the length of horizon. It is therefore per-
haps inevitable that closed-loop optimization strategies with computational demands
that grow less rapidly with problem size should be sought for robust MPC. These
approaches reduce computation by restricting the class of closed-loop policies over
which optimization is performed.

One such restriction is to the class of time-varying linear feedback plus feedfor-
ward control laws, where the linear feedback gains are parameters that are to be
computed online. However, the dependence of the future state and input trajectories
on these feedback gains is non-linear, and the optimization of predicted performance
is non-convex. Away around this is offered by theYoula parameterization introduced
into MPC in [17]. On account of the Bezout identity of (2.67), the transfer function
matrices that map additive disturbances at the plant input to the plant output have
an affine dependence on the Youla parameter. This property is exploited in [18] to
devise a lower-triangular prediction structure in the degrees of freedom, leading to a
convex online optimization. Later developments in this area, known as disturbance-
affine MPC (DAMPC), are reported in [19, 20]. These proposals lead to an online
optimization in a number of variables that grows quadratically with the length of
the prediction horizon. This can be reduced to a linear growth if the lower-triangular
structure is computed offline, but of course the resulting MPC algorithm is then no
longer based on optimization of a closed-loop strategy.

An alternative triangular prediction structure to that of [18–20] was proposed
in [21], which, like the approach of Sect. 4.1.2, parameterized predicted future feed-
back laws in terms of the vertices of the disturbance set. In this setting, the input
at each prediction instant is known to lie in the convex hull of a linear combination
of polytopic cross sections defined by the inputs associated with the disturbance set
vertices. The approach thus implicitly employs a parameterization that defines tubes
in which the predicted inputs and states will lie, and for this reason it is known as
parameterized tube MPC (PTMPC). The disturbance-affine MPC strategy can be
shown to be a special case of PTMPC (albeit with a restricted set of optimization
variables) and both approaches have a number of optimization variables that grows

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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quadratically with the prediction horizon. This can be reduced to a linear dependence
if, instead of the triangular structure of PTMPC, a striped structure is employed [22].
This section discusses these three parameterized feedback MPC strategies.

4.2.1 Disturbance-Affine Robust MPC

A simple but highly restrictive feedback parameterization replaces the fixed linear
feedback gain K in the open-loop strategy (3.6) with a linear time-varying state feed-
back law to give ui |k = K (i)

k xi |k + ci |k , where K (i)
k and ci |k for i = 0, . . . , N − 1 are

to beoptimizedonline at each time k.A less restrictive class of control laws is obtained
by allowing the state dependence to be dynamic, in which case the time-varying state
feedback is replaced by a convolutional sum, i.e. ui |k =∑i

j=0 K (i− j)
k x j |k + ci |k .

This class can be further widened if the state dependence of the control law is allowed
to be both dynamic and time varying over the prediction horizon:

ui |k =
i∑

j=0

K ( j)
i |k x j |k + ci |k (4.24)

leading to prediction equations with a lower-triangular structure [18]

uk = K̄kxk + ck

K̄k =

⎡

⎢⎢⎢⎢⎣

K (0)
0|k 0 · · · 0

K (0)
1|k K (1)

1|k · · · 0
...

...
. . .

...

K (0)
N−1|k K (1)

N−1|k · · · K (N−1)
N−1|k

⎤

⎥⎥⎥⎥⎦

(4.25)

Here xk = (x0|k, . . . , xN |k) and uk = (u0|k, . . . , uN−1|k) are vectors of predicted
states and inputs for the model of (4.1), with x0|k = xk . Also ck = (c0|k, . . . , cN−1|k)
is a vector of feedforward parameters, and the subscript k is used as a reminder that
K̄k and ck are to be computed online at each time k.

Using (4.1) the state predictions xk can be written in terms of the future control
and disturbance inputs, uk and wk = (w0|k, . . . , wN−1|k), as

xk = Cxx xk + Cxuuk + Cxwwk (4.26)

where Cxx , Cxu and Cxw, respectively, denote the convolution matrices from x , u
and w to x given by

http://dx.doi.org/10.1007/978-3-319-24853-0_3


4.2 Parameterized Feedback Strategies 147

Cxx =

⎡

⎢⎢⎢⎢⎢⎣

I
A
...

AN−1

AN

⎤

⎥⎥⎥⎥⎥⎦
, Cxu =

⎡

⎢⎢⎢⎢⎢⎣

0 · · · 0 0
B · · · 0 0
...

. . .
...

...

AN−2B · · · B 0
AN−1B · · · AB B

⎤

⎥⎥⎥⎥⎥⎦
, Cxw =

⎡

⎢⎢⎢⎢⎢⎣

0 · · · 0 0
D · · · 0 0
...

. . .
...

...

AN−2D · · · D 0
AN−1D · · · AD D

⎤

⎥⎥⎥⎥⎥⎦
.

(4.27)

Substituting (4.26) into (4.25) and solving for uk yields

uk = (I − K̄kCxu)−1 K̄kCxx xk + (I − K̄kCxu)−1ck

+ (I − K̄kCxu)−1 K̄kCxwwk (4.28a)

xk = [Cxx + Cxu(I − K̄kCxu)−1 K̄kCxx
]
xk + Cxu(I − K̄kCxu)−1ck

+ [Cxw + Cxu(I − K̄kCxu)−1 K̄kCxw

]
wk (4.28b)

where (I − K̄kCxu) is necessarily invertible since it is lower block diagonal with all
its diagonal blocks equal to the identity. Thus, for given K̄k , the predicted state and
control trajectories are given as affine functions of the current state and the vector
of future disturbances. For any given value of K̄k , the worst case disturbance with
respect to the constraints (4.4) could be determined by solving a sequence of linear
programs similarly to the robust constraint handling approach of Sect. 3.2. However,
for the closed-loop optimization strategy considered here, K̄k is an optimization
variable, and Eqs. (4.28a, 4.28b) depend nonlinearly on this variable. As a result,
the implied optimization is non-convex and does not therefore lend itself to online
implementation.

Asmentioned in Sect. 2.10, the state and input predictions can be transformed into
linear functions of the optimization variables through the use of a Youla parameter,
and this is the route followed by [18]. Thus (4.28a) can be written equivalently as

uk = L̄kwk + vk, (4.29)

with

vk = (I − K̄kCxu)−1 K̄kCxx xk + (I − K̄kCxu)−1ck (4.30a)

L̄k = (I − K̄kCxu)−1 K̄kCxw =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
L(1)
1|k 0 · · · 0 0

L(1)
2|k L(2)

2|k · · · 0 0
...

...
. . .

...
...

L(1)
N−1|k L(2)

N−1|k · · · L(N−1)
N−1|k 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (4.30b)

The transformation of (4.30a) is bijective, so for each ck there exists a unique vk and
vice versa. Likewise L̄k is uniquely defined by (4.30b) for arbitrary K̄k . On account
of the lower-triangular structure of L̄k , the control policy of (4.29) is necessarily

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_2


148 4 Closed-Loop Optimization Strategies for Additive Uncertainty

causal and realizable in that ui |k depends on disturbances w0|k, . . . , wi−1|k that will
be known to the controller at the i th prediction time step. The corresponding vector
of predicted states assumes the form

xk = Cxx xk + Cxuvk + (Cxw + Cxu L̄k)wk . (4.31)

The parameterization of (4.29) implies a disturbance-affine feedback law (e.g.
[19, 23]) and is the basis of the disturbance-affineMPC laws proposed for example in
[18, 20].

The predictions of (4.29) and (4.31) can be used to impose the constraints of (4.4)
over an infinite future horizon by invoking

Fxi |k + Gui |k ≤ 1, i = 0, . . . , N − 1, (4.32a)

together with the terminal constraint, xN |k ∈ XT = {x : VT x ≤ 1}:

VT xN |k ≤ 1, (4.32b)

where XT is RPI for (4.1) and (4.4) under a feedback law u = K x with a fixed gain
K . Here the linear dependence of the constraints (4.32a, 4.32b) on xi |k and ui |k means
that they can be expressed in the form

F̄xk + Ḡuk ≤ 1,

where F̄ and Ḡ are block diagonal matrices:

F̄ =

⎡

⎢⎢⎢⎣

F
. . .

F
VT

⎤

⎥⎥⎥⎦, Ḡ =

⎡

⎢⎢⎢⎣

G
. . .

G
0 · · · 0

⎤

⎥⎥⎥⎦.

Using (4.29) and (4.31), these constraints are equivalent to

F̄uvk + max
w∈W×···×W

(F̄w + F̄u L̄k)w ≤ 1 − F̄x xk,

where F̄x = F̄Cxx , F̄u = F̄Cxu + Ḡ, F̄w = F̄Cxw, and the maximization is per-
formed element wise.

The vertex representation (4.2) ofW allows these constraints to be expressed as a
set of linear inequalities in vk . Thus, in the notation of Sect. 4.1.2, with w(l) denoting
the vector (w( j1), . . . , w( jN )) of vertices of W for each l = ( j1, . . . , jN ) ∈ LN , the
constraints (4.32a, 4.32b) are equivalent to linear constraints in vk and L̄k :

F̄uvk + (F̄w + F̄u L̄k)w(l) ≤ 1 − F̄x xk for all l ∈ LN . (4.33)
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Analternative constraint formulation that preserves linearitywhile avoiding the expo-
nential growth in the number of constraints with N that is implied by (4.33) uses
convex programming duality to write these constraints equivalently as [20]:

Hk1 ≤ 1 − F̄x xk − F̄uvk, Hk ≥ 0, Hk V̄ = F̄w + F̄u L̄k . (4.34)

Here Hk ∈ R
(Nnc+nT )×nV is amatrix of additional variables in theMPC optimization

performed online at times k = 0, 1, . . . and V̄ is a block diagonal matrix containing
N diagonal blocks, each of which is equal to V . Therefore, (4.34) constitutes a set
of linear constraints in decision variables vk , L̄k and Hk , and the total number of
these constraints grows linearly with N . The technique used to derive (4.34) from
(4.33) and the equivalence of these sets of constraints is discussed in Chap. 5 (see
Lemma5.6).

We next consider the definition of the predicted cost that forms the objective of
an MPC strategy employing the constraints (4.34). One possible choice is a nominal
cost that assumes all future disturbance inputs to be zero, i.e. wi |k = 0, i = 0, 1, . . ..
By combining a quadratic nominal cost with the constraints (4.34), the online MPC
optimization can be formulated conveniently as a quadratic program. It can be shown
that the resulting MPC law ensures a finite l2 gain from the disturbance input to the
state and control input (see [20] for details), but the implied l2 gain could be arbitrarily
large because the nominal cost contains no information on the feedback gain matrix
L̄k . By including in the cost an additional quadratic penalty on elements of L̄k ,
it is possible to derive stronger stability results [24], in particular the state of the
closed-loop system can be shown to converge asymptotically to the minimal RPI set
under a specific known linear feedback law. However, this approach relies on using
sufficiently large weights in the penalty on L̄k , and we therefore consider here a
conceptually simpler min-max approach proposed in [25], which uses the worst case
cost considered in Sect. 3.4.

The predicted cost is therefore defined as the maximum, with respect to distur-
bances w ∈ W , of a quadratic cost over a horizon of N steps:

J̌ (x0, {u0, u1, . . .}) = max
wi ∈W

i=0,...,N−1

N−1∑

i=0

(‖xi‖2Q + ‖ui‖2R − γ2‖wi‖2
)+ ‖xN ‖2

W̌x
.

(4.35)
Here W̌x is the solution of the Riccati equation (3.42), and hence the cost (4.35)
is equivalent to the maximum of an infinite horizon cost over wi ∈ W for i =
0, . . . , N − 1 and over wi ∈ R

nw for i ≥ N . We denote the predicted cost evalu-
ated at time k along the trajectories of (4.1) with the feedback strategy of (4.29) as
J̌ (xk, vk, L̄k):

J̌ (xk, vk, L̄k) = max
wk∈{w:V̄ w≤1}

{
‖Cxx xk + Cxuvk + (Cxw + Cxu L̄k)wk‖2Q̄
+ ‖L̄kwk + vk‖2R̄ − γ2‖wk‖2

}
(4.36)

http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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where

Q̄ =

⎡

⎢⎢⎢⎣

Q
. . .

Q
W̌x

⎤

⎥⎥⎥⎦, R̄ =
⎡

⎢⎣
R

. . .

R

⎤

⎥⎦.

Following [25] and using the approach of Sect. 3.4, the cost (4.36) can be expressed
in terms of conditions that are convex in the variables vk and L̄k , provided γ is
sufficiently large so that J̌ (xk, vk, L̄k) is concave in wk . This concavity condition is
equivalent to the requirement that Δ � 0, where

Δ
.= γ2 I −

(
(Cxw + Cxu L̄k)

T Q̄(Cxw + Cxu L̄k) + L̄T
k R̄ L̄k

)
.

Lemma 4.2 If Δ � 0, then J̌ (vk, L̄k) = minδ,μ∈{μ:μ≥0} δ + 1T μ subject to the fol-
lowing LMI in vk , L̄k , μ and δ,

⎡

⎣

[
δ 1

2μ
T V̄

V̄ T μ γ2 I

] [
(Cxx xk + Cxuvk)

T Q̄1/2 vT
k R̄1/2

(Cxw + Cxu L̄k)
T Q̄1/2 L̄T

k R̄1/2

]

� I

⎤

⎦ � 0, (4.37)

where Q̄1/2 and R̄1/2 satisfy (Q̄1/2)T Q̄1/2 = Q̄ and (R̄1/2)T R̄1/2 = R̄.

Proof If Δ � 0, then (4.37) can be shown (by considering Schur complements) to
be equivalent to the condition

δ ≥ ‖Cxx xk + Cxuvk‖2Q̄ + ‖vk‖2R̄
+ ‖ 1

2μ
T V̄ − (Cxx xk + Cxuvk)

T Q̄(Cxw + Cxu L̄k) − cT
k R̄ L̄k‖2Δ−1 . (4.38)

Moreover if Δ � 0, then the equivalence of the convex QP (3.52) and its dual (3.53)
implies that J̌ (xk, vk, L̄k) is equal to the minimum of δ + 1T μ over μ ≥ 0 and δ
subject to (4.38). �

Lemma4.2 allows theminimization of the worst case cost (4.36) subject to (4.32a,
4.32b) with the feedback strategy of (4.29) to be formulated as a semi-definite pro-
gram in O(N 2) variables. This is the online optimization that forms the basis of the
following disturbance-affine MPC law.

Algorithm 4.4 (DAMPC) At each time instant k = 0, 1, . . .:

(i) Perform the optimization

minimize
vk ,L̄k ,Hk ,δk ,μk

δk + 1T μk subject to (4.34), (4.37) and μk ≥ 0. (4.39)

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3


4.2 Parameterized Feedback Strategies 151

(ii) Apply the control law uk = v∗
0|k , where v∗

k = (v∗
0|k, . . . , v∗

N−1|k) and L̄∗
k are the

optimal values of vk , L̄k in (4.39). �
The set of feasible states for the MPC optimization (4.39) is given by2

FN
.= {xk : ∃(vk, L̄k) such that Δ � 0 and (4.34) holds for some Hk ≥ 0}.

For any N ≥ 1,FN can be shown to be RPI under the control law of Algorithm4.4 by
constructing vk+1 and L̄k+1 so that conditions (4.32a, 4.32b) andΔ � 0 are satisfied
at time k + 1. Specifically, let

L̄k+1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0
L(2)∗
2|k · · · 0 0 0
...

. . .
...

...
...

L(2)∗
N−1|k · · · L(N−1)∗

N−1|k 0 0

KAN−2D · · · KAD KD 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, vk+1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

v∗
1|k + L(1)∗

1|k wk

v∗
2|k + L(1)∗

2|k wk
...

v∗
N−1|k + L(1)∗

N−1|kwk

vN |k+1 + KAN−1Dwk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with vN |k+1 = KAN xk + K [AN−1B · · · B]v∗
k . Then the sequence of control inputs

given by (u0|k+1, . . . , uN−1|k+1) = L̄k+1wk+1 + vk+1 satisfies

ui |k+1 =
{

ũi+1|k i = 0, 1, . . . , N − 2

K x̃N |k i = N − 1

where ũi+1|k and x̃N |k are elements of the optimal predicted input and state sequences
at time k that would be obtained withw0|k equal to the actual disturbance realization,
wk , and which satisfy (4.32a, 4.32b) by construction. It can also be shown [25] that
this choice of L̄k+1 satisfies

γ2 I − (Cxw + Cxu L̄k+1)
T Q̄(Cxw + Cxu L̄k+1) + L̄T

k+1 R̄ L̄k+1 � 0,

wheneverΔ � 0. Therefore xk+1 ∈ FN for allwk ∈ W , implying that Algorithm4.4
is recursively feasible.

The MPC law of Algorithm4.4 guarantees a bound, which depends on the para-
meter γ, on the l2 gain from the disturbance input to the state and control input.

Corollary 4.1 For any x0 ∈ FN and all n ≥ 0, the closed-loop trajectories of (4.1)
under Algorithm4.4 satisfy the bound

n∑

k=0

(‖xk‖2Q + ‖uk‖2R
) ≤ J̌ (x0, v∗

0, L̄∗
0) + γ2

n∑

k=0

‖wk‖2. (4.40)

2There is no need to include the LMI (4.37) in the conditions defining the feasible set FN because
δ and μ ≥ 0 can always be found satisfying (4.38) (and hence also (4.37)) whenever Δ � 0.
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Proof This can be shown similarly to the proof of Theorem3.4. �

Example 4.5 In this examplewe consider the set of feasible initial conditions and the
optimal value of the objective of theDAMPCoptimization in step (i) ofAlgorithm4.4
for the system dynamics, constraints and terminal set of Example4.2. The feasible
initial condition sets FN of DAMPC for N = 4, 5, . . . , 10 are shown in Fig. 4.10
projected onto the plane {x : [0 1 0]x = 0}. This figure also shows the projections of
X (N ), the N -step controllable sets toXT , onto the same plane, for the same values of
N . ClearlyFN must be a subset ofX (N ) sinceX (N ) is the largest feasible set for any
controller parameterizationwith a prediction horizon of N . The Figure shows thatFN

provides a good approximation ofX (N ) for small values of N , but the approximation
accuracy decreases as N increases, and FN is much smaller than X (N ) for N ≥ 8.

The degree of suboptimality of the DAMPC optimization at any given feasible
point can be determined by comparing the value of the objective of the DAMPC opti-
mization (4.39) with the optimal cost (4.8). Since the objective of (4.39) is equivalent
to the min-max cost (4.35), the optimal value (4.8) is the minimum cost that can be
obtained for this problem with any controller parameterization. Table4.1 shows the
percentage suboptimality of (4.39) relative to this ideal optimal cost. The average and
maximum suboptimality are given for 50 values of the model state randomly selected
on the boundary ofFN for N = 10, 11, . . . , 15. For this example, the DAMPC opti-

Fig. 4.10 The projections onto the (x1, x3)-plane of the feasible setsFN for N = 4, 5, . . . , 10 and
the terminal set XT . The dashed lines show the projections of the N -step controllable sets to XT ,
for N = 4, 5, . . . , 10

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Table 4.1 The relative difference between the objective of the DAMPC optimization (4.39) and
the ideal optimal cost (4.8) for varying N

Horizon N Suboptimality

Average (%) Maximum (%)

10 0.1 0.6

11 1.1 6.6

12 2.6 14.0

13 3.8 18.1

14 6.5 31.3

15 9.7 43.3

For each N the average and maximum percentage differences are given for 50 plant states randomly
selected on the boundary of the feasible set FN

mization has negligible suboptimality for N ≤ 10, but the degree of suboptimality
rises quickly as N increases above 10.

To give an indication of the computation required by Algorithm4.4, the aver-
age execution time3 of (4.39) for N = 10 was 0.55s and the maximum was 0.67s,
whereas for N = 15 the execution times were 2.1s (average) and 2.6s (maximum).
For comparison, solving (4.8) by dynamic programming using Algorithm4.2 with
cold starting required 0.05s (average) and 0.20 s (maximum) for N = 10, and 0.13s
(average) and 0.49s (maximum) for N = 15. Although for this example the online
computational requirement of the active set DP implemented by Algorithm4.2 is
considerably less than that of DAMPC, it has to be remembered that DAMPC has a
much lower offline computational burden because it does not need the controllable
sets X (1), . . . ,X (N ) to be determined offline. ♦

Weclose this section by noting that the disturbance-affine structure of the feedback
strategy (4.29) provides compensation for future disturbances that will be known to
the controller when the control law is implemented. Clearly it could be advantageous
to extend this compensation beyond the future horizon consisting of the first N
prediction time steps, and this indeed is proposed in [26]. This approach is cast
in the context of stochastic MPC and is described in Chap.8 (see Sect. 8.2). An
application of this idea to a closed-loop prediction strategy that addresses the robust
MPC problem considered in this chapter is described in Sect. 4.2.3.

4.2.2 Parameterized Tube MPC

The disturbance-affine feedback strategy considered in Sect. 4.2.1 assumes predicted
control inputs with the structure shown in Table4.2. Although computationally con-
venient, this parameterization is more restrictive than the general feedback strategy

3Execution times are reported here to provide an indication of the computational load—
Algorithm4.4 was implemented using Matlab and Mosek v7.

http://dx.doi.org/10.1007/978-3-319-24853-0_8
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Table 4.2 The feedback structure of DAMPC

Mode 1 Mode 2
v0|k v1|k v2|k · · · vN−1|k KxN|k · · ·

L
(1)
1|kw0|k L

(1)
2|kw0|k · · · L

(1)
N−1|kw0|k

L
(2)
2|kw1|k · · · L

(2)
N−1|kw1|k

. . .
...

L
(N−1)
N−1|kwN−2|k

u0|k u1|k u2|k · · · uN−1|k uN|k · · ·
The i steps-ahead predicted control input at time k, ui |k , is the sum of the entries that lie above the
horizontal line in the (i + 1)th column of the table (zero entries are left blank)

discussed in Sect. 4.1.2 because it forces the predicted control inputs to depend lin-
early on disturbance inputs. As a result, the i-steps-ahead predicted control input ui |k
is determined for all disturbance sequences (w0|k, . . . , wi−1|k) ∈ W × · · · × W by
its values at only inw + 1 vertices of the set W × · · · × W . On the other hand, the
general feedback policy of Sect. 4.1.2 allows ui |k to be chosen independently at each
of the mi vertices of W × · · · × W (recall that m is the number of vertices of the
disturbance setW ⊂ R

nw ). Clearly the number of optimization variables required by
the general feedback policy must therefore grow exponentially with horizon length
(as illustrated for example by the tree structure of Fig. 4.8), making the approach
intractable for many problems. However, it is often possible to achieve the same
performance as the general feedback strategy, or at least a good approximation of it,
using a much more parsimonious parameterization of predicted trajectories.

This is the motivation behind the parameterized tube MPC (PTMPC) formulation
of [21], which allows for more general predicted feedback laws than the disturbance-
affine strategy of Sect. 4.2.1 while requiring, like DAMPC, a number of optimization
variables that grows quadratically with horizon length. PTMPC defines a predicted
control tube in terms of the vertices of the sets that form the tube cross sections at each
prediction time step over a horizon of N steps. The predicted control trajectories of
PTMPC are taken to be convex combinations of these vertices, a subset of which are
designated as optimization variables. As is the case for the general feedback strategy
in Sect. 4.1.2, the linearity of the systemmodel and constraints (4.1)–(4.4) imply that
the conditions for robust constraint satisfaction depend on the vertices of the state and
control tubes, but not on the interpolation parameters that define specific trajectories
for a given set of vertices. Unlike the general feedback policy, however, PTMPC
does not assign an optimization variable to every possible sequence of disturbance
vertices over the N -step prediction horizson; instead the predicted state and control
tubes are constructed from the Minkowski sum of tubes that model separately the
effects of disturbances at individual future time instants.

The decomposition of predicted trajectories into responses to individual distur-
bances is key to the complexity reduction achieved by PTMPC relative to the general
feedback strategy of Sect. 4.1.2, and it also explains why PTMPC cannot in general
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Table 4.3 The control tube structure of PTMPC

Mode 1 Mode 2

u
(0)
0|k u

(0)
1|k u

(0)
2|k · · · u

(0)
N−1|k Kx

(0)
N|k · · ·

U
(1)
1|k U

(1)
2|k · · · U

(1)
N−1|k KX

(1)
N|k · · ·

U
(2)
2|k · · · U

(2)
N−1|k KX

(2)
N|k · · ·

. . .
...

...
U

(N−1)
N−1|k KX

(N−1)
N|k · · ·

KX
(N)
N|k · · ·

. . .

U0|k U1|k U2|k · · · UN−1|k UN|k · · ·
The i steps-ahead predicted control input at time k, ui |k , is contained in the setUi |k , which is formed
from the Minkowski sum of all the entries above the horizontal line in the (i + 1)th column of the
table

provide the same performance as control laws that are determined using dynamic
programming. This decomposition is illustrated by the triangular tube structure in
Table4.3. For each i < N , the set Ui |k that defines the tube cross section containing
the predicted input ui |k is the (Minkowski) sum of a feedforward term u(0)

i |k and sets

U (l)
i |k , l = 1, 2, . . . i :

ui |k ∈ Ui |k = {u(0)
i |k } ⊕ U (1)

i |k ⊕ · · · ⊕ U (i)
i |k .

Each set U (l)
i |k is a compact convex polytope with as many vertices as the disturbance

setW:

U (l)
i |k = Co{u(l, j)

i |k , j = 1, . . . , m},

where the vertices u(l, j)
i |k , for each i < N , l ≤ i and j ≤ m are optimization variables.

The tube cross sectionUN |k containing uN |k is similarly given by the sum of sets that
are obtained by applying the fixed linear feedback law u = K x to each of a sequence
of state tube cross sections.

The sets Xi |k defining the cross sections of the tube containing the predicted state
trajectories are decomposed similarly (Table4.4) into the sum of a nominal predicted
state x (0)

i |k and setsW and X (l)
i |k for l = 1, . . . , i − 1:

xi |k ∈ Xi |k = {x (0)
i |k } ⊕ X (1)

i |k ⊕ · · · ⊕ X (i)
i |k . (4.41)
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Table 4.4 The state tube structure of PTMPC

Mode 1 Mode 2

x
(0)
0|k x

(0)
1|k x

(0)
2|k · · · x

(0)
N−1|k x

(0)
N|k Φx

(0)
N|k · · ·

DW X
(1)
2|k · · · X

(1)
N−1|k X

(1)
N|k ΦX

(1)
N|k · · ·

DW · · · X
(2)
N−1|k X

(2)
N|k ΦX

(2)
N|k · · ·

. . .
...

...
...

DW X
(N−1)
N|k ΦX

(N−1)
N|k · · ·

DW ΦDW · · ·
DW · · ·

. . .

X0|k X1|k X2|k · · · XN−1|k XN|k XN+1|k · · ·
The i steps-ahead predicted state at time k, xi |k , is contained in the set Xi |k , which is formed from
the Minkowski sum of all the entries above the horizontal line in the (i + 1)th column of the table;
Φ = A + BK where K is the feedback gain appearing in Table4.3

Each X (l)
i |k is a compact convex polytopic set defined by its vertices:

X (l)
i |k = Co{x (l, j)

i |k , j = 1, . . . , m}.

The trajectory of x (0)
i |k is determined by the nominal model dynamics

x (0)
i+1|k = Ax (0)

i |k + Bu(0)
i |k , i = 0, 1, . . . , N − 1, (4.42a)

and the vertices X (l)
i |k are paired with those of U (l)

i |k so that the predicted state tube
evolves as

x (l, j)
l|k = Dw( j), (4.42b)

x (l, j)
i+1|k = Ax (l, j)

i |k + Bu(l, j)
i |k , i = l, l + 1, . . . , N − 1, (4.42c)

for j = 1, . . . , m. Thus X (i)
i |k = DW and the sets DW, X (l)

l+1|k, X (l)
l+2|k, . . . in the

(l + 1)th row of Table4.4 account for the effects of the disturbance input wl|k on
predicted state trajectories. From (4.42a) to (4.42c), it follows that xi+1|k ∈ Xi+1|k
for all (xi |k, ui |k) ∈ Xi |k × Ui |k and wi |k ∈ W , at each time-step i = 0, 1, . . ..

The feedback policy of DAMPC is a special case of PTMPC since the disturbance
affine feedback law of Table4.2 is obtained if every vertex of the PTMPC control
tube is defined as a linear function of the vertices ofW , namely if u(l, j)

i |k = L(l)
i |kw( j)

for each i, j, l. In general, however, the feedback policy of PTMPCwill be piecewise
affine since the control input corresponding to any xi |k lying on the boundary of Xi |k
is given by a linear combination of vertices of Ui |k . At points on the boundary of its
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feasible set in state space therefore, the control law of PTMPC is, like the dynamic
programming solution discussed in Sect. 4.1.1, a piecewise affine function of the
plant state. However, except for some special cases (discussed in [21]), PTMPC is
not equivalent to the general feedback policy of Sect. 4.1 since ui |k is specified by a
linear combination of only im + 1 rather than mi free variables.

Before considering the definition of a cost index for PTMPC, we first discuss
how to impose the constraints (4.4) on the predicted state and control trajectories
of PTMPC for all future disturbance realizations. An equivalent and computation-
ally convenient formulation of the constraints F Xi |k + GUi |k ≤ 1 for i = 0, 1, . . . ,
N − 1 is given by

Fx (0)
0|k + Gu(0)

0|k ≤ 1 (4.43a)

together with the following conditions for i = 1 . . . N − 1,

Fx (0)
i |k + Gu(0)

i |k +
i∑

l=1

f (l)
i |k ≤ 1 (4.43b)

Fx (l, j)
i |k + Gu(l, j)

i |k ≤ f (l)
i |k , j = 1, . . . , m (4.43c)

where f (l)
i |k for l = 1, . . . , i are slack variables. The satisfaction of the condition

FXN |k + GUN |k ≤ 1 is ensured by the terminal constraint, X N |k ⊆ XT , whereXT is
a robustly positively invariant set for (4.1), (4.2) and (4.4) under u = K x . Assuming
that this terminal set is given byXT = {x : VT x ≤ 1}, the conditions for X N |k ⊆ XT

are equivalent to

VT x (0)
N |k +

i∑

l=1

f (l)
T ≤ 1 (4.44a)

VT x (l, j)
N |k ≤ f (l)

T , j = 1, . . . , m, (4.44b)

where f (l)
T , l = 1, . . . , N are slack variables.

Let uk denote the vector of optimization variables defining the predicted control
tubes:

uk =
{
(u(0)

0|k, . . . , u(0)
N−1|k), (u(l, j)

i |k , i = 1, . . . , N − 1, l = 1, . . . , i, j = 1, . . . , m)
}
.

Then the set FN of feasible initial conditions for (4.43a–4.43c) and (4.44a, 4.44b)
can be expressed

FN =
{

xk : ∃ uk such that for some f (l)
i |k , i < N , l ≤ i, and f (l)

T , l ≤ N ,

(4.42a–4.42c), (4.43a–4.43c) and (4.44a, 4.44b) hold with x (0)
0|k = xk

}
.

(4.45)
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Lemma 4.3 For any N > 0, FN is RPI for the dynamics (4.1), disturbance set (4.2)
and constraints (4.4) if uk = u(0)

0|k .

Proof This can be shown by constructing uk+1 such that the conditions defining
FN are satisfied at time k + 1, given xk ∈ FN and uk = u(0)

0|k . Specifically, let wk =
∑m

j=1 λ jw
( j) for scalars λ j ≥ 0 satisfying

∑m
j=1 λ j = 1, and define

u(0)
i |k+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(0)
i+1|k +

m∑

j=1

λ j u
(1, j)
i+1|k, i = 0, . . . , N − 2

K x (0)
N |k +

m∑

j=1

λ j K x (1, j)
N |k , i = N − 1

(4.46a)

and

U (l)
i |k+1 =

{
U (l+1)

i+1|k , i = 1, . . . , N − 2, l = 1, . . . , i

KX(l+1)
N |k , i = N − 1, l = 1, . . . , N − 1

(4.46b)

Then the sets Xi |k+1 = {x (0)
i |k+1} ⊕ X (1)

i |k+1 ⊕ · · · ⊕ X (i−1)
i |k+1 ⊕ DW generated by the

tube dynamics (4.42a, 4.42b) with x (0)
0|k+1 = xk+1 satisfy Xi |k+1 ⊆ Xi+1|k for

i = 0, 1, . . . , N − 1. Hence conditions (4.43a–4.43c) hold at time k + 1 by con-
vexity. Moreover (4.44a, 4.44b) hold at k + 1 because X N |k+1 = Φ X N |k + DW
and X N |k ∈ XT where XT is by assumption RPI. �

The parameterized tubes of Tables4.3 and 4.4 can be combined with various alter-
native performance indices in order to define recursively feasible receding horizon
control laws. For example, a quadratic nominal cost similar to that of Sect. 3.3, which
involves only the nominal predicted sequences x (0)

i |k and u(0)
i |k for i = 0, 1, . . . , N − 1

and the nominal terminal state x (0)
N |k , results in a robustly stabilizing MPC law that

ensures a finite l2 gain from the disturbance input to the closed-loop state and control
sequences. This approach is described in the context of a related parameterized tube
MPC formulation in [22, 27] and also is discussed in Sect. 4.2.3. Here, however, we
consider a performance index that ensures exponential convergence to a predefined
target set.

The definition of the vertices of predicted state and control tubes as optimization
variables in PTMPC motivates the use of a piecewise linear cost, since in this case
the optimal state and control sequences are given by sequences of tube vertices. For
example, a piecewise linear stage cost of the form

l(x, u) = ‖Qx‖∞ + ‖Ru‖∞

is proposed in [21], where the weighting matrices Q and R are chosen so that the sets
{x : ‖Qx‖∞ ≤ 1} and {u : ‖Ru‖∞ ≤ 1} are compact and contain the origin in their

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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(non-empty) interiors. This stage cost is used in conjunction with a state decompo-
sition in order to penalize the distance of predicted state trajectories from desired
target set in [21]. However, for ease of exposition, we consider here a conceptually
simpler approach that is discussed in [22], in which the distance of the predicted
state from a target set is evaluated directly through a piecewise linear stage cost.

We denote the target set into which the controller is required to steer the state as
S, and we assume S is a convex polytopic subset of the terminal setXT that contains
the origin in its (non-empty) interior and has the representation

S = {x : H x ≤ 1}.

We further assume that S is robustly positively invariant for (4.1) and (4.2) under the
linear feedback law u = K x , namely that

ΦS ⊕ DW ⊆ S

and Fx + GKx ≤ 1 for all x ∈ S. A suitable target set is provided by the maximal
RPI set (determined for example using Theorem3.1), and as explained below it is
convenient to choose S equal to the terminal set XT . We define a measure of the
distance of a point x ∈ R

nx from the set S as

|x |S .=
{
0, if x ∈ S
max{H x} − 1, otherwise

wheremax{H x} .= max{H1x, H2x, . . . , HnH x}with Hi for i = 1, . . . , nH denoting
the rows of H . A straightforward extension of this definition provides a measure of
the distance of a closed set X ⊂ R

nx from S as

|X |S .= max
x∈X

|x |S .

Note that these measures of distance from a point x to S and from a set X to S are
consistent with the requirements that |x |S = 0 if and only if x ∈ S and |X |S = 0 if
and only if X ⊆ S.

The PTMPC predicted cost can be defined in terms of the distances of the cross
sections of the predicted state tube from S as

J (x (0)
0|k , uk) =

N−1∑

i=0

|Xi |k |S + |X N |k |ST . (4.47)

The terminal term |X N |k |ST is assumed to be defined so that |x |ST satisfies, for all
x ∈ XT ,

|x |ST ≥ |Φx + Dw|ST + |x |S .

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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This condition requires that |x |ST is a piecewise linear Lyapunov function for (4.1)
under the feedback law u = K x for x ∈ XT ; methods of computing such Lyapunov
functions are discussed in [28]. For convenience and without loss of generality, we
assume here that S is equal to the terminal set XT , in which case ST = S is a valid
choice, and the cost of (4.47) reduces to

J (x (0)
0|k , uk) =

N−1∑

i=0

|Xi |k |S (4.48)

as a result of the terminal constraint X N |k ⊆ XT . Note that terms of the form |Ui |k |KS
could also be included in the stage cost in order to place an explicit penalty on the
deviation of predicted control sequences from the set KS = {K x : x ∈ S}, but for
simplicity we consider the cost of (4.47) without this modification.

From the expression for Xi |k in (4.41), each term appearing in the cost (4.48) can
be expressed as

|Xi |k |S = max{H x (0)
i |k } +

i∑

l=1

max
j

{H x (l, j)
i |k } − 1

(or |Xi |k |S = 0 if this is negative), where max j {H x ( j)} .= max j maxi {Hi x ( j)}. For
implementation purposes, each stage cost can therefore be equivalently replaced by
a (tight) upper bound given in terms of a slack variable:

J (x (0)
0|k , uk) =

N−1∑

i=0

di |k .

Here di |k is a slack variable satisfying the linear constraints

di |k ≥ h(0)
i |k +

i∑

l=1

h(l)
i |k − 1,

di |k ≥ 0,

where h(l)
i |k for i = 0, . . . , N − 1 and l = 0, . . . , i are slack variables satisfying

H x (0)
i |k ≤ h(0)

i |k 1

for i = 0, . . . , N − 1, and

H x (l, j)
i |k ≤ h(l)

i |k1, j = 1, . . . , m

for i = 1, . . . , N − 1 and l = 1, . . . , i .
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We can now state the PTMPC algorithm. This is based on an online opti-
mization which is a linear program involving O( 12num N 2) optimization variables
and O

( 1
2 (nc + 1)N 2

)
slack variables, and which has O

( 1
2 (nc + nH )m N 2

)
linear

inequality constraints.

Algorithm 4.5 (PTMPC) At each time k = 0, 1, . . .:

(i) If xk /∈ S:
(a) Perform the optimization

minimize
uk

J (xk, uk)

subject to (4.42a–4.42c), (4.43a–4.43c), (4.44a, 4.44b).
(4.49)

(b) Apply the control lawuk = u(0)∗
0|k ,whereu∗

k = {(u(0)∗
0|k , . . . , u(0)∗

N−1|k), (u
(l, j)∗
i |k ,

i < N , l ≤ i, j ≤ m)
}
is the minimizing argument of (4.49).

(ii) Otherwise (i.e. if xk ∈ S), apply the control law uk = K xk . �

Before discussing closed-loop stability of PTMPC, we first establish that (4.49)
is recursively feasible and give a monoticity property of the optimal predicted cost,
J ∗(xk)

.= J (xk, u∗
k).

Lemma 4.4 For the system (4.1) with the control law of Algorithm4.5 the feasible
set FN of (4.49) is RPI. Furthermore for any x0 ∈ FN the optimal objective satisfies,
for all k ≥ 0,

J ∗(xk+1) ≤ J ∗(xk) − |xk |S . (4.50)

Proof Robust invariance of FN under uk = u(0)∗
0|k is a direct consequence of

Lemma4.3. Hence the PTMPC optimization (4.49) is feasible at all times k ≥ 1
if x0 ∈ FN . For xk ∈ S, the assumption that S is RPI implies that (4.50) is trivially
satisfied. To derive a bound on the optimal cost J ∗(xk+1) in terms of J ∗(xk) when
xk /∈ S, consider the state tubes that are generated at time k + 1 by the feasible but
suboptimal control tubes given by (4.46a, 4.46b). From (4.42a to 4.42c) we obtain

x (0)
i |k+1 = x (0)

i+1|k +
m∑

j=1

λ j x (1, j)
i+1|k, i = 0, . . . , N − 1

X (l)
i |k+1 = X (l+1)

i+1|k, i = 1, . . . , N − 1, l = 1, . . . , i

and the corresponding stage cost of (4.48) for i = 0, . . . , N − 1 is given by

|Xi |k+1|S = max
{

H
(
x (0)

i+1|k +
m∑

j=1

λ j x (1, j)
i+1|k
)}+

i∑

l=1

max
j

{H x (l+1, j)
i+1|k } − 1
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(or |Xi |k+1|S = 0 if this expression is negative). Moreover, since any pair of vectors
a, b necessarily satisfies max{a + b} ≤ max{a} + max{b}, and since λ j ≥ 0 and∑m

j=1 λ j = 1, we therefore obtain

|Xi |k+1|S ≤ max{H x (0)
i+1|k} +

i+1∑

l=1

max
j

{H x (l, j)
i+1|k} − 1

(or |Xi |k+1|S = 0 if this bound is negative). Hence |Xi |k+1|S ≤ |Xi+1|k |S for all
i = 0, . . . , N − 1 and the optimal predicted cost at time k + 1 satisfies J ∗(xk+1) ≤∑N−1

i=1 |Xi |k |S = J ∗(xk) − |xk |S , where X0|k = {x (0)
0|k } = {xk} has been used. �

The following result gives the closed-loop stability property of PTMPC.

Theorem 4.2 Under Algorithm4.5 the set S is robustly exponentially stable for the
system (4.1), (4.2) and (4.4), with a region of attraction equal to FN .

Proof Since S is RPI for (4.1) under linear feedback u = K x , the optimal value of
the cost is given by J ∗(x) = 0 for all x ∈ S. Furthermore J ∗(x) ≥ |x |S since the
stage costs |Xi |k |S for i ≥ 1 are non-negative. In addition, the optimal cost J ∗(x)

is the optimal value of a (right-hand side) parametric linear program, and J ∗(x) is
therefore a continuous piecewise affine function of x on the feasible set FN [29]. It
follows that constants α, β with β ≥ α ≥ 1 exist such that J ∗(x) is bounded for all
x ∈ FN by

α|x |S ≤ J ∗(x) ≤ β|xk |S .

If x0 ∈ FN , then from Lemma4.4 we therefore obtain, for all k ≥ 1

J ∗(xk) ≤
(
1 − 1

β

)k

J ∗(x0)

where 1 − 1

β
∈ (0, 1), and hence the bound

|xk |S ≤ β

α

(
1 − 1

β

)k

|x0|S (4.51)

holds for all k ≥ 1. �

Note that the control law of Algorithm4.5 is a dual mode control law in the strict
sense, namely that it implements the linear feedback law uk = K xk whenever xk ∈ S.
The implied switch to linear feedback is desirable because the minimizing argument
of (4.49) is not uniquely defined for all xk ∈ S. Furthermore, although it has been
designed with the objective of robustly stabilizing the target set S, Algorithm4.5
can also ensure convergence of the state to the minimal RPI set, XmRPI, of (4.1)
and (4.2) under uk = K xk . Specifically, suppose that S (and hence also the terminal
set XT ) is chosen to be a proper subset of the maximal RPI set XMRPI, and that
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Algorithm4.5 is modified so that the linear feedback law u = K x is implemented
whenever xk ∈ XMRPI. Then Theorem4.2 implies that xk converges to XMRPI in a
finite number of steps and subsequently converges exponentially to XmRPI.

The online optimization problem of Algorithm4.5 is an efficiently solvable linear
program. Furthermore the number of free variables (including the slack variables) and
the number of inequality constraints both depend quadratically with the prediction
horizon. Thus PTMPC avoids the exponential growth in computation experienced
by a MPC law with the general feedback policy described in Sect. 4.1.2, and its
computational requirement is comparable to that ofDAMPC.However, the prediction
formulation of PTMPC includes that of DAMPC as a special case, and it is therefore
to be expected that PTMPC can achieve a larger region of attraction than DAMPC,
for the same length of horizon and terminal set. Finally, we note that PTMPC is
in general more restricted in the definition of its predicted control trajectories than
the general feedback MPC strategy of Sect. 4.1.2 and the active set DP approach of
Sect. 4.1.1, and its feasible set for a horizon of N steps is therefore smaller than the
N -step controllable set to XT . The following numerical example illustrates these
properties.

Example 4.6 For the system defined by the triple integrator dynamics and the dis-
turbance set and constraints of Example4.2, the feasible set FN of the online opti-
mization of Algorithm4.5 is shown projected onto the (x1, x3)-plane for horizon
lengths 4 ≤ N ≤ 10 in Fig. 4.11. The linear feedback gain K and the terminal set

Fig. 4.11 The projections onto the (x1, x3)-plane of the feasible setsFN for N = 4, 5, . . . , 10 and
the terminal set XT . The dashed lines show the projections of the N -step controllable sets to XT
and the dotted lines show the feasible sets for DAMPC
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XT are defined here as in Examples4.2, 4.3 and 4.5, and S is taken to be equal to
XT . It can be seen from this figure that the PTMPC feasible set is smaller than the
N -step controllable set to XT for each horizon length N in this range. As expected
however, the projection of the PTMPC feasible set contains that of DAMPC for each
N , and, although they are similar in size for N ≤ 6, the PTMPC feasible set grows
significantly faster than that of DAMPC for N ≥ 8 in this example.

4.2.3 Parameterized Tube MPC Extension with Striped
Structure

The online computational load of PTMPC can be reduced, as reported in [30], by
designing some of the slack variables that appear in the constraints of (4.43) and
(4.44) offline. Clearly this results in an open-loop strategy, however, and in gen-
eral will therefore be conservative. An effective alternative is proposed in [22, 27],
which uses the same tube parameterization as PTMPC but constrains the component
{U (l)

l|k , U (l)
l+1|k, . . .} of the predicted control tube that appears in the (l + 1)th row of

Table4.3 to be identical for each row l = 1, 2, . . .. This strategy results in a striped
(rather than triangular) structure for both state and control tubes, and for this reason
the approach is referred to as Striped PTMPC (SPTMPC).

The key difference in this development is that the free variables defining predicted
control tubes are allowed to affect directly the predicted response in both the mode 1
horizon consisting of the first N prediction time steps, and the mode 2 horizon
containing the subsequent prediction instants. This can result in a relaxation of the
terminal constraints and can thus allow regions of attraction that are larger than
those obtained through the use of PTMPC. Furthermore, unlike PTMPC, for which
the number of optimization variables and constraints grows quadratically with the
prediction horizon, the corresponding growth for SPTMPC is linear, and this can
result in significant reductions in computational load. As a consequence, it is possible
to further increase the size of the region of attraction of SPTMPC using a longer
horizon N while retaining an online computational load no greater than that of
PTMPC.

The idea of allowing the effect of partial sequences to persist beyond mode 1
and into the mode 2 horizon was explored in the context the design of controlled
invariant sets rather thanMPC in [31]. Invariance in this setting was obtained through
the use of a contraction variable, which was deployed in a prediction structure with
the particular form illustrated in Table4.5. As for the PTMPC state tubes in Table4.4,
the entries in the table indicate the components the cross sections of predicted state
tubes; the corresponding input tubes have a similar structure.

Comparing Tables4.5 and 4.4, the triangular prediction tube structure employed
by PTMPC clearly introduces a greater number degrees of freedom for a given
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Table 4.5 Striped prediction tube structure extending into the mode 2 horizon

Mode 1 Mode 2

X0|k X1|k · · · XN−1|k XN|k αX0|k · · · αXN−1|k αXN|k α2X0|k · · ·
X0|k · · · XN−2|k XN−1|k XN|k · · · αXN−2|k αXN−1|k αXN|k . . .

. . .
...

...
...

...
...

...
X0|k X1|k X2|k · · · XN|k αX1|k αX2|k . . .

X0|k X1|k · · · XN−1|k XN|k αX1|k . . .

. . .
...

...
...

X0|k X1|k · · · XN−1|k XN|k XN+1|k · · · X2N|k X2N+1|k X2N+2|k · · ·
The tube cross section Xi |k containing xi |k is formed from the Minkowski sum of all the entries
above the horizontal line in the (i + 1)th column of the table. The contraction variable α ∈ (0, 1)
is introduced for the purposes of controller invariance

horizon N , and these are available for expanding the region of attraction. However
this is gained at the expense of additional online computation. Also it can be seen
from the control input tubes in Table4.3 that the PTMPC predicted control law in
mode 2 assumes the form u = K x , and hence PTMPCmakes no degrees of freedom
available for direct disturbance compensation over this part of the prediction horizon.

On the other hand, SPTMPC, like [31], allows the optimization variables to
directly determine the cross sections of state and control tubes beyond the initial
N -step horizon of mode 1. This is can be seen from the predicted state tube structure
in Table4.6 and the predicted control tube structure in Table4.7. However, rather than
repeating the sequence X ′

1|k, X ′
2|k, . . . , X ′

N |k , contracted by α as in [31], SPTPMC

Table 4.6 The state tube structure of SPTMPC which allows for the direct compensation to extend
to mode 2

Mode 1 Mode 2

x
(0)
0|k x

(0)
1|k x

(0)
2|k · · · x

(0)
N−1|k x

(0)
N|k Φx

(0)
N|k · · ·

DW X2|k · · · XN−1|k XN|k ΦXN|k · · ·
DW · · · XN−2|k XN−1|k XN|k · · ·

. . .
...

...
DW X2|k X3|k · · ·

DW X2|k · · ·
. . .

X0|k X1|k X2|k · · · XN−1|k XN|k XN+1|k · · ·
The predicted state xi |k lies in the tube cross section Xi |k formed from the Minkowski sum of all
entries above the horizontal line in the (i + 1)th column of the table
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Table 4.7 The control tube structure of SPTMPC

Mode 1 Mode 2

u
(0)
0|k u

(0)
1|k u

(0)
2|k · · · u

(0)
N−1|k Kx

(0)
N|k KΦx

(0)
N|k · · ·

U1|k U2|k · · · UN−1|k KXN|k KΦXN|k · · ·
U1|k · · · UN−2|k UN−1|k KXN|k · · ·

. . .
...

...
U1|k U2|k U3|k · · ·

U1|k U2|k · · ·
. . .

U0|k U1|k U2|k · · · UN−1|k UN|k UN+1|k · · ·

allows the predicted state and control tubes to decay in mode 2 through the closed-
loop dynamics of (4.1) under u = K x . Thus the state and control tube cross sections
at prediction time i can be expressed

xi |k ∈ Xi |k = x (0)
i |k ⊕

i⊕

j=1

X ′
j |k

ui |k ∈ Ui |k = u(0)
i |k ⊕

i⊕

j=1

U ′
j |k,

where X ′
1|k = DW and for j = N , N + 1, . . .,

X ′
j |k = Φ j−N X ′

N |k
U ′

j |k = KΦ j−N X ′
N |k .

State and input constraints are imposed on the predicted tubes of SPTMPC through
the introduction of slack variables, similarly to the handling of constraints in PTMPC.
However, since X ′

1|k, . . . , X ′
N |k appear at every prediction time step of the infinite

mode 2 horizon, it is clear that a different terminal constraint is required in order to
obtain a guarantee of recursive feasibility. In [22, 27], the set of feasible initial states
is made invariant through the use of a supplementary horizon, N2, within mode 2,
over which system constraints are invoked under the mode 2 dynamics and a pair of
terminal constraints.

For given N2, the terminal conditions can be expressed

ΦN2x (0)
N |k ∈ X0 (4.52)
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and
ΦN2 X ′

N |k ⊆ X1, (4.53)

where X0,X1 are polytopic sets that contain the origin in their interior, and where
X0 is RPI for the dynamics xk+1 = Φxk + ξk for all ξk ∈ ΦX1, namely

ΦX0 ⊕ ΦX1 ⊆ X0. (4.54)

From (4.52) and (4.54), it follows that ΦN2+i x (0)
N |k ⊆ X0 for i = 1, 2, . . ., and if

(4.53) also holds, then (4.52) will be invariant for the system (4.1) and (4.2) under
uk = u(0)

0|k in the sense that, for all wk ∈ W ,

ΦN2x (0)
N |k+1 ∈ X0 (4.55)

The reason (4.55) is implied by the conditions (4.52) and (4.53) and the property
(4.54) is that (similarly to the proof of Lemma4.3) a feasible nominal predicted
state trajectory at time k + 1 is given by the sum of the first row of Table4.6 and
a trajectory contained in the tube defined by the second row. This feasible nominal
trajectory is given for i = 0, 1, . . . , by

x (0)
i |k+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x (0)
i+1|k +

m∑

j=1

λ j x ′( j)
i+1|k, i = 0, . . . , N − 1

Φ i+1−N
(

x (0)
N |k +

m∑

j=1

λ j x ′( j)
N |k
)
, i = N , N + 1, . . .

where Co{x ′(1)
i |k , . . . , x ′(m)

i |k } = X ′
i |k and λ j are non-negative scalars satisfying

wk =∑m
j=1 λ jw

( j) and
∑m

j=1 λ j = 1. Therefore

x (0)
N |k+1 ∈ {Φx (0)

N |k} ⊕ Φ X ′
N |k

so that (4.52) and (4.53) imply ΦN2x (0)
N |k+1 ∈ ΦX0 ⊕ ΦX1, and (4.55) then follows

from (4.54).
With the conditions (4.52) and (4.53), it is now possible to formulate a condition

that guarantees constraint satisfaction at all prediction times i ≥ N + N2, and which
ensures recursive feasibility. To do this, we consider the components of the tube
cross section X N+N2+r , for arbitrary r ≥ 0, as specified by the terms appearing
in the corresponding column of Table4.6. Writing the entries in this column as a
sequence:

ΦN2+r x (0)
N |k︸ ︷︷ ︸

(A)

, ΦN2+r X ′
N |k, . . . , ΦN2 X ′

N |k︸ ︷︷ ︸
(B)

, ΦN2−1X ′
N |k, . . . , Φ X ′

N |k, X ′
N |k . . . X ′

1|k︸ ︷︷ ︸
(C)
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we find that the first term (labelled A) lies inX0 by (4.52) and (4.54), while the block
labelled C is common to the (N + N2 + r)th column of the table for all r ≥ 0. Thus
the only challenge is presented by the block labelled B and to deal with this, wemake
use of the following bound

i⊕

r=1

ΦN2+r X ′
N |k ⊆ Ω∞(X1) (4.56)

where Ω∞(X1) denotes a RPI set for the dynamics of xk+1 = Φxk + wk with wk ∈
X1. This is a direct consequence of (4.52), which implies that ΦN2+r X ′

N |k ⊂ ΦrX1.
In this setting, it is convenient to represent the constraints Fx + Gu ≤ 1, for u = K x
in the format of a set inclusion:

x ∈ X = {x : (F + GK)x ≤ 1}. (4.57)

Then, given the sets X0, X1 and Ω∞(X1), the condition

X0 ⊕
N⊕

i=1

X ′
i |k ⊕

N2−1⊕

i=1

Φ i X ′
N |k ⊕ Ω∞(X1) ⊆ X (4.58)

ensures satisfaction of (4.57) at all prediction instants i ≥ N + N2 by construction.
Furthermore condition (4.58) is invariant in the sense that it will be feasible at k + 1
if it is satisfied at time k.

In the following analysis, we make the assumption that the minimal robustly
positively invariant set, XmRPI, for the system xk+1 = Axk + Buk + wk with uk =
K xk and wk ∈ W lies in the interior of X . Note that XmRPI must lie inside X in
order that the linear feedback law u = K x is feasible in some neighbourhood of the
origin; hence this is a mild assumption to make. In addition it ensures that (4.58) is
necessarily feasible for sufficiently large N , N2.

Lemma 4.5 There exist N , N2, X0,X1 such that (4.58) is feasible.

Proof This result can be proved by construction. Thus let X1 = ΦN+N2−1W and
suppose that the control law in both mode 1 and mode 2 is chosen to be u = K x .
For this selection, (4.58) becomes

X0 ⊕ XmRPI ⊆ X (4.59)

which, by assumption, will be feasible for sufficiently small X0. Such a choice for
X0 is possible provided N + N2 is chosen to be large enough. �
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Note that the constraint (4.58) can be relaxed through the use of smallerX0, but at
the same time the constraint (4.52) becomes more stringent. A sensible compromise
between these two effects can be reached by introducing a tuning parameter α and
defining X0 by

X0 = αX̃ ⊕ Ω̃∞(ΦX1) (4.60)

where X̃ is an invariant set for the dynamics xk+1 = Φxk and where Ω̃∞(ΦX1)

is the minimal invariant set (or an invariant outer approximation) for the dynamics
xk+1 = Φxk + ξk , ξk ∈ ΦX1.

We are now able to construct a robust MPC strategy with the objective of steering
the state to the minimal robust invariant set XmRPI. This is achieved by replacing
(4.58) with the condition

X0 ⊕
N⊕

i=1

X ′
i |k ⊕

N2−1⊕

i=1

Φ i X ′
N |k ⊕ Ω∞(X1) ⊆ S (4.61)

where S is a robustly positively invariant polytopic set the system (4.1) and (4.2) and
constraints under u = K x .

We define the online objective function to penalize the distance of each of the
tube cross sections, Xi |k , i = 0, 1, . . ., from S. Since (4.61) ensures Xi |k ⊆ S for all
i ≥ N + N2, this cost has the form

J (x (0)
0|k , uk) =

N+N2−1∑

i=0

|Xi |k |S .

As in the case of the cost for the PTMPC algorithm discussed in Sect. 4.2.2,
this cost is non-negative and its minimum over the optimization variables uk =
{(u(0)

0|k, . . . , u(0)
N−1), (U ′

1|k, . . . , U ′
N+N2−1|k)} is zero if and only if x (0)

0|k ∈ S. The min-
imization of this cost therefore forms the basis of a receding horizon strategy for
steering the state of (4.1) into S while robustly satisfying constraints.

For S described by the inequalities S = {x : H x ≤ 1}, the minimization of the
cost J (x, uk) can be performed by minimizing a sum of slack variables. Using again
the approach of Sect. 4.2.2 we have

J (x (0)
0|k , uk) =

N+N2−1∑

i=0

di |k

where for i = 0, . . . , N + N2 − 1, the parameters di |k satisfy

di |k ≥ h(0)
i |k +

i∑

l=1

h′
i |k − 1,

di |k ≥ 0,
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and h(0)
i |k , h′

i |k satisfy

h(0)
i |k 1 ≥

{
H x (0)

i |k , i = 0, . . . , N − 1

HΦ i−N x (0)
N |k, i = N , . . . , N + N2 − 1

h′
i |k1 ≥

{
H x ′( j)

i |k , i = 1, . . . , N − 1, j = 1, . . . , m

HΦ i−N x ′( j)
N |k, i = N , . . . , N + N2 − 1, j = 1, . . . , m

As discussed for the case of PTMPC in Sect. 4.2.2, the constraints of (4.4) at
prediction times i = 0, . . . , N + N2 − 1 can be invoked through the use of slack
variables. Likewise the constraints of (4.52), (4.53) and (4.61) constitute a set of
linear inequalities that can be implemented using slack variables.

Algorithm 4.6 (SPTMPC) At each time k = 0, 1, . . .:

(i) If xk /∈ S:
(a) Perform the optimization

minimize
uk

J (xk, uk)

subject to F Xi |k + GUi |k ≤ 1, i = 0, . . . , N + N2 − 1

(4.52), (4.53) and (4.61).

(4.62)

(b) Apply the control law uk = u(0)∗
0|k , where u∗

k = {(u(0)∗
0|k , . . . , u(0)∗

N−1|k),
(U ′∗

1|k, . . . , U ′∗
N−1|k)

}
is the minimizing argument of (4.62).

(ii) Otherwise (i.e. if xk ∈ S), apply the control law uk = K xk . �

The closed-loop stability properties of Algorithm4.6 can be stated in terms of
the set of feasible states xk for the online optimization (4.62), which we denote as
FN ,N2 .

Corollary 4.2 For the system (4.1) and (4.2), constraints (4.4), and the control law
of Algorithm4.6, the feasible set FN ,N2 is RPI and S is exponentially stable with
region of attraction equal to FN ,N2 .

Proof Byconstruction the constraints of (4.62) are recursively feasible, namely feasi-
bility at time k = 0 implies feasibility at all times k = 1, 2, . . .. Exponential stability
of S can be demonstrated using the same arguments as in the proofs of Lemma4.4
and Theorem4.2. In particular, the bound (4.50) holds along closed-loop trajectories
and exponential convergence (4.51) therefore holds. �

Note that the state of (4.1) converges exponentially to the minimal RPI setXmRPI

under u = K x if S is chosen to be a proper subset of the RPI set on which the control
law of Algorithm4.6 switches to u = K x .
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The structure of SPTMPC indicated in Table4.6 allows for only a single sequence
X ′
1|k, . . . , X ′

N |k to be used in the definition of the predicted partial tubes. However,
if it is desired to introduce more degrees of freedom into the SPTMPC algorithm,
then it would be possible to implement a hybrid scheme. For example, this could be
realized by introducing tubes X (l)

1|k, . . . , X (l)
N |k , for l = 1, . . . , ν, with the full triangu-

lar structure of PTMPC into the upper rows of Table4.6 before switching to a fixed
sequence X ′

1|k, . . . , X ′
N |k to generate a striped tube structure in the remainder of

the table. The implied algorithm can be shown to inherit the feasibility and stability
properties of SPTMPC.

The advantage of SPTMPC over PTMPC is that it allows for a reduction of the
online computational load and, at the same time, extends disturbance compensation
into mode 2. Using the same prediction horizons for PTMPC and SPTMPC is likely
to result in the constraints of PTMPC that apply to the mode 1 prediction horizon
being less stringent than those of SPTMPCon account of the extra degrees of freedom
introduced by PTMPC. For SPTMPC, however, the constraints of mode 2 are likely
to be less stringent than for PTMPC, since SPTMPC allows for direct disturbance
compensation in mode 2. In general, it is not possible to state which of the two
methodologieswill result in the larger region of attraction.Wegive next an illustrative
example showing an instance of STMPC outperforming PTMPC.

