Conference PaperPDF Available

Design of a low-power high-speed comparator in 0.13μm CMOS

Authors:
  • Xiamen University Malaysia
  • Royal Melbourne Institute of Technology (RMIT)

Abstract

Comparator plays an important role in overall performance of analog to digital converters (ADC) in all modern electronic devices used in handheld to industrial applications. High-speed devices with low voltage and low power are considered essential nowadays. This paper presents a CMOS based comparator design using 0.13 μm CMOS process in Mentor Graphics for ADC applications. The primary goal of this research work is to design high-speed and low power comparator using pre-amplifier latch circuit. The proposed design is powered by 1.2V supply and the output signal exhibits only 0.62ns delay which is very much competitive to the other researches. The comparator dissipates only 1.5nW power which is the lowest reported to date. The proposed design is highly compact occupying only 256 μm2 of silicon space. The proposed circuit will be highly useful for the electronic industries where low-power, high-performance, and compactness of devices are the crucial concerns.
%%$)RX]\0%,5HD]0$6%KXL\DQ
'HSW(OHFWULFDO(OHFWURQLFDQG6\VWHPV(QJLQHHULQJ
8QLYHUVLWL.HEDQJVDDQ0DOD\VLD
%DQJL6HODQJRU0DOD\VLD
(PDLOPDPXQUHD]#JPDLOFRP
07,%DGDO)++DVKLP
'HSW(OHFWULFDO(OHFWURQLFDQG6\VWHPV(QJLQHHULQJ
8QLYHUVLWL.HEDQJVDDQ0DOD\VLD
%DQJL6HODQJRU0DOD\VLD
(PDLODVREKDQ#HQJXNPP\
$EVWUDFW²&RPSDUDWRU SOD\V DQ LPSRUWDQW UROH LQ RYHUDOO
SHUIRUPDQFHRIDQDORJWR GLJLWDO FRQYHUWHUV $'& LQDOOPRGHUQ
HOHFWURQLF GHYLFHV XVHG LQ KDQGKHOG WR LQGXVWULDO DSSOLFDWLRQV
+LJKVSHHG GHYLFHV ZLWK ORZ YROWDJH DQG ORZ SRZHU DUH
FRQVLGHUHG HVVHQWLDO QRZ DGD\V 7KLV SDSHU SUHVHQWV D &026
EDVHG FRPSDUDWRU GHVLJQ XVLQJ  P &026 SURFHVV LQ
0HQWRU*UDSKLFVIRU$'&DSSOLFDWLRQV7KHSULPDU\JRDORIWKLV
UHVHDUFKZRUNLVWRGHVLJQKLJKVSHHGDQGORZSRZHUFRPSDUDWRU
XVLQJSUHDPSOLILHUODWFKFLUFXLW7KHSURSRVHGGHVLJQLVSRZHUHG
E\ 9 VXSSO \ DQG WKH RXWSXW  VLJQDO H[KLELWV RQO \ QV GHOD\
ZKLFK LV YHU\ PXFK FRPSHWLWLYH WR WKH RWKHU UHVHDUFKHV 7KH
FRPSDUDWRU GLVVLSDWHV RQO\ Q: SRZHU ZKLFK LV WKH ORZHVW
UHSRUWHG WR GDWH 7KH SURSRVHG GHVLJQ LV KLJKO\ FRPSDFW
RFFXS\LQJ RQO\  P RI VLOLFRQ VSDFH 7KH SURSRVHG FLUFXLW
ZLOO EH KLJKO\ XVHIXO IRU WKH HOHFWURQLF LQGXVWULHV ZKHUH ORZ
SRZHU KLJKSHUIRUPDQFH DQG FRPSDFWQHVV RI GHYLFHV DUH WKH
FUXFLDOFRQFHUQV
.H\ZRUGV²$'&&026&RPSDUDWRU/DWFK
, ,
1752'8&7,21
