Michael E Dailey

Michael E Dailey
University of Iowa | UI · Department of Biology

Ph.D., Biology & Biomedical Sciences (Neural Science), Washington Univ. (St. Louis),

About

52
Publications
13,734
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,573
Citations
Additional affiliations
September 1996 - present
University of Iowa
Position
  • Professor (Associate)
August 1990 - August 1996
Stanford University
Position
  • PostDoc Position
August 1985 - August 1990
Washington University in St. Louis
Position
  • PhD Student
Education
August 1981 - May 1985
Geneva College
Field of study
  • Biology

Publications

Publications (52)
Article
During CNS development, microglia transform from highly mobile amoeboid-like cells to primitive ramified forms and, finally, to highly branched but relatively stationary cells in maturity. The factors that control developmental changes in microglia are largely un-known. Because microglia detect and clear apoptotic cells, developmental changes in mi...
Article
Objective: Cellular fibronectin containing extra domain A (EDA(+)-FN) is abundant in the arteries of patients with atherosclerosis. Several in vitro studies suggest that EDA(+)-FN interacts with Toll-like receptor 4 (TLR4). We tested the hypothesis that EDA(+)-FN exacerbates atherosclerosis through TLR4 in a clinically relevant model of atheroscle...
Article
Fetal alcohol exposure is the most common known cause of preventable mental retardation, yet we know little about how microglia respond to, or are affected by, alcohol in the developing brain in vivo. Using an acute (single day) model of moderate (3 g/kg) to severe (5 g/kg) alcohol exposure in postnatal day (P) 7 or P8 mice, we found that alcohol-i...
Article
Full-text available
Here we describe a method for imaging fluorescently labeled parenchymal microglia (MG) in excised neonatal or adult rodent brain tissue slices. Using multichannel confocal or two-photon time-lapse imaging, the approach affords real-time analyses of MG behaviors, including motility, migration, chemotaxis, proliferation, and phagocytosis in live brai...
Article
Full-text available
A century after Cajal identified a "third element" of the nervous system, many issues have been clarified about the identity and function of one of its major components, the microglia. Here, we review recent findings by microgliologists, highlighting results from imaging studies that are helping provide new views of microglial behavior and function...
Article
As brain-resident immune cells, microglia (MG) survey the brain parenchyma to maintain homeostasis during development and following injury. Research in perinatal stroke, a leading cause of lifelong disability, has implicated MG as targets for therapeutic intervention during stroke. Although MG responses are complex, work in developing rodents sugge...
Article
Glutamate transporters (GluTs) maintain a low ambient level of glutamate in the central nervous system (CNS) and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here, we examined the subcellular...
Article
The rat auditory cortex is organized as a tonotopic map of sound frequency. This map is broadly tuned at birth and is refined during the first 3 weeks postnatal. The structural correlates underlying tonotopic map maturation and reorganization during development are poorly understood. We employed fluorescent dye ballistic labeling ("DiOlistics") alo...
Article
The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knockout (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampal...
Article
Full-text available
The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knock-out (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampa...
Article
Full-text available
INTRODUCTION Live imaging provides exciting opportunities to study dynamic cellular events as they occur in real time. However, such experimental procedures present several challenges. This article discusses some of the major considerations relating to the maintenance of live biological samples during ex vivo imaging and presents some relatively si...
Chapter
Full-text available
If a picture is worth a thousand words, then a movie may be worth a million words. Microcinematography and, later, video microscopy have provided great insight into biological phenomena. One limitation, however, has been the difficulty of imaging in three dimensions. In many cases, observations have been made on cultured cells that are thin to star...
Article
Full-text available
The localization of GluR1 subunits of ionotropic glutamate receptors in the glial cells and inhibitory neurons of cerebellar cortex and their association with the climbing and parallel fibers, and basket cell axons were studied. Samples of P14 and P21 rat cerebellar cortex were exposed to a specific antibody against GluR1 subunit(s) ofAMPA receptor...
Article
Epileptiform activity (EA) in vivo and in vitro induces a loss of dendritic spines and synapses. Because CaMKII has been implicated in synaptogenesis and synaptic plasticity, we investigated the role of CaMKII in the effects of EA on spines, using rat hippocampal slice cultures. To visualize dendrites and postsynaptic densities (PSDs) in pyramidal...
Article
Full-text available
INTRODUCTION Rodent organotypic hippocampal slice cultures (OHSCs) provide an outstanding preparation of central nervous system tissue for exploring the dynamic structural and physiological features of neuronal and glial cells within their native three-dimensional environments. It is a straightforward matter to obtain tissue slices from neonatal ro...
Article
Full-text available
INTRODUCTION This protocol describes methods for fluorescence labeling and time-lapse confocal imaging of microglia in acutely prepared tissue slices from developing and adult animals, and to slice cultures derived from early post-natal day 7 (<PND7) animals. The techniques permit real-time analyses of microglial structure and dynamic remodeling in...