Example 4.7 Consider the system defined by the model (4.1) with parameters

A =
[
0.787 1.02
−0.93 1.03

]
, B =

[
0.331
−1.01

]
, D =

[
1 0
0 1

]
.

and disturbance set

W =
{
w :
[−1
−1

]
≤ w ≤

[
1
1

]

The constraints (4.4) are given by

{(x, u) : ±[−0.044 0.092]x ≤ 1

±[0.009 0.093]x ≤ 1

±u ≤ 1}

The set Ω0 is constructed using (4.60), with

Ω0 = 0.01X̃ ⊕ Ω̃∞(ΦX1)

and to ensure satisfaction of (4.58), we take N2 = 5.
The areas of the domains of attraction are given in Table4.8 for three variant

strategies: (i) the SPTMPC strategy of Algorithm4.6; the SPTMPC strategy with a
nominal cost, and with the constraint (4.61) replaced with (4.58); (iii) PTMPC. The
table also gives the numbers of online optimization variables, numbers of equality
constraints and numbers of inequality constraints for each algorithm.
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Table 4.8 Areas of domains of attraction and numbers of variables, inequality constraints and
inequality constraints for: (i) SPTMPC (Algorithm4.6); (ii) SPTMPC (Algorithm4.6 with nominal
cost); (iii) PTMPC (Algorithm4.5)

N AN Variables Inequalities Equalities

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

1 2.38 2.38 2.38 93 67 24 296 186 61 2 2 10

2 3.01 2.87 3.01 120 89 71 347 216 158 12 12 28

3 3.57 3.57 3.66 147 111 144 398 246 303 22 22 54

4 4.44 4.53 4.19 174 133 243 449 276 496 32 32 88

5 5.02 5.14 4.59 201 155 368 500 306 737 42 42 130

6 5.25 5.39 4.88 228 177 519 551 336 1026 52 52 180

7 5.44 5.83 5.13 255 199 696 602 366 1363 62 62 238

8 5.57 5.87 5.34 282 221 899 653 396 1748 72 72 304

9 5.66 5.95 5.48 309 243 1128 704 426 2181 82 82 378

10 5.72 5.95 5.59 336 265 1383 755 456 2662 92 92 460

For the same value of N both variants of SPTMPC yield larger domains of attrac-
tion than PTMPC when N ≥ 4. This is largely a result of the disturbance compen-
sation that SPTMPC provides in mode 2. The full triangular structure of PTMPC
is more general and can therefore outperform SPTMPC. However, the price of this
triangular structure is that it implies a number of online optimization variables that
grows quadratically with N , whereas the number of optimization variables required
by SPTMPC grows only linearly with N . Thus SPTMPC can use longer horizons,
thereby enlarging the size of the domain of attraction, at a computational cost which
is still less than that required by PTMPC. For example, while for N < 4 both variants
of SPTMPC have more variables and inequality constraints, for N ≥ 4 the SPTMPC
algorithms both provide a larger domain of attraction while using fewer variables
and constraints. In particular, both variants of SPTMPC have fewer variables with
N = 10 than PTMPC with N = 5.

The SPTMPC strategy with a nominal performance index does not constrain the
predicted state to lie inside S at any instant and hence it achieves larger domains
of attraction with fewer variables than Algorithm4.6. However, the latter enjoys
stronger stability properties which guarantee convergence to the minimal RPI set
XmRPI. ♦
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Chapter 5
Robust MPC for Multiplicative
and Mixed Uncertainty

In this chapter, we consider constrained linear systems with imprecisely known para-
meters, namely systems that are subject to multiplicative uncertainty. Although of
real concern in most applications, the unknown additive disturbances considered in
Chaps. 3 and 4 are not the only form of uncertainty that may be present in a system
model. Even if additive disturbances are not present, it is rarely the case that a linear
time-invariant model is able to reproduce exactly the behaviour of a physical sys-
tem. This may be a consequence of imprecise knowledge of model parameters, or it
may result from inherent uncertainty in the system in the form of stochastic parame-
ter variations. Model error can also arise through the use of reduced order models
that neglect the high-order dynamics of the system. Moreover, the system dynamics
may be linear but time-varying, or they may be nonlinear, or both time-varying and
nonlinear.

In all such cases, itmaybe possible to capture the key features of systembehaviour,
albeit conservatively, using a linear model whose parameters are assumed to lie in a
given uncertainty set. Thus for example in some instances it is possible to capture
the behaviour of an uncertain nonlinear system using a linear difference inclusion
(LDI). A linear difference inclusion is a discrete-time system consisting of a family
of linear models, the parameters of which belong to the convex hull of a known set
of vertices. An LDI model has the property that the trajectories of the actual system
are contained in the convex hull of the trajectories that are generated by the linear
models defined by these vertices (e.g. [1]).

Robust MPC techniques for systems subject to constraints and multiplicative
model uncertainty are the focus of this chapter. As in earlier chapters, we examine
receding horizon control methodologies that guarantee feasibility and stability while
ensuring bounds on closed-loop performance. Also following earlier chapters, the
emphasis is on computationally tractable approaches. Towards the end of the chapter,
consideration is given to the situation most prevalent in practice, in which systems
are subject to a mix of multiplicative uncertainty and unknown additive disturbances.
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5.1 Problem Formulation

Early work on MPC for systems with multiplicative uncertainty was of a heuristic
nature and considered the case of a finite impulse response (FIR) model containing
an uncertain scaling factor [2]. More general uncertain impulse response models in
which the vector of impulse response coefficients is assumed to lie, at each instant, in
a known polytopic set were considered in [3, 4]. These approaches posed the robust
MPC problem in a min–max framework and hence minimized, over the trajectory
of predicted future inputs, the maximum over all model uncertainty of a predicted
cost. By defining the predicted cost in terms of the infinity-norms of tracking errors,
the MPC optimization could be expressed as a linear program, with objective and
constraints depending linearly on the optimization variables.

The computational requirement of the approach of [3] grows exponentially with
the number of vertices used to model uncertainty. This growth can be reduced con-
siderably by introducing slack variables, as proposed in [4], but the method remains
restricted to FIR models. The convenience of FIR system descriptions is that, as
mentioned in Chap.2, they enable the implicit implementation of equality terminal
conditions and for this reason FIRs have proved popular in the analysis and design
of robust MPCmethods for the case of multiplicative model uncertainty (e.g. [5, 6]).

To avoid excessive computational demands thatmake online optimization imprac-
ticable, an impulse response model must be truncated to a finite impulse response
with a limited number of coefficients. Such truncation can render the model unreal-
istic, particularly when slow poles are present in the system dynamics. It is also clear
that approaches based on FIR representations can only be applied to systems that
are open-loop stable (although for the purposes of prediction alone this limitation
may be overcome through the use of bicausal FIR models [7]). For these reasons,
subsequent developments considered more general linear state-space models:

xk+1 = Ak xk + Bkuk (5.1)

where xk ∈ R
nx and uk ∈ R

nu denote the system state and control input.
The parameters (Ak, Bk) of (5.1) are assumed to belong for all k to a convex

compact polytopic set, Ω , defined by the convex hull of a known set of vertices

Ω = Co{(A(1), B(1)), . . . , (A(m), B(m))}.

Therefore

(Ak, Bk) =
m∑

j=1

q( j)
k

(
A( j), B(i)) (5.2)

for some scalars q(1)
k , . . . , q(m)

k that are unknown at time k and which satisfy
m∑

j=1

q( j)
k = 1 and q( j)

k ≥ 0, j = 1, . . . , m.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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As in earlier chapters, the state and control inputs are assumed to be subject to linear
constraints:

Fxk + Guk ≤ 1, (5.3)

for given F ∈ R
nC ×nx , G ∈ R

nC ×nu , and we consider receding horizon strategies
that aim to minimize predicted performance expressed as a sum of quadratic stage
costs over a future horizon. The predicted cost may be defined in terms of either
a nominal cost or a worst-case cost. A nominal cost is based on a nominal system
description given by a known set of model parameters (A(0), B(0)). Suitable nominal
parameters could be defined, for example, by the expected value of the parameter set
Ω or alternatively its centroid,

(
A(0), B(0)) = 1

m

m∑

j=1

(
A( j), B( j)). (5.4)

Conversely,worst-case performance is defined as themaximumvalue of the predicted
cost over all model parameters in the uncertainty set Ω .

This chapter summarizes significant developments in robust MPCmethodologies
that provide guarantees of feasibility and stability over the entire uncertainty class
Ω . We first discuss the approach of [8], which is based on Linear Matrix Inequalities
(LMIs) and does not employ a mode 1 horizon but handles the cost and constraints
implicitly through recursive quadratic bounds. Later work [9] reduced the conserva-
tiveness of this approach by constructing state tubes that take into account all possi-
ble predicted realizations of model uncertainty. This made it possible to introduce a
mode 1 horizon over which the predicted cost and constraints are handled explicitly.
However, [9] uses tubes that are minimal in the sense that the tube cross sections
provide tight bounds on the predicted model states (i.e. every point in the tube cross
section is a future predicted state for some realization of model uncertainty). This
makes the computational complexity of the approach depend exponentially on the
length of the mode 1 prediction horizon.

Computation can be greatly reduced, at the expense of a degree of conservative-
ness, if ellipsoidal bounds are used to invoke the constraints on predicted states and
control inputs. This is the approach taken in [10, 11], where predicted state and
input trajectories are generated by a dynamic feedback controller, and the degrees of
freedom in predictions are incorporated as additional states of the prediction model.
Related work [12] showed how to optimize the prediction system dynamics, simi-
larly to the approach described in Sect. 2.9, so as to maximize ellipsoidal regions of
attraction in robust MPC. An alternative form of optimized dynamics was introduced
in [13] in order to improve robustness to multiplicative model uncertainty.

The conservativeness that is inherent in enforcing constraints using ellipsoidal
tubes can be reduced or even avoided altogether using tubes with variable polytopic
cross sections to bound predicted trajectories. Early work on this restricted tube
cross sections to low-complexity polytopic sets (e.g. [14–17]). The approach was

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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subsequently extended using an application of Farkas’ Lemma to allow general poly-
topic sets [18–20].

After describing these developments, the chapter concludes by discussing MPC
for systems that are subject to both multiplicative model uncertainty and additive
disturbances [21–23]. In this case, the model of (5.1) and (5.2) becomes

xk+1 = Ak xk + Bkuk + Dkwk (5.5)

with polytopic uncertainty descriptions,

(Ak, Bk, Dk) ∈ Co{(A(1), B(1), D(1)), . . . , (A(m), B(m), D(m))}, (5.6a)

wk ∈ Co{w(1), . . . , w(q)}, (5.6b)

where the vertices (A( j), B( j), D( j)) and q(l), j = 1, . . . , m, l = 1, . . . , q are
assumed to be known. As in earlier chapters, the nominal value of the additive
disturbance is taken to be zero.

5.2 Linear Matrix Inequalities in Robust MPC

Linear matrix inequalities were encountered in earlier chapters in the context of
ellipsoidal constraint approximations (Sects. 2.7 and 2.9) and worst-case quadratic
performance indices (Sects. 3.4 and 4.2). We begin this section by considering anal-
ogous LMI conditions that ensure constraint satisfaction and performance bounds
for systems subject to multiplicative model uncertainty. The simplest setting for this
is the robust MPC strategy of [8], in which the predicted control trajectories are
generated by a linear feedback law:

ui |k = Kk xi |k, (5.7)

where ui |k and xi |k are the predictions at time k of the i steps ahead input and state
variables. The corresponding predicted state trajectories satisfy

xi |k = (Ai |k + Bi |k Kk)xi |k, (Ai |k, Bi |k) ∈ Ω (5.8)

for all i ≥ 0.
The convexity property of linear matrix inequalities discussed in Sect. 2.7.3 is

particularly useful in the context of robust MPC. Consider for example the function

M(x)
.= M0 + M1x1 + · · · + Mn xn,

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_4
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where M0, . . . , Mn are given matrices, and suppose that x assumes values in a given
convex compact polytope X . Then M(x) � 0 for all x ∈ X if and only if M(x) � 0
holds at the vertices of X , namely

M(x) � 0, ∀x ∈ Co{x (1), . . . , x (m)} ⇐⇒ M(x ( j)) � 0, j = 1, . . . , m.

This property of LMIs makes it possible to express in terms of the vertices of the
uncertainty setΩ the conditions under which an ellipsoidal set, defined for P � 0 by

E .= {x : ‖x‖2P ≤ 1},

is robustly positively invariant for the system (5.8). Clearly, xi+1|k ∈ E for all xi |k ∈
E if and only if ‖(A + BKk)x‖2P ≤ ‖x‖2P for all (A, B) ∈ Ω and all x ∈ R

nx , or
equivalently

P − (A + BKk)
T P(A + BKk) � 0, ∀ (A, B) ∈ Ω. (5.9)

Although the dependence of (5.9) on the uncertain parameters (A, B) is quadratic,
this condition can be rewritten in terms of linear conditions through the use of Schur
complements, which are defined for general partitioned matrices in Sect. 2.7.3. Since
P � 0, and hence also P−1 � 0, a necessary and sufficient condition for the quadratic
inequality (5.9) is therefore

[
P (A + BKk)

T

A + BKk P−1

]
� 0, ∀ (A, B) ∈ Ω,

and the linear dependence of this condition on A + BKk implies that it is equivalent
to the conditions

[
P (A( j) + B( j)Kk)

T

A( j) + B( j)Kk P−1

]
� 0, j = 1, . . . , m (5.10)

involving only the vertices of Ω .
We next consider conditions for robust satisfaction of the constraints (5.3). Fol-

lowing the approach of Sect. 2.7.1, a necessary and sufficient condition for the con-
straints (5.3) to hold under (5.7) for all xi |k ∈ E = {x : ‖x‖2P ≤ 1} is that there exists
a symmetric matrix H satisfying

[
H F + G Kk

(F + G Kk)
T P

]
� 0, eT

i Hei ≤ 1, i = 1, 2, . . . , nC (5.11)

where ei is the i th column of the identity matrix. This can be shown using the
argument that was used in the proof of Theorem 2.9, namely that, for x ∈ E , the i th
element of (F + G Kk)x has upper bound

eT
i (F + G Kk)x ≤ ‖(F + G Kk)

T ei‖P−1 , (5.12)

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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and hence the Schur complements of (5.11) ensure that (F + G Kk)x ≤ 1. Con-
versely, the bound (5.12) is satisfied with equality for some x ∈ E , so if there exists
no H satisfying (5.11), then (F + G Kk)x � 1 for some x ∈ E . If E is robustly invari-
ant, then clearly (5.11) ensures that the constraints of (5.3) hold along all predicted
trajectories of (5.7) and (5.8) starting from any initial state x0|k lying in E .

A cost index forming the objective of a robust MPC law with guaranteed stability
can be constructed from a suitable upper bound on the worst-case predicted cost,
which is defined for given weights Q � 0 and R � 0 by

J̌ (x0|k, Kk)
.= max

(Ai |k ,Bi |k )∈Ω, i=0,1,...

∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R
)
. (5.13)

For this purpose [8] derived bounds on (5.13) using a quadratic function that, for
computational convenience,was determined by strengthening the conditions defining
the invariant set E . Following a similar approach, if (5.9) is replaced by the condition

P − (A + BKk)
T P(A + BKk) � γ−1(Q + K T

k RKk), ∀ (A, B) ∈ Ω (5.14)

for some scalar γ > 0, then the cost of (5.13) necessarily satisfies the bound

J̌ (x0|k, Kk) ≤ γ, ∀x0|k ∈ E = {x : ‖x‖2P ≤ 1}. (5.15)

This is shown by the following lemma, which uses the variable transformations

P = S−1, Kk = Y S−1 (5.16)

to express (5.14) equivalently in terms of LMIs in variables Y , S and γ.

Lemma 5.1 If Y ∈ R
nu×nx , symmetric S ∈ R

nx ×nx and scalar γ satisfy

⎡

⎣

[
S (A( j)S + B( j)Y )T

A( j)S + B( j)Y S

] [
SQ1/2 Y T R1/2

0 0

]

� γ I

⎤

⎦ � 0 (5.17)

for j = 1, . . . , m, then the bound (5.15) holds with P = S−1 and Kk = Y S−1.

Proof Condition (5.17) is linear in the parameters A( j), B( j). By considering all
convex combinations of the matrix appearing on the LHS of (5.17), it can therefore
be shown that (5.17) holds with (A( j), B( j)) replaced by any (A, B) ∈ Ω . Hence,
by Schur complements, (5.17) implies S � 0, γ > 0 and

S − (AS + BY )T S−1(AS + BY ) � γ−1(SQS + Y T RY ), ∀ (A, B) ∈ Ω.

Pre- and post-multiplying both sides of this inequality by P and using (5.16), we
obtain (5.14), so from (5.7) it follows that
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‖xi |k‖2P − ‖Axi |k + Bui |k‖2P ≥ γ−1(‖xi |k‖2Q + ‖ui |k‖2R
)
, ∀ (A, B) ∈ Ω,

Summing over all i ≥ 0 and making use of (5.8), we therefore obtain

J̌ (x0|k, Kk) ≤ γ‖x0|k‖2P ,

which implies J̌ (x0|k, Kk) ≤ γ for all x0|k ∈ E . �

The cost bound provided by (5.15) could be conservative because it is constant on
the boundary of the invariant set E = {x : ‖x‖2P ≤ 1}. Clearly, this may conflict with
the requirement that it provides a tight bound on the sublevel sets of the cost (5.13)
since the invariant set was constructed in order to approximate the set of feasible
initial conditions. On the boundary of the feasible set in particular, (5.15) is likely
to be a very conservative cost bound. To reduce the level of suboptimality therefore,
the parameters (Kk, P, γ) are assigned as variables in the MPC optimization and
recomputed online at each time step k = 0, 1, . . .. The lemma below establishes the
optimality conditions for the feedback gain Kk .

Lemma 5.2 If the following optimization is feasible,

(Y ∗
k , S∗

k , γ∗
k ) = arg min

S=ST �0,
H=H T �0,

Y,γ

γ (5.18a)

subject to (5.17) and, for x = xk and some symmetric H, the conditions

[
1 xT

x S

]
� 0, (5.18b)

[
H F S + GY

(F S + GY )T S

]
� 0, eT

i Hei ≤ 1, i = 1, . . . , nC (5.18c)

then, with Kk = Y ∗
k (S∗

k )−1, the predicted trajectories of (5.7) and (5.8) satisfy

J̌ (x0|k, Kk) ≤ γ∗
k and meet the constraints Fxi |k + Gui |k ≤ 1 for all i ≥ 0.

Proof Using Schur complements, (5.18b) implies xk ∈ E , so by Lemma 5.1 the
optimal objective in (5.18a) is an upper bound on the predicted cost J̌ (xk, Kk).
On the other hand, pre- and post-multiplying (5.18c) by the block diagonal matrix
diag{I, P} (which is unitary since (5.18b) implies P � 0) yields (5.11), and hence
(5.18c) ensures (F + G Kk)xi |k ≤ 1 for all i ≥ 0. �

The optimization of Lemma 5.2 is the basis of the following robust MPC strategy,
which requires the online solution of an SDP in O(n2

x ) variables.
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Algorithm 5.1 At each time instant k = 0, 1, . . .:

(i) Perform the optimization of Lemma 5.2.
(ii) Apply the control law uk = Kk xk . �

Theorem 5.1 For the system (5.1)–(5.3) and control law of Algorithm 5.1:

(a) The optimization in step (i) is feasible for all times k > 0 if it is feasible at time
k = 0.

(b) The origin of the state space of (5.1) is robustly asymptotically stable with region
of attraction

F .= {x ∈ R
nx : (5.17), (5.18b), (5.18c) are feasible}, (5.19)

and for x0 ∈ F the trajectories of the closed-loop system satisfy the bound

∞∑

k=0

(‖xk‖2Q + ‖uk‖2R
) ≤ γ∗

0 . (5.20)

Proof We first demonstrate that, if the optimization of Lemma 5.2 is feasible at time
k, then a feasible solution at time k + 1 is given by

(Y, S, γ) = (αY ∗
k ,αS∗

k ,αγ∗
k ) (5.21)

where α = ‖xk+1‖2Pk
for Pk = (S∗

k )−1. Considering each of the constraints (5.17),
(5.18b) and (5.18c) at time k + 1:

• With S−1 = α−1Pk ,weobtain‖xk+1‖2S−1 = α−1‖xk+1‖2Pk
= 1, andhence (5.18b)

is necessarily satisfied with x = xk+1.
• If (Y ∗

k , S∗
k , γ∗

k ) is feasible for (5.17) then, since the inequality in (5.17) is unchanged
if the matrix on the LHS is multiplied by α > 0, the solution (Y, S, γ) in (5.21)
must be feasible for (5.17), for any α > 0.

• The feasibility of (5.17) and (5.18b) at time k implies ‖xk+1‖2Pk
≤ ‖xk‖2Pk

and
hence α ≤ 1. Therefore, if (Y ∗

k , S∗
k ) satisfies (5.18c) with H = Hk , then (Y, S) in

(5.21) must also satisfy (5.18c) with H = αHk .

It follows that the optimization in step (i) of Algorithm 5.1 is recursively feasible
since if x0 lies in the feasible set F , then xk ∈ F for all k ≥ 1.

Turning next to closed-loop stability, from the optimality of the solution at time
k + 1 and (5.17) we have

γ∗
k+1 ≤ αγ∗

k = γ∗
k ‖xk+1‖2Pk

≤ γ∗
k ‖xk‖2Pk

− (‖xk‖2Q + ‖uk‖2R
)
,
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but the constraint (5.18b) is necessarily active at the optimal solution, so ‖xk‖Pk = 1
and

γ∗
k+1 − γ∗

k ≤ −(‖xk‖2Q + ‖uk‖2R
)
.

This inequality implies that x = 0 is stable because γ∗
k ≥ J̌ (xk, Kk), while (5.13)

implies J̌ (x, K ) is positive definite in x since Q � 0. Summing both sides of this
inequality over k = 0, 1, . . . yields the bound (5.20), which implies that (‖xk‖2Q +
‖uk‖2R) → 0 as k → ∞ for any x0 ∈ F , and hence limk→∞(xk, uk) = (0, 0), since
Q and R are positive definite matrices. �

The online optimization posed in Algorithm 5.1 constitutes a convex program
(see e.g. [24]) which can be solved efficiently (in polynomial time) using semidefi-
nite programming solvers. However it should be noted that its computational burden
increases considerably with the system dimension. For fast sampling applications
(such as applications involving electromechanical systems), this algorithm is there-
fore viable only for small-scale models.

Example 5.1 An uncertain system is described by the model (5.1)–(5.2) with para-
meters

A(1) =
[ −0.7 0.15
−0.35 −0.6

]
, A(2) =

[−0.75 −0.1
0.15 −0.65

]
, A(3) =

[−0.65 −0.35
−0.1 −0.55

]

B(1) =
[
0.1
1

]
, B(2) =

[
0.2
1.4

]
, B(3) =

[
0.3
0.6

]
.

The system is subject to state and input constraints

− 10 ≤ [
0 1

]
xk ≤ 10

− 5 ≤ uk ≤ 5

which are equivalent to (5.3) with

F =

⎡

⎢⎢⎣

0 0.1
0 −0.1
0 0
0 0

⎤

⎥⎥⎦ , G =

⎡

⎢⎢⎣

0
0
0.2

−0.2

⎤

⎥⎥⎦ .

Figure5.1 shows the feasible set, F , for Algorithm 5.1. This set is formed from
a union of ellipsoidal sets, and for this example is clearly not itself ellipsoidal.
Figure5.1 also shows thatF contains points that lie outside the largest area ellipsoidal
set that is robustly invariant under any given linear feedback law. This is to be
expected since F contains every ellipsoidal set that is RPI for (5.1)–(5.3) under a
linear feedback law.
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Fig. 5.1 The set of feasible initial states for Algorithm 5.1 applied to the uncertain system of
Example 5.1 (solid line). For comparison, this figure also shows the maximal ellipsoidal RPI set
under any linear feedback law (dashed line) and the maximal robustly controlled invariant set
(dash-dotted line)

For 100 values of x evenly distributed on the dashed ellipsoid in Fig. 5.1, the
average optimal value of the online MPC optimization (5.18) is 11,779 and the
maximum is 69,505. However, the value of the minimum quadratic bound on the
worst-case cost computed for the solution of (5.18) and averaged over this set of initial
conditions is 939 and the corresponding maximum value is 1660. The discrepancy
between these worst-case cost bounds is a result of the conservativeness of the cost
bound that forms the objective of (5.18), which as previously discussed is constructed
by scaling the ellipsoidal set E in order to ensure that the objective (5.18a) is an upper
bound on the worst-case cost. ♦

5.2.1 Dual Mode Predictions

By the criteria of Chaps. 3 and 4, Algorithm 5.1 is a feedbackMPC strategy since the
predicted control trajectories depend on the realization of future uncertainty through
a feedback gain computed online. Despite this, the parameterization of predicted
trajectories in terms of a single linear feedback gain over the prediction horizon can
be restrictive. Furthermore, for computational convenience the cost and constraints
are approximated in Algorithm 5.1 using potentially conservative quadratic bounds.

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_4
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A conceptually straightforward way to avoid these shortcomings is to extend
Algorithm 5.1 by adjoining a mode 1 horizon containing additional degrees of free-
dom over which the cost and constraints are evaluated explicitly. This approach is
proposed in [9], in which the predicted control trajectory is specified as

ui |k = Ki |k xi |k + ci |k

{
Ki |k = Kk+i , i = 0, . . . , N − 1

Ki |k = KN |k, ci |k = 0, i = N , N + 1, . . .
(5.22)

where ck = (c0|k, . . . , cN−1|k) and KN |k are optimization variables at time k. In
order to be able to make use of the conditions of Lemmas 5.1 and 5.2 for the com-
putation of KN |k while retaining a convex online optimization, the feedback gains
Kk, . . . , KN−1+k are fixed at time k, their values being carried over from the opti-
mization at a previous time instant.

A polytopic tube X0|k, . . . ,XN |k containing the future state trajectories for all

realizations of model uncertainty can be defined in terms of the vertices, v(l)
i |k , ofXi |k :

Xi |k = Co{v(l)
i |k, l = 1, . . . , mi },

where X0|k = {xk} and xi |k ∈ Xi |k . The tube cross sections Xi |k for i = 1, . . . , N ,
are computed in [9] using the recursion

v
(q)
i+1|k = (A( j) + B( j)Kk+i )v

(l)
i |k + B( j)ci |k (5.23)

for j = 1, . . . , m, l = 1, . . . , mi and q = 1, . . . , mi+1. Clearly the number of ver-
tices defining the tube cross sections increases exponentially with the length of the
prediction horizon in this approach, limiting the approach to short horizons. The
reason for this very rapid growth in complexity is that state tubes defined in this way
are minimal in the sense that Xi |k is the smallest set containing the i-steps ahead
predicted state xi |k for all possible realizations of the model uncertainty.

Let γk
.= (γ0|k, . . . , γN |k) denote a sequence of upper bounds on the predicted

stage costs of the worst-case predicted performance index (5.13):

γi |k ≥ ‖xi |k‖2Q + ‖ui |k‖2R .

By expressing these bounds as LMIs in the predicted states, they can be imposed for
all xi |k ∈ Xi |k through conditions on the vertices v

(l)
i |k , namely for i = 1, . . . , N − 1:

[
γi |k

[
v

(l) T
i |k Q1/2 (Kk+iv

(l)
i |k + ci |k)T R1/2

]

� I

]
� 0, l = 1, . . . , mi . (5.24)

For all i ≥ N , the predicted control inputs are defined in (5.22) by the feedback
law ui |k = KN |k xi |k , and an upper bound on the predicted cost over the mode 2
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prediction horizon can be computed using the approach of Sect. 5.2. In the current
context, however, the N -step ahead predicted state, xN |k , is not known exactly, but
instead is known to lie in the polytopic set XN |k . An upper bound on the cost to go
over the mode 2 prediction horizon is therefore obtained by invoking the LMI of
(5.18b) at each of the vertices defining XN |k :

[
1 v

(l) T
N |k

v
(l)
N |k S

]
� 0, l = 1, . . . , m N . (5.25)

Then, by an obvious extension of Lemma 5.1, the infinite horizon cost of (5.13)
satisfies the bound

J̌ (xk, ck, KN |k) ≤
N∑

i=0

γi |k (5.26)

if (5.17) is invoked with γ = γN |k and KN |k = Y S−1.
Using the arguments of Lemma 5.2, it can be shown that (5.18c) ensures constraint

satisfaction in mode 2, whereas in mode 1, given the linear nature of the constraints
(5.3), a necessary and sufficient condition is that

(F + G Kk+i )v
(l)
i |k + Gci |k ≤ 1, l = 1, . . . , mi , i = 0, . . . , N − 1. (5.27)

On the basis of this development, it is possible to state the following robust MPC
algorithm, which requires the online solution of a SDP problem involving O(nx m N )

variables.

Algorithm 5.2 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
ck ,Y,S,γk

N∑

i=0

γi |k subject to (5.24), (5.25), (5.27),

(5.17) with γ = γN |k and (5.18c) (5.28)

(ii) Apply the control law uk = Kk xk + c∗
0|k and set Kk+N = Y ∗

k (S∗
k )−1, where c∗

k =
(c∗

0|k, . . . , c∗
N−1|k), S∗

k and Y ∗
k are, respectively, the optimal values of ck , S and

Y in (5.28). �

This algorithm must be initialized at k = 0 by computing the feedback gains
K0, . . . , KN−1 offline. Assuming knowledge of the initial state x0 (or alternatively
knowledge of a polytopic set Co{v(1)

0|0, . . . , v
(r)
0|0} containing x0), this can be done by

performing the optimization of Lemma 5.2 with x = x0 in (5.18b) (or alternatively
performing this optimization with
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[
1 v

(l) T
0|0

v
(l)
0|k S

]
� 0, l = 1, . . . , m N .

in place of (5.18b)) and by setting Ki = K0 for all i = 0, . . . , N − 1.

Theorem 5.2 Algorithm 5.2 is recursively feasible and robustly asymptotically sta-
bilizes the origin of the state space of the system (5.1)–(5.3).

Proof Assuming feasibility at time k, a feasible but suboptimal solution to (5.28) at
time k + 1 is given by

ck+1 = (c∗
1|k, . . . , c∗

N−1|k, 0),
γk+1 = (

γ∗
1|k, . . . , γ∗

N−1|k, max
x∈XN |k

(‖x‖2Q + ‖Kk+N x‖2R),αγ∗
N |k

)
,

Y = αY ∗
k , S = αS∗

k , α = max
x∈XN |k , j∈{1,...,m}

‖(A( j) + B( j)Kk+N )x‖2Pk

where Pk = (S∗
k )−1. Feasibility of the constraints (5.24) and (5.27) follows directly

from the inclusion property Xi |k+1 ⊆ Xi+1|k , i = 0, . . . , N − 1, while feasibility of
(5.25), (5.17) with γ = αγ∗

N |k and (5.18b) follows from the argument used in the

proof of Theorem 5.1 and the property that XN |k+1 ⊆ Co{(A( j) + B( j)Kk+N )XN |k,
j = 1, . . . , m}, as a consequence of uN |k+1 = Kk+N xN |k+1 and XN−1|k+1 ⊆ XN |k .
The proof of Theorem 5.1 also shows that αγ∗

N |k ≤ γ∗
N |k − (‖x‖2Q + ‖Kk+N x‖2R)

for all x ∈ XN |k . Hence the sum of the elements of γk+1 is no greater than
∑N

i=1 γ∗
i |k ,

and optimality at time k + 1 therefore implies

N∑

i=0

γ∗
i |k+1 ≤

N∑

i=1

γ∗
i |k =

N∑

i=0

γ∗
i |k − (‖xk‖2Q + ‖uk‖2R).

Since the bound (5.26) and Q � 0 and R � 0 imply that
∑N

i=0 γ∗
i |k is positive definite

in xk , it follows that x = 0 is asymptotically stable. �

5.3 Prediction Dynamics in Robust MPC

In the presence ofmultiplicative uncertainty, robustMPC algorithms employingmin-
imal tubes to bound predicted trajectories suffer from the same disadvantage as Algo-
rithm 5.2, namely that the number of constraints, and hence also the computational
demand, grows rapidly (in general, exponentially) with the prediction horizon N .
Therefore the use of minimal tubes in this context is generally impractical for any-
thing other than short horizons and descriptions ofmodel uncertaintywith small num-
bers of vertices. To avoid this problem, it is necessary to bound predicted state and
control trajectories using non-minimal tubes with lower complexity cross sections.
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An approach that is extremely computationally efficient, though somewhat conser-
vative, is based on ellipsoidal sets used in conjunction with autonomous prediction
dynamics [10, 11]. As in the nominal case considered in Sect. 2.7, an ellipsoidal
invariant set can be computed offline for a prediction system that incorporates the
degrees of freedom in predicted trajectories into its state vector. This section extends
the methods of Sects. 2.7 and 2.9 to the case of robust MPC, and considers the
design of the prediction dynamics in order to enlarge feasible sets and to reduce the
sensitivity of predicted performance to multiplicative uncertainty.

Following the approach of Sect. 2.7, the predicted control trajectory at time k is
defined for all i ≥ 0 by

ui |k = K xi |k + ci |k,

where ck = (c0|k, . . . , cN−1|k) is a vector of variables in the MPC optimization at
time k and ci |k = 0 for i ≥ N . The feedback gain K is fixed and is assumed to be
the unconstrained LQ optimal feedback gain associated with the nominal cost

J (s0|k, ck) =
∞∑

i=0

(‖si |k‖2Q + ‖vi |k‖2R
)
, (5.29)

which is evaluated along state and control trajectories of the nominal model:

si+1|k = Φ(0)si |k + B(0)ci |k
vi |k = K si |k + ci |k

with Φ(0) = A(0) + B(0)K . We further assume that u = K x robustly quadratically
stabilizes the uncertain system (5.1) and (5.2) in the absence of constraints. This
assumption (whichwill be removed in Sect. 5.3.2) requires that a quadratic Lyapunov
function exists for the unconstrained system (5.1) and (5.2) under u = K x , namely
that there exists P � 0 satisfying

P − Φ( j)T
PΦ( j) � 0, j = 1, . . . , m (5.30)

where Φ( j) = A( j) + B( j)K .
A prediction system incorporating the uncertainmodel (5.1) and (5.2) is described

for all i ≥ 0 by

zi+1|k = Ψi |k zi |k, Ψi |k ∈ Co{Ψ (1), . . . , Ψ (m)}, (5.31a)

where the vertices of the parameter uncertainty set are given by

Ψ ( j) =
[
Φ( j) B( j)E
0 M

]
, Φ( j) = A( j) + B( j)K (5.31b)

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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for j = 1, . . . , m. The initial prediction system state and the predicted state and input
trajectories are defined, as in Sect. 2.7, by

z0|k =
[

xk

ck

]
,

ui |k = [
K E

]
zi |k

xi |k = [
I 0

]
zi |k

(5.32)

and matrices E and M are as given in (2.26b), so that Eck = c0|k and Mck =
(c1|k, . . . , cN−1|k, 0).

The predicted state and input trajectories generated by (5.31a, 5.31b) and (5.32)
necessarily satisfy the constraints (5.3) at all prediction times i ≥ 0 if the initial
prediction system state, z0|k , is constrained to lie in a set that is robustly invariant
for (5.31a, 5.31b) and feasible with respect to (5.3). This is demonstrated by the
following extension of Theorem 2.9.

Corollary 5.1 The ellipsoidal set Ez
.= {z : zT Pzz ≤ 1}, with Pz � 0, is robustly

positively invariant for the dynamics (5.31a, 5.31b) and constraints
[
F + G K G E

]

z ≤ 1 if and only if Pz satisfies

Pz − Ψ ( j)T
PzΨ

( j) � 0, j = 1, . . . , m (5.33)

and

⎡

⎣
H

[
F + G K G E

]
[
(F + G K )T

(G E)T

]
Pz

⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, . . . , nC (5.34)

for some symmetric matrix H, where ei is the i th column of the identity matrix.

Proof Using Schur complements, (5.33) is equivalent to

[
Pz Ψ ( j)T

Ψ ( j) P−1
z

]
� 0, j = 1, . . . , m.

Since this is an LMI in Ψ ( j), it is equivalent, again using Schur complements, to
Pz − Ψ T PzΨ � 0 for all Ψ ∈ Co{Ψ (1), . . . , Ψ (m)}. Therefore, the sufficiency and
necessity of (5.33) and (5.34) can be shown using the same argument as the proof of
Theorem 2.9. �

Adopting the nominal cost of (5.29) as the objective of the MPC online optimiza-
tion, we have, from Lemma 2.1 and Theorem 2.10,

J (xk, ck) = ‖z0|k‖2W = ‖xk‖2Wx
+ ‖ck‖2Wc

, (5.35a)

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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where W is the solution of the Lyapunov equation

W − Ψ (0)T
WΨ (0) = Q̂, Q̂ =

[
Q + K T RK K T RE

ET RK ET RE

]
. (5.35b)

The block diagonal structure of W = diag{Wx , Wc} in (5.35a, 5.35b) follows from
the definition of K as the unconstrained LQ optimal feedback gain. Furthermore,
Wx is the solution of the Riccati equation (2.9) with (A, B) = (A(0), B(0)), and Wc

satisfies

Wc − MT Wc M = ET (
B(0)T

Wx B(0) + R
)
E . (5.36)

Hence, by Theorem 2.10, Wc is block diagonal with diagonal blocks equal to
(B(0))T Wx B(0) + R. Clearly, the problem of minimizing J (xk, ck) for given xk is
equivalent to that of minimizing ‖ck‖2Wc

. Therefore the MPC algorithm can be stated
in terms of Wc and an ellipsoidal set Ez satisfying the conditions of Corollary 5.1 as
follows.

Algorithm 5.3 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
ck

‖ck‖2Wc
subject to

[
xk

ck

]
∈ Ez . (5.37)

(ii) Apply the control law uk = K xk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal value of ck in (5.37). �

Along the trajectories of the closed-loop system,

xk+1 = Φk xk + Bkc∗
0|k, (Φk, Bk) ∈ Co

{
(Φ(1), B(1)), . . . , (Φ(m), B(m))

}
, (5.38)

the optimal value of the objective in (5.37) is not necessarily non-increasing at suc-
cessive time instants since the predicted cost in (5.29) is computed assuming that
model parameters are equal to their nominal values. However, Algorithm 5.3 can be
shown to be robustly stabilizing using a method similar to the analysis in Sect. 3.3
of robust MPC based on a nominal cost in the presence of additive disturbances.
We first give an l2 stability property of the closed-loop system (5.38), based on the
assumption that u = K x quadratically stabilizes the model (5.1) and (5.2).

Lemma 5.3 If the quadratic stability condition (5.30) holds, then the state of the
closed-loop system (5.38) satisfies the quadratic bound

∞∑

k=0

‖xk‖2 ≤ ‖x0‖2P + γ2
∞∑

k=0

‖c∗
0|k‖2 (5.39)

for some matrix P � 0 and a scalar γ.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Proof Suppose that P0 − Φ( j) T P0Φ
( j) � 0 for some P0 � 0 and j = 1, . . . , m.

Then P0 − Φ( j) T P0Φ
( j) � εInx for some ε > 0 and hence P − Φ( j) T PΦ( j) � Inx

for j = 1, . . . , m, where P = ε−1P0 � 0. Using Schur complements, this implies
that there must exist γ > 0 satisfying

[
P Φ( j)T

P
PΦ( j) P

]
�

[
Inx 0

0 γ−2P B( j)B( j)T
P

]
,

and using Schur complements again, this is equivalent to the condition

⎡

⎣
P Φ( j)T

P 0
� P P B( j)

� � γ2 Inu

⎤

⎦ �
⎡

⎣
Inx 0 0
0 0 0
0 0 0

⎤

⎦ .

Since this condition is an LMI in the parameters Φ( j) and B( j), it must hold with
(Φ( j), B( j)) replaced by any (Φ, B) ∈ Co{(Φ(1), B(1)), . . . , (Φ(m), B(m))}. Using
Schur complements once more, we therefore have

[
P 0
0 γ2 Inu

]
−

[
ΦT

BT

]
P

[
Φ B

] �
[

Inx 0
0 0

]
,

for all (Φ, B) ∈ Co{(Φ( j), B( j)), j = 1, . . . , m}. Pre- and post-multiplying both
sides of this inequality by zk = (xk, c∗

0|k) and using (5.38) gives

‖xk‖2P + γ2‖c∗
0|k‖2 − ‖xk+1‖2P ≥ ‖xk‖2

and summing both sides of this inequality over k ≥ 0 yields the bound (5.39). �

Theorem 5.3 For the system (5.1)–(5.3) with the control law of Algorithm 5.3, the
optimization (5.37) is recursively feasible and the origin of state space is robustly
asymptotically stable with region of attraction equal to the feasible set F = {x :
∃c such that (x, c) ∈ Ez}.
Proof If xk lies in the feasible set F , then a feasible but suboptimal solution of
(5.37) at time k + 1 is given by ck+1 = Mc∗

k since the robust positive invariance of
Ez implies that Ψ [xT

k (c∗
k)

T ]T ∈ Ez for all Ψ ∈ Co{Ψ (1), . . . , Ψ (m)}. Hence (5.36)
implies that the optimal solution of (5.37) at time k + 1 satisfies

‖c∗
k+1‖2Wc

≤ ‖Mc∗
k‖2Wc

≤ ‖c∗
k‖2Wc

− ‖c∗
0|k‖2R+B(0)T Wx B(0) .

Summing this inequality over all k ≥ 0 yields the bound

∞∑

k=0

‖c∗
0|k‖2 ≤ 1

λ(R)
‖c∗

0‖2Wc
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where λ(R) is the smallest eigenvalue of R. Therefore Lemma 5.3 implies

∞∑

k=0

‖xk‖2 ≤ ‖x0‖2P + γ2

λ(R)
‖c∗

0‖2Wc
(5.40)

and hence xk → 0 as k → ∞. Finally, we note that x = 0 is Lyapunov stable since
Algorithm 5.3 coincides with the feedback law uk = K xk (which is robustly stabi-
lizing by assumption) for all xk in the set {x : (x, 0) ∈ Ez}, and this set necessarily
contains x = 0 in its interior since Pz � 0. �

To maximize the volume of the feasible set, F = {x : ∃c such that (x, c) ∈ Ez},
for Algorithm 5.3, the matrix Pz defining Ez can be designed offline analogously to
the case of nominal MPC considered in Sect. 2.7.3. Thus, rewriting (5.33) and (5.34)
in terms of S = P−1

z gives the equivalent conditions

[
S Ψ ( j)S

SΨ ( j) T S

]
� 0, j = 1, . . . , m (5.41a)

⎡

⎣
H

[
F + G K G E

]
S

S

[
(F + G K )T

(G E)T

]
S

⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, . . . , nC

(5.41b)

which are LMIs in the variables S and H . Hence the volume of F is maximized if
Pz = S−1 where S is the solution of the SDP problem

maximize
S,H

log det

([
Inx 0

]
S

[
Inx

0

])
subject to (5.41a, 5.41b). (5.42)

In concluding this section, we note that the online computation required by Algo-
rithm 5.3 is identical to that for the nominalMPC law of Algorithm 2.2. Therefore the
computational advantages of Algorithm 2.2 also apply to Algorithm 5.3. In particu-
lar, the online minimization of Algorithm 5.3 can be performed extremely efficiently
by solving for the unique negative real root of a well-behaved polynomial using the
Newton–Raphson iteration described in Sect. 2.8.

5.3.1 Prediction Dynamics Optimized to Maximize
the Feasible Set

The system (5.31a, 5.31b) and (5.32) that generates the predicted state and control
trajectories underpinning Algorithm 5.3 can be interpreted in terms of a dynamic
feedback law applied to the uncertain model (5.1) and (5.2). The initial state of
this dynamic controller is defined by the vector, ck , of degrees of freedom in the

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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state and input predictions at time k. In order to maximize the ellipsoidal region
of attraction of Algorithm 5.3, it is possible to optimize the predicted controller
dynamics simultaneously with the invariant set Ez by solving a convex optimization
problem [12]. This is achieved through an extension of the method of optimizing
prediction dynamics described in Sect. 2.9 to the case of systems with uncertain
dynamics.

Let the vertices Ψ ( j) of the uncertainty set in (5.31a) be redefined as

Ψ ( j) =
[
Φ( j) B( j)Cc

0 Ac

]
, j = 1, . . . , m (5.43)

where Ac ∈ R
νc×νc and Cc ∈ R

nu×νc are to be designed offline together with the
matrix Pz defining the ellipsoid Ez = {z ∈ R

nx +νc : zT Pzz ≤ 1}. The conditions for
robust invariance of Ez can then be obtained by restating Corollary 5.1 in terms of
these uncertainty set vertices. However the resulting conditions are nonconvex when
Ac, Cc and Pz are treated as variables. We therefore use the transformation (2.60) to
reformulate them as equivalent convex conditions in terms of variables X, Y, U, V
parameterizing Pz and variables Ξ,Γ parameterizing Ac, Cc. Using the approach
of Sect. 2.9, we then obtain, analogously to (2.62a, 2.62b), the LMI conditions:

⎡

⎢⎢⎣

[
Y X
X X

] [
Φ( j)Y + B( j)Γ Φ( j)X

Ξ + Φ( j)Y + B( j)Γ Φ( j)X

]

�

[
Y X
X X

]

⎤

⎥⎥⎦ � 0 (5.44a)

⎡

⎣
H

[
(F + G K )Y + GΓ (F + G K )X

]

�

[
Y X
X X

]
⎤

⎦ � 0, eT
i Hei ≤ 1, i = 1, . . . , nC

(5.44b)

for j = 1, . . . , m. Therefore, matrices Ac, Cc, Pz satisfying (5.33), (5.34) and (5.43)
exist only if the LMIs (5.44a, 5.44b) hold for some X, Y, Ξ, Γ . Furthermore, the
conditions (5.44a, 5.44b) are sufficient as well as necessary if the dimension of c is
equal to that of x , namely if νc = nx , since in this case, by the argument of Sect. 2.9,
the inverse transformation

Pz =
[

X−1 X−1U
U T X−1 −U T X−1Y V −T

]
, Ac = U−1ΞV −T , Cc = Γ V −T (5.45)

where U V T = X − Y , necessarily exists and defines Ac, Cc and Pz uniquely.
The set F of feasible initial conditions for Algorithm 5.3 is the projection of Ez

onto the x-subspace (i.e. F = {x : ∃c such that (x, c) ∈ Ez}). Therefore F can be
maximized offline by solving the SDP problem:

maximize
Ξ,Γ,X,Y

log det(Y ) subject to (5.44a, 5.44b),

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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and then determining Ac, Cc, Pz using (5.45). With these parameters the nominal
cost J (xk, ck) is given by (5.35a), where Wx is the solution of the Riccati equation
(2.9) with (A, B) = (A(0), B(0)) and Wc is the solution of the Lyapunov equation

Wc − AT
c Wc Ac = CT

c

(
B(0)T

Wx B(0) + R
)
Cc.

A robust MPC law can then be defined analogously to Algorithm 5.3 with the dif-
ference that the control law is given by

uk = K xk + Ccc∗
k

where c∗
k is the optimal solution of the online MPC optimization. Through a straight-

forward extension of Theorem 5.3, it can be shown that the closed-loop system is
robustly asymptotically stable with region of attraction F .

If there is nomodel uncertainty, then, as discussed inSect. 2.9, the offline optimiza-
tion of the prediction dynamics results in the remarkable property that the feasible
setF (namely the projection of Ez onto the x-subspace) is equal to the maximal ellip-
soidal invariant set under any linear feedback law subject to the constraints (5.3).
Since this property holds regardless of the choice of feedback gain K , theMPC law is
able to deploy a highly tuned linear feedback law close to the origin without reducing
the set of initial conditions that are feasible for the online optimization. This result
does not carry over to the case of polytopic model uncertainty if a single matrix Ac

is employed in (5.43). It does, however, hold for the robust case if Ac is allowed
to assume values in the convex hull of a set of vertices, each vertex being associ-
ated with one of the vertices of the model parameter uncertainty set and optimized
offline [12]. Thus we let

Ac ∈ Co{A(1)
c , . . . , A(m)

c }, Ψ ( j) =
[
Φ( j) B( j)Cc

0 A( j)
c

]
, j = 1, . . . , m (5.46a)

and

Ξ( j) = U A( j)
c V T , j = 1, . . . , m. (5.46b)

Then, replacing (5.44a) with the condition

⎡

⎢⎢⎣

[
Y X
X X

] [
Φ( j)Y + B( j)Γ Φ( j) X

Ξ( j) + Φ( j)Y + B( j)Γ Φ( j) X

]

�

[
Y X
X X

]

⎤

⎥⎥⎦ � 0, (5.47)

the projection of Ez onto the x-subspace is maximized subject to (5.33) and (5.34)
by solving the SDP problem:

maximize
Ξ(1),...,Ξ(m),Γ,X,Y

log det(Y ) subject to (5.47) and (5.44b) (5.48)

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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and applying the inverse transformation (5.45) with A( j)
c = U−1Ξ( j)V −T for j =

1, . . . , m. By considering the conditions for feasibility of (5.47) and (5.44b), it can
be shown that the solution of (5.48) defines an ellipsoidal set Ez whose projection
onto the x-subspace is equal to the maximal ellipsoidal invariant set for the uncertain
model (5.1)–(5.3) under any linear feedback law. For a proof of this result, we refer
the interested reader to [12].

From zi+1|k ∈ Co{Ψ (1)zi |k, . . . , Ψ (m)zi |k} and (5.46a), we obtain

ci+1|k ∈ Co{A(1)
c ci |k, . . . , A(m)

c ci |k}

along predicted trajectories. Hence, the controller dynamics are subject to polytopic
uncertainty and the value of Ac is unknown at each prediction time step since it
depends, implicitly through (5.46a), on the realization of the uncertain model para-
meters. A robust MPC law based on these predictions falls into the category of feed-
back MPC strategies since the evolution of the predicted control trajectory depends
on the realization of future model uncertainty. Despite the future evolution of the
controller state being uncertain, the implied MPC law is implementable since only
the value of ck need be known in order to evaluate uk = K xk + Ccck .

The objective of the MPC online optimization can be defined as in (5.35a), but to
ensure closed-loop stability we require that the weighting matrix Wc satisfies

Wc − A( j)
c

T
Wc A( j)

c � CT
c

(
B(0)T

Wx B(0) + R
)
Cc, j = 1, . . . , m (5.49)

where Wx is the solution of (2.9) with (A, B) = (A(0), B(0)). Thus Wc can be com-
puted byminimizing trace(Wc) subject to (5.49). TheMPCalgorithm,which requires
the same online computation as Algorithm 5.3, is stated next.

Algorithm 5.4 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
ck

‖ck‖2Wc
subject to

[
xk

ck

]
∈ Ez . (5.50)

(ii) Apply the control law uk = K xk + Ccc∗
k , where c∗

k is the optimal value of ck in
(5.50). �

Theorem 5.4 For the system (5.1)–(5.3) under the control law of Algorithm 5.4, the
optimization (5.50) is recursively feasible and x = 0 is asymptotically stable with
region of attraction F = {x : ∃c such that (x, c) ∈ Ez}.
Proof Recursive feasibility is a consequence of the robust invariance of Ez , which
implies that a feasible solution to (5.50) at time k + 1 is given by ck+1 = Ac,kck ,
for some Ac,k ∈ Co{A(1)

c , . . . , A(m)
c }. Asymptotic stability can be shown using a sim-

ilar argument to the proof of Theorem 5.3. In particular, (5.30) implies that the bound

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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∞∑

k=0

‖xk‖2 ≤ ‖x0‖2P + γ2
∞∑

k=0

‖Ccc∗
k‖2 (5.51)

holds for the closed-loop system xk+1 = Φk xk + BkCcc∗
k , for some P � 0 and scalar

γ. Also, from (5.49) and feasibility of ck+1 = Ac,kc∗
k the optimal solution at time

k + 1 necessarily satisfies

‖c∗
k+1‖2Wc

≤ ‖c∗
k‖2Wc

− ‖Ccc∗
k‖2R+B(0)T Wx B(0) .

Summing this inequality over all k ≥ 0 and using (5.51) gives the asymptotic bound
(5.40), which implies limk→∞ xk = 0 for all x0 ∈ F . Stability of x = 0 follows
from the fact that the control law of Algorithm 5.4 is equal to uk = K xk for all
xk ∈ {x : (x, 0) ∈ Ez}, and this feedback law is robustly stabilizing by (5.30). �

In order to minimize a worst-case predicted cost instead of the cost of Algo-
rithm 5.4, the optimization (5.50) can be replaced with

minimize
ck

‖zk‖2W̌ subject to zk =
[

xk

ck

]
∈ Ez

where W̌ satisfies the following LMIs for j = 1, . . . , m

W̌ − Ψ ( j)T
W̌Ψ ( j) �

[
I K T

0 CT
c

] [
Q 0
0 R

] [
I 0
K Cc

]
. (5.52)

With this modification, Algorithm 5.4 minimizes the upper bound on predicted per-
formance:

‖zk‖2W̌ ≥ max
Ψi |k∈Co{Ψ (1),...,Ψ (m)}

i=0,1,...

∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R
)
,

and the closed-loop system has the properties given in Theorem 5.4.

Example 5.2 For the uncertain system and constraints defined in Example 5.1, the
unconstrained optimal feedback law for the nominal model (5.4) and cost weights
Q = I and R = 1 is u = K x , K = [0.19 0.34], and the offline optimization (5.48)
yields

A(1)
c =

[−0.69 0.20
−0.27 −0.14

]
, A(2)

c =
[−0.74 −0.01
0.26 −0.01

]
, A(3)

c =
[−0.63 −0.21
−0.05 −0.27

]
,

and Cc = [0.12 −0.12].
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Fig. 5.2 The set of feasible initial states for Algorithm 5.4 applied to the system of Example 5.1.
Also shown are themaximal ellipsoidal RPI set under theLQ-optimal feedback law u = K x (dashed
line), the feasible set for Algorithm 5.1 (inner dash-dotted line) and themaximal robustly controlled
invariant set (outer dash-dotted line)

Figure5.2 shows the set,F , of feasible initial conditions for Algorithm 5.4. Com-
paring Figs. 5.2 and 5.1, it can be seen that, as expected, this feasible set is identical
to the maximum area robustly invariant ellipsoidal set under any linear feedback
law. The average quadratic bound on the predicted worst-case cost computed for the
solution of (5.50) at 100 initial conditions evenly distributed on the boundary of F
is 1002, while the maximum worst-case cost bound for these states is 1823. These
bounds are on average 4% higher than the worst-case cost bounds obtained using
Algorithm 5.1 with the same set of initial conditions (discussed in Example 5.1);
however, neither approach results in cost bounds that are consistently lower for all
initial conditions. The conservativeness in this case results from the offline computa-
tion of the parameters K , Cc and A(1)

c , . . . , A(m)
c defining the predicted control law.

On the other hand, the online computation of Algorithm 5.4 is typically orders of
magnitude lower than that of Algorithm 5.11 ♦

1For this example, the time required to solve (5.50) using the Newton–Raphson method is between
one and two orders of magnitude less than the computation time for (5.18) using the Mosek.
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5.3.2 Prediction Dynamics Optimized to Improve Worst-Case
Performance

Polytopic controller dynamics were introduced in Sect. 5.3.1 with the aim of maxi-
mizing the volume of the ellipsoidal region of attraction. This was achieved under the
assumption that the feedback law uk = K xk robustly stabilizes the system (5.1) and
(5.2) in the absence of constraints. Moreover K was assumed to be the LQ optimal
feedback gain for the unconstrained nominal system. However this feedback law
may not be robustly stabilizing, and in this case it is necessary either to resort to a
different feedback gain, or to retain the nominally optimal unconstrained feedback
law in the problem formulation and ensure through other means that the predicted
control law is robustly stabilizing [13]. The latter can be achieved through the use of
predicted polytopic controller dynamics introduced as

ui |k = K xi |k + vi |k + ci |k (5.53a)

where ci |k = 0 for all i ≥ N and

vi+1|k ∈ Co{L( j)xi |k + N ( j)vi |k, j = 1, . . . , m} (5.53b)

for all i ≥ 0.
The perturbations ci |k serve the same purpose here as in earlier sections of this

chapter, namely to ensure satisfaction of the constraints (5.3), while the polytopic
dynamics of (5.53b) are designed with the aim of improving robustness and reducing
the sensitivity of closed-loop performance to model uncertainty. This is done by
invoking the following conditions for W � 0:

W −
[
Φ( j) B( j)

L( j) N ( j)

]T

W

[
Φ( j) B( j)

L( j) N ( j)

]
�

[
Q + K T RK K T R

RK R

]
, j = 1, . . . , m

(5.54)

whereΦ( j) = A( j) + B( j)K , and choosing L( j), N ( j), j = 1, . . . , m and W by solv-
ing

(L(1), N (1), . . . ,L(m), N (m), W )

= arg min
L(1),N (1),...,L(m),N (m),W

λ̄(Wx − WxvW −1
v Wvx ) (5.55)

subject to (5.54), where λ̄(P) denotes the maximum eigenvalue of the matrix P , and
where Wx , Wxv and Wv are the blocks of the partition

W =
[

Wx Wxv

W T
xv Wv

]
.
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Although the optimization is nonconvex as stated in (5.55), its solution can be deter-
mined by solving the following equivalent (convex) SDP problem:

(Y (1), . . . , Y (m), S) = arg max
Y (1),...,Y (m),S,λ

λ subject to

[
Inx 0

]
S

[
Inx

0

]
� λInx

⎡

⎢⎢⎢⎢⎢⎣

S

[
S

[
Φ( j)T

B( j)T

]
Y ( j)T

]
S

[
Q1/2

0

]
S

[
K T R1/2

R1/2

]

� S 0 0
� � I 0
� � � I

⎤

⎥⎥⎥⎥⎥⎦
� 0, j = 1, . . . , m

(5.56)

and then computing W = S−1 and
[
L( j) N ( j)

] = Y ( j)W , for j = 1, . . . , m.
The rationale behind this strategy is that, if L( j), N ( j) for j = 1, . . . , m satisfy

(5.54) for some W � 0, then the control law ui |k = K xi |k + vi |k robustly stabilizes
the system

xi+1|k = Ai |k xi |k + Bi |kui |k,
vi+1|k = Li |k xi |k + Ni |kvi |k,

[
Ai |k Bi |k
Li |k Ni |k

]
∈ Co

{[
Φ( j) B( j)

L( j) N ( j)

]
, j = 1, . . . , m

}

Furthermore, (5.54) implies that the predicted cost for this system under the control
law ui |k = K xi |k + vi |k satisfies the bound

∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R
) ≤

[
x0|k
v0|k

]T

W

[
x0|k
v0|k

]
(5.57)

for all admissible realizations of model uncertainty. If the constraints (5.3) are
inactive, then the minimum, over all v0|k ∈ R

nu , of this bound can be shown
to be xT

0|k(Wx − WxvW −1
v W T

xv)x0|k . Therefore the optimization (5.55) chooses

(L(1), N (1), . . . , L(m), N (m)) so as to minimize the maximum, over all x0|k in the
ball {x : ‖x‖ ≤ r}, of the minimum value of the bound (5.57) in the absence of
constraints.

Clearly, v0|k provides degrees of freedom for minimizing the predicted cost in the
onlineMPCoptimization subject to constraints. However the system constraints (5.3)
must be satisfied and for this reason we introduce the vector of perturbations ck =
(c0|k, . . . , cN−1|k) as additional degrees of freedom. Under the control law of (5.53a,
5.53b), the predicted state and control trajectories are generated by the prediction
system

zi+1|k = Ψi |k zi |k, Ψi |k = Co{Ψ (1), . . . , Ψ (m)} (5.58)
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where

z0|k =
⎡

⎣
x0|k
v0|k
ck

⎤

⎦ , Ψ ( j) =
⎡

⎣
Φ( j) B( j) B( j)E
L( j) N ( j) 0
0 0 M

⎤

⎦ (5.59)

with E and M as defined in (5.31a, 5.31b). As before, the constraints of (5.3) can be
imposed on predictions in a computationally efficient (though somewhat conserva-
tive) way by constraining the prediction system state z0|k to lie in a robustly invariant
ellipsoidal set Ez

.= {z : zT Pzz ≤ 1}. Analogously to Corollary 5.1, the conditions
for invariance and constraint satisfaction are given by

Pz − Ψ ( j)T
PzΨ

( j) � 0, j = 1, . . . , m (5.60)

and

[
H

[
F + G K G G E

]
[
F + G K G G E

]T
Pz

]
� 0, eT

i Hei ≤ 1, i = 1, . . . , nC

(5.61)

for some symmetric matrix H , where ei is the i th column of the identity matrix.
Additionally, if W̌ satisfies the condition

W̌ − Ψ ( j)T
W̌Ψ ( j) �

⎡

⎣
Q + K T RK K T R K T RE

RK R RE
ET RK ET R ET RE

⎤

⎦ , j = 1, . . . , m, (5.62)

then the worst-case cost along predicted trajectories of (5.1) and (5.2) under the
control law (5.53a, 5.53b)

J̌ (x0|k, v0|k, ck)
.= max

(Ai |k ,Bi |k )∈Ω, i=0,1,...

∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R
)
,

satisfies the bound J̌ (x, v, c) ≤ ‖(x, v, c)‖2
W̌
. On the basis of this predicted perfor-

mance bound, we can state the following min–max robust MPC algorithm.