7KHFRQWLQXRXVDGYDQFHPHQWLQ&026 WHFKQRORJ\DOORZV
WKH UHVHDUFKHUV WR IDEULFDWH IXOO\ RQFKLS GHYLFHV ZLWKRXW
FRPSURPLVLQJ WKH SHUIRUPDQFH LVVXHV >@ 7KHUHIRUH WKH
FXUUHQW WUHQG RI GHVLJQLQJ ORZ SRZHU FRPSDFW GHYLFHV E\
HOLPLQDWLQJ EXON\ERDUGOHYHORIIFKLS FRPSRQHQWVLVQRPRUH
LPDJLQDEOH >@ $OO PRGHUQ HOHFWURQLF GHYLFHV XVHG LQ
KDQGKHOGWR LQGXVWULDODSSOLFDWLRQV DUHQRZIDEULFDWHGRQFKLS
WRPDNHWKHGHYLFHVORZSRZHUFRPSDFWDQGOHVVFRVWO\>
@
7KHFRPSDUDWRULVRQHRIWKHHVVHQWLDOEORFNVLQDOOPRGHUQ
GHYLFHV PRVWO\ XVHG LQ $'& DSSOLFDWLRQV +LJKVSHHG ORZ
SRZHU DQG ORZUHVROXWLRQ $'&V KDYH ZLGHVSUHDG XVDJH LQ
DSSOLFDWLRQV VXFK DV 5) FRPPXQLFDWLRQV GLJLWDO VDPSOLQJ
RVFLOORVFRSH PHPRU\ VHQVLQJ FLUFXLWV UDGLR DVWURQRP\ HWF
&RPSDUDWRUGHVLJQZLWKORZSRZHUDQGKLJKVSHHGLVUHTXLUHG
WR DFFRPSOLVK WKH UHTXLUHPHQWV PRVWO\ LQ HOHFWURQLF GHYLFHV
WKDWUHTXLVLWHVIRUKLJKVSHHG$'&V([LVWLQJFRPSDUDWRUVWKDW
XVH GHHS VXEPLFURQ WHFKQRORJ\ VXIIHU IURP ORZ VXSSO\
YROWDJH EHFDXVH RI WKH WKUHVKROG YROWDJH IRU WKH GHYLFH QRW
EHHQVFDOHGDWWKHVDPHSDFHDVYROWDJHVWKDWVXSSO\LQ&026
SURFHVVHV>@
7KH G\QDPLF FRPSDUDWRUV KDYHEHHQ XVLQJ H[WHQVLYHO\ LQ
$'&V EHFDXVH RI WKHLU OHVVHU SRZHU GLVVLSDWLRQ ]HUR VWDWLF
SRZHUFRQVXPSWLRQWKH VKRUWHU WLPH GXUDWLRQ IRU GLJLWDOOHYHO
RXWSXW YROWDJH ZLWK D KLJKVSHHG UHVSRQVH > @ 7KH
SUHDPSOLILHU LV RQH RI WKH FRQYHQWLRQDO FRPSDUDWRUV WKDW DUH
EHLQJ XVHG WR DPSOLI\ WKH VPDOO LQSXW YROWDJHV DQG DOVR WR
UHGXFHNLFNEDFNQRLVHGXULQJWKHRSHUDWLRQEXWLWVXIIHUVIURP
ODUJHU VWDWLF SRZHU FRQVXPSWLRQ > @ 0LQLPL]DWLRQ RI
SRZHUFRQVXPSWLRQFDQEH DFKLHYHG E\ UHGXFLQJ IHDWXUHVL]H
SURFHVVHV EXW LW ZLOO DIIHFW WKH RYHUDOO SHUIRUPDQFH RI WKH
V\VWHP>@
,QWKLV SDSHU DYROWDJHFRPSDUDWRUKDVEH SURSRVHGXVLQJ
SUHDPSOLILHG ODWFK FLUFXLW LQ P &026 SURFHVV LQ
'HVLJQ $UFKLWHFW ,& RI 0HQWRU *UDSKLFV HQYLURQPHQW 7KH
FRPSDUDWRU ZDV GHVLJQHG XVLQJ D SUHDPSOLILHUODWFK FLUFXLW
WKDW FDQ EH XWLOL]HG LQ $'&V IRU EHWWHU SHUIRUPDQFH ORZHU
SRZHU GLVVLSDWLRQ DQG WR SURYLGH KLJKVSHHG UHVSRQVH
FRPSDUHGWRWKHSUHYLRXVUHVHDUFKHV
,, 0
(7+2'2/2*<
7KH FRPSDUDWRU LV RQH RI WKH PDLQ EORFNVWKDW DUH EHLQJ
XVHGWRFRQYHUWDQDQDORJVLJQDOWRDGLJLWDOVLJQDOLQDV\VWHP
,Q D FRPSDUDWRU DV VKRZQ LQ )LJ WKH FRQYHUVLRQ SURFHVV
VWDUWV ZLWK VDPSOLQJ WKH DQDORJ VLJQDO KROGLQJ LW IRU WKH
SURFHVV LQODWFK VWDJH DQG WKHQ FRQYHUW WKH DQDORJ VLJQDO LQWR
GLJLWDO VLJQDO 7KH LQSXW VLJQDO YROWDJH ZLOO EH FRPSDUHG
ZLWK D UHIHUHQFH RU WKUHVKROG YROWDJH DQG WKH RXWSXW ZLOO EH
GHWHUPLQHG EDVHG RQ WKH FRPSDULVRQ EHWZHHQ WKH LQSXW