Article
Traumatic CNS injury activates and mobilizes resident parenchymal microglia (MG), which rapidly accumulate near injured neurons where they transform into phagocytes. The mechanisms underlying this rapid 'homing' in situ are unknown. Using time-lapse confocal imaging in acutely excised neonatal hippocampal slices, we show that rapid accumulation of...
Article
Full-text available
Microglia are primary immune sentinels of the CNS. Following injury, these cells migrate or extend processes toward sites of tissue damage. CNS injury is accompanied by release of nucleotides, serving as signals for microglial activation or chemotaxis. Microglia express several purinoceptors, including a G(i)-coupled subtype that has been implicate...
Article
The architecture of dendritic arbors is a defining characteristic of neurons and is established through a sequential but overlapping series of events involving process outgrowth and branching, stabilization of the global pattern, and synapse formation. To investigate the roles of cadherins and beta1-integrins in maintaining the global architecture...
Article
Neuronal injury in CNS tissues induces a rapid activation and mobilization of resident microglia (MG). It is widely assumed that changes in gene expression drive the morphological transformation of MG and regulate their mobilization during activation. Here, we used acutely excised neonatal rat brain slices to test whether the morphological transfor...
Article
We examined the timing and mechanisms of CaMKIIalpha recruitment to nascent synapses of developing rat hippocampal pyramidal neurons in slice culture. Time-lapse confocal imaging shows that GFP-CaMKIIalpha in transfected neurons accumulates in spines as they are forming, and loss of CaMKIIalpha coincides with spine destabilization. Immunolabeling s...
Article
We examined the regulation of dendritic spines and synapses by epileptiform activity (EA) in rat hippocampal slice cultures. EA, which was induced by a GABA(A) receptor inhibitor, gabazine, reduced pyramidal neuron spine density by approximately 50% after 48 h and also caused an increase in the average length of remaining spines. To directly determ...
Article
Protoplasmic astrocytes in mammalian CNS tissues in vivo have a highly complex 3D morphology, but in dissociated cell cultures they often assume a flattened, fibroblast-like morphology bearing only a few, simple processes. By fluorescent labeling and confocal reconstruction we show that many astrocytes in organotypic hippocampal slice cultures exhi...
Article
Full-text available
The comparative localization of two prominent synaptic proteins, synapsin-I (Syn-I) and PSD-95, was investigated in slices of developing (P3-P21) rat cerebellar cortex using double- or triple-label fluorescence immunohistochemistry and confocal microscopy. During the first postnatal week, Syn-I and PSD-95 immunoreactive (IR) puncta were strongly co...
Article
We used two-channel three-dimensional time-lapse fluorescence confocal imaging in live rat hippocampal slice cultures (1-7 days in vitro) to determine the motility behaviors of activated microglia as they engage dead and dying cells following traumatic brain tissue injury. Live microglia were labeled with a fluorescently conjugated lectin (IB(4)),...
Chapter
The development of novel fluorescent probes of cellular structure and physiology has had a profound impact on studies of brain structure and function at the network, cellular, and subcellular levels. Coupled with the technical advances in high-resolution optical imaging, fluorescent markers provide a valuable set of tools for mapping the functional...
Article
Full-text available
Two hybridoma clones, CMYL3 and CMYL30, were generated by immunizing Balb/c mice with excysted oocysts of Cryptosporidium muris. Both clones secreted monoclonal antibodies against an oocyst-wall antigen with apparent molecular mass of 250 kDa (called CM250) from C. muris and C. parvum. The epitope appeared to be periodate-sensitive, suggesting the...
Article
Full-text available
Double fluorescent labelling of rat cerebellar cortex using antibody to glial fibrillary acidic protein (GFAP) and Alexa fluor conjugates for secondary detection for confocal laser scanning microscope (CLSM), field emission scanning electron microscopy (FESEM) of Rhesus monkey cerebellar cortex, ultrathin sectioning and freeze-etching replica metho...
Article
Some parenchymal microglia in mammalian brain tissues, termed "juxtavascular microglia," directly contact the basal lamina of blood vessels; however, the functional consequences of this unique structural relationship are unknown. Here we used a rat brain slice model of traumatic brain injury to investigate the dynamic behavior of juxtavascular micr...
Article
Factors that regulate the formation, spatial patterning, and maturation of CNS synapses are poorly understood. We used organotypic hippocampal slice cultures derived from developing (P5–P7) rat to test whether synaptic activity regulates the development and organization of postsynaptic structures at mossy fiber (MF) giant synapses. Antibodies to a...
Article
Full-text available
The dynamics of postsynaptic density (PSD) formation and remodeling were investigated in live developing hippocampal tissue slices. Time lapse imaging of transfected neurons expressing GFP-tagged PSD95, a prominent PSD protein, revealed that up to 40% of PSDs in developing dendrites are structurally dynamic; they rapidly (<15 min) appear or disappe...
Article