Algorithm 5.5 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
vk ,ck

‖(xk, vk, ck)‖2W̌ subject to

⎡

⎣
xk

vk

ck

⎤

⎦ ∈ Ez (5.63)

(ii) Apply the control law uk = K xk + v∗
k + c∗

0|k , where c∗
k = (c∗

0|k, . . . , c∗
N−1|k)

and (v∗
k , c∗

k) is the optimal solution of (5.63). �
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Theorem 5.5 For the system (5.1)–(5.3) and control law of Algorithm 5.4, the opti-
mization (5.63) is recursively feasible and x = 0 is asymptotically stable with region
of attraction F = {x : ∃(v, c) such that (x, v, c) ∈ Ez}.
Proof Recursive feasibility of (5.63) follows from (5.60) and (5.61),which imply that
Ψ zk ∈ Ez for some Ψ ∈ Co{Ψ (1), . . . , Ψ (m)} if zk ∈ Ez , and hence (vk+1, ck+1) =
(Lxk + Nv∗

k , Mc∗
k ) is a feasible solution to (5.63) at time k + 1 for some (L , N ) ∈

Co{L(1), N (1), . . . , L(m), N (m)} if xk ∈ F . From (5.62), we therefore have

‖zk+1‖2W̌ ≤ ‖zk‖2W̌ − (‖xk‖2Q + ‖uk‖2R
)
,

where zk = (xk, v
∗
k , c∗

k), and this implies that x = 0 is asymptotically stable since

‖zk‖2W̌ ≥ J̌ (xk, v
∗
k , c∗

k) and Q, R � 0. �

Theorem 5.5 implies that the closed-loop system necessarily converges to a region
of state space on which the trajectories of the nominal system model satisfy the
constraints (5.3) at all future times under the unconstrained nominal LQ optimal
feedback law. To allow the predicted control trajectories (5.53a, 5.53b) to realize this
feedback law, the additional constraint that (L(0), N (0)) = (0, 0) must be included
in the optimization (5.55) defining (L( j), N ( j)), where

(L(0), N (0)) =
m∑

j=1

μ( j)(L( j), N ( j)) (5.64)

and where μ(1), . . . ,μ(m) are scalar constants that define the nominal model para-
meters (A(0), B(0)) via

(A(0), B(0)) =
m∑

j=1

μ( j)(A( j), B( j)).

The condition (5.64) can be imposed in the optimization (5.56) through a constraint
which is linear in Y (1), . . . , Y (m), namely that

∑m
j=1 μ( j)Y ( j) = 0.

To ensure that the MPC law recovers the nominal LQ optimal feedback law
whenever it is feasible, a nominal cost computed analogously to (5.35b) can be used
in place of the worst-case cost of Algorithm 5.5. In this case, however, the nominal
cost does not have the block diagonal structure of (5.35a), and hence the predicted
cost may not be monotonically non-increasing. Closed-loop stability is therefore
ensured in [13] by tightening condition (5.60) by replacing the RHS of the LMI with
ρPz for some ρ ∈ (0, 1), and by replacing the constraint in the online optimization
(5.63) with the condition (xk, vk, ck) ∈ ρkEz , thus guaranteeing exponential stability
of x = 0.

Robustness can alternatively be addressed by introducing controller dynamics
through the Youla parameter [25]. Moreover, the approach can be recast in terms
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of state-space models, allowing constraints to be imposed in a computationally effi-
cient way through the use of robustly invariant ellipsoidal sets. A nominal cost can be
adopted for the definition of an MPC law and the free Youla parameters can be opti-
mized so as to minimize a sensitivity transfer function, thus reducing the sensitivity
of predicted trajectories to the model uncertainty and making a nominal cost more
representative of system performance [13]. This is an indirect way of minimizing
cost sensitivity to uncertainty, a problem that remains open, both for MPC and for
constrained optimal control in general.

5.4 Low-Complexity Polytopes in Robust MPC

Althoughcomputationally convenient for robustMPC involvingmultiplicativemodel
uncertainty, the ellipsoidal invariant sets discussed in Sect. 5.3 necessarily result in
conservative feasible sets as a result of their implicit handling of state and control
constraints. On the other hand, the exact tubes considered in Sect. 5.2.1, which enable
constraints to be imposed on predicted states and inputs non-conservatively, are in
general impractical because their computational requirements grow exponentially
with the length of prediction horizon. To avoid these difficulties, this section considers
the application of tubes with low-complexity polytopic cross sections (which were
discussed in Sect. 3.6.2 in the context of robustMPCwith additivemodel uncertainty)
to the case of multiplicative model uncertainty.

5.4.1 Robust Invariant Low-Complexity Polytopic Sets

Tubes defined in terms of low-complexity polytopic sets are the basis of a family of
computationally efficient methods of imposing constraints on predicted trajectories
in the presence of multiplicative uncertainty [16–18, 26]. We discuss terminal con-
straints in this section and consider the uncertain system (5.1)–(5.3) under a given
terminal feedback law u = K x :

xk+1 = Φk xk, Φk ∈ ΩK
.= Co{Φ(1), . . . , Φ(m)} (5.65)

where Φ( j) = A( j) + B( j)K , j = 1, . . . , m. Recall that a low-complexity polytope,
denoted here by Π(V,α), is defined for a non-singular matrix V ∈ R

nx ×nx and a
positive vector α ∈ R

nx by

Π(V,α)
.= {x : |V x | ≤ α} (5.66)

where the extraction of absolute values and the inequality sign apply on an element-
by-element basis. The conditions under which Π(V,α) is a suitable terminal set,
namely invariance under the dynamics of (5.65) for a given terminal control law

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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u = K x and feasibility with respect to the system constraints (5.3), can be stated as
follows.

Theorem 5.6 The low-complexity polytope Π(V,α) = {x : |V x | ≤ α} is robustly
invariant for the dynamics (5.65) if and only if

|V Φ( j)W |α ≤ α, j = 1, . . . , m (5.67)

where W = V −1. Furthermore, under u = K x the constraints (5.3) are satisfied for
all x ∈ Π(V,α) if and only if

|(F + G K )W |α ≤ 1. (5.68)

Proof The set Π(V,α) is robustly invariant if and only if Φx ∈ Π(V,α) for all
x ∈ Π(V,α) and all Φ ∈ Co{Φ( j), j = 1, . . . , m}. Equivalently, for all x such that
|V x | ≤ α, we require |V Φx | ≤ α. Therefore, given that

|V Φx | = |V ΦW V x | ≤ |V ΦW ||V x | ≤ |V ΦW |α

for all x ∈ Π(V,α), a sufficient condition for invariance is

|V ΦW |α ≤ α.

This condition can be expressed in terms of inequalities that depend linearly on Φ,
and therefore it needs to be enforced only at the vertices of the model uncertainty
set, as is done in (5.67). The conditions of (5.67) are necessary as well as sufficient
because, for each i = 1, . . . , nx , the i th element of |V Φ( j)x | satisfies |ViΦ

( j)x | =
|ViΦ

( j)W V x | = |ViΦ
( j)W |α for x equal to one of the vertices of Π(V,α), where

Vi is the i th row of V . The necessity and sufficiency of (5.68) follows similarly from
the inequalities

(F + G K )x ≤ |(F + G K )x | = |(F + G K )W V x | ≤ |(F + G K )W |α

for all x ∈ Π(V,α), where, for each i , (F + G K )i x = |(F + G K )i W |α for some
x such that |V x | = α, with (F + G K )i denoting the i th row of F + G K . �

A non-symmetric low-complexity polytope is defined for V ∈ R
nx ×nx andα,α ∈

R
nx , with α < 0 and α > 0, as the set

Π̃(V,α,α)
.= {x : α ≤ V x ≤ α}. (5.69)

These sets sharemany of the computational advantages of symmetric low-complexity
polytopic sets, but can provide larger invariant sets if the system constraints (5.3) are
non-symmetric. The conditions of Theorem 5.6 for robust invariance and feasibility
with respect to constraints extend to non-symmetric low-complexity polytopes in an
obvious way, as we show next.
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Corollary 5.2 Let A+ .= max{A, 0} and A− .= max{−A, 0} for any real matrix
A. Under the feedback law u = K x, the non-symmetric low-complexity polytope
Π̃(V,α,α) is robustly invariant for the dynamics (5.65) and the constraint (5.3) is
satisfied for all x ∈ Π̃(V,α,α) if and only if

[(
V Φ( j)W

)+ (
V Φ( j)W

)−
(
V Φ( j)W

)− (
V Φ( j)W

)+

] [
α

−α

]
≤

[
α

−α

]
, j = 1, . . . , m (5.70)

[(
(F + G K )W

)+ (
(F + G K )W

)−] [
α

−α

]
≤ 1. (5.71)

where W = V −1.

Proof This follows from Lemma 3.6, which implies that the following bounds hold
for all x such that α ≤ V x ≤ α:

V Φx ≤ (V ΦW )+α + (V ΦW )−(−α)

V Φx ≥ (V ΦW )+α + (V ΦW )−(−α)

(F + G K )x ≤ (
(F + G K )W

)+
α + (

(F + G K )W
)−

(−α).

Lemma 3.6 also shows that each inequality in these conditions must hold with equal-
ity for some x such thatα ≤ V x ≤ α. A similar argument to the proof of Theorem5.6
therefore implies that (5.70) and (5.71) are necessary and sufficient for robust invari-
ance of Π̃(V,α,α) for the system (5.65) and for satisfaction of the constraints (5.3)
under u = K x at all points in this set. �

To make it possible to compute offline a low-complexity polytopic terminal set
for use in an onlineMPC optimization, we require that the conditions of Theorem 5.6
(or Corollary 5.2) hold for some V and α > 0 (or V , α < 0 and α > 0). The crucial
condition to be satisfied is the invariance condition (5.67), since, by linearity of the
dynamics (5.65), the existence of V and α > 0 satisfying (5.67) is necessary as well
as sufficient for (5.70) to hold for some V , α < 0 and α > 0. Likewise the feasibility
conditions (5.68) and (5.70) can be satisfied simply by scaling α whenever (5.67)
holds.

Necessary and sufficient conditions for existence of an ellipsoidal invariant set for
the uncertain system (5.65) follow directly from the discussion of Sect. 5.2, namely
the system admits an ellipsoidal invariant set if and only if it is quadratically stable.
Moreover, quadratic stability is relatively easy to check numerically by determining
whether a set of LMIs is feasible. Likewise a polytopic invariant set defined by a finite
(but arbitrary) number of vertices exists whenever the system (5.65) is exponentially
stable [27]. This condition is equivalent to the requirement that the joint spectral
radius defined by

ρ
.= lim

k→∞ max
Φi ∈ΩK , i=1,2,...

‖Φ1 · · · Φk‖1/k (5.72)

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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satisfies ρ < 1.2 For the special case of low-complexity polytopic sets, nonconserva-
tive conditions for the existence of low-complexity invariant sets are not available for
general systems of the form (5.65); however, the following result provides a useful
sufficient condition.

Lemma 5.4 For given V , define Φ̄ as the matrix with (i, k)th element

[Φ̄]ik = max
j∈{1,...,m} |ViΦ

( j)Wk |, i = 1, . . . , nx , k = 1, . . . , nx ,

where Vi and Wk are, respectively, the i th row of V and kth column of W = V −1.
Then α exists such that Π(V,α) is robustly invariant for the dynamics (5.65) if
λP F (Φ̄) ≤ 1 where λP F (Φ̄) is the Perron–Frobenius eigenvalue of Φ̄.

Proof For each i = 1, . . . , nx and j = 1, . . . , m we have |ViΦ
( j)W |α ≤ Φ̄iαwhere

Φ̄i is the i th row of Φ̄. Thus, if α is chosen as the Perron–Frobenius eigenvector of
Φ̄, then |V ΦW |α ≤ Φ̄α = λP F (Φ̄)α ≤ α which implies that (5.67) admits at least
one feasible α. �

The volume in R
nx of a low-complexity polytope Π(V,α), with α = (α1, . . . ,

αnx ), is given by

Cnx |det(V −1)|
nx∏

i=1

αi

where Cnx is independent of V and α. If Π(V,α) exists satisfying the conditions of
Theorem 5.6, then the maximum volume invariant set is therefore given by Π(V, 1)

where V is the maximizing argument of

maximize
V,W

|det(W )| subject to (5.67), (5.68) with α = 1, and V = W −1.

Although this problem is nonconvex, its constraints can be reformulated in terms of
equivalent bilinear constraints:

maximize
W,H (1),...,H (m)

|det(W )|

subject to W H ( j) = Φ( j)W, |H ( j)|1 ≤ 1, j = 1, . . . , m

|(F + G K )W |1 ≤ 1 (5.73)

Expressed in this form, the problem can be solved approximately by solving a
sequence of convex programs [26, 29].

To avoid the inherent nonconvexity (offline) of (5.73), the volume of Π(V,α)

can be maximized instead over α > 0 for a given fixed V by solving

2In general, it is not possible to compute ρ exactly. However, upper bounds on ρ can be computed
to any desired accuracy, for example, using sum of squares programming [28].
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maximize
α=(α1,...,αnx )

nx∏

i=1

αi subject to (5.67) and (5.68). (5.74)

The constraints of this problem are linear in α and the objective can be expressed as
the determinant of a symmetric positive-definite matrix (namely diag(α1, . . . ,αnx )).
Therefore the optimization can be performed by solving an equivalent (convex)
semidefinite program (see e.g. [30]). An obvious modification of this problem allows
the volume of the non-symmetric low-complexity polytope {x : α ≤ V x ≤ α} to be
maximized over α,α for given V by solving a similar semidefinite program.

If α is chosen so as to maximize the volume of Π(V,α) for fixed V using (5.74),
then clearly V must be designed so as to ensure that (5.67) is feasible for some α. For
example, robust invariance of Π(V,α) under (5.65) can be ensured for some α by
choosing V on the basis of a robustly invariant ellipsoidal set E = {x : xT Px ≤ 1},
computed using semidefinite programming. If P is a symmetric positive-definite
matrix satisfying

Φ( j)T
PΦ( j) � P/nx , j = 1, . . . , m,

then the choice V = P1/2 ensures that (5.67) is feasible since the bounds ‖x‖∞ ≤
‖x‖2 ≤ √

nx‖x‖∞ (which hold for all x ∈ R
nx ) then imply

‖V Φ( j)x‖∞ ≤ ‖V Φ( j)x‖2 ≤ 1√
nx

‖V x‖2 ≤ ‖V x‖∞, ∀x ∈ R
nx , j = 1, . . . , m.

(5.75)

It follows thatΠ(V, 1) is robustly invariant and the constraints of (5.74) are therefore
necessarily feasible. Note that this approach can only be used if the dynamics (5.65)
satisfy the strengthened quadratic stability condition (5.75), and of course this may
not be the case if K is designed as the unconstrained LQ optimal feedback gain for
the nominal dynamics.

Alternatively, V could be chosen on the basis of the nominal model parameters.
In particular, in the absence of uncertainty (i.e. for Φ = Φ(0)), and for the case
that the eigenvalues of Φ(0) are real, an obvious choice for V is the inverse of the
(right) eigenvector matrix of Φ(0) since this gives V Φ(0)W = Λ, where Λ is the
eigenvalue matrix of Φ(0) and W is the corresponding eigenvector matrix. Given
that the feedback gain K is stabilizing by assumption, the elements of Λ must be
no greater than 1 in absolute value, and hence (5.67) holds for any chosen α > 0 in
this case. Similarly, if Φ(0) has complex eigenvalues, then V and W = V −1 can be
chosen to be real matrices such that V Φ(0)W is in (real) Jordan normal form. In this
case, V Φ(0)W is block diagonal—for example if the eigenvalues of Φ(0) are distinct
and equal to

λ1, . . . ,λp,σ1 ± jω1, . . . ,σq ± jωq ,
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where p + 2q = nx , then

V Φ(0)W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
. . .

λr [
σ1 ω1

−ω1 σ1

]

. . . [
σq ωq

−ωq σq

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For this choice of V , the structure of V Φ(0)W implies that a necessary and sufficient
condition for existence of α > 0 satisfying |V Φ(0)W |α ≤ α is that the eigenvalues
of Φ(0) should lie in the box in the complex plane with vertices at ±1 ± j shown
in Fig. 3.9. For the case considered here, in which the model (5.1) and (5.2) has
uncertain parameters A, B, the same approach can be used to define V on the basis
of the nominal model pair A(0), B(0). If the uncertainty is sufficiently small and the
eigenvalues of Φ(0) = A(0) + B(0)K are sufficiently contractive, then the invariance
condition (5.67) will hold for all j = 1, . . . , m for some α > 0, and (5.74) could be
used to maximize Π(V,α) for this choice of V .

Example 5.3 For the uncertain system (5.1)–(5.3) with model parameters defined in
Example 5.1, define V as the inverse of the (right) eigenvector matrix of Φ(0) =
A(0) + B(0)K for K = [0.19 0.34]. For this choice of V , the Perron–Frobenius
eigenvalue of Φ̃ defined in Lemma 5.4 is 0.89, so Lemma 5.4 indicates that the low-
complexity polytopic set Π(V,α) is robustly positively invariant for some α > 0
for (5.1)–(5.3) under u = K x . Choosing α so as to maximize the area of Π(V,α)

by solving the convex optimization (5.74) then gives

Π(V,α) =
{

x :
∣∣∣∣

[−0.997 −0.084
−0.229 −0.973

]
x

∣∣∣∣ ≤
[
15.80
5.90

]}
(5.76)

This set is shown in Fig. 5.3. ♦

5.4.2 Recursive State Bounding and Low-Complexity
Polytopic Tubes

In order to account for the effects of model uncertainty on predicted state and con-
trol trajectories, this section considers the construction, through a recursive bounding
procedure, of tubes {X0|k,X1|k, . . .} such that xi |k ∈ Xi |k for all i = 0, 1, . . .. For con-
venience, and assuming the terminal constraint to be defined by a low-complexity

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Fig. 5.3 The low-complexity polytopic setΠ(V,α) defined by (5.76) (solid line) and the maximal
RPI set (dashed line) under the LQ-optimal feedback law u = K x for the system of Example 5.1.
Also shown is the maximal robustly controlled invariant set for this system (dash-dotted line)

polytopic invariant set Π(V,α), we define each tube cross section as a low-
complexity polytope of the form

Xi |k = {x : αi |k ≤ V x ≤ αi |k}.

Here the matrix V ∈ R
nx ×nx is assumed to be determined offline so that Π(V,α)

satisfies the robust invariance conditions of Theorem 5.6 for some α and for a given
linear feedback gain K , and the parameters αi |k,αi |k are variables in the online
MPC optimization. We also assume that the predicted control input is given by the
open-loop strategy

ui |k = K xi |k + ci |k, i = 0, 1 . . . (5.77)

with ci |k = 0 for all i ≥ N .
The tube cross sections Xi |k are computed using a sequence of one-step ahead

bounds on future model states. For the transformed state variable

ξi |k
.= V xi |k

and the predicted control law (5.77), we obtain the dynamics

ξi+1|k = Φ̃ξi |k + B̃ci |k, (Φ̃, B̃) ∈ Co
{
(Φ̃(1), B̃(1)), . . . , (Φ̃(m), B̃(m))

}
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where Φ̃( j) = V Φ( j)W , W = V −1, and B̃( j) = V B( j) for j = 1, . . . , m. Using
these transformed dynamics, it is easy to show that αi+1|k ≤ ξi+1|k ≤ αi+1|k for
all ξi |k satisfying αi |k ≤ ξi |k ≤ αi |k if and only if

αi+1|k ≤ Φ̃+αi |k + Φ̃−(−αi |k) + B̃ci |k
αi+1|k ≥ Φ̃+αi |k + Φ̃−(−αi |k) + B̃ci |k

where, as in Sect. 5.4.1, A+ = max{A, 0} and A− = max{−A, 0} denote, respec-
tively, the absolute values of the positive and negative elements of a real matrix A.
Invoking these conditions for all (Φ̃, B̃) in the uncertainty set associated with the
model parameters yields, by linearity and convexity, a finite set of conditions:

αi+1|k ≤ (Φ̃( j))+αi |k − (Φ̃( j))−αi |k + B̃( j)ci |k
αi+1|k ≥ (Φ̃( j))+αi |k − (Φ̃( j))−αi |k + B̃( j)ci |k

(5.78)

for j = 1, . . . , m and i = 0, . . . , N − 1. Thus the linear constraints (5.78) ensure
that the predictedmodel trajectories satisfy xi |k ∈ Xi |k for i = 1, . . . , N , withXi |k =
Π̃(V,αi |k,αi |k).

Given a tube {X0|k, . . . ,XN−1|k} bounding predicted state trajectories and the
predicted control law (5.77), the constraints Fxi |k + Gui |k ≤ 1 at prediction times
i = 0, . . . , N − 1 can be imposed through the conditions

(F̃ + G K̃ )+αi |k − (F̃ + G K̃ )−αi |k + Gci |k ≤ 1, (5.79)

for i = 0, . . . , N − 1, where F̃ = FW and K̃ = K W . Likewise, the initial and ter-
minal conditions

α0|k ≤ V xk, α0|k ≥ V xk (5.80)

αN |k = −α, αN |k = α (5.81)

enforce the constraints that xk ∈ X0|k and XN |k ⊆ Π(V,α) (Fig. 5.4).
Consider next the definition of the MPC performance index. Assuming a nominal

(rather than a worst case) approach, the predicted cost is defined by (5.29) with
ck = (c0|k, . . . , cN−1|k). Thus if K is the unconstrained LQ optimal feedback gain
for the nominal model, then by Theorem 2.10 we have

J (s0|k, ck) = ‖s0|k‖2Wx
+ ‖ck‖2Wc

(5.82)

where Wc = diag{B(0)T Wx B(0) + R, . . . , B(0)T Wx B(0) + R}. For the case that K
is not LQ optimal for (5.29), the cost is a quadratic function of (s0|k, ck),

J (s0|k, ck) =
[

s0|k
ck

]T

W

[
s0|k
ck

]

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Fig. 5.4 A low-complexity polytopic tube and the predicted evolution of the state for a single
realization of the model parameters

where W is the solution of the Lyapunov equation (2.34). Rather than set the initial
state s0|k of the nominal cost index equal to xk as was done in Sect. 5.3, we give here
a more general formulation of the algorithm in which s0|k is an optimization variable.

The robust MPC algorithm, which requires the online solution of a QP in
O

(
N (2nx + nu)

)
variables and O

(
N (2nx + nC )

)
inequality constraints, can be

stated as follows.

Algorithm 5.6 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
s0|k ,ck

α0|k ,...,αN |k
α0|k ,...,αN |k

J (s0|k, ck) subject to (5.78)–(5.81) and α0|k ≤ V s0|k ≤ α0|k

(5.83)

(ii) Apply the control law uk = K xk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal value of ck in (5.83). �

The construction of the constraints (5.78)–(5.81) ensures recursive feasibility of
the online MPC optimization (as demonstrated by Theorem 5.7). Therefore, if the
dynamics (5.65) that govern predicted states for i ≥ N satisfy the quadratic stability
condition (5.30), then the closed-loop system under Algorithm 5.6 can be analysed
using Lemma 5.3 and the argument of Theorem 5.3. This approach (which assumes
that (5.83) incorporates the additional constraint s0|k = xk) shows that the control law
of Algorithm 5.6 asymptotically stabilizes the origin of the state space of (5.1)–(5.3).

However there is no intrinsic requirement in Algorithm 5.6 that the mode 2 pre-
diction dynamics (5.65) should be quadratically stable. Instead it is required that
Π(V,α) is robustly invariant for these dynamics. This is equivalent to the require-
ment that ‖Vαx‖∞, where Vα

.= (diag{ξ1, . . . , ξnx })−1V , is a (piecewise-linear)
Lyapunov function for (5.65). Consequently, the additional assumption of quadratic
stability may be over-restrictive here, and we therefore use a different approach to
analyse stability that does not require an assumption of quadratic stability but is

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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based instead on the robust invariance property of Π(V,α). Thus we assume that
Π(V,α) is a λ-contractive set [27] for (5.65), namely that λ ∈ [0, 1) exists such that

ΦΠ(V,α) ⊆ λΠ(V,α), ∀Φ ∈ ΩK , (5.84)

or equivalently

‖VαΦ( j)x‖∞ ≤ λ‖Vαx‖∞, j = 1, . . . , m (5.85)

for all x ∈ Π(V,α) = {x : ‖Vαx‖∞ ≤ 1}. Under this assumption, the trajectories of
the closed-loop system

xk+1 = Φk xk + Bkc∗
0|k, (Φk, Bk) ∈ Co

{
(Φ(1), B(1)), . . . , (Φ(m), B(m))

}
, (5.86)

satisfy the following bound.

Lemma 5.5 If (5.85) holds for λ ∈ [0, 1), then the bound

lim sup
k→∞

‖Vαxk‖∞ ≤ 1

(1 − λ)
sup
k≥0

max
j

‖Vα B( j)c∗
0|k‖∞ (5.87)

holds along trajectories (5.86).

Proof Using the triangle inequality and (5.85), we have, for all k ≥ 0 along trajec-
tories of (5.86),

‖Vαxk+1‖∞ ≤ λ‖Vαxk‖∞ + max
j

‖Vα B( j)c∗
0|k‖∞.

It follows that

‖Vαxk‖∞ ≤ λk‖Vαx0‖∞ +
k−1∑

i=0

λk−i−1 max
j

‖Vα B( j)c∗
0|i‖∞,

and the bound (5.87) is obtained from this inequality in the limit as k → ∞ since
max j ‖Vα B( j)c∗

0|k‖∞ ≤ supk≥0 max j ‖Vα B( j)c∗
0|k‖∞. �

Theorem 5.7 The optimization (5.83) is recursively feasible and if Π(V,α) satis-
fies (5.85) for λ ∈ [0, 1), then x = 0 is an asymptotically stable equilibrium of the
closed-loop system (5.1)–(5.3) under the control law of Algorithm 5.6, with region
of attraction equal to the feasible set:

FN = {
xk : ∃(ck,α0|k, . . . ,αN |k,α0|k, . . . ,αN |k) satisfying (5.78)–(5.81)

}
.

Proof Given feasibility at time k, a feasible solution at k + 1 is obtained with
Xi |k+1 = Xi+1|k , i = 0, . . . , N − 2, XN−1|k+1 = XN |k+1 = Π(V,α), and
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s0|k+1 = Φ(0)s∗
0|k + B(0)c∗

0|k
ck+1 = (c∗

1|k, . . . , c∗
N−1|k, 0)

αi |k+1 = α∗
i+1|k, i = 0, . . . , N − 1, αN |k+1 = −α,

αi |k+1 = α∗
i+1|k, i = 0, . . . , N − 1, αN |k+1 = α.

The feasibility of this solution follows from the constraints at time k and robust
invariance of Π(V,α) (which imply that constraints (5.78), (5.79) and (5.81) are
necessarily satisfied), and from x1|k ∈ X1|k = X0|k+1 (which ensures that (5.80) and
s0|k+1 ∈ X0|k+1 are satisfied).

The optimality of the solution of (5.83) at time k + 1 therefore ensures that the
optimal cost satisfies

J (s∗
0|k+1, c∗

k+1) ≤ J (s∗
0|k, c∗

k) − (‖s∗
0|k‖2Q + ‖K s∗

0|k + c∗
0|k‖2R),

for all k ≥ 0, and hence

∞∑

k=0

(‖s∗
0|k‖2Q + ‖K s∗

0|k + c∗
0|k‖2R) ≤ J (s∗

0|k, c∗
0).

Since Q, R � 0, it follows that s∗
0|k → 0 and c∗

0|k → 0 as k → ∞, and, for any ε > 0
there necessarily exists a finite n such that

‖c∗
0|k‖∞ ≤ ε ∀k ≥ n.

Therefore Lemma 5.5 implies

lim sup
m→∞

‖Vαxn+m‖∞ ≤ ε

(1 − λ)
max

j
‖Vα B( j)‖∞

and since this bound can be made arbitrarily small by choosing sufficiently small ε,
it follows that xk → 0 as k → ∞ for all x0 ∈ FN . To complete the proof, we note
that Algorithm 5.6 gives u = K x for all x ∈ Π(V,α) (since (5.82) and the robust
invariance ofΠ(V,α) imply that c = 0 is necessarily optimal for (5.83) in this case),
and from (5.85) this feedback law is locally exponentially stabilizing for x = 0. �

It may be desirable to detune the state feedback gain K with a view to enlarging
the terminal set and hence also the size of the region of attraction, and in such
cases the justification for the nominal cost of (5.82) will no longer be valid. It is,
however, possible to construct a worst-case cost [17] using the l1-norm of the bounds
αi |k,αi |k i = 0, . . . , N together with a terminal penalty term that is designed to
preserve the monotonic non-increasing property of the optimized cost. The resulting
robust MPC law has the same closed-loop properties as Algorithm 5.6 and its online
optimization is a linear program as a result of the linear dependence of the cost on
the degrees of freedom.
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5.5 Tubes with General Complexity Polytopic Cross Sections

The low-complexity polytopic tubes discussed in Sect. 5.4 are convenient from the
perspective of online computation but could be unduly conservative. In order to
obtain tighter bounds on predicted trajectories, it is possible to remove the restric-
tion to low-complexity polytopes and instead require that the predicted states lie in
polytopic tubes with cross sections described by arbitrary but fixed numbers of linear
inequalities [18–20, 23]. This modification can be beneficial in terms of the size of
the feasible set of initial conditions and closed-loop performance, and it can also
simplify offline computation by removing the need for a low-complexity robustly
invariant terminal set.

In this section, we consider tubes {X0|k,X1|k, . . .} with polytopic cross sections
defined in terms of linear inequalities:

Xi |k = {x : V x ≤ αi |k} (5.88)

where V ∈ R
nV ×nx is a full-rank matrix with a number of rows, nV , that is typically

greater than the number, 2nx , required to define a low-complexity polytope. The
matrix V is to be chosen offline, whereas the parameter αi |k ∈ R

nV is retained as a
variable online MPC optimization. Since it is expressed as an intersection of half-
spaces,Xi |k is necessarily convex; however, unlike a low-complexity polytope, there
is no requirement here for Xi |k to be bounded.

As in Sect. 5.4, we assume an open-loop prediction strategy, and hence predicted
states and inputs of the models (5.1) and (5.2) evolve according to

ui |k = K xi |k + ci |k, (5.89a)

xi+1|k = Φi |k xi |k + Bi |kci |k, (Φi |k, Bi |k) ∈ Co{(Φ( j), B( j)), j = 1, . . . , m}
(5.89b)

for i = 0, 1, . . . with ci |k = 0 for all i ≥ N . Although the associated predicted state
and control trajectories are the same as in Sect. 5.4, the recursive bounding approach
of Sect. 5.4 is no longer applicable. Essentially, this is because closed-form expres-
sions for the extreme points ofXi |k are not generally availablewhen the set is parame-
terized, as in (5.88), by an intersection of half-spaces. Instead we use the following
result based on Farkas’ Lemma [31, 32], to express polytopic set inclusion conditions
in terms of algebraic conditions.

Lemma 5.6 Let Si
.= {x : Fi x ≤ bi }, i = 1, 2, be non-empty subsets of R

nx . Then
S1 ⊆ S2 if and only if there exists a nonnegative matrix H satisfying

H F1 = F2 (5.90a)

Hb1 ≤ b2 (5.90b)
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Proof To show that the conditions (5.90a, 5.90b) are sufficient for S1 ⊆ S2, suppose
that x satisfies F1x ≤ b1. Then H F1x ≤ Hb1 since H ≥ 0, so (5.90a, 5.90b) imply
F2x ≤ b2 and it follows that x ∈ S2 for all x ∈ S1.

To show the necessity of (5.90a, 5.90b), assume S1 ⊆ S2. Then we must have
μ ≤ b2 where, for each i , the i th element of μ is defined by

μi
.= max

x∈Rnx
(F2)i x subject to F1x ≤ b1

with (F2)i denoting the i th rowof F2. The optimal value of this linear program (which
is feasible by assumption) is equal to the optimal value of the dual problem [33]:

μi = min
h∈Rn1

bT
1 h subject to hT F1 = (F2)i and h ≥ 0 (5.91)

where n1 is the number of rows of F1. Let h∗
i be the optimal solution of this linear

program and let H be the matrix with i th row equal to h∗T
i . Then (5.91) implies that

H ≥ 0 exists satisfying (5.90a, 5.90b) whenever S1 ⊆ S2. �

From (5.89b) and Lemma 5.6, we have xi+1|k ∈ Xi+1|k for all xi |k ∈ Xi |k and
i = 0, . . . , N − 1 if there exist matrices H ( j) ≥ 0, j = 1, . . . , m satisfying

αi+1|k ≥ H ( j)αi |k + V B( j)ci |k, i = 0, . . . , N − 1 (5.92a)

H ( j)V = V Φ( j) (5.92b)

for j = 1, . . . , m. Similarly, (5.89a) andLemma5.6 imply that the constraint Fxi |k +
Gui |k ≤ 1 is satisfied for all xi |k ∈ Xi |k , i = 0, . . . , N − 1, if there exists a matrix
Hc ≥ 0 satisfying

Hcαi |k+Gci |k ≤ 1, i = 0, . . . , N − 1 (5.93a)

HcV = F + G K . (5.93b)

The constraints (5.92a) and (5.93a) are nonlinear if H ( j) and Hc are treated as
variables concurrentlywithαi |k . However these conditions become linear constraints
in the online MPC optimization if H ( j) and Hc are determined offline. This has
the effect of making (5.92a) and (5.93a) only sufficient (not necessary) to ensure
xi+1|k ∈ Xi+1|k and Fxi |k + Gci |k ≤ 1 for all xi |k ∈ Xi |k . Therefore, to relax the
constraints on αi |k , a convenient criterion for the offline design of H ( j) and Hc is to
minimize the sum of the elements in each row of thesematrices subject to (5.92b) and
(5.93b). This suggests computing the rows, (Hc)i , of Hc for i = 1, . . . , nC offline
by solving the linear programs

h∗
i = arg min

h∈RnV
1T h subject to hT V = (F + G K )i and h ≥ 0 (5.94)
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and setting (Hc)i = h∗T
i , where (Hc)i and (F + G K )i denote the i th rows of Hc and

F + G K , respectively. Similarly, each H ( j), for j = 1, . . . , m, can be determined
offline by solving the linear programs

h( j)∗
i = arg min

h∈RnV
1T h subject to hT V = ViΦ

( j) and h ≥ 0 (5.95)

for i = 1, . . . , nV and setting H ( j)
i = h( j)∗

i

T
, where H ( j)

i andVi denote, respectively,
the i th rows of H ( j) and V .3

The constraints Fxi |k + Gci |k ≤ 1 can be imposed for i ≥ N through terminal
constraints on αN |k . From (5.92a) and (5.93a) with ci |k = 0, the required conditions
are given by

αi+1|k ≥ H ( j)αi |k, (5.96a)

Hcαi |k ≤ 1 (5.96b)

for j = 1, . . . , m and i = N , N + 1, . . .. Although these conditions are expressed in
terms of inequalities, the fact that Hc and H ( j) are nonnegative matrices implies that
(5.96a, 5.96b) are feasible for all i = N , N + 1, . . . if and only if they are feasible for
the unique trajectory {αN |k,αN+1|k, . . .} defined by the piecewise-linear dynamics

(αi+1|k)l = max
j∈{1,...,m} H ( j)

l αi |k, l = 1, . . . , nV , (5.97)

where (αi |k)l denotes the lth element of αi |k . The following result shows that these
dynamics are stable if V is chosen so that the set {x : V x ≤ 1} is contractive for the
mode 2 prediction dynamics defined in (5.65).

Lemma 5.7 If {x : V x ≤ 1} is λ-contractive for some λ ∈ [0, 1) under the dynamics
(5.65), then (5.97) satisfies ‖αi+1|k‖∞ ≤ λ‖αi |k‖∞, for all i .

Proof If S = {x : V x ≤ 1} is λ-contractive, namely if Φ( j)S ⊆ λS for all j =
1, . . . , m, then Lemma 5.6 implies ‖H ( j)‖∞ ≤ λ. �

3With Hc and H ( j), j = 1, . . . , m chosen so as to minimize sum of elements in each of their rows,
the conditions (5.92) and (5.93) include the corresponding conditions that were derived in Sect. 5.4.2
for low-complexity polytopes as a special case. Thus, expressing the low-complexity polytopic set
{x : α ≤ V0x ≤ α} equivalently as {x : V x ≤ α} with V = [V T

0 −V T
0 ]T and α = [αT −αT ]T , the

solutions of (5.94) and (5.95) can be obtained in closed form as

Hc = [(F̃ + GK̃ )+ (F̃ + GK̃ )−] and H ( j) =
[
(Φ̃( j))+ (Φ̃( j))−
(Φ̃( j))− (Φ̃( j))+

]
, j = 1, . . . , m.

Therefore conditions (5.78) and (5.79) are identical to (5.92) and (5.93) for this case.
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To meet the requirement in Lemma 5.7 that the set {x : V x ≤ 1} is
λ-contractive for λ ∈ [0, 1), V can be chosen, for example, so that this set is the
maximal robust invariant set for the system xk+1 = (1/λ)Φxk , Φ ∈ ΩK subject to
(F + G K )xk ≤ 1. For any λ in the interval (ρ, 1), where ρ is the joint spectral radius
defined in (5.72), it can be shown that this maximal robust invariant set is defined by
a set of linear inequalities of the form

X (n) = {x : (F + G K )x ≤ 1, (F + G K )Φ( j1)x

≤ λ1, . . . , (F + G K )Φ( j1) · · ·Φ( jn)x ≤ λn1, ji = 1, . . . , m, i = 1, . . . , n}
(5.98)

where n is necessarily finite if the pair
(
Φ, (F + G K )

)
is observable for some Φ ∈

ΩK . Rather than prove this result (details of which can be found in [34]), we consider
next the related problemof determining themaximal positively invariant set for (5.97)
contained in the set on which Hcα ≤ 1.

Under the assumption that the set {x : V x ≤ 1} is λ-contractive, which by
Lemma 5.7 implies that the system describing the evolution of αi |k in (5.97) is
asymptotically stable, the constraint that Hcαi |k ≤ 1 for all i ≥ N can be ensured
by imposing a finite set of linear constraints on αN |k . To see this, letA(n) denote the
set

A(n) .= {
α : Hcα ≤ 1, Hc H ( j1)α ≤ 1, . . . , Hc H ( j1) · · · H ( jn)α ≤ 1,

ji = 1, . . . , m, i = 1, . . . , n
}
,

then the maximal positively invariant set defined by

AMPI .= {αN |k : (5.96b), and (5.97) hold for i = N , N + 1, . . .},

is given by AMPI = limn→∞ A(n). The following result, which is an extension of
Theorems 2.3 and 3.1, gives a characterisation of AMPI in terms of a finite number
of linear conditions.

Corollary 5.3 The maximal positively invariant set for the system (5.97) and con-
straints (5.96b) is given by

AMPI = A(ν)

where ν is the smallest integer such that A(ν) ⊆ A(ν+1). If AMPI is bounded and
{x : V x ≤ 1} is λ-contractive for λ ∈ [0, 1) under (5.65), then n is necessarily finite.

Proof IfA(ν) ⊆ A(ν+1), thenA(ν) is necessarily invariant under (5.97) and is there-
fore a subset of AMPI in this case. But AMPI is by definition a subset of A(n) for all
n and it follows that A(ν) = AMPI.

Furthermore, if AMPI is bounded, then A(n) must also be bounded for some n.
From the definition of A(n) and Lemma 5.7, we have

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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A(n+1) = A(n) ∩ {
α : Hc H ( j1) · · · H ( jn+1)α ≤ 1, ji = 1, . . . , m,

i = 1, . . . , n + 1
}

⊇ A(n) ∩ {α : ‖Hc‖∞λn+1‖α‖∞ ≤ 1},

and λ ∈ [0, 1) therefore implies A(n+1) ⊇ A(n) for some finite n. �

Note that the assertion that AMPI is bounded, which is used in Corollary 5.3 to
ensure that themaximal positively invariant set for (5.97) and (5.96b) is finitely deter-
mined, can always be assumed to hold in practice. This is because unboundedness
of AMPI would indicate that some of the rows of V are redundant. Therefore, these
rows could be removed without affecting the set {x : V x ≤ α} for α ∈ AMPI.

Lemma 5.7 implies that a small value of λ will make the trajectories of (5.97)
convergemore rapidly, but choosingλ close to the joint spectral radius ρ could require
a large number of rows in V such that {x : V x ≤ 1} is λ-contractive. Conversely,
larger values of λ typically result in smaller values of nV but at the same time allow
the tube cross sections to grow more rapidly along predicted trajectories, and this
can cause the set of feasible initial conditions of an associated MPC law to increase
more slowly with the prediction horizon N . The design of λ is discussed further in
Example 5.4.

From the preceding discussion, it follows immediately that the predicted trajec-
tories of (5.89a, 5.89b) necessarily satisfy the constraints Fxi |k + Gui |k ≤ 1 for all
i ≥ 0 and for all realizations of model uncertainty if {α0|k, . . . ,αN |k} satisfy the
initial and terminal conditions

V xk ≤ α0|k (5.99)

αN |k ∈ AMPI (5.100)

in addition to the conditions for inclusion (5.92a) and feasibility (5.93a) for i =
0, . . . , N − 1. On the basis of these constraints and using the nominal cost (5.82)
discussed in Sect. 5.4.2, a robust MPC algorithm can be stated as follows. The asso-
ciated online optimization is a QP with O(N (nx + nu)) variables and O(N (nx +
nC ) + mν) constraints.

Algorithm 5.7 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
s0|k ,ck

α0|k ,...,αN |k
J (s0|k, ck) subject to (5.92a), (5.93a), (5.99), (5.100),

and V s0|k ≤ α0|k (5.101)

(ii) Apply the control law uk = K xk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal value of ck in (5.101). �
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Theorem 5.8 If {x : V x ≤ 1} is λ-contractive for some λ ∈ [0, 1), then the opti-
mization (5.101) is recursively feasible and the control law of Algorithm 5.7 asymp-
totically stabilizes the origin of the system (5.1)–(5.3), with a region of attraction
equal to the feasible set:

FN = {
xk : ∃(ck,α0|k, . . . ,αN |k) satisfying (5.92a), (5.93a), (5.99), (5.100)

}
.

Proof The proof of this result closely follows that of Theorem 5.7, and we therefore
provide only a sketch of the argument here. The recursive feasibility of (5.101)
follows from the feasibility of the solution at time k + 1 given by

s0|k+1 = Φ(0)s∗
0|k + B(0)c∗

0|k
ck+1 = (c∗

1|k, . . . , c∗
N−1|k, 0)

αi |k+1 = α∗
i+1|k, i = 0, . . . , N − 1,

(αN |k+1)l = max
j∈{1,...,m} H ( j)

l α∗
N |k, l = 1, . . . , nV

since with these parameters we obtain Xi |k+1 = Xi+1|k for i = 0, . . . , N − 1 and
αN |k+1 ∈ AMPI (since α∗

N |k ∈ AMPI). Thus at time k + 1, (5.92a) and (5.93a) hold
for i = 0, . . . , N − 1 and likewise (5.100) holds, whereas (5.99) and V s0|k+1 ≤ 1 are
satisfied at time k + 1 because xk+1 ∈ X1|k for all realizations of model uncertainty
at time k.

Asymptotic convergence can be shown using the bound

lim sup
k→∞

max{V xk} ≤ 1

(1 − λ)
sup
k≥0

max
j

max{V B( j)c∗
0|k} (5.102)

(wheremax{·} indicates themaximumelement of a vector). This follows, analogously
to Lemma 5.5, from the assumption that {x : V x ≤ 1} is λ-contractive for λ ∈ [0, 1),
and hence

max{V xk+1} ≤ max{V Φk xk} + max{V Bkc∗
0|k}

≤ λmax{V xk} + max{V Bkc∗
0|k}

along the trajectories of the closed-loop system. Asymptotic convergence, xk → 0,
then follows from the argument of the proof of Theorem 5.7 applied to (5.102),
whereas stability of x = 0 follows from local stability under u = K x and the property
that c∗

k = 0 if xk is sufficiently close to zero. �

Computing offline the matrices H ( j) and Hc that appear in the constraints of the
online MPC optimization (5.101) as opposed to retaining these matrices as vari-
ables in the optimization of predicted performance at each time step could make
the handling of constraints conservative. The following corollary of Lemma 5.6
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gives conditions under which computing H ( j) and Hc offline incurs no conserva-
tiveness.

Corollary 5.4 For given Fi ∈ R
ni ×nx and bi ∈ R

ni , let Si = {x : Fi x ≤ bi }, i =
1, 2. If there exists H ≥ 0 satisfying H F1 = F2 such that each row of H has only
one non-zero element, then S1 ⊆ S2 if and only if Hb1 ≤ b2.

Proof A sufficient condition for S1 ⊆ S2 is Hb1 ≤ b2 since then H ≥ 0 and H F1 =
F2 imply that F2x ≤ b2 whenever F1x ≤ b1. To show that Hb1 ≤ b2 is also necessary
if each rowof H contains only one non-zero element,wefirst note that {x : F1x ≤ b1}
can be assumed without loss of generality to be an irreducible representation of S1,
i.e. for each i ∈ {1, . . . , n1} there exists x ∈ S1 such that (F1)i x = (b1)i . Suppose
that the j th element of the i th row of H is non-zero and choose x ∈ S1 so that
(F1) j x = (b1) j . Then H F1 = F2 implies (F2)i x = Hi b1, where Hi is the i th row
of H . Hence Hi b1 ≤ (b2)i is needed in order that x ∈ S2; repeating this argument
for each i = 1, . . . , n2 shows that Hb1 ≤ b2 is necessary for S1 ⊆ S2. �

IfV is chosen so that {x : V x ≤ 1} is themaximalRPI set for the dynamics xk+1 =
(1/λ)Φxk , Φ ∈ ΩK , with (F + G K )xk ≤ 1, then from (5.98), V has the form V =
[(F + G K )T V ′T ]T for some V ′. Therefore it is always possible to choose Hc ≥ 0
satisfying (5.93b) so that Hc = [InC 0]. Hence, by Corollary 5.4, the conditions
(5.93a) in the online optimization (5.101) are necessary as well as sufficient for
satisfaction of the constraints Fxi |k + Gci |k ≤ 1 for all xi |k ∈ Xi |k , i = 0, . . . , N − 1
in this case.

The linear dependence of conditions (5.92a), (5.93a), (5.99) and (5.100) on the
variables {α0|k, . . . ,αN |k} allows the MPC optimization (5.101) to be formulated as
a QP problem. However defining the terminal condition in terms of the maximalMPI
set AMPI may introduce a large number of constraints into the online optimization.
At worst this terminal constraint contributes O(mν) linear constraints to (5.101), and
although removing redundant constraints reduces this number substantially (see for
example the related approach of [35]), the possibility of rapid growth of the number
of constraints with m may limit the usefulness ofAMPI as a terminal set if either the
number, m, of vertices of the uncertain model or the value of ν in Corollary 5.3 is
large.

To reduce the number of constraints in the online MPC optimization (5.101),
it is possible to define the terminal constraint using an invariant set for (5.97) and
(5.93b) that is not necessarily maximal. Provided this terminal set is invariant for the
dynamics (5.97), the guarantee of recursive feasibility of the MPC optimization in
Theorem 5.8 will not be affected. A simple alternative is to replace (5.100) with the
terminal constraints

αN |k ≥ H ( j)αN |k, j = 1, . . . , m (5.103a)

HcαN |k ≤ 1. (5.103b)

These constraints are necessarily feasible for some αN |k because of the conditions
on Hc and H ( j) in (5.92b) and (5.93b) and the asymptotic stability property of the
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system (5.97). To lessen the impact of this modification, it is possible to invoke
the terminal constraint on αT |k by introducing a supplementary horizon of T − N
and invoking the constraints (5.96a, 5.96b) for i = N , . . . , T − N − 1 [19, 20]. For
further details, see Question9 on p. 237.

Finally we note that Algorithm 5.7 is based on a nominal predicted cost, but it
could be reformulated as a min–max robust MPC algorithm using the worst-case
cost discussed in Sect. 5.3.1. For example, if W̌ satisfies the LMIs, for j = 1, . . . , m,

W̌ − Ψ ( j)T
W̌Ψ ( j) �

[
I K T

0 ET

] [
Q 0
0 R

] [
I 0
K E

]
, Ψ ( j) =

[
Φ( j) B( j)E
0 M

]
,

then ‖(xk, ck)‖2W̌ is an upper bound on the worst-case cost:

∥∥∥∥

[
xk

ck

]∥∥∥∥
2

W̌
≥ J̌ (xk, ck)

.= max
(Ai |k ,Bi |k )∈Ω, i=0,1,...

∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R
)
, (5.104)

and replacing the objective of (5.101) with ‖(xk, ck)‖2W̌ converts Algorithm 5.7 to
a min–max robust MPC requiring a QP optimization online. The implied control
law can be shown to be asymptotically stabilizing by demonstrating, similarly to the
proof of Theorem 5.5, that ‖(xk, ck)‖2W̌ is a Lyapunov function for the closed-loop
system.

Example 5.4 For the system (5.1)–(5.3) with the model parameters given in Exam-
ple 5.1 and K = [0.19 0.34], the joint spectral radius of the system xk+1 = Φxk ,
Φ ∈ ΩK , is ρ = 0.7415. For values of λ in the interval (ρ, 1), Table5.1 gives num-
bers of rows, nV , of the matrix V such that {x : V x ≤ 1} is the maximal RPI set for
the dynamics xk+1 = (1/λ)Φxk , Φ ∈ ΩK and constraints (F + G K )xk ≤ 1. The
table also shows the number of terminal constraints associated with either AMPI or
the alternative conditions (5.103a, 5.103b) when the tube cross sections are given
by Xi |k = {x : V x ≤ αi |k}. For all values of λ in this range and with either of these
definitions of the terminal constraints, the terminal set (namely the set xN |k such that
there exists αN |k satisfying the terminal constraints and V xN |k ≤ αN |k) is equal to
the maximal RPI set under u = K x (Fig. 5.5).

From Table5.1, it can be seen that, as expected, nV increases as λ is reduced.
This causes the required number of variables and constraints in the MPC online

Table 5.1 Number of facets
of tube cross sections and
number of terminal
constraints for varying λ

λ Tube cross
section

Terminal
constraints

Terminal
constraints

nV AMPI (5.103a, 5.103b)

0.999 6 12 22

0.9 8 20 28

0.8 12 60 40

0.742 28 808 88
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Fig. 5.5 The λ-contractive sets {x : V x ≤ 1} for λ = 0.742, 0.8, 0.9, 0.999 (solid lines) and the
corresponding terminal sets defined either byAMPI or (5.103a, 5.103b) (dashed line). The maximal
robustly controlled invariant set is also shown (dash-dotted line)

optimization (5.101) to increase, and in order to reduce online computation it is
therefore desirable to choose λ so as to avoid large values of nV . But for values of
λ close to unity the set of feasible initial conditions for Algorithm 5.7 grows slowly
with N , and for this example a good compromise is obtained with λ = 0.9.

The sets of feasible initial conditions,FN , are shown in Fig. 5.6 for Algorithm 5.7
with λ = 0.9 and with terminal constraints defined by AMPI. The feasible set F4
is equal to the maximal robustly controlled positively invariant (CPI) set for this
example, which has an area of 1415. Hence, there can be no further increase in FN

for N > 4. For comparison, Fig. 5.7 shows the feasible sets for Algorithm 5.6 with
tube cross sections and a terminal set defined by the low-complexity polytope given
in Example 5.3. Using low-complexity tubes results in smaller numbers of variables
and constraints in the online MPC optimization (Table5.2), but for this example
there is no increase in the feasible set for Algorithm 5.6 for N > 5, which implies
that Algorithm 5.6 remains infeasible irrespective of the value of N for some initial
conditions in the robustly CPI set.

The use of low-complexity polytopic tubes has a small but appreciable effect
on performance. For a set of initial conditions consisting of 34 points lying on the
boundary of F5 for Algorithm 5.6, the worst-case predicted cost of Algorithm 5.6
with N = 5 is on average 0.8% (and at most 1.6%) greater than the worst-case
predicted cost of Algorithm 5.7 with N = 4. ♦
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Fig. 5.6 The feasible sets,FN for Algorithm 5.7 with N = 1, 2, 3, 4 (solid lines), and the maximal
robustly controlled invariant set (dashed line). The terminal set is shown by the dash-dotted lines
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Fig. 5.7 The feasible sets, FN for Algorithm 5.6 with N = 1, 2, 3, 4, 5 (solid lines), and the
maximal robustly controlled invariant set (dashed line). The terminal set is indicated by the dash-
dotted lines
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Table 5.2 Number of variables, constraints and area of feasible region for the general complexity
and low-complexity polytopic tube MPC strategies of Algorithms 5.6 and 5.7

N General complexity tube Low-complexity tube

#variables #constraints Area of FN #variables #constraints Area of FN

1 17 56 989 9 24 747

2 26 84 1198 14 40 902

3 35 112 1407 19 56 1110

4 44 140 1415 24 72 1324

5 29 88 1345

5.6 Mixed Additive and Multiplicative Uncertainty

The results presented in Sects. 5.4 and 5.5 allow for the definition of polytopic tubes
that contain the predicted state and control trajectories of an uncertain system for
all future realizations of model uncertainty. Such tubes provide a systematic means
of handling constraints and, crucially, the complexity of their cross sections can be
controlled by the designer and does not depend on the length of prediction hori-
zon. Sections5.4 and 5.5 considered multiplicative model uncertainty only but the
method can easily be extended to cater for themore general case of mixedmultiplica-
tive and additive uncertainty. This section considers the model (5.5) with dynamics
xk+1 = Ak xk + Bkuk + Dkwk containingbothmultiplicative parametric uncertainty
and unknown additive disturbances. Here (Ak, Bk, Dk) belong for all k to a compact
polytopic parameter set Ω̃ and wk is confined for all k to a compact polytopic setW
containing w = 0:

(Ak, Bk, Dk) =
m∑

j=1

q( j)
k (A( j), B( j), D( j)), wk =

q∑

l=1

r (l)
k w(l) (5.105a)

q( j)
k , r (l)

k ≥ 0,
m∑

j=1

q( j)
k = 1,

q∑

l=1

r (l)
k = 1 (5.105b)

where the superscripts j and l are used to denote, respectively, multiplicative and
additive uncertainty vertices.

The approach of Sect. 5.5 can be extended to the case of mixed model uncertainty
by modifying the conditions (5.92a) and (5.96a) defining the evolution of tubes
that bound the predicted states over the mode 1 and mode 2 prediction horizons,
respectively. However we discuss here a more general approach that uses optimized
controller dynamics to design the mode 2 prediction dynamics for the case of mixed
uncertainty [21–23]. The use of general polytopic tubes in this context results in an
approach that subsumes the method of Sect. 5.5 as a special case and allows for a
terminal set larger than the maximal robustly positively invariant set under any given
linear feedback law.
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The optimization of the mode 2 prediction dynamics is aimed at maximizing the
volume of an invariant terminal set, and we therefore introduce further degrees of
freedom over the mode 1 prediction horizon for the purposes of improving perfor-
mance and increasing the region of attraction. Hence the predicted control strategy
is of the form

ui |k = K xi |k + Ccci |k + fi |k, (5.106a)

ci+1|k ∈ Co{A( j)
c ci |k + C ( j)

w wi |k, j = 1, . . . , m} (5.106b)

with fi |k = 0 for all i ≥ N . At each time instant k ≥ 0, ck
.= c0|k ∈ R

nx and
fk

.= ( f0|k, . . . , fN−1|k) ∈ R
Nnu are variables in the online MPC optimization. We

note that the disturbance affine term in (5.106b) provides feedback from the future
disturbances which, although unknown when the predictions are optimized at time
k, will be available to the controller at time k + i , and (5.106a, 5.106b) therefore
constitutes a closed-loop prediction strategy.

In this setting, the optimized controller dynamics are introduced at every time
step of the entire prediction horizon, with Cc, A( j)

c , C ( j)
w chosen so as to maximize

the volume of a robustly invariant ellipsoidal terminal set. For i ≥ N , we use the
following description of the mode 2 prediction dynamics corresponding to (5.5)
under the terminal control law ui |k = K xi |k + Ccci |k :

zi+1|k = Ψi |k zi |k + D̃i |kwi |k, zN |k =
[

xN |k
cN |k

]
(5.107)

where

(Ψi |k, D̃i |k) ∈ Co
{
(Ψ ( j), D̃( j)), j = 1, . . . , m

}

and, for j = 1, . . . , m,

Ψ ( j) =
[
Φ( j) B( j)Cc

0 A( j)
c

]
, D̃( j) =

[
D( j)

C ( j)
w

]
.

Theorem 5.9 The ellipsoidal set Ez = {z : zT Pzz ≤ 1} is robustly invariant for the
dynamics (5.107) with the constraint (5.3) if and only if there exists a positive definite
matrix Pz and a nonnegative scalar σ such that

⎡

⎣
Pz PzΨ

( j) Pz D̃( j)w(l)

� σPz 0
� � 1 − σ

⎤

⎦ � 0, j = 1, . . . , m, l = 1, . . . , q. (5.108)

Proof The conditions for invariance require zT
i+1|k Pzzi+1|k ≤ 1 for all zi |k such that

zT
i |k Pzzi |k ≤ 1. From (5.107), this is equivalent to the conditions that, for all z ∈ R

2nx ,
and for j = 1, . . . , m and l = 1, . . . , q,
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1 − (
Ψ ( j)z + D̃( j)w(l))T

Pz
(
Ψ ( j)zk|k + D̃( j)w(l)) ≤ σ jl(1 − zT Pzz).

These conditions can be expressed in terms of σ, defined as the minimum of σ jl over
j and l, as

[
z
1

]T
[
σPz − Ψ ( j)T

PzΨ
( j) Ψ ( j)T

Pz D̃( j)w(l)

� 1 − σ − w(l)T
D̃( j)T

Pz D̃( j)w(l)

] [
z
1

]
≥ 0 (5.109)

for all z, j and l, which can be shown, using Schur complements, to be equivalent to
(5.108). From the linear dependence of (5.108) on w(l) for l = 1, . . . , q, it follows
that (5.108) is necessary and sufficient for invariance over the entire class of additive
uncertainty. The same applies in respect of the multiplicative uncertainty class since
(5.108) depends linearly on (Ψ ( j), D̃( j)) for j = 1, . . . , m. This argument makes the
implicit assumption that σPz − Ψ ( j)T PzΨ

( j) is strictly positive definite for each j ,
butwe note that, if thismatrix is only positive semidefinite, a similar argument applies
with the matrix inverse replaced by the relevant Moore–Penrose pseudoinverse [24].

�

Given the invariance property of Theorem5.9, the constraints (5.3) can be imposed
over the mode 2 prediction horizon by ensuring that Fx + Gu ≤ 1 holds for all
z ∈ Ez = {z : zT Pzz ≤ 1}. This is equivalent to the conditions

[
H

[
F + G K GCc

]
P−1

z
� P−1

z

]
� 0, eT

i Hei ≤ 1, i = 1, . . . , nC , (5.110)

for some symmetric matrix H , where ei is the i th column of the identity matrix.
Using the convexification technique of Sect. 5.3.1, it is possible to express (5.108)
and (5.110) in terms of the equivalent LMI conditions:

⎡

⎢⎢⎢⎢⎣

[
Y X
X X

] [
Φ( j)Y + B( j)Γ Φ( j) X

Ξ( j) + Φ( j)Y + B( j)Γ Φ( j) X

] [
D( j)

D( j) + Γ
( j)
w

]

�

[
Y X
X X

]
0

� � 1 − σ

⎤

⎥⎥⎥⎥⎦
� 0 (5.111)

for j = 1, . . . , m and (5.44b). Here the transformed variables X, Y, Ξ( j), Γ are as
defined in (5.45) and (5.46b), and Γ

( j)
w is an additional variable satisfying C ( j)

w =
Γ

( j)
w U−1 for j = 1, . . . , m.
The parameters Pz, Cc and A( j)

c , C ( j)
w , j = 1, . . . , m that maximize the volume of

the x-subspace projection of Ez for the mode 2 prediction dynamics of (5.107) can be
computed offline by solving a semidefinite program. In particular, the projection of Ez

onto the x-subspace is given by {x : xT Y −1x ≤ 1}, and the volume of this ellipsoidal
set is maximized through the maximization of log det(Y ) subject to (5.111) and
(5.44b).
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As pointed out in Sect. 5.3.1, using the ellipsoid Ez to impose linear constraints
on predicted trajectories implies a degree of conservativeness in the handling of
constraints. Here instead we use the design of Ez simply as a means of optimizing
the mode 2 prediction dynamics, and impose the constraints Fxi |k + Gui |k ≤ 1 at all
prediction timesusingpolytopic tubes.This canbedonebymodifying the approachof
Sect. 5.5 to account for the predicted values of the controller state ci |k and the additive
uncertainty wi |k . For i = 0, . . . , N − 1 the predicted trajectories are governed by

zi+1|k = Ψi |k zi |k + B̃i |k fi |k + D̃i |kwi |k, z0|k =
[

xk

ck

]

(Ψi |k, B̃i |k, D̃i |k) ∈ Co
{
(Ψ ( j), B̃( j), D̃( j)), j = 1, . . . , m

}

wi |k ∈ Co{w(l), l = 1, . . . , q}

where

B̃i |k =
[

Bi |k
0

]
, B̃( j) =

[
B( j)

0

]
.