YROWDJH DQG W KH UHIHUHQFH YRO WDJH 7KH RXWSXWV ZLOO EH   LI
WKHLQSXWVLJQDOLVOHVVWKDQWKHUHIHUHQFH YROWDJHRWKHUZLVHLW
ZLOOGLVSOD\DV³ZKHQWKHLQSXWVLJQDOLVJUHDWHUWKDQ
UHIHUHQFHYROWDJHDVVKRZQLQ)LJ
)LJ%DVLFYROWDJHFRPSDUDWRU>@
'(6,*12)$/2:32:(5+,*+63(('
&203$5$725,1P&026
2016 International Conference on Advances in Electrical, Electronic and System Engineering, 14-16 Nov 2016, Putrajaya,
Malaysia
978-1-5090-2889-4/16/$31.00 ©2016 IEEE 289
)LJ DQG )LJ VKRZ WKH EDVLF EORFN GLDJUDP DQG WKH
VFKHPDWLF FLUFXLW RI WKH SURSRVHG FRPSDUDWRU 3UHDPSOLILHU
ODWFK FRPSDUDWRU GHVLJQ LV EDVLFDOO\ D FRPELQDWLRQ RI DQ
DPSOLILHU DQG D ODWFK FLUFXLW WR REWDLQ KLJK VSHHG DQG ORZ
SRZHUGLVVLSDWLRQ7KHSUHDPSOLILHUFLUFXLWLVXVHGWRDPSOLI\
WKH LQSXW VLJQDO ZKLOH WKH ODWFK FLUFXLW RSHUDWLRQ LV EDVHG RQ
WKHFORFNVLJQDOWRDEOHDQGGLVDEOHWKHLQSXWVLJQDO:KHQWKH
FORFN LV KLJK WKH ODWFK UHJHQHUDWHV DQG SURYLGHV WKH ORJLF
VLJQDOV
7KH SDUDPHWHUV IRU WKH SURSRVHG FRPSDUDWRU FLUFXLW DUH
OLVWHGLQ7DEOH,
7$%/(, 3
$5$0(7(56)25&,5&8,7'(6,*1
3DUDPHWHUV 9D OXH
6XSSO\9ROWDJH9'' 9
,QSXW9ROWDJH9LQ 9
5HIHUHQFH9ROWDJH9UHI 9
7UDQVLVWRUOHQJWKIRUDOO026 P
3026ZLGWK P
1026ZLGWK P
,,, 5
(68/76$1'
'
,6&866,216
7KH SURSRVHG FRPSDUDWRU KDV EHHQ GHVLJQHG XVLQJ 
P &026 SURFHVV LQ 0HQWRU *UDSKLFV HQYLURQPHQW 7KH
LQSXWYROWDJH 9LQDQGWKHUHIHUHQFHYROWDJH 9UHIDUHVHWWR
9DQG9UHVSHFWLYHO\,QWKLVGHVLJQWUDQVLVWRUVVL]LQJ
ZDVWDNHQLQWRDFFRXQWWRDFKLHYHPLQLPXPSRZHUGLVVLSDWLRQ
DQGORZ VXSSO\ YROWDJH RSHUDWLRQ 7KHEDVLF RSHUDWLRQRI WKH
FRPSDUDWRULVIXQFWLRQDOZKHQWKHLQSXWYROWDJHLVJUHDWHUWKDQ
WKHUHIHUHQFHYROWDJHWKHRXWSXW UHVXOW ZLOO EH ³´RWKHUZLVH
LW ZLOO GLVSOD\ DV´ ZKHQ WKH LQSXW YROWDJH LV OHVV WKDQ WKH
UHIHUHQFHYROWDJHDVVKRZQLQ)LJ
7KH VLPXODWHG ZDYHIRUP IRU SURSRVHG FRPSDUDWRU VKRZQ
LQ )LJ 7KH FORFN IUHTXHQF\ IRU SURSRVHG FLUFXLW GHVLJQ LV
)LJ6LPXODWLRQUHVXOWVRISURSRVHGFRPSDUDWRU
)LJ&RPSDUDWRURXWSXWZDYHIRUP
)LJ6FKHPDWLFRIWKHFRPSDUDWRU
)LJ&KDUDFWHULVWLFVRILGHDOFRPSDUDWRU>@
)LJ$UFKLWHFWXUHRISUHDPSOLILHUODWFKFRPSDUDWRU
290
 0+] ZLWK 9 VXSSO\ YROWDJH 9''DQG  9 LQSXW
YROWDJH 9LQ 7KH RXWSXWV GLVSOD\ DV ORJLF ³´ ZKHQ9LQLV
JUHDWHU WKDQ 9UHI DQG FKDQJLQJ WR ORJLF ³´ ZKHQ 9LQ LV
OHVVWKDQ9UHI7KHGHOD\EHWZHHQLQSXWDQGRXWSXW
ZDYHIRUP LV  QV GHULYHG IURP  DV VKRZQ LQ )LJ
ZKLFKLVEHWWHUFRPSDUHGWRWKHSUHYLRXVZRUNV
7KH VLPXODWHG ZDYHIRUP IRU SURSRVHG FRPSDUDWRU VKRZQ
LQ)LJ7KHFORFNIUHTXHQF\IRUSURSRVHGFLUFXLWGHVLJQLV
:KHUH W
S/+
 LV WKH UHVSRQVH WLPH IRU D ORZ WR KLJK RXWSXW
WUDQVLWLRQ RU SRVLWLYH DQG W
S+/
LV UHIHU WR D KLJK WR ORZ RU