The dynamics of microglial cell activation was studied in freshly prepared rat brain tissue slices. Microglia became activated in the tissue slices, as evidenced by their conversion from a ramified to amoeboid form within several hours in vitro. To define better the cytoarchitectural dynamics underlying microglial activation, we performed direct th...
Article
Confocal microscopy is providing new and exciting opportunities for imaging cell structure and physiology in thick biological specimens, in three dimensions, and in time. The utility of confocal microscopy relies on its fundamental capacity to reject out-of-focus light, thus providing sharp, high-contrast images of cells and subcellular structures...
Article
Full-text available
We identify an actin-based protrusive structure in growth cones termed "intrapodium." Unlike filopodia, intrapodia are initiated exclusively within lamellipodia and elongate in a continuous (nonsaltatory) manner parallel to the plane of the dorsal plasma membrane causing a ridge-like protrusion. Intrapodia resemble the actin-rich structures induced...
Article
Methods are described for imaging the cellular dynamics of microglia in live mammalian brain slice cultures. Brain slices prepared from developing rat hippocampus are cultured for up to 2 weeks by the roller tube or static filter culture technique, stained with one or more fluorescent dyes, and imaged by scanning laser confocal microscopy. One of s...
Article
Full-text available
Time-lapse fluorescence confocal microscopy was used to directly visualize the formation and dynamics of postsynaptic target structures (i.e., dendritic branches and spines) on pyramidal neurons within developing tissue slices. Within a 2 week period of time, pyramidal neurons in cultured slices derived from early postnatal rat (postnatal days 2-7)...
Chapter
If a picture is worth a thousand words, a movie may be worth a million words. Microcinematography and, later, video microscopy have provided great insight into biological phenomena. One limitation, however, has been the difficulty of imaging in three dimensions. In many cases, observations have been made on cultured cells that are thin to start wit...
Article
Full-text available
Hippocampal slices from early postnatal rat were used to study mossy fiber (MF) growth and synaptogenesis. The ability of MFs to form new giant synapses within isolated tissue slices was established by a series of experiments involving synapsin I immunohistochemistry, electron microscopy, and whole-cell recordings. When hippocampal slices from imma...
Article
To determine the spatiotemporal pattern of hippocampal pyramidal cell activity during development, we examined cytosolic Ca2+ dynamics in tissue slices derived from early postnatal rats. After a brief (12-60 h) culture period, slices were stained with a calcium-sensitive dye, Fluo-3. Fluorescence imaging of the Fluo-3-stained slices with a scanning...
Article
Full-text available
The neuronal growth cone is a major site of surface membrane dynamics associated with uptake and release of materials, motility, and axon extension. Although intracellular membrane organelles are thought to mediate surface membrane addition and retrieval at the growth cone, membrane events are fleeting and therefore difficult to study directly. In...
Article
Our present information about the formation of synapses in the central nervous system is based almost exclusively on observations of fixed tissue specimens. Such observations can only provide very limited inference about the dynamics of the underlying developmental processes. In the hopes of obtaining direct information about the dynamics of synaps...
Article
Acutely isolated slices of developing rat hippocampus have been used to study axon growth and synapse formation. Mossy fibers, which are the axons of dentate granule cells, were labeled in living brain slices by injection of a fluorescent membrane dye (DiI or DiO) into the dentate gyrus. Time-lapse observations were made in area CA3 at a time when...
Article
Full-text available
During early development of the mammalian cerebral cortex, young neurons migrate outward from the site of their final mitosis in the ventricular zone into the cortical plate, where they form the adult cortex. Time-lapse confocal microscopy was used to observe directly the dynamic behaviors of migrating cells in living slices of developing cortex. T...
Article
Advance and stabilization of organelle-rich cytoplasm within the neuronal growth cone is coupled to axon elongation (Goldberg and Burmeister, 1986; Aletta and Greene, 1988), and this involves forward movement of organelles from the growth cone base along distinct tracks toward the leading edge. Membrane-bound organelles that advance first within th...
Article
Full-text available
The fluorescent lipophilic dye 3,3'-dihexyloxacarbocyanine iodide [DiOC6(3)] was used to examine the distribution of membrane-bound organelles in growth cones of cultured rat sympathetic neurons. Within chemically fixed growth cones, intense DiOC6(3) fluorescence was localized predominately to the base or central region of growth cones. However, in...
Article
The differentiation of intracerebral and intraspinal transplants of fetal (E14-E15) rat spinal cord was studied to determine the extent to which myelin-free zones in these embryonic grafts exhibit cytological features and immunocytochemical characteristics of the substantia gelatinosa (SG) of the normal spinal cord. Immunocytochemical staining with...
Article
Full-text available
Rapid freezing and freeze substitution were used in conjunction with immunofluorescence, whole mount EM, and immunoelectron microscopy to study the organization of myosin and actin in growth cones of cultured rat superior cervical ganglion neurons. The general cytoplasmic organization was determined by whole mount EM; tight microfilament bundles fo...

Network

Cited By