Define the polytopic set

Zi |k = {z : V z ≤ αi |k},

where V ∈ R
nV ×2nx is to be designed offline and αi |k for i = 0, . . . , N are variables

in the online MPC optimization performed at each time step k. Then, by Lemma 5.6,
the conditions zi |k ∈ Zi |k , for i = 1 . . . , N are enforced by the following constraints,
for some H ( j) ≥ 0,

αi+1|k ≥ H ( j)αi |k + V B̃( j) fi |k + V D̃( j)w(l), i = 0, . . . , N − 1 (5.112a)

H ( j)V = V Ψ ( j) (5.112b)

for j = 1, . . . , m, l = 1, . . . , q. The constraints Fxi |k + Gui |k ≤ 1 are likewise sat-
isfied for all i = 0, . . . , N − 1 if, for some Hc ≥ 0 the following constraints hold:

Hcαi |k + G fi |k ≤ 1, i = 0, . . . , N − 1 (5.113a)

HcV = [
F + G K GCc

]
. (5.113b)

Based on the discussion of terminal conditions in Sect. 5.5, we introduce the terminal
conditions

H ( j)αN |k + V D̃( j)w(l) ≤ αN |k (5.114a)

HcαN |k ≤ 1 (5.114b)
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for j = 1, . . . , m, l = 1, . . . , q. By Lemma 5.6, these conditions are sufficient to
ensure Fxi |k + Gui |k ≤ 1 for all i ≥ 0 if α0|k satisfies the initial condition

α0|k ≥ V

[
xk

ck

]
. (5.115)

As in Sect. 5.5, the matrix V is assumed to be chosen offline so that {z : V z ≤ 1}
is λ-contractive, for some λ ∈ [0, 1), under the mode 2 prediction dynamics (5.107).
The nonnegative matrices Hc are computed offline by solving the linear programs

h∗
i = arg min

h∈RnV
1T h subject to hT V = (

[
F + G K GCc

]
)i and h ≥ 0

and setting (Hc)i = h∗T
i for i = 1, . . . , nC , where (Hc)i and ([F + G K GCc])i

denote the i th rows of Hc and [F + G K GCc]. Likewise H ( j), j = 1, . . . , m, are
computed by solving

h( j)∗
i = arg min

h∈RnV
1T h subject to hT V = ViΨ

( j) and h ≥ 0

and setting H ( j)
i = h( j)∗

i

T
for i = 1, . . . , nV and j = 1, . . . , m, where H ( j)

i and Vi

denote the i th rows of H ( j) and V , respectively.
To construct a robust MPC algorithm using this formulation of constraints, we

next consider the form of the MPC cost index. Here we consider a worst-case cost
with respect to the model uncertainty. To evaluate this cost, the prediction dynamics
are first expressed in compact form as

ξi+1|k = Θi |kξi |k + D̂wi |k, ξ0|k =
⎡

⎣
xk

ck

fk

⎤

⎦ (5.116)

with fk = ( f0|k, . . . , fN−1|k) and

(Θi |k, D̂i |k) = Co
{
(Θ( j), D( j)), j = 1, . . . , m

}
,

Θ( j) =
⎡

⎣
Φ( j) B( j)Cc B( j)E

0 A( j)
c 0

0 0 M

⎤

⎦ , D̂( j) =
⎡

⎣
D( j)

C ( j)
w

0

⎤

⎦

with the matrices E and M defined as in (2.26b). For the predicted cost defined by

J̌ (xk, ck, fk) = max
(Ai |k ,Bi |k ,Di |k )∈Ω̃,

wi |k , i=0,1,...

∞∑

i=0

‖xi |k‖2Q + ‖ui |k‖2R − γ2‖wi |k‖2 (5.117)

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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the following result provides conditions allowing an upper bound on J̌ (xk, ck, fk) to
be determined.

Lemma 5.8 For given γ, the predicted cost (5.117) is bounded from above as

J̌ (xk, ck, fk) ≤ ξT
0|k W̌ξ0|k

for all (xk, ck, fk) if and only if W̌ � 0 satisfies the LMIs, for j = 1, . . . , m:

W̌ −
[
Θ( j)T

0

D̂( j)T
1

]
W̌

[
Θ( j) D̂( j)

0 1

]
�

[
Q̂ 0
0 −γ2 I

]
(5.118)

where

Q̂ =
⎡

⎣
Q + K T RK K T RCc K T RE

� CT
c RCc CT

c RE
� � ET RE

⎤

⎦ .

Proof The bound on J̌ (xk, ck, fk) is obtained by summing over all i ≥ 0 the bound
‖ξi |k‖2W̌ − ‖ξi+1|k‖2W̌ ≥ ‖xi |k‖2Q + ‖ui |k‖2R − γ2‖wi |k‖2, which by (5.116) can be

expressed as ‖ξ‖2
W̌

− ‖Θξ + D̂w‖2
W̌

≥ ‖ξ‖2
Q̂

− γ2‖w‖2 or equivalently as

[
ξ
w

]T [
W̌ − ΘT W̌Θ ΘW̌ D̂

� γ2 − D̂T W̌ D̂

] [
ξ
w

]
≥ 0

Since the disturbance setW contains w = 0 by assumption, the matrix appearing in
this expressionmust be positive semidefinite, and by rearranging terms this condition
is equivalent to

W̌ −
[
ΘT 0
D̂T 1

]
W̌

[
Θ D̂
0 1

]
�

[
Q̂ 0
0 −γ2 I

]
.

Using Schur complements, this can be written as an LMI in Θ and D̂, which by
convexity is satisfied for all (Θ, D̂) ∈ Co{(Θ( j), D̂( j), j = 1, . . . , m} if and only
(5.118) holds. �

A unique value of W̌ corresponding to a tight bound on J (xk, ck, fk) can be
obtained by solving the semidefinite program:

minimize
W̌

tr(W̌ ) subject to (5.118).
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Algorithm 5.8 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
ck ,fk

α0|k ,...,αN |k

‖(xk, ck, fk)‖2W̌

subject to (5.112a), (5.113a), (5.114a,b), (5.115) (5.119)

(ii) Apply the control law uk = K xk + Ccc∗
k + f ∗

0|k , where f∗
k = ( f ∗

0|k, . . . , f ∗
N−1|k)

and c∗
k , f∗

k are the optimal values of ck and fk in (5.119). �

Theorem 5.10 The optimization (5.119) is recursively feasible, and for all initial
conditions x0 in the feasible set

FN = {xk : ∃(ck, fk) satisfying (5.112a), (5.113a), (5.114a, 5.114b), (5.115)},

the trajectories of the system (5.1)–(5.3) under the control law of Algorithm 5.8
satisfy the l2 bound:

∞∑

k=0

(‖xk‖2Q + ‖uk‖2R) ≤ γ2
∞∑

k=0

‖w‖2k + ‖(x0, c∗
0, f∗

0)‖2W̌ . (5.120)

Proof Assume xk ∈ FN and consider the solution at time k + 1 given by

ck+1 = Ac,kc∗
k + Cw,kwk

fk+1 = ( f ∗
1|k, . . . , f ∗

N−1|k, 0)
αi |k+1 = α∗

i+1|k, i = 0, . . . , N − 1,

(αN |k+1)l = max
j∈{1,...,m} H ( j)

l α∗
N |k, l = 1, . . . , nV

for some (Ac,k, Cw,k) ∈ Co{(A(1)
c , C (1)

w ), . . . , (A(m)
c , C (m)

w )}. This choice of vari-
ables gives Zi |k+1 = Zi+1|k for i = 0, . . . , N − 1 and hence (5.112a), (5.113a) and
(5.114a) are necessarily satisfied at k + 1. Also the definition of αN |k+1 satisfies
(5.114b) and z1|k ∈ Z1|k implies that (5.115) is satisfied by (xk+1, ck+1), which
demonstrates that (5.119) is recursively feasible.

From (5.108) and optimality of the solution of (5.119) at time k + 1, it follows
that

‖(xk+1, c∗
k+1, f∗

k+1)‖2W̌ ≤ ‖(xk+1, ck+1, fk+1)‖2W̌
≤ ‖(xk, c∗

k , f∗
k)‖2W̌ − ‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2

Summing both sides of this inequality over all i ≥ 0 yields the bound (5.120). �
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To conclude this section, we note that, if the sequence {wk , k = 0, 1, . . .} is square
summable, then under the control law of Algorithm 5.8 the origin of the state-space
will be asymptotically stable since in this case the bound (5.120) implies that the stage
cost converges to zero.We also note that, as explained in Chap.3, the definition of the
MPC cost as an upper bound on the min–max cost (5.117) ensures that γ provides a
bound on the induced l2 norm from the disturbance to the closed-loop system state.
In this sense, one may wish to choose γ to be small. However, the smaller the γ is,
the larger the trace of W̌ will have to be in order that W̌ can satisfy (5.118). Thus a
compromise between the tightness of the cost bound and the disturbance rejection
ability of Algorithm 5.8 is needed.

Example 5.5 Consider the system (5.5) with parametric uncertainty and unknown
disturbances contained in the polytopic sets defined in (5.105a, 5.105b). The para-
meters A( j), B( j) for j = 1, 2, 3 are as given in Example 5.1. Also D( j) = I for
j = 1, 2, 3 and the disturbance set W ⊂ R

2 is given by

W = Co

{[
1
1

]
,

[
1

−1

]
,

[−1
1

]
,

[−1
−1

]}
.

The system is subject to the constraints of Example 5.1, namely the state constraints
−10 ≤ [0 1]xk ≤ 10 and input constraints −5 ≤ uk ≤ 5.

The feedback gain K is again given by K = [0.19 0.34], and optimizing the
prediction dynamics subject to (5.109) and (5.110) yields σ = 0.898 and

A(1)
c =

[−0.69 0.20
−0.28 −0.12

]
, A(2)

c =
[−0.74 −0.004
0.25 0.02

]
, A(3)

c =
[−0.63 −0.21
−0.06 −0.26

]

with C ( j)
w = −I (to 2 decimal places) for j = 1, 2, 3 and

Cc = [
0.13 −0.14

]
.

The matrix V defining the polytopic tube cross sectionsZi |k is chosen so that the set
{z : V z ≤ 1} is λ-contractive, with λ = 0.9. Thus {z : V z ≤ 1} is defined as themax-
imal RPI set for the system zk+1 = (1/λ)(Ψ zk + D̃wk), (Ψ, D̃) ∈ Co{(Ψ ( j), D̃( j)),

j = 1, . . . , m},wk ∈ W , which yields a V with 22 rows. The corresponding terminal
conditions (5.113) consist of 70 constraints and the terminal set is shown in Fig. 5.8.
From Fig. 5.8, it can be seen that this terminal set contains and extends beyond the
maximal RPI set under the linear feedback law u = K x .

For comparison, if the terminal control law is chosen as u = K x and if the state
tube cross sections are defined in the space of x (rather than z) in terms of the
matrix Vx such that {x : Vx x ≤ 1} is the maximal RPI set for xk+1 = (1/λ)(Φxk +
Dwk), (Φ, D) ∈ Co{(Φ( j), D( j)), j = 1, . . . , m},wk ∈ W , then Vx has 8 rows, the
terminal conditions are defined by defined by 28 constraints and the corresponding
terminal set coincides with the maximal RPI set under u = K x . The larger terminal
set that is obtained with the optimized prediction dynamics enables the feasible set

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Fig. 5.8 The terminal sets for the case that the terminal controller is defined using a optimized
prediction dynamics, and b a fixed linear controller (solid lines). Also shown are the maximal
robustly controlled invariant set (dash-dotted line) and themaximalRPI set under the linear feedback
law (dashed line)
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Fig. 5.9 The feasible initial condition sets FN for Algorithm 5.8, for N = 1, 2 (solid lines). The
terminal set (dash-dotted line) and the maximal robustly controlled invariant set (dashed line) are
also shown
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Fig. 5.10 The feasible initial condition sets FN for Algorithm 5.8 with a fixed linear terminal
controller, for N = 1, 2, 3, 4 (solid lines). The terminal set (dash-dotted line) and the maximal
robustly controlled invariant set (dashed line) are also shown

for Algorithm 5.8 to cover the entire maximal robustly controlled invariant set for
this system with a prediction horizon of just N = 2 (Fig. 5.9). On the other hand,
with the fixed linear terminal feedback law u = K x and state tube cross sections
defined in the space of x , a prediction horizon of N = 4 is needed in order that the
feasible set coincides with the maximal robustly CPI set (Fig. 5.10).

However, for this example the approach based on optimized prediction dynamics
with N = 2 requires a greater number of optimization variables and constraints than
when a fixed terminal feedback gain is employed (Table5.3). The extra degrees of

Table 5.3 Number of variables, constraints and area of feasible region for the MPC strategy of
Algorithm5.8with terminal control lawdefined by optimized prediction dynamics andwith terminal
control law defined by fixed linear feedback

N Optimized prediction dynamics Fixed terminal feedback gain

Variables Constraints Area of FN Variables Constraints Area of FN

1 47 162 1200 17 64 880

2 70 332 1255 26 92 1038

3 35 120 1202

4 44 148 1255
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freedom associated with the optimized prediction dynamics translates into improved
predicted performance. For example, the worst-case predicted cost, evaluated at the
vertices of the maximal CPI set, is on average 3.1% (at most 4.6%) higher if a fixed
linear terminal feedback gain is used than if the optimized prediction dynamics are
employed. ♦

5.7 Exercises

1 A symmetric, real-valued n × n matrix P is positive definite (P � 0) if and only
if vT Pv > 0 for all non-zero real vectors v. Use this property to prove the following
statements.

(a) The linear matrix inequality M(x) � 0 is convex in x = (x1, . . . , xn) where

M(x) = M0 + x1M1 + · · · + xn Mn

for given symmetric matrices M0, . . . , Mn .
(b) The condition [

P Q
QT R

]
� 0

for symmetric P and R is equivalent to the Schur complements

R � 0, P − Q R−1QT � 0.

(c) If P = S−1 � 0, then the condition S − AS AT � 0 is equivalent to
P − AT P A � 0.

2 Let E be the ellipsoidal set defined by E = {x : xT Px ≤ 1}, for some symmetric
matrix P � 0.

(a) Show thatE ⊆ X , whereX is the polytopeX = {x : V x ≤ 1} for a givenmatrix
V ∈ R

nV ×nx , if and only if

Vi P−1V T
i ≤ 1, i = 1, . . . , nV

where Vi for i = 1, . . . , nV are the rows of V .
(b) Hence, show that Fx + Gu ≤ 1 holds for all x ∈ E , where u = K x , if and only

if the following LMI conditions in variables S, Y hold

[
1 Fi S + Gi Y

(Fi S + Gi Y )T S

]
� 0, i = 1, . . . , nC

where Fi and Gi , i = 1, . . . , nC are the rows of F and G, and where (S, Y ) =
(P−1, K P−1).
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3 A system is described by the model xk+1 = Ak xk + Bkuk with

(Ak, Bk) ∈ Co
{
(A(1), B(1)), (A(2), B(2))

}

= Co

{([
0.7 −0.6

−0.7 −1.8

]
,

[
0.3

−0.5

])
,

([
0.5 −0.8

−0.6 −1.8

]
,

[
0.1

−0.4

])}

at each time step k = 0, 1, . . .. The control input is subject to the constraints −1 ≤
uk ≤ 1 for all k. A robust MPC law uk = Kk xk is to be designed for this system with
the aim of minimizing, at each time k, a quadratic bound on the worst-case predicted
cost:

J̌ (xk, Kk) = max{(Ak ,Bk ),(Ak+1,Bk+1),...}

∞∑

i=0

(‖xi |k‖2Q + ‖ui |k‖2R
)

subject to −1 ≤ ui |k ≤ 1, i = 0, 1, . . ..

(a) Show that the worst-case cost satisfies the bound J̌ (xk, Kk) ≤ γk if

P−(A( j)+B( j)Kk)
TP(A( j)+B( j)Kk) � γ−1

k (Q+K T
k RKk), j = 1, 2

(Fi + Gi Kk)P−1(Fi + Gi Kk)
T ≤ 1, i = 1, . . . , nC

xT
k Pxk ≤ 1

for some matrix P = PT � 0, where Fi , Gi for i = 1, . . . , nC are the rows of
F and G.

(b) Suggest a suitable transformation of optimization variables to enable the value
of Kk that minimizes γk subject to the constraints of (a) to be computed using
semidefinite programming. Hence, verify that for x0 = (4,−1) this gives K0 =[−0.962 −3.678

]
and γ0 = 152.4.

(c) Explain why a better approximation of the worst-case cost is given by the bound
J (xk, Kk) ≤ xT

k Θ∗
k xk , where

Θ∗
k = argmin

Θ
xT

k Θxk subject to

Θ − (A( j) + B( j)Kk)
T Θ(A( j) + B( j)Kk) � Q + K T

k RKk, j = 1, 2

Hence, verify that for x0 = (4,−1) and K0 = [−0.962 −3.678
]
the worst-case

cost satisfies the upper bound J (x0, K0) ≤ 69.0.
(d) Comment on the suggestion that a better control strategy could be constructed

by choosing Kk so as to minimize, at each time k, the value of xT
k Θxk subject to

Θ − (A( j) + B( j)Kk)
T Θ(A( j) + B( j)Kk) � Q + K T

k RKk, j = 1, 2

P − (A( j) + B( j)Kk)
T P(A( j) + B( j)Kk) � 0, j = 1, 2
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(Fi + Gi Kk)P−1(Fi + Gi Kk)
T ≤ 1, i = 1, . . . , nC

xT
k Pxk ≤ 1.

4 (a) Let E = {x : xT Px ≤ 1} for given P � 0 and let the vector x ∈ R
n be par-

titioned according to x = (u, v), u ∈ R
m , v ∈ R

n−m . Show that the u-subspace
projection of E (i.e. the set {u : ∃v such that (u, v) ∈ E}) is given by

Eu = {u : uT Puu ≤ 1}

where

P−1
u = [

Im 0
]

P−1
[

Im

0

]

and
[
Im 0

]
x = u.

(b) Using the system model and constraints of Question3, calculate the robustly
invariant ellipsoidal set Ez for the uncertain dynamics

zi+1|k ∈ Co{Ψ (1)zi |k, Ψ (2)zi |k}

and constraints −1 ≤ [
K E

]
zi |k ≤ 1, with N = 12 (i.e. zi |k ∈ R

14) and

Ψ ( j) =
[

A( j) + B( j)K B( j)E
0 M

]
, j = 1, 2,

K = [−1.078 −3.523
]
, E = [

1 0 · · · 0] , M =

⎡

⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0

⎤

⎥⎥⎥⎦ ,

such that the area of its projection onto the state space of the system ismaximized.
Verify that the maximum area projection is given by {x : xT Px x ≤ 1} with
det(Px ) = 0.783.

(c) For the system in Question4, with nominal model parameters defined by
(A(0), B(0)) = 1

2

(
(A(1), B(1)) + (A(2), B(2))

)
, the unconstrained optimal feed-

back gain for the nominal cost with weights Q = I , R = 1 is K =[−1.078 −3.523
]
and the corresponding solution of the Riccati equation (2.9) is

Wx =
[
2.691 3.668
3.668 21.94

]
.

Taking N = 12, determine the matrix W in the expression for the nominal pre-
dicted cost:

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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J (xk, ck) =
∞∑

i=0

(‖xi |k‖2 + u2
i |k

) =
[

xk

ck

]T

W

[
xk

ck

]
,

where the nominal predicted state and control trajectories evolve according to

xi+1|k = A(0)xi |k + B(0)ui |k, ui |k = K xi |k + ci |k,

with ck = (c0|k, . . . , cN−1|k) and ci |k = 0 for i ≥ N .

Show that the minimum value of this cost at k = 0 with x0 = (4,−1) subject
to the constraint (x0, c0) ∈ Ez , where Ez is the robustly invariant ellipsoid deter-
mined in part (b), is J ∗(x0) = 39.9.

5 It is suggested that the value of the predicted cost in Question4 could be reduced
using a univariate search:

α∗
k = min

αk∈[0,1] αk subject to − 1 ≤ K xk + αkc∗
k ≤ 1,

Ψ ( j)
[

xk

αkc∗
k

]
∈ Ez, j = 1, 2

where c∗
k is the solution of the minimization in Question4(c) at time k.

(a) Explain the purpose of each the constraints in this line search.
(b) For the system of Question4, find the smallest value of σ for which there exists

Θ � 0 satisfying

⎡

⎣
Θ − I (A( j) + B( j)K )T Θ 0

� Θ Θ B( j)

� � σ2 Inu

⎤

⎦ � 0, j = 1, 2

What does this imply about the state of the closed-loop system under a control
law of the form uk = K xk + c0|k?

(c) Suppose that, at each time step, k = 0, 1, . . ., the optimization of Question4(c)
and the line search in (a) is performed and the solution is used to define an MPC
law uk = K xk + α∗

k c∗
k . Will the closed-loop system be stable?

6 (a) For the system of Question3 with K = [−1.078 −3.523
]
, solve (5.48) to

determine the prediction dynamics that give the robustly invariant ellipsoid Ez

with the largest area projection onto the model state space, and confirm that the
solution gives

A(1)
c =

[
0.835 −1.539

−0.035 −0.612

]
, A(1)

c =
[
0.692 −1.113
0.026 −0.821

]

Cc = [−0.176 −0.394
]
.
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(b) Compute the matrix Wc � 0 with smallest trace satisfying

Wc − A( j)
c

T
Wc A( j)

c � B(0) T Wx B(0) + R, j = 1, 2

Hence, verify that, with x0 = (4,−1), the minimum over c0 of the cost
J (x0, c0) = ‖x0‖2Wx

+ ‖c0‖2Wc
subject to (x0, c0) ∈ Ez , where Ez is the ellip-

soidal set determined in (a), is J ∗(x0) = 44.7.
(c) Explain how the inequality defining Wc in (b) ensures the stability of the

closed-loop system under the control law uk = K xk + c∗
0|k , where at each time

k = 0, 1, . . ., c∗
0|k is the first element of the optimal c∗

k for the minimization of
the cost J (xk, ck) subject to (xk, ck) ∈ Ez .

(d) Determine the maximum scaling σ such that σx0, with x0 = (4,−1), lies in
the feasible set for the minimization of J (x0, c0) in (b) (i.e. Algorithm 5.4).
Compare this with the maximum value of σ such that σx0 is feasible for the
minimization in Question4(c) (i.e. Algorithm 5.3) and that of Question3(b)
(i.e. Algorithm 5.1). What conclusions can be drawn from this comparison?

7 Explain why the problem of maximizing the volume of the low-complexity poly-
topic set, Π(V,α)

.= {x : |V x | ≤ α}, where V ∈ R
nx ×nx is an invertible matrix, is

in general nonconvexwhen V andα are both considered to be optimization variables.
Show that the volume maximization can be formulated as a convex problem if V is
fixed.

8 This question considers how to construct a low-complexity polytopic set for
the system and constraints of Question3 under the control law u = K x , K =[−1.078 −3.523

]
.

(a) Show that if V = W −1, where W is the (right) eigenvector matrix of Φ(0) =
A(0) + B(0)K , i.e.

W =
[

0.982 0.851
−0.187 0.525

]
, V =

[
0.778 −1.262
0.277 1.456

]
,

then there necessarily exists a vector α such that the low-complexity poly-
tope {x : |V z| ≤ α} is invariant for the uncertain dynamics xk+1 ∈ Co{Φ(1)xk,

Φ(2)xk} where Φ( j) = A( j) + B( j)K , j = 1, 2.
(b) Formulate and solve a convex optimization to determine α so that the volume of

the set Π(V,α) is maximized, where V is fixed at the value specified in (a).

9 The maximal robustly invariant polytopic set for the system and constraints of
Question3 under u = K x is given by

{x : V x ≤ 1}, V =

⎡

⎢⎢⎣

−1.078 −3.523
1.078 3.523
0.172 2.622

−0.172 −2.622

⎤

⎥⎥⎦
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(a) Determine nonnegative matrices H (1), H (2) and Hc satisfying

H ( j)V = V Φ( j), j = 1, 2

HcV = G K

where G = [
1 −1

]T , such that the sum of the elements in each row of each of
H (1), H (2) and Hc is minimized.

(b) Show that, for any given mode 1 horizon N , if there exists a pair of sequences
ck = (c0|k, . . . , cN−1|k) and αk = (α0|k, . . . ,αN |k) satisfying the constraints
defined at time k by

V xk ≤ α0|k
H ( j)αi |k + V B( j)ci |k ≤ αi+1|k, j = 1, 2, i = 0, . . . , N − 1

Hcαi |k + Gci |k ≤ 1, i = 0, . . . , N − 1

H ( j)αN |k ≤ αN |k, j = 1, 2

HcαN |k ≤ 1

then there must exist ck+1 and αk+1 satisfying the corresponding constraints at
time k + 1 if uk = K xk + c0|k .

(c) For a mode 1 horizon of N = 8 and x0 = (4,−1), determine the maximum
scalar σ such that σx0 is feasible for the constraints in part (b).

(d) At k = 0 with x0 = (4,−1), solve the MPC optimization:

minimize
s0|k ,ck ,αk

J (s0|k, ck)

subject to V s0|k ≤ α0|k and the constraints of part (b) with N = 8, where the
nominal cost is defined by

J (s0|k, ck) = ‖s0|k‖2Wx
+ ‖ck‖2Wc

.

Confirm that the optimal predicted cost for this initial condition is J (s∗
0|k, c∗

0) =
37.9.
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Part III
Stochastic MPC



Chapter 6
Introduction to Stochastic MPC

Uncertainty forms an integral part of most control problems and earlier chapters
discussed howMPCalgorithms can be constructed in order to treatmodel uncertainty
in a robust sense. One of the key features of robust MPC is that it requires constraints
to be satisfied for all possible realizations of uncertainty. Thus each element of the set
of values that can be assumed by an uncertain model parameter or disturbance input
is treated with equal importance, and robust MPC does not discriminate between
alternative realizations on the basis of their respective likelihood.

However, in practical applications it is often the case that some realizations of
model uncertainty, for example parameter realizations that lie close to the nominal
value of that parameter, aremore likely thanothers, such as parameter realizations that
lie on the boundary of the uncertainty set. In fact model uncertainty is often stochastic
with a probability distribution that is known, either as a result of statistical analysis
performed during model identification, or because of physical principles underlying
the model. Clearly the distribution of model uncertainty is useful information that
should be taken into account in the design of MPC algorithms.

An obvious way to address this is through the definition of the cost. Thus, rather
than being defined as a nominal or worst-case value, the MPC cost can be chosen
to be the expected value, over the distribution of uncertainty, of the usual quadratic
predicted cost. An additional and often more crucial use of distribution information
corresponds to the case inwhich some or all of the system constraints are probabilistic
in nature. In this case, constraint violations are permitted provided the frequency of
constraint violations (or more generally the number of violations in a given time
interval) is below a predefined limit.

An example of a control problem involving probabilistic constraints concerns the
optimal allocation of resources for sustainable development. Consider, for example,
investment in electricity generating technology, where it is important to minimize
(among other objectives) the cost of energy for the consumer while meeting (among
other constraints) limits on emissions of greenhouse gases. Taking the horizon of
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interest to be the 30years separating generations, it does not make sense to expect
the accumulated emissions of CO2 over 30years, say y, to be less than a given
amount, say A, because of the various unknown factors associated with economic
and technological development over a horizon of this length. In fact, given that such
factors are stochastic in nature, it follows that y itself will be a randomvariable, so that
a constraint that y ≤ A is meaningless. If, however, information is available on the
probability distribution of y, then an aspirational constraint such as Pr{y ≤ A} ≥ p,
namely that the probability that y is less that a target bound A should exceed a given
level p, is eminently sensible [1, 2].

Many other examples where probabilistic constraints are more natural than deter-
ministic constraints can be found in diverse areas of engineering and related fields
such as process control [3, 4], financial engineering [5, 6], electricity generation,
distribution and pricing [7, 8], building climate control [9] and telecommunications
network traffic control [10]. For the purposes of motivation, we briefly describe here
another example taken from a problem that concerns the operation of wind turbines.
Large wind turbines for electricity generation are typically designed for a given ser-
vice life, which is typically around 20years, but this lifespan may be compromised
as a result of fatigue damage caused, for example, by the fore-aft movement of the
tower. Controlling this movement so as to control the rate of accumulation of fatigue
damage in the wind turbine forms one of the objectives of a supervisory controller for
variable speed wind turbines (see e.g. [11]). However, in order to maximize electrical
power output, it is possible to allow violations of the constraints on the tower oscilla-
tions, provided these do not happen more often than some pre-specified limit. Such
violations occur as a result of fluctuations in wind speed, the variability of which can
be modelled by suitable probability distributions (e.g. [12]). This approach therefore
imposes constraints on stochastic variables, and the implied constraints are naturally
stated in a probabilistic manner.

Exacting performance requirements often cause constrained variables to reach
their limits and in this sense it is vital that the definition of the system constraints
takes into account the stochastic nature of the given application. Even if information
on the probability distribution of model uncertainty is available, it may of course
be possible to act cautiously and enforce constraints robustly, namely to impose
conditions that require constraints to be satisfied with certainty. But in cases where
constraint violation is allowed (up to a specified probability) it should of course be
evident that such a strategy is conservative, and will result in poorer performance
and smaller regions of attraction.

It is the purpose of Stochastic MPC (SMPC) to address these issues. In particu-
lar, SMPC is concerned with the repetitive optimization of an appropriate predicted
cost for systems with stochastic uncertainty. This optimization is to be performed
subject to constraints, some of which are probabilistic in nature. Constraint satisfac-
tion requires the determination of probability distributions for predicted variables,
something which is relatively easy in the case of additive uncertainty only, given
the linear dependence of predictions on disturbances. Stochastic uncertainty that
appears multiplicatively in the system model, for example as a result of stochastic
model parameters, is often more challenging. This is because the predicted future



6 Introduction to Stochastic MPC 245

model states are random variables, and these aremultiplied by stochastic model para-
meters to generate the successor states, compounding the problem of determining
the distributions of predicted states over multiple prediction time steps.

Aswith classical and robustMPC, there is a concern herewith recursive feasibility.
In fact it is easy to see (as will be discussed in detail Chap.7) that, except in certain
special cases, strict recursive feasibility can only be guaranteed for the case that the
uncertainty in predicted states and inputs has a finitely supported distribution. The
reason for this is that whereas the current state may be such that a feasible predicted
trajectory exists, uncertainty with unbounded support could, albeit perhaps with
low probability, result in a successor state for which it is impossible to guarantee the
existence of a feasible trajectory. This particular difficulty has been a feature of earlier
SMPC formulations, which almost exclusively considered uncertainty withGaussian
distributions. This choice was natural given the mathematical convenience of the
Gaussian assumption. However, in addition to preventing the statement of recursive
feasibility results, this assumption is often not consistentwith practice, since formany
physical systems the probability of an uncertainty realization exceeding an arbitrarily
large threshold is zero rather than arbitrarily small. SMPC is also concerned with the
definition of a suitable cost that enables the statement of stability.

This chapter introduces the SMPC problem formulation, describes earlier work
in this area and discusses quadratic expected value costs. Probabilistic constraints
are introduced here in the context of uncertain moving average models, for which
recursive feasibility can be ensured even when the probability distribution of model
uncertainty is not finitely supported. The discussion of probabilistic constraints for
general classes of linear system and model uncertainty is deferred to Chap. 7, where
the requirements for a guarantee of recursive feasibility and methods of handling
general probability distributions are considered. Chapter7 also extends the frame-
work for analysing closed-loop stability to the case of expected value costs. Chapter8
combines these techniques with tube-based methods of constraint handling in order
to construct stochastic MPC algorithms with guaranteed closed-loop properties for
general classes of model uncertainty and probabilistic constraints.

6.1 Problem Formulation

There are severalways to obtainmathematical descriptions of systems that are subject
to stochastic uncertainty. Perhaps the most convenient is through black box identifi-
cation of auto-regressive moving average (ARMA) relationships between the input
variable u and output variable y:

yk + a1yk−1 + · · · + anyk−n

= b0uk−d + · · · + bnuk−d−n + ek + c1ek−1 + · · · + cnek−n, (6.1)

http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_8
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where e denotes a zero-mean disturbance and the positive integer d accounts for the
delay in the system. This type of model is general enough to include systems with
multiple inputs and outputs since y, u, e can be vector-valued and a, b, c matrices
of conformal dimensions. Descriptions of this kind (which include moving average
(MA) models as a special case when the parameters a1, . . . , an are identically equal
to zero) have been used in diverse fields including, for example, process control
and econometrics [13–15]. A useful by-product of black box identification is that
it provides information on the statistical properties of the model parameters [16].
This could be obtained from a single experiment on the basis of information on the
noise affecting the systemoutputmeasurements or by repeated experiments capturing
different realizations of the uncertain parameters.

To use the constraint handling machinery of invariant sets and state and control
tubes, it is convenient to convert the ARMA model (6.1) into a state-space form.
Given the linearity of (6.1), this can be expressed as

xk+1 = Akxk + Bkuk + Dwk (6.2)

where xk ∈ R
nx and uk ∈ R

nu are the state and control inputs at time k. In setting
up the stochastic MPC problem, we make the assumption that the matrices Ak and
Bk containing multiplicative model parameters and the additive disturbance input
wk ∈ R

nw can be expressed in terms of a linear expansion over a known basis set:

(Ak, Bk, wk) = (A(0), B(0), 0) +
ρ∑

j=1

(A(j), B(j), w(j))q(j)
k . (6.3a)

Here q(j) is a scalar random variable. The realization of q(j) at time k, denoted q(j)
k ,

is unknown at time k but has a known probability distribution.1 The vector qk =
(q(1)

k , . . . , q(ρ)

k ) may be time varying (in the sense that it has a different realization
at each time instant k) but qk is assumed to be identically distributed for each k.

We assume that qk has a mean value of zero and covariance matrix equal to the
identity matrix, namely

E(qk) = 0, E(qkqT
k ) = I (6.3b)

where E(·) denotes the expectation operator. These assumptions do not imply any
loss of generality because of the linearity of the dynamics (6.2) and the expan-
sion (6.3a). In particular, the expected value of the additive disturbance is taken to
be zero since a state translation can be used to account for any non-zero compo-
nents. Thus a non-zero value of E(qk) and a corresponding non-zero expected value

1Unless explicitly stated otherwise, all random variables that will be encountered in the discussion
of stochastic MPC are functions of q(j) appearing in (6.3a) and every random event of interest is
related in a straightforward way to the realizations of q(j)

k , j = 1, . . . , ρ at time instant k. With this
understanding, the underlying probability space iswell defined andwe are able to avoid cumbersome
measure-theoretic notation.
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of the disturbance, E(wk) = w(0), can be absorbed by transforming the state and
disturbance variables of (6.2) according to xk − x(0) and wk − w(0), respectively,
where x(0) = (I − A(0))−1Dw(0), and by replacing qk with qk − E(qk) in (6.3a) and
appropriately redefining A(0) and B(0).

Likewise, the assumption that E(qkqT
k ) = I is justified by a linear transformation

since (6.3a) can be expressed equivalently as

vec(Ak, Bk, wk) = vec(A0, B0, 0)

+ [
vec(A(1), B(1), w(1)) · · · vec(A(m), B(m), w(m))

]
qk

where vec(·) is a vectorization operation that rearranges the elements of a matrix
into a column vector. Therefore, if the covariance matrix of qk has the eigenvalue
decomposition

E(qkqT
k ) = WΣΛΣWT

Σ

then it is possible to define triples (Ã(j), B̃(j), w̃(j)) for j = 1, . . . , m and a vector q̃
by

vec(Ã(j), B̃(j), w̃(j)) = vec(A(j), B(j), w(j))WΣΛ
1/2
Σ

q̃k = Λ
−1/2
Σ WT

Σqk .

This transformation leaves the parameterization of (6.3a) unaffected because

m∑

j=1

(Ã(j), B̃(j), w̃(j))q̃(j)
k = [

vec(A(1), B(1), w(1)) · · · vec(A(m), B(m), w(m))
]

q̃k

=
m∑

j=1

(A(j), B(j), w(j))q(j)
k ,

but at the same time the covariance matrix of the transformed vector of coefficients
is given by E(q̃k q̃T

k ) = I .
We make the further assumption that qk and qi are statistically independent for

k �= i. This assumption is not necessarily restrictive in respect of the additive dis-
turbance because a linear filter can be introduced into the state-space model (6.2)
in order to generate temporally correlated disturbances if required. But the same
approach cannot be used to conveniently introduce temporal correlation between
multiplicative parameters in the model (6.2) since the dynamics are assumed to be
linear. However, the assumption of independence of qk and qi is used here only to
simplify the computation of predicted costs based on the expected value of sums of
quadratic stage costs, and to simplify the analysis of stability based on this cost. The
methods of handling constraints that are discussed here and in the following chapters
do not rely on this assumption.
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Like the nominal and robust MPC strategies considered in earlier chapters, the
predicted performance cost of stochasticMPC is often taken to be a quadratic function
of the degrees of freedom in predicted state and control trajectories. For example,
for an N-step horizon we can define

Ĵ(xk, uk, qk) =
N−1∑

i=0

(‖xi|k‖2Q + ‖ui|k‖2R
) + ‖xN |k‖2WT

where xi|k, ui|k are predicted values of xk+i, uk+i at time k with xk = x0|k and uk =
{u0|k, . . . , uN−1|k}, where qk = {q0|k, . . . , qN−1|k} is a realization of the sequence
{qk, . . . , qN−1} of uncertain model parameters, and where matricesQ � 0 andR � 0
are cost weights with WT a terminal weighting matrix. On account of the stochastic
uncertainty in qk , the cost Ĵ(xk, uk, qk) is stochastic and the cost index, J(xk, uk),
of stochastic MPC must therefore be constructed under specific assumptions on qk .
Thus it is possible to adopt the nominal cost

J(xk, uk)
.= Ĵ(xk, uk, 0),

or, if the model uncertainty is subject to bounds qk ∈ Q for some compact set Q,
then the worst-case cost can be employed,

J(xk, uk)
.= max

qk∈Q×···×Q
Ĵ(xk, uk, qk).

Given knowledge of the distribution of qk , it is more common, however, to use a
predicted cost that takes into account the stochastic nature of the problem through
the expectation of a quadratic cost. Therefore we focus the discussion of stochastic
MPC on an expected cost of the form

J(xk, uk)
.= Ek

(
Ĵ(xk, uk, qk)

)

=
N−1∑

i=0

Ek
(‖xi|k‖2Q + ‖ui|k‖2R

) + Ek
(‖xN |k‖2WT

)
. (6.4)

Here, the notation Ek(·) has been introduced2 to indicate that the expectation is
conditional on information available to the controller at time k, namely the current
plant state xk (for the case that xk is measured directly), and is therefore dependent
on the distribution of the model uncertainty sequence qk . Variations on this cost will
also be discussed, such as quadratic costs based on probabilistic bounds on predicted
variables or on combinations of their means and variances.

2We use the simpler notation E(·) for the expectation of a random variable that depends on a single
realization of model uncertainty, e.g. E(Ak) = Ek(Ak) = A(0).
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The aim of stochastic MPC is to obtain, through the repetitive minimization of
a predicted cost, an approximation of the optimal control law, namely the optimal
argument of (6.4) subject to constraints on the system states and/or control inputs.
This is to be done while providing stability guarantees for all initial conditions in
some region of state space. A precondition for such guarantees is that the expected
value of the predicted stage cost in (6.4) converges to a finite limit as i → ∞
under some control law. This in turn requires that the pair (Ak, Bk) is mean-square
stabilizable [17], which is ensured by the following assumption.

Assumption 6.1 There exist matrices K and P such that P = PT � 0 and

P − E

(
(Ak + BkK)T P(Ak + BkK)

)
� 0. (6.5)

It can be determinedwhether the systemof (6.2) and (6.3a, 6.3b) satisfiesAssump-
tion6.1 simply by checking the feasibility of a linear matrix inequality. Thus, using
(6.3a, 6.3b) condition (6.5) can be expressed equivalently as

P −
m∑

j=0

(A(j) + B(j)K)T P(A(j) + B(j)K) � 0.

Introducing convexifying transformations S = P−1, and Y = KP−1 and using Schur
complements this condition can be written as

⎡

⎢⎢⎢⎢⎢⎣

S (A(0)S + B(0)Y)T (A(1)S + B(1)Y)T · · · (A(m)S + B(m)Y)T

� S 0 · · · 0
� � S · · · 0
...

...
...

. . .
...

� � � · · · S

⎤

⎥⎥⎥⎥⎥⎦
� 0 (6.6)

(with � indicating a block of a symmetric matrix). Thus the conditions of Assump-
tion6.1 are satisfied by P = S−1 and K = YS−1 if and only if matrices S = ST � 0
and Y exist satisfying (6.6).

For the case of multiplicative uncertainty alone and in the absence of constraints,
Assumption6.1 implies that the control law uk = Kxk ensures that the variance of
the state of (6.2) converges asymptotically to zero. This guarantees the existence of
a predicted control sequence {ui|k, i = 0, 1, . . .} that causes the predicted state xi|k
to converge (with probability 1) to zero as i → ∞ [17]. Clearly, no feedback law
can make the state converge identically to zero in the presence of persistent additive
disturbances. In this case, Assumption6.1 ensures, in the absence of constraints, that
the expected value of the stage cost of (6.4) tends to a finite limit, which is discussed
in Sect. 6.2.

Analogously to the formulations of classical MPC and robust MPC, a dual-mode
prediction strategy can be used in stochasticMPC to define predicted state and control
trajectories over an infinite prediction horizon while retaining only a finite number
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of free variables in their parameterization. This makes it possible to extend the cost
of (6.4) over an infinite horizon by suitably choosing the weighting matrix W . We
therefore assume that the predicted control law over the prediction horizon of mode 2
is defined by a predetermined feedback law: ui|k = Kxi|k for all i ≥ N .

Several different forms of state and input constraints have been proposed for
stochastic MPC in the context of a model such as (6.2) and (6.3a, 6.3b). For example,
constraints may be stated in terms of expected values as

Ek(Fxi|k + Gui|k) ≤ 1, i = 1, 2, . . . (6.7)

(e.g. [6, 10]).Alternatively, pointwise in timeprobabilistic constraints canbe stated as

Prk(Fx1|k + Gu1|k ≤ 1) ≥ p (6.8)

for some specified probability p. An alternative form of probabilistic constraint can
be imposed over an interval of T time steps:

Prk(Fxi|k + Gui|k ≤ 1, i = 1, . . . , T) ≥ p (6.9)

for some given probability p and horizon T . In each case, the variable Fx + Gu may
be vector-valued; thus for example (6.8) requires that the probability of any element
of Fxk+1|k + Guk+1|k exceeding a threshold of 1 should be less than 1 − p.

An equivalent statement of (6.9) is that the expected number of times that any
element of Fx + Gu exceeds 1 over an interval of T predicted time steps should be
less than (1−p)T . Clearly, it is possible to construct constraint sets involving various
different probabilities and probabilistic conditions by combining constraints of the
form of (6.8) and (6.9). This also applies to the special case of p = 1, thus allowing
for problems that involve a mixture of probabilistic (p < 1) and robust (p = 1)
constraints.

The notation Prk(A) in (6.8) and (6.9) refers to the probability of an eventA that
depends3 on the sequence qk = {qk, . . . , qk+N−1}, given that the initial prediction
model state is xk . Hence, Prk(Fx1|k + Gu1|k ≤ 1) is the probability that the one-
step ahead predicted state and input satisfy Fx1|k + Gu1|k ≤ 1, which is therefore a
function of xk and the probability distribution of the random variable qk . Similarly,
Prk(Fxi|k + Gui|k ≤ 1) for i ≥ 1 depends on xk and on the probability distribution of
{qk, . . . , qk+i−1}. Our treatment of stochastic MPC concentrates on problem formu-
lations for which recursive feasibility can be guaranteed, and we consider mainly the
constraints of (6.8) and (6.9). A detailed discussion of recursive feasibility is given
in Sect. 7.1.

3We also use Pr(A) for the probability of an event A that depends on a single realization of
model uncertainty when it is obvious from the context which random variable A depends on,
e.g. Pr(wk ≤ 0) = Prk(wk ≤ 0) = Pr(

∑m
j=1 w(j)q(j)

k ≤ 0).

http://dx.doi.org/10.1007/978-3-319-24853-0_7
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6.2 Predicted Cost and Unconstrained Optimal Control Law

Early stochastic MPC strategies, such as those discussed in Sect. 6.4, ensure closed-
loop stability by imposing equality terminal constraints on the predicted input and
output trajectories of the plant model. In the context of a moving average model,
this can be done simply by setting the predicted input equal to a constant value at
the end of the mode 1 prediction horizon. After a subsequent interval of n prediction
time steps, where n is the order of the model, the expected value of the predicted
output necessarily reaches its desired steady-state value. However equality terminal
constraints can be overly stringent and may result in limited regions of attraction.
A way to avoid this is to replace equality with inequality terminal constraints (as
discussed inChap. 2) and in this setting, recursive feasibility and closed-loop stability
can be ensured through the use of invariant terminal sets defined in the plant model
state space.

The construction of suitable terminal sets and the handling of constraints are key
ingredients in the development of a stochasticMPC strategy, andwill be considered in
more detail in Chaps. 7 and 8. Before discussing these, however, we turn our attention
to another two basic components of SMPC. The first of these concerns the definition
and evaluation of a predicted cost, while the second concerns the unconstrained
optimal feedback law that achieves the minimum of the predicted cost in the absence
of constraints. Such unconstrained control laws are obvious candidates for use as
terminal control laws.

We begin with the observation that the mean-square stability property of Assump-
tion6.1 implies that, when no constraints are present, the expected value of the state
xk of the model (6.2) and (6.3a, 6.3b) under the linear feedback law uk = Kxk con-
verges asymptotically to zero whenever K satisfies (6.5). However, the variance of
xk (and hence also the expected stage cost in (6.4)) converges to a non-zero value
because of the presence of additivemodel uncertainty, as the following lemma shows.

Lemma 6.1 [18] In the absence of constraints, the state of (6.2) and (6.3a, 6.3b)
under uk = Kxk satisfies the asymptotic conditions limk→∞ E0(xk) = 0 and
limk→∞ E0(xkxT

k ) = Θ , where Θ is the solution of

Θ − E

(
(Ak + BkK)Θ(Ak + BkK)T

)
= DE(wkwT

k )DT , (6.10)

if and only if (6.5) holds for some P � 0.

Proof Since the system (6.2) is linear, its state can be decomposed for all k = 0, 1, . . .
as xk = ζk + ξk , with

ζk+1 = Φkζk, ζ0 = x0 (6.11a)

ξk+1 = Φkξk + Dwk, ξ0 = 0 (6.11b)

where Φk = Ak + BkK and Ak, Bk take values from the uncertainty class of (6.3a,
6.3b). Existence ofP � 0 satisfying (6.5) is necessary and sufficient for mean-square

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_8
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stability of (6.11a). To prove sufficiency, let Zk
.= E0(ζkζ

T
k ), then, since ζk and Φk

are by assumption independent, (6.11a) gives

tr(PZk+1) = E

(
tr(PΦkZkΦ

T
k )

)
= tr

(
E(ΦT

k PΦk)Zk

)
.

Hence (6.5) and Zk � 0 imply that tr(PZk+1) < tr(PZk)whenever Zk �= 0, and since
P � 0 implies tr(PZk) > 0 for all Zk �= 0, it follows that

lim
k→∞ Zk = 0, (6.12)

which implies that (6.11a) is mean-square stable. To show the necessity of (6.5),
let Pk

.= ∑k
i=0 Si where Sk+1 = E(ΦkSkΦk) for arbitrary S0 � 0. Then Pk+1 =

E(ΦkPkΦ
T
k )+S0 and the mean-square stability of (6.11a) implies that Pk converges

to a finite limit as k → ∞. Defining this limit as P, we can conclude from S0 � 0
that P � 0 exists satisfying (6.5) whenever (6.11a) is mean-square stable.

From the mean-square stability property (6.12), it follows that ζk → 0 as k → ∞
with probability 1 [17]. On the other hand, (6.11b) implies E0(ξk) = 0 for all k, and
since xk = ζk + ξk we can therefore conclude that limk→∞ E0(xk) = 0.

Using (6.11b) and the zero-mean property of ξk , and noting that ξk and Φk are
independent by assumption, we obtain

E0(ξk+1ξ
T
k+1) = E

(
ΦkE0(ξkξ

T
k )ΦT

k

)
+ DE(wkwT

k )DT .

Combining this relationship with (6.10) and defining Θ̂k
.= E0(ξkξ

T
k )−Θ , it follows

that
Θ̂k+1 = E(ΦkΘ̂kΦ

T
k ).

Therefore, limk→∞ Θ̂k = 0 if and only if (6.11a) ismean-square stable, inwhich case
we have limk→∞ E(ξkξ

T
k ) = Θ . This completes the proof because it then follows

that limk→∞ E(xkxT
k ) = Θ since ζk → 0 with probability 1 as k → ∞. �

Note that the parameterization of model uncertainty in (6.3a, 6.3b) allows the
expectation in (6.10) to be evaluated explicitly. Hence (6.10) is equivalent to a set of
linear conditions on the elements of Θ:

Θ −
m∑

j=0

(A(j) + B(j)K)Θ(A(j) + B(j)K)T = D
m∑

j=1

w(j)w(j) T DT ,

which can be shown to yield a unique positive definite solution for Θ whenever
Assumption6.1 is satisfied.

Many stochastic control problems are formulated in terms of an expected infinite
horizon quadratic performance index of the form
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∞∑

i=0

E0
(‖xk‖2Q + ‖uk‖2R

)
. (6.13)

However, in the context of stochastic MPC two difficulties with this cost are immedi-
ately apparent. First, the cost is evaluated over an infinite sequence of control inputs,
and in order to formulate an objective that can be minimized numerically subject to
input and state constraints, this infinite control sequence must therefore be parame-
terized in terms of a finite number of optimization variables. Second, a consequence
of Lemma6.1 is that the cost (6.13) is in general infinite for the system(6.2) and
(6.3a, 6.3b) under a linear feedback law. Moreover, in the absence of constraints the
optimal controller is a linear-state feedback law (as we show later in this section),
and therefore the minimum value of cost (6.13) is in general also infinite.

The first of these issues can be handled by introducing a dual-mode prediction
scheme as was done for nominal and robust MPC in Sects. 2.3 and 3.1. Therefore we
define the predicted control sequence at time k as

ui|k = Kxi|k + ci|k, i = 0, 1, . . . (6.14)

where {c0|k, . . . , cN−1|k} are decision variables at time k and ci|k = 0 for all pre-
diction times i ≥ N . The gain K is assumed to satisfy the mean-square stability
condition (6.5), and ideally K should be chosen as the optimal feedback gain in the
absence of constraints. To tackle the second issue, we ensure that the minimum value
of the predicted cost associated with this predicted input sequence is finite by sub-
tracting a constant from each stage of (6.13). Lemma6.1 implies that the expected
value of the stage cost for the system (6.2) and (6.3a, 6.3b) under ui|k = Kxi|k
converges to a steady-state value, which we denote as lss:

lss
.= lim

i→∞Ek
(‖xi|k‖2Q + ‖ui|k‖2R

) = tr
(
Θ(Q + KT RK)

)
.

We therefore define the predicted cost as

J(xk, ck) =
∞∑

i=0

Ek
(‖xi|k‖2Q + ‖ui|k‖2R − lss

)
(6.15)

where ck ∈ R
Nnu is defined by ck

.= (c0|k, . . . , cN−1|k).
From its definition in (6.15), it is clear that the cost J(xk, ck) is a quadratic function

of the optimization variable ck . The most convenient way to compute this cost func-
tion is to express the predicted dynamics using the lifted autonomous formulation of
Sect. 2.7. For the case of the model (6.2), this has the following form:

zi+1|k = Ψk+izi|k + D̄wk+i, z0|k =
[

xk
ck

]
(6.16)

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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with state variable zi|k ∈ R
nz , nz = nx + Nnu. Here

Ψk =
[
Φk BkE
0 M

]
, Φk = Ak + BkK, D̄ =

[
D
0

]

and the matrices E and M are defined as in (2.26b) so that Eck = c0|k and Mck =
(c1|k, . . . , cN−1|k, 0). This autonomous formulation is the basis of the following result
for evaluating the predicted cost.

Theorem 6.1 [18] The predicted cost of (6.15), computed for the model (6.2) under
the control law (6.14) is given by

J(xk, ck) =
[

zk
1

]T [
Wz wz1

wT
z1 w1

] [
zk
1

]
, (6.17)

where Wz = WT
z ∈ R

nz×nz , wz1 ∈ R
nz and w1 ∈ R are defined by

Wz − E(Ψ T
k WzΨk) = Q̂ (6.18a)

wT
z1

(
I − E(Ψ (0))

)
= E

(
wT

k D̄T WzΨk
)

(6.18b)

w1 = −tr(ΘWx) (6.18c)

with Wx = [
Inx 0

]
Wz

[
Inx

0

]
and Q̂ =

[
Q + KT RK KT RE

ET RK ET RE

]
.

Proof Let Vi|k
.= ‖zi|k‖2Wz

+ 2wT
z1zi|k + w1 for all i ≥ 0. Then, since zi|k is by

assumption independent of (Ψk+i, wk+i), (6.16) implies

Ek(Vi|k) − Ek(Vi+1|k) = Ek

(
zT
i|k

(
Wz − E(Ψ T

k+iWzΨk+i)
)
zi|k

)

+ 2
(

wT
z1

(
I − E(Ψk+i)

) − E
(
wT

k+iD̄
T WzΨk+i

))
Ek(zi|k)

− E

(
wT

k+iD
T WxDwk+i

)
.

From (6.18a, 6.18b), the sumof the first two terms on theRHSof this equation is equal
to Ek(zT

i|kQ̂zi|k). Furthermore the last term is equal to −lss since post-multiplying
(6.10) by Wx and extracting the trace gives

tr
(
ΘWx − E(ΦkΘΦT

k )Wx

)
= tr

(
Θ

(
Wx − E(ΦT

k WxΦk)
))

= tr
(
DE(wkwT

k )DT Wx
) = E(wT

k DT WxDwk),

and hence, noting that (6.18a) implies Wx − E(ΦT
k WxΦk) = Q + KT RK , we have

E(wT
k DT WxDwk) = tr

(
Θ(Q + KT RK)

) = lss.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Therefore Ek(Vi|k) − Ek(Vi+1|k) = Ek(‖xi|k‖2Q + ‖ui|k‖2R) − lss, and by summing
both sides of this equation over i = 0, 1, . . ., we can conclude that

V0|k − lim
i→∞Ek(Vi|k) =

∞∑

i=0

Ek
(‖xi|k‖2Q + ‖ui|k‖2R − lss

)
. (6.19)

Finally, we note that (6.18c) ensures that limi→∞ Ek(Vi|k) = 0, since the definition
of Vi|k implies

Ek(Vi|k) = Ek(z
T
i|kWzzi|k) + 2wT

z1Ek(zi|k) − tr(ΘWx)

where, by Lemma 6.1, limi→∞ Ek(zi|k) = 0 and limi→∞ Ek(zT
i|kWzzi|k) =

tr(ΘWx). From (6.19) it then follows that V0|k = J(xk, ck). �

In the absence of constraints, the expression for the predicted cost provided by
Theorem6.1 allows the optimal value of ck to be determined analytically for any
horizon N . Using a similar argument to that of Sect. 2.7.2, it is possible to deduce
from this the unconstrained optimal value of the linear feedback gain K . First, we
partition Wz and wz1 into blocks conformal with the dimensions of xk and ck :

Wz =
[

Wx Wxc

Wcx Wc

]
, wz1 =

[
wx1
wc1

]
.

Next note thatmean-square stability of the dynamics xk+1 = Φkxk inAssumption 6.1
implies that zk+1 = Ψkzk is also mean-square stable. From (6.18a), it follows that
Wz � 0, and this in turn implies that Wc is positive definite. Therefore the ck that
achieves the minimum of (6.17) in the absence of constraints is given by

argmin
ck

J(xk, ck) = −W−1
c Wcxxk − W−1

c wc1. (6.20)

The constant term −W−1
c wc1 appearing in this expression indicates that the opti-

mal control law is in general an affine rather than a linear function of the model state.
In fact, wc1 can be determined from (6.18b) using

wT
c1 =

(
E(wT

k DT WxBk) + wT
x1B(0)

) [
Inu · · · Inu

]
(6.21a)

wT
x1 = E(wT

k DT WxΦk)(I − Φ(0))−1. (6.21b)

These expressions imply that the second term on the RHS of (6.20) applies a con-
stant perturbation to the predicted control law (6.14), which is independent of the
prediction time step and independent of the horizon N .

From (6.21a, 6.21b), it can be seen that wc1 is non-zero unless the additive dis-
turbance term wk and the multiplicative uncertainty in the model parameters Ak, Bk
are statistically uncorrelated. However, even in the more general case in which the

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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optimal control law for the cost (6.13) is affine rather than linear-state feedback, it is
still possible to determine the unconstrained optimal linear feedback gain since this
corresponds to the case in which the minimizing argument of (6.17) is independent
of xk . From (6.20), this requires Wcx = 0, and from (6.18a) we therefore require that
K satisfies

K = −(
R + E(BT

k WxBk)
)−1

E(BT
k WxAk) (6.22)

where Wx is the solution of

Wx − E
(
(Ak + BkK)T Wx(Ak + BkK)

) = Q + KT RK . (6.23)

The corresponding solution for Wc can be determined from (6.18a) as

Wc = diag
{
R + E(BT

k WxBk), . . . , R + E(BT
k WxBk)

}
. (6.24)

The preceding results concerning the unconstrained optimal linear feedback gain
and the predicted cost are summarized as follows.

Corollary 6.1 The linear feedback law that minimizes the performance index (6.13)
for the dynamics of (6.2) and (6.3) is uk = Kxk where K is given by (6.22) and (6.23).
If the predicted control sequence (6.14) is defined in terms of this gain K, then the
predicted cost of (6.15) is given by

J(xk, ck) = xT
k Wxxk + cT

k Wcck + 2wT
x1xk + 2wT

c1ck + w1

where Wx, Wc and wx1, wc1 are given by (6.23), (6.24) and (6.21a, 6.21b).

We conclude this section by considering how to compute K and Wx satisfying
(6.22) and (6.23). It is possible to derive a set of algebraic conditions on Wx by
using (6.22) to eliminate K from (6.23) and evaluating expectations using the para-
meterization of model uncertainty in (6.3a, 6.3b). However, the resulting algebraic
Riccati equation is nonlinear and multivariate, and a computationally more conve-
nient approach is to consider (Wx, K) as an extremal point of the feasible set of a
particular LMI, as we now briefly discuss. For any given mean-square stabilizing K̃ ,
let W ′

x � 0 satisfy the equality

W ′
x − E

(
(Ak + BkK̃)T W ′

x(Ak + BkK̃)
) = Q + K̃T RK̃

and let W̃x � 0 satisfy the inequality

W̃x − E
(
(Ak + BkK̃)T W̃x(Ak + BkK̃)

) � Q + K̃T RK̃ (6.25)
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Then, subtracting (6.23) we have

(W̃x − W ′
x) − E

(
(Ak + BkK̃)T (W̃x − W ′

x)(Ak + BkK̃)
) � 0,

from which it follows that W̃x � W ′
x since Ak + BkK̃ is mean-square stable by

assumption. But W̃x � W ′
x implies tr(W̃x) ≥ tr(W ′

x) and W ′
x is therefore equal to the

solution of the problem of minimizing tr(W̃x) over W̃x subject to (6.25) for a given
fixed value of K̃ . Since K in (6.22) and (6.23) is the feedback gain that minimizes the
cost (6.15), the value of tr(Wx) satisfying (6.23) is equal to the minimum of tr(W̃x)

over the set of all W̃x satisfying (6.25) for variable K̃ . In other words, the pair (Wx, K)

satisfying (6.22) and (6.23) is the optimal argument of the problem

minimize
W̃x,K̃

tr(W̃x) subject to (6.25).

This problem is nonconvex, but introducing transformed variables S = W̃−1
x and

Y = K̃W̃−1
x , (6.25) can be rewritten as

S − E
(
(AkS + BkY)T S−1(AkS + BkY)

) � SQS + YT RY .

Using the model parameterization (6.3a, 6.3b), this inequality can be expressed as
the following LMI in S � 0, and Y :

⎡

⎢⎢⎢⎢⎢⎣

S (A(0)S + B(0)Y)T · · · (A(m)S + B(m)Y)T
[
SQ1/2 YTR1/2

]

� S · · · 0 0
...

...
. . .

...
...

� � · · · S 0
� � · · · � I

⎤

⎥⎥⎥⎥⎥⎦
� 0 (6.26)

Thus Wx and K satisfying (6.22) and (6.23) can be computed by solving the semi-
definite program:

(Wx, S, Y) = arg min
Wx,S,Y

tr(Wx) subject to (6.26) and

[
Wx I
I S

]
� 0

and setting K = YWx .