QHJDWLYHWUDQVLWLRQ
)LJVKRZVWKHFRPSOHWHOD\RXWRIWKHFRPSDUDWRUFLUFXLW
,Q WKLV GHVLJQ PXOWLILQJHU VWUXFWXUH KDV EHHQ LPSOHPHQWHG
7RWDO DFWLYH DUHD IRU WKLV SURSRVHG FRPSDUDWRU LV RQO\ 
P

7DEOH ,, VKRZV WKH VXPPDU\ RI WKH SHUIRUPDQFH RI WKH
SURSRVHG FRPSDUDWRU XVLQJ SUHDPSOLILHU ODWFK FLUFXLW GHVLJQ
$FRPSDULVRQRIWKLVZRUNWRWKHUHFHQWO\UHSRUWHG
SHUIRUPDQFHV RI &026 FRPSDUDWRU LV LOOXVWUDWHG LQ 7DEOH 
&RPSDUHG WR RWKHUV UHVHDUFK ZRUNV LW LV REYLRXV WKDW WKH
SURSRVHG FRPSDUDWRU FLUFXLW GLVVLSDWHV WKH ORZHVW SRZHU RI
DSSUR[LPDWHO\ Q: ZLWK WKH ORZHVW GHOD\ RI  QVZLWK
WKHVPDOOHVWOD\RXWDUHDRIRQO\P

7$%/(,, 6
800$5<2)
&
203$5$725
3
(5)250$1&(
3DUDPHWHUV 9DOXH
7HFKQRORJ\ P
6XSSO\YROWDJH 9
3RZHUGLVVLSDWLRQ Q:
'HOD\ QV
6DPSOLQJUDWH 0+]
$FWLYHDUHD P
7$%/(,,, 6
800$5<2)
&
203$5$725
3
(5)250$1&(
5HI &026SURFHVVP ,QSXW9ROWDJH 3RZHU: 'HOD\Q6 'LHDUHDP
>@     
>@     
>@     
>@     
>@     
7KLVZRUN     
)LJ/D\RXWGHVLJQIRUSURSRVHGFRPSDUDWRU
)LJ3URSDJDWLRQGHOD\EHWZHHQ9LQDQG9RXW
291
,9 &
21&/86,21
+LJKSHUIRUPDQFH DQG IXOO\ LQWHJUDWHG FRPSDUDWRU LV RQH
RIWKHPDMRU UHTXLUHPHQWVRI HYHU\PRGHUQ5)GHYLFH ,Q WKLV
SDSHUDSUHDPSOLILHUODWFKFLUFXLWEDVHGFRPSDUDWRUKDVEHHQ
SURSRVHG IRU $'& DSSOLFDWLRQV 7KH SURSRVHG FRPSDUDWRU
GHVLJQ XVLQJ  P&026 SURFHVV GLVVLSDWHV RQO\ Q:
SRZHU ZKLFK LV WKH ORZHVW UHSRUWHG WR GDWH 7KH SURSRVHG
GHVLJQ LV KLJKO\FRPSDFW RFFXS\LQJ RQO\  P
 RI VLOLFRQ
VSDFH 7KH SURSRVHG FRPSDUDWRUG HVLJQZLOO EH KLJKO\ XVHIXO
IRU WKH HOHFWURQLF LQGXVWULHV ZKHUH ORZSRZHU KLJK
SHUIRUPDQFHDQGFRPSDFWQHVVRIGHYLFHVDUHYHU\LPSRUWDQW
5
()(5(1&(6
>@ 0 $ %KXL\DQ< =LMLH - 6 <X0 % 5HD] 1 .DPDO DQG7*
&KDQJ$FWLYH LQGXFWRUEDVHG IXOO\LQWHJUDWHG&026 WUDQVPLWUHFHLYH
VZLWFKIRU  *+] 5) WUDQVFHLYHU $QDLV GD $ FDGHPLD %UDVLOHL UD GH
&LrQFLDVYROSS
>@ 1%5RPOL00DPXQ0$6%KXL\DQDQG++XVDLQ'HVLJQRID
ORZ SRZHU GLVVLSDWLRQ DQG ORZ LQSXW YROWDJH UDQJH OHYHO VKLIWHULQ
&('(&P&026SURFHVV:RUOG$SSOLHG6FLHQFHV-RXUQDOYRO
SS
>@ 0,%,GULV0%,5HD]DQG0$6%KXL\DQ³$ORZYROWDJH9*$IRU
5),'UHFHLYHUV´,(((,QWHUQDWLRQDO&RQIHUHQFHRQ5),'7HFKQRORJLHV
DQG$SSOLFDWLRQVSS
>@ 0$6%KXL\DQ0%,5HD] --DOLODQG /) 5DKPDQ'HVLJQ RI D
QDQRVZLWFK LQ  QP &026 WHFKQRORJ\ IRU  *+] ZLUHOHVV
WHUPLQDOV %XOOHWLQ RI WKH 3ROLVK $FDGHP\ RI 6FLHQFHV 7HFKQLFDO
6FLHQFHVYROSS
>@ ) 0RKG<DVLQ 0 .KDZ DQG 0 5HD] 5DGLR IUHTXHQF\
LGHQWLILFDWLRQ (YROXWLRQ RI WUDQVSRQGHU FLUFXLW GHVLJQ0LFURZDYH
-RXUQDOYROSS
>@ 0$ULILQ0 0DPXQ0 $6%KXL\DQDQG+ +XVDLQ'HVLJQRI D
ORZ SRZHU DQG ZLGH EDQGWUXH VLQJOHSKDVHFORFN IUHTXHQF\GLYLGHU
$XVWUDOLDQ -RXUQDO RI %DVLF DQG $SSOLHG 6FLHQFHV YRO  SS  

>@ 0 $ 6 %KXL\DQ0 % , 5HD] - -DOLO / ) 5DKPDQ DQG7*
&KDQJ $ FRPSDFW WUDQVPLWUHFHLYH VZLWFK IRU  *+] UHDGHUOHVV
DFWLYH5),'WDJWUDQVFHLYHU-RXUQDO RI &HQWUDO 6RXWK 8QLYHUVLW\ YRO
SS
>@ 0-8GGLQ$11RUGLQ0%,5HD]DQG0$6%KXL\DQ³$&026
SRZHUVSOLWWHUIRU *+],60EDQG5),'UHDGHU LQP&026
WHFKQRORJ\´7HFKQLFDO*D]HWWHYROSS
>@ 0$6 %KXL\DQ0%, 5HD] - -DOLO /)5DKPDQ DQG 7* &KDQJ
³'HVLJQ7UHQGV LQ )XOO\,QWHJUDWHG  *+]&026 63'7 6ZLWFKHV´
&XUUHQW1DQRVFLHQFHYROSS
>@ --DOLO0%,5HD]DQG0$0$OL&026GLIIHUHQWLDO ULQJ
RVFLOODWRUVUHYLHZRI WKHSHUIRUPDQFHRI&02652VLQFRPPXQLFDWLRQ
V\VWHPV,(((PLFURZDYHPDJD]LQHYROSS
>@ . $ 5RVOL ' 5PQKU 0 0DPXQ DQG 0 $ 6 %KXL\DQ $
FRPSDUDWLYHVWXG\RQ62,026)(7VIRUORZSRZHUDSSOLFDWLRQV
5HVHDUFK -RXUQDO RI $SSOLHG 6FLHQFHV (QJLQHHULQJ DQG 7HFKQRORJ\
YROSS
>@ : 0 .DGHU + 5DVKLG 0 0DPXQ DQG 0 $ 6 %KXL\DQ
$GYDQFHPHQW RI &026 6FKPLWW WULJJHU FLUFXLWV 0RGHUQ $SSOLHG
6FLHQFHYROS
>@ )0RKG<DVLQ0.KDZDQG05HD]7HFKQLTXHVRI5),'6\VWHPV
$UFKLWHFWXUHVDQG$SSOLFDWLRQV0LFURZDYH-RXUQDOYROSS


>@ /)5DKPDQ0%,5HD]00$OLDQG0.DPDGD'HVLJQRIDQ
((3520LQ5),'WDJ(PSOR\LQJPDSSHG(3& DQG,3Y DGGUHVVLQ
&LUFXLWV DQG 6\VWHPV$3&&$6  ,((( $VLD 3DFLILF&RQIHUHQFH
RQSS
>@ 08GGLQ 0, ,EUDKLP\0 , 5HD]DQG $ 11RUGLQ 'HVLJQ DQG
DSSOLFDWLRQ RI UDGLR IUHTXHQF\ LGHQWLILFDWLRQ V\VWHPV (XURSHDQ
-RXUQDORI6FLHQWLILF5HVHDUFKYROSS
>@ /) 5DKPDQ 0%, 5HD] 0$ $OL DQG 0 0DUXIX]]DPDQ
³,PSOHPHQWDWLRQ RI 6HQVH $PSOLILHU LQ P &026 3URFHVV´
(OHNWURQLNDLU(OHNWURWHFKQLNDYRO
>@ 0$6%KXL\DQ-;&KHZ0%,5HD]DQG1.DPDO³'HVLJQRIDQ
DFWLYH LQGXFWRU EDVHG /1$ LQ 6LOWHUUD  QP &026 SURFHVV
WHFKQRORJ\´ -RXUQDO RI 0LFURHOHFWURQLFV (OHFWURQLF &RPSRQHQWVDQG
0DWHULDOVYROSS
>@ 6% 0DVKKDGL DQG 5 /RW¿$QDO\VLV DQG 'HVLJQ RI D /RZ9ROWDJH
/RZ3RZHU 'RXEOH7DLO &RPSDUDWRU ,((( 7UDQVDFWLRQV RQ 9HU\
/DUJH 6FDOH ,QWHJUDWLRQ 9/6,6\VWHPV 9RO  1R  SS

>@ 501+5 'DXG 0%, 5HD] DQG /) 5DKPDQ ³'HVLJQ DQG
$QDO\VLVRI/RZ3RZHUDQG +LJK6SHHG'\QDPLF/DWFK&RPSDUDWRULQ
 P &026 3URFHVV´ ,QWHUQDWLRQDO -RXUQDO RI ,QIRUPDWLRQ DQG
(OHFWURQLFV(QJLQHHULQJ9RO1RSS
>@ *0LVKUD30DOYL\D+66ULYDVWDYDDQG5.%DJKHO³'HVLJQ  RI
+LJK 6SHHG /RZ 9ROWDJH &RPSDUDWRU 'HVLJQ RQ QP &026´
(QJLQHHULQJ 8QLYHUVHIRU 6FLHQWLILF5HVHDUFK DQG0DQDJHPHQW 9RO 
1RSS
>@ -66.DUZDUNHUDQG+*9LUDQL³'HVLJQRI+LJK6SHHG&RPSDUDWRU´
,QWHUQDWLRQDO -RXUQDO RQ 5HFHQW DQG ,QQRYDWLRQ 7UHQGV LQ &RPSXWLQJ
DQG&RPPXQLFDWLRQ9RO1RSS
>@ 0 .XPDU DQG  0 6LQJKDO ³5HYLHZ SDSHU RQ  0LQLPL]DWLRQ RI SRZHU