6.3 Mean-Variance Predicted Cost

The cost considered in Sect. 6.2 gives a measure of the second moments of predicted
states and control inputs. Thus (6.15) can be written for κ = 1 as
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J(xk, ck) =
∞∑

i=0

(‖x(0)
i|k ‖2Q + ‖u(0)

i|k ‖2R
)

+ κ2
∞∑

i=0

Ek
(‖xi|k − x(0)

i|k ‖2Q + ‖ui|k − u(0)
i|k ‖2R − lss

)
(6.27)

where x(0)
i|k = E(xi|k) and u(0)

i|k = E(ui|k) denote the nominal values of the predicted

states and control inputs and lss = tr
(
Θ(Q + KT RK)

)
. These nominal sequences are

governed by the nominal prediction dynamics:

x(0)
i+1|k = A(0)x(0)

i|k + B(0)u(0)
i|k . (6.28)

Expressed this way, the cost J(xk, ck) can be seen to evaluate a particular linear mix
of two cost indices: one based on the mean and the other on the variance of predicted
states and inputs.

In applications such as the sustainable development problem considered in
Sect. 6.5 and those involving, for example, portfolio selection [19, 20], a typical
control objective is to minimize a cost based on probabilistic bounds within which
the future predicted states and control inputs will lie. In this case different affine
mixes, corresponding to κ �= 1 in (6.27), may be appropriate. For example, the cost
proposed in [21] is concerned with minimizing the width of the probabilistic band
defined by

Prk(yi|k ≤ ȳk+i) ≥ p

Prk(yi|k ≥ y
k+i

) ≥ p
(6.29)

Then, under the assumption that yi|k is normally distributed, an appropriate stage
cost would be

1

2
(y2

k+i
+ ȳ2k+i) = (y(0)

i|k )2 + κ2
Ek

(
(yi|k − y(0)

i|k )2
)

(6.30)

where κ is the argument of the standard cumulative normal distribution function
corresponding to probability p, i.e. Pr(X ≤ κ) = p for a normally distributed random
variable X with zero mean and unit variance.

For such applications, the cost of (6.27) with κ2 �= 1 is more appropriate and
results in a predictive control strategy known as mean-variance SMPC [22]. Note
that this cost can also be written as

J(xk, ck) = (1 − κ2)

∞∑

i=0

(‖x(0)
i|k ‖2Q + ‖u(0)

i|k ‖2R
)

+ κ2
∞∑

i=0

Ek
(‖xi|k‖2Q + ‖ui|k‖2R − lss

)
. (6.31)
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From this expression it can be seen that J(xk, ck) reduces to the expected quadratic
cost of (6.15) for κ = 1, gives the nominal cost for κ = 0 and tends to the minimum
variance cost as κ → ∞.

The cost of (6.31), when evaluated for the model (6.2) and (6.3a, 6.3b) with
the predicted control law (6.14), is a quadratic function of the degrees of freedom,
ck . Using Theorem2.10 to compute the nominal cost in the first term on the RHS
of (6.31) and using the conditions of Theorem6.1 to compute the second term, this
function is given by

J(xk, ck) =
[

zk
1

]T [
Wz wz1

wT
z1 w1

] [
zk
1

]

where zk = (xk, ck) and Wz, wz1, w1 are defined by

Wz = (1 − κ2)W̄z + κ2Ŵz

{
W̄z − Ψ (0) T W̄zΨ

(0) = Q̂

Ŵz − E(Ψ T
k ŴzΨk) = Q̂

(6.32a)

and

wT
z1(I − Ψ (0)) = E

(
wT

k

[
DT 0

]
ŴzΨk

)
(6.32b)

w1 = −tr(ΘŴx), (6.32c)

with Ŵx and Ψ (0) defined as

Ŵx = [
Inx 0

]
Ŵz

[
Inx

0

]
, Ψ (0) =

[
Φ(0) B(0)E
0 M

]
.

The unconstrained optimal linear feedback gain can be determined by an analysis
similar to that of Sect. 6.2, but in this case the gain K is given by the solution of a
pair of coupled algebraic Riccati equations:

W̄x − (A(0) + B(0)K)T W̄x(A
(0) + B(0)K) = Q + KT RK (6.33a)

Ŵx − E
(
(Ak + BkK)T Ŵx(Ak + BkK)

) = Q + KT RK . (6.33b)

with

K = −(
R + E(BT

k ŴxBk)
)−1(

(1 − κ2)B(0) T W̄xA(0) + κ2
E(BT

k ŴxAk)
)
. (6.33c)

The details of the derivation of this expression and an iterative method of computing
the solution K can be found in [23].

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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6.4 Early Stochastic MPC Algorithms

Optimization methods for problems involving probabilistic constraints have been
used in applications of Operations Research since the 1950s (see e.g. [24]). In the
context of predictive control, one of the first proposals to use dynamic models con-
taining stochastic uncertainty was reported in [25], where systems with constant but
unknown parameters were considered. In this strategy, unknown model parameters
are identified online and used to update a control law, and for this reason it is known
as self-tuning control. The aim of the approach, however, is to minimize the expected
value of a predicted cost that is computed using a dynamic model, and the optimal
predicted control input is implemented as a receding horizon control law. Therefore
self-tuning control can be viewed as a type of stochastic MPC strategy. This section
briefly reviews self-tuning control strategies before considering the formulation of
probabilistic constraints for moving average models.

6.4.1 Auto-Regressive Moving Average Models

In its simplest form, self-tuning control is based on a single-input single-output
(SISO) ARMA model, as defined in (6.1). In [25], the model parameters ai, bi are
assumed to be unknown constants and the additive noise process, {e0, e1, . . .}, is
assumed to be an independent and identically distributed (i.i.d.) sequence in which ek
is normally distributedwith zeromean. In compact form, using z-transformoperators,
the system dynamics may be written as

A(z)yk = B(z)uk−d + C(z)ek (6.34)

where

A(z) = 1 + a1z−1 + · · · + anz−n

B(z) = b0 + b1z−1 + · · · + bnz−n

C(z) = 1 + c1z−1 + · · · + cnz−n

with z−1 representing the backward shift operator. The system is assumed to be
unconstrained, and hence no constraints act on yk and uk .

The predicted cost is taken to be

J(xk, uk) = Ek(y
2
d|k) (6.35)

where uk = (u0|k, . . . , ud−1|k) and yi|k is the predicted value of the output yk+i at
time k. Because of this objective the strategy is sometimes described as a minimum
variance (MV) control law.We note that on account of the delay d of themodel (6.34),
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the d steps-ahead output, yd|k , is the first output variable that can be influenced by
the control input u0|k .

In the absence of constraints, theminimization of the cost (6.35) can be performed
analytically. To see this, define polynomials F(z) and G(z) by

zdC(z) = A(z)F(z) + G(z), (6.36)

where

F(z) = zd + f1zd−1 + · · · + fd

G(z) = g1z−1 + g2z−2 + · · · + gnz−n.

This identity allows the dependence of yd|k on the additive disturbance sequence to
be split into terms that depend on the values of ek+d, . . . , ek , which are unknown at
time k, and terms involving only the past values ek−1, ek−2, . . . , which have already
been realized at time k and can therefore be determined from the observed values
of the control input and system output. In particular, from the model (6.34) and the
identity (6.36) we obtain

yk+d = B(z)

A(z)
uk + zdC(z)

A(z)
ek

=
[B(z)

A(z)
uk + G(z)

A(z)
ek

]
+ F(z)ek (6.37)

where the square-bracketed quantity on the right-hand side of (6.37) is known at
time k, whereas the last term depends on the unknown noise sequence ek+d, . . . , ek ,
which is a random variable at time k. Given the i.i.d. and zero-mean assumptions
on ek , it follows that the control law that minimizes the cost of (6.35) necessarily
satisfies

B(z)

A(z)
uk + G(z)

A(z)
ek = 0. (6.38)

The dependence of ek on present and past outputs and past inputs can be deduced
from (6.34), which implies

ek = A(z)

C(z)
yk − B(z)

C(z)
uk−d

= A(z)

C(z)
yk − B(z)

zdC(z)
uk .

In conjunction with (6.38), this results in the condition

zdC(z)B(z)uk − G(z)B(z)uk + zd G(z)A(z)yk = 0. (6.39)



262 6 Introduction to Stochastic MPC

Using the identity (6.36) to replace zdC(z) by A(z)F(z) + G(z) then leads to the
optimal control solution

uk = − zd G(z)

B(z)F(z)
yk . (6.40)

Substituting the control law (6.40) into the system model (6.34) gives the closed-
loop characteristic equation

A(z)F(z) + G(z)

F(z)
yk = C(z)

F(z)
yk+d = 0, (6.41)

which therefore identifies the roots of C(z) as the closed-loop poles of the prediction
dynamics. Hence a necessary condition for this strategy to stabilize the system (6.34)
is that every root of C(z) should lie within the unit circle centred at the origin. In
addition, by considering (6.40) it is easy to show that, for internal stability, the roots
ofB(z)must also lie inside the unit circle centred at the origin. Therefore this strategy
is restricted to minimum phase plants.

The restriction to minimum phase systems was subsequently removed by the
generalized minimum variance (GMV) strategy [26], which modifies the predicted
cost so as to include a term that penalizes control activity. However, neither the MV
nor the GMV control strategy can provide an a priori guarantee of stability for the
case of unknown model parameters (although stability can be checked a posteriori,
namely after the specification of the problem parameters and the derivation of the
optimal control law).Moreover, these approaches do not take into account constraints
on outputs and control inputs.

Constraints in stochastic MPC in the context of ARMA models were not intro-
duced until much later. For example, [27] considered SISO systems described by the
model (6.34), but removed the assumption of independent additive disturbances and
imposed hard and probabilistic constraints of the form

u ≤ uk ≤ ū (6.42)

Prk(yk+i
≤ yi|k ≤ ȳk+i) ≥ p. (6.43)

Without the assumption of i.i.d. disturbances, the minimization subject to these con-
straints of the predicted cost, which in [27] was defined so as to penalize control
increments

J(uk) = (u0|k − uk−1)
2 +

N−1∑

i=1

(ui|k − ui−1|k)2, (6.44)

becomes a computationally demanding problem that has to be solved online, and
for which there is in general no guarantee of convergence to the global optimum.
In addition, the use of a finite horizon cost precludes the possibility of providing
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a priori stability guarantees. Furthermore the presence in the systemmodel of random
variables with distributions that are not finitely supported makes it impossible to
ensure the recursive feasibility of this approach.

6.4.2 Moving Average Models

Constraints of the form (6.7) and (6.9) present two major difficulties for stochastic
MPC algorithms: how to impose these constraints on predicted control sequences
given the distribution of model uncertainty, and how to ensure that the optimization
problem to be solved online is recursively feasible. Both of these difficulties are
encountered with the ARMAmodel (6.34) with stochastic coefficients (and likewise
with the state-space model of (6.2) and (6.3a, 6.3b)) since the future evolution of
the model state and output trajectories depends on earlier realizations of the model
uncertainty. In particular, if the uncertainty does not have bounded support, then
clearly it is not possible in general to ensure that constraints will be satisfied at future
time instants.

However it is relatively straightforward to obtain a guarantee of recursive feasi-
bility for a stochastic MPC strategy based on a moving average (MA) model. This
form of model arises when the system dynamics are described by a discrete-time
finite impulse response model of the form

yk =
n∑

j=1

Hjuk−j + dk (6.45)

where u ∈ R
nu , y ∈ R

ny are the control input and system output, d ∈ R
ny is a

stochastic additive disturbance, and H1, . . . , Hn are the elements of the uncertain
system impulse response after truncation to n terms. The probability distributions of
d and Hj, j = 1, . . . , n are assumed to be known.

Knowledge of the distributions of uncertainmodel parametersmakes it possible to
transform probabilistic constraints into deterministic constraints on predicted input
sequences. For the case of the model (6.45) with normally distributed model para-
meters, this is easy to do for the constraints of (6.8) because the output yk in (6.45)
depends linearly on the model parameters, and hence yi|k is also a normally distrib-
uted random variable. In this case, it is possible to invoke the chance-constrained
optimization framework [24, 28] to convert probabilistic system constraints of the
form of (6.8) into second-order cone (SOC) constraints as was done for example
in [3].

Thus let yi|k,l denote the lth element of the predicted value at time k of the i
steps-ahead output vector yk+i. Then from (6.45), it follows that

yi|k,l = hT
l

[
uf

i

up
i

]
+ di,l
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where uf
i = (ui−1|k, . . . , u0|k) and up

i = (uk−1, . . . , uk+i−n) denote, respectively,
the predicted future and the past components of the input sequence, also hT

l =
eT

l

[
H1 . . . Hn

]
, with el denoting the lth column of the identity matrix, and di,l is the

lth element of dk+i. Then, under the assumption that (hl, di,l) is normally distributed
with mean (h̄, 0) and covariance matrix Σ , the probabilistic constraint

Prk(yi|k,l ≤ al) ≥ p (6.46)

can be written as a deterministic second-order cone constraint of the form

al − h̄T

[
uf

i

up
i

]
≥ κ

∥∥∥(uf
i , up

i , 1)
∥∥∥

Σ
. (6.47)

The constant κ in (6.47) is defined by

Pr(X ≤ κ) = p,

for a normally distributed scalar random variable X with mean 0 and variance 1.
For p in the interval [0.5, 1), the value of κ is nonnegative and, since the condition
aT x − b ≥ κ‖c + Dx‖ is convex in x if κ ≥ 0 for any given constants a, b, c, D,
the constraint (6.47) is therefore convex in this case. Hence, for p ≥ 0.5, the min-
imization of a convex quadratic predicted cost subject to (6.47) is a second-order
cone programming problem (SOCP) that can be solved efficiently.

This is the approach used in [3], where a finite horizon cost is used to formu-
late a SMPC algorithm. However this formulation lacked a guarantee of closed-loop
stability (on account of the finite horizon cost). In the presence of hard input con-
straints in addition to probabilistic output constraints, feasibility may also become
problematic and requires constraint softening this context (see for example [29]).

A further disadvantage of the use of MA models is that they are limited to open-
loop stable systems; the impulse responses of open-loop unstable systems cannot
be truncated to give finite-order MA models. These aspects of closed-loop stability
and feasibility, as well as the extension of the use of MA to the case of open-loop
unstable systems have been addressed in [1, 2], where stochastic MPC is introduced
as a tool for the assessment of sustainable development policies.

6.5 Application to a Sustainable Development Problem

Sustainable development addresses the problem of balancing the needs for economic,
technological and industrial development of the current generation with those of
future generations [30]. Human generations can be considered to be separated by
about 30 years, and this defines a natural prediction horizon for assessing the likely
effects of policy decisions on sustainable development. The treatment of the problem
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has been mostly discursive but it can be posed in a formal mathematical manner.
Thus [31] considers the question of assessing policy in budget allocation between
alternative technologies for electricity generation and develops a strongly stochastic
model. This model describes the effect of adjusting a number of inputs (“instru-
ments”), which form the elements of an input vector u ∈ R

nu , and which include
for example measures of investment in combined cycle gas turbine technology and
investment in renewable energy such as wind turbines, on a number of outputs (“indi-
cators”). Amongst these indicators is included a measure of benefit, say y1, related
to the cost of the energy produced, and another, y2 that measures cost, related to
accumulated CO2 emissions. These are measured at the end of the 30-year horizon
and are therefore strongly stochastic on account of the vagaries of world economy.
Clearly, it is desirable to maximize benefit while respecting constraints on cost, but
since both y1 and y2 are random variables, a more appropriate stochastic optimization
problem is given by

maximize
u, A1

A1

subject to Pr(y1 ≥ A1) ≥ p1
Pr(y2 ≤ A2) ≥ p2

1T u ≤ b, u ≥ 0

(6.48)

which is given in terms of target bounds, A1 and A2, rather than directly in terms
of the variables y1, y2 which, as stated earlier, are stochastic. The hard constraint in
(6.48), that the sum of the inputs should not exceed a specified value b, expresses
budgetary limitations.

It possible to introduce (6.48) into a SMPC framework by performing the opti-
mization repetitively in a receding horizon manner, for example at the beginning
of the kth year, for k = 0, 1, . . .. Furthermore, rather than consider a single input
adjustment and its effect on the output variables at the end of the prediction horizon,
one can allow input adjustments to occur at each step of the prediction horizon and
measure their effect on the output variables, again, over the entire horizon. This intro-
duces an explicit time dependence into the input and output variables and requires
the use of dynamic models. Accordingly, we denote the vector of budget adjustments
and the vector of indicators in year k as uk and yk

.= (yk,1, yk,2) respectively.
In [1], MA models of the form of (6.45) are used to describe the input–output

dependence. Such models are convenient for the derivation of the parameter distrib-
utions from identification of experiments (performed using world economy models)
since they avoid the difficulty of ARMA models in which stochastic model para-
meters multiply disturbance values which are also random variables. The limitation
of MA models to open-loop stable systems can be overcome through the artifice of
bicausality, according to which causal relationships such as given in (6.45) can be
used to account for the stable dynamics, whereas unstable dynamics can be modelled
using anti-causal regressions. As an illustration of this, consider a system described
by a transfer function with a single pole which is unstable, namely 1/(1 − λz−1)
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where |λ| > 1. This transfer function can also be written as −λ−1z/(1− λ−1z) and,
after suitable truncation, leads to the anti-causal regression

yk = − 1

λ

(
uk + 1

λ
uk+1 + · · · +

( 1
λ

)n−1
uk+n−1

)
(6.49)

Superposition can be deployed to extend this treatment to the case of complex con-
jugate unstable poles and/or multiple poles.

The overall stochasticMPC strategy can be split into two phases, of which the first
defines a suitable setpoint, and the second is concerned with tracking this setpoint. In
the interests of maximizing the value of the objective steady state, Phase 1 considers
a predicted input trajectory which assumes a constant steady-state value, uss, after
Nu time steps. If Nu satisfies Nu + n − 1 < N = 30, then from (6.45) the outputs
necessarily reach their steady-state values, yss,1 and yss,2, within the 30-year horizon.
Hence, to maximize benefit, the setpoints for u and y1 can be defined as

r
.= E(hT

1 )uss

where uss = (uss, . . . , uss) and uss is defined, for given values of the probabilities
p1, p2 ∈ [0.5, 1), the threshold A2 and the overall budget B for an N-step horizon, as
the solution of the convex optimization:

maximize
uss,A1

A1

subject to Pr(yss,1 ≥ A1) ≥ p1
Pr(yss,2 ≤ A2) ≥ p2
N−1∑

j=0

ρj1T uss ≤ B, uss ≥ 0.

(6.50)

The parameter ρ is a discounting factor chosen to lie in the interval [0, 1), which
is used in recognition of the fact that the value of expenditure decreases with the
advance of time. The implication of the optimization (6.50) that defines this first
phase of the algorithm is that the undershoot in the predicted steady-state benefit,
r − yss,1, will with probability p1 be no greater the threshold value tss

.= r − A1.
It is now possible to measure performance over the N-step prediction horizon

using probabilistic thresholds:

Prk(r − yi|k,1 ≤ ti|k) ≥ p1, i = 1, . . . , N .

The second phase of the algorithm aims at theminimization of these thresholds. How-
ever, given the stochastic nature of the problem and the desire to secure a monoton-
ically decreasing property for the predicted cost, rather than penalize in the cost all
ti|k , only those that exceed tss will be taken into account. This suggests the following
online implementation of stochastic MPC.
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Algorithm 6.1 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
u0|k ,...,uNu−1|k ,uss
si|k , ti|k , i=1,...,N

N∑

i=1

s2i|k (6.51a)

subject to

si|k ≥ ti|k − tss, si|k ≥ 0 (6.51b)

Prk(r − yi|k,1 ≥ ti|k) ≥ p1 (6.51c)

Prk(yi|k,2 ≤ A2) ≥ p2 (6.51d)
Nu−1∑

j=l

ρj−l1T uj|k +
(ρNu−l − ρN

1 − ρ

)
1T uss ≤ B (6.51e)

ul|k ≥ 0, uss ≥ 0 (6.51f)

for i = 1, . . . , N and l = 0, . . . , Nu − 1.
(ii) Apply the control law uk = u∗

0|k , where (u∗
0|k, . . . , u∗

Nu−1|k, u∗
ss) is the minimiz-

ing input sequence in (6.51). �

For l = 0, (6.51e) applies the discounted budgetary constraint

N−1∑

j=0

ρj1T uj|k ≤ B

to the predicted input sequence (u0|k, u1|k, . . .) with uj|k = uss for j ≥ Nu. However
(6.51e) is also applied for each l = 1, . . . , Nu −1 to ensure that the time-shifted input
sequences, (ul|k, ul+1|k, . . .), with uj|k = uss for j ≥ Nu, satisfy the corresponding
discounted budgetary constraint:

N−1+l∑

j=l

ρj−l1T uj|k ≤ B.

Given that the constraints of (6.50) are satisfied for the given tss,A2 andB for some uss,
this is all that is needed to ensure recursive feasibility of Algorithm 6.1. In addition,
if s∗

i|k , i = 1, . . . , N is optimal for (6.51) at time k, then the sequence defined by
si|k+1 = s∗

i+1|k for i = 1, . . . , N − 1 and sN |k+1 = 0 is by construction feasible

at time k + 1. Therefore the optimal objective of (6.51), denoted J∗
k

.= ∑N
i=1 s∗ 2

i|k ,
necessarily satisfies

J∗
k+1 ≤ J∗

k − s∗ 2
1|k (6.52)
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for all k. Summing both sides of this inequality over all k ≥ 0 gives

∞∑

k=0

s∗ 2
1|k ≤ J∗

0

which implies that s∗
1|k → 0 as k → ∞. These results are summarized below.

Theorem 6.2 For the closed-loop system (6.45) under the control law of Algo-
rithm 6.1, the optimization (6.51) is feasible at all times k = 0, 1, . . . and r −y1|k,1 ≤
tss with probability p1 as k → ∞.

Assuming the parameters of the model (6.45) to be normally distributed, the
probabilistic constraints in (6.50), as well as those of (6.51c, 6.51d), can be converted
into second-order cone constraints using themethod bywhich (6.46)was transformed
into the deterministic constraint (6.47). Therefore, the Phase 1 optimization (6.50) is
convex and can be performed for example by solving a sequence of SOCPs. Similarly,
the online optimization of Algorithm6.2 can be expressed as a single SOCP problem.
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Chapter 7
Feasibility, Stability, Convergence
and Markov Chains

This chapter considers the closed-loop properties of stochastic MPC strategies based
on the predicted costs andprobabilistic constraints formulated inChap.6. Tomake the
analysis of closed-loop stability andperformancepossible, itmust first be ensured that
the MPC law is well-defined at all times and the most natural way to approach this is
to ensure that the associated receding horizon optimization problem remains feasible
whenever it is initially feasible. We therefore begin by discussing the conditions for
recursive feasibility.

The requirement for future feasibility of probabilistic constraints induces con-
straints on the model state that must be satisfied for all realizations of model uncer-
tainty. Although this introduces robust constraints into the problem, we show that
these constraints provide the least restrictive means of ensuring recursive feasibil-
ity, and hence they are less restrictive than the conservative robust counterparts of
the probabilistic constraints. This suggests a general framework for stochastic MPC
that combines robust constraints for recursive feasibility with the probabilistic or
expected value constraints of the control problem.

Closed-loop stability and convergence are discussed next in the context of a pro-
totype stochasticMPC algorithm.We present an analysis of asymptotic mean-square
bounds on the closed-loop state and control trajectories that are derived from bounds
on the optimal value of the predicted cost. This is the basis of the stability analysis
of the various stochastic MPC strategies considered in this chapter and in Chap.8.
We also briefly discuss an interesting and seldom-used alternative based on super-
martingale convergence theory, which provides additional insight into the behaviour
of the closed-loop system.

The conditions for recursive feasibility of pointwise-in-time probabilistic con-
straints require the predicted state and control trajectories to lie in a tube that ensures
robust feasibility and satisfaction of the probabilistic constraints. Similar conditions
apply to the case of probabilistic constraints that are imposed jointly at more than
a single future time step, and we conclude the chapter by considering a strategy for
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this case that makes use of probabilistic bounds on the uncertain model parameters.
The approach is first introduced using the concept of probabilistic invariance and
then extended to a more general framework using Markov chains.

Throughout this chapter, we consider systems described by the uncertain model
introduced in Chap.6:

xk+1 = Ak xk + Bkuk + Dwk (7.1a)

where Ak, Bk, wk are functions of a stochastic parameter vector qk which is unknown
at time k. Thus (Ak, Bk, wk) = (

A(qk), B(qk), w(qk)
)
with

(
A(q), B(q), w(q)

) = (A(0), B(0), 0) +
m∑

j=1

(A( j), B( j), w( j))q( j) (7.1b)

and the probability distribution of qk = (q(1)
k , . . . , q(m)

k ) is assumed to be known and
to satisfy E(qk) = 0 and E(qkqT

k ) = I . Furthermore, qk and qi are assumed to be
independent for all k �= i.

7.1 Recursive Feasibility

This section examines conditions under which the online optimization of predicted
performance in stochastic MPC can be guaranteed to remain feasible at all future
sampling instants if it is initially feasible. Probabilistic or expectation constraints
such as (6.7)–(6.9) are usually regarded as “soft” constraints since they are not
required to hold for every possible realization of model uncertainty. However, in
order that a problem is feasible, we require that all conditions of the problem are
met, whether these are invoked for a predefined subset or for all model uncertainty
realizations. Probabilistic or expectation constraints are, in general, only feasible if
the system state belongs to a particular subset of state space, and the conditions for
their feasibility thus impose additional constraints on states and control inputs.

Recursive feasibility of stochastic MPC algorithms can be handled in one of
two ways. Either conditions to ensure robust feasibility are imposed as explicit con-
straints in the online optimization or the optimization is allowed to become infeasible
whenever necessary. The latter approach typically includes a penalty on constraint
violation in the MPC cost index [1, 2], or else directly minimizes a measure of the
distance of the state from the feasible set whenever the problem is infeasible [3].
Without a guarantee of feasibility, however, it is generally impossible to make a def-
inite statement about the degree to which the closed-loop system under a receding
horizon controller satisfies constraints. Moreover, the closed-loop system may not
satisfy the constraints of the problem, even if these are feasible at initial time.

In this section, we focus on the robust feasibility of stochastic MPC optimiza-
tion problems subject to pointwise in time probabilistic constraints (including, by

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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extension,mixtures of probabilistic and robust constraints that holdwith probability 1).
However we note that the same principles and analogous conditions for ensuring
feasibility apply to other constraint formulations such as the expectation constraints
and the joint probabilistic constraints of (6.7) and (6.9). To place this discussion in
a general context, we consider constraints applied to an uncertain output variable:

Prk(z0|k ≤ 0) ≥ p (7.2)

where zi |k is the predicted value at time k of the i-steps ahead output zk+i , and where
zk is a function of the state xk and control input uk of (7.1a):

zk
.= f (xk, uk, vk). (7.3)

Here v is a random variable that is defined in terms of a stochastic model parameter
rk = (r (1)

k , . . . , r (m)
k ), which is unknown at time k but which has a known probability

distribution, and a known set of vectors {v(1), . . . , v(m)}:

vk =
m∑

j=1

v( j)r ( j)
k . (7.4)

In this set-up, rk is not assumed to be independent of the stochastic parameter qk

appearing in (7.1a). Therefore the state constraints Prk(Fx1|k ≤ 1) ≥ p are a special
case of (7.2) with zk = f (xk, uk, vk) = FAxk + FBuk + FDvk − 1 and vk = wk .
Likewise, the mixed state and input constraints of (6.8) are included in (7.2) through
a change of the definition of zk :

zk = f (xk, uk, uk+1, vk) = FAk xk + FBkuk + Guk+1 + FDvk − 1

and vk = wk .

Example 7.1 This example uses a simple system model to motivate the derivation
of recursively feasible probabilistic constraints. The state xk , control input uk and
output zk at time k are governed by the first order dynamics:

xk+1 = xk + uk + wk

zk = xk + vk

where, at time k, xk is known and wk, vk are unknown discrete random variables
with

Pr(wk = j) = Pr(vk = j) = 1
3 , j = −1, 0, 1.

The system is subject to a probabilistic constraint, which is required to hold for all
k ≥ 0:

Prk(z0|k ≤ 0) ≥ 1
2 .

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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Fig. 7.1 The probability
distributions of the predicted
states, Pr0(xi |0) (upper plot),
and outputs, Pr0(zi |0) (lower
plot), of Example7.1
for i = 0, 1, 2 with
u0|0 = u1|0 = 0 and x0 = 0
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For the initial condition x0 = 0, Fig. 7.1 shows the distributions of xi |0 and zi |0
that are obtained with the predicted input sequence u0|0 = u1|0 = 0. From this it can
be seen that

Pr0(z0|0 ≤ 0) = 2
3 , Pr0(z1|0 ≤ 0) = 2

3 , Pr0(z2|0 ≤ 0) = 17
27 ,

which implies that Pr0(zi |0 ≤ 0) ≥ 1
2 holds for i = 0, 1, 2 (in fact it is easy to show

that Pr0(zi |0 ≤ 0) ≥ 1
2 holds for all i ≥ 0) if ui |0 = 0 for all i ≥ 0.

However, somewhat counterintuitively, the existence of a predicted control
sequence such that Pr0(zi |0 ≤ 0) ≥ 1

2 holds for given i does not ensure that the
constraint Prk(z0|k ≤ 0) ≥ 1

2 will be feasible at time k = i. For example, if u0 = 0,
then at time k = 1 the condition Pr1(z0|1 ≤ 0) ≥ 1

2 may be violated since if w0 = 1,
then x1 = 1 so that z1 = 1 + v1 and hence

Pr1(z0|1 ≤ 0) = Pr(v1 = −1) = 1
3

in this case.
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From zk = xk + vk and the probability distribution of vk , it is easy to see
that the condition Prk(z0|k ≤ 0) ≥ 1

2 is satisfied if and only if xk ≤ 0. Given that
x0 = 0 and wk lies in the interval [−1, 1], we must therefore have u0 ≤ −1 in order
that Pr1(z0|1 ≤ 0) ≥ 1

2 is feasible. By this reasoning, a control law that ensures sat-
isfaction of the probabilistic constraint for all k is given by

u0 = −1, uk = −wk−1, k = 1, 2, . . .

since this control strategy ensures xk ≤ 0 for all k.
Returning to the problem of determining a feasible predicted control sequence at

time k = 0, in order to ensure the future feasibility of the constraint Pri (z0|i ≤ 0) ≥ 1
2 ,

the predicted control sequence must meet the condition xi |0 ≤ 0 for all possible
realizations of the random sequence {w0, . . . , wi−1}, for each i > 0. This can be
formulated as the problem of determining {u0|0, u1|0, . . .} satisfying, for each i > 0,

Pri

(
max

w0,...,wi−1∈[−1,1] zi |0 ≤ 0

)
≥ 1

2

or equivalently

Pri

(
i +

i−1∑

j=0

u j |0 + vi ≤ 0

)
≥ 1

2 .

In order to impose the probabilistic constraint (7.2) in a way that guarantees recur-
sive feasibility, it is therefore necessary to consider for each i > 0 the worst case
realization of {w0, . . . , wi−1}whereas vi can be treated as a stochastic variable. Note
also that a robust reformulation of the constraint, i.e. Prk(z0|k ≤ 0) = 1, would have
to consider worst case realizations of both w and v, and hence would require that
xk ≤ −1. ♦

Given the probability distribution of v, the function f defines a set of states for
which there exists a control input such that the constraint (7.2) holds. Let

X .= {
x : ∃u such that Pr

(
f (x, u, v) ≤ 0

) ≥ p
}
, (7.5)

then the future feasibility of (7.2) can be ensured by requiring that the predicted state
sequence at time k satisfies xi |k ∈ X for all possible realizations of the uncertainty
sequence {qk, . . . , qk+i−1}, for each i > 0. Denoting the support of q (namely the
set of all possible realizations qk) as Q ⊆ R

m , so that

Pr(qk ∈ Q) = 1 and Pr(qk /∈ Q) = 0, (7.6)
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the implied constraints on the control sequence predicted at time k are then

Prk(z0|k ≤ 0) ≥ p (7.7a)

Prk+i

(
max

qk ,...,qk+i−1∈Q
zi |k ≤ 0

)
≥ p, i = 1, 2, . . . (7.7b)

Thus the constraints on the i steps ahead output variable zi |k have been made robust
with respect to {qk, . . . , qk+i−1} but remain stochastic with respect to vk+i .

To verify these constraints are recursively feasible, suppose {u0|k, u1|k, . . .} sat-
isfies (7.7a, 7.7b) for some k and consider the sequence defined at time k + 1 by
ui |k+1 = ui+1|k for i = 0, 1, . . . (or by ui |k+1(x) = ui+1|k(x) if optimization is per-
formed over feedback laws rather than open-loop control sequences). Then, for any
qk ∈ Q, the condition (7.7b) with i = 1 implies xk+1 ∈ X and

Prk+1(z0|k+1 ≤ 0) ≥ p.

Likewise, the condition (7.7b), when invoked for i = j + 1, ensures that x j |k+1 ∈ X
for all {qk, . . . , qk+ j } ∈ Q × · · · × Q and

Prk+1+ j

(
max

qk+1,...,qk+ j ∈Q
z j |k+1 ≤ 0

)
≥ p, j = 1, 2, . . .

Hence there exists a predicted control sequence at time k + 1 such that the conditions
of (7.7a and 7.7b) hold with k replaced by k + 1.

This argument demonstrates that the conditions of (7.7a and 7.7b) provide a
recursively feasible set of constraints ensuring satisfaction of (7.2). It is important to
note that these conditions are necessary as well as sufficient for recursive feasibility.
In particular, if the predicted control sequence is optimized over arbitrary feedback
lawswith no restriction on the controller parameterization, then infeasibility of (7.7a,
7.7b) implies that, for some i ≥ 0, it is not possible to satisfy Prk+ j (z0|k+ j ≤ 0) ≥ p
for all j = 0, . . . , i under any control law.

A consequence of the constraints (7.7b) involving a maximization over a subset
of the uncertain model parameters is that feasibility cannot generally be guaranteed
for models containing random variables with infinite support. Thus if q has infinite
support, then a predicted control sequence or feedback law satisfying (7.2) can only
exist if the model state x is unobservable from the constrained output variable z, and
furthermore the unbounded model uncertainty associated with q must only affect the
components of x that are unobservable from z. In general, this rules out problems
in which q is normally distributed since such models allow disturbances to have an
arbitrarily large effect on the model state, albeit with vanishingly small probability.

In most applications the restriction to finitely supported model uncertainty is not
limiting since control systems are rarely subject to unbounded uncertainty in practice.
However it does affect both themodelling of disturbances and the numerical methods
required to handle probabilistic constraints. On the other hand, the parameter v that
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appears directly in the constrained output z is treated as a stochastic variable and is
not required to have finite support. One consequence of this is that problems based
on moving average dynamic models, such as those considered in Chap.6, are not
restricted to finitely supported random variables since in this case all of the model
uncertainty is contained in the output map.

To conclude this section, we discuss how the conditions of (7.2), consisting of an
infinite number of constraints over an infinite prediction horizon, can be reduced to
a finite number of constraints. As in the case of robust MPC, it is possible to impose
the constraints (7.2) on predicted state and control trajectories through a finite set of
conditions, which nevertheless are recursively feasible over an infinite horizon, by
using a dual-mode prediction strategy and an appropriate terminal constraint. In this
context the terminal constraint xN |k ∈ XT is required to hold for all realizations of
the uncertain sequence {qk, . . . , qk+N−1} over the initial N-step prediction horizon.
Moreover recursive feasibility requires that XT is a robustly invariant subset of the
feasible set X in (7.5) and hence the probabilistic constraint (7.2) must hold for all
x ∈ XT under the terminal feedback law.

Assuming a linear terminal control law, uk = Kxk , we therefore require that XT

satisfies, for all x ∈ XT , the conditions

(
A(q) + B(q)K

)
x + Dw(q) ∈ XT ∀q ∈ Q (7.8a)

and
Pr
(

f (x, Kx, v) ≤ 0
) ≥ p. (7.8b)

If (7.8b) can be invoked through an equivalent algebraic condition, then the maximal
robustly positively invariant set satisfying (7.8a, 7.8b) (or a convex inner approxima-
tion of this set—see e.g. [4]) can be determined by a conceptually straightforward
extension of Theorem3.1, as we now briefly discuss. Defining the sequence of sets
{S0,S1, . . .} by

S0 = {
x : Pr( f (x, Kx, v) ≤ 0

) ≥ p
}

and, for k = 1, 2, . . .

Sk = {
x : (A(q) + B(q)K

)
x + Dw(q) ∈ Sk−1 ∀q ∈ Q},

the MRPI set is given by

XMRPI .=
∞⋂

k=0

Sk =
ν⋂

k=0

Sk

where ν satisfies
⋂ν

k=0 Sk ⊆ Sν+1. In many cases of practical interest (see e.g. [5]),
it is not easy to determine an algebraic equivalent of (7.8b) and it may therefore be
necessary to resort to a conservative approximation, for example based on random
sampling methods.

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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7.2 Prototype SMPC Algorithm: Stability and Convergence

This section proposes a general formulation of stochastic MPC for the system (7.1a,
7.1b). The algorithms presented here are conceptual in the sense that we do not
consider how to solve the implied onlineMPCoptimization problem (this is discussed
in detail in later sections of this chapter and in Chap.8). Instead, the focus of this
section is on analysing closed-loop behaviour using the optimal value of the predicted
cost.We show that the closed-loop system inherits a quadratic stability propertywhen
the MPC objective function is a quadratic predicted cost.

Two alternatives are considered for the MPC cost: the expected value predicted
cost of Sect. 6.2 and the nominal predicted cost of Sect. 3.3. The system is subject
to the pointwise-in-time probabilistic constraints of (6.8) and the constraints of the
MPC optimization are constructed to ensure recursive feasibility as described in
Sect. 7.1. Using a dual-mode prediction scheme, the predicted control sequence at
time k is parameterized as

ui |k = Kxi |k + ci |k, i = 0, 1, . . . (7.9)

where ck
.= (c0|k, . . . , cN−1|k) is a vector of optimization variables at time k and

ci |k = 0 for all prediction times i ≥ N , and where K satisfies the mean-square stabil-
ity condition (6.5). It is assumed that a terminal set XT is known, where XT satisfies
the condition (7.8) for robust invariance and the probabilistic constraint

Pr
(

F̃
(
Φ(q)x + Dw(q)

) ≤ 1
)

≥ p

for all x ∈ XT , where F̃ = F + GK and Φ(q) = A(q) + B(q)K .

7.2.1 Expectation Cost

Define the predicted cost at time k as the expectation cost (6.15) of Sect. 6.2:

J(xk, ck) =
∞∑

i=0

Ek
(‖xi |k‖2Q + ‖ui |k‖2R − lss

)
(7.10)

where lss = tr
(
Θ(Q + KT RK)

)
and Θ is the solution of (6.10), and let K be the

optimal linear feedback gain for this cost given by (6.22) and (6.23). Then, by Corol-
lary6.1, J(x, c) has the quadratic form:

J(x, c) = xT Wx x + cT Wcc + 2wT
x1x + 2wT

c1c + w1

http://dx.doi.org/10.1007/978-3-319-24853-0_8
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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where Wx � 0, Wc � 0 andwx1, wc1 are given by (6.23), (6.24) and (6.21a), (6.21b).
A recursively feasible MPC algorithm that minimizes this cost subject to the con-
straint Prk(Fx1|k + Gu1|k ≤ 1) ≥ p can be stated as follows.

Algorithm 7.1 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
ck

J(xk, ck) (7.11a)

subject to

Prk
(
F̃x1|k + Gc1|k ≤ 1

) ≥ p (7.11b)

Prk+i

(
max

qk ,...,qk+i−1∈Q
F̃xi+1|k + Gci+1|k ≤ 1

)
≥ p,

i = 1, . . . , N − 2 (7.11c)

Prk+N−1

(
max

qk ,...,qk+N−2∈Q
F̃xN |k ≤ 1

)
≥ p (7.11d)

and xN |k ∈ XT for all {qk, . . . , qk+N−1} ∈ Q × · · · × Q (7.11e)

(ii) Apply the control law uk = Kxk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal argument of (7.11). �

Theorem 7.1 For the system (7.1a, 7.1b) under the control law of Algorithm7.1, if
the optimization (7.11) is feasible at k = 0, then it remains feasible for all k > 0.
Also the closed-loop system satisfies the quadratic stability condition

lim
r→∞

1

r

r∑

k=0

E0
(‖xk‖2Q + ‖uk‖2R

) ≤ lss (7.12)

and Prk(Fx1|k + Gu1|k ≤ 1) ≥ p holds for all k > 0.

Proof The argument of Sect. 7.1 shows that the constraints (7.11b–7.11e) are recur-
sively feasible since if the optimization of (7.11) is feasible at time k, then

ck+1 = (c∗
1|k, . . . , c∗

N−1|k, 0)

necessarily satisfies (7.11b–7.11e) at time k + 1. Feasibility of (7.11b), therefore,
implies satisfaction of the probabilistic constraint Prk(Fx1|k + Gu1|k ≤ 1) ≥ p for
all k ≥ 0.

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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From the definition of the predicted cost, we have

Ek
(
J(xk+1, ck+1)

) ≤ J∗(xk) − (‖xk‖2Q + ‖uk‖2R − lss
)

where J∗(xk) = J(xk, c∗
k), and since optimality at time k + 1 implies, for any real-

ization of qk ∈ Q, that J∗(xk+1) ≤ J(xk+1, ck+1) it follows that

Ek
(
J∗(xk+1)

) ≤ J∗(xk) − (‖xk‖2Q + ‖uk‖2R − lss
)
. (7.13)

Taking expectations conditional on x0 of both sides of this inequality and noting that
E0
(
Ek
(
J∗(xk+1)

)) = E0
(
J∗(xk+1)

)
, we obtain, for all r > 0:

1

r

r−1∑

k=0

E0
(‖xk‖2Q + ‖uk‖2R

) ≤ lss + 1

r

(
J∗(x0) − E0

(
J∗(xr )

))
.

Here J∗(x0) is by assumption finite whereas J∗(x) has a finite lower bound since Wx

and Wc are positive definite matrices; therefore, the second term on the RHS of this
inequality vanishes as r → ∞. �

The optimal value of the predicted cost J(x, c) is not necessarily non-negative and
the convergence analysis in (7.1) therefore relies on the existence of a finite lower
bound on the predicted cost. A consequence of this is that an asymptotic value of the
expected stage cost lower than lss may be achievable using an affine rather than linear
state feedback law whenever the additive and multiplicative uncertainty in the model
(7.1a, 7.1b) are correlated. From the expression for the unconstrained minimizer
of (7.11) given by (6.20) and (6.21a) it can be seen that the control law of Algo-
rithm7.1 will in fact be equal to this affine feedback law if constraints are inactive,
and this is the explanation for the inequality in the asymptotic bound of (7.12).

Two special cases are of particular interest in this convergence analysis. If the
additive and multiplicative uncertain model parameters in (7.1b) are uncorrelated,
then the discussion of Sect. 6.2 shows that lss is the minimum expected value of the
stage cost that can be achieved under any control law. Therefore in this case the
bound (7.12) implies that the control law of Algorithm7.1 converges asymptotically
to uk = Kxk , and it can then be shown that xk converges with probability 1 to the
minimal RPI set under this feedback law as k → ∞.

A second special case is that in which the system (7.1a, 7.1b) is only affected
by multiplicative uncertainty (i.e., wk = 0 for all k). In this case, lss = 0 and it
follows that J∗(x) is a positive definite function of x . Therefore (7.13) implies that
the closed-loop system is quadratically stable and hence xk → 0 as k → ∞ with
probability 1.

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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7.2.2 Mean-Variance Cost

A quadratic stability result also applies if the performance objective of Algorithm7.1
is replaced by the mean-variance predicted cost (7.14) of Sect. 6.3:

J(xk, ck) =
∞∑

i=0

(‖x (0)
i |k ‖2Q + ‖u(0)

i |k ‖2R
)

+ κ2
∞∑

i=0

Ek
(‖xi |k − x (0)

i |k ‖2Q + ‖ui |k − u(0)
i |k ‖2R − lss

)
. (7.14)

with lss = tr
(
Θ(Q + KT RK)

)
as before, and where κ is a given constant. However

the optimal value of this predicted cost does not necessarily satisfy a condition such
as (7.13), and as a result the available bounds on the mean-square value of the closed-
loop system state are, in general, weaker than the bound given by Theorem7.1. To
analyse stability, we take an indirect approach similar to the analysis in Sect. 3.3 of
robust stability of nominal MPC. This is based on the fact that the optimal linear
feedback gain for the problem of minimizing (7.14) in the absence of constraints
necessarily satisfies the condition (6.5) for mean-square stability, and it therefore
induces a finite l2 gain between the disturbance input and the closed-loop system
state under an associated MPC law.

Assuming K to be the unconstrained optimal linear feedback gain defined
by (6.33a–6.33c), the matrix Wz in (6.32a) is block-diagonal and the cost (7.14)
can be expressed

J(xk, ck) = xT
k Wx xk + cT

k Wcck + 2wT
x1xk + 2wT

c1ck + w1.

Furthermore the structure of Ψk and Ψ (0) in (6.32a, 6.32b) implies that Wc and wc1
have the block structure:

Wc = diag{S, . . . , S}, wT
c1 = [

vT · · · vT
]

where S ∈ R
nu×nu and v ∈ R

nu , with S � 0. The statement of a stochastic MPC
algorithm based on the minimization of this cost subject to the constraints of (7.11)
is as follows.

Algorithm 7.2 At each time instant k = 0, 1, . . .:

(i) Perform the optimization:

minimize
ck

‖ck‖2Wc
+ 2wT

c1ck subject to (7.11b–7.11e) (7.15)

(ii) Apply the control law uk = Kxk + c∗
0|k , where c∗

k = (c∗
0|k, . . . , c∗

N−1|k) is the
optimal argument of (7.15). �

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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Theorem 7.2 For the control law of Algorithm7.2 applied to the system (7.1a, 7.1b):
if the optimization (7.15) is feasible at k = 0, then it is feasible for all k > 0, the
closed-loop system satisfies the quadratic stability condition

lim
r→∞

1

r

r∑

k=0

E0
(‖xk‖2

) ≤ γ2
E
(‖wk‖2

)
(7.16)

for some finite scalar γ, and Prk(Fx1|k + Gu1|k ≤ 1) ≥ p holds for all k > 0.

The proof of the bound in (7.16) relies on the following result.

Lemma 7.1 There exist scalars β, γ and a matrix P � 0 such that, under the control
law of Algorithm7.2, the following bound holds

Ek
(‖xk+1‖2P

) ≤ ‖xk‖2P − ‖xk‖2 + β2
(
‖c∗

0|k‖2S + 2vT c∗
0|k
)

+ γ2
E
(‖wk‖2

)
. (7.17)

Proof Since K satisfies (6.33b) with Ŵx � 0, there exists P � 0 satisfying P −
E(ΦT

k PΦk) � I , and this ensures that β, γ exist so that H1 � 0, where

H1
.=
⎡

⎣
P − I 0 0
0 β2S β2v

0 β2vT γ2
E
(‖wk‖2

)

⎤

⎦− E

⎛

⎝

⎡

⎣
ΦT

k
BT

k
wT

k DT

⎤

⎦P
[
Φk Bk Dwk

]
⎞

⎠ .

The bound in (7.17) is then obtained by pre- and post-multiplying H1 by the vector
(xk, c∗

0|k, 1) and using the system dynamics (7.1a). To show that H1 � 0, suppose
that P − E(ΦT

k PΦk) � (1 + ε)I for some ε > 0, then using Schur complements we
find that H1 � 0 if H2 � 0, where

H2
.=
[

β2S β2v

β2vT γ2
E
(‖wk‖2

)
]

−
[

E(BT
k PBk) E(BT

k PDwk)

E(wT
k DT PBk) E

(‖wk‖2P
)
]

+ ε−1
[

E(BT
k PΦk)

E(wT
k DT PΦk)

] [
E(ΦT

k PBk) E(ΦT
k PDwk)

]
.

The bottom right element of H2 has the lower bound

[
γ2 − λ̄(P)

(
1 + ε−1

m∑

j=1

‖P1/2Φ( j)‖2
)]

E
(‖wk‖2

)

and is therefore positive for all non-zero E(‖wk‖2) if γ is sufficiently large. Since
S � 0 it follows that H2 � 0 for any given P, ε > 0 and E(‖wk‖2) whenever the
values of β and γ are sufficiently large. �

http://dx.doi.org/10.1007/978-3-319-24853-0_6
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We can now give the proof of Theorem7.2.

Proof (of Theorem7.2) The constraints of (7.15) are identical to those of the MPC
optimization in Algorithm7.1. Therefore recursive feasibility and satisfaction of the
probabilistic constraint therefore follow from feasibility of

ck+1 = (c∗
1|k, . . . , c∗

N−1|k, 0)

in (7.15) at time k + 1. Let V ∗(xk) denote the optimal value of the objective of
(7.15) at time k, then the optimality of the MPC optimization at k + 1 implies that
V ∗(xk+1) ≤ ‖ck+1‖2Wc

+ 2wT
c1ck for every realization qk ∈ Q. From the block struc-

ture of Wc and wc1, we therefore have

Ek
(
V ∗(xk+1)

) ≤ ‖ck+1‖2Wc
+ 2wT

c1ck = V ∗(xk) − (‖c∗
0|k‖2S + 2vT c∗

0|k
)
,

and hence from (7.17)

Ek
(‖xk+1‖2P

) ≤ ‖xk‖2P − ‖xk‖2 + β2
(

V ∗(xk) − Ek
(
V ∗(xk+1)

))+ γ2
E
(‖wk‖2

)
.

Taking expectations and summing over k = 0, . . . , r − 1, we have

1

r

r−1∑

k=0

E0
(‖xk‖2

) ≤ γ2
E
(‖w‖2)+ 1

r

(
‖x0‖P − E0

(‖xr‖2P
))

+ β2

r

(
V ∗(x0) − Ek

(
V ∗(xr )

))
.

In the limit as r → ∞, this implies the bound (7.16) since the second and third terms
on the RHS of this inequality are necessarily bounded from above. �

Theorem7.2 demonstrates the existence of a finite upper bound on the gain
between themean-square value of the additive disturbance and that of the closed-loop
system state. But this result gives no indication of how the gain bound depends on
the distribution of multiplicative model uncertainty, and hence it is a weaker result
than Theorem7.1. It is possible, however, to generalize the result of Theorem7.1
for the case of the cost (7.14) with κ > 1, since then, using (6.32a–6.32c) and the
expression (6.31) for the predicted cost, it can be shown that

Ek
(
J∗(xk+1)

) ≤ J∗(xk) − (‖xk‖2Q + ‖uk‖2R − κ2lss
)

(7.18)

where J∗(xk) = J(xk, c∗
k) is the value of the cost (7.14) at the solution of the MPC

optimization (7.15). By the argument that is used in the proof of Theorem7.1, it

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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follows from (7.18) that the closed-loop system under Algorithm7.2 satisfies the
quadratic stability condition

lim
r→∞

1

r

r∑

k=0

E0
(‖xk‖2Q + ‖uk‖2R

) ≤ κ2lss (7.19)

whenever κ > 1.

7.2.3 Supermartingale Convergence Analysis

The quadratic bounds of Theorems7.1 and 7.2 provide an indication of the asymp-
totic behaviour of the mean-square value of the closed-loop system state under Algo-
rithms7.1 and 7.2. However, except for the special case in which the model (7.1a,
7.1b) contains no additive disturbance, these results do not demonstrate asymptotic
convergence of the state to a particular neighbourhood of the origin. Yet on the basis
of the bounds on the evolution of the optimal value of the cost in (7.13) and (7.18),
it is possible to state a convergence result for the state of the closed-loop system.

In order to do this, we define the ellipsoidal set

Ωκ
.= {

x : xT Qx ≤ κ2lss
}

and, given a sequence of states {x0, x1, . . .}, we define the sequence {x̂0, x̂1, . . .} by
x̂0 = x0 and

x̂k =
{

xk if xi /∈ Ωκ for all i < k

x̂k−1 if xi ∈ Ωκ for some i < k
(7.20)

for all k > 0. If xk satisfies (7.13) for κ = 1 or (7.18) for κ > 1, then the sequence
{J∗(x̂0), J∗(x̂1), . . .} is a supermartingale, namely a sequence of random variables
with the property that Ek

(
J∗(x̂k+1)

) ≤ J∗(x̂k) for all k ≥ 0 [6]. This follows from
the fact that (7.13) or (7.18) imply

Ek
(
J∗(x̂k+1)

) ≤ J∗(x̂k) − (‖x̂k‖2Q − κ2lss
) ≤ J∗(x̂k)

if xi /∈ Ωκ for all i ≤ k whereas J∗(x̂k+1) = J∗(x̂k) if xi ∈ Ωκ for any i ≤ k, by
(7.20). The stochastic convergence properties of supermartingales are well known,
see e.g., [7], and in particular the following result (adapted from [8]) is useful in the
current context.
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Theorem 7.3 Under Algorithm7.1 with κ = 1 or Algorithm7.2 with κ > 1, the state
of the closed-loop system satisfies xk ∈ Ωκ for some k with probability 1.

Proof Define the function l(x) by

l(x) =
{

‖x‖2Q − κ2lss if x /∈ Ωκ

0 if x ∈ Ωκ

and note that l(x) > 0 if and only if x /∈ Ωκ. Then from (7.13), (7.18) and (7.20) we
have, for all k ≥ 0,

Ek
(
J∗(x̂k+1)

)− J∗(x̂k) ≤ −l(x̂k), (7.21)

and summing over all k < r yields, for any r > 0,

r−1∑

k=0

E0
(
l(x̂k)

) ≤ J∗(x0) − E0
(
J∗(x̂r )

)
.

The RHS of this inequality has a finite upper bound because J∗(x) is bounded from
below for all x ; it follows (by the Borel–Cantelli Lemma—see [6]) that l(x̂k) → 0
with probability 1 and hence x̂k → Ωκ with probability 1. �

Theorem7.3 implies that every state trajectory of the closed-loop system con-
verges to the set Ωκ. Although subsequently the state may not remain in Ωκ, suc-
cessive applications of Theorem7.3 show that it must continually return to Ωκ. The
convergence of x̂ to Ωκ with probability 1 is equivalent to convergence in probabil-
ity [8] since Pr

(
l(x̂k

) ≥ ε) → 0 as k → ∞ for all ε > 0.
Analogous stability and convergence results can also be obtained for problems

incorporating soft constraints that may be violated as often as required. For example,
in applications that involvemodel uncertainty with unbounded support and for which
the satisfaction of probabilistic constraints cannot be guaranteed, feasibility can be
maintained by performing the optimization (7.11) (or (7.15) forκ > 1)whenever this
is feasible, and otherwise minimizing the worst-case constraint violation subject to

J(xk, ck) ≤ J
(
xk, (c

∗
1|k−1, . . . , c∗

N−1|k−1, 0)
)
.

Clearly this approach cannot guarantee that the closed-loop system will satisfy con-
straints of the form (6.7) or (6.8) and (6.9) at the required level of probability. How-
ever, it can impose a supermartingale-like condition such as (7.13) (or (7.18)), thus
ensuring the quadratic stability condition of (7.12) (or (7.16)) and the convergence
property of Theorem7.3.

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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7.3 Probabilistically Invariant Ellipsoids

Wenext consider a generalized formof the probabilistic constraints (6.9). Rather than
constraining the probability of the variable Fxk + Guk exceeding some threshold,
we consider constraints on nψ output variables that are defined as the elements of
the vector [9]

ψk = Fk xk + Gkuk + ηk . (7.22)

The parameters Fk ∈ R
nψ×nx , Gk ∈ R

nψ×nu and the noise process ηk ∈ R
nψ are

subject to stochastic uncertainty which is described in terms of the random vari-
able qk = (q(1)

k , . . . , q(m)
k ) appearing in the model (7.1a, 7.1b) as (Fk, Gk, ηk) =(

F(qk), G(qk), η(qk)
)
, where

(
F(q), G(q), η(q)

) = (F(0), G(0), 0) +
m∑

j=1

(F( j), G( j), η( j))q( j). (7.23)

Furthermore we consider a form of probabilistic constraint in which the output vari-
able ψk is allowed to lie outside a prescribed interval Iψ = [ψ, ψ̄] provided the
average probability of this happening over a given horizon Nc does not exceed a
given limit:

1

Nc

Nc−1∑

i=0

Prk(ψi |k /∈ Iψ) ≤ Nmax

Nc
. (7.24)

Here, Nmax is a limit on the expected number of times the output variable can lie
outside the prescribed interval over a horizon of Nc steps.

The formof constraint in (7.24) is applicable to situations inwhich it is not realistic
to invoke a pointwise in time probabilistic constraint of the form of (6.8) at every
time instant, but where it is desirable to constrain the average rate of violations. For
example in the design of supervisory controllers for large wind turbines with the aim
of damping structural vibrations (such as fore-aft tower oscillations [10]) so as to
reduce fatigue damage, it may not be possible to constrain the material stresses to
a given range with a pre-specified probability at each sampling instant. But to limit
potential fatigue damage, it is essential that the expected rate of such violations does
not exceed a given threshold.

Propagating stochastic uncertainty over a prediction horizon can present consid-
erable computational challenges, so to provide an efficient method of invoking the
constraints (7.24), here we make use of probabilistic bounds on the model parame-
ters. Thus it is assumed that with a probability of at least p, the parameter q lies in
a known set Qp. In the following, we assume Qp to be a compact convex polytope
defined in terms of its vertices, namely

Pr(q ∈ Qp) ≥ p, Qp
.= Co{qp,1, . . . , qp,ν}. (7.25)

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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Here Qp defines a confidence region for the uncertain parameters which is non-
unique in general, and this can be a source of suboptimality. For example, a proba-
bilistic constraint such as Pr

(
f (c, q) ≤ 0

) ≥ p, where c is a decision variable and f
a given function, is implied by the condition f (c, q) ≤ 0 for all q ∈ Qp. However,
replacing the original probabilistic constraint in an optimization problem by the con-
dition f (c, q) ≤ 0 for all q ∈ Qp will, in general, result in a suboptimal solution for
c if Qp is taken to be a fixed set rather than an optimization variable.

The confidence regionQp of (7.25) is computationally convenient in that it allows
a straightforward algebraic reformulation of probabilistic constraints and it can be
computed offline. Thus, if q were normally distributed with zero mean and identity
covariance matrix, then qT q would have a chi-squared distribution and hence the
radius of a sphere centred at the origin and containing q with probability p could
be computed using the chi-squared distribution with m degrees of freedom. Con-
sequently Qp could be defined as any polytopic set that over-bounds this sphere.
Normal distributions do not of course have finite support, but this approach can be
used to approximateQp if q has a truncated normal distribution. The implication of
(7.25) is that

Pr
(
Φk ∈ Φ(0) + Co

{
Φ(qp,1), . . . , Φ(qp,ν)

}) ≥ p

Pr
(

Bk ∈ B(0) + Co
{
B(qp,1), . . . , B(qp,ν)

}) ≥ p

Pr
(
wk ∈ Co

{
w(qp,1), . . . , w(qp,ν)

}) ≥ p

(7.26)

where Φk = Ak + BkK and Φ(q) = Φ(0) +∑m
j=1 Φ( j)q( j).

The concept of probabilistic invariance is defined as follows.

Definition 7.1 A set S ⊂ R
nx is invariant with probability p for a system with state

xk if Prk(x1|k ∈ S) ≥ p for all xk ∈ S.
To determine conditions underwhich an ellipsoidal set is invariantwith probability

p, wemakeuse of the lifted autonomous state-space formulation of (6.16) in Sect. 6.2:

zi+1|k = Ψk+i zi |k + D̄wk+i , z0|k =
[

xk

ck

]
, (7.27)

where zi |k ∈ R
nz , nz = nx + Nnu , and (Ψk, wk) = (

Ψ (qk), w(qk)
)
with

(Ψ (q), w(q)) = (Ψ (0), 0) +
m∑

j=1

(Ψ ( j), w( j))q( j),

Ψ ( j) =
[
Φ( j) B( j)

0 M

]
, Φ( j) = A( j) + B( j)K, D̄ =

[
D
0

]
.

http://dx.doi.org/10.1007/978-3-319-24853-0_6


288 7 Feasibility, Stability, Convergence and Markov Chains

The implied predicted control law is given by

ui |k = Kxi |k + ci |k

with ci |k = 0 for all i ≥ N . As before, ck = (c0|k, . . . , cN−1|k) is a decision variable
at time k. We consider ellipsoidal sets Ez ⊂ R

nz defined in terms of Pz � 0, and their
projections onto the x-subspace:

Ez
.= {z : zT Pzz ≤ 1}, Ex

.= {x : xT Px x ≤ 1},

where, as discussed in Chap.2 (Sect. 2.7.2), Px =
([

Inx 0
]

P−1
z

[
Inx

0

]T)−1

.