GLVVLSDWLRQ DUHD DQG RIIVHW YROWDJH LQ &026 G\QDPLF&RPSDUDWRUIRU
KLJK VSHHG $'&V´ ,QW HUQDWLRQDO -RXUQDO RI 0RGHUQ & RPSXWHU 6FLHQFH
,-0&69RO1RSS
>@ 30)LJXHLUHGRDQG-&9LWDO³.LFNEDFN1RLVH5HGXFWLRQ7HFKQLTXHV
IRU &026 /DWFKHG&RPSDUDWRUV´ ,((( 7UDQVDFWLRQVRQ &LUFXLWV DQG
6\VWHPV9RO1RSS
>@ 03DQFKRUH56*DPDGDQG%&1DJDU³'HVLJQRID&026
&RPSDUDWRU IRU $' &RQYHUWHU $SSOLFDWLRQ´ ,QWHUQDWLRQDO -RXUQDO RI
&RPSXWDWLRQDO ,QWHOOLJHQFH DQG ,QIRUPDWLRQ 6HFXULW\ 9RO  1R 
SS
>@ 6 6DUNDU DQG 6 %DQHUMHH ³ 0+] 'LIIHUHQWLDO /DWFKHG &XUUHQW
&RPSDUDWRUIRU &DOLEUDWLRQ RI &XUUHQW6WHHULQJ '$&´ ,(((6WXGHQWV
7HFKQRORJ\6\PSRVLXPSS±
>@ ..DQGSDO69DUVKQH\DQG0*RVZDPL³$+LJK6SHHG/RZ3RZHU
&RPSDUDWRU ZLWK &RPSRVLWH &DVFRGH 3UHDPSOLILFDWLRQ IRU
2YHUVDPSOHG $'&V´-RXUQDO RI$XWRPDWLRQ DQG&RQWURO (QJLQHHULQJ
9RO1RSS
>@ ' 2VLSRY ³/RZ SRZHU FKDUJHVWRUDJH SUHDPSOL¿HU IRU SUHFLVLRQ
FRPSDUDWRUV ZLWK RIIVHW HUURU FRUUHFWLRQ´ $QDORJ ,QWHJU &LUF 6LJ
3URFHVVYROSS±
>@ $ %DUDGD UDQUH]DHLL 2 6KLQR . +DGL GL $ .KRHL ³$Q 8OWUD+LJK
6SHHG +LJK5HVROXWLRQ /RZ2IIVHW /RZ3RZHU 9ROWDJH &RPSDUDWRU
:LWK $ 5HOLDEOH 2IIVHW &DQFHOODWLRQ 0HWKRG )RU +LJK3HUIRUPDQFH
$SSOLFDWLRQV,Q  P &PRV 7HFKQRORJ\´  $QDORJ ,QWHJU &LUF 6LJ
3URFHVVYROSS±
>@ 75DEXVNH)5DEXVNH-)HUQDQGHVDQG&5RGULJXHV³$QELW
9 I-&RQYHUVLRQ6WHS 6$5 $'& :LWK %DFNJURXQG 6HOI
&DOLEUDWLRQ RI &RPSDUDWRU 2IIVHW´,((( 7UDQVDFWLRQV RQ 9HU\/DUJH
6FDOH,QWHJUDWLRQ9/6,6\VWHP9ROQRSS
292
... Improvement in g m /I D and f T at lower T is the reason behind such enhancement in GTFP. As the value of GTFP for DMG VSTB FET is in petahertz (PHz), the device can be used in low power high speed applications [63]. ...
Article
Full-text available
This work presents a simulation study of the influence of temperature on the performance of dual material gate (DMG) vertical super-thin body (VSTB) FET. The introduction of DMG causes a drop in the off-state current (Ioff) by ~99.18% and DIBL by 20%. Drop in the Ioff enhances the on-to-off current ratio (Ion/Ioff) by ~98.85%. A rigorous investigation on temperature dependency of DC, analog/RF, and linearity metrics was carried out. The zero temperature coefficient (ZTC) bias point for the DMG device was observed to be nearly at a gate bias of VG = 0.41 V. Various DC figures of merit (FoM) such as subthreshold swing (SS), Ion/Ioff, and threshold voltage (VT) show improvement with temperature fall. Lowering in temperature also leads to enhanced analog/RF performance by offering superior gm, gd, Cgg, Cgd, maximum fT, maximum GBP, intrinsic delay, TGF, TFP, GFP, and GTFP. However, linearity metrics like gm2, gm3, VIP2, VIP3, IIP3, IMD3, and 1-dB compression point show better performance with an increase in temperature.