Theorem 7.4 The set Ez is invariant with probability p for the system (7.27) if a
scalar λ exists such that, for j = 1, . . . , ν,

⎡

⎣
P−1

z Ψ (qp, j )P−1
z D̄w(qp, j )

� λP−1
z 0

� � 1 − λ

⎤

⎦ � 0. (7.28)

Proof A sufficient condition for invariance of Ez with probability p is that
‖z1|k‖2Pz

≤ 1 whenever ‖z0|k‖2Pz
≤ 1, for all q ∈ Qp. Using (7.27) to express z1|k

in terms of z0|k and applying the S-procedure [11] to these two inequalities, we
obtain the equivalent condition that λ > 0 should exist such that

1 − (
Ψ (q)z + D̄w(q)

)T
Pz
(
Ψ (q)z + D̄w(q)

) ≥ λ(1 − zT Pzz)

for all z ∈ R
nz and all q ∈ Qp. An equivalent condition is that

[
λPz 0
0 1 − λ

]
−
[

Ψ T (q)

wT (q)D̄T

]
Pz
[
Φ(q) D̄w(q)

] � 0

for all q inQp. Using Schur complements, it can be shown that this is equivalent to
an LMI in Ψ (q) and w(q), which, when invoked for all q in the polytope Qp, is by
linearity and convexity equivalent to the LMIs (7.28) corresponding to the vertices
qp, j , j = 1, . . . , ν of Qp. �

The theorem gives conditions under which the state of (7.27) returns, at the next
time instant, toEz with probability p. A second confidence polytope,Q p̃ , correspond-
ing to a confidence level of p̃, can be used to state conditions such that ψ0|k ∈ Iψ
with probability p̃ for all z0|k ∈ Ez . To do this, ψ is first expressed as a function of z
and q:

ψ0|k = C(qk)z0|k + η(qk)

C(q) = [
F(q) + G(q)K G(q)E

]
.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Corollary 7.1 Let qp̃, j for j = 1, . . . , ν denote the vertices of Q p̃ . Then Pr(ψ0|k ∈
Iψ | z0|k ∈ Ez) ≥ p̃ if

ψ ≤ η(qp̃, j ) ≤ ψ̄ (7.29a)

and

[C(qp̃, j )P
−1
z C(qp̃, j )

T ]l,l ≤ [ψ̄ − η(qp̃, j )]2l (7.29b)

[C(qp̃, j )P
−1
z C(qp̃, j )

T ]l,l ≤ [η(qp̃, j ) − ψ]2l (7.29c)

for j = 1, . . . , ν and l = 1, . . . , nψ , where [·]l,l and [·]l denote, respectively, the lth
diagonal element of the matrix [·] and the lth element of the vector [·].
Proof For any given q, the maximum absolute value of the lth element of C(q)z0|k
over all z0|k ∈ Ez is equal to [C(q)P−1

z C(q)T ]1/2l,l . It follows that Pr(ψ0|k ∈ Iψ | z0|k ∈
Ez) ≥ p̃ if (7.29a) holds and

[C(q)P−1
z C(q)T ]1/2l,l ≤ [ψ̄ − η(q)]l

[C(q)P−1
z C(q)T ]1/2l,l ≤ [η(q) − ψ]l

for all q ∈ Q p̃ and l = 1, . . . , nψ . Given the affine dependence of C and η on q,
these conditions are convex in q and it follows that they are equivalent to the condi-
tions (7.29b, 7.29c), which correspond to the vertices qp̃,1, . . . , qp̃,ν of Q p̃. �

Theorem7.4 and Corollary7.1 can be used to invoke the constraint (7.24) by
deploying a Markov chain model. To illustrate this, we consider a pair of ellipsoidal
sets E1, E2 ⊂ R

nx where E1 ⊂ E2, and E1 is probabilistically invariant with probabil-
ity p1,1 whereas E2 is robustly invariant (i.e. invariant with probability 1). Although
two sets are considered here, the approach is also applicable to a larger number of
nested sets. Define S1

.= E1 and S2
.= E2 − E1, and assume that the predicted state

x is steered by (7.27) from Sl to S j in a single time step with probability p j,l for
j = 1, 2, l = 1, 2, i.e.

Prk+i (xi+1|k ∈ S j | xi |k ∈ Sl) = p j,l .

Also let the probability that ψi |k /∈ Iψ given that xi |k ∈ S j be p j , for j = 1, 2, i.e.

Prk+i (ψi |k /∈ Iψ | xi |k ∈ S j ) ≤ p j .

Then it follows that

Prk+i {ψi |k /∈ Iψ} ≤ [
p1 p2

]
Π i e (7.30)
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p1,1 p2,2

p1,2

p2,1

S1 S2

Fig. 7.2 Markov chain model with two discrete states

where

Π =
[

p1,1 p1,2
p2,1 p2,2

]
and e =

{
[1 0]T if xk ∈ S1

[0 1]T if xk ∈ S2

By definition Π is the transition matrix of a Markov chain [12] and therefore
satisfies

[
1 1
]
Π = [

1 1
]
since the successor state must belong to either S1 or S2

(Fig. 7.2). This implies that
[
1 1
]
is a left eigenvector ofΠ with 1 as the corresponding

eigenvalue. Thus the eigenvector decomposition of Π can be written as

Π = [
w1 w2

] [1 0
0 λ2

][
vT
1

vT
2

]
, 0 ≤ λ2 ≤ 1. (7.31)

Together with (7.30), this implies that constraint (7.24) will be satisfied if

[
p1 p2

]
w1v

T
1 e j + (λ2 − λNc

2 )

Nc(1 − λ2)

[
p1 p2

]
w2v

T
2 e j ≤ Nmax

Nc
, j = 1, 2 (7.32)

However, we must have Nmax = μNc for some μ ∈ (0, 1), and hence this condition
can always be satisfied for sufficiently large Nc so long as

[
p1 p2

]
w1v

T
1 e j ≤ μ, j = 1, 2. (7.33)

In the current setting, we can choose E1 as Ex , the x-subspace projection of an
ellipsoidal setEz = {z : zT Pzz ≤ 1} that is constrained to be invariantwith a specified
probability, p01,1, through the conditions Theorem7.4. Similarly, E2 can be defined
as the x-subspace projection of a robustly invariant ellipsoidal set. Theorem7.4 then
implies that p1,1 ≥ p01,1 and p2,1 ≤ p02,1

.= 1 − p01,1. However, since the outer ellip-
soid E2 contains all states of the system for which this MPC strategy can be applied,
it is reasonable to assume that the probability, p2, of ψ /∈ Iψ given x ∈ E2 will be
higher than, p1, the corresponding probability given x ∈ E1. In this case, replacing
p1,1 and p2,1 in Π with their conservative bounds, p01,1 and p02,1, has the effect of
reinforcing the inequality (7.30) and thus the condition in (7.32) for satisfaction of
the constraint (7.24) will continue to hold.

For xk ∈ E1, the MPC cost can be defined, for example, as the expected quadratic
cost J(xk, ck) of Sect. 7.2.1. However, whenever xk /∈ E1, rather than minimize this
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cost, a sensible strategy is to steer the nominal successor state towards E1 so as to
increase the value of p1,2. This can be done by minimizing an objective function
such as ‖Ψ (0)zk‖2Pz

. The implied MPC algorithm can be stated as follows.

Algorithm 7.3 At times k = 0, 1, . . .:

(i) If xk ∈ E1, compute

c∗
k = argmin

ck
J(xk, ck) subject to zT

k Pzzk ≤ 1 (7.34)

(ii) Otherwise (i.e. if xk /∈ E1), compute

c∗
k = argmin

ck
zT

k Ψ (0)T
PzΨ

(0)zk subject to J(xk, ck) ≤ J(xk, Mc∗
k−1) (7.35)

(iii) Apply the control law uk = Kxk + c∗
0|k where c∗

k = (c∗
0|k, . . . , c∗

N−1|k). �

The algorithm requires the minimization of a quadratic objective function subject
to a single quadratic constraint in the optimization problems in each of steps (i) and
(ii). The online MPC optimization is thus convex and can be solved efficiently. The
constraint in (7.35) ensures that the time-average of the expected value of ‖xk‖2Q +
‖uk‖2R satisfies an asymptotic bound, as shown by the following result.

Theorem 7.5 For the system (7.1a, 7.1b) under the control law of Algorithm7.3
with J(xkck) defined by (7.10), the online optimization (7.34) or (7.35) is recursively
feasible and the closed-loop state and control trajectories satisfy the asymptotic
mean-square bound

lim
r→∞

1

r

r−1∑

k=0

E0
(‖xk‖2Q + ‖uk‖2R

) ≤ lss . (7.36)

Proof By construction, E2 is robustly invariant under Algorithm7.3 and if xk ∈ E2,
then ck+1 = Mc∗

k is necessarily feasible for (7.34) and (7.35) at time k + 1, thus
establishing recursive feasibility. To demonstrate the bound (7.36), let J∗(xk) =
J(xk, c∗

k), then

Ek
(
J∗(xk+1)

) = Ek
(
J∗(xk+1) | xk+1 ∈ E1

)
Prk(xk+1 ∈ E1)

+ Ek(J
∗(xk+1) | xk+1 /∈ E1

)
Prk(xk+1 /∈ E1)

where the feasibility of ck+1 = Mc∗
k implies that J∗(xk+1) ≤ J(xk+1, Mc∗

k) for all
realizations of qk at time k (this follows from the objective in (7.34) and the constraint
in (7.35)). Therefore,

Ek
(
J∗(xk+1)

) ≤ J∗(xk) − (‖xk‖2Q + ‖uk‖2R − lss
)

and the bound (7.36) follows from the argument of Theorem7.1. �
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Algorithm7.3 needs to be initialized through the offline design of the parameters
p1,1, p1,2, p1, p2 andPz . A possible procedure for this is as follows. Specify the initial
values, p01,1 and p01,2, of p1,1 and p1,2 (and hence also the values of p02,1 = 1 − p01,1
and p02,2 = 1 − p01,2). Then, to make the constraints on E1 and E2 as unrestrictive as
possible, set p2 = 1 and choose p1 as themaximum allowable value for p1 according
to (7.32). Next, construct the confidence polytopesQp (with p = p01,1) andQ p̃ (with
p̃ = p1) and maximize the volume of E1 by solving the optimization problem

maximize
P−1

z ,λ
det(P−1

x ) subject to (7.28) and (7.29b, 7.29c) (7.37)

to determine Pz . This problem is convex for fixed values of λ in (7.28) and it can
therefore be solved via a univariate search over λ ∈ (0, 1). The optimization (7.37)
can also be used to determine a robustly invariant ellipsoid Ez withmaximum volume
x-subspace projection, although the vertices ofQ such that qk ∈ Qwith probability 1
must be used in place of those of Qp in the constraint (7.28), and the constraints
(7.29b, 7.29c) are not needed in (7.37) given that p2 = 1 is assumed.

For given E1 and E2, the actual value of p1,2 can be determined through Monte
Carlo simulations (for example, by searching over the boundary of E2 for the mini-
mum probability of inclusion of the successor state in E1). In order to ensure satis-
faction of (7.32) and hence of the constraint (7.24), we require that p1,2 ≥ p01,2. If
this condition is not satisfied, the procedure must be repeated with reduced values
for the initial guesses p01,1 and p01,2.

Problems involving constraints on the rate of accumulation of fatigue damage
typically place higher weighting on larger amplitude fluctuations of the constrained
output ψ. This suggests using a number of intervals for ψ and modifying the con-
straint (7.24) in order to define an upper bound on a weighted sum of expected
constraint violations over an interval. Further improvements in the accuracy with
which the closed-loop system satisfies the probabilistic constraints of the problem
can be obtained by using a larger number of setsS j , since the accuracy of theMarkov
chain model in predicting constraint violations improves as a finer discretization of
the state space is employed. These modifications are considered in Sect. 7.4, which
also introduces amode 1 prediction horizon and tubes in order to obtainmore accurate
approximations of predicted probability distributions based on Markov chains.

7.4 Markov Chain Models Based on Tubes with Polytopic
Cross Sections

This section uses a Markov chain model to approximate the evolution of the proba-
bility distribution of the states of the model (7.1a, 7.1b) over a prediction horizon. In
this setting, the Markov chain imposes a discretization of the state space based on a
sequence of nested tubes. The approach determines offline bounds on the transition
probabilities between the sets that form the tube cross sections at successive time steps
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so as to meet probabilistic constraints. Confidence bounds on the model parameters
can be used to apply these probabilistic bounds (together with the hard constraints of
the problem) to predicted state and control trajectories which are constructed during
the online MPC optimization.

Tubes with polytopic cross sections are considered here. These are taken to be
low-complexity polytopes such as the sets considered in Sects. 3.6.2 and 5.4. Thus
the shapes of the sets defining the tube cross sections are fixed but their centres and
scalings along a set of fixed directions can be adjusted online. At each prediction
time step i = 0, 1, . . ., we define μ polytopic cross sections:

X ( j)
i |k

.= {
z : z( j)

i |k ≤ z ≤ z̄( j)
i |k
}
, j = 1, . . . ,μ, (7.38)

where z denotes the transformed state z = V x for a non-singularmatrix V ∈ R
nx ×nx .

The dynamics of z are given by

zi+1|k = Φ̃k+i zi |k + B̃k+i ci |k + D̃wi |k, i = 0, 1, . . .

where Φ̃k+i = V Φk+i V −1, B̃k+i = V Bk+i , D̃ = V D.
The methodology of this section is not limited to low-complexity polytopic tubes,

and general complexity polytopic tube cross sections such as those considered in
Sect. 5.5 could be used in place of the sets defined in (7.38). In this more general
case, the set inclusion conditions that are developed in this section could be imposed
using an approach based on Farkas Lemma such as that of Lemma5.6. For simplicity
however we present the ideas here using low-complexity tubes.

We assume that V is fixed and designed offline, while z( j)
i |k and z̄( j)

i |k , for i =
0, . . . , N , j = 1, . . . ,μ, are online optimization variables that are computed simul-
taneouslywith ck = (c0|k, . . . , cN−1|k) at each time k. The tube cross sections defined
in (7.38) are constrained to be nested (Fig. 7.3):

z0|k
zN|k

X (2)
1|k

X (1)
1|k

X (2)
2|k

X (1)
2|k

X (1)
N|k

X (2)
T

X (2)
N|k

X (1)
T

time step

0

1
2

· · ·
N

Fig. 7.3 Low-complexity polytopic tubes {X ( j)
0|k , . . . ,X ( j)

N |k} and terminal sets X ( j)
T for j = 1, 2,

for the case of a 2-dimensional state space

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
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X (1)
i |k ⊆ X (2)

i |k ⊆ · · · ⊆ X (μ)
i |k , i = 0, . . . , N . (7.39)

At the start of the prediction horizon, we require z0|k = V xk to lie X ( j)
0|k for some

l = 1, . . . ,μ, and terminal condition involving a polytopic terminal set is imposed
on each tube layer,

X ( j)
N |k ⊆ X ( j)

T = {z : |z| ≤ z( j)
T }, j = 1, . . . ,μ, (7.40)

where the terminal sets are also nested:

X (1)
T ⊆ X (2)

T ⊆ · · · ⊆ X (μ)
T . (7.41)

The nested conditions of (7.39) and (7.41) can be invoked simply by imposing the
constraints

z(1)
i |k ≥ z(2)

i |k ≥ · · · ≥ z(μ)
i |k , (7.42a)

z̄(1)
i |k ≤ z̄(2)

i |k ≤ · · · ≤ z̄(μ)
i |k , (7.42b)

z(1)
T ≤ z(2)

T ≤ · · · ≤ z(μ)
T . (7.42c)

The constraints of the problem are taken to be the same as those considered in
Sect. 7.3 (i.e. in (7.24)), but here we separate the constraints into probabilistic and
hard constraints through the definition of two output vectors, ψ p and ψh . These are
given in terms of zi |k and ci |k as

ψ
p
i |k = Fpzi |k + Gpci |k (7.43a)

ψh
i |k = Fhzi |k + Ghci |k (7.43b)

For simplicity, the parameters Fp and Gp are assumed to be deterministic, although
constraints such as (7.22)–(7.23) can be handled by a simple extension of the same
approach. We consider the constraints:

1

Nc

Nc∑

i=1

Prk(ψ
p
i |k > 1) ≤ Nmax

Nc
(7.44a)

ψh
i |k ≤ 1. (7.44b)

It is straightforward to show thatwith an appropriate choice of the parametersFp, Gp,
(7.44a) has the same form as (7.24).

The strategy for handling the probabilistic constraints (7.44a) resembles that of
Sect. 7.3 in that conditions are imposed on the probability with which the predicted
state makes a transition between different tube layers and on the probability of the
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S(1)
0|k S(1)

1|k S(1)
N−1|k S(1)

T

S(2)
0|k S(2)

1|k S(2)
N−1|k S(2)

T

p1,1 p1,1

p2,2 p2,2

p2,2

p2,1 p2,1

p1,2 p1,2

p2,1 p1,2

p1,1

Fig. 7.4 Markov chain model for the case of μ = 2

constrained output variables in (7.43a, 7.43b) exceeding threshold values within each
tube layer. Define sets S( j)

i |k for i = 0, . . . , N by

S( j)
i |k =

{
X (1)

i |k j = 1

X ( j)
i |k \ X ( j−1)

i |k j = 2, . . . ,μ

and let p j,m be the probability that zi+1|k lies in S( j)
i+1|k given that zi |k lies in S(m)

i |k
(Fig. 7.4). Then

⎡

⎢⎢⎣

Prk
(
zi+1|k ∈ S(1)

i+1|k
)

...

Prk
(
zi+1|k ∈ S(μ)

i+1|k
)

⎤

⎥⎥⎦ = Π

⎡

⎢⎢⎣

Prk
(
zi |k ∈ S(1)

i |k
)

...

Prk
(
zi |k ∈ S(μ)

i |k
)

⎤

⎥⎥⎦ , Π
.=
⎡

⎢⎣
p1,1 · · · p1,μ
...

. . .
...

pμ,1 · · · pμ,μ

⎤

⎥⎦

(7.45)
and, for z0|k ∈ S( j)

0|k , we have
⎡

⎢⎢⎣

Prk
(
zi |k ∈ S(1)

i |k
)

...

Prk
(
zi |k ∈ S(μ)

i |k
)

⎤

⎥⎥⎦ = Π i e j (7.46)
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where e j is the j th column of the identity matrix. If, in addition, the probability that
ψ

p
i+1|k > 1 given zi |k ∈ S(m)

i |k is no greater than pm for each m = 1, . . . ,μ, then the
bound

Prk(ψ
p
i+1|k > 1) ≤ [

p1 · · · pμ
]
Π i e j

holds for any given i whenever z0|k ∈ S( j)
0|k , and this in turn can be used to ensure

that (7.44a) is satisfied.
In order to obtain a computationally convenient set of constraints for the online

MPC optimization, we formulate the constraints in terms of the probabilities p̃ j,m of
transition from X (m)

i |k to X ( j)
i+1|k rather than transition probabilities between S(m)

i |k and
S( j)

i+1|k . Furthermore these conditions are imposed through inequalities rather than
equality constraints. The required set of constraints is as follows.

(i) Transition probability constraints, for j, m = 1, . . . ,μ

Prk+i
(
zi+1|k ∈ X ( j)

i+1|k | zi |k ∈ X (m)
i |k
) ≥ p̃ j,m, i = 0, . . . , N − 1 (7.47a)

Prk+i
(
zi+1|k ∈ X ( j)

T | zi |k ∈ X (m)
T

) ≥ p̃ j,m, i ≥ N . (7.47b)

(ii) Probabilistic output constraints, for j = 1, . . . ,μ

Prk+i
(
ψ

p
i+1|k > 1 | zi |k ∈ X ( j)

i |k
) ≤ p j , i = 0, . . . , N − 1 (7.48a)

Prk+i
(
ψ

p
i+1|k > 1 | zi |k ∈ X ( j)

T

) ≤ p j , i ≥ N . (7.48b)

(iii) Robust output constraints

ψh
i+1|k ≤ 1 ∀ zi |k ∈ X (μ)

i |k , i = 0, . . . , N − 1 (7.49a)

ψh
i+1|k ≤ 1 ∀ zi |k ∈ X (μ)

T , i ≥ N . (7.49b)

(iv) Initial and terminal constraints, for j = 1, . . . ,μ

V xk ∈ X (μ)
0|k (7.50a)

X ( j)
N |k ⊆ X ( j)

T . (7.50b)

The transition probability constraints are invoked through inequalities in (7.47a,
7.47b), which implies that the transition probabilities of the Markov chain model
(7.45) will not, in general, hold with equality. However it is still possible to ensure
satisfaction of the constraints (7.44a, 7.44b) if we make the following assumption
on the probabilities p̃ j,m , p j chosen by the designer.
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Assumption 7.1 The probabilities p̃ j,m and p j satisfy:

p̃ j,m ≥ p̃ j,m+1, j, m = 1, . . . ,μ − 1 (7.51a)

p̃μ,m = 1, m = 1, . . . ,μ (7.51b)

p j+1 ≥ p j , j = 1, . . . ,μ. (7.51c)

These conditions correspond to a unimodality assumption on the distributions of
probabilistically constrained outputs. In particular, the conditions of (7.51c) require
that the probability with which the one-step ahead output satisfies ψ p ≤ 1 should be
smaller at points further from the centre of the tube. Likewise, (7.51a) requires that
the probability of transition to any given layer should decrease away from the tube
centre, while (7.51b) ensures that the outer tube layer bounds robustly the predicted
state trajectories for all possible uncertainty realizations.

We next use (7.47)–(7.50) to derive an upper bound on the probability Prk

(ψ
p
i+1|k > 1) for any i ≥ 0.

Lemma 7.2 Under conditions (7.47)–(7.50) and Assumption7.1, the probability
that ψ

p
i+1|k > 1 given that z0|k ∈ S( j)

0|k is bounded by

Prk
(
ψ

p
i+1|k > 1

) ≤ [
p1 . . . pμ

]
(TΠ̃)i e j (7.52)

for any i ≥ 0, where Π̃ and T are defined by

Π̃ =
⎡

⎢⎣
p̃1,1 · · · p̃1,μ
...

. . .
...

p̃μ,1 · · · p̃μ,μ

⎤

⎥⎦ , T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (7.53)

Proof First, let ṽi |k and vi |k denote the vectors

ṽi |k =
[
Prk
(
zi |k ∈ X (1)

i |k
) · · · Prk

(
zi |k ∈ X (μ)

i |k
)]T

vi |k =
[
Prk
(
zi |k ∈ S(1)

i |k
) · · · Prk

(
zi |k ∈ S(μ)

i |k
)]T

and note that the nested property (7.41) and the definition of S( j)
i |k as the set difference

X ( j)
i |k \ X (l−1)

i |k implies that

Prk
(
zi |k ∈ X ( j)

i |k
) = Prk

(
zi |k ∈ X (l−1)

i |k
)+ Prk

(
zi |k ∈ S( j)

i |k
)
, l = 2, . . . ,μ
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and hence vi |k = T ṽi |k . Next we show by induction that if z0|k ∈ X ( j)
0|k , then

ṽi |k ≥ (Π̃T)i−1Π̃e j . (7.54)

Specifically, conditions (7.47a, 7.47b) imply Prk+i
(
zi+1|k ∈ X ( j)

i+1|k | zi |k ∈ S(m)
i |k
) ≥

p̃ j,m , and since Pr
(
z0|k ∈ S( j)

0|k
) = 1, we therefore have ṽ1|k ≥ Π̃e j ≥ 0. Further-

more condition (7.51a) of Assumption7.1 ensures that the elements of Π̃T are non-
negative and it follows that

ṽi+1|k ≥ Π̃vi |k = Π̃T ṽi |k

whenever ṽi |k ≥ 0. Therefore (7.54) holds for all i > 0.
Finally we obtain a bound on the probability that ψ p

i+1|k > 1 using (7.54) and

Prk
(
ψ

p
i+1|k > 1

) ≥ [
p1 . . . pμ

]
vi |k = [

p1 . . . pμ
]

T ṽi |k . (7.55)

Here thefirstμ − 1 elements of the rowvector
[

p1 . . . pμ
]

T are non-positive because
of (7.51c), whereas every element of ṽi |k except the last (which by (7.51b) is equal
to 1) is over-estimated by (7.54). Hence replacing ṽi |k in (7.55) by the RHS of (7.54)
yields an upper bound on Prk

(
ψ

p
i+1|k > 1

)
and the bound in (7.52) then follows since

T(Π̃T)i−1Π̃ = (TΠ̃)i for i > 0. �

The bounds of Lemma7.2 provide sufficient conditions for the satisfaction of
the probabilistic constraint (7.44a). Summing (7.52) over i = 0, . . . , Nc − 1 yields
directly the result that (7.44a) necessarily holds if the probabilities p̃ j,m and p j , for
j, m = 1, . . . ,μ are chosen so as to satisfy

1

Nc

Nc−1∑

i=0

[
p1 . . . pμ

]
(TΠ̃)i e j ≤ Nmax

Nc
(7.56)

for all j = 1, . . . ,μ.
Before stating the stochastic MPC algorithm, we first show that the constraints

(7.47)–(7.50) can be expressed as linear inequalities in the optimization variables ck ,
z( j)

i |k and z̄( j)
i |k , i = 0, . . . , N , j = 1, . . . ,μ. There is little advantage in including the

parameters z( j)
T of the terminal sets in the list of degrees of freedom; instead, it is

suggested that these parameters are chosen offline in order to maximize the volume
of each terminal set, which, given that X ( j)

T , j = 1, . . . ,μ are orthotopes, can be
taken to be the product of the elements of z( j)

T . Clearly, such a maximization
has to be subject to conditions (7.47b)–(7.49b) or the equivalent inequalities to
be presented below. The implied optimization can be solved using the techniques
described in Sect. 5.4.1.

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Each of the constraints (7.47)–(7.50) is conditioned on either zi |k ∈ X ( j)
i |k or

zi |k ∈ X ( j)
T . Moreover, if these constraints are imposed using convex confidence

polytopes for the uncertain model parameters, then as we show below, they each
depend linearly on zi |k . Therefore, (7.47)–(7.50) are equivalent to the corresponding
constraints invoked only at the vertices of X ( j)

i |k and X ( j)
T . Furthermore, these condi-

tions can be invoked using the recursive bounding technique of Sect. 5.4.2 without
the need to evaluate the vertices of the tube cross sections.

Conditions (7.47)–(7.48) are probabilistic and can be converted into linear
inequalities by invoking them at the vertices of confidence polytopes for the uncer-
tain model parameters. However these polytopes must be defined separately for each
of the probabilities p̃ j,m involved in (7.47)–(7.48). Therefore we define Q( p̃ j,m) as
a confidence polytope such that Pr

(
q ∈ Q( p̃ j,m)

) ≥ p̃ j,m , and denote its vertices
by q(s)( p̃ j,m), s = 1, . . . , ν( p̃ j,m). With these definitions, the constraints of (7.47)–
(7.50) can be expressed as the following linear inequalities.

(i) Transition probability constraints, for j, m = 1, . . . ,μ:

Φ̃+(q(s)( p̃ j,m)
)
z̄(m)

i |k − Φ̃−(q(s)( p̃ j,m)
)
z(m)

i |k + B̃
(
q(s)( p̃ j,m)

)
ci |k

+ D̃w
(
q(s)( p̃ j,m)

) ≤ z̄( j)
i+1|k, i = 0, . . . , N − 1

(7.57a)

Φ̃+(q(s)( p̃ j,m)
)
z(m)

i |k − Φ̃−(q(s)( p̃ j,m)
)
z̄(m)

i |k + B̃
(
q(s)( p̃ j,m)

)
ci |k

+ D̃w
(
q(s)( p̃ j,m)

) ≥ z( j)
i+1|k, i = 0, . . . , N − 1

(7.57b)
∣∣Φ̃
(
q(s)( p̃ j,m)

)∣∣z̄(m)
T + D̃w

(
q(s)( p̃ j,m)

) ≤ z̄( j)
T (7.57c)

(ii) Probabilistic output constraints, for j = 1, . . . ,μ:

(
FpΦ̃

(
q(s)(1 − p j )

))+
z̄( j)

i |k −
(

FpΦ̃
(
q(s)(1 − p j )

))−
z( j)

i |k
+ FpB̃

(
q(s)(1 − p j )

)
ci |k + FpD̃w

(
q(s)(1 − p j )

)+ Gpci |k ≤ 1,

i = 0, . . . , N − 1
(7.58a)

∣∣FpΦ̃
(
q(s)(1 − p j )

)∣∣z̄( j)
T + FpD̃w

(
q(s)(1 − p j )

) ≤ 1 (7.58b)

(iii) Robust output constraints

F+
h z̄(μ)

i |k − F−
h z(μ)

i |k + Ghci |k ≤ 1, i = 0, . . . , N − 1 (7.59a)

|Fh |z̄(μ)
T ≤ 1 (7.59b)

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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(iv) Initial and terminal constraints, for j = 1, . . . ,μ

z(μ)
0|k ≤ V xk ≤ z̄(μ)

0|k (7.60a)

|z̄( j)
N |k | ≤ z( j)

T (7.60b)

|z( j)
N |k | ≤ z( j)

T (7.60c)

Here A+ .= max{A, 0} and A− .= max{−A, 0} denote the absolute values of the pos-
itive and negative elements of a matrix A.

Having defined the constraints of the online optimization problem, we now for-
mulate a stochastic MPC algorithm with the objective of minimizing the expected
quadratic cost J(xk, ck) of Sect. 7.2.1. This requires the online solution of a quadratic
program.

Algorithm 7.4 At each time instant k = 0, 1, . . .:

1. Solve the optimization

minimize
ck ,

(z̄(1)
0|k ,...,z̄

(μ)
0|k ) ··· (z̄(1)

N |k ,...,z̄
(μ)
N |k )

(z(1)
0|k ,..., z(μ)

0|k ) ··· (z(1)
N |k ,..., z(μ)

N |k )

J(xk, ck) (7.61)

subject to (7.42a, 7.42b), (7.57a, 7.57b), (7.58a), (7.59a) and (7.60a–7.60c)

2. Implement the control law uk = Kxk + c∗
0|k where c∗

k = (c∗
0|k, . . . , c∗

N−1|k). �
By construction, this algorithm is recursively feasible and hence Theorem7.1

demonstrates that the closed-loop system satisfies a quadratic stability condition.
These properties can be summarized as follows.

Corollary 7.2 For the system (7.1a, 7.1b) with the control law of Algorithm7.4, if
p̃ j,m and p j , j, m = 1, . . . , ν satisfy (7.56), then the optimization (7.61) is recur-
sively feasible and the closed-loop system satisfies the constraints (7.44) and the
asymptotic mean-square bound

lim
r→∞

1

r

r−1∑

k=0

E0
(‖xk‖2Q + ‖uk‖2R

) ≤ lss . (7.62)

We conclude this section by noting that, in the interests of optimality, K should
ideally be chosen as the unconstrained optimal feedback gain discussed in Sect. 6.2.
However it may be necessary to detune this feedback gain in order to use the methods
of Sect. 5.4.1 in the design of V and the terminal set parameters z̄( j)

T . It should also
be noted that the number of optimization variables can be reduced by using tube
cross sections that are parameterized by scalar variables, for example by redefining
X ( j)

i |k as the set {z : |z − z(0)
i |k | ≤ α

( j)
i |k z̄( j)

T }, where the scalar α
( j)
i |k and the vector z(0)

i |k
are decision variables.

http://dx.doi.org/10.1007/978-3-319-24853-0_6
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Chapter 8
Explicit Use of Probability Distributions
in SMPC

The previous chapter introduced the use of tubes with ellipsoidal or polytopic cross
sections in stochasticMPC. However the probabilistic constraints on predicted states
and control inputs were handled using confidence regions for stochastic model para-
meters, namely sets determined offline that contain the uncertain parameters of the
model with a specified probability. This provides a computationally convenient but
indirect way to exploit the available information on the probability distribution of
uncertainty.

In this chapter the probability distributions of model parameters are directly
employed in the formulation of constraints in the online MPC optimization. We
do this first in the context of stochastic additive model disturbances. Then, towards
the end of this chapter, we consider stochastic multiplicative model uncertainty.

Sections8.1 and 8.2 consider pointwise-in-time probabilistic constraints that
apply to individual scalar random variables for problems with additive disturbances.
This makes it possible to transfer the majority of the computational burden of han-
dling probabilistic constraints to offline calculations, and thus allows highly effi-
cient online implementations. Section8.3 describes a method of adapting constraints
according to the number of past constraint violations with the aim of maintaining
a specified average rate of violations in closed-loop operation. Still considering the
case of additive model uncertainty, Sect. 8.4 deals with joint probabilistic constraints
that apply simultaneously to several random variables by constructing stochastic
tubes containing the uncertain component of the predicted model state. Section8.5
is likewise concerned with the design of stochastic tube MPC strategies, but here
polytopic tubes are constructed online for the case in which both multiplicative and
additive model uncertainty are present.

In Sects. 8.1 and 8.2, we avoid discussing the details of the computational meth-
ods that are needed to determine probabilistic bounds on random variables. This is
possible because these sections deal with simple cases of scalar random variables,
which can be handled for example by numerical integration or random sampling

© Springer International Publishing Switzerland 2016
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304 8 Explicit Use of Probability Distributions in SMPC

performed offline. Numerical methods of computing probabilistic bounds are dis-
cussed in more detail in Sects. 8.4 and 8.5. In particular, the approach of Sect. 8.4
lends itself to methods of computing probabilistic bounds that are based on numeri-
cal integration, whereas that of Sect. 8.5 is naturally suited to an online optimization
based on random sampling.

8.1 Polytopic Tubes for Additive Disturbances

We begin by considering linear systems that are subject only to additive model
uncertainty. As in Chaps. 3 and 4, the system model is given by

xk+1 = Axk + Buk + Dwk, (8.1)

with state xk ∈ R
nx , which is assumed to be known to the controller at time k, control

input uk ∈ R
nu , and disturbance input wk ∈ R

nw which is unknown to the controller
at time k. The disturbance wk is taken to be the realization at time k of a bounded
i.i.d. random variable. Unlike the model employed in Chaps. 3 and 4, the probability
distribution of wk is assumed to be known. We further assume that the distribution
of wk is finitely supported with wk ∈ W for all k, where W is a compact convex
polytopic set that contains the origin.

The aim of the stochastic MPC strategy is to minimize a predicted cost, which is
designed to ensure that the closed-loop system is stable in a suitable sense, subject to
a pointwise-in-time probabilistic constraint of the form (6.8). However, in this section
and in Sects. 8.2 and 8.3, we treat (6.8) as a collection of nC individual probabilistic
constraints, each of which is defined by a row of F and G, namely

Prk(Fjx1|k + Gju1|k ≤ 1) ≥ p, j = 1, . . . , nC (8.2)

where Fj, Gj denote the jth rows of F, G, and p is a specified probability. This differs
from the pointwise-in-time probabilistic constraints considered in Chaps. 6 and 7, as
well as those to be considered in Sects. 8.4 and 8.5, which are treated as constraints
on the probability that all elements of a random vector should not exceed a given
threshold.

Hard constraints can be included in the problem formulation by setting the prob-
ability p in (8.2) equal to 1. Also the treatment of intersections of constraint sets
corresponding to different probabilities presents no particular challenges. As dis-
cussed in Sect. 7.1, the assumption of a compact bounding set W for wk is needed
in order to establish a guarantee of recursive feasibility.

The control strategy considered in this section minimizes the infinite horizon
expected quadratic cost discussed in Sect. 6.2, subject to the constraint (8.2), with
the aim of asymptotically steering the state to a neighbourhood of the origin. This
asymptotic target set can be taken to be the minimal robust invariant set of Defini-
tion 3.4 under the control law u = Kx, with K defined as the unconstrained optimal

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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state feedback gain discussed in Sect. 6.2. We thus formulate the stochastic MPC
objective as the minimization of the predicted cost of (6.15):

∞∑

i=0

Ek
(‖xi|k‖2Q + ‖ui|k‖2R − lss

)
(8.3)

where lss = tr
(
Θ(Q + KT RK)

)
and Θ is the solution of the Lyapunov equation

(6.10). Note that, for the case considered here, the expectation operator on the LHS
of (6.10) is not needed because the model (8.1) is not subject to multiplicative uncer-
tainty. For the dual prediction mode strategy, namely

ui|k = Kxi|k + ci|k (8.4)

with ci|k = 0 for all i ≥ N , Theorem6.1 shows that the cost (8.3) can be expressed as a
quadratic function, J(xk, ck), of the vector of degrees of freedom ck = (c0|k, . . . , cN−1|k).
Furthermore, given that K is the unconstrained optimal feedback gain, Corollary 6.1
gives

J(xk, ck) =
∞∑

i=0

Ek
(‖xi|k‖2Q + ‖ui|k‖2R − lss

) = xT
k Wxxk + cT

k Wcck + w1

where w1 = −tr(WxΘ) and Wx, Wc are given by (6.23)–(6.24), which reduce to the
certainty equivalent conditions of Theorem2.10 since nomultiplicative uncertainty is
included in themodel (8.1). Theminimization of the predicted cost is to be performed
subject to the constraint (8.2), which is to be invoked in a manner that allows a
guarantee of recursive feasibility of the online MPC optimization problem. This
results in a set of constraints that apply at each time step of the initialN-step prediction
horizon (Mode 1) and a terminal constraint requiring xN |k to lie in a set that is robustly
invariant under the terminal control law u = Kx.

When considering constraints, it is convenient to use the decomposition of pre-
diction dynamics introduced in Sect. 3.2:

si+1|k = Φsi|k + Bci|k (8.5a)

ei+1|k = Φei|k + Dwi|k (8.5b)

where Φ = A + BK and xi|k = si|k + ei|k , with s0|k = xk and e0|k = 0. The conve-
nience of this decomposition is due to the fact that the nominal system in (8.5a) is
deterministic and the effects of uncertainty are treated by (8.5b). Furthermore, the
uncertain component, ei|k , of the predicted state is independent of xk since the initial
condition for (8.5b) is taken to be e0|k = 0 and {w0, w1, . . .} is a stationary process.
Hence the effects of model uncertainty on the constraints of the problem can be
computed offline. As explained in this section, which is based on the approach of
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[1, 2], the explicit use of such information makes it possible to construct constraints
that are as tight as possible for the open-loop dual-mode prediction strategy of (8.4).

In order to formulate the constraints of the stochastic MPC algorithm, we first
consider the conditions on the vector ck = (c0|k, . . . , cN−1|k) of decision variables
under which the constraints (8.2) are satisfied at each future time step of an infinite
prediction horizon.

Lemma 8.1 The predictions generated by (8.4) and (8.5a, 8.5b) satisfy the con-
straints Prk(Fjxi|k + Gjui|k ≤ 1) ≥ p for j = 1, . . . , nC and i = 1, 2, . . . if and only
if

F̃si|k + Gci|k ≤ 1 − γi, i = 1, 2, . . . (8.6)

where F̃ = F + GK and where the elements of γi = (γi,1, . . . , γi,nC ) are defined by

γi,j
.= min

γi,j
γi,j

subject to Pr
(

F̃j(Φ
i−1Dwi + · · · + Dw1) ≤ γi,j

)
≥ p (8.7)

for j = 1, . . . , nC and i = 1, 2, . . . .

Proof This is a consequence of the predicted control sequence (8.4) and the decom-
position xi|k = si|k + ei|k , according towhichFxi|k + Gui|k = F̃si|k + Gci|k + F̃ei|k ,
whereas (8.5b) with e0|k = 0 implies

ei|k = Φ i−1Dwk + · · · + Dwk+i−1. (8.8)

Hence the definition (8.7) implies that the jth element of γi has the minimum value
such that F̃jei|k ≤ γi,j with probability p. It follows that the conditions Prk(Fjxi|k +
Gjui|k ≤ 1) ≥ p are satisfied if and only if (8.6) holds. �

The constraints in (8.6) are analogous to constraints that were derived in Sect. 3.2
for systemswith additivemodel uncertainty, andwhichwere basedon tubes bounding
the uncertain components of predicted state and control trajectories. The formulation
here likewise uses polytopic uncertainty tubes and hence results in linear constraints
on nominal predictions.

A key observation concerns the computation of γi,j in (8.7), which requires knowl-
edge of the probability distribution of F̃jei|k . However ei|k does not depend on the
system state at time k but is instead a function of additive disturbance realizations
whose distributions are known a priori (this explains the absence of the time index
k in (8.7)), and hence γi,j can be computed for each given i and j offline. In prac-
tice the computation of γi,j in (8.7) has to be performed approximately, for example
by numerically approximating the associated convolution integrals or by random
sampling methods (see e.g. [3, 4]).
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Although the conditions ofLemma8.1 impose the probabilistic constraints in (8.2)
on the predicted state and control trajectories over an infinite prediction horizon, these
conditions do not ensure existence of a feasible decision variable ck+1 at time k + 1
given feasibility at time k. However it is possible to guarantee recursive feasibility by
imposing the constraint at time k that ck+1 = Mck will be feasible at time k + 1 for
all realizations of wk , where M is the shift matrix defined in (2.26b). As discussed
in Sect. 7.1, this approach requires that the disturbances wk, . . . , wk+i−1 are han-
dled robustly (by considering their worst-case values) in the probabilistic constraints
imposed at time k on the predicted state and control input i steps ahead, whereaswk+i
is treated probabilistically in these i steps ahead constraints. The resulting constraint
set is defined as follows.

Theorem 8.1 If ck satisfies the constraints defined at time k by

F̃si|k + Gci|k ≤ 1 − βi, i = 1, 2, . . . (8.9)

where βi and αi are defined for all i ≥ 1 by

βi
.= γ1 +

i−1∑

j=1

aj (8.10a)

ai
.= max

w∈W
F̃Φ iDw, (8.10b)

then the constraints (8.2) hold, and, at time k + 1, ck+1 = Mck will necessarily
satisfy F̃si|k+1 + Gci|k+1 ≤ 1 − βi for i = 1, 2, . . ..

Proof First note that, in order that the constraints (8.2) hold for ck = Mkc0 at all
times k ≥ 0 it is sufficient (and also necessary) that: (i) the i steps ahead constraints
Pr0(Fjxi|0 + Gjui|0 ≤ 1) ≥ p, j = 1, . . . , nC hold for all i ≥ 1 at time k = 0, and (ii)
for each i ≥ 1 these constraints are feasible with ck = Mkc0 at times k = 1, . . . , i −
1. To prove the theorem, we show that both (i) and (ii) are ensured by the constraints
of (8.9) time k = 0.

Consider the constraints Pr0(Fjxi|0 + Gjui|0 ≤ 1) ≥ p, j = 1, . . . , nC ,which apply
to the i steps ahead state and control input predicted at time k = 0 for some particular
i. By Lemma 8.1, these constraints are satisfied if (8.6) holds at time k = 0.

To ensure that at time k = 1 the predictions generated by c1 = Mc0 will satisfy
the i − 1 steps ahead constraints, we also require that

Pr1
(
max

w0∈W
(Fjxi|0 + Gjui|0) ≤ 1

)
≥ p, j = 1, . . . , nC

holds at time k = 0. Using Fxi|k + Gui|k = F̃si|k + Gci|k + F̃ei|k and (8.8), this con-
dition can be expressed as the constraint

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_7


308 8 Explicit Use of Probability Distributions in SMPC

F̃si|0 + Gci|0 ≤ 1 − γi−1 − max
w0∈W

F̃Φ i−1Dw0

= 1 − γi−1 − ai−1.

To ensure that the predictions generated at time k = 2 by c2 = M2c0 will satisfy the
i − 2 steps ahead constraints, we require that

Pr2
(

max
{w0,w1}∈W×W

(Fjxi|0 + Gjui|0) ≤ 1
)

≥ p, j = 1, . . . , nC

holds at time k = 0. From (8.8) this is equivalent to

F̃si|0 + Gci|0 ≤ 1 − γi−2 + max
w0∈W

F̃Φ i−1Dw0 − max
w1∈W

F̃Φ i−2Dw1

= 1 − γi−2 − ai−2 − ai−1.

Repeating this argument for the predictions generated by ck = Mkc0 at times
k = 3, . . . , i − 1, we obtain the conditions:

F̃si|0 + Gci|0 ≤ 1 − max
{
γi, (γi−1 + ai−1), . . . , (γ1 + a1 + · · · + ai−1)

}
.

(8.11)
But γi ≤ γi−1 + ai−1 for all i > 1 since (8.7) and (8.10b) imply that

Pr
(

F̃j(Φ
i−1Dwi + · · · + Dw1) ≤ γi−1,j + ai−1,j

)
≥ p, j = 1, . . . , nC,

and it follows that (8.11) is equivalent to the constraint F̃si|0 + Gci|0 ≤ 1 − βi.
These conditions, when invoked for all i ≥ 1 and any given k ≥ 0, are equivalent
to (8.9). �

The constraints of (8.9) consist of an infinite number of inequalities which corre-
spond to constraints applied to the predicted trajectories of the model (8.1) over an
infinite prediction horizon. However these conditions can be expressed equivalently
in terms of a finite number of inequalities using the approach of Sect. 3.2.1. Of course,
these conditions are only meaningful if the constraints (8.9) are feasible for some xk
and ck , and, since the prediction model is by assumption stable, we therefore require
that βi is strictly less than 1 for all i ≥ 1. The following lemma shows that the limit
β̄

.= limi→∞ βi exists and provides bounds on its value.

Lemma 8.2 The sequence {β1,β2, . . .} is monotonically non-decreasing and con-
verges to a limit β̄

.= limi→∞ βi, where the lth element of β̄ is bounded by

β̄l ≤ γ1,l +
ρ−1∑

j=1

aj,l + λρ

1 − λ
‖F̃T

l ‖S, l = 1, . . . , nC (8.12)

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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for any non-negative integer ρ, and for S � 0 and λ satisfying the conditions

max
w∈W

‖Dw‖S−1 ≤ 1 (8.13a)

ΦSΦT 	 λ2S, λ ∈ [0, 1). (8.13b)

Proof The non-decreasing property of the sequence β1,β2, . . . follows from the
definition (8.10a) and from the fact that ai ≥ 0 for all i, which follows from (8.10b).
Also (8.10a) implies

β̄ = lim
i→∞ βi = γ1 +

∞∑

i=1

ai (8.14)

and, by condition (8.13a), we have

ai,l = max
w∈W

F̃lΦ
iDw ≤ max‖v‖S−1≤1

F̃lΦ
iv ≤ ∥∥Φ iT F̃T

l

∥∥
S (8.15)

for l = 1, . . . , nC . However, (8.13b) implies that

∥∥Φ iT F̃T
l

∥∥
S ≤ λ

∥∥Φ i−1T
F̃T

l

∥∥
S,

which, combined with (8.15), gives ai,l ≤ λi‖F̃T
l ‖S for l = 1, . . . , nC . Replacing ai,l

in (8.14) with this bound for all i ≥ ρ gives the bound in (8.12). �

By assumption Φ is strictly stable and hence (8.13b) will necessarily have
solutions for S and λ ∈ [0, 1). These can be scaled so that (8.13a) will be met.
Furthermore, it follows from (8.14) and the non-negative property of ai that the max-
imum error in the bound in (8.12) on the lth element of β̄ can be no greater than
λρ‖F̃T

l ‖S/(1 − λ), which can bemade as small as desired by using a sufficiently large
value of ρ. To ensure the existence of feasible xk and ck satisfying the conditions of
Theorem 8.1, we therefore assume

β̄ < 1. (8.16)

The constraints of (8.9) are more convenient to handle (both in terms of compu-
tation and notation) using the lifted prediction dynamics introduced in Sect. 2.7 and
extended to the case of additive model uncertainty in Sect. 3.2:

F̄Ψ iz0|k ≤ 1 − βi, i = 1, 2, . . .

where

z0|k =
[

xk
ck

]
, Ψ =

[
Φ BE
0 M

]
, F̄ = [

F̃ GE
]

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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with E and M as defined in (2.26b). An equivalent formulation of (8.9) in terms of
a finite number of inequalities is given by the following result.

Theorem 8.2 If (8.16) holds, then for any given z, F̄Ψ iz ≤ 1 − βi is satisfied for all
i ≥ 1 if and only if

F̄Ψ iz ≤ 1 − βi, i = 1, 2, . . . , ν (8.17)

where ν is the smallest integer such that F̄Ψ ν+1z ≤ 1 − βν+1 holds for all z satis-
fying (8.17).

Proof The necessity of (8.17) is obvious and we therefore prove sufficiency. For ν
satisfying the conditions of the theorem, define Z(ν) as the set

Z(ν) .= {z : F̄Ψ iz ≤ 1 − βi, i = 1, 2, . . . , ν}

then for all z ∈ Z(ν)we have:

F̄Ψ z ≤ 1 − β1 (8.18a)

F̄Ψ i+1z ≤ 1 − βi+1, i = 1, . . . , ν (8.18b)

and since βi+1 = βi + ai ≥ βi + F̃Φ iDw for all w ∈ W , (8.18b) implies, for all
w ∈ W

F̄Ψ i(Ψ z + D̄w) ≤ 1 − βi, i = 1, . . . , ν

where D̄ = [DT 0]T . Therefore Z(ν) is a robustly invariant set for the system with
dynamics zk+1 = Ψ zk + D̄wk , wk ∈ W and constraints F̄Ψ zk ≤ 1 − β1. This prop-
erty and the equivalence of (8.18a) for z = (xk, ck)with the constraints of (8.2) imply
that F̄Ψ iz ≤ 1 − βi holds for all i ≥ 1 whenever z ∈ Z(ν). �

There necessarily exists a finite integer ν satisfying the conditions of Theorem 8.2
whenever (Ψ, F̄) is observable. This can be shown using an argument identical to
the one used in the proof of Theorem 3.1. It also follows from the argument of
Theorem 3.1 that Z(ν) is the maximal RPI set for the dynamics zk+1 = Ψ zk + D̄wk ,
wk ∈ W and constraints F̄Ψ zk ≤ 1 − β1, and from this it can be concluded that
every feasible pair (xk, ck) for the conditions of (8.9) must lie in the set Z(ν). The
value of ν can be determined by solving a sequence of linear programs to determine
for i = 0, 1, . . . the maximum of F̄Ψ i+1z over z ∈ Z(i) in order to check whether
F̄Ψ i+1z ≤ 1 − βi+1 for all z ∈ Z(i).

A stochasticMPCalgorithmbasedon the constraint formulationof this section and
the quadratic cost J(xk, ck) of (8.3) can be stated as follows. The online optimization
in step (i) requires the solution of a QP at each sampling instant.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Algorithm 8.1 At each time instant k = 0, 1, . . .

(i) Perform the optimization:

minimize
ck

J(xk, ck)

subject to F̄Ψ i
[

xk
ck

]
≤ 1 − βi, i = 1, . . . , ν

(8.19)

(ii) Implement the control law uk = Kxk + c∗
0|k where c∗

k = (c∗
0|k, . . . , c∗

N |k) is the
minimizing argument of (8.19). �

The recursive feasibility of the optimization (8.19), is guaranteed by Theorem 8.1.
Also the definition of MPC cost J(xk, ck) in 8.3 implies, by Theorem 7.1, that the
closed-loop system satisfies a quadratic stability condition. For completeness, these
properties are summarized in the following corollary.

Corollary 8.1 Algorithm 8.1 applied to the system (8.1) is feasible at all times
k = 1, 2, . . . if it is feasible at k = 0. The constraints of (8.2) hold for all k ≥ 0 and
the mean-square bound

lim
r→∞

1

r

r−1∑

k=0

E0
(‖xk‖2Q + ‖uk‖2R

) ≤ lss (8.20)

where lss = limk→∞(‖xk‖2Q + ‖uk‖2R
)
, is satisfied along trajectories of the closed-

loop system. If u = Kx is the optimal feedback law for the cost (8.3) in the absence
of constraints, then xk converges with probability 1 to the minimal RPI set for the
dynamics (8.1) under this feedback law as k → ∞.

8.2 Striped Prediction Structure with Disturbance
Compensation in Mode 2

In this section, we consider the system description of (8.1) but the matrix D defining
the disturbance input map is, for simplicity, taken to be equal to the identity matrix I .
The disturbance input is again stochastic with a known distribution. For convenience,
we express the constraints in terms of an output vector ψk ∈ R

nC :

ψk = G̃xk+1 + F̃uk (8.21)

and hence the constraints take the form

Prk(ψk ≤ h) ≥ p. (8.22)

http://dx.doi.org/10.1007/978-3-319-24853-0_7
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As in the case of the constraints assumed in Sect. 8.4, the constrained output variable
here depends on the unknown additive disturbance at time k and represents a mixture
of state and input constraints. The formulation of constraints in terms of (8.22) rather
than (8.2) simplifies the presentation of this section but is no less general than (8.2).

The approach employed in Sect. 8.1 does not make use of disturbance feedback.
However, feedback can be used to attenuate the effects of the future disturbances
wk+j for j = 0, . . . , i − 1 on the i steps ahead predicted state and control input xi|k
and ui|k at time k. These predicted disturbance values are not known a priori at time k
but will be available to the controller at time k + i. For this reason, when considering
the i steps ahead state and control input we refer in this section to the predictions,
wj|k , of wk+j, for j = 0, . . . , i − 1 at time k as known future disturbances (KFD),
whereaswj|k for all j ≥ i are referred to as unknown future disturbances (UFD). This
section describes the approach of [5], which introduces disturbance feedback with a
striped structure into the predicted control trajectories of a stochastic MPC strategy.

To cater forKFD, the predicted control inputs and the resulting predicted dynamics
are decomposed as

ui|k = Kxi|k + ci|k + vi|k, i = 0, 1, . . . (8.23)

where ci|k = 0 for all i ≥ N , ck = (c0|k, . . . , cN−1|k) is an optimization variable at
time k and vi|k depends on the KFD linearly, as explained later in this section. We
again use the decomposition of prediction dynamics introduced in Sect. 3.2 into
nominal (si|k) and uncertain (ei|k) components

si+1|k = Φsi|k + Bci|k
ei+1|k = Φei|k + Bvi|k + wi|k

where

xi|k = si|k + ei|k (8.24)

with s0|k = xk and e0|k = 0.
Like the striped parameterized tube MPC approach of Sect. 4.2.3 (and unlike the

disturbance affine of Sect. 4.2.1), the component v of the predicted control input is
applied throughout the infinite prediction horizon, and thereby enables disturbance
compensation to extend to the predicted control law of Mode 2. This allows con-
straints to be relaxed and therefore leads to larger sets of feasible initial conditions.
The scheme of (8.24) generates predictions for the constrained output according to

ψi|k = (Gsi|k + Fci|k) + (Gei|k + Fvi|k) + G̃wi|k

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_4
http://dx.doi.org/10.1007/978-3-319-24853-0_4
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where

G = G̃Φ + F̃K, F = G̃B + F̃

This leads to the overall vector of constraint output predictions

ψk = ζk + εk + ηk (8.25)

where

ζk = C3sk + C1,N ck

εk = C1vk + C2wk

ηk = diag{G̃, G̃, G̃, . . .}wk

(8.26)

with bold symbols being used to indicate the entire sequence of predictions over
an infinite future horizon; of these only ck = (c0|k, . . . , cN |k) is finite-dimensional.
Here C1,N denotes the matrix consisting of the first N block-columns of matrix C1
and the matrices C1, C2, C3 are defined as

C1 =

⎡

⎢⎢⎢⎣

F 0 0 · · ·
GB F 0 · · ·

GΦB GB F · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎦ , C2 =

⎡

⎢⎢⎢⎣

0 0 0 · · ·
G 0 0 · · ·

GΦ G 0 · · ·
...

...
...

. . .

⎤

⎥⎥⎥⎦ , C3 =

⎡

⎢⎢⎢⎣

G
GΦ

GΦ2

...

⎤

⎥⎥⎥⎦ .

Equation (8.25) separates the sequence of predicted outputs into three compo-
nents:

(i) ζk , generated by the nominal (disturbance free) dynamics;
(ii) εk , associated with the KFD;
(iii) ηk , associated with the UFD.

The first of these is to be controlled by the variables ci|k , i = 0, . . . , N − 1, the second
can be compensated for through the use of vi|k , i = 1, 2, . . ., while the third is beyond
control since it depends on unknown future disturbances.

In the special case of the number of constraints being equal to the number of
inputs and where the dynamics defined by the state space model (Φ, B, G, F) are
minimum-phase, the effects of the KFD can be completely eliminated by setting
εk = 0, which gives

vk = −C−1
1 C2wk = Lwk, (8.27)

where L is a lower block triangular matrix whose first block row is zero. In this case,
the predictions of the component v take the form:

v0|k = 0

vi|k = Li,1w0|k + Li,2w1|k + · · · + Li,jwi−1|k .
(8.28)
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In general, however, complete cancellation of the KFD is not be possible and
instead the parameters Li,j for j = 1, . . . , i, j = 1, . . . , N − 1 could be computed
online. This is the approach that is employed by the disturbance affine MPC algo-
rithms proposed by [6, 7] for the robust case, and by [8] for the stochastic case.Clearly
the number of degrees of freedom in such algorithms grows quadratically with the
prediction horizon, and this could result in unacceptably high online computational
loads for long horizons. It was seen in Sect. 4.2.3 that in the case of robust MPC there
may be no loss of performance in using a striped prediction structure, particularly if
disturbance compensation is allowed to extend into the Mode 2 prediction horizon,
in which case SPTMPC can outperform PTMPC.

To develop the idea, consider first the case with no disturbance compensation.
As was seen in the previous section, for this case recursive feasibility is achieved
through the satisfaction of the constraint

C3xk + C1,N ck ≤ 1 − β (8.29)

where the ith block elements of β are given by the sum of: (i) γ1 and
(ii)

∑i−1
j=0 maxw∈W GΦ jw. Thus γ1, the jth element of which is defined here

as the minimum value of γ1,j satisfying the condition Pr(G̃jw < γ1,j) = p, for
j = 1, . . . , nC , accounts for the term ηk in (8.25) which is associated with the UFD
and is treated probabilistically. On the other hand, (ii) accounts for of the term εk in
(8.25) which is associated with the KFD and therefore has to be treated robustly. It is
noted that although (8.29) involves an infinite number of inequalities, as explained
in Sect. 8.1 it is only necessary to consider the inequalities implied by the ith block
for i = 1, . . . , ν, for some finite integer ν which is independent of xk and can be
determined offline. The implied inequality is here denoted by

Ĉ3xk + Ĉ1,N ck ≤ 1 − β̂. (8.30)

Allowing now for disturbance compensation, a non-zero vector vk can be used
to reduce the amount of constraint tightening, β, in (8.29) needed to account for εk .
Adopting a striped structure, vk is written as

vk = Lwk (8.31)

where

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 · · ·
L1 0 · · · 0 0 · · ·
L2 L1 · · · 0 0 · · ·
...

...
. . .

...
...

LN−1 LN−2 · · · L1 0 · · ·
0 LN−1 · · · L2 L1 · · ·
...

...
. . .

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.32)

http://dx.doi.org/10.1007/978-3-319-24853-0_4
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The aim is to choose L so as to reduce the constraint tightening parameter β̂. In
particular, by substituting (8.31) into (8.26), β̃ must satisfy

(C̃1L + C̃2)wk ≤ β̃ − γ̂ ≤ β̂ − γ̂ (8.33)

where γ̂ is a vector of commensurate dimensions whose block elements are equal to
the corresponding blocks of γ.

In order to keep the computational load low, and in fact to make it comparable
to classical MPC, we begin by selecting L offline. This is done in a sequential
manner, designing L1, then L2, and so on. Not only is such a design computationally
convenient but it favours the design of the L parameters that apply at the beginning
of the prediction horizon at the expense of those applying at later prediction times,
which is consistent with the expectation that constraints will bemore stringent during
the initial transients and are less likely to be active as the predicted state and control
trajectories tend towards the steady state.

Before stating an algorithm for the design of the elements ofL, note that Ĉ1L + Ĉ2
has ν row blocks and that all the column blocks of this matrix beyond the νth are
zero. Thus the infinite-dimensional wk appearing in (8.33) can be replaced by the
vector, denoted ŵk , that contains only the first ν blocks of wk . For the same reason,
L is replaced by L̂, which comprises only the first ν row blocks and column blocks of
L. Then let Ŵ denote the set {ŵk : wi|k ∈ W, i = 0, . . . , ν} and let Ei be the matrix
which is such that EiM gives the ith block of M.

Algorithm 8.2

(i) Solve the minimization

(
L(1)
1 , L(1)

2 , . . . , L(1)
N−1, r(1)) = arg min

L1,...,LN−1,r
r

subject to

E1(Ĉ1L̂ + Ĉ2)ŵ ≤ r1, ∀ ŵ ∈ Ŵ
(Ĉ1L̂ + Ĉ2)ŵ ≤ rβ̂ − γ̂, ∀ ŵ ∈ Ŵ

(ii) Then, for each i = 2, . . . , N − 1, set (L1, . . . , Li−1) = (
L(1)
1 , . . . , L(i−1)

i−1

)
and

solve the minimization

(
L(i)

i , L(i)
i+1, . . . , L(i)

N−1, r(i)) = arg min
L1,...,LN−1,r

r

subject to

Ei(Ĉ1L̂ + Ĉ2)ŵ ≤ r1, ∀ ŵ ∈ Ŵ
(Ĉ1L̂ + Ĉ2)ŵ ≤ rβ̂ − γ̂, ∀ ŵ ∈ Ŵ

�
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Since the constraints of the algorithm depend linearly on ŵ, they need only be
invoked at the vertices of Ŵ , which therefore implies that the minimizations in steps
(i) and (ii) of the algorithm are linear programming problems. It is also noted that
Algorithm 8.2 is necessarily feasible under the assumption that limi→∞ βi < 1, since
then Li = 0, i = 1, . . . , N − 1 gives at least one feasible solution.

The reduced tightening parameters derived by Algorithm 8.2 are given as

β̃i = Ei|C1L + C2|α + γ, i = 1, . . . , N + m (8.34)

where α is an infinite-dimensional vector whose blocks are α. By definition these
tightening parameters satisfy the condition β̃i ≤ β̂i, and they can be shown by simple
algebra to share the monotonically increasing property of β̂i and to tend to a limit
β̃∞ ≤ β∞.

Using the approach described in this section, disturbance compensation can be
introduced into the stochastic MPC strategy of Sect. 8.1 simply by replacing the
constraint tightening parameters β̂i = βi with β̃i. However two further issues must
also be addressed. The first concerns the definition of a finite constraint set, which
may lead to a different value of ν, say ν̃. The definition of this is exactly the same
as for ν, namely through the conditions (8.17) of Theorem8.2, but with βi replaced
by β̃i (and ν replaced by ν̃). The second issue concerns the extension of disturbance
compensation into Mode 2, which causes the steady-state value of the expectation
of the predicted stage cost, say l̃ss, to differ from the value lss = tr

(
Θ(Q + KT RK)

)

that is subtracted from the stage cost of (6.15). This steady state expected stage
cost can be computed, given the feedback gain matrix L, through a straightforward
modification of the method of computing lss in Sect. 6.2.

8.3 SMPC with Bounds on Average Numbers of Constraint
Violations

The probabilistic constraints considered thus far allow constraint violations to occur
but require that the expected frequency of violations remains at all times below
a threshold of 1 − p. Maintaining the frequency of constraint violations below a
given threshold is essential in some applications. For example, the specification of a
wind turbine control problem might require that the power captured from the wind
is maximized while the frequency with which the material stresses in the turbine
blades and tower violate certain thresholds is kept below a required rate defined by
fatigue damage considerations. In such a scenario, formulating constraints in the
probabilistic manner presented in Sects. 8.1 and 8.2 can be conservative because
it does not account for the fact that, during certain periods of the past, the average
number of constraint violationsmay fortuitously have been low (for example because
of periods of low turbulence). In such circumstances, the controller is able to be more

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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aggressive, causing a higher number of violations while still maintaining the overall
average of constraint violations within acceptable limits.

To take advantage of such situations a stochastic MPC strategy is proposed in [9]
that controls the average violation of a given constraint

gT xk+1 ≤ h

where for convenience we consider here only a single constraint, i.e. g ∈ R
nx . This

average is defined as vk = Lk/sk where Lk is the accumulated loss (weighted by a
forgetting factor γ ∈ [0, 1]):

Lk =
k∑

i=0

γk−il(gT xi − h)

and sk is the normalizing factor sk = ∑k
i=0 γk−i. The function l(·) is a non-decreasing

(and lower semi-continuous) loss function; it could for example be the indicator
function that is equal to 1 when gT x > h and 0 otherwise. The strategy adopted is to
try and keep vk below a given threshold ξ. More precisely, if the current average is
below ξ then the constraint

Ek
(
Lk+1/sk+1

) ≤ ξ (8.35)

is employed. Otherwise, namely if vk > ξ, then the aim is to return vk , with proba-
bility 1, to a value below ξ.

Given that Lk+1 = γLk + l(gT xk+1 − h) it follows that (8.35) can be written as

Ek

(
l(gT xk+1 − h)

)
≤ γ(ξsk − Lk) + ξ

and to allow for a relaxation of this constraint at timeswhen Lk is small, this condition
is replaced by

Ek

(
l(gT xk+1 − h)

)
≤ βk

βk =max
{
γ(ξsk − Lk) + ξ,α

}
, α ≤ ξ

Thus at times of low average violation (i.e. whenLk/sk ≤ ξ), we haveβk > α thereby
resulting in a relaxed constraint which still meets the requirement of (8.35). At all
other times, the expected 1-step-ahead loss Ek

(
l(gT xk+1 − h)

)
is forced to be less

than or equal to α thereby ensuring that the average loss will, at some point in the
future, be no greater than ξ.

To ensure recursive feasibility, the successor state is constrained to lie at each
time instant in a robust controlled invariant set, S, which satisfies the condition:
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∀x ∈ S, ∃u ∈ U such that Ax + Bu + Dw ∈ S, ∀w ∈ W, (8.36a)

Ek

(
l
(
gT (Ax + Bu + Dw) − h

)) ≤ α (8.36b)

Here U denotes a set of allowable inputs and W defines a set of admissible distur-
bances, with U andW assumed to be convex and polytopic. At times of low average
constraint violation, restricting the successor state to lie in S is unnecessarily conser-
vative because, as argued above, it is possible to relax the constraint of the expected
loss. Instead it is possible to define a set of nested reachable sets according to the
recursion

Sj+1 = {x : ∃u ∈ U such that Ax + Bu + Dw ∈ Sj ∀w ∈ W}, S1 = S,

so that the successor state can be allowed to lie in a set, Sj(k), larger than S without
affecting recursive feasibility. The choice of the largest index j(k)which retains recur-
sive feasibility depends on the current value of accumulated constraint violations, as
discussed in [9]. The overall constraint set then becomes

u ∈ U (8.37a)

Ax + Bu + Dw ∈ Sj(k) ∀w ∈ W (8.37b)

Ek

(
l
(
gT (Ax + Bu + Dw) − h

)) ≤ βk (8.37c)

and this can be grafted into a stochastic MPC algorithm with guaranteed recursive
feasibility.

In Sects. 8.1 and 8.2 probabilistic constraints involving affine functions of future
disturbanceswere converted in to affine constraints on the degrees of freedom through
numerical integration techniques. Similarly here, given the assumptions on the loss
function l(·), it is possible to use numerical integration to convert (8.36b) into an
affine inequality in u. In particular, (8.36b) can be written as

gT (Ax + Bu) ≤ h + q(α)

where

q(α) = sup

{
μ :

∫ ∞

−∞
l(μ + y)fgT Dw(y) dy ≤ α

}

with fgT Dw(y) denoting the probability density function of gT Dw. The same reason-
ing applies to the constraint (8.37c), with q(α) replaced by q(βk), however in this
case βk is not known a priori. To avoid computing q(βk) online, it is possible to com-
pute q(β̂j) for a large number of predefined points β̂j in the range of possible values
for βk and select the value of β̂j(βk) that is nearest to βk and such that β̂j(βk) ≤ βk .
Note that, since (8.36b) can be converted into an inequality which is affine in x and
u, it follows that S and hence Sj are polyhedra. These can be determined as the
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maximal such sets or as inner approximations of the maximal sets; the latter offering
a compromise between the demands of computation of these sets and the relaxation
of (8.37b).

We conclude the section by noting that a stochastic MPC algorithm which mini-
mizes an appropriate predicted cost subject to the constraints

u ∈ U
Ax + Bu + Dw ∈ Sj(k) ∀w ∈ W
gT (Ax + Bu + Dw) ≤ h + q

(
β̂j(βk)

)

will preserve feasibility at all future times given feasibility at initial time, and in
closed-loop operation will meet the average violation constraints, either instanta-
neously or with probability 1 at some time in the future.

8.4 Stochastic Quadratic Bounds for Additive Disturbances

Each of the probabilistic constraints considered in Sects. 8.1–8.3 is specified in terms
of a bound on the probability of a scalar linear function exceeding a given threshold.
This leads to computationally efficient algorithms in which the bulk of the compu-
tation that is needed to convert probabilistic constraints on random variables into
deterministic conditions on optimization variables is performed offline. We now
return to the case of multiple linear constraints that are required to jointly hold with a
specified probability. Using the approach of [10], this can be achieved by construct-
ing tubes with ellipsoidal cross sections that are defined on the basis of information
on the distribution of a quadratic function of the unknown model disturbance input,
wk . The approach is computationally convenient since it characterizes the effects of
model uncertainty on the predicted state and control trajectories in terms of a scalar
stochastic variable that defines the scaling of the tube cross sections.

We consider again the model of (8.1), which is subject to an i.i.d. additive dis-
turbance sequence {w0, w1, . . .}, where the probability distribution of wk is known
and assumed to be finitely supported. The system is assumed to be subject to the
pointwise-in-time probabilistic constraints of (6.8), defined in terms of given matri-
ces F and G and a specified probability p ∈ (0, 1] by

Prk(Fx1|k + Gu1|k ≤ 1) ≥ p, (8.38)

where, as before, xi|k and ui|k denote the i steps ahead predictions at time k of the
system state xk+i and control input uk+i. Hard constraints can be handled in this
framework by setting the probability p equal to 1.

In the following development, we consider ellipsoidal sets defined for given
Vw � 0 by

Ew(α) = {w : wT Vww ≤ α},

http://dx.doi.org/10.1007/978-3-319-24853-0_6


320 8 Explicit Use of Probability Distributions in SMPC

whereα is a randomvariablewhose realization at time k is defined byαk
.= wT

k Vwwk .
We assume that it is possible to determine the distribution of α from knowledge of
the distribution of w, and in particular we assume that the cumulative distribution
function

Fα(a) = Pr(αk ≤ a)

can be computed, for example by numerical integration. The assumption that wk
is bounded implies that wk ∈ W with probability 1 for some bounded set W . On
account of this bound it is possible to determine an upper bound ᾱ for αk ; this is
formally stated in the following assumption.

Assumption 8.1 Fα(ᾱ) = 1, where ᾱ = maxw∈W wT Vww.

Using the dual-mode predicted control strategy of (8.4), the i steps ahead predicted
state, xi|k , at time k is decomposed into nominal (si|k) and uncertain (ei|k) components
according to (8.5a, 8.5b). We begin by considering the constraints of the Mode 1
prediction horizon. For each i > 0 let Ee(βi) denote an ellipsoidal set,

Ee(βi)
.= {e : eT Vee ≤ βi},

that contains ei|k . Then, since ei|k is a stochastic variable, the minimum βi such that
ei|k ∈ Ee(βi) is likewise stochastic. Given the distribution Fα of the parameter αk
that determines the scaling of the set Ew(αk), it is possible to compute a probability
distribution for βi. Moreover a value bi such that ei|k ∈ Ee(bi) with a probability
of at least p can be computed on the basis of this distribution. Then the constraint
Prk(Fxi|k + Gui|k ≤ 1) ≥ p can be transformed, using (8.4) and (8.5a, 8.5b), into the
linear deterministic constraint

F̃si|k + Gci|k ≤ 1 − b1/2i h,

where F̃ = F + GK and the vector h = (h1, . . . , hnC ) ∈ R
nC is defined by

hj = (F̃jV
−1
e F̃T

j )1/2, j = 1, . . . , nC,

with F̃j denoting the jth row of F̃. The justification for this transformation is that
b1/2i hj is the attainable upper bound for F̃jei|k over all ei|k ∈ Ee(bi). To simplify
notation we use βi and bi in preference to βi|k and bi|k ; these variables do not depend
on k because the probability distribution of ei|k is independent of k. For the same
reason the notation αi is used here instead of αi|k .

To obtain the probability distributions of βi, i = 1, 2, . . . we need to determine
how Ee(βi) evolves over the prediction horizon. A recurrence relation governing βi

can be deduced from the requirement that the sequence β0,β1, . . . must satisfy the
1-step-ahead inclusion condition

max
e∈Ee(βi), w∈Ew(αi)

(Φe + Dw)T Ve(Φe + Dw) ≤ βi+1 (8.39)



8.4 Stochastic Quadratic Bounds for Additive Disturbances 321

in order to ensure that ei+1|k ∈ Ee(βi+1) whenever ei|k ∈ Ee(βi). However, the prob-
lem of determining the minimum βi+1 satisfying (8.39) is nonconvex (in fact it is
NP-complete [11]), and instead we make use of the following sufficient condition.

Theorem 8.3 The 1-step-ahead inclusion condition, that ei+1|k ∈ Ee(βi+1) when-
ever ei|k ∈ Ee(βi), holds if

βi+1 = λβi + αi (8.40a)

V −1
e − 1

λ
ΦV −1

e ΦT 
 DV −1
w DT (8.40b)

for some Ve � 0 and λ > 0. Furthermore there exist Ve � 0 and λ ∈ (0, 1) satisfying
(8.40b) if Φ is strictly stable.

Proof Using the S-procedure [11], sufficient conditions for (8.39) are given by

βi+1 ≥ λβi + μαi (8.41a)
[
ΦT

DT

]
Ve

[
Φ D

] 	 λ

[
I
0

]
Ve

[
I 0

] + μ

[
0
I

]
Vw

[
0 I

]
(8.41b)

for some scalars λ,μ > 0. Scaling βi, βi+1 and Ve by μ−1 removes μ from these con-
ditions. The equivalence of the scaled version of (8.41b) with (8.40b) can be shown
using Schur complements, whereas (8.41a) implies (8.40a) since we are interested
in the minimum value of βi+1 satisfying (8.39). If all eigenvalues ofΦ are no greater
than ρ in absolute value and ρ < 1, then (8.41a) has a solution Ve � 0 whenever
λ ∈ (ρ2, 1) since, for any S = ST � 0 and λ in this interval, the Lyapunov matrix
equation V − 1

λΦV ΦT = S has a solution V � 0. �

Theorem 8.3 makes it possible to propagate the distribution of βi over the predic-
tion horizon given the distribution of β0. Before doing this we state the following
corollary to Theorem 8.1.

Corollary 8.2 If λ ∈ (0, 1), then βi lies in the interval βi ∈ [0, β̄i] for all i, where
β̄0 = 0 and

β̄i+1 = λβ̄i + ᾱ

Furthermore β̄i ≤ β̄ for all i, where β̄
.= ᾱ/(1 − λ).

Proof If βi ∈ [0, β̄i] for some i, then from (8.40a) and Assumption 8.1 we obtain
βi+1 ∈ [0,λβ̄i + ᾱ], and, since e0|k = 0 implies β0 = β̄0 = 0, it follows that βi ∈
[0, β̄i] for all i. For any given λ ∈ (0, 1) the asymptotic bound limi→∞ β̄i = β̄ =
ᾱ/(1 − λ) therefore holds, and from β̄ − β̄i+1 = λ(β̄ − β̄i) we have β̄i ≤ β̄i+1 ≤ β̄
for all i. �
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The recursion in (8.40a) expresses βi+1 as the sum of two random variables,
namely λβi and αi. Therefore the distribution function for βi+1 is given by a convo-
lution integral (see e.g. [12]),

Fβi+1(τ ) = λ

∫ β̄

0
Fβi(θ)fα(τ − λθ)dθ, (8.42)

where fα(·) is the probability density function of α and Fβi(·) is the cumulative
distribution function of βi. In general it is not possible to perform this integration
analytically but it can be approximated using a Markov chain similar to those intro-
duced in Sects. 7.3 and 7.4.

Consider, for example, subdividing the interval [0, β̄] into r intervals [τi, τi+1),
i = 0, . . . , r − 1, where

0 = τ0 < τ1 < · · · < τr = β̄,

and approximating the distribution functionFβi(τ ) by a piecewise constant function
F̂βi , defined by

F̂βi(τ ) =
{

πi,j τ ∈ [τj, τj+1)

πi,r = 1 τ ≥ τr .

Under mild assumptions on the continuity of fα (see e.g. [10]), it can be shown that a
generic numerical quadrature approximation of (8.42) provides uniform convergence
of the approximation error,Fβi − F̂βi → 0 for given i, as maxj(τj+1 − τj) → 0. Let
πi denote the vector πi = (πi,0, . . . ,πi,r). Then numerical integration applied to the
convolution integral (8.42) results in a linear relationship defining πi+1 in terms of πi:

πi+1 = Pπi. (8.43)

where π0 = 1 since β0 = 0 implies Fβ0(τ ) = 1 for all τ ≥ 0.
The transition matrix P in (8.43) has as elements the probabilities pl,m that βi+1

lies in the interval [0, τl) given that βi lies in the interval [0, τm). Thus P in (8.43)
differs from the transition matrix Π of (7.45) in Sect. 7.4 in that it relates cumulative
probabilities, but it can be converted into analogous form by pre-multiplying (8.43)
by the matrix T of (7.53) and writing

Tπi+1 = Π(Tπi), Π = TPT−1. (8.44)

Therefore it may be concluded (as was done in Sects. 7.3 and 7.4) that TPT−1, and
hence also P, has one eigenvalue equal to 1, while all other eigenvalues of P are
less than 1 in absolute value. The implication of this is that πss, the eigenvector of
P that corresponds to the eigenvalue at 1 describes the steady-state behaviour of the
approximation πi of Fβi as i → ∞.

http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
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Now, by construction P is such that the elements πi,j of πi satisfy the inequality
πi,j ≤ πi,j+1 andπi,r = 1 so that for any given probability p it is possible to determine
the smallest j such that βi ≤ τj with probability at least p. Formally this can be
achieved through the use of the function b(πi, p) defined by

ind(πi, p) = min{j : πi,j ≥ p},
b(πi, b) = τj, j = ind(πi, p).

With this definition, we can state that the i steps ahead prediction ei|k lies with a
probability of at least p in the ellipsoid Ee

(
b(πi, p)

)
, i.e.

Prk

(
ei|k ∈ Ee

(
b(πi, p)

)) ≥ p. (8.45)

The probabilistic inclusion condition in (8.45) defines a stochastic tube with ellip-
soidal cross sections Ee

(
b(πi, p)

)
containing the uncertain component ei|k of the pre-

dicted state with probability at least p. Equivalently, it defines a stochastic tube with
cross sections {si|k} ⊕ Ee

(
b(πi, p)

)
that will contain the predicted state xi|k with the

same probability. It is important to note that these tubes can be computed offline and
hence the dimension r of πi can be taken to be as large as desired. This allows the
error in the approximation of the integral in (8.43) to be made insignificant without
increasing the online computational load. We next use these tubes to derive linear
inequalities that ensure the state predictions satisfy constraints (8.38).

Lemma 8.3 The constraint Prk(Fxi|k + Gui|k ≤ 1) ≥ p is satisfied by the predic-
tions of the model (8.5) for given i if

F̃si|k + Gci|k ≤ 1 − (
b(πi, p)

)1/2
h (8.46)

where hj = (F̃jV −1
e F̃T

j )1/2 for j = 1, . . . , nC, and F̃ = [ F̃T
1 · · · F̃T

nC
]T .

Proof From the state decomposition (8.5a, 8.5b), we have that Fxi|k + Gui|k ≤ 1
whenever F̃ei|k ≤ 1 − (F̃si|k + Gci|k). But ei|k lies in Ee(b)with probability p, where
b = b(πi, p), and henceFxi|k + Gui|k ≤ 1with probability p if the maximum of each
element of F̃e over all e in the ellipsoid Ee(b) is no greater than the corresponding
element of 1 − (F̃si|k + Gci|k). This condition is ensured by the inequality of (8.46)
since maxe∈Ee(b) F̃je = b1/2(F̃jV −1

e F̃T
j )1/2. �

Lemma 8.3 allows the probabilistic constraint Prk(Fxi|k + Gui|k ≤ 1) ≥ p on the
i steps ahead predicted state and control input to be imposed for i = 1, 2, . . . through
linear constraints on the online optimization variable ck . However these constraints
are not necessarily recursively feasible and hence they cannot ensure the future fea-
sibility of the probabilistic constraint in (8.38). This can be explained using the
reasoning of Sect. 7.1 as follows. Suppose ck is such that (8.46) is satisfied at time k,
thus ensuring that the i steps ahead constraint Prk(Fxi|k + Gui|k ≤ 1) ≥ p holds for
given i. Then, to ensure feasibility of the corresponding i − 1 steps aheadprobabilistic

http://dx.doi.org/10.1007/978-3-319-24853-0_7
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constraint at time k + 1, we require that ck+1 = (c1|k, . . . , cN−1|k, 0) satisfies (8.46),
with k and i replaced by k + 1 and i − 1, respectively. But at time k + 1, the dis-
turbance input wk+1 has already been realized and therefore it cannot be treated
as a stochastic variable; hence the stochastic tube that was used to formulate the
probabilistic constraint in (8.46) at time k is no loger valid.

In order to ensure that ck+1 is feasible for the i − 1 steps ahead probabilistic
constraint at time k + 1, it is necessary at time k to take into account the effect of the
worst-case value of wk+1 on the i-step-ahead probabilistic constraint. This can be
done by considering the stochastic tube {Ee(β̄1), Ee(β2), . . . , Ee(βi)}. For this tube
the distribution functions Fβj for j ≥ 2 are again governed by (8.42), but with the
initial condition

Fβ1(τ ) =
{
0 τ < β̄1

1 τ ≥ β̄1

which corresponds to β1 = β̄1, and the approximation of Fβj therefore evolves

according to (8.43), but with an initial condition π1 corresponding to β1 = β̄1. The
constraint that Prk+1(Fxi−1|k+1 + Gui−1|k+1 ≤ 1) ≥ p should hold for all realiza-
tions of wk+1 then has the same form as (8.46), but with the RHS of the inequality
adjusted to account for the new value of π1. The feasibility of this constraint would
then be ensured at k + 1, but we need also to guarantee that it remains feasible
at times k + 2, . . . , k + i − 1, which requires that the worst-case bounds on βi for
i = 2, . . . , i − 1 must similarly be taken into account in the constraints imposed at
time k.

To simplify the analysis,we introduce the notationπi|j to denote the approximation
of the distribution of βi when βj, for some given j ≤ i, assumes its maximum value
of β̄j. We therefore define

πi|j = Pi−jπj|j, πj|j = u(β̄j), (8.47)

where the bound β̄j is given by Corollary 8.2 as

β̄j = 1 − λj

1 − λ
ᾱ (8.48)

and where u(β̄j) is the vector of 0s and 1s, the lth element of which is equal to 1 if
τl+1 < β̄j and is equal to 0 otherwise (i.e. if τl+1 ≥ β̄j). Then ensuring that constraint
(8.46) is feasible j steps ahead implies that itmust also holdwith b(πi|0, p) replaced by
b(πi|j, p). Invoking this argument for all j = 0, 1, . . . , i − 1 results in the constraint

F̃si|k + Gci|k ≤ 1 − (
max{b(πi|0, p), . . . , b(πi|i−1, p)})1/2h.

This constraint can be simplified using the following result, which is consistent
with the intuition that the maximum of the bounds b(·, p) appearing on the RHS
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corresponds to the case in which βi−1 assumes its worst-case value and αi−1 is
treated as a stochastic variable.

Lemma 8.4 For all i ≥ 1 and 0 ≤ j < i we have b(πi|j, p) ≤ b(πi|i−1, p).

Proof Given that β̄i−1 defines an upper bound on βi−1 for all uncertainty real-
izations, we must have β̄i−1 ≥ b(πi−1|j, 1) for all i ≥ 1 and 0 ≤ j < i, and hence
πi−1|i−1 = u(β̄i−1) ≤ πi−1|j. It follows that πi|i−1 ≤ πi|j since the elements of
P are non-negative, and this implies that b(πi|j, p) ≤ b(πi|i−1, p) for any given
p ∈ (0, 1]. �

Applying Lemma 8.4 to the constraints of this section results in conditions that
are equivalent to the constraints of (7.7a, 7.7b), formulated for the general case in
Sect. 7.1. These constraints and their recursive feasibility property canbe summarized
as follows.

Theorem 8.4 The constraints defined at time k by

F̃si|k + Gci|k ≤ 1 − (
b(πi|i−1, p)

)1/2
h, i = 1, 2, . . . (8.49)

ensure that (8.38) holds. Furthermore if ck satisfies (8.49) at time k, then ck+1 = Mck
will be feasible at time k + 1 for (8.49) with k replaced by k + 1, where M is the shift
matrix defined in (2.26b).

The conditions of (8.49) impose an infinite number of constraints on the predicted
state and control trajectories over an infinite prediction horizon. Using the approach
of Sect. 3.2.1 however, it is possible to impose these constraints through a finite
number of inequalities. To demonstrate this, we reintroduce the lifted autonomous
prediction dynamics of Sect. 3.2 and thus write

zi+1|k = Ψ zi|k, z0|k =
[

xk
ck

]
, Ψ =

[
Φ BE
0 M

]

where E and M are defined in (2.26b). This allows the predicted trajectories of the
state and control input to be generated as xi|k = [I 0]zi|k + ei|k and ui|k = [K E]zi|k +
Kei|k , and hence the constraints (8.49) can be expressed equivalently (and more
conveniently) as

F̄Ψ iz0|k ≤ 1 − (
b(πi|i−1, p)

)1/2
h, i = 1, 2, . . . (8.50)

where F̄ = [F + GK GE].

http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_2
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Given that the prediction system is stable, the constraints in (8.50) are necessarily
satisfied for some xk and ck if and only if the RHS of the inequality is non-negative
for all i ≥ 1. This condition is satisfied if

β̄1/2h < 1 (8.51)

since the definition of β̄i as a bound on βi implies that b(πi|i−1, p) ≤ β̄i, and
by Corollary 8.2 the sequence {β̄0, β̄1, . . .} is monotonically non-decreasing with
limi→∞ β̄i = β̄. Under the assumption that (8.51) holds, the following result, which
is closely related to Theorem 3.1, shows that the infinite set of inequalities in (8.50)
is equivalent to a finite number of inequality constraints.

Theorem 8.5 If (8.51) holds, then F̄Ψ iz ≤ 1 − (
b(πi|i−1, p)

)1/2
h is satisfied for all

i ≥ 1 if and only if

F̄Ψ iz ≤ 1 − (
b(πi|i−1, p)

)1/2
h, i = 1, 2, . . . , ν (8.52)

where ν is the smallest integer such that F̄Ψ ν+1z ≤ 1 − (
b(πν+1|ν, p)

)1/2
h holds

for all z satisfying (8.52).

Proof Clearly (8.52) must hold in order that F̄Ψ iz ≤ 1 − (
b(πi|i−1, p)

)1/2
h holds

for all i ≥ 1. To show that (8.52) is also sufficient, let Z(ν) denote the set

Z(ν) = {
z : F̄Ψ iz ≤ 1 − (

b(πi|i−1, p)
)1/2

h, i = 1, 2, . . . , ν
}
.

Then, under the conditions of the theorem, z ∈ Z(ν) implies

F̄Ψ z ≤ 1 − (
b(π1|0, p)

)1/2
h (8.53a)

F̄Ψ iz ≤ 1 − (
b(πi|i−1, p)

)1/2
h, i = 2, . . . , ν + 1 (8.53b)

and, by Theorem 8.4, the constraints in (8.53b) imply that the conditions

F̄Ψ i(Ψ z + D̄w) ≤ 1 − (
b(πi|i−1, p)

)1/2
h, i = 1, . . . , ν

hold for all w ∈ W , where D̄ = [DT 0]T . Thus Z(ν) is robustly invariant for the
system

zk+1 = Ψ zk + D̄wk, wk ∈ W, (8.54)

while (8.53a) implies that Prk(Fx1|k + Gu1|k ≤ 1) ≥ p is satisfied for all zk ∈ Z(ν)

and it follows that F̄Ψ iz ≤ 1 − (b(πi|i−1, p))1/2h holds for all i ≥ 1 whenever z ∈
Z(ν). �

A straightforward extension of the arguments of Theorem 3.1 can be used to
show that there exists a finite ν satisfying the conditions of Theorem 8.5 if (Ψ, F̄) is

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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observable, and also that Z(ν) is the maximal RPI set for the system (8.54) and the
constraints of (8.53a).

We are now in a position to state the stochastic MPC algorithm. Since the con-
straints (8.52) are linear in the optimization variable ck , the onlineMPC optimization
problem requires the solution of a QP at each sampling instant.

Algorithm 8.3 At each time instant k = 0, 1, . . .

(i) Perform the optimization:

minimize
ck

J(xk, ck)

subject to F̄Ψ i
[

xk
ck

]
≤ 1 − (

b(πi|i−1, p)
)1/2

h, i = 1, . . . , ν
(8.55)

(ii) Implement the control law uk = Kxk + c∗
0|k where c∗

k = (c∗
0|k, . . . , c∗

N |k) is the
minimizing argument of (8.55). �

The statement of the algorithm presupposes that the parameters Ve and λ have
been designed offline. These parameters can be determined for example by solving
the optimization problem

(V −1
e ,λ) = arg min

V −1
e ,λ∈(0,1)

ᾱ

1 − λ
max

j
(F̃jV

−1
e F̃T

j ) subject to (8.40b)

The rationale behind this optimization is that it minimizes the steady-state effect
of the uncertainty on constraints of (8.55) by minimizing the maximum element of
the LHS of (8.51). The optimization can be performed by combining a univariate
search over λ ∈ (0, 1)with semidefinite programming to compute the optimal Ve for
fixed λ.

Algorithm 8.3 has the guarantee of recursive feasibility provided by Theorem 8.4,
and, by Theorem 7.1, the use of the cost J(xk, ck) therefore ensures that the closed-
loop system satisfies a quadratic stability condition. These properties are summarized
as follows.

Corollary 8.3 Algorithm 8.3 applied to the system (8.1) is feasible at all times
k = 1, 2, . . . if it is feasible at k = 0. The closed-loop system satisfies the constraints
of (8.38) for all k ≥ 0 as well as the mean-square bound

lim
r→∞

1

r

r−1∑

k=0

E0
(‖xk‖2Q + ‖uk‖2R

) ≤ lss (8.56)

where lss = limk→∞(‖xk‖2Q + ‖uk‖2R
)
. If u = Kx is optimal in the absence of con-

straints for the cost (8.3), then xk converges with probability 1 to the minimal RPI
set for the dynamics (8.1) under this feedback law as k → ∞.

http://dx.doi.org/10.1007/978-3-319-24853-0_7
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8.5 Polytopic Tubes for Additive and Multiplicative
Uncertainty

The system dynamics considered in Sects. 8.1–8.4 of this chapter are subject only
to additive disturbances. We now turn to the case of linear models that are subject
to stochastic multiplicative uncertainty as well as additive uncertainty. We consider
systems described by the model of (6.2)–(6.3):

xk+1 = Akxk + Bkuk + Dwk (8.57)

where the additive disturbance wk ∈ R
nw and the matrices Ak, Bk that contain the

model parameters depend linearly on a set of zero-mean random variables q(j)
k , j =

1, . . . , m so that (Ak, Bk, wk) = (
A(qk), B(qk), w(qk)

)
at time k, with

(
A(q), B(q), w(q)

) = (A(0), B(0), 0) +
m∑

j=1

(A(j), B(j), w(j))q(j), (8.58)

and (A(j), B(j), w(j)), j = 0, 1, . . . , m, are known, constant parameters. We assume
that the probability distribution of qk = (q(1)

k , . . . , q(m)
k ) is known and time invariant,

and that qk and qj are statistically independent for all k �= j.
The MPC strategy discussed in this section carries a guarantee of recursive fea-

sibility and is designed for problems with mixed hard and probabilistic constraints.
As discussed in Sect. 7.1, this requires knowledge of a bounding set, Q, such that
qk ∈ Qwith probability 1 for all k. For convenience, we assume thatQ is a compact,
convex polytope, with known vertices q(1)

v , . . . , q(ν)
v . Corresponding to each vertex

q(l)
v ofQ is a vertex of the uncertainty set for the model parameters (A, B, w), which

we denote as (A(l)
v , B(l)

v , w
(l)
v ), so that

(
A(l)

v , B(l)
v , w(l)

v

) = (
A(q(l)

v ), B(q(l)
v ), w(q(l)

v )
)

for l = 1, . . . , ν.
The system of (8.57) is considered to be subject at all times k = 0, 1, . . . to a

mixture of hard constraints:

Fhxk + Ghuk ≤ 1, (8.59)

and probabilistic constraints:

Prk(Fpx1|k + Gpu1|k ≤ 1) ≥ p, (8.60)

for a given set of matrices Fh, Gh, Fp, Gp and a given probability p ∈ (0, 1]. Here
(8.60) requires, similarly to the pointwise probabilistic constraint (6.8), that the joint
probability of all elements of the vector Fpx1|k + Gpu1|k being less than or equal to

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_6


8.5 Polytopic Tubes for Additive and Multiplicative Uncertainty 329

unity should be no less than p, where Fpx1|k + Gpu1|k is the 1 step ahead prediction
of Fpx + Gpu at time k. As in Sect. 8.1 it is straightforward to extend the approach
of this section to intersections of probabilistic constraints (8.60) with different prob-
abilities p.

Using an open-loop prediction strategy, the predicted control sequence is para-
meterized in terms of a perturbed linear feedback law:

ui|k = Kxi|k + ci|k, i = 0, 1, . . .

with ci|k = 0, i = N, N + 1, . . . .The dynamics governing predicted state trajectories
therefore assume the form

xi+1|k = Φk+ixi|k + Bk+ici|k + Dwk+i

where Φk = Ak + BkK . The feedback gain K is assumed to be stabilizing in the
sense that xk+1 = Φkxk is mean-square stable in the absence of constraints. Hence
the quadratic predicted cost, which is taked to be (6.15), can be evaluated using the
approach of Sect. 6.2.

It was mentioned in Chap. 7 that propagating the effects of multiplicative uncer-
tainty over a prediction horizon can cause computational difficulties because both
Φk+i and xi|k are uncertain. Instead, similarly to the robustMPC strategies considered
in Chap.5, we construct tubes with polytopic cross sections [13, 14], defined by

Xi|k = {xi|k : V xi|k ≤ αi|k}, (8.61)

that contain the predicted state trajectories. The vectors αi|k for i = 0, . . . , N are
treated as variables in the online MPC optimization whereas the matrix V ∈ R

nV ×nx

is determined offline and remains fixed online. The choice of V is based on the con-
siderations detailed in Sects. 5.5 and 5.6, summarized by the following assumption.

Assumption 8.2 V is chosen so that the set X = {x : V x ≤ 1} is λ-contractive for
the dynamics xk+1 = Φkxk + Dwk , for some λ < 1.

On account of the requirement for a recursively feasible MPC strategy (and also
satisfaction of hard constraints, when these are present), the constraint that the pre-
dicted state xi|k should lie in the tube cross section Xi|k must be handled robustly.
Through the application of Farkas’ Lemma discussed in Chap.5, Lemma 5.6 shows
that this is achieved by the conditions, for H(l) ≥ 0 and i = 0, 1, . . .,

αi+1|k ≥H(l)αi|k + V B(l)
v ci|k + V Dw(l)

v (8.62a)

H(l)V = V Φ(l)
v (8.62b)

for l = 1, . . . , ν, where Φ
(l)
v

.= A(l)
v + B(l)

v K . Recursive feasibility with respect to
satisfaction of the hard constraints is then guaranteed by the existence of a matrix
Hh ≥ 0 such that, for i = 0, 1, . . .,

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Hhαi|k + Ghci|k ≤ 1 (8.63a)

HhV = F̃h. (8.63b)

where F̃h
.= Fh + GhK .

In order to handle the probabilistic constraints however, we require a probabilistic
extension of Farkas’ Lemma. This is provided by the following result.

Theorem 8.6 ([14]) Let

X1 = {
x : V1x ≤ b1

}
, X2 = {

x : Pr(V2x ≤ b2) ≥ p
}

where V2 and b2 are random variables. Then X1 ⊆ X2 (i.e. Pr(V2x ≤ b2) ≥ p for all
x such that V1x ≤ b1) if and only if there exists a random variable H ≥ 0 satisfying

HV1 = V2 (8.64a)

Pr(Hb1 ≤ b2) ≥ p. (8.64b)

Proof Sufficiency follows from the fact that, by (8.64a), for x ∈ X1 we can write

V2x = HV1x ≤ Hb1

which, from (8.64b), implies that

Pr(V2x ≤ b2) ≥ p.

Thus every x ∈ X1 also belongs to X2, thereby implying that X1 ⊆ X2.
To prove necessity, assume that X1 ⊆ X2 holds. Then

Pr(μi ≤ b2,i) ≥ p

with
μi = max

x
{V2,ix : V1x ≤ b1} (8.65)

where V2,i and b2,i denote the ith row and ith element of V2 and b2, respectively.
By strong duality, the dual of the linear program (8.65) for a given realization of V2
gives

μi = min
h

{hT b1 : hT V1 = V2,i, h ≥ 0}. (8.66)

Let h∗
i be the minimizing argument of this dual LP and define H as the matrix with

ith row equal to h∗
i . Note that h∗

i is a continuous piecewise affine function of the
random variable V2,i since (8.66) has the form of a (right-hand side) parametric
linear program in the parameter V2,i. Hence h∗

i is itself a random variable [15]. The
constraints of (8.66) imply thatH ≥ 0 and thatH satisfies (8.64a). From the objective
of (8.66) it follows that H also satisfies (8.64b). �
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Theorem 8.6 can be used to derive conditions which ensure that the predicted
states xi|k satisfy the probabilistic constraints of (8.60) for all xi|k ∈ Xi|k , i = 0, 1, . . .,
namely that

Prk+i(Fpxi+1|k + Gpui+1|k)
= Prk+i

(
F̃pΦk+ixi|k + F̃p(Bk+ici|k + Dwk+i) + Gpci+1|k ≤ 1

) ≥ p

where F̃p = Fp + GpK . From (8.64a, 8.64b), these conditions are equivalent to the
requirement that there exists Hp ≥ 0 satisfying, for i = 0, 1, . . .

Pr
(
Hpαi|k + F̃p(Bci|k + Dw) + Gpci+1|k ≤ 1

) ≥ p (8.67a)

HpV = F̃pΦ. (8.67b)

Since Φ is a function of the random variable q, in general Hp satisfying (8.67b)
will also be a random variable. This means the method of handling (8.67a, 8.67b)
differs from that of (8.62a, 8.62b) and (8.63a, 8.63b); however given knowledge of
the distribution of q it is possible to construct a computationally tractable online
optimization, as discussed below.

In summary therefore, a recursively feasible set of conditions that impose the
constraints of (8.59–8.60) are:

(i) Tube inclusion constraints—(8.62a, 8.62b);
(ii) Hard constraints—(8.63a, 8.63b);
(iii) Probabilistic constraints—(8.67a, 8.67b).

The degree of conservativeness of the conditions of (8.62), (8.63) and (8.67)
would be minimized if V , H(l), Hh and Hp were computed online for each prediction
instant, i = 0, 1, . . .. However this strategy is unlikely to be implementable as it
would require the solution of a large nonconvex optimization problem online. Instead
we discuss how to design these matrices offline. Thus V is to be chosen, as described
in Assumption 8.2, so as to define a λ-contractive set for the dynamics xk+1 = Φkxk ,
whereas each of the matrices H(l), Hh and Hp is designed to have minimum row sum
with the aim of relaxing the associated constraints. In particular the ith rows of these
matrices are selected according to

H(l) T
i = argmin

h
1T h subject to hT V = ViΦ

(l)
v and h ≥ 0, l = 1, . . . , ν (8.68a)

HT
h,i = argmin

h
1T h subject to hT V = F̃h,i and h ≥ 0 (8.68b)

HT
p,i = argmin

h
1T h subject to hT V = F̃p,iΦ and h ≥ 0. (8.68c)

The values of H(l) and Hh in (8.68a) and (8.68b) are fixed for given V , Φ
(l)
v

and F̃h as the deterministic solutions of a set of linear programs. However (8.68c)
specifies Hp as a random variable, the probability distribution of which is defined
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by the parametric solutions of a set of linear programs. In particular, from (8.58) the
linear program (8.68c) is equivalent to

h∗(q) = argmin
h

1T h

subject to hT V = F̃p,i(A
(0) + B(0)K) +

m∑

j=1

F̃p,i(A
(j) + B(j)K)q(j)

h ≥ 0. (8.69)

Since the constraints of this problem depend linearly on both h and the random
variable q = (q(1), . . . , q(m)), it can be shown that the solution h∗(q) is a continuous,
piecewise affine function of q [16]. Thus Hp is given by (8.68c) as a continuous and
piecewise affine function of q. For most problems of practical interest it is unlikely to
be computationally feasible to determine the probability distribution of Hp by using
multiparametric linear programming to solve (8.68c) for Hp as an explicit function
of q. Instead (8.68c) can be used as a means of generating random samples of the
distribution of Hp given samples of q; the approach is discussed further at the end of
this section.

The matrices H(l), Hh and Hp are necessarily sparse in the sense that each of
their rows can have at most nx non-zero elements. This follows from the fact that the
problems posed in (8.68a–8.68c) for given q, have nV − nx active constraints so that
nV − nx of the elements of the optimizing h must in each case be zero. This affords
computational advantages.

Using the argument of Sect. 7.1, conditions (8.62a), (8.63a) and (8.67a) would
ensure recursive feasibility if they were applied over an infinite prediction horizon,
but this would of course require an infinite number of constraints and is clearly not
implementable. This difficulty can be avoided through the use of terminal conditions,
as described inSect. 5.5. For example, let the sequenceof parameters {α0|k, . . . ,αN |k}
satisfy the constraints of (8.62a), (8.63a) and (8.67a) for i = 0, . . . , N − 1 and impose
terminal constraints on αN |k :

H(l)αN |k + V Dw(l)
v ≤ αN |k, l = 1, . . . , ν (8.70a)

HhαN |k ≤ 1 (8.70b)

Pr(HpαN |k ≤ 1) ≥ p. (8.70c)

The following lemma shows that, under Assumption 8.2, the matrices H(l) satisfy
the condition ‖H(l)‖∞ ≤ 1, which is necessary for feasibility of (8.70a). With these
constraints we are able to state the following result.

Lemma 8.5 Under Assumption 8.2, the definition of H(l) in (8.68a) implies that
H(l)1 + V Dw

(l)
v ≤ λ1 for all l = 1, . . . , ν.

http://dx.doi.org/10.1007/978-3-319-24853-0_7
http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Proof Since the set {x : V x ≤ 1} is λ-contractive for xk+1 = Φkxk + Dwk , we have
V Φ

(l)
v x + V Dw

(l)
v ≤ λ1 for all l = 1, . . . , ν and x such that V x ≤ 1, so the bound

H(l)1 + V Dw
(l)
v ≤ λ1 follows from the constraints of (8.68a). �

Theorem 8.7 If V is chosen according to Assumption 8.2, then the constraints of
(8.62a), (8.63a) and (8.67a), invoked for i = 0, . . . , N − 1, and the terminal and
initial constraints, (8.70a–8.70c) and V xk ≤ α0|k, are jointly recursively feasible
for the system (8.57–8.58) under the control law uk = Kxk + c0|k.

Proof Suppose that ck = (c0|k, . . . , cN−1|k) and {α0|k, . . . ,αN |k} satisfy the con-
straints of the theorem at time k. Then a feasible set of parameters at time k + 1 is
given by

ck+1 = (c1|k, . . . , cN−1|k, 0)
αi|k+1 = αi+1|k, i = 0, . . . , N − 1

αN |k+1 = αN |k

since these parameters give Xi|k+1 = Xi+1|k for i = 0, 1, . . . , N − 1 and XN |k+1 =
XN |k . It follows that (8.62a), (8.63a) and (8.67a), with k replaced by k + 1, hold for
i = 0, . . . , N − 1. Also the conditions (8.70a–8.70c) are trivially satisfied when k is
replaced by k + 1 if αN |k+1 = αN |k . Furthermore, we have V xk+1 ≤ α0|k+1 since
xk+1 ∈ X1|k for all realizations of model uncertainty at time k. �

We can now formulate the stochastic MPC algorithm. For simplicity the objec-
tive function to be minimized online is chosen here as the quadratic predicted cost
of (6.15) in Sect. 6.2:

J(xk, ck) =
∞∑

i=0

E
(‖xi|k‖2Q + ‖ui|k‖2R − lss

)
. (8.71)

ByTheorem6.1, this cost is a quadratic functionof thevector, ck = (c0|k, . . . , cN−1|k),
of free variables in the predicted control sequence.

Algorithm 8.4 At each time instant k = 0, 1, . . .

(i) Perform the optimization:

minimize
ck

α0|k ,...,αN |k
J(xk, ck)

subject to (8.62a), (8.63a), (8.67a) for i = 0, . . . , N − 1,

(8.70a-c) and V xk ≤ α0|k .

(8.72)

(ii) Implement the control law uk = Kxk + c∗
0|k where c∗

k = (c∗
0|k, . . . , c∗

N |k) is the
minimizing argument of (8.72). �

http://dx.doi.org/10.1007/978-3-319-24853-0_6
http://dx.doi.org/10.1007/978-3-319-24853-0_6
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The constraints of Algorithm 8.4 are recursively feasible by Theorem 8.7. Further-
more, Theorem 7.1 of Chap.7.2.1 demonstrates that the closed-loop system satisfies
the constraints (8.59–8.60) for all k = 0, 1, . . . and the optimal value of the cost,
J∗(xk) satisfies

Ek
(
J∗(xk+1)

) ≤ J∗(xk) − (‖xk‖2Q + ‖uk‖2R − lss
)
.

Therefore the quadratic stability condition holds for the closed-loop system:

lim
r→∞

1

r

r∑

k=0

E0
(‖xk‖2Q + ‖uk‖2R

) ≤ lss.

The online MPC optimization in step (i) of Algorithm 8.4 is not stated in form
that can be implemented directly. This is because the constraints (8.67a) and (8.70c)
involve products of optimization variables αi|k and ci|k with the random variables
Hp and B [19], and because the probability distribution of Hp is implicitly defined
by (8.68c). A way to circumvent these difficulties is to use methods for imposing
probabilistic constraints based on random sampling [3, 4, 20].

Let q[j], j = 1, . . . , ns denote a set of ns independent samples drawn from the
known probability distribution for q. Given these samples, the corresponding samples
of B and w:

B[j] = B(q[j]), w[j] = w(q[j]), j = 1, . . . , ns

are generated by (8.58). Likewise samples of Hp are obtained by defining the ith row

of H[j]
p using (8.69) as

H[j]
p,i = (

h∗(q[j])
)T

, j = 1, . . . , ns.

Using this set of samples, the probabilistic constraints (8.67a) and (8.70c) in the
online MPC optimization can be approximated using sampled constraints defined by

H[j]
p αi|k + F̃p(B

[j]ci|k + Dw[j]) + Gpci+1|k + s[j]
i|k = 1, i = 0, . . . , N − 1

(8.73a)

H[j]
p αN |k + s[j]

N |k = 1 (8.73b)

s[j]
i|k ≥ 0, ∀j ∈ Ik ⊆ {1, . . . , ns}, |Ik| ≥ rns. (8.73c)

Here |Ik| denotes the number of elements in the set Ik . Thus (8.73c) ensures that the
conditions

H[j]
p αi|k + F̃p(B

[j]ci|k + Dw[j]) + Gpci+1|k ≤ 1, i = 0, . . . , N − 1

H[j]
p αN |k ≤ 1

http://dx.doi.org/10.1007/978-3-319-24853-0_7
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are imposed for all j ∈ Ik , where Ik in an index set containing no fewer than �rns� of
the samples j ∈ {1, . . . , ns}. The remaining �(1 − r)ns� samples are discarded since
the corresponding slack variables s[j]

i|k are not constrained to be non-negative in (8.73a,
8.73b). Since samples are selected randomly, the constraints (8.73a–8.73c) are not
equivalent to (8.67a) and (8.70c) for finite ns. However it is possible to derive bounds
on the probability, which is dependent on ns and r, such that a solution to the MPC
optimization (8.72) with (8.67a) and (8.70c) replaced by (8.73a–8.73c) satisfies the
probabilistic constraints of (8.67a) and (8.70c). For details we refer the reader to [4,
17].

This approach therefore approximates the probabilistic constraints by using sam-
ples to empirically approximate the distributions of the stochastic variables appearing
in (8.72). Since the index set Ik is an optimization variable, the resulting optimization
has the form of a mixed integer quadratic program (MIQP). The effects of varying
the number of samples on the confidence of constraint satisfaction are discussed in
the following example.

Example 8.1 This example provides a simple illustration of the use of sampling
to approximate a probabilistically constrained optimization problem. Consider the
minimization

minimize
x

f (x)

subject to gi(x) ≤ 0, ∀i ∈ I ⊆ {1, . . . , ns}, |I| ≥ rns

(8.74)

where the functions f (x) and gi(x) = g(x, q[i]) are convex in the optimization variable
x, and where q[i], i = 1, . . . , ns are independent samples of a random variable q. For
suitable choices of ns and r, the constraints of (8.74) provide an approximation of
the probabilistic constraint

Pr
(
g(x, q) ≤ 0

) ≥ p. (8.75)

Let Fn,m(p) denote the binomial distribution function giving the probability of
m or fewer successes in n independent trials, each of which has a probability p of
success:

Fn,m(p)
.=

m∑

i=0

(
n
i

)
pi(1 − p)n−i.

Then a lower bound on the probability that the solution of the convex program (8.74)
satisfies the probabilistic constraint (8.75) is given in [4, 17] as 1 − ε, where the
parameter ε satisfies

ε ≤
(�ns(1 − r)� + ρ − 1

�ns(1 − r)�
)

Fns,�rns�−ρ(1 − p)

Here ρ is the number of support constraints of the problem (8.74), which is essentially
the number of constraints of the form gi(x) ≤ 0 that can be active at the solution
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of (8.74) (where removal of an active constraint causes a reduction in the value of
the objective). For a feasible problem we must clearly have ρ ≤ nx [17]. Similarly,
the probability that a solution of (8.74) is feasible for (8.75) has an upper bound β,
where

β ≤ Fns,�rns�−1(p).

The variation with r of these confidence bounds is shown for p = 0.9 and various
sample sizes ns, with ρ = 1 and ρ = 2 in Figs. 8.1 and 8.2. ♦

Example 8.2 This example illustrates the use of random sampling in approximating
the probabilistically constrained online MPC optimization of Algorithm 8.4. We
consider a system model of the form (8.57) containing multiple independent sources
of stochastic uncertainty. The expected values of the system matrices are given by

A(0) =
[−1.9 −1.4
0.7 0.5

]
, B(0) =

[
1

−0.25

]

Proportion of active samples: r
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Fig. 8.1 Upper and lower bounds on the probability that a solution of the sampled program (8.74)
satisfies the probabilistic constraint (8.75) for the case of ρ = 1
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Proportion of active samples: r
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

C
on

fid
en

ce
 b

ou
nd

s:
 1

-
, 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ns = 100

ns = 250ns = 500

ns = 1000

Fig. 8.2 Upper and lower bounds on the probability that a solution of the sampled program (8.74)
satisfies the probabilistic constraint (8.75) with ρ = 2

and D = I . The realizations of Ak , Bk and wk are given by

Ak = A(0) + A(1)q(1)
k + A(2)q(2)

k + A(3)q(3)
k

Bk = B(0) + B(4)q(4)
k + B(5)q(5)

k

wk = w(6)q(6)
k + w(7)q(7)

k

where q(j) is a scalar random variable, uniformly distributed on the interval [−0.5,
0.5] for j = 1, . . . , 7, and qk = (q(1)

k , . . . , q(7)
k ) satisfies E(qkqT

k ) = 1
24 I and

E(qkqT
i ) = 0 for all i �= k. The remaining model parameters are

A(1) =
[
0.03 0.15

−0.15 −0.03

]
, A(2) =

[−0.03 −0.15
0 −0.03

]
, A(3) =

[
0 0

0.15 0.06

]

B(1) =
[
0.036

−0.024

]
, B(2) =

[−0.036
0.024

]
, w(1) =

[
0.04

−0.04

]
, w(2) =

[−0.04
0.04

]
.
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The system is subject to the constraint

Prk(Fx1|k ≤ 1) ≥ 0.9, F = [−5 10
]
,

and the weighting matrices in the cost (8.71) are defined by Q = I and R = 1.
In order to apply the stochastic MPC law of Algorithm 8.4, the probabilistic

constraints (8.67a) and (8.70c) in the online optimization (8.72) are replaced by
(8.73a–8.73c). A mode 1 horizon of N = 4 steps and 250 samples are employed
at each prediction time step. For this problem the number of support constraints at
each time step is at most ρ = 1, and the confidence bounds of Fig. 8.1 with ns = 250
can therefore be used to determine the fraction r of the samples that should be
activated in order to achieve a given confidence of feasibility with respect to the
probabilistic constraints [18]. For a confidence level of 90% we need r = 0.93, and
hence �rns� = 233 samples activated at each prediction time step.

TheMPCoptimization incorporating (8.73a–8.73c) is solved approximately using
a greedy algorithm. This attempts to identify the optimal samples to be discarded at
each prediction time step by successively solving the QP problem that corresponds
to a fixed set of discarded samples, and then discarding the samples that correspond
to the constraints (8.73a, 8.73b) that have the largest associated multipliers. Note that
the implementation of (8.73a–8.73c) in terms of slack variables has the advantage
that not all constraints in the online optimization need to be recomputed at each
iteration.

We next compare the performance of the stochastic MPC law with that of its
robust counterpart, which is obtained by invoking the robust constraints Fxi|k ≤ 1,
i = 0, 1, . . . , for all realizations of model uncertainty. For problems involving mul-
tiple independent sources of uncertainty, the robust MPC approach is likely to be
very conservative. In particular, although each uncertain component of the model
is uniformly distributed, the model uncertainty combines to give a one step-ahead
probability density function for the model state that is heavily centre-weighted and
quickly drops to a negligible value a short distance from its centroid. A probabilis-
tically constrained stochastic MPC algorithm can explicitly account for this effect
whereas robust MPC must take into account the worst-case value of each source of
uncertainty.

The high degree of conservativeness of robust MPC can be seen in Fig. 8.3, which
showshow theoptimal predicted cost for robustMPCcompareswith that of stochastic
MPC for the initial condition x0 = (0.4, 0.4) as p varies: clearly a small reduction
in p causes a relatively large reduction in predicted cost. The state trajectories of
the closed-loop system under SMPC with p = 0.9 and RMPC are shown in Figs. 8.4
and 8.5 for 100 model uncertainty sequences. Again it is clear that using robust MPC
in this example results in conservative closed-loop responses.

Table8.1 compares the closed-loop performance of the robustMPC and stochastic
MPC algorithms using 500 realizations of model uncertainty. Here the mean cost
computed along closed-loop system trajectories is 16% lower in the stochastic case
than the robust, and this is achieved with approximately double the computation
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Fig. 8.5 Stochastic MPC: closed-loop state trajectories, 100 uncertainty sequences

Table 8.1 Closed-loop comparison of robust and stochastic MPC: average costs, constraints and
computation times for 500 sequences of model uncertainty

Robust Stochastic

Mean closed-loop cost 25.7 21.5

Proportion of realizations satisfying constraints 100 93.8

Mean computation time (ms) 26 60

time required for the stochastic algorithm. The proportion of trajectories satisfying
constraints (93.8%) implies a degree of conservativism in the stochastic algorithm.
However this is expected from the confidence parameter of 90% and the relatively
small sample size, ns = 250. ♦
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Chapter 9
Conclusions

The aim of this final chapter is to give a short discursive summary of some of the
key results presented in this book. We also speculate on extensions that could, in our
opinion, be pursued in future.

It is perhaps difficult to pinpoint precisely the origins of predictive control but it
appears that the early development of the subject ignored the presence of constraints.
The perception of the subject has changed considerably over the last few decades
and now the justification and success of predictive control is almost exclusively
attributed to its ability to provide near optimal solutions that account for constraints.
This feature alone makes MPC a particularly useful tool for the solution of real life
problems where typically limits in actuation and safety considerations imply the
presence of constraints.

This development brought with it two difficulties, one of which is theoretical
and the other practical, namely the guarantee of the stability of the control system
and the implementation within the inter-sample interval. The practicability of imple-
mentation implied the need to turn what, in essence, was an infinite-dimensional
optimization problem into a finite-dimensional problem and this was made possible
through the split of the prediction horizon into the near horizon (mode 1), where the
control moves are considered to be degrees of freedom, and the far horizon (mode 2),
where the control moves are dictated by a prescribed control law. To guarantee fea-
sibility within mode 2, use was made of the concept of invariance and the implied
terminal constraints. Thereafter, closed-loop stability could be established by apply-
ing a Lyapunov-like analysis to the closed-loop behaviour of the optimal predicted
cost. Clearly, feasibility of the MPC optimization was required at each time step,
and in general this was guaranteed recursively by ensuring that a specific predicted
trajectory satisfied the constraints of the problem at successive time instants.

There has been a proliferation of MPC strategies proposed in the literature over
the last few decades and their relative success has been judged mostly on the basis of
their ease of computation on the one hand and comparing the size of their respective
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regions of attraction on the other. Often one may also wish to see a comparison of
performance, but in general this is example- and initial condition-dependent, thereby
rendering such an exercise meaningless. The overall aim has nevertheless been to
strive for the best possible balance between ease of computation and optimality. Sev-
eral attempts, somequite effective, have been proposed and are described in this book.
Thus one of the ways of achieving efficiency in computation is to reduce the number
of degrees of freedom over which the online repetitive optimization of MPC is to be
performed. This can be done for example by input blocking, or interpolating between
given trajectories or using the homotopy-based active constraint approach. Alterna-
tively, for low-dimensional systems, onemay use amulti-parametric approach which
identifies regions in which the optimal predicted control is known and given by affine
relationships to the state. The lifted autonomous formulation of the predicted dynam-
ics provides yet another way in which the online computational load can be reduced
significantly through the replacement of the optimization by awell-behavedNewton–
Raphson procedure. Arguably, there is no unqualified best amongst all these, and an
array of other approaches exist, which have not been mentioned in this book. The
designer has to choose the approach that best meets the demands (in terms of degree
of optimality, efficiency of computation and size of region of attraction) of the par-
ticular problem to be addressed. It is to be hoped that more original ideas will come
about in future years and that some of the existing approaches will be developed
further.

As mentioned earlier, over and above computation, one needs to consider the size
of the region of attraction of a particular MPC algorithm. To improve on this, one can
use as large a terminal set as possible and for a given terminal control law that leads
naturally to the employment of the maximal invariant set. Further improvements are
possible through the use of longer prediction horizons but this carries the penalty of
increased computational load. An alternative to longer horizons is the introduction
of controller dynamics whose action extends across an infinite prediction horizon.
Such dynamics can be optimized to give the largest ellipsoidal region of attraction
that can be attained over all terminal linear feedback laws. Yet this benefit is attained
regardless of the choice of the terminal control law which can be chosen to be the
unconstrained optimal.

The body of ideas of classical MPC carry over to robust MPC, but catering
for uncertainty clearly requires more intensive online optimization. Low complex-
ity tubes provide a convenient (albeit potentially conservative) way to define sets
that contain predictions for all possible realizations of uncertainty. On the basis of
these, constraints can be invoked robustly, and, coupled with a monotonically non-
increasing property of a cost based on the nominal predictions or on perturbations to
an unconstrained optimal control law, this leads to algorithmswith guaranteed closed-
loop stability. It is also possible to use general (rather than low complexity) tubes
and in particular for additive uncertainty only one can employ rigid or homothetic
tubes with the attendant inclusion conditions, whereas in the case of multiplicative
(and also additive) uncertainty one can construct general tubes through inclusion
conditions that are based on the use Farkas’ Lemma.
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For the case of additive disturbances only, improved results can be achieved
through a re-parameterization of predictions that is affine in future disturbances
and has a lower triangular structure. The drawback of this approach however is that,
through the lower triangular structure, it introduces a greater number of degrees of
freedom, which is in fact of the order of N 2, where N is the mode 1 prediction
horizon. For the same order of magnitude of degrees of freedom, it is possible to
use a more general lower-triangular tube parameterization which is piecewise affine
rather than affine in the future disturbances. Both the disturbance affine MPC and
PTMPC assume that the uncertainty set is polytopic but the former works with the
facets of the set whereas the latter assumes a set description in terms of its vertices.
The numbers of facets and vertices could differ significantly and this in turn implies
a significant difference in the number of inequalities in the online optimization of
the two approaches. This difference could be removed if an extension were found
that enabled the methodology of PTMPC to deploy uncertainty facets rather than
vertices.

An alternative that reduces computational complexity considerably replaces the
lower triangular structure of PTMPC by a striped lower triangular structure, thus
leading to a striped PTMPC (or SPTMPC) algorithm. Despite the reduction of the
number of degrees of freedom (which are of order N for SPTMPC), this modification
allows disturbance compensation to extend to mode 2. On account of this it can
potentially outperform the parameterized tube MPC in terms of the size of its region
of attraction.

In all of these endeavours, the goal is to get as close to the dynamic program-
ming (DP) solution for the optimal feedback law without restrictive assumptions on
controller parameterization, but to do so with a computational load that is tractable.
PTMPC has narrowed the gap between available algorithms and the DP solution and
indeed produces optimal results for several special cases. However, for fast sampling
applications, the computational requirement of PTMPC could be excessive, while
the degree of sub-optimality in SPTMPC could be more than desired. The field is
wide open for researchers to come upwith ideas that sit somewhere between PTMPC
and SPTMPC in respect of the balance between optimality and computability. The
field is also wide open in respect of re-parameterizations of tube MPC for the case
of multiplicative uncertainty.

Robust MPC is clearly not the answer to controlling systems that are subject
to random uncertainty with known probability distributions and that are subject to
constraints, some of which could be probabilistic. The answer to this problem is
provided by stochastic MPC, which has received considerable attention over the
last decade. There were significant developments in this field, especially on the
control theoretic front, leading to recursive feasibility (through a combined robust
and probabilistic treatment of constraints) and stability guarantees. In general this
is only possible for model uncertainty with finitely supported distributions. Such
distributions are perhaps not as convenient as the Gaussian but accord well with
the physical world where variations in the uncertain parameters are almost never
unbounded.
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These developments considered first the case of additive uncertainty and only
more recently have been extended to the case of more general multiplicative uncer-
tainty models. The particular difficulty here is that the multiplication of predicted
states, which are random variables, by parameters which themselves are stochastic,
makes it difficult to determine the distributions of predictions. The combined use of
Farkas’ Lemmawith sampling circumvents this difficulty in terms of practical imple-
mentation and it is anticipated that further advances in this area will carry on being
proposed in the near future. It is perhaps to be expected that some re-parameterization
of stochastic MPC (e.g. along the lines of PTMPC) might be available for the case
of additive model uncertainty, and possibly also the multiplicative uncertainty case.