Article
Full-text available
Modern Radio Frequency (RF) transceivers cannot be imagined without high-performance (Transmit/Receive) T/R switch. Available T/R switches suffer mainly due to the lack of good trade-off among the performance parameters, where high isolation and low insertion loss are very essential. In this study, a T/R switch with high isolation and low insertion loss performance has been designed by using Silterra 0.13µm CMOS process for 2.4GHz ISM band RF transceivers. Transistor aspect ratio optimization, proper gate bias resistance, resistive body floating and active inductor-based parallel resonance techniques have been implemented to achieve better trade-off. The proposed T/R switch exhibits 0.85dB insertion loss and 45.17dB isolation in both transmit and receive modes. Moreover, it shows very competitive values of power handling capability (P1dB) and linearity (IIP3) which are 11.35dBm and 19.60dBm, respectively. Due to avoiding bulky inductor and capacitor, the proposed active inductor-based T/R switch became highly compact occupying only 0.003mm2 of silicon space; which will further trim down the total cost of the transceiver. Therefore, the proposed active inductor-based T/R switch in 0.13µm CMOS process will be highly useful for the electronic industries where low-power, high-performance and compactness of devices are the crucial concerns.
Article
Full-text available
From its first use in World War II, to differentiate between enemy and friendly aircraft, RFID has come to an era where it is used as an important identification tool, providing added security and conveniences in our daily lives. Its components and features are still being researched and integrated in existing systems to create a marketable and potential new system. 1,2 The main purpose of this article is to highlight and discuss the various RFID systems that are being implemented or under development. The advances, approaches and improvements in the designs will be examined and, if possible, compared with one another. Recommendations for future study are also outlined. This review serves as a comparative study and reference, beneficial for RFID researchers for future implementation of the technology.
Article
Full-text available
In this paper, an active inductor based CMOS low noise amplifier (LNA) has been illustrated for 2.4 GHz ISM band RF receivers. The proposed LNA has three stages: the common gate amplifier, the active inductor and the output buffer. The LNA is designed in Silterra 130-nm CMOS process. It operates at 1.2V supply voltage and exhibit a high gain (S21) of 33dB and reverse isolation (S12) of -33.1dB. The power dissipation of the LNA is only 1.51mW with 8.51 dB noise figure and 35.5dB IIP3. In the proposed LNA, active inductor circuit replaces the usual passive spiral inductor to keep the size of the chip area at 0.0004mm2. Such an LNA will be a better choice for high performance, fully integrated, low cost and low power RF receivers.
Article
Full-text available
The circuit design of transponder, commonly called a tag which is a component of RFID system is discussed. The tag designs continue to evolve as the world is turning to new applications, performance improvement, cost reduction, low manufacturing cost, and size reduction. The losses arising from drug counterfeiting, overstocking or outdated products in the retail and pharmaceutical industries have made RFID a sought after automatic identification system. RFID technology's ability to track, trace, authenticate, and uniquely identify each pharmaceutical product helps to improve inventory management through the reduction of out-of-stock items and increase the safety of the stock, more efficient product recalls, and drug safety. The demand for wireless communication and high-speed mixed-signal systems are continuing to increase which has provided sufficient electrostatic discharge (ESD) protection for the tags to be researched and implemented in the chip design.
Article
Full-text available
In this paper the concept of a low-power pre-amplifier for precision comparators used in SAR ADC is presented. To reduce the average current consumption of the amplifier stages, we used capacitors as dynamic loads that act as current sources during the comparison phase (charge-storage amplifier stage). An output offset storage offset correction technique for multiple charge-storage stages is proposed. Simulations performed using the 0.35 mu m CMOS design kit showed an average current consumption of 6.4 mu A at a clock frequency of 1 MHz with an achieved gain of 240, and a maximum possible offset voltage correction of approximately 50 mV.
Article
In this paper a novel structure is presented as a voltage comparator, and a reliable offset cancellation technique is utilized as well. Moreover a comprehensive post layout simulation method is described to evaluate a vast verity of comparators in order to find out whether the designed structure will operate properly in the post fabrication (solid state) tests or not. A single stage architecture with a simple readout circuit leads to a low-offset low-power high-speed high-resolution comparator which qualifies for VLSI applications such as image sensors. Applying the reliable offset cancellation technique makes it qualified for high performance applications like high-speed high-resolution ADCs. The proposed comparator is simulated through the mentioned method in 0.18 µm standard CMOS technology, and 0.5 mV of accuracy in 1 G sample per second is obtained with a power consumption of 110 µW (150 µW with offset cancellation circuit) where an introduced offset of about 10 mV is cancelled to lower than 220 µV as well.
Article
Radio frequency identification (RFID) is a ubiquitous identification technology nowadays. An on-chip high-performance transmit/receive (T/R) switch is designed and simulated in 0.13-μm CMOS technology for reader-less RFID tag. The switch utilizes only the transistor width and length (W/L) optimization, proper gate bias resistor and resistive body floating technique and therefore, exhibits 1 dB insertion loss, 31.5 dB isolation and 29.2 dBm 1-dB compression point (P1dB). Moreover, the switch dissipates only 786.7 nW power for 1.8/0 V control voltages and is capable of switching in 794 fs. Above all, as there is no inductor or capacitor used in the circuit, the size of the switch is 0.00208 mm2 only. This switch will be appropriate for reader-less RFID tag transceiver front-end as well as other wireless transceivers operated at 2.4 GHz band.
Article
Sense Amplifier is one of the major circuits in CMOS nonvolatile memories. The aim of this research is to implement Sense Amplifier in 0.18μm CMOS process to achieve both the lower reading power and superior reliability for sensing operation. In RFID transponder, EEPROM are used to store data. Memory access time, power dissipation and the reliability of an EEPROM is vigorously influenced by the features of the SA. Current type SA experience the larger current or power dissipation problems, which is not suitable for low voltage applications of RFID transponder. The proposed voltage-type SA is able to execute under a very low power supply voltage (VDD) between 1V to 2.6V VDD. The SA circuit implemented within the temperature range from-25°C to 125°C. The compact layout design has been carried out to evaluate the efficiency of the circuit. The modified low voltage-type SA is appropriate for low-voltage applications like RFID EEPROM. Ill. 5, bibl. 10, tabl. 1 (in English; abstracts in English and Lithuanian).