Another area that may attract attention in future concerns the definition of pre-
dicted performance costs that preserve as much of the probabilistic nature of the cost
as viable computation allows. Costs expressed in terms of nominal, expected values
or worst-case values tend to conceal much of the stochastic nature of the control
problem. An attempt at overcoming this difficulty was proposed in the solution to
the sustainable problem discussed in Chap.6 through the definition of a cost on the
basis of probabilistic bands, but certainly there will be alternatives which are yet to be
worked on. A topic related to the stochastic nature of the problem is the possibility
of relaxation of future constraints on the basis of past realizations of uncertainty.
Preliminary results in this area have been reported in the last chapter of the book but
this area deserves further development.

In conclusion, classical MPC is now mature enough to suggest that further future
developments, though still possible, will be few. The same, is not true ofMPC applied
to uncertain systems, especially for cases in which uncertainty is stochastic.

http://dx.doi.org/10.1007/978-3-319-24853-0_6


Solutions to Exercises

Solutions to Exercises for Chap. 2

1 (a) The predicted state and control sequences at time k with N = 2 are

x =
⎡

⎣
x0|k
x1|k
x2|k

⎤

⎦ , u =
[

u0|k
u1|k

]
, x =

⎡

⎣
1
1.5
2.25

⎤

⎦ x +
⎡

⎣
0 0
1 0
1.5 1

⎤

⎦ u.

Hence the predicted cost for q = 1 is J (x, u) = xT x + 10uT u

J (x, u) = uT

⎛

⎝
[
10 0
0 10

]
+
[
0 1 1.5
0 0 1

]⎡

⎣
0 0
1 0
1.5 1

⎤

⎦

⎞

⎠u

+ 2x
[
1 1.5 2.25

]
⎡

⎣
0 0
1 0
1.5 1

⎤

⎦u + x2
[
1 1.5 2.25

]
⎡

⎣
1
1.5
2.25

⎤

⎦

= uT Hu + 2x FT u + x2G,

Since u = −H−1Fx , we get the unconstrained MPC law

uk = −
(
11(1.5 + 1.53) − 1.53

11(11 + 1.52) − 1.52

)
xk = −0.350xk .

(b) Let ui |k = K xi |k for all i ≥ 2, with K = −0.88 (the LQ optimal feedback gain).
If q satisfies q − (A + BK )2q = 1 + 10K 2, i.e. if

q = 1 + 10K 2

1 − (A + BK )2
= 1 + 10(0.88)2

1 − (1.5 − 0.88)2
= 14.20,
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then the predicted cost satisfies

J =
N−1∑

i=0

(x2i |k + 10u2
i |k) + qx22|k =

∞∑

i=0

(x2i |k + 10u2
i |k)

so the unconstrained MPC law is identical to LQ optimal control.
(c) Constraints:−0.5 ≤ ui |k ≤ 1 for i = 0, 1, . . . imply constraints on the predicted

input sequence:
−0.5 ≤ ui |k ≤ 1, i = 0, 1, . . . , N + ν

where N = 2 and ν must be large enough so that

−0.88(1.5 − 0.88)ν+1x ∈ [−0.5, 1] for all x such that

−0.88(1.5 − 0.88)i x ∈ [−0.5, 1], i = 0, . . . , ν

Here 1.5 − 0.88 = 0.62, so ν = 0 is sufficient.

2 (a) The dynamics are stable if and only if |α| < 1, which is therefore a require-
ment for |yk | ≤ 1 for all k ≥ 0. Also

y0 = [
1 0

]
x0, so |y0| ≤ 1 ⇐⇒ −1 ≤ [

1 0
]

x0 ≤ 1

y1 = [
0 1

]
x0, so |y1| ≤ 1 ⇐⇒ −1 ≤ [

0 1
]

x0 ≤ 1

y2 = α
[
0 1

]
x0, so |y2| ≤ 1 ⇐=

[−1
−1

]
≤ x0 ≤

[
1
1

]

so we can conclude that |yk | ≤ 1 for all k ≥ 0 if and only if each element of x0
is less than or equal to 1 in absolute value.
The same result can also be deduced from yi = αi−1

[
1 0

]
x0 for i ≥ 1.

(b) If ui |k = [−β 0
]

xi |k for all i ≥ N , then

∞∑

i=N

(y2i |k + u2
i |k) = xT

N |k
[

p1 p12
p12 p2

]
xN |k

where

[
p1 p12
p12 p2

]
−
[
0 1
0 α

]T [
p1 p12
p12 p2

] [
0 1
0 α

]
=
[
1 + β2 0

0 0

]
=⇒

⎧
⎪⎪⎨

⎪⎪⎩

p1 = 1 + β2

p12 = 0

p2 = p1
1 − α2
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which proves (i). To demonstrate (ii) we can use the result from part (a) by
replacing the constraint |yk | ≤ 1 with |uk | ≤ 1 and noting that ui |k = −βyi |k
for all i ≥ N .

(c) Although the terminal equality constraint xN |k = 0 would ensure recursive
feasibility closed loop stability, it would severely restrict the operating region
of the controller. In particular the second element of the state is uncontrollable
so this terminal constraint would require the second element of the state to be
equal to zero at all points in the operating region.

3 (a) If uk = K xk and yk = Cxk , with C = 1√
2

[
1 1

]
and K = 1√

2
C , then

I − (A + BK )T (A + BK ) = 1

2
(CT C + K T K ) = 3

4
CT C = 3

8

[
1 1
1 1

]
.

Hence the solution of P − (A + BK )T P(A + BK ) = 1
2 (C

T C + K T K ) is
P = I , which implies

∑∞
k=0

1
2 (y2k + u2

k) = xT
0 x0.

(b) From part (a), the cost function is equal to
∑∞

i=0
1
2 (y2i |k + u2

i |k) and the control

input is ui |k = 1√
2

yi |k for all i ≥ N . Let J ∗(xk) be the minimum value of this
cost over u0|k, . . . , uN−1|k , at time k. Then, at time k + 1, the predicted input
sequence ui |k+1 = ui+1|k , i = 0, 1, . . . gives

J (xk+1) =
∞∑

i=1

1

2
(y2i |k + u2

i |k) = J ∗(xk) − 1

2
(y2k + u2

k).

and since the optimal cost at time k + 1 satisfies J ∗(xk+1) ≤ J (xk+1), we
can conclude that J ∗(xk+1) ≤ J ∗(xk) − 1

2 (y2k + u2
k). This implies closed loop

stability because J ∗(xk) is positive definite in xk since (A, C) is observable.
(c) The closed loop system will be stable if the predicted trajectories satisfy −1 ≤

yi |k ≤ 1 for all i ≥ 0. The constraints give−1 ≤ yi |k ≤ 1 for i = 0, 1, . . . , N −1
and

−1 ≤ yN+i |k = C(A + BK )i xN |k ≤ 1, i = 0, 1.

Here C = 1√
2

[
1 1

]
, C(A + BK ) = 1√

2

[−1 1
]
and (A + BK )2 = − 1

2 I .
Therefore

−1 ≤ Cx ≤ 1
−1 ≤ C(A + BK )x ≤ 1

}
=⇒ −1 ≤ C(A + BK )2x ≤ 1

Hence −1 ≤ C(A + BK )i x ≤ 1 for all i ≥ 0 which implies −1 ≤ yN+i |k ≤ 1
for all i ≥ 0 if x = xN |k .
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4 (a) The largest invariant set compatible with the constraints is given by

Sν = {x : FΦ i x ≤ 1, i = 0, . . . ν}, F =
[
1 −1

−1 1

]
, Φ =

[
0.42 −0.025

−0.16 −0.35

]

where ν is such that FΦν+1x ≤ 1 for all x ∈ Sν . Since Sν is symmetric
about x = 0 this condition can be checked by solving the linear program:
μ = maxx∈Sν

[
1 −1

]
Φν+1x , and determining whether μ ≤ 1.

(b) To check ν = 1:

μ = max
x

[
0.193 −0.127

]
x subject to

⎡

⎢⎢⎣

1 −1
−1 1

0.578 0.324
−0.578 −0.324

⎤

⎥⎥⎦ x ≤

⎡

⎢⎢⎣

1
1
1
1

⎤

⎥⎥⎦

gives μ = 0.224, so μ ≤ 1 as required.

5 (a) Solving W − ΦT WΦ = I + K T K for W with K = [
0.244 1.751

]
gives

W =
[
1.33 0.58
0.58 4.64

]

and hence −(BT W B + 1)−1BT W A = [
0.244 1.751

]
, which confirms that K

is the LQ-optimal feedback gain.
(b) By construction

[
F 0

]
Ψ i zk ≤ 1 implies Fxi |k ≤ 1 for i = 0, . . . , N + 1.

But FxN |k ≤ 1 and FΦxN |k ≤ 1 implies that xN |k lies in the invariant set of
Question4(b) and hence FΦ i xN |k ≤ 1 for all i ≥ 0.

(c) The quadratic form of the cost, with ρ = BT W B + 1 = 6.56, follows from
Theorem2.10.

(d) Since u = K x is the feedback law that minimizes the MPC cost index for the
case of no constraints, and since the MPC cost is evaluated over an infinite
horizon, there cannot be any reduction in the predicted cost when N is increased
above the minimum value, say N̄ , for which the terminal constraints are inactive,
i.e. J ∗

N (x0) = J ∗̄
N
(x0) for all N > N̄ . This is likely to be the case for this

initial condition with N̄ = 9 since the cost seems to have converged, with
J9(x0) = J10(x0).
If the terminal constraints are inactive, then the optimal predicted control
sequence is optimal for an infinite mode 1 horizon and hence it must be equal to
the closed loop control sequence generated by the receding horizon control law.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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6 (a) Solving the SDP defining the invariant ellipsoid Ez = {z : zT Pzz ≤ 1} gives

Pz =

⎡

⎢⎢⎣

1.09 −1.16 −0.07 0.45
−1.16 4.20 −3.06 1.07
−0.07 −3.06 4.20 −3.10
0.45 1.07 −3.10 4.20

⎤

⎥⎥⎦ .

The projection onto the x-subspace is Ex = {x : xT Px x ≤ 1}, where

Px =
([

I 0
]

P−1
z

[
I
0

])−1

=
[
1.01 −0.96

−0.96 1.24

]

and the maximum value of α is α = 1/(vT Pxv)1/2 = 1.79, v =
[
1
1

]
.

(b) Solving the linear program

max
α,c

α subject to
[
F 0

]
Ψ i

[
αv

c

]
≤ 1, i = 0, . . . , N + 1

with v =
[
1
1

]
gives α = 2.41.

This value is necessarily greater than the value ofα in (a) because the setZ = {z :[
F 0

]
Ψ i z ≤ 1, i = 0, . . . , N +1} is the maximal invariant set for the dynamics

zk+1 = Ψ zk and constraints
[
F 0

]
zk ≤ 1, so it must contain Ez = {z : zT Pzz ≤

1} as a subset, and therefore the projection of Ez onto the x-subspace must be a
subset of the projection of Z onto the x-subspace.

(c) Solving the SDP for the invariant ellipsoidal set Êz = {z : zT P̂zz ≤ 1} and the
optimized prediction dynamics gives Cc and Ac as stated in the question and

P̂z =

⎡

⎢⎢⎣

2.43 −1.31 1.36 −1.31
−1.31 3.12 1.21 3.12
1.36 1.21 2.45 1.21

−1.31 3.12 1.21 8.88

⎤

⎥⎥⎦ .

The projection onto the x-subspace is Êx = {x : xT P̂x x ≤ 1}, where

P̂x =
([

I 0
]

P̂−1
z

[
I
0

])−1

=
[

1.19 −1.38
−1.38 1.75

]

and hence the maximum value of α is α = 1/(vT Pxv)1/2 = 2.32.
(d) With Ψ̂ defined on the basis of the optimized prediction dynamics, the maximal

invariant set for the dynamics zk+1 = Ψ̂ zk and constraints
[
F 0

]
zk ≤ 1 is

{z : [F 0
]
Ψ̂ i zk ≤ 1, i = 0, . . . , 5}. Solving the LP
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max
α,c

α subject to
[
F 0

]
Ψ̂ i

[
αv

c

]
≤ 1, i = 0, . . . , 5

with v =
[
1
1

]
gives α = 3.82.

(e) Computing the MPC cost for the optimized prediction dynamics by solving the
Lyapunov equation (2.57) gives

J (xk, ck) = ‖xk‖2W + cT
k

[
106 32.8
32.8 10.2

]
ck .

Solving minc J (x, c) subject to
[
F 0

]
Ψ̂ i (x, c) ≤ 1, i = 0, . . . , 5 gives the

optimal predicted cost for x = (3.8, 3.8) as 1686. This is larger than (in fact
more than double) the optimal predicted cost in Question5(d) for N = 9, which
is the minimum that can be obtained by any control sequence. The advantage
of the optimized prediction dynamics is that the associated set of feasible initial
conditions is almost identical to that of the MPC law in Question5(d) despite
using only 2 degrees of freedom rather than 9 degrees of freedom.

7 (a) In this case
[
1 1

]
(A + BK )x = 0 for all x ∈ R

2, and the eigenvalues
of A + BK lie inside the unit circle. It follows that there exists a stabilizing
control law (namely u = K x) such that, starting from the initial condition
x0 = (α,−α) for arbitrarily large |α|, the constraints |[1 1

]
(A + BK )k x0| ≤ 1

are satisfied for all k. Hence the maximal CPI set is unbounded (in fact it is equal
to {x : |[1 1

]
x | ≤ 1}), and the maximal feasible initial condition set of an MPC

law will increase monotonically with N .
(b) The transfer function from uk to the constrained output yk = [

1 −1
]

xk

is nonminimum-phase (its zero lies outside the unit circle at 1.33). Hence
there is no stabilizing control law under which the constraints |[1 −1

]
xk |

≤ 1 are satisfied for all k when ‖x0‖ is arbitrarily large, in other words the
maximal CPI set is bounded.

8 The predicted cost is

Jk = uT
k (R̂ + CT

u Q̂Cu)uk + 2ukCT
u Q̂Cx xk + xT

k Cx Q̂Cx xk,

and the optimal control sequence u∗
k = −(R̂ +CT

u Q̂Cu)−1CT
u Q̂Cx xk for the case of

no constraints can be obtained by differentiation. The MPC law is given by the first
element of this sequence, and is therefore a feedback lawof the form uk = K(N ,Nu)xk .

For the given (A, B, C), computing the spectral radius of A + BK(N ,Nu) for
N = 1, 2, . . . and for 1 ≤ Nu ≤ N shows that N = 9 is the smallest output horizon

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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for which stability can be achieved for any input horizon Nu ≤ N . In fact for Nu = 1,
stability is achieved only if N ≥ 10.

The poles of the open loop system are at 0.693, 0.997, and thus both lie within
the unit circle, whereas the system zero is at 1.16. This non-minimum phase zero
implies that the predicted output sequence initially sets off in the wrong direction and
this effect will be exacerbated at the next time step, when larger inputs will needed
in order to return the output to the correct steady state. This indicates the tendency
towards instability. For a sufficiently large output horizon (in this case for N ≥ 9)
the predicted cost can be shown to be monotonically non-increasing along closed
loop system trajectories, indicating closed loop stability.

9 (a) The numerator and denominator polynomials of the system transfer function
are given by

B(z−1) = B1z−1 + B0 = −0.6527z−1 + 0.5647

A(z−1) = A2z−1 + A1z−1 + A0 = 0.6908z−2 − 1.69z−1 + 1

Hence for the given X̃(z−1) and Ỹ (z−1) polynomials we obtain Ỹ (z−1)A(z−1)+
z−1 X̃(z−1)B(z−1) = 1.

(b) For the single input single output case we have Ã(z−1) = A(z−1), B̃(z−1) =
B(z−1), X̃(z−1) = X (z−1), Ỹ (z−1) = Y (z−1) so that

Cz−1 X̃ =

⎡

⎢⎢⎣

0 0 0 0
X0 0 0 0
X1 X0 0 0
0 X1 X0 0

⎤

⎥⎥⎦ CỸ =

⎡

⎢⎢⎣

Y0 0 0 0
Y1 Y0 0 0
0 Y1 Y0 0
0 0 Y1 Y0

⎤

⎥⎥⎦

CÃ =

⎡

⎢⎢⎣

A0 0 0 0
A1 A0 0 0
A2 A1 A0 0
0 A2 A1 A0

⎤

⎥⎥⎦ CB̃ =

⎡

⎢⎢⎣

B0 0 0 0
B1 B0 0 0
0 B1 B0 0
0 0 B1 B0

⎤

⎥⎥⎦

where X0 = −32.2308, X1 = 21.0529, Y0 = 1, Y1 = 19.89. Inverting the
16 × 16 matrix consisting of these four blocks gives the matrix with blocks
CA, CY , CB,−Cz−1X , as required. This inverse can then be used to obtain the
predicted output and control sequences from (2.72).

(c) From the predicted output and control sequences it is obvious that yi+4|k = 0 and
ui+3|k = 0 for all i ≥ 1. This implies that SGPC invokes (implicitly) a terminal
equality constraint, and therefore the optimal predicted cost is monotonically
non-increasing, fromwhich it can be deduced that SGPC guarantees closed loop
stability. The property that the predicted output and control sequences reach their
steady state values of zero after ν + n A prediction steps, where ν is the length
of ck and n A the system order (i.e. here ν = n A = 2) is generally true given

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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Table A.1 Frequency responses of Sa(ωT ) and Sb(ωT )

ωT 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

|Sa | 0.009 1.74 7.3 19.4 39.3 66.1 97.3 128.7 155.6 173.7 180.1

|Sb| 0.009 1.72 6.7 15.7 26.2 33.5 34.3 29.9 27.5 31.7 33.8

the structure of the convolution and Hankel matrices in the expression for the
predicted output and control sequences. Hence, in the absence of constraints,
SGPC ensures closed loop stability for any initial condition.

10 Denoting by Sa and Sb the transfer functions K (z−1)/
(
1 + G(z−1)K (z−1)

)

corresponding to (a) Q = 0 and (b) Q(z−1) = −11.7z−1 + 43, respectively, and
denoting the sampling interval as T , we obtain the transfer function moduli given in
TableA.1. These indicate that |Sb(ωT )| < |Sa(ωT )| at all frequencies, and the ratio
|Sa(ωT )|/|Sb(ωT )| becomes larger at high frequencies (|Sa(ωT )|/|Sb(ωT )| > 5
for ωT > 140◦). Thus for Q(z−1) as given in (b) the closed loop system will have
enhanced robustness to additive uncertainty in the open loop system transfer function.

Solutions to Exercises for Chap. 3

1 (a) Two advantages of receding horizon control for this application:

• The receding horizon optimization is repeated at each time step, thus providing
feedback (since the optimal predicted input sequence at k depends on the state xk)
and reducing the effect of the uncertainty in wk .

• The optimization has to be performed over a finite number of free variables because
of the presence of constraints. Using a receding horizon optimization reduces
the degree of suboptimality with respect to the infinite horizon optimal control
problem.

(b) With ui |k = ŵ − (xi |k − x0) + ci |k we get xi+1|k − x0 = ŵ − wk+i + ci |k , so
setting the disturbance equal to its nominal value,wk+i = ŵ, gives xi+1|k −x0 =
si+1|k = ci |k for all i ≥ 0, and hence the nominal cost is J (xk , ck) = s20|k+‖ck‖2.

(c) Setting si |k +ei |k = xi |k −x0 gives e0|k = 0 and ei+1|k = ŵ−wk+i for all i ≥ 0.
Hence ei |k lies in the interval [ŵ − W, ŵ] for all i ≥ 0. Using these bounds and
xi |k = si |k + x0 + ei |k , ui |k = ŵ − si |k − ei |k + ci |k we obtain

xi |k ∈ [0, X ] ⇐⇒
{

ci−1|k + x0 + ŵ ∈ [W, X ], 1 ≤ i ≤ N
W ≤ X, i > N

http://dx.doi.org/10.1007/978-3-319-24853-0_3


Solutions to Exercises 355

ui |k ∈ [0, U ] ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

c0|k − xk + x0 + ŵ ∈ [0, U − W ], i = 0
ci |k − ci−1|k ∈ [0, U − W ], 1 ≤ i ≤ N − 1
−cN−1|k ∈ [0, U − W ], i = N
W ≤ U, i > N

(d) By construction, ck+1 = (c∗
1|k, . . . , c∗

N−1|k, 0) is feasible at time k + 1 if c∗
k is

optimal at time k, so the problem is recursively feasible. Convergence of c∗
0|k to

zero as k → ∞ then follows from the property that ‖c∗
k+1‖2 ≤ ‖c∗

k‖2 − (c∗
0|k)2,

which implies that the l2 norm of the sequence {c∗
0|0, c∗

0|1, . . .} is finite.
(e) The constraint ui |k ≥ 0 for i = 1, . . . , N requires ci |k ≥ ci−1|k and cN−1 ≤ 0.

Hence c0|k ≤ 0 so u0|k ≥ 0 requires xk ≤ x0+ŵ. To relax this conditionwe need
to use a less aggressive auxiliary control law, e.g. ui |k = ŵ −α(xi |k − x0)+ ci |k
for 0 < α < 1.

2 The structure of Ψ implies that, for any integer q,

Ψ q =
[
Φq Γq

0 Mq

]

for some matrix Γq . Since Φn = 0 and by construction M N = 0, it follows that

Ψ n+N = Ψ nΨ N =
[

Γn

Mn

] [
0 I

] [I
0

] [
ΦN ΓN

] = 0.

(a) Since Φn = 0 the minimal RPI set (3.23) is given by

XmRPI = DW ⊕ · · · ⊕ Φn−1DW.

(b) Let F̄ = [
F1 F2

]
and define h0 = 0 and hi for i ≥ 1 as in (3.13):

hi =
i−1∑

j=0

max
w j ∈W

F1Φ
j Dw j ,

Since hi = hn for all i > n and Ψ n+N = 0, the MRPI set (3.16) is

ZMRPI = {z : F̄Ψ i z ≤ 1 − hi , i = 0, . . . , n + N }.
(c) The MRPI set must contain the origin, while from (a) the maximum of F1e over

e ∈ XmRPI is hn . Hence from (b) the MRPI set is non-empty if and only if

hn ≤ 1.

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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3 For the given A, B and K :

Φ = A + BK = 0.5

[−1 1
−1 1

]

and Φ2 = 0, which verifies that Φ is nilpotent. The constraint tightening parameters
hi that bound the effects of future disturbances on the constraints can be determined
either by solving linear programs or by using the vertices of the disturbance set W .
In this example W has 4 vertices:

W .= Co

{[
0
σ

]
,

[
0

−σ

]
,

[
σ
0

]
,

[−σ
0

]}
= Co{w( j), j = 1, 2, 3, 4}

Hence h0 = 0 and

h1 = max
j

Fw( j) = σ1,

h2 = h1 + max
j

F(A + BK )w( j) = 1.5σ1,

with hi = h2 for all i > 2. For N = 2 the MRPI set is therefore given by

ZMRPI(σ) = {z :F̄ z ≤ 1,

F̄Ψ z ≤ (1 − σ)1,

F̄Ψ i z ≤ (1 − 1.5σ)1, i = 2, 3}

and ZMRPI(σ) is non-empty if 1 − 1.5σ ≥ 0, i.e. σ ≤ 2
3 .

4 (a) Robust invariance of ZMRPI(σ) implies that (xk+1, Mck) ∈ ZMRPI(σ) holds
for all wk ∈ σW0 if (xk, c∗

k) ∈ ZMRPI(σ). Hence if the MPC optimization is
feasible at time k, then ck+1 = Mc∗

k is feasible at time k + 1. By optimality
therefore ‖c∗

k+1‖2 ≤ ‖c∗
k‖2 − (c∗

0|k)2, which implies that
∑∞

k=0(c
∗
0|k)2 ≤ ‖c∗

0‖2
and hence c∗

0|k → 0 as k → ∞.
Lemma3.2 implies that the state xk of the closed loop system satisfies the
quadratic bound (3.35) since A + BK is stable, and since the sequence
{c∗

0|0, c∗
0|1, . . .} is square-summable, the argument of Theorem3.2 implies that

xk converges to the minimal RPI set:

XmRPI(σ) = σW0 ⊕ (A + BK )W0

= σCo

{[
1
0

]
,

[−1
0

]
,

[
0
1

]
,

[
0

−1

]}
⊕ Co

{[
0.5
0.5

]
,

[−0.5
−0.5

]}

= σCo

{[
0.5
1.5

]
,

[
1.5
0.5

]
,

[−0.5
−1.5

]
,

[−1.5
−0.5

]}

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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x1
-1 -0.5 0 0.5 1

x 2

-1

-0.5

0

0.5

1

x1
-1 -0.5 0 0.5 1

x 2

-1

-0.5

0

0.5

1

Fig. A.1 The set of feasible initial conditions for the MPC law of Question4(a) (i.e. the projection
ZMRPI(σ) onto the x-subspace) and the minimal RPI set XmRPI(σ) for σ = 0.1 (left) and σ = 0.6
(right)

The feasible initial condition sets and the minimal RPI sets for two values of σ
are shown in Fig.A.1.

(b) Although the objective of the suggested MPC optimization problem is equal
to the nominal predicted value of the cost, this is not a good suggestion since
closed loop stability cannot, in general, be guaranteed with this combination of
predicted cost and constraints. This is because the choice ck+1 = Mc∗

k does not
ensure that the optimal predicted cost is monotonically non-increasing here due
to the unknown disturbance that acts on the terms of the cost that depend on xk .
Note also that because K is not equal to the unconstrained optimal feedback
gain, the predicted cost cannot be separated into terms that depend only on xk

and ck , as was done in the stability analysis of Sect. 3.3.

5 (a) Since ΦrW ⊆ ρW we have, for any i ≥ r ,

max
w∈W

FΦ iw = max
w∈ΦrW

FΦ i−rw ≤ max
w∈ρW

FΦ i−rw = ρ max
w∈W

FΦ i−rw,

which implies

h∞ =
∞∑

j=0

max
w j ∈W

FΦ jw j

≤
r−1∑

j=0

max
w j ∈W

FΦ jw j + ρ

r−1∑

j=0

max
w j ∈W

FΦ jw j + ρ2
r−1∑

j=0

max
w j ∈W

FΦ jw j + · · ·

= 1

1 − ρ

r−1∑

j=0

max
w j ∈W

FΦ jw j = ĥ∞.

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Also h∞ ≥ hr =
r−1∑

j=0

max
w j ∈W

FΦ jw j implies

ĥ∞ − h∞
h∞

≤ ĥ∞ − hr

h∞
≤ ĥ∞ − hr

hr
= ρ

1 − ρ
.

(b) In order that the fractional error in the approximation of h∞ is no greater than
0.01 we need ρ ≤ 0.01/1.01 = 0.0099.
Two alternativemethods of finding ρ such thatΦrW ⊆ ρW for given r : (i) Using
the representation W = {w : V w ≤ 1}, ρ is given by the maximum element of
maxw∈W V Φrw. (ii) Using the vertex representation,W = Co{w(1), . . . , w(4)},
the value of ρ is the maximum element of max j∈{1,...,4} V Φrw( j).
For the system of Question4 with K = [

0.479 0.108
]
we need r = 7 for

ρ ≤ 0.0099, and this gives ρ = 0.0055 and

ĥ∞ = [
0.175 0.199 0.175 0.199

]T
.

(c) An approximation to the minimal RPI set XmRPI is given by

X̂mRPI = 1

1 − ρ

r−1⊕

j=0

Φ jW.

Thediscussion in (a) implies that X̂mRPI containsXmRPI and, for anyvector v, the
support functionmaxe{vT e subject to e ∈ XmRPI} is approximated bymaxe{vT e
subject to e ∈ X̂mRPI} with a fractional error no greater than ρ/(1 − ρ).

6 (a) For the given system parameters with K = [
0.479 0.108

]
and N = 1,

Ψ =
⎡

⎣
−0.521 0.308 1
−0.489 0.596 −0.5

0 0 0

⎤

⎦ , D̄ =
⎡

⎣
1 0
0 1
0 0

⎤

⎦ , F̄ =

⎡

⎢⎢⎣

1 0 0
0 1 0

−1 0 0
0 −1 0

⎤

⎥⎥⎦ .

The maximal RPI set for the dynamics zi+1|k = Ψ zi |k + D̄wk+i and constraint
F̄ zi |k ≤ 1 is given by

ZMRPI = {z : F̄Ψ i z ≤ 1 − hi , i = 0, 1, 2},

{h0, h1, h2} =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

0
0
0
0

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

0.5
0.5
0.5
0.5

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

0.761
0.798
0.761
0.798

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
.
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since F̄Ψ 3z ≤ 1 − h3 holds for all z ∈ ZMRPI. Since this is the maximal RPI
set for the prediction dynamics, its projection onto the x-subspace:

F1 = {x : ∃ck such that (xk, ck) ∈ ZMRPI}

must be equal to the maximal set of feasible model states xk .

(b) Solving Wz − Ψ T WzΨ = Q̄ for Wz , where Q̄ = diag{I, 0} + [
K 1

]T [
K 1

]
:

Wz =
⎡

⎣
1.87 −0.48 0.00

−0.48 1.57 0.00
0.00 0.00 3.74

⎤

⎦ .

With x0 = (0, 1) the optimal solution of the QP,

minimize
c0

∥∥∥∥

[
x0
c0

]∥∥∥∥
2

Wz

subject to F̄Ψ i
[

x0
c0

]
≤ 1 − hi , i = 0, 1, 2

is c∗
0 = 0.192 and the corresponding cost value is zT

0 Wzz0 = 1.707.
(c) With the disturbance sequence as given in the question, the closed loop state and

control sequences are

{x0, x1, x2, x3, . . .} =
{[

0
1

]
,

[
1
0.5

]
,

[−0.867
−0.192

]
,

[
0.393
0.810

]}

{u0, u1, u2, u3, . . .} = {0.3, 0.533, −0.436, 0.276}

and hence
∑3

k=0

(‖xk‖2 + u2
k

) = 4.489.

7 (a) The solution W̌x of theRiccati equation (3.42) and the optimal gain K given in
the question can be computed by using semidefinite programming to minimize
tr(W̌x ) subject to (3.43) and

[
W̌x I
I S

] � 0, with the value of γ2 fixed at 3.3.

Lemma3.3 then implies that J̌ (xk, ck) = ‖xk‖2Wx
+ ‖ck‖2Wc

where

Wx = W̌x =
[
2.336 −0.904

−0.904 2.103

]
,

Wc = BT (W̌x + W̌x (γ
2 I − W̌x )

−1W̌x
)
B + 1 = 72.78.

(b) Repeating the procedure of Question6(a) with the new value of K we get ν = 2,
so the online MPC optimization becomes the QP

c∗
k = argmin

ck
‖ck‖2Wc

subject to F̄Ψ i
[

xk

ck

]
≤ 1 − hi , i = 0, 1, 2

http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
http://dx.doi.org/10.1007/978-3-319-24853-0_3
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with F̄ as defined in Question6 and

Ψ =
⎡

⎣
−0.460 0.449 1
−0.520 0.526 −0.5

0 0 0

⎤

⎦ , {h0, h1, h2} =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

0
0
0
0

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

0.5
0.5
0.5
0.5

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

0.730
0.763
0.730
0.763

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
.

Solving this QP with x0 = (0, 1) is c∗
0 = 0.051 and J̌ ∗(x0) = 2.29.

(c) From Lemma3.4 we get

Δ =
[
0.964 0.904
0.904 1.197

]
,

Wμz =

⎡

⎢⎢⎣

−1.29 1.25 4.17
1.29 −1.25 −4.17

−0.01 −0.61 56.6
0.01 0.61 −56.6

⎤

⎥⎥⎦ , Wμμ =

⎡

⎢⎢⎣

4.19 −4.19 2.78 −2.78
−4.19 4.19 −2.78 2.78
2.78 −2.78 47.2 −47.2

−2.78 2.78 −47.2 47.2

⎤

⎥⎥⎦ ,

and hence the predicted cost is given by

J̌ (xk, ck) = min
μk≥0

⎡

⎣
xk

ck

μk

⎤

⎦
T ⎡

⎣

[
Wx 0
0 Wc

]
−W T

μz

−Wμz Wμμ

⎤

⎦

⎡

⎣
xk

ck

μk

⎤

⎦ + 2μT 1.

With this cost and x0 = (0, 1) the solution of the online MPC optimization is
c∗
0 = 0.051 and J̌ ∗(x0) = 2.22.

(d) The cost in (c) is the maximum over {wk, wk+1, . . .} subject to the disturbance
bounds wk+i ∈ W for i = 0, . . . , N − 1. Therefore its minimum value over
ck is no greater than that of the cost in (b) for any given xk . For this example
x0 = (0, 1) lies on the boundary of the feasible set and this is why the optimal
c0 is the same for both costs.
By taking into account the disturbance bounds over the first N predicted times
steps, the cost of (c) provides a tighter worst case bound and hence is more
representative of the worst case predicted performance than (b). On the other
hand, the cost of (c) requires 5N optimization variables rather than N for (b).
Also (b) ensures convergence to a limit set that is relatively easy to compute,
namely the minimal RPI set for ek+1 = Φek + wk , wk ∈ W , whereas this is
not necessarily the case for (c). In this example however, the closed loop state
sequences under the MPC laws for (b) and (c) are identical. This is illustrated
in Fig.A.2, which compares the closed loop evolution of the state under the two
MPC laws for a random disturbance sequence.

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Fig. A.2 The evolution of the closed loop system state for the MPC laws in Question7 part (b)
(marked ◦) and part (c) (marked +) for a random sequence of disturbances {w0, w1, . . .} in which
wk is equal to a vertex ofW for all k. Also shown are the set of feasible states and the minimal RPI
set for ek+1 = Φek + wk , wk ∈ W

8 (a) The minimum ρ such that Φ2W ⊆ ρW is equal to the largest element of
maxw∈W V Φ2w. Using the disturbance set representation

W = {w : V w ≤ 1}, V =

⎡

⎢⎢⎣

2.5 2.5
−2.5 −2.5
−2.5 2.5
2.5 −2.5

⎤

⎥⎥⎦

we can compute ρ by solving a linear program:

ρ = min
t,w

t subject to V Φ2w ≤ t1

V w ≤ 1

Hence ρ = 0.228 and S = 1.295(W ⊕ΦW). With this expression for S we can
obtain hS = maxe∈S Fe by solving a set of linear programs (one pair of linear
programs for each element of hS ):

hS = 1.295

(
max

w : V w≤1
Fw + max

w : V w≤1
FΦw

)
=

⎡

⎢⎢⎣

0.788
0.827
0.788
0.827

⎤

⎥⎥⎦ .
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(b) With the numerical values of Ψ and F̄ given in the solution of Question6(a), we
get

max
z

{
F̄Ψ 3z subject to F̄Ψ i z ≤ 1 − hS , i = 0, 1, 2

}
=

⎡

⎢⎢⎣

0.030
0.041
0.030
0.041

⎤

⎥⎥⎦≤ 1 − hS

which implies that {z : F̄Ψ i z ≤ 1 − hS , i = 0, 1, 2} is the maximal invariant
set for the nominal prediction system zk+1 = Ψ zk and constraints F̄ zk ≤ 1−hS .

(c) The predicted state is decomposed as xi |k = si |k + ei |k where ei |k ∈ S for all
i ≥ 0 and si |k evolves according to the nominal dynamics (in which wk+i = 0
for all i ≥ 0 so that si |k = [

I 0
]

zi |k where zi+1|k = Ψ zi |k). This decomposition
allows the constraints Fxi |k ≤ 1 to be imposed robustly through the conditions
F̄Ψ i zk ≤ 1 − hS , i = 0, 1, 2 with zk = (s0|k, ck). Thus s0|k is the initial
state of the nominal prediction system, the predicted trajectories of which are
constrained so that F(si |k + ei |k) ≤ 1 for all i ≥ 0.
To ensure that ei |k ∈ S for all i ≥ 0, we require that s0|k satisfies e0|k =
xk − s0|k ∈ S. Using the hyperplane description of W:

W = Co{w( j), j = 1, . . . , 4} = Co

{
±
[
0.4
0

]
,±

[
0
0.4

]}

it is possible to compute S as the convex hull of the 16 vertices that are formed
from w(i) + Φw( j) for all i, j = 1, . . . , 4. This convex hull has 8 vertices:

S = Co

{
±
[
0.788
0.254

]
,±

[
0.270
0.772

]
,±

[
0.159
0.827

]
,±

[−0.359
0.309

]}

In order to invoke the constraint xk − s0|k ∈ S in a manner that avoids intro-
ducing additional optimization variables, we need to compute the hyperplane
representation:

S = {e : VSe ≤ 1}, VS =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.960 −0.960
−0.551 −1.103
1.498 −1.498
1.681 −1.284
0.960 0.960
0.551 1.103

−1.498 1.498
−1.681 1.284

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For S ⊂ R
2 with a small number of vertices this can done simply by plotting

the vertices to determine which lie on each facet of S, then computing the
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corresponding hyperplanes. For more complicated sets in higher dimensions,
dedicated software (for example lrslib [1], cddlib [2]) can be used to convert
between vertex and hyperplane representations.

(d) The objective function of the MPC optimization is ‖(s0|k, ck)‖2Wz
, where Wz =

diag{Wx , Wc} is as given in the solution to Question6(c). TheMPC optimization
is then

minimize
s0|k ,ck

∥∥∥
[

s0|k
ck

]∥∥∥
2

Wz
subject to F̄Ψ i

[
s0|k
ck

]
≤ 1 − hS , i = 0, 1, 2

VS(xk − s0|k) ≤ 1

For x0 = (0, 1) the optimal solution is given by s∗
0|0 = (−0.159, 0.173), c∗

0 =
0.0163 and ‖s∗

0|0‖2Wx
+ ‖c∗

0‖2Wc
= 0.122.

(e) Rigid tubes provide conservative bounds on the effects of disturbances on pre-
dicted trajectories, thus reducing the size of the feasible set of states relative to
e.g. the robust MPC strategy of Question6. This effect can be countered (but
not eliminated, in general) by choosing Ke to improve the disturbance rejection
properties of the system ek+1 = (A + BKe)ek + wk , thus reducing the size
of S and allowing tighter bounds on the effects of disturbances on constrained
variables.

9 (a) From ΦS ⊕ W ⊆ S, where S = {s : VSs ≤ 1}, we have

VSΦe + VSw ≤ VSe ≤ 1, ∀e ∈ S, ∀w ∈ W.

This condition is equivalent to ē + w̄ ≤ 1.
(b) Let

Z(ν) = {
(z,α) : F̄Ψ i z ≤ 1 − αi hS , αi ē + w̄ ≤ αi+1, i = 0, . . . , ν

}

where α = (α0, . . . ,αN−1) and αi = 1 for all i ≥ N . If ν ≥ N − 1 satisfies
F̄Ψ ν+1z ≤ hS for all (z,α) ∈ Z(ν), then from Theorem2.3 it follows thatZ(ν)

is an invariant set (in fact it is the MPI set) for the dynamics z+ = Ψ z and
α+ = (α1, . . . ,αN−1, 1), and the constraints F̄ z ≤ 1 − α0hS .
From the robust invariance property of S and the definition of Z(ν), if xk −
s0|k ∈ α0|kS and (zk,αk) ∈ Z(ν) where zk = (s0|k, ck), then by construction
xk+1 − s1|k ∈ α1|kS for all wk ∈ W . Furthermore the invariance ofZ(ν) implies(
Ψ zk, (α1|k, . . . ,αN−1|k, 1)

) ∈ Z(ν). Hence

[
s0|k+1
ck+1

]
= Ψ

[
s0|k
ck

]

αk + 1 = (α1|k, . . . ,αN−1|k, 1)

satisfy xk+1 − s0|k+1 ∈ α0|k+1S and (zk+1,αk + 1) ∈ Z(ν) at time k + 1.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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(c) From part (b), feasibility at k = 0 implies feasibility at all times k > 0. Therefore
the definition of hS and the constraints xk − s0|k ∈ α0|kS and F̄ zk = Fs0|k ≤
1 − α0|khS imply that Fxk ≤ 1 for all k ≥ 0.
From the feasible solution in part (b) we obtain the cost bound:

J (s∗
0|k+1, c∗

k+1,
∗
k+1) ≤

[
s∗
0|k
c∗

k

]T

Ψ T WzΨ

[
s∗
0|k
c∗

k

]
+

N−1∑

i=1

qα(α∗
i |k − 1)2

=
[

s∗
0|k
c∗

k

]T(
Wz −

[
Q 0
0 0

]
−
[

K T

ET

]
R
[
K E

])[s∗
0|k
c∗

k

]

+
N−1∑

i=1

qα(α∗
i |k − 1)2

= J (s∗
0|k, c∗

k ,
∗
k) − (‖s0|k‖2Q + ‖v0|k‖2R) − qα(α∗

0|k − 1)2.

Using, for example, the argument of the proof of Theorem3.6, it then follows
that xk → S asymptotically as k → ∞ (in fact the minimum distance from xk

to any point in S decays exponentially with k).

10 (a) The solution of Question8 gives ρ = 0.228 and S = 1.295(W⊕ΦW), thus
allowing VS to be determined so that S = {s : VSs ≤ 1}. Hence by solving a
set of linear programs (one LP for each element of w̄ and ē) we obtain

ē = max
e:VSe≤1

VSΦe =[
0.616 0.552 0.365 0.259 0.616 0.552 0.365 0.259

]T

w̄ = max
w:V w≤1

VSw =[
0.384 0.441 0.599 0.673 0.384 0.441 0.599 0.673

]T

For N = 1 and the numerical values ofΨ , F̄ given in the solution ofQuestion6(a)
we obtain

max
z,

{
F̄Ψ 3z subject to (z, ) ∈ Z(2)} =

⎡

⎢⎢⎣

0.030
0.041
0.030
0.041

⎤

⎥⎥⎦ ≤ 1 − hS

and hence ν = 2 satisfies the conditions for invariance of Z(ν).
(b) Solving the QP that defines the MPC optimization at k = 0 with x0 = (0, 1) we

get
s∗
0|0 = (−0.159, 0.173), c∗

0 = 0.0163, ∗
0 = 1.0,

and hence c∗
0 is equal to the optimal solution for rigid tube MPC for the same

initial condition. The explanation for this is that the HTMPC online optimization
places a penalty on |1−αi |k | and hence its optimal solution will be equal to that
of rigid tube MPC if it is feasible.

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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Fig. A.3 The feasible sets for the rigid and homothetic tube MPC laws in Questions8 and 9,
shaded dark and light blue respectively. Also shown are the set of feasible states for the MPC law
of Question6 (outer, red dashed line) and the minimal RPI set for ek+1 = Φek + wk , wk ∈ W
(inner, red dotted line)

(c) Comments on the size of the feasible sets for these algorithms:

• The feasible initial condition set of the rigid tube MPC strategy is necessarily
a subset of that for HTMPC, since if αi |k = 1 for all i , then the constraints of
HTMPC are identical to those of rigid tube MPC. Since it is able to scale the
uncertainty set S, HTMPC may also be feasible for initial conditions for which
the rigid tube MPC is infeasible.

• The feasible initial condition set of HTMPC is itself a subset of the robust MPC
strategy of Question6 (namely Algorithm3.1), since this approach employs the
tightest available bounds on the unknown future disturbances appearing in the
constraints on predicted variables, whereas the corresponding bounds in HTMPC
are computed using outer (possibly conservative) bounds based on αi |kS.
This nested property can be seen in Fig.A.3, which shows the feasible sets for the
numerical examples in Questions6, 8 and 9.
Comments on performance:

• Asmentioned in the solution to (b), the performance of the HTMPC and rigid tube
MPC algorithms of Questions8 and 9 are identical for every initial condition such
that rigid tube MPC is feasible.

• The predicted cost for HTMPC must be greater than or equal to that of the robust
MPC strategy of Question6 since the overbounding of the constraints in HTMPC
implies that any feasible ck for HTMPC is also feasible for the strategy of Ques-
tion6. A possible advantage of the algorithms of Questions7 and 8 over Question6

http://dx.doi.org/10.1007/978-3-319-24853-0_3
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is that they ensure exponential convergence to an outer approximation of the mRPI
set, while the control law Question6 ensures convergence of the state to the mRPI
set, but not necessarily exponential convergence.

Solutions to Exercises for Chap. 5

1 (a) Each element of M(x) = M0 + x1M1 + · · · + xn Mn is an affine function of
x . For any y, z ∈ R

n and any scalar λ we therefore have

M
(
λy + (1 − λ)z

) = λM(y) + (1 − λ)M(z).

Suppose that M(y) � 0 and M(z) � 0, so that vT M(y)v > 0 and vT M(z)v > 0
for all vectors v �= 0. Then for all 0 ≤ λ ≤ 1 we have

vT M
(
λy + (1 − λ)z

)
v = λvT M(y)v + (1 − λ)vT M(z)v > 0

for all v �= 0. This implies that, if x = λy + (1 − λ)z, then M(x) � 0 for all
0 ≤ λ ≤ 1 and thus demonstrates that M(x) � 0 is a convex condition on x .

(b) The matrix
[

P Q
QT P

]
is positive definite if

[
v

w

]T [
P Q

QT R

] [
v

w

]
> 0 (�)

holds for all (v,w) �= 0. Consider the cases of v = 0 and w �= 0 separately:

(I) If v = 0, then the condition (�) is equivalent to wT Rw > 0 for all w �= 0,
i.e. R � 0.

(II) For non-zero v, consider the minimum of the LHS of (�) over all w. This is
achieved with w = −R−1Qv so that

min
w

(vT Pv + 2vT Qw + wT Rw) = vT (P − QT R−1Q)v.

Hence (�) holds for all v �= 0 if and only if P − QT R−1Q � 0.

From (I) and (II) we conclude that (�) is equivalent to the Schur complements
R � 0 and P − QT R−1Q � 0.

(c) Pre- and post-multiplying P − AT P A � 0 by S = P−1 > 0 gives the equivalent
inequality S − S AT S−1AS � 0. Using Schur complements (noting that S � 0),
this is equivalent to [

S S AT

AS S

]
� 0

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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Using Schur complements again gives the equivalent conditions:

S − ASS−1S AT � 0, S � 0

i.e. S − AS AT � 0 whenever P − AT P A � 0 if S = P−1 � 0.

2 (a) For x ∈ X we require Vi x ≤ 1 for i = 1, . . . , nV . Inserting P and S = P−1

into these conditions gives Vi S1/2P1/2x ≤ 1, so the Cauchy-Schwarz inequality
implies Vi S1/2P1/2x ≤ (Vi SV T

i )1/2(xT Px)1/2, which immediately shows that
the conditions

Vi P−1V T
i ≤ 1, i = 1, . . . , nV

are sufficient to ensure that Vi x ≤ 1, i = 1, . . . , nV for all x ∈ E . However these
conditions are also necessary for E ⊆ X because the maximum of Vi x subject
to xT Px ≤ 1 is equal to the quantity on the LHS since

max
x

xT Px≤1

Vi x = max
ξ

‖ξ‖≤1

Vi P−1/2ξ = Vi P−1V T
i .

(b) The result of part (a) implies (Fi + Gi K )x ≤ 1 for all x such that xT S−1x ≤ 1
if and only if 1 − (Fi + Gi K )S(Fi + Gi K )T ≥ 0. Using Schur complements,
the last condition is equivalent to S � 0 and

[
1 Fi S + Gi Y

(Fi S + Gi Y )T S

]
� 0

for i = 1, . . . , nC .

3 (a) The conditions given in the question ensure that:

(i) xk ∈ E , where E = {x : xT Px ≤ 1},
(ii) −1 ≤ ui |k ≤ 1 for all i ≥ 0 if xk ∈ E and ui |k = Kk xi |k ,
(iii) J̌ (xk, Kk) ≤ γk xT

k Pxk ≤ γk if xk ∈ E and ui |k = Kk xi |k .

(b) When expressed in terms of the variables S = P−1 and Y = Kk P−1, the
optimization becomes the semidefinite programming problem given in (5.18).
Solving this using the model parameters given in the question and x0 = (4,−1)
results in

γ0 = 152.4, S =
[
16.24 −3.932

−3.932 1.019

]
, Y = [−1.170 0.034

]

and therefore K0 = [−0.962 −3.678
]
.

(c) The constraints on � ensure that ‖xi+1|k‖2� ≤ ‖xi |k‖2� − ‖xi |k‖2Q − ‖ui |k‖2R
holds along all predicted trajectories of the model under the predicted control
law ui |k = Kk xi |k . Therefore the worst case predicted cost has the upper bound

http://dx.doi.org/10.1007/978-3-319-24853-0_5
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J̌ (xk, Kk) ≤ ‖xk‖2�. The cost bound in (c) will in general be smaller than the
bound in (a) because � = Pγ is feasible for the optimization in (c) whenever P
and γ satisfy the constraints of the optimization in (a), and because (a) includes
additional constraints.

(d) The suggested optimization is likely to result in an MPC law with improved
performance since the implied online MPC optimization minimizes a tighter
upper bound on the worst case predicted cost. However the constraints involve
products of optimization variables and hence are nonconvex, and furthermore
there is no convexifying transformation of variables that can be employed in this
case. Therefore it will in general be difficult to compute efficiently the global
optimum for the suggested optimization, and the computational is likely to grow
rapidly with problem size.

4 (a) Any point u that belongs to the projection onto the u-subspace of the set
E = {x = (u, v) : xT Px ≤ 1} satisfies, by definition,

min
v

(
uT Puuu + 2uT Puvv + vT Pvvv

)
≤ 1,

where Puu , Puv , Pvv are the blocks of P:

P =
[

Puu Puv

PT
uv Pvv

]
.

Since P � 0 implies that Pvv � 0, the u-subspace projection of E is therefore
given by

proju(E) = {
u : uT (Puu − Puv P−1

vv PuvT )u ≤ 1
}

Thus Pu is equal to the Schur complement Puu − Puv P−1
vv PuvT . This can equiv-

alently be expressed in terms of the blocks of P−1 as

P−1
u = [

Im 0
]

P−1
[

Im

0

]
.

(b) The x-subspace projection of Ez is maximized by solving the SDP:

maximize
S

log det(Sxx )

subject to

[
S Ψ ( j)S

SΨ ( j) T S

]
� 0, j = 1, 2

⎡

⎣
1

[
K E

]
S

S

[
K T

ET

]
S

⎤

⎦ � 0

The optimal solution gives Px = S−1
xx =

[
0.839 3.211
3.211 13.23

]
and det(Px ) = 0.783.
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(c) The matrix W appearing in the expression J (xk, ck) = zT
k W zk for the nominal

cost could be determined by solving the Lyapunov equationW −Ψ (0) T WΨ (0) =
diag{Q, 0}+[

K E
]T

R
[
K E

]
. However the question states that K is the uncon-

strained optimal feedback gain for the nominal cost, and by Theorem2.10 we
must therefore have

W =
[

Wx 0
0 Wc

]
, Wc = diag{B(0) T Wx B(0) + R, . . . , B(0) T Wx B(0) + R}

where Wx is the solution of the Riccati equation that is provided in the question
and B(0) T Wx B(0) + R = 4.891.
The minimization of the nominal predicted cost is equivalent to

c∗
k = argmin

ck
‖ck‖2 subject to (xk, ck) ∈ Ez,

which is a convex quadratic programming problem with a single quadratic con-
straint. In applications requiring very fast online computation this can be solved
using an efficient Newton-Raphson iteration as discussed in Sect. 2.8. If com-
putational load is not important, it can alternatively (and more conveniently)
be rewritten as a second order cone programming problem and solved using a
generic SOCP solver. The solution for x0 = (4,−1) gives

J ∗(x0) = ‖x0‖2Wx
+ 4.891‖c0‖2 = 39.9.

5 (a) Whenever the constraint (xk, ck) ∈ Ez is inactive in the optimization in Ques-
tion4(c) (i.e. whenever c∗

k �= 0), the line search defined in the question results
in zk = (xk,α

∗
k c∗

k) /∈ Ez . Therefore the constraints of the line search are needed
in order to ensure that:

(i) The input (or more generally mixed input/state) constraints are satisfied at
the current sampling instant

(ii) The optimization in Question4(c) is feasible at time k + 1

The second of these conditions is imposed in the line search through a robust
constraint on the one step-ahead prediction z1|k in order to ensure that the pre-
dicted cost decreases along closed loop system trajectories. This provides a way
to guarantee closed loop stability.

(b) Minimizing the value of σ ≥ 0 subject to the LMI of the question gives the
optimal values:

σ2 = 9.849, � =
[

2.856 −0.009
−0.009 15.385

]
.

http://dx.doi.org/10.1007/978-3-319-24853-0_2
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From Lemma5.3 it follows that the state xk under uk = K xk + c0|k satisfies the
bound

∞∑

k=0

‖xk‖2 ≤ ‖x0‖2� + 9.85
∞∑

k=0

c20|k .

(c) The constraints of the line search ensure that the optimization is recursively
feasible, since zk = (xk, c∗

k) satisfies Ψ ( j)zk ∈ Ez , j = 1, 2, and hence by
convexity we have zk+1 = Ψk zk ∈ Ez whenever zk ∈ Ez .
The feasibility of zk+1 = Ψk zk and the definition of Wc implies that the solution
of the online optimization, α∗

k c∗
k satisfies the bound

‖α∗
k+1ck+1‖2 − ‖α∗

k ck‖2 ≤ −α∗
k c20|k

and hence

∞∑

k=0

α∗
k c20|k ≤ ‖α∗

0c0‖2.

From the answer to part (b) the state of the closed loop system therefore satisfies
the quadratic bound

∞∑

k=0

‖xk‖2 ≤ ‖x0‖2� + 9.85‖α2
0c0‖2,

implying asymptotic convergence: xk → 0 as k → ∞. Since the origin of the
closed loop system state space is necessarily Lyapunov stable (because uk =
K xk is feasible at all points in some region that contains x = 0), it follows that
the closed loop system is asymptotically stable. The region of attraction is the
feasible set for the optimization in Question4(c), namely the projection of Ez

onto the x-subspace.

6 (a) Performing the optimization

maximize
�(1),�(2),Γ,X,Y

log det(Y ) subject to (5.47) and (5.44b)

and using the inverse transformation (5.45), we get the values of A(1)
c , A(2)

c and
Cc given in the question and

Pz = S−1 =

⎡

⎢⎢⎣

19.11 −4.68 −19.11 0.00
−4.68 1.24 4.68 −0.10

−19.11 4.68 19.11 0.00
0.00 −0.10 0.00 0.10

⎤

⎥⎥⎦

−1

.

http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
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(b) Minimizing tr(Wc) subject to the LMI in the question gives

Wc =
[

0.561 −0.175
−0.175 3.715

]

Hence the minimum value of J (xk, ck) over ck subject to (xk, ck) ∈ Ez is
J ∗(x0) = 44.66.

(c) The LMI satisfied by Wc implies that the optimal c∗
k sequence for k = 0, 1, . . .

satisfies
‖c∗

k+1‖2Wc
≤ ‖c∗

k‖2Wc
− 4.891(Ccc∗

k)
2

and hence ∞∑

k=0

(Ccc∗
k)

2 ≤ 1

4.891
‖c∗

0‖2Wc
.

Therefore, from the quadratic bound on the l2-norm of the closed loop state
sequence in Question4(c) we get

∞∑

k=0

‖xk‖2 ≤ ‖x0‖2� + 9.85
∞∑

k=0

(Ccck)
2 ≤ ‖x0‖2� + 2.01‖c∗

0‖2Wc

which implies xk → 0 as k → ∞, and hence by the argument that was used in
Question5(c), the origin of the closed loop system is asymptotically stable with
region of attraction equal to the projection of Ez onto the x-subspace.

(d) For x0 = (4,−1), the maximum scaling σ such that σx0 is feasible in each case
is given in the following table.

Optimization: Question3(b) Question4(c) Question6(b)
(Algorithm5.1) (Algorithm5.3) (Algorithm5.4)

σ 1.17 1.02 1.09

This is consistent with the expectation that Algorithm5.1 has the largest feasi-
ble set of these three algorithms, since it computes (where possible) a robustly
invariant ellipsoidal set online that contains the current state,whereas the robustly
invariant ellipsoidal sets in the other two algorithms are determined offline, and
hencewithout reference to the current state, so as tomaximize the volume of their
x-subspace projections. Similarly the feasible set of Algorithm5.4 is expected
to be at least as large as that of Algorithm5.2 since it coincides with the maximal
volume robustly invariant ellipsoidal set under any linear feedback law. These
observations are confirmed by the feasible sets plotted in Fig.A.4.

http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5


372 Solutions to Exercises
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Fig. A.4 The feasible sets for Algorithm5.2 (inner shaded set), Algorithm5.4 and Algorithm5.1
(outer shaded set) in Questions6(b), 4(c) and 3(b). The dashed line shows the boundary of the
maximal controllable set for this system and constraints

7 The volume of the low-complexity polytope 	(V,α) = {x : |V x | ≤ α} in R
nx

can be evaluated by considering it to be a linear transformation of the hypercube
{x : |x | ≤ 1}. This gives

volume
(
	(V,α)

) = Cnx |det(W )|
nx∏

i=1

αi

where W = V −1,α = (α1, . . . ,αnx ), andCnx is a constant. Although themaximiza-
tion of the determinant of a symmetric positive definite matrix P can be expressed
in terms of the maximization of a concave function of its elements, e.g. log

(
det(P)

)
,

which can therefore form the objective of a convex optimization, thematrix W is here
neither symmetric nor positive definite in general. However for fixed V , maximizing
the product of the elements of then non-negative vectorα is equivalent tomaximizing
the determinant of the symmetric positive definite matrix P = diag{α1, . . . ,αnx },
which can be expressed as a concave function of α.

8 (a) For the matrix V given in the question, the matrix Φ̄ whose (i, j)th element
is equal to the larger of the (i, j)th element of V Φ(1)W and the (i, j)th element

http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
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of V Φ(2)W , is given by

Φ̄ =
[
0.719 0.229
0.031 0.583

]
.

Themaximumeigenvalue of Φ̄ is equal to 0.760, and since this is less thanunity, it
follows that withα equal to the corresponding eigenvector we necessarily obtain

V Φ( j)Wα ≤ α, j = 1, 2

which is the condition for robust invariance of the set

	(V,α) = {x : |V x | ≤ α}

under the dynamics xk+1 ∈ Co{Φ(1)xk, Φ
(2)xk} (see Lemma5.4 for the proof of

this result). Here we also require that −1 ≤ K x ≤ 1 holds for all x ∈ 	(V,α),
and this can be ensured by scaling α.
Checking this result numerically, we have

α =
[
0.985
0.175

]
, |V Φ(1)W |α =

[
0.748
0.098

]
, |V Φ(2)W |α =

[
0.615
0.133

]

which confirms that |V Φ( j)W |α ≤ α for j = 1, 2.
(b) The volume of 	(V,α) is maximized by the optimization

maximize
α=(α1,α2)

log(α1α2) subject to α > 0

|V Φ( j)W |α ≤ α, j = 1, 2

|K W |α ≤ 1

which is convex and can be solved using, for example, any method for solv-
ing determinant maximization problems subject to linear constraints. For the
problem data in the question, the optimal solution is

α =
[
1.247
0.181

]

for which the conditions for robust invariance are satisfied since

|V Φ(1)W |α =
[
0.938
0.108

]
, |V Φ(2)W |α =

[
0.770
0.144

]
, |K W |α = 1.

9 (a) Although this question uses the general complexity polytopic tube framework
of Sect. 5.5, the set {x : V x ≤ 1} is a low-complexity polytope. Hence the linear
programs (5.94) and (5.95) that define the matrices H (1), H (2) and Hc with

http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
http://dx.doi.org/10.1007/978-3-319-24853-0_5
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minimum row-sums have closed form solutions (described on p. 214). Using
these solutions (or alternatively by solving an LP to determine each row) we get

Hc =
[
1 0 0 0
0 1 0 0

]
,

H (1) =

⎡

⎢⎢⎣

0 0.041 0.678 0
0.041 0 0 0.678
0.391 0 0.379 0
0 0.391 0 0.379

⎤

⎥⎥⎦ , H (2) =

⎡

⎢⎢⎣

0 0 0.999 0
0 0 0 0.999

0.348 0 0.002 0
0 0.347 0 0.002

⎤

⎥⎥⎦

(b) Assume that ck = (c0|k, . . . , cN−1|k) and αk = (α0|k, . . . ,αN |k) satisfy the
constraints given in the question at time k. If uk = K xk + c0|k , then a feasible
solution at time k + 1 is given by

ck+1 = (c1|k, c2|k, . . . , cN−1|k, 0)
αk+1 = (α1|k, . . . ,αN |k,αN |k)

Therefore the constraint set is recursively feasible (Fig.A.5).
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Fig. A.5 The feasible sets for the constraints in Question9(b) (outer shaded set) and for Algo-
rithm5.4 (inner shaded ellipsoidal set). The boundary of the maximal controllable set (dash-dotted
line) and the boundary of the maximal robustly invariant set under u = K x (dotted line) are also
shown
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(c) For a horizon of N = 8, the maximum scaling σ such that σx0 is feasible, where
x0 = (4,−1), is σ = 1.134.

(d) Solving the MPC optimization with x0 = (4,−1) gives the optimal solution for
c0 as

c∗
0 = (0.482, 0.306, 0.251, 0.195, 0.128, 0.070,−0.020,−0.062)

and s∗
0|k = (4,−1). Hence the optimal value of the nominal predicted cost is

‖s∗
0|k‖2Wx

+ ‖c∗
0‖2Wc

= 37.88.